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motivation: uncertainty in biological models

“SYSTEMS"” UNCERTAINTY: partial “SYNTHETIC" UNCERTAINTY: how to
knowledge of the system (e.g. engineer living organisms to achieve
unknown parameters, interactions) specific functions?

AIM: understand life, fill knowledge AIM: automated design of correct-
gaps to derive predictive models by-construction, optimal, biological
consistent with observations processes/devices

EXAMPLES: network reconstruction, EXAMPLES: synthetic biology, DNA
parameter estimation programming, molecular computing
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motivation: uncertainty in biological models

“SYSTEMS" UNCERTAINTY: partial “SYNTHETIC" UNCERTAINTY: how to
knowledge of the system (e.g. engineer living organisms to achieve
unknown parameters, interactions) specific functions?

NEED FOR A MODELLING LANGUAGE ABLE TO CAPTURE UNCERTAINTIES
AND AUTOMATED ANALYSIS METHODS TO RESOLVE THEM
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chemical reaction networks (CRNs)

A+2B 2k C+D

CRNs are a fundamental model for natural systems (chemical, genetic, metabolic, ecological ...)
Fundamental computational structure (equivalent to Petri Nets, Vector Addition Systems, ...)
Can be “compiled” into DNA

Biochemical interactions are inherently stochastic (CRN semantics typically described as
continuous-time Markov chains)



problem: synthesis of CRNs

How to synthesize a network where

Species K exhibits a bell-shaped profile
(or an inflection point, local optimum, ...)

Variance of species B > variance of A

Species B is monotonic

... and the network uses the least number
of species/reactions (notion of
cost/optimality)

What if both rate coefficients and network
structure are unknown?
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challenges of CRN synthesis

e We need quantitative reasoning while keeping stochasticity
e (lassical CTMC semantics of CRNs is not scalable

e State-of-the-art approaches cannot deal with synthesis of both rate and structure

Related work

[Ceska et al.,, CMSB'14] CRN parameter synthesis as “parametric extension” of
probabilistic model checking (can't synthesize structure)

[Dalchau et al, DNA, 2015] Structure and rates synthesized in two separate stages:
inefficient, incomplete



e Stochastic semantics traditionally given by
Chemical Master Equation of CTMC

e Linear Noise Approximation (LNA)
produces ODEs for mean and covariances
of species concentration over time

e Superior scalability, while keeping

stochasticity

idea 1: Linear Noise Approximation
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idea 2: syntax-guided program synthesis (SyGuS)

e SyGUuS: correctness specification + syntactic template for the program [Alur et al. “Syntax-
guided synthesis”]

e Program sketching [Solar-Lezama et al, PLDI'05]: programming with holes and variables (to
model incomplete information), resolved using constraint solving (SMT)



idea 2: syntax-guided program synthesis (SyGuS)

e SyGUuS: correctness specification + syntactic template for the program [Alur et al. “Syntax-
guided synthesis”]

e Program sketching [Solar-Lezama et al, PLDI'05]: programming with holes and variables (to
model incomplete information), resolved using constraint solving (SMT)

CRN sketch example
1)A+2B 210 C+D

2) A+ 2B >0 C+7?
3) {A, C} + ClB —>(0.15] CZB + C+ ?, withe,>c,



our approach

e Linear noise approximation (LNA) semantics of CRNs

e SMT over non-linear reals and ODEs (SMT-ODE), iSAT(ODE) solver [Eggers et al,
ATVA'08]

Contributions:

« First sketching language for synthesis of CRNs

« Specification language

« Novel optimal synthesis problem, encoded as an SMT-ODE solving problem through LNA

« Prototype + evaluation on 3 case studies



sketching language — Bell shape example

Finite set of species (mandatory and optional)

Declared variables for species (4,), stochiometric
coefficients (c;), and rates (k)

Variables express the uncertainty

Constraints on initial state and variables

A ={K} and A= {A, B}

A4, A: {AB},
Cq,-Cqt [0,2],
Ky...kg: [0,0.1]

K,=1 N\ A,By€[0,100]
A#A, A C . <C A C3>Cy



sketching language — Bell shape example

Species
A ={K} and A= {A, B}

Reaction sketch
Ty = A + ;K ¥ ¢, K

L) - {0,1}12 + C3K 9"2 ?/12 + C4K

Declared variables
= k3

4, 25t 1AB), 13 =238 (1, [12]K), "\
Cy-Cat [0.2], Inline, implicit
Kq,..0Kg: [0,0.1] declarations

Example instantiation {0.1} 7 [1.2])
Constraints A + K 5001 2K
K,;=1 A A,B,€[0,100] B+ K 501 2B Choice between

A, and [1,2]K
A#A, N\ cp<C, A c3> ¢y o 0001 g



specification language

e Supports constraints about the expected number
and variance of molecules, and their derivatives

e A property describes the required temporal profile as
a seguence of phases

Bell shape (2 phases):

1 2

inv, = E(l)[K] >0
pre-post; = EW[K] =0
A E[K] >0
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optimal synthesis

PROBLEM: OPTIMAL SYNTHESIS OF CRNs

IN: Sketch S + Correctness specification ¢ + Cost function G

OUT: Instantiation I of S that satisfies ¢ (if exists) and is
minimal w.r.t. G

Structural complexity cost:

COST = ky*(num. of optional species in I) +
kK *(total num. of reactants in I) +
k;*(total num. of products in I)

Based on cost of implementation in DNA [Cardelli et al.,, MSCS ‘13]



synthesis algorithm

e Builds on the notion of meta-sketch = sketch + cost constraints

e (Cost constraints reduce search space size for SMT solver and improve runtime

ALGORITHM

e Repeated calls to the solver under different cost constraints
e (eneralized solving scheme:

o Bottom-up: increase metasketch cost until SAT

o Top-down: decrease metasketch cost until UNSAT

o Binary search: use both SAT and UNSAT witnesses to bound optimal cost

e “Smart” UNSAT witness generation



synthesis algorithm

Optimal solution
@ @
Bottom-up: ‘

Metasketch

Top-down: ' ’

Increase metasketch cost

&

Decrease metasketch cost
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e Bottom-up more effective
(UNSAT instances are faster)

e (ost constraints reduce avg solving time
for each call of between 37 and 83%



super Poisson

e AIM: synthesize “CRN implementation” of a stochastic process

e Super-Poisson process (variance > expectation)
Sketch:
T1 = ¢ —)kl C1A + CZAI . %s-
7, = A >K2 ¢ 1, Solution: I
23 ]
ﬁ
Specification: Q) o1 2A
; A-7%0
inv, = C[A] > E[A]

pre —post; =T' =1 T T L
SOLVED IN 4 secondsl!!

Encoding size: 10 ODEs +
search space size 288



e Important signal transduction pathway [Csikdsz-Nagy

phosphorelay network

et al, J. Royal Soc. Interface, 2011]

e Aim: find rate parameters s.t. output has switch-like

profile

Sketch:

I1+BES By Lip
L2+ Llp X2 11+ L2p
L2p+ L3 %3 L2+ L3p

L3p 13 05 B
k‘l,...,k4 : (0, 100],

Lio = 330, Lipo = Bo = 0

Specification (sigmoid in L3p):
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(9 ODEs, 7 for species, 2 for
L3p derivatives)



CONCLUSIONS

e Method for synthesis of stochastic CRNs (both rates and structure)
e [ NA semantics makes it as scalable as deterministic approximations
e First language for sketching CRNs
e Optimal synthesis algorithm based on SMT-ODE encoding

FUTURE WORK

e Explore multiple optimal solutions
e Combination of SMT solving and stochastic search

e Software tool



