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motivation: uncertainty in biological models

AIM: understand life, fill knowledge 
gaps to derive predictive models 
consistent with observations

“SYSTEMS” UNCERTAINTY: partial 
knowledge of the system (e.g. 
unknown parameters, interactions) 

EXAMPLES: network reconstruction, 
parameter estimation

EXAMPLES: synthetic biology, DNA 
programming, molecular computing

“SYNTHETIC” UNCERTAINTY: how to 
engineer living organisms to achieve 
specific functions?

AIM: automated design of correct-
by-construction, optimal, biological 
processes/devices

Segment from 
”Inner Life of the 
Cell,” ©Harvard 
University

Human Transcription 
Factor Regulatory Network 

[Neph et al, Cell 150(6), 
2012]
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NEED FOR A MODELLING LANGUAGE ABLE TO CAPTURE UNCERTAINTIES 
AND AUTOMATED ANALYSIS METHODS TO RESOLVE THEM 



● CRNs are a fundamental model for natural systems (chemical, genetic, metabolic, ecological …)

● Fundamental computational structure (equivalent to Petri Nets, Vector Addition Systems, …)

● Can be “compiled” into DNA

● Biochemical interactions are inherently stochastic (CRN semantics typically described as 
continuous-time Markov chains)

chemical reaction networks (CRNs)

A + 2B  àk C + D



problem: synthesis of CRNs

How to synthesize a network where

• Species K exhibits a bell-shaped profile 
(or an inflection point, local optimum, …)

• Variance of species B > variance of A 

• Species B is monotonic

• …

• … and the network uses the least number 
of species/reactions (notion of 
cost/optimality)

What if both rate coefficients and network 
structure are unknown?



challenges of CRN synthesis

● We need quantitative reasoning while keeping stochasticity

● Classical CTMC semantics of CRNs is not scalable

● State-of-the-art approaches cannot deal with synthesis of both rate and structure

Related work

[Ceska et al., CMSB’14] CRN parameter synthesis as “parametric extension” of 
probabilistic model checking (can’t synthesize structure)

[Dalchau et al., DNA, 2015] Structure and rates synthesized in two separate stages: 
inefficient, incomplete 



idea 1: Linear Noise Approximation

● Stochastic semantics traditionally given by 
Chemical Master Equation of CTMC

● Linear Noise Approximation (LNA) 
produces ODEs for mean and covariances
of species concentration over time

● Superior scalability, while keeping 
stochasticity



● SyGuS: correctness specification + syntactic template for the program [Alur et al. “Syntax-
guided synthesis”]

● Program sketching [Solar-Lezama et al., PLDI’05]: programming with holes and variables (to 
model incomplete information), resolved using constraint solving (SMT)

idea 2: syntax-guided program synthesis (SyGuS)



● SyGuS: correctness specification + syntactic template for the program [Alur et al. “Syntax-
guided synthesis”]

● Program sketching [Solar-Lezama et al., PLDI’05]: programming with holes and variables (to 
model incomplete information), resolved using constraint solving (SMT)

1) A + 2B  à10 C + D

2) A + 2B  à(0,15] C + ?

3) {A, C} + c1B  à(0,15] c2B + C + ?, with c1 > c2

CRN sketch example

idea 2: syntax-guided program synthesis (SyGuS)



our approach

● Linear noise approximation (LNA) semantics of CRNs

● SMT over non-linear reals and ODEs (SMT-ODE), iSAT(ODE) solver [Eggers et al., 
ATVA’08]

Contributions:

• First sketching language for synthesis of CRNs

• Specification language

• Novel optimal synthesis problem, encoded as an SMT-ODE solving problem through LNA

• Prototype + evaluation on 3 case studies



sketching language – Bell shape example

● Finite set of species (mandatory and optional)

● Declared variables for species (𝜆i), stochiometric
coefficients (ci), and rates (ki)

● Variables express the uncertainty

● Constraints on initial state and variables

𝛬m={K} and 𝛬o= {A, B}

𝜆1, 𝜆2: {A,B},  
c1,…,c4: [0,2],

k1,…,k3: [0,0.1] 

𝐾0=1 ∧ 𝐴0,𝐵0∈[0,100]

𝜆1≠𝜆2 ∧ c1 < c2 ∧ c3 > c4



sketching language – Bell shape example

Reaction sketch

𝜏1 = 𝜆1 + 𝑐1𝐾 →𝑘1 𝑐2𝐾

𝜏2 = {0,1}𝜆2 + 𝑐3𝐾 →𝑘2 ?𝜆2 + 𝑐4𝐾

𝜏3 = ∅ →𝑘3 {𝜆2, [1,2]𝐾} 

Species

𝛬m={K} and 𝛬o= {A, B}

𝜆1, 𝜆2: {A,B},  
c1,…,c4: [0,2],

k1,…,k3: [0,0.1] 

𝐾0=1 ∧ 𝐴0,𝐵0∈[0,100]

𝜆1≠𝜆2 ∧ c1 < c2 ∧ c3 > c4

Declared variables

Constraints

Example instantiation

A + 𝐾 →0.01 2𝐾

B + 𝐾 →0.1 2B

∅ →0.001 𝐾 

Choice between 
𝜆2 and [1,2]𝐾

Inline, implicit 
declarations 
({0,1}, ?, [1,2])



specification language

Bell shape (2 phases):
1 2

inv1 ⌘ E(1)[K] � 0

pre-post1 ⌘ E(1)[K]0 = 0

^ E[K]0 > 0

● Supports constraints about the expected number 
and variance of molecules, and their derivatives

● A property describes the required temporal profile as 
a sequence of phases

inv2 ⌘ E(1)[K]  0

pre-post1 ⌘ E[K]0  1

^ T 0 = 1

1 2



optimal synthesis

PROBLEM: OPTIMAL SYNTHESIS OF CRNs

IN: Sketch 𝑆	+ Correctness specification 𝜙 + Cost function 𝐺	

OUT: Instantiation 𝐼 of 𝑆 that satisfies 𝜙 (if exists) and is 
minimal w.r.t. 𝐺

COST = k1*(num. of optional species in 𝐼) +
k2*(total num. of reactants in 𝐼) +
k3*(total num. of products in 𝐼) 

Structural complexity cost:

Based on cost of implementation in DNA [Cardelli et al., MSCS ‘13]



synthesis algorithm

● Builds on the notion of meta-sketch = sketch + cost constraints

● Cost constraints reduce search space size for SMT solver and improve runtime

ALGORITHM

● Repeated calls to the solver under different cost constraints

● Generalized solving scheme:

o Bottom-up: increase metasketch cost until SAT

o Top-down: decrease metasketch cost until UNSAT

o Binary search: use both SAT and UNSAT witnesses to bound optimal cost

● “Smart” UNSAT witness generation



synthesis algorithm

Optimal solution

Metasketch

Bottom-up:

Increase metasketch cost

Top-down:

Decrease metasketch cost



bell shape

● Bottom-up more effective 
(UNSAT instances are faster)

● Cost constraints reduce avg solving time 
for each call of between 37 and 83%
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super Poisson

𝝉𝟏 = 	∅ →34 𝑐4𝐴 + 𝑐6𝜆4
𝝉𝟐 = 𝐴 →36 𝑐8𝜆6 

Sketch:

𝑖𝑛𝑣4 ≡ 𝐶 𝐴 > 𝐸 𝐴
𝑝𝑟𝑒 − 𝑝𝑜𝑠𝑡4 ≡ 𝑇H = 1 

Specification:
∅ →68 2𝐴
𝐴 →KL ∅ 

Solution:

SOLVED IN 4 seconds!!!
Encoding size: 10 ODEs + 

search space size 288

● AIM: synthesize “CRN implementation” of a stochastic process 

● Super-Poisson process (variance > expectation)



phosphorelay network 

● Important signal transduction pathway [Csikász-Nagy 
et al., J. Royal Soc. Interface, 2011]

● Aim: find rate parameters s.t. output has switch-like 
profile

Specification (sigmoid in L3p):Sketch:

1 2

SOLVED IN 370 seconds
(9 ODEs, 7 for species, 2 for 

L3p derivatives)

Results



CONCLUSIONS

FUTURE WORK

● Method for synthesis of stochastic CRNs (both rates and structure)

● LNA semantics makes it as scalable as deterministic approximations

● First language for sketching CRNs

● Optimal synthesis algorithm based on SMT-ODE encoding

● Explore multiple optimal solutions

● Combination of SMT solving and stochastic search 

● Software tool


