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An interesting question

Biological interest: What is the form of an eukaryotic
membrane traffic?

Figure from mukund’s recent paper [mani16a].
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Vesicular Transport in eukaryotic
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Cells consist of compartments
(nodes) 10.

Compartments contain
molecules (labels).

Molecules moves around via
“transfer vesicles” among
compartments. (edges label:
transferred molecules).
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VTS ≡ labeled directed graph...
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n1 : 01236 n2 : 12357
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that follows certain biological rules.

A.Gupta, A.Shukla, M.Srivas, M.Thattai SASB 2017



5

Problem?

Find a VTS that satisfies some biological rules.

Solution? Easy...

Encode rules as combinatorial constraints and use
SAT/SMT solvers

However, encoding is treacherous!! 1

Contribution: an effective encoding.

1VTS is most complex network in cells [mani 16b]
A.Gupta, A.Shukla, M.Srivas, M.Thattai SASB 2017

https://www.ncbi.nlm.nih.gov/pubmed/27012485


5

Problem?

Find a VTS that satisfies some biological rules.

Solution?

Easy...

Encode rules as combinatorial constraints and use
SAT/SMT solvers

However, encoding is treacherous!! 1

Contribution: an effective encoding.

1VTS is most complex network in cells [mani 16b]
A.Gupta, A.Shukla, M.Srivas, M.Thattai SASB 2017

https://www.ncbi.nlm.nih.gov/pubmed/27012485


5

Problem?

Find a VTS that satisfies some biological rules.

Solution? Easy...

Encode rules as combinatorial constraints and use
SAT/SMT solvers

However, encoding is treacherous!! 1

Contribution: an effective encoding.

1VTS is most complex network in cells [mani 16b]
A.Gupta, A.Shukla, M.Srivas, M.Thattai SASB 2017

https://www.ncbi.nlm.nih.gov/pubmed/27012485


5

Problem?

Find a VTS that satisfies some biological rules.

Solution? Easy...

Encode rules as combinatorial constraints and use
SAT/SMT solvers

However, encoding is treacherous!! 1

Contribution: an effective encoding.

1VTS is most complex network in cells [mani 16b]
A.Gupta, A.Shukla, M.Srivas, M.Thattai SASB 2017

https://www.ncbi.nlm.nih.gov/pubmed/27012485


5

Problem?

Find a VTS that satisfies some biological rules.

Solution? Easy...

Encode rules as combinatorial constraints and use
SAT/SMT solvers

However, encoding is treacherous!! 1

Contribution: an effective encoding.

1VTS is most complex network in cells [mani 16b]
A.Gupta, A.Shukla, M.Srivas, M.Thattai SASB 2017

https://www.ncbi.nlm.nih.gov/pubmed/27012485


5

Problem?

Find a VTS that satisfies some biological rules.

Solution? Easy...

Encode rules as combinatorial constraints and use
SAT/SMT solvers

However, encoding is treacherous!! 1

Contribution: an effective encoding.

1VTS is most complex network in cells [mani 16b]
A.Gupta, A.Shukla, M.Srivas, M.Thattai SASB 2017

https://www.ncbi.nlm.nih.gov/pubmed/27012485


6

Find VTS that satisfied these constraints

1 Activity constraint.

2 Fusion constraint.

3 Pairing function.

4 Stability constraint.

5 Connectivity constraint.
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1 “Activity constraint”: a molecule may or may not be active
on the edge/nodes.

2 “Fusion constraint”: each edge must have an active
molecule that fuses with some active molecule at its target
node.

3 “Pairing function”: the fusion is dependent on molecule
pairs for each edge.

4 “Stability constraint”: all molecules must move around in
closed cycles.

5 “Connectivity constraint”: resulting graph is not
k-connected 2.

2A VTS is k-connected if every pair of compartments remain reachable
after dropping k 1 vesicles.
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Formal VTS

A Formal VTS is a tuple

Definition

G = (N, M, E, L, P, f).

where

N set of nodes representing compartments.

M is a different type of molecules in the system.

E is the set of edges with molecule sets as labels.

L is the set of node labels.

P is the pairing relation.

f : M → ℘(M) → B are the activity maps.
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The search problem

Fix k, M, N; find a G such that following constraints are
satisfied:

1 Activity constraint.

2 Fusion constraint.

3 Pairing function.

4 Stability constraint.

5 Connectivity constraint.
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Results

Variant
Constraints

Graph connectivity
Rest Activity

A.

F + P + S + C

N + N No graph
B. B + N No graph
C. N + B 3-connected
D. B + B 2-connected
E. N + P No graph
F. B + P 4-connected

N: No regulation. Every present molecule is active.
B: Use boolean function for regulation.
P: Use pairing matrix for regulation.
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Example: Variation C

Regulation on node: None
Regulation on edge: Boolean function
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Our favorite VTS: Our favorite edge

n0 : 01234

n1 : 01236 n2 : 12357

01 0123
013

123

13

23

M1 → M6
M2 → M5
M3 → M4

N = {n0, n1, n2}
M = {M0, ..., M7}

Activity constraint.
123 : M2 is active.

Fusion constraint.
M2, M5 are active.

Pairing function.
M2, M5 form a pair.

Stability constraint.
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Example: Our favorite edge, Stability condition

n0 : 01234

n1 : 01236 n2 : 12357

01 0123
013

123

13

23

M1 → M6
M2 → M5
M3 → M4

Stability constraint.
M1, M3 come back
direct edge.
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Example: Our favorite edge, SS condition

n0 : 01234

n1 : 01236 n2 : 12357

01 0123
013

123

13

23

M1 → M6
M2 → M5
M3 → M4

Stability constraint.
M1, M3 come back
direct edge.
M2 comes back using
node n0.
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Example: Our favorite edge, CC
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Example: Our favorite edge, CC
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M1 → M6
M2 → M5
M3 → M4

Stability constraint.
M1, M3 come back
direct edge.
M2 comes back using
node n0.

Connectivity constraint.
Drop edge d2,1, d1,2, d2,0.
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1 Activity constraint.

2 Fusion constraint.

3 Pairing function.

4 Stability constraint.

5 Connectivity constraint.
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Stability Encoding

Constraint for stability condition:

“Every outgoing molecule come back in a cycle”

∀ leaving m ∈ M... ∃ cycle [..]
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Stability encoding

Encode stability using the reachability variables.

∧
i,j,m

(ei,j,m =⇒

Edge contains m

A path btw i,j len ≤ µ contains m

µ : N − 2.
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Steady state encoding

Use reachability to encode the stability condition in VTSs.

∧
i,j,m,p

ri,j,m,p =⇒

Recursively define reachability
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Use reachability to encode the stability condition in VTSs.

∧
i,j,m,p

ri,j,m,p =⇒ ei,j,m ∨
∨
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1 Activity constraint.

2 Fusion constraint.

3 Pairing function.

4 Stability constraint.

5 Connectivity constraint.
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k-connectivity constraints

The following constraints encode that only existing edges can
be dropped and exactly k − 1 edges are dropped.∧

i,j

di,j =⇒ ei,j∑
i,j

di,j = k − 1
(1)

but, in my opinion.∧
i,j

[(ei,j ∧ ¬di,j) ∨ (
∨
i′ ̸=i

r′i′,j ∧ (ei,i′ ∧ ¬di,i′)] =⇒ r′i,j (2)

∨
i,j

¬(r′i,j ∨ r′j,i) (3)
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Previous work

Old-e

CBMC: C bounded model checker.

Encode stability condition using non-determinism and
enumeration.

Not very optimal.
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Run-times for searching for models (in secs)

Size
Variant A Variant C Variant D Variant F
2-connected 3-connected 2-connected 4-connected

MAA Old-e MAA Old-e MAA Old-e MAA Old-e

2 !0.085 !2.43 0.15 2.12 !0.13 !1.89 0.35 5.12

3 !0.54 !8.04 0.95 7.65 0.62 7.66 1.36 23.94

4 !2.57 !297.93 2.33 22.74 2.85 48.35 4.81 123.34

5 !7.7 !3053.8 7.60 500.03 10.27 890.84 33.36 2482.71

6 !22.98 M/O 19.52 M/O 30.81 M/O 147.52 M/O

7 !57.07 M/O 81.89 M/O 82.94 M/O 522.26 M/O

8 !164.14 M/O 630.85 M/O 303.19 M/O 2142.76 M/O

9 !307.67 M/O 2203.45 M/O 971.01 M/O 4243.34 M/O

10 !558.34 M/O 7681.93 M/O 2274.30 M/O 7786.82 M/O
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Conclusion

1 Novel encodings of reachability and 3-4 connectivity.

2 Direct encoding into the SMT solver.

3 A user friendly and scalable tool based on well known SMT
solver Z3.

Thank You !
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