

SMT Solving for Vesicle Traffic Systems in Cells

A. Gupta¹ **A. Shukla**² M. Srivas² M. Thattai ³

¹TIFR, Mumbai

²CMI, Chennai

³NCBS, Bangalore

August 29, 2017

An interesting question

Biological interest: What is the form of an eukaryotic membrane traffic?

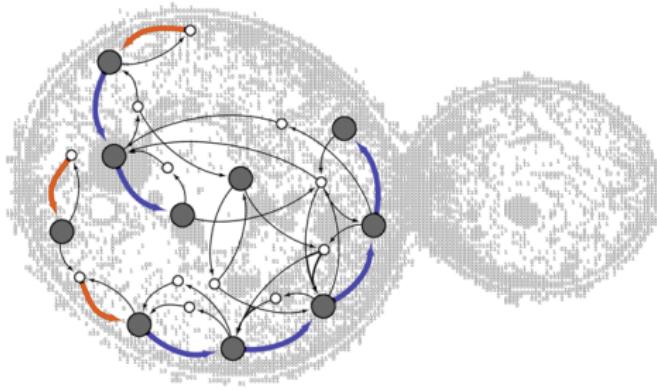
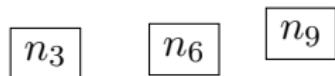
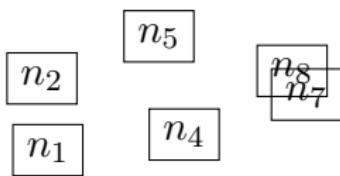


Figure from mukund's recent paper [\[mani16a\]](#).

Vesicular Transport in eukaryotic

- Cells consist of compartments (nodes) 10.



Vesicular Transport in eukaryotic

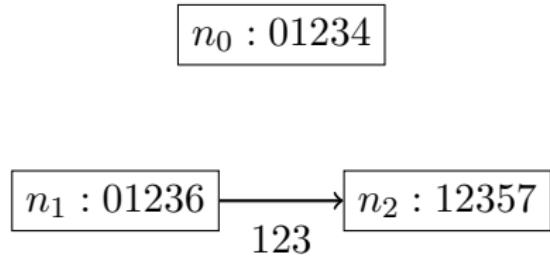
- Cells consist of compartments (nodes) 10.
- Compartments contain molecules (labels).

$n_0 : 01234$

$n_1 : 01236$

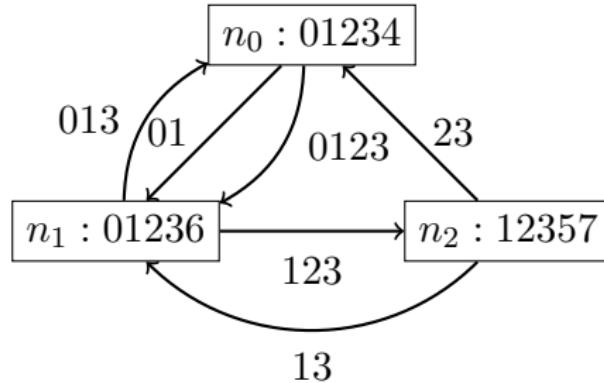
$n_2 : 12357$

Vesicular Transport in eukaryotic



- Cells consist of compartments (nodes) 10.
- Compartments contain molecules (labels).
- Molecules moves around via “transfer **vesicles**” among compartments. (edges label: transferred molecules).

VTS \equiv labeled directed graph...



that follows certain biological rules.

Problem?

- Find a VTS that satisfies some **biological rules**.

¹VTS is most complex network in cells [mani 16b]

Problem?

- Find a VTS that satisfies some **biological rules**.
- Solution?

¹VTS is most complex network in cells [mani 16b]

Problem?

- Find a VTS that satisfies some **biological rules**.
- Solution? Easy...

¹VTS is most complex network in cells [mani 16b]

Problem?

- Find a VTS that satisfies some **biological rules**.
- Solution? Easy...
- Encode rules as combinatorial constraints and **use** SAT/SMT solvers

¹VTS is most complex network in cells [mani 16b]

Problem?

- Find a VTS that satisfies some **biological rules**.
- Solution? Easy...
- Encode rules as combinatorial constraints and **use** SAT/SMT solvers
- However, encoding is treacherous!! ¹

¹VTS is most complex network in cells [mani 16b]

Problem?

- Find a VTS that satisfies some **biological rules**.
- Solution? Easy...
- Encode rules as combinatorial constraints and **use** SAT/SMT solvers
- However, encoding is treacherous!! ¹

Contribution: an effective encoding.

¹VTS is most complex network in cells [mani 16b]

Find VTS that satisfied these constraints

- ① Activity constraint.
- ② Fusion constraint.
- ③ Pairing function.
- ④ Stability constraint.
- ⑤ Connectivity constraint.

- ① “Activity constraint”: a molecule may or may not be **active** on the edge/nodes.

²A VTS is k-connected if every pair of compartments remain reachable after dropping $k - 1$ vesicles.

- ① “Activity constraint”: a molecule may or may not be **active** on the edge/nodes.
- ② “Fusion constraint”: each edge must have an active molecule that fuses with some active molecule at its target node.

²A VTS is k-connected if every pair of compartments remain reachable after dropping $k - 1$ vesicles.

- ① “Activity constraint”: a molecule may or may not be **active** on the edge/nodes.
- ② “Fusion constraint”: each edge must have an active molecule that fuses with some active molecule at its target node.
- ③ “Pairing function”: the fusion is dependent on molecule pairs for each edge.

²A VTS is k-connected if every pair of compartments remain reachable after dropping $k - 1$ vesicles.

- ① “Activity constraint”: a molecule may or may not be **active** on the edge/nodes.
- ② “Fusion constraint”: each edge must have an active molecule that fuses with some active molecule at its target node.
- ③ “Pairing function”: the fusion is dependent on molecule pairs for each edge.
- ④ “Stability constraint”: all molecules must move around in closed cycles.

²A VTS is k-connected if every pair of compartments remain reachable after dropping $k - 1$ vesicles.

- ① “Activity constraint”: a molecule may or may not be **active** on the edge/nodes.
- ② “Fusion constraint”: each edge must have an active molecule that fuses with some active molecule at its target node.
- ③ “Pairing function”: the fusion is dependent on molecule pairs for each edge.
- ④ “Stability constraint”: all molecules must move around in closed cycles.
- ⑤ “Connectivity constraint”: resulting graph is not k-connected ².

²A VTS is k-connected if every pair of compartments remain reachable after dropping $k - 1$ vesicles.

A *Formal VTS* is a tuple

Definition

$$G = (N, M, E, L, P, f).$$

where

- N set of *nodes* representing compartments.
- M is a different type of *molecules* in the system.
- E is the set of edges with molecule sets as *labels*.
- L is the set of *node labels*.

A *Formal VTS* is a tuple

Definition

$$G = (N, M, E, L, P, f).$$

where

- N set of *nodes* representing compartments.
- M is a different type of *molecules* in the system.
- E is the set of edges with molecule sets as *labels*.
- L is the set of *node labels*.
- P is the *pairing relation*.
- $f : M \rightarrow \wp(M) \rightarrow \mathbb{B}$ are the *activity maps*.

The search problem

Fix \mathbf{k} , \mathbf{M} , \mathbf{N} ; find a G such that following constraints are satisfied:

- ① Activity constraint.
- ② Fusion constraint.
- ③ Pairing function.
- ④ Stability constraint.
- ⑤ Connectivity constraint.

Results

Variant	Constraints		Graph connectivity
	Rest	Activity	
A.	F + P + S + C	N + N	No graph
B.		$\textcolor{brown}{B} + N$	No graph
C.		N + $\textcolor{brown}{B}$	3-connected
D.		$\textcolor{brown}{B} + \textcolor{brown}{B}$	2-connected
E.		N + P	No graph
F.		$\textcolor{brown}{B} + P$	4-connected

$\textcolor{teal}{N}$: No regulation. Every present molecule is active.

$\textcolor{brown}{B}$: Use boolean function for regulation.

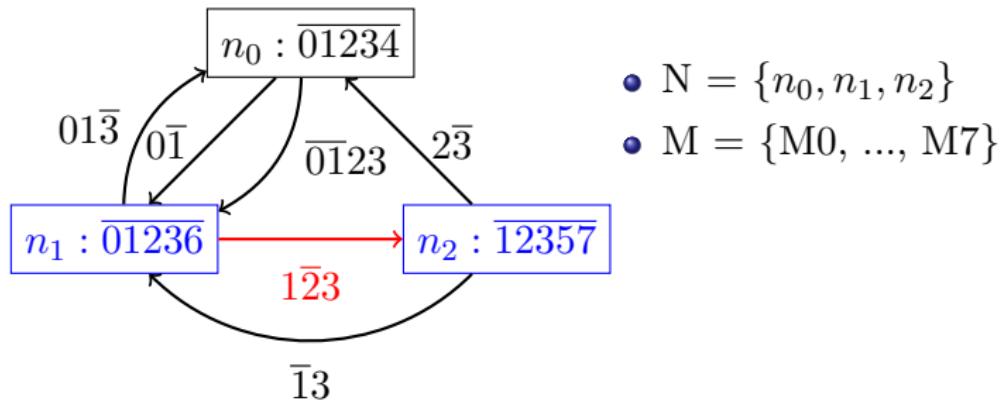
P: Use pairing matrix for regulation.

Example: Variation C

Regulation on node: **None**

Regulation on edge: **Boolean function**

Our favorite VTS: Our favorite edge

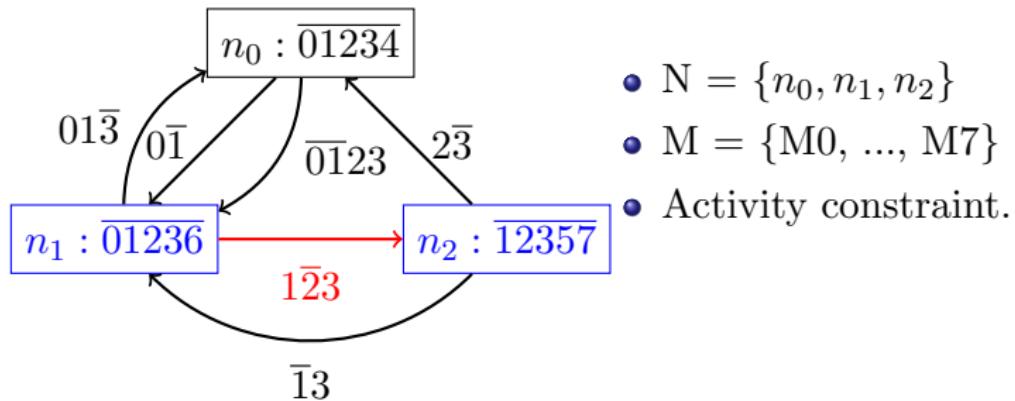


$M_1 \rightarrow M_6$

$M_2 \rightarrow M_5$

$M_3 \rightarrow M_4$

Our favorite VTS: Our favorite edge

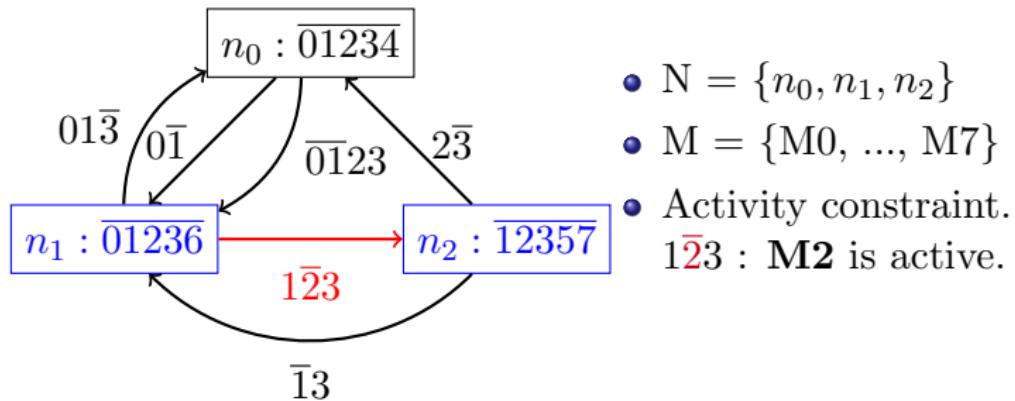


$M_1 \rightarrow M_6$

$M_2 \rightarrow M_5$

$M_3 \rightarrow M_4$

Our favorite VTS: Our favorite edge

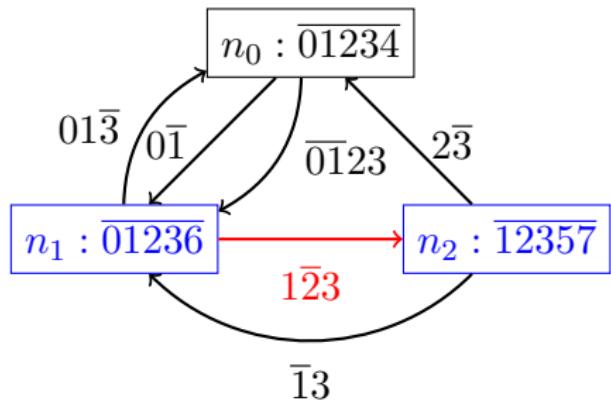


$M_1 \rightarrow M_6$

$M_2 \rightarrow M_5$

$M_3 \rightarrow M_4$

Our favorite VTS: Our favorite edge



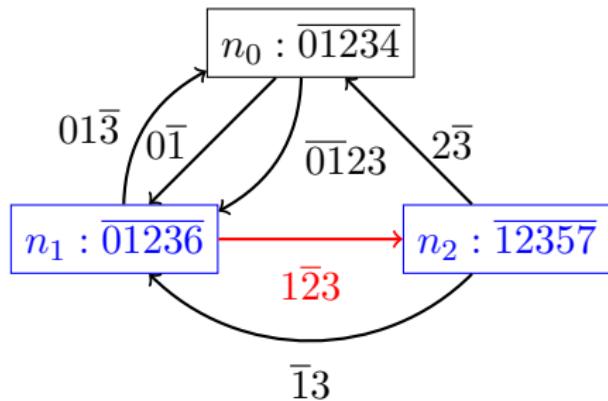
- $N = \{n_0, n_1, n_2\}$
- $M = \{M_0, \dots, M_7\}$
- Activity constraint.
 $1\bar{2}3 : \mathbf{M2}$ is active.
- Fusion constraint.

$M_1 \rightarrow M_6$

$M_2 \rightarrow M_5$

$M_3 \rightarrow M_4$

Our favorite VTS: Our favorite edge



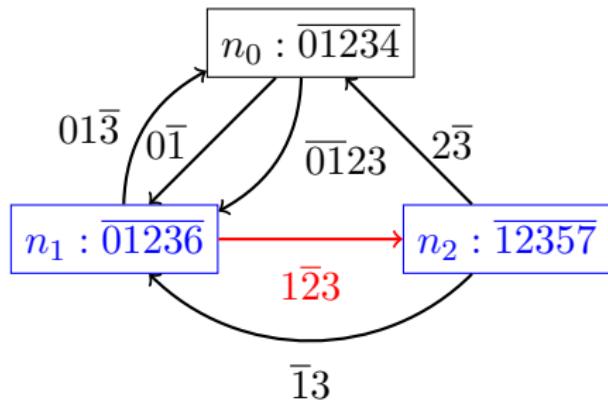
- $N = \{n_0, n_1, n_2\}$
- $M = \{M_0, \dots, M_7\}$
- Activity constraint.
 $1\bar{2}3 : \mathbf{M2}$ is active.
- Fusion constraint.
 $\mathbf{M2, M5}$ are active.

$M_1 \rightarrow M_6$

$M_2 \rightarrow M_5$

$M_3 \rightarrow M_4$

Our favorite VTS: Our favorite edge



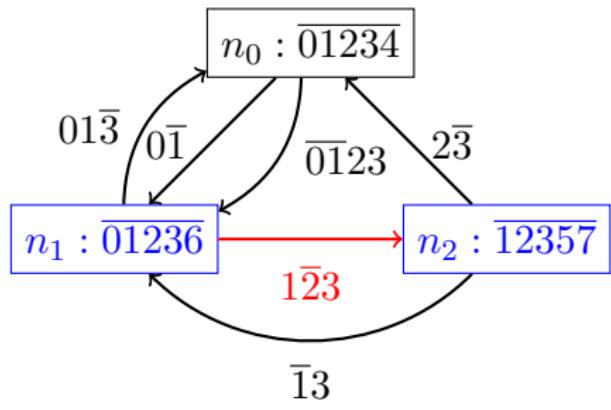
- $N = \{n_0, n_1, n_2\}$
- $M = \{M_0, \dots, M_7\}$
- Activity constraint.
 $1\bar{2}3 : \mathbf{M2}$ is active.
- Fusion constraint.
 $\mathbf{M2, M5}$ are active.
- Pairing function.

$M_1 \rightarrow M_6$

$M_2 \rightarrow M_5$

$M_3 \rightarrow M_4$

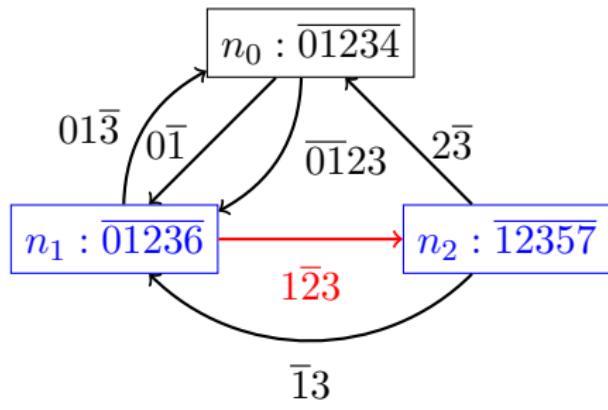
Our favorite VTS: Our favorite edge



$M_1 \rightarrow M_6$
 $M_2 \rightarrow M_5$
 $M_3 \rightarrow M_4$

- $N = \{n_0, n_1, n_2\}$
- $M = \{M_0, \dots, M_7\}$
- Activity constraint.
 $1\bar{2}3 : \mathbf{M2}$ is active.
- Fusion constraint.
 $\mathbf{M2, M5}$ are active.
- Pairing function.
 $\mathbf{M2, M5}$ form a pair.

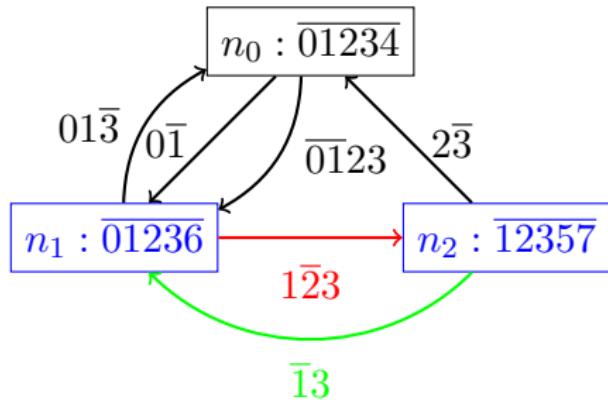
Our favorite VTS: Our favorite edge



$M_1 \rightarrow M_6$
 $M_2 \rightarrow M_5$
 $M_3 \rightarrow M_4$

- $N = \{n_0, n_1, n_2\}$
- $M = \{M_0, \dots, M_7\}$
- Activity constraint.
 $1\bar{2}3 : \mathbf{M2}$ is active.
- Fusion constraint.
 $\mathbf{M2, M5}$ are active.
- Pairing function.
 $\mathbf{M2, M5}$ form a pair.
- Stability constraint.

Example: Our favorite edge, Stability condition



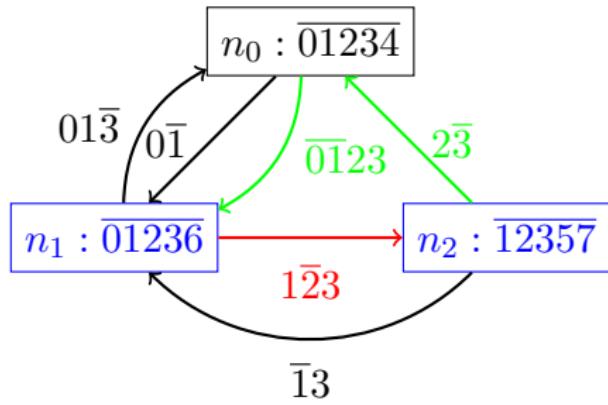
- Stability constraint.
M1, M3 come back direct edge.

$M1 \rightarrow M6$

$M2 \rightarrow M5$

$M3 \rightarrow M4$

Example: Our favorite edge, SS condition



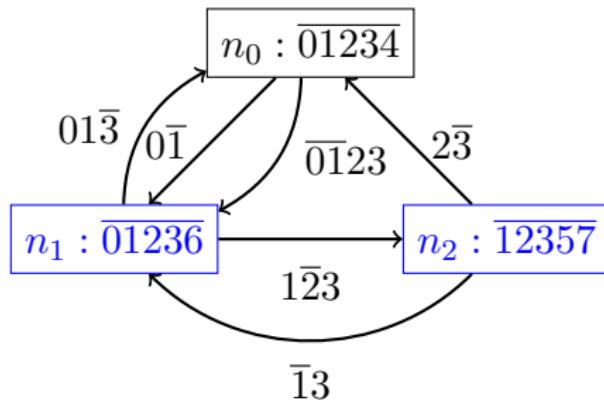
- Stability constraint.
M1, M3 come back
direct edge.
M2 comes back using
node n_0 .

$M_1 \rightarrow M_6$

$M_2 \rightarrow M_5$

$M_3 \rightarrow M_4$

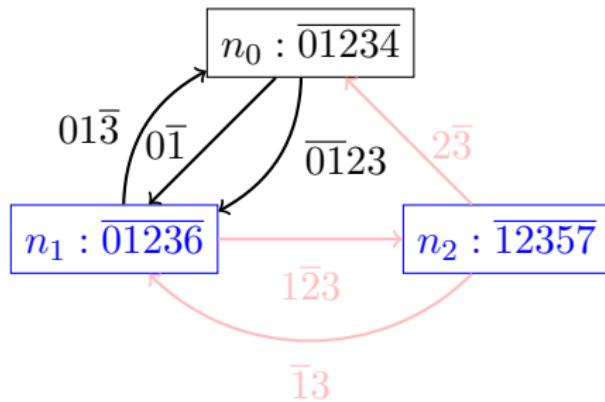
Example: Our favorite edge, CC



$M1 \rightarrow M6$
 $M2 \rightarrow M5$
 $M3 \rightarrow M4$

- Stability constraint.
 $M1, M3$ come back direct edge.
 $M2$ comes back using node n_0 .
- Connectivity constraint.

Example: Our favorite edge, CC



$M1 \rightarrow M6$
 $M2 \rightarrow M5$
 $M3 \rightarrow M4$

- Stability constraint.
 $M1, M3$ come back direct edge.
 $M2$ comes back using node n_0 .
- Connectivity constraint.
Drop edge $d_{2,1}, d_{1,2}, d_{2,0}$.

- ① Activity constraint.
- ② Fusion constraint.
- ③ Pairing function.
- ④ **Stability constraint.**
- ⑤ Connectivity constraint.

Stability Encoding

Constraint for stability condition:

“*Every outgoing molecule come back in a cycle*”

\forall leaving $m \in M \dots \exists$ cycle $[..]$

Stability encoding

Encode stability using the reachability variables.

$$\bigwedge_{i,j,m} (e_{i,j,m}) \implies$$

- Edge contains m

Stability encoding

Encode stability using the reachability variables.

$$\bigwedge_{i,j,m} (e_{i,j,m}) \implies r_{j,i,m,\mu})$$

- Edge contains m
- A path btw i,j len $\leq \mu$ contains m

Stability encoding

Encode stability using the reachability variables.

$$\bigwedge_{i,j,m} (e_{i,j,m}) \implies r_{j,i,m,\mu})$$

- Edge contains m
- A path btw i,j len $\leq \mu$ contains m
- $\mu : N - 2$.

Steady state encoding

Use **reachability** to encode the stability condition in VTSSs.

$$\boxed{\bigwedge_{i,j,m,p} r_{i,j,m,p}} \implies$$

- Recursively define reachability

Steady state encoding

Use **reachability** to encode the stability condition in VTSSs.

$$\boxed{\bigwedge_{i,j,m,p} r_{i,j,m,p}} \implies \boxed{e_{i,j,m}} \vee \bigvee_{i \neq i'} (e_{i,i',m} \wedge$$

- Recursively define reachability

Steady state encoding

Use **reachability** to encode the stability condition in VTSSs.

$$\bigwedge_{i,j,m,p} r_{i,j,m,p} \implies e_{i,j,m} \vee \bigvee_{i \neq i'} (e_{i,i',m} \wedge r_{i',j,m,p-1})$$

- Recursively define reachability

- ① Activity constraint.
- ② Fusion constraint.
- ③ Pairing function.
- ④ Stability constraint.
- ⑤ Connectivity constraint.

k -connectivity constraints

The following constraints encode that only existing edges can be dropped and exactly $k - 1$ edges are dropped.

$$\begin{aligned} \bigwedge_{i,j} d_{i,j} &\implies e_{i,j} \\ \sum_{i,j} d_{i,j} &= k - 1 \end{aligned} \tag{1}$$

but, in my opinion.

$$\bigwedge_{i,j} [(e_{i,j} \wedge \neg d_{i,j}) \vee (\bigvee_{i' \neq i} r'_{i',j} \wedge (e_{i,i'} \wedge \neg d_{i,i'}))] \implies r'_{i,j} \tag{2}$$

$$\bigvee_{i,j} \neg(r'_{i,j} \vee r'_{j,i}) \tag{3}$$

Old-e

- **CBMC:** C bounded model checker.
- Encode stability condition using *non-determinism* and *enumeration*.
- Not very optimal.

Run-times for searching for models (in secs)

Size	Variant A		Variant C		Variant D		Variant F	
	2-connected		3-connected		2-connected		4-connected	
	MAA	Old-e	MAA	Old-e	MAA	Old-e	MAA	Old-e
2	!0.085	!2.43	0.15	2.12	!0.13	!1.89	0.35	5.12
3	!0.54	!8.04	0.95	7.65	0.62	7.66	1.36	23.94
4	!2.57	!297.93	2.33	22.74	2.85	48.35	4.81	123.34
5	!7.7	!3053.8	7.60	500.03	10.27	890.84	33.36	2482.71
6	!22.98	M/O	19.52	M/O	30.81	M/O	147.52	M/O
7	!57.07	M/O	81.89	M/O	82.94	M/O	522.26	M/O
8	!164.14	M/O	630.85	M/O	303.19	M/O	2142.76	M/O
9	!307.67	M/O	2203.45	M/O	971.01	M/O	4243.34	M/O
10	!558.34	M/O	7681.93	M/O	2274.30	M/O	7786.82	M/O

Conclusion

- ① Novel **encodings** of reachability and 3-4 connectivity.
- ② Direct encoding into the SMT solver.
- ③ A user friendly and scalable tool based on well known SMT solver Z3.

Thank You !