
Winning the War on
Error: Solving the

Halting Problem and
Curing Cancer

Matt Might | matt.might.net | @mattmight

http://matt.might.net

Winning the War on Error:
Solving the Halting Problem

and Curing Cancer

Matt Might
@mattmight

A word from The White House.

This is personal talk. This talk may not reflect
 the views of the President or the administration.

But, it used to.

The War on Error

Error in code is bad.

code for software

code for software

code for people

code for people

We can fix both.

Unifying theme

Approximation!

Main ideas

!{ }halts
loops

f :

!{ }halts
loopsf :f̂
dunno

Cousot & Cousot, 1977

💊

💊!f :

💊!f :f̂
🔬{ }

Fixing Software

Software is terrible.

Why?

Solution?

Need to engineer software.

software engineering

software engineering
is not engineering

an engineer uses prediction

FF = mama

F
F = ma

m
a

F

m

a

Z
dtt=v(t)vv

at=v(t)v v0+ v

at=v(t) v0+ vd

Z
dtt

at=v(t) v0+ vd 1
2

2 dt+ v0

at=v(t) v0+ vd 1
2

2 dt+ v0

at=v(t) v0+ vd 1
2

2 dt+ v0

x(t) = v

x

t

at=v(t) v0+ vd 1
2

2 dt+ v0

x(t) = v

x

t

example: bridges

X

i

~Fi = ~0

So…

Can you predict software?

nope.

Alan “Party Pooper” Turing

Thou shalt not decide the
halting behavior of a program.

while P(x)

What can we do?

*p++ = read();

C/C++

Haskell

Coq

DARPA: CRASH

Or…

Time

St
at

e

*a++ = pwn;

*NULL

MAXINT++

do_evil()

“the static analyis game”

Credit: Cousot & Cousot

How do you play the game?

Abstract Interpretation

Cousot & Cousot, 1977

Abstracting Abstract Machines

David Van Horn ⇤

Northeastern University
dvanhorn@ccs.neu.edu

Matthew Might
University of Utah
might@cs.utah.edu

Abstract
We describe a derivational approach to abstract interpretation that
yields novel and transparently sound static analyses when applied
to well-established abstract machines. To demonstrate the tech-
nique and support our claim, we transform the CEK machine
of Felleisen and Friedman, a lazy variant of Krivine’s machine,
and the stack-inspecting CM machine of Clements and Felleisen
into abstract interpretations of themselves. The resulting analyses
bound temporal ordering of program events; predict return-flow
and stack-inspection behavior; and approximate the flow and eval-
uation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a
technique we call store-allocated continuations, leads to machines
that abstract into static analyses simply by bounding their stores.
We demonstrate that the technique scales up uniformly to allow
static analysis of realistic language features, including tail calls,
conditionals, side effects, exceptions, first-class continuations, and
even garbage collection.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis, Operational semantics; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—Lambda calculus and
related systems

General Terms Languages, Theory

Keywords abstract machines, abstract interpretation

1. Introduction
Abstract machines such as the CEK machine and Krivine’s ma-
chine are first-order state transition systems that represent the core
of a real language implementation. Semantics-based program anal-
ysis, on the other hand, is concerned with safely approximating
intensional properties of such a machine as it runs a program. It
seems natural then to want to systematically derive analyses from
machines to approximate the core of realistic run-time systems.

Our goal is to develop a technique that enables direct abstract
interpretations of abstract machines by methods for transforming
a given machine description into another that computes its finite
approximation.

⇤ Supported by the National Science Foundation under grant 0937060 to the
Computing Research Association for the CIFellow Project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c� 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

We demonstrate that the technique of refactoring a machine
with store-allocated continuations allows a direct structural ab-
straction1 by bounding the machine’s store. Thus, we are able to
convert semantic techniques used to model language features into
static analysis techniques for reasoning about the behavior of those
very same features. By abstracting well-known machines, our tech-
nique delivers static analyzers that can reason about by-need evalu-
ation, higher-order functions, tail calls, side effects, stack structure,
exceptions and first-class continuations.

The basic idea behind store-allocated continuations is not new.
SML/NJ has allocated continuations in the heap for well over a
decade [28]. At first glance, modeling the program stack in an ab-
stract machine with store-allocated continuations would not seem
to provide any real benefit. Indeed, for the purpose of defining the
meaning of a program, there is no benefit, because the meaning
of the program does not depend on the stack-implementation strat-
egy. Yet, a closer inspection finds that store-allocating continua-
tions eliminate recursion from the definition of the state-space of
the machine. With no recursive structure in the state-space, an ab-
stract machine becomes eligible for conversion into an abstract in-
terpreter through a simple structural abstraction.

To demonstrate the applicability of the approach, we derive
abstract interpreters of:

• a call-by-value �-calculus with state and control based on the
CESK machine of Felleisen and Friedman [13],

• a call-by-need �-calculus based on a tail-recursive, lazy vari-
ant of Krivine’s machine derived by Ager, Danvy and Midt-
gaard [1], and

• a call-by-value �-calculus with stack inspection based on the
CM machine of Clements and Felleisen [3];

and use abstract garbage collection to improve precision [25].

Overview
In Section 2, we begin with the CEK machine and attempt a struc-
tural abstract interpretation, but find ourselves blocked by two re-
cursive structures in the machine: environments and continuations.
We make three refactorings to:

1. store-allocate bindings,
2. store-allocate continuations, and
3. time-stamp machine states;

resulting in the CESK, CESK?, and time-stamped CESK? ma-
chines, respectively. The time-stamps encode the history (context)
of the machine’s execution and facilitate context-sensitive abstrac-
tions. We then demonstrate that the time-stamped machine ab-
stracts directly into a parameterized, sound and computable static
analysis.

1 A structural abstraction distributes component-, point-, and member-wise.

ICFP 2010

Abstracting Abstract Machines

David Van Horn ⇤

Northeastern University
dvanhorn@ccs.neu.edu

Matthew Might
University of Utah
might@cs.utah.edu

Abstract
We describe a derivational approach to abstract interpretation that
yields novel and transparently sound static analyses when applied
to well-established abstract machines. To demonstrate the tech-
nique and support our claim, we transform the CEK machine
of Felleisen and Friedman, a lazy variant of Krivine’s machine,
and the stack-inspecting CM machine of Clements and Felleisen
into abstract interpretations of themselves. The resulting analyses
bound temporal ordering of program events; predict return-flow
and stack-inspection behavior; and approximate the flow and eval-
uation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a
technique we call store-allocated continuations, leads to machines
that abstract into static analyses simply by bounding their stores.
We demonstrate that the technique scales up uniformly to allow
static analysis of realistic language features, including tail calls,
conditionals, side effects, exceptions, first-class continuations, and
even garbage collection.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis, Operational semantics; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—Lambda calculus and
related systems

General Terms Languages, Theory

Keywords abstract machines, abstract interpretation

1. Introduction
Abstract machines such as the CEK machine and Krivine’s ma-
chine are first-order state transition systems that represent the core
of a real language implementation. Semantics-based program anal-
ysis, on the other hand, is concerned with safely approximating
intensional properties of such a machine as it runs a program. It
seems natural then to want to systematically derive analyses from
machines to approximate the core of realistic run-time systems.

Our goal is to develop a technique that enables direct abstract
interpretations of abstract machines by methods for transforming
a given machine description into another that computes its finite
approximation.

⇤ Supported by the National Science Foundation under grant 0937060 to the
Computing Research Association for the CIFellow Project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c� 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

We demonstrate that the technique of refactoring a machine
with store-allocated continuations allows a direct structural ab-
straction1 by bounding the machine’s store. Thus, we are able to
convert semantic techniques used to model language features into
static analysis techniques for reasoning about the behavior of those
very same features. By abstracting well-known machines, our tech-
nique delivers static analyzers that can reason about by-need evalu-
ation, higher-order functions, tail calls, side effects, stack structure,
exceptions and first-class continuations.

The basic idea behind store-allocated continuations is not new.
SML/NJ has allocated continuations in the heap for well over a
decade [28]. At first glance, modeling the program stack in an ab-
stract machine with store-allocated continuations would not seem
to provide any real benefit. Indeed, for the purpose of defining the
meaning of a program, there is no benefit, because the meaning
of the program does not depend on the stack-implementation strat-
egy. Yet, a closer inspection finds that store-allocating continua-
tions eliminate recursion from the definition of the state-space of
the machine. With no recursive structure in the state-space, an ab-
stract machine becomes eligible for conversion into an abstract in-
terpreter through a simple structural abstraction.

To demonstrate the applicability of the approach, we derive
abstract interpreters of:

• a call-by-value �-calculus with state and control based on the
CESK machine of Felleisen and Friedman [13],

• a call-by-need �-calculus based on a tail-recursive, lazy vari-
ant of Krivine’s machine derived by Ager, Danvy and Midt-
gaard [1], and

• a call-by-value �-calculus with stack inspection based on the
CM machine of Clements and Felleisen [3];

and use abstract garbage collection to improve precision [25].

Overview
In Section 2, we begin with the CEK machine and attempt a struc-
tural abstract interpretation, but find ourselves blocked by two re-
cursive structures in the machine: environments and continuations.
We make three refactorings to:

1. store-allocate bindings,
2. store-allocate continuations, and
3. time-stamp machine states;

resulting in the CESK, CESK?, and time-stamped CESK? ma-
chines, respectively. The time-stamps encode the history (context)
of the machine’s execution and facilitate context-sensitive abstrac-
tions. We then demonstrate that the time-stamped machine ab-
stracts directly into a parameterized, sound and computable static
analysis.

1 A structural abstraction distributes component-, point-, and member-wise.

Abstracting Abstract Machines

David Van Horn ⇤

Northeastern University
dvanhorn@ccs.neu.edu

Matthew Might
University of Utah
might@cs.utah.edu

Abstract
We describe a derivational approach to abstract interpretation that
yields novel and transparently sound static analyses when applied
to well-established abstract machines. To demonstrate the tech-
nique and support our claim, we transform the CEK machine
of Felleisen and Friedman, a lazy variant of Krivine’s machine,
and the stack-inspecting CM machine of Clements and Felleisen
into abstract interpretations of themselves. The resulting analyses
bound temporal ordering of program events; predict return-flow
and stack-inspection behavior; and approximate the flow and eval-
uation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a
technique we call store-allocated continuations, leads to machines
that abstract into static analyses simply by bounding their stores.
We demonstrate that the technique scales up uniformly to allow
static analysis of realistic language features, including tail calls,
conditionals, side effects, exceptions, first-class continuations, and
even garbage collection.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis, Operational semantics; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—Lambda calculus and
related systems

General Terms Languages, Theory

Keywords abstract machines, abstract interpretation

1. Introduction
Abstract machines such as the CEK machine and Krivine’s ma-
chine are first-order state transition systems that represent the core
of a real language implementation. Semantics-based program anal-
ysis, on the other hand, is concerned with safely approximating
intensional properties of such a machine as it runs a program. It
seems natural then to want to systematically derive analyses from
machines to approximate the core of realistic run-time systems.

Our goal is to develop a technique that enables direct abstract
interpretations of abstract machines by methods for transforming
a given machine description into another that computes its finite
approximation.

⇤ Supported by the National Science Foundation under grant 0937060 to the
Computing Research Association for the CIFellow Project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c� 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

We demonstrate that the technique of refactoring a machine
with store-allocated continuations allows a direct structural ab-
straction1 by bounding the machine’s store. Thus, we are able to
convert semantic techniques used to model language features into
static analysis techniques for reasoning about the behavior of those
very same features. By abstracting well-known machines, our tech-
nique delivers static analyzers that can reason about by-need evalu-
ation, higher-order functions, tail calls, side effects, stack structure,
exceptions and first-class continuations.

The basic idea behind store-allocated continuations is not new.
SML/NJ has allocated continuations in the heap for well over a
decade [28]. At first glance, modeling the program stack in an ab-
stract machine with store-allocated continuations would not seem
to provide any real benefit. Indeed, for the purpose of defining the
meaning of a program, there is no benefit, because the meaning
of the program does not depend on the stack-implementation strat-
egy. Yet, a closer inspection finds that store-allocating continua-
tions eliminate recursion from the definition of the state-space of
the machine. With no recursive structure in the state-space, an ab-
stract machine becomes eligible for conversion into an abstract in-
terpreter through a simple structural abstraction.

To demonstrate the applicability of the approach, we derive
abstract interpreters of:

• a call-by-value �-calculus with state and control based on the
CESK machine of Felleisen and Friedman [13],

• a call-by-need �-calculus based on a tail-recursive, lazy vari-
ant of Krivine’s machine derived by Ager, Danvy and Midt-
gaard [1], and

• a call-by-value �-calculus with stack inspection based on the
CM machine of Clements and Felleisen [3];

and use abstract garbage collection to improve precision [25].

Overview
In Section 2, we begin with the CEK machine and attempt a struc-
tural abstract interpretation, but find ourselves blocked by two re-
cursive structures in the machine: environments and continuations.
We make three refactorings to:

1. store-allocate bindings,
2. store-allocate continuations, and
3. time-stamp machine states;

resulting in the CESK, CESK?, and time-stamped CESK? ma-
chines, respectively. The time-stamps encode the history (context)
of the machine’s execution and facilitate context-sensitive abstrac-
tions. We then demonstrate that the time-stamped machine ab-
stracts directly into a parameterized, sound and computable static
analysis.

1 A structural abstraction distributes component-, point-, and member-wise.

JFP 22 (4–5): 705–746, 2012. c⃝ Cambridge University Press 2012

doi:10.1017/S0956796812000238

705

Systematic abstraction of abstract machines

DAVID VAN HORN

College of Computer and Information Science, Northeastern University, Boston, MA 02115, USA
(e-mail:)dvanhorn@ccs.neu.edu)

MATTHEW MIGHT

School of Computing, University of Utah, Salt Lake City, UT 84112, USA
(e-mail:)might@cs.utah.edu)

Abstract

We describe a derivational approach to abstract interpretation that yields novel and trans-
parently sound static analyses when applied to well-established abstract machines for higher-
order and imperative programming languages. To demonstrate the technique and support
our claim, we transform the CEK machine of Felleisen and Friedman (Proc. of the 14th
ACM SIGACT-SIGPLAN Symp. Prin. Program. Langs, 1987, pp. 314–325), a lazy variant of
Krivine’s machine (Higher-Order Symb. Comput. Vol 20, 2007, pp. 199–207), and the stack-
inspecting CM machine of Clements and Felleisen (ACM Trans. Program. Lang. Syst. Vol 26,
2004, pp. 1029–1052) into abstract interpretations of themselves. The resulting analyses bound
temporal ordering of program events; predict return-flow and stack-inspection behavior; and
approximate the flow and evaluation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a technique of store-allocated
continuations, leads to machines that abstract into static analyses simply by bounding their
stores. These machines are parameterized by allocation functions that tune performance and
precision and substantially expand the space of analyses that this framework can represent. We
demonstrate that the technique scales up uniformly to allow static analysis of realistic language
features, including tail calls, conditionals, mutation, exceptions, first-class continuations, and
even garbage collection. In order to close the gap between formalism and implementation, we
provide translations of the mathematics as running Haskell code for the initial development
of our method.

1 Introduction

Program analysis aims to soundly predict properties of programs before being

run. For over 30 years, the research community has expended significant effort

designing effective analyses for higher-order programs (Midtgaard, to appear). Past

approaches have focused on connecting high-level language semantics, such as

structured operational semantics, denotational semantics, or reduction semantics,

to equally high-level but dissimilar analytic models. Too often, these models are

far removed from their programming language counterparts and take the form of

constraint languages specified as relations on sets of program fragments (Wright &

Jagannathan, 1998; Nielson et al., 1999; Meunier et al., 2006). These approaches

require significant ingenuity in their design and involve complex constructions and

correctness arguments, making it difficult to establish soundness, design algorithms,

JFP 2012

Idea?

Interpreter

Approximator

AAM

inject : !

: !step

hnop :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i
hmove-object(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(rs, fp)],i

hreturn-void :: ~stmt
0
, fp0

,�, fnk(~stmt , fp,)i 7�! h ~stmt , fp,�,i
hreturn-object(r) :: ~stmt

0
, fp0

,�, fnk(~stmt , fp,)i 7�! h ~stmt , fp,�[(ret, fp) 7! �(n, fp0)],i
hconst(r, c) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! c],i
hthrow`(r) :: ~stmt , fp,�,i 7�! hS(`0), fp0

,�[(exn, fp0) 7! �(r, fp)],0i
where (`0, fp0

,

0) = H(`, fp,)

hgoto(`) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i
hnew-instance(r, ⌧) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! o],i

where o = new(&)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i if �(r, fp) = �(r0, fp)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i if �(r, fp) 6= �(r0, fp)

higet(rd, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(a)],i
where �(rs, fp) = o and o.field = a

hiput(rv, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[a 7! �(rv, fp)],i
where �(rs, fp) = o and o.field = a

hinvoke-direct(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hM(id), fp0
,�

0
, fnk(~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hinvoke-virtual(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hV(id ,�(r0, fp)), fp0
,�

0
, fnk(~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hunop(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(unop,�(rs, fp))

hbinop(rd, r1, r2) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(binop,�(r1, fp),�(r2, fp))

Figure 1: Dalvik semantics

2

vulnerability?

!↵ :

!↵

!↵

!

↵

!↵

!

↵

v � ↵

Step 1: Diagnose the problem

� ����� …

��pc, ⇢̂, �̂, ̂instruction

frame pointer

heap

stack

��

Step 2: Abstract

Step 2: Finitize

CESK

Control
Environment
Store
Kontinuation

(Felleisen & Friedman, 1987)

CESK

Val

C =
E =
S =
K =

Expression
Var → Addr
Addr →
StackFrame*

Val

Val Z= + Obj

Z

{ }. . . ,�2,�1 , 0, 1, 2, . . .

{ }, 0,� +

{ }, 0,� +P()

Ẑ

Val Z= + Objˆ

Obj = ⇥ Êˆ Class

Val Z= +ˆ ˆˆ Obj

Valˆ

Val

C =
E =
S =
K =

Expression
Var → Addr
Addr →
StackFrame*

Addr
Addr ˆ

AddrAddrˆ̂

AddrAddr ˆ̂↵ !:

C =
E =
S =
K =

Expression
Var → Addr
Addr →
StackFrame*

Valˆ
Addr

Addrˆ
ˆ

C =
E =
S =
K =

Var → Addr
Addr →
StackFrame*

Valˆ
Addr

Addrˆ P̂()

Expression

K = StackFrame*

K = StackFrame K
{halt}+

⇥

K = StackFrame Addr⇥

C =
E =
S =

Var → Addr
Addr → Valˆ

Addr
Addrˆ

ˆ
K = StackFrame Addr

P()

K ⇥

Expression

C =
E =
S =

Var → Addr
Addr → Valˆ

Addr
Addrˆ

ˆ
K = StackFrame Addr

P()+ K

ˆˆˆ
ˆ
ˆ

ˆ
⇥

Expression

CESK̂̂ˆ
“an abstracted abstract machine”

And, the semantics…

hnop :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i
hmove-object(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(rs, fp)],i

hreturn-void :: ~stmt
0
, fp0

,�, fnk(~stmt , fp,)i 7�! h ~stmt , fp,�,i
hreturn-object(r) :: ~stmt

0
, fp0

,�, fnk(~stmt , fp,)i 7�! h ~stmt , fp,�[(ret, fp) 7! �(n, fp0)],i
hconst(r, c) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! c],i
hthrow`(r) :: ~stmt , fp,�,i 7�! hS(`0), fp0

,�[(exn, fp0) 7! �(r, fp)],0i
where (`0, fp0

,

0) = H(`, fp,)

hgoto(`) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i
hnew-instance(r, ⌧) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! o],i

where o = new(&)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i if �(r, fp) = �(r0, fp)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i if �(r, fp) 6= �(r0, fp)

higet(rd, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(a)],i
where �(rs, fp) = o and o.field = a

hiput(rv, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[a 7! �(rv, fp)],i
where �(rs, fp) = o and o.field = a

hinvoke-direct(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hM(id), fp0
,�

0
, fnk(~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hinvoke-virtual(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hV(id ,�(r0, fp)), fp0
,�

0
, fnk(~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hunop(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(unop,�(rs, fp))

hbinop(rd, r1, r2) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(binop,�(r1, fp),�(r2, fp))

Figure 1: Dalvik semantics

2

hnop :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i
hmove-object(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(rs, fp)],i

hreturn-void :: ~stmt
0
, fp0

,�, fnk(~stmt , fp,)i 7�! h ~stmt , fp,�,i
hreturn-object(r) :: ~stmt

0
, fp0

,�, fnk(~stmt , fp,)i 7�! h ~stmt , fp,�[(ret, fp) 7! �(n, fp0)],i
hconst(r, c) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! c],i
hthrow`(r) :: ~stmt , fp,�,i 7�! hS(`0), fp0

,�[(exn, fp0) 7! �(r, fp)],0i
where (`0, fp0

,

0) = H(`, fp,)

hgoto(`) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i
hnew-instance(r, ⌧) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(r, fp) 7! o],i

where o = new(&)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! hS(`), fp,�,i if �(r, fp) = �(r0, fp)

hif-eq(r, r0, `) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�,i if �(r, fp) 6= �(r0, fp)

higet(rd, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! �(a)],i
where �(rs, fp) = o and o.field = a

hiput(rv, rs,field) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[a 7! �(rv, fp)],i
where �(rs, fp) = o and o.field = a

hinvoke-direct(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hM(id), fp0
,�

0
, fnk(~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hinvoke-virtual(r0, . . . , rn, id) :: ~stmt , fp,�,i 7�! hV(id ,�(r0, fp)), fp0
,�

0
, fnk(~stmt , fp,)i

where �

0 = �[(0, fp0) 7! �(r0, fp), . . . , (n, fp
0) 7! �(rn, fp)]

fp0 = alloc(&)

hunop(rd, rs) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(unop,�(rs, fp))

hbinop(rd, r1, r2) :: ~stmt , fp,�,i 7�! h ~stmt , fp,�[(rd, fp) 7! v],i
where v = �(binop,�(r1, fp),�(r2, fp))

Figure 1: Dalvik semantics

2
hnop :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂, ̂, t̂i

hmove-object(rd, rs) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! �̂(rs, f̂p)], ̂, t̂i
hreturn-void :: ~stmt

0
, f̂p

0
, �̂, fnk(~stmt , f̂p, â)i 7�! h ~stmt , f̂p, �̂, ̂i if ̂ 2 �̂(â)

hreturn-object(r) :: ~stmt
0
, f̂p

0
, �̂, fnk(~stmt , f̂p, â)i 7�! h ~stmt , f̂p, �̂ t [(ret, f̂p) 7! �̂(n, f̂p

0
)], ̂i if ̂ 2 �̂(â)

hconst(r, c) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(r, f̂p) 7! c], ̂, t̂i
hthrow`(r) :: ~stmt , f̂p, �̂, ̂i 7�! hS(`0), fp0

, �̂ t [(exn, f̂p
0
) 7! �̂(r, f̂p)], ̂0i

where (`0, f̂p
0
, ̂

0) 2 bH�̂(`, f̂p, ̂)

hgoto(`) :: ~stmt
0
, f̂p, �̂, ̂, t̂i 7�! hS(`), f̂p, �̂, ̂, t̂i

hnew-instance(r, ⌧) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(r, f̂p) 7! o], ̂, t̂i
where o = dnew(&)

hif-eq(r, r0, `) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hS(`), f̂p, �̂, ̂, t̂i
if 9v1 2 �̂(r, f̂p), 9v2 2 �̂(r0, f̂p).v1 = v2

hif-eq(r, r0, `) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂, ̂, t̂i
if 9v1 2 �̂(r, f̂p), 9v2 2 �̂(r0, f̂p).v1 6= v2

higet(rd, rs,field) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! �̂(a)], ̂, t̂i
where �̂(rs, fp) 3 o and o.field = a

hiput(rv, rs,field) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [a 7! �̂(rv, f̂p)], ̂, t̂i
where �̂(rs, f̂p) 3 o and o.field = a

hinvoke-direct(r0, . . . , rn, id) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hM(id), f̂p
0
, �̂

00
, fnk(~stmt , f̂p, â), t̂

0i
where �̂

00 = �̂

0 t [(0, f̂p
0
) 7! �(r0, f̂p), . . . , (n, f̂p

0
) 7! �(rn, f̂p)]

�̂

0 = �̂ t [â 7! ̂]

f̂p
0
= [alloc(&̂)

â = \allock(&̂)

t̂

0 = dtick(t̂)

hinvoke-virtual(r0, . . . , rn, id) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hV(id , v), f̂p0
, �̂

00
, fnk(~stmt , f̂p, ̂), t̂0i if v 2 �̂(r0, f̂p)

where �̂

00 = �̂

0 t [(0, fp0) 7! �̂(r0, f̂p), . . . , (n, f̂p
0
) 7! �(rn, f̂p)]

�̂

0 = �̂ t [â 7! ̂]

f̂p
0
= [alloc(&̂)

â = \allock(&̂)

t̂

0 = dtick(t̂)

hunop(rd, rs) :: ~stmt , f̂p, �̂, ̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! v], ̂i
where v 2 �̂(unop,�(rs, fp))

hbinop(rd, r1, r2) :: ~stmt , fp,�,i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! v], ̂i
where v 2 �̂(binop, �̂(r1, f̂p), �̂(r2, f̂p))

Figure 2: Dalvik abstract semantics

4

AAM

hnop :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂, ̂, t̂i
hmove-object(rd, rs) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! �̂(rs, f̂p)], ̂, t̂i

hreturn-void :: ~stmt
0
, f̂p

0
, �̂, fnk(~stmt , f̂p, â)i 7�! h ~stmt , f̂p, �̂, ̂i if ̂ 2 �̂(â)

hreturn-object(r) :: ~stmt
0
, f̂p

0
, �̂, fnk(~stmt , f̂p, â)i 7�! h ~stmt , f̂p, �̂ t [(ret, f̂p) 7! �̂(n, f̂p

0
)], ̂i if ̂ 2 �̂(â)

hconst(r, c) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(r, f̂p) 7! c], ̂, t̂i
hthrow`(r) :: ~stmt , f̂p, �̂, ̂i 7�! hS(`0), fp0

, �̂ t [(exn, f̂p
0
) 7! �̂(r, f̂p)], ̂0i

where (`0, f̂p
0
, ̂

0) 2 bH�̂(`, f̂p, ̂)

hgoto(`) :: ~stmt
0
, f̂p, �̂, ̂, t̂i 7�! hS(`), f̂p, �̂, ̂, t̂i

hnew-instance(r, ⌧) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(r, f̂p) 7! o], ̂, t̂i
where o = dnew(&)

hif-eq(r, r0, `) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hS(`), f̂p, �̂, ̂, t̂i
if 9v1 2 �̂(r, f̂p), 9v2 2 �̂(r0, f̂p).v1 = v2

hif-eq(r, r0, `) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂, ̂, t̂i
if 9v1 2 �̂(r, f̂p), 9v2 2 �̂(r0, f̂p).v1 6= v2

higet(rd, rs,field) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! �̂(a)], ̂, t̂i
where �̂(rs, fp) 3 o and o.field = a

hiput(rv, rs,field) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! h ~stmt , f̂p, �̂ t [a 7! �̂(rv, f̂p)], ̂, t̂i
where �̂(rs, f̂p) 3 o and o.field = a

hinvoke-direct(r0, . . . , rn, id) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hM(id), f̂p
0
, �̂

00
, fnk(~stmt , f̂p, â), t̂

0i
where �̂

00 = �̂

0 t [(0, f̂p
0
) 7! �(r0, f̂p), . . . , (n, f̂p

0
) 7! �(rn, f̂p)]

�̂

0 = �̂ t [â 7! ̂]

f̂p
0
= [alloc(&̂)

â = \allock(&̂)

t̂

0 = dtick(t̂)

hinvoke-virtual(r0, . . . , rn, id) :: ~stmt , f̂p, �̂, ̂, t̂i 7�! hV(id , v), f̂p0
, �̂

00
, fnk(~stmt , f̂p, ̂), t̂0i if v 2 �̂(r0, f̂p)

where �̂

00 = �̂

0 t [(0, fp0) 7! �̂(r0, f̂p), . . . , (n, f̂p
0
) 7! �(rn, f̂p)]

�̂

0 = �̂ t [â 7! ̂]

f̂p
0
= [alloc(&̂)

â = \allock(&̂)

t̂

0 = dtick(t̂)

hunop(rd, rs) :: ~stmt , f̂p, �̂, ̂i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! v], ̂i
where v 2 �̂(unop,�(rs, fp))

hbinop(rd, r1, r2) :: ~stmt , fp,�,i 7�! h ~stmt , f̂p, �̂ t [(rd, f̂p) 7! v], ̂i
where v 2 �̂(binop, �̂(r1, f̂p), �̂(r2, f̂p))

Figure 2: Dalvik abstract semantics

4

http://matt.might.net/articles/intro-static-analysis/

Can we win the game?

DARPA: APAC

A terrible idea.

App auditor

Good app App auditor

Good appApp auditor

Good appApp auditor

Bad app Good appApp auditor

Bad appApp auditor Good app

How did we do?

6 months in…

0%

The Vision

researchinprogress.tumblr.com

http://researchinprogress.tumblr.com

The Deliverable

researchinprogress.tumblr.com

http://researchinprogress.tumblr.com

0

25

50

75

100

1A 2A 3A 4A 5A 6A

ac
cu

ra
cy

 (%
)

engagements

finite state ! pushdown

finite state ! pushdown

e, ⇢̂, �̂ ,̂e, ⇢̂, �̂ ,̂

finite state ! pushdown

e, ⇢̂, �̂
̂

e, ⇢̂, �̂
̂�

finite state ! pushdown

ICFP 2011 POPL 2016SFP 2010 SPSM 2013 SCAM 2014SFP 2014

optimizing abstract abstract machines

ICFP 2013 ICFP 2016PLDI 2013 OOPSLA 2015SFP 2015

analyzing parallel programs

SAS 2011

analyzing programs in parallel

SFP 2013POPL 2011 WFLP 2013

information-flow analysis

SAS 2015PLAS 2012

malware detection

SAS 2011 SAS 2015

DARPA: STAC

E A4V

problem of finding upper and lower bounds for the overall DAG becomes a graph s � t
shortest-path problem.

Thus, the problem of estimating resource bounds for a CFG can be reduced to the problem
of estimating these bounds for a single strongly-connected component of the graph.

E.2.2 Step II: RRs for SCCs

Our approach for building RRs for a single strongly-connected component of the CFG is
a progressive sequence of attacks.

Simple Loops The simplest strongly connected digraph is a simple recursive loop. Sim-
ple recursive loops are a form of tail recursion where a procedure calls itself (with reduced
sizes). In such a scenario, the implied recurrence is of the form

T (n) = T (g(n)) + f(n)

where bounds on g(n) are determined by sizing methods and f(n) represents the com-
plexity of the nonrecursive components of the loop (which could span multiple proce-
dures and include recursive components whose complexity were determined prior to this
step).

Complex Loops: Divide and Conquer and Dynamic Programming There are relatively
simple algorithmic constructs that do not yield simple loops. For example, any simple
divide-and-conquer strategy (or even a dynamic program) would yield a double loop
around a vertex representing the recursive routine. In such cases, we take advantage of
the fact that our goal is to get RRs that estimate the true complexity of the routine, rather
than trying to nail down the precise complexity.

We propose a method based on a cycle decomposition of the CFG. We do a depth-first-
search from the source routine and enumerate all resulting cycles. The true complexity
is some max,+ combination of the complexities of these paths. We can therefore use
the above “simple” recurrence analysis to generate a collection of recursive expressions
that describe the complexity of the complex loop. For example, a recurrence that calls
itself twice yields two simple recurrences that need to be added together. Further sizing
analysis might eliminate some of the “branches” as redundant to determining the true
complexity. Alternatively, the system can then identify the paths likely to lead to worst-
case and best-case analysis.

Ear Decompositions In general, our CFG might resist easy attacks of the form described
above. In this case, we resort to a stronger strategy based on a well-known characteriza-
tion of strongly connected graphs.

15

E A4V

problem of finding upper and lower bounds for the overall DAG becomes a graph s � t
shortest-path problem.

Thus, the problem of estimating resource bounds for a CFG can be reduced to the problem
of estimating these bounds for a single strongly-connected component of the graph.

E.2.2 Step II: RRs for SCCs

Our approach for building RRs for a single strongly-connected component of the CFG is
a progressive sequence of attacks.

Simple Loops The simplest strongly connected digraph is a simple recursive loop. Sim-
ple recursive loops are a form of tail recursion where a procedure calls itself (with reduced
sizes). In such a scenario, the implied recurrence is of the form

T (n) = T (g(n)) + f(n)

where bounds on g(n) are determined by sizing methods and f(n) represents the com-
plexity of the nonrecursive components of the loop (which could span multiple proce-
dures and include recursive components whose complexity were determined prior to this
step).

Complex Loops: Divide and Conquer and Dynamic Programming There are relatively
simple algorithmic constructs that do not yield simple loops. For example, any simple
divide-and-conquer strategy (or even a dynamic program) would yield a double loop
around a vertex representing the recursive routine. In such cases, we take advantage of
the fact that our goal is to get RRs that estimate the true complexity of the routine, rather
than trying to nail down the precise complexity.

We propose a method based on a cycle decomposition of the CFG. We do a depth-first-
search from the source routine and enumerate all resulting cycles. The true complexity
is some max,+ combination of the complexities of these paths. We can therefore use
the above “simple” recurrence analysis to generate a collection of recursive expressions
that describe the complexity of the complex loop. For example, a recurrence that calls
itself twice yields two simple recurrences that need to be added together. Further sizing
analysis might eliminate some of the “branches” as redundant to determining the true
complexity. Alternatively, the system can then identify the paths likely to lead to worst-
case and best-case analysis.

Ear Decompositions In general, our CFG might resist easy attacks of the form described
above. In this case, we resort to a stronger strategy based on a well-known characteriza-
tion of strongly connected graphs.

15

O(h(n))RR Solver

O(h(n))RR Solver

Complexity attacks

Space attacks

Side channels

What about people?

Can we fix people?

Yes, we can!

What is precision medicine?

Data-driven

(Often) genome-guided

“right drug to right patient”

Curing Cancer

Cancer is not a disease.

Cancer is many diseases.

Cancer is many rare diseases.

Curing rare diseases.

But, first BIO 101

DNA is char*.

A T C G

A T C G

RNA

Amino Acid

Protein

post-translational
modification

Many proteins are enzymes

The genome has syntax!

The genome has semantics!

DNA has an instruction set!

ATGGCCTGA

ATG GCC TGA

ATG

BEGIN PROTEIN
 INSERT methionine;

GCC

INSERT alanine;

TGA

END

ATGGCCTGA

BEGIN PROTEIN
 INSERT methionine;
 INSERT alanine;
END

Mutations

ATG GCC TGA

ATG GAC TGA

BEGIN PROTEIN
 INSERT methionine;
 INSERT alanine;
END

BEGIN PROTEIN
 INSERT methionine;
 INSERT aspartic;
END

Many mutations are benign

Some destroy function

Some increase function

Some change function

Rare diseases…

…are monogenic mutations.

A B C D E F

A B C D E F

Cancer is multigenic!

A B C D E F

Tumors evolve!

💊

💊

Curing cancer is like curing
many monogenic diseases

…on the fly!

Curing monogenic disease?

Need an algorithm.

💊!

sequencing

gene expertssequencing

web / wikipedia

functional studies

gene experts

web / wikipedia

functional studies

interpretation

gain of function

partial loss of function

total loss of function

change of function

interpretation

crowd-screening

natural history

total loss of function stem cell creation

enzyme synthesis

gene therapy

structural analysis

metabolic diet

model organisms

assay development

stem cell creation

enzyme synthesis

gene therapy

structural analysis

metabolic diet

model organisms

assay development alternate pathway

suppressor screen

high-throughput

RNA upregulation

medicinal chemistry

gene editing

RNA downregulation

inhibitor / antagonist

model organism

dietary changes

gain of function

RNA upregulation

assay development

model organism

dietary changes

partial loss

proteomics

structural analysis

model organism

transcriptomics

change

clinical trials

clinical trials 💊

Will it work?

Yes.

Bertrand

{NGLY1

{NGLY1

{NGLY1

“first”

“only”

“n = 1”

Then, how do you know?

Molecular dynamics?

It doesn’t scale!

We need a workaround.

1,000,000 Americans!

Building a “genetic telescope”!

Heart disease Cancer Diabetes

Mental health Lung disease Obesity

Pioneering Precision Medicine:
The Million Veterans Program

Copyright © Free Vector Maps.com

MVP

+

But, what about my son’s mutation?

I wrote a blog post.

Finding a treatment

This is a personal talk and my views do not necessarily
reflect the views of the President or the administration.

That's great, but…

Clement Chow, Ph.D.

without GlcNAc with GlcNAc
0

100%
su

rv
iv

al

And, in general…

Man6-GlcNAc2-alpha => Man6-GlcNAc2 + alpha

Man6-GlcNAc2-alpha => Man6-GlcNAc + GlcNAc-alpha

GlcNAc-alpha + GlcNAc-beta => GlcNAc-alpha-GlcNAc-beta


kappalang.org

Man6-GlcNAc2-alpha => Man6-GlcNAc2 + alpha

Man6-GlcNAc2-alpha => Man6-GlcNAc + GlcNAc-alpha

GlcNAc-alpha + GlcNAc-beta => GlcNAc-alpha-GlcNAc-beta

“What happens now?”

computer science

biology & medicine

Toward therapeutics for NGLY1 deficiency

+ RNAi for NGLY1

+ RNAi for NGLY1

+ RNAi for NGLY1 & Gene X

+ RNAi for NGLY1 & Gene X

computer science

biology & medicine

computer science

biology & medicine

70 compounds!

14 FDA approved!

1 works in the lab!

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.e lsevier .com

Repurposing of Proton Pump Inhibitors as First Identified Small Molecule
Inhibitors of Endo-β-N-acetylglucosaminidase (ENGase) for the Treatment of
Rare NGLY1 Genetic Disease
Yiling Bia, Matthew Mightb, Hariprasad Vankayalapatic, ∗, and Balagurunathan Kuberan a, d, e, f, ∗
aDepartment of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
bSchool of Computing, University of Utah, Salt Lake City, Utah 84112, United States
cDivision of Oncology of School of Medicine and Center for Investigational Therapeutics at Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope,
Salt Lake City, Utah 84112, United States.
dDepartment of Biology, University of Utah, Salt Lake City, Utah 84112, United States
eDepartment of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
fInterdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah 84112, United States

———
∗ Corresponding author. (B.K.) E-mail: kuby.balagurunathan@utah.edu
∗ Corresponding author. (V.H.) Email: hari@hci.utah.edu

N-glycanase deficiency, also known as NGLY1 deficiency, is
an extremely rare genetic disease. The symptoms of NGLY1
deficiency include global developmental delay, seizures, complex
hyperkinetic movement disorder, difficulty in
swallowing/aspiration, liver dysfunction, and a lack of tears.1
Due to NGLY1 gene mutations, NGLY1 patients produce
negligible or no N-glycanase enzyme (Ngly1), an enzyme that is
involved in non-lysosomal deglycosylation of mis-folded N-
linked glycoproteins in the cytosol before being targeted for
destruction by the proteosomal complex.2 However, the
underlying mechanism has not been well understood since the
first report of this genetic disorder in 2012.3 Recently, Tadashi’s
group proposed a potential pathological mechanism linking
NGLY1 deficiency to the endoplasmic reticulum (ER)-associated
degradation (ERAD) pathway. It is well known that N-

glycoproteins can be degraded through both the lysosomal
degradation and non-lysosomal degradation process. In non-
lysosomal degradation pathway, the N-glycoproteins (mostly
misfolded protein) are translocated from the ER to the cytosol
and degraded by proteasomes through the ERAD process. Ngly1
is functionally important in ERAD as it cleaves the amide bond
between the Asparagine residue (Asn) of the protein and the
proximal GlcNAc, chemically bonded to Asn, in N-glycan.1
When NGLY1 gene was knocked out in a cellular model, endo-β-
N-acetylglucosaminidase (ENGase) could act as a surrogate
deglycosylation enzyme, resulting in the generation of
unconventional proteins carrying partially deglycosylated
residual N-GlcNAc sugar stubs. Proteins with N-GlcNAc
residues were found to undergo aggregation, preventing or
delaying the degradation of misfolded N-glycoproteins.

ART ICLE INFO AB ST R ACT

Article history:
Received
Revised
Accepted
Available online

N-glycanase deficiency, or NGLY1 deficiency, is an extremely rare human genetic disease. N-
glycanase, encoded by the gene NGLY1, is an important enzyme involved in protein
deglycosylation of misfolded proteins. Deglycosylation of misfolded proteins precedes the
endoplasmic reticulum (ER)-associated degradation (ERAD) process. NGLY1 patients produce
little or no N-glycanase (Ngly1), and the symptoms include global developmental delay,
frequent seizures, complex hyperkinetic movement disorder, difficulty in swallowing/aspiration,
liver dysfunction, and a lack of tears. Unfortunately, there has not been any therapeutic option
available for this rare disease so far. Recently, a proposed molecular mechanism for NGLY1
deficiency suggested that endo-β-N-acetylglucosaminidase (ENGase) inhibitors may be
promising therapeutics for NGLY1 patients. Herein, we performed structure-based virtual
screening of FDA-approved drug database on this ENGase target to enable repurposing of
existing drugs. Several Proton Pump Inhibitors (PPIs), a series of substituted 1H-Benzo [d]
imidazole, and 1H-imidazo [4,5-b] pyridines, among other scaffolds, have been identified as
potent ENGase inhibitors. An electrophoretic mobility shift assay was employed to assess the
inhibition of ENGase activity by these PPIs. Our efforts led to the discovery of Rabeprazole
Sodium as the most promising hit with an IC50 of 4.47±0.44 μM. This is the first report that
describes the discovery of small molecule ENGase inhibitors, which can potentially be used for
the treatment of human NGLY1 deficiency.

2009 Elsevier Ltd. All rights reserved.

Keywords:
NGLY1;
endo-β-N-acetylglucosaminidase (ENGase)
inhibitors;
drug repurposing;
structure-based virtual screening;
proton pump inhibitors

Will it work again?

2014

Make it so.

2015

2016

5 diseases; 12 months

2017

Yes, we can.
Yes, we did.

Disclaimer: I am a scientific advisor / co-founder.

More than computation

Diagnosis

Therapy

Diagnosis

Therapy

Regulatory approval

What’s next?

Hugh Kaul Precision
Medicine Institute

Three focus areas

Rare

Precision oncology

Pharmacogenomics

Bruce Korf - Undiagnosed Diseases Program

Human screenome project

Broad, reusable assays

High coverage

What about cancer?

Eddy Yang

Harry Erba Chris Klug

The War on Error?

!{ }halts
loopsf :f̂
dunno

💊!f :f̂
🔬{ }

Thank you!
Matt Might | matt.might.net | @mattmight

