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Some techniques have been developed to analyze the causal structure of 
rule-based models [Feret, Fontana and Krivine].

They take advantage of the structure of the rules to: 

• slice simulation traces into minimal subsets of necessary events 

• highlight causal influences between non-concurrent events
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Here is a toy Kappa model that represents 
one step of a phosphorylation cascade:
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Here is a stochastic simulation of the system:

init b p
Existing causal analysis techniques 
would provide the following narrative:

Starting from the following initial mixture, how 
does rule p get triggered ?

This seems wrong because it downplays the role of event pk. Indeed:

Event p would probably not have happened had pk not happened, being 
prevented by an early unbinding event.

Counterfactual
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In this work, we make the following 
contributions: 

• We propose a semantics for counterfactual 
statements in Kappa. 

• We provide an algorithm to evaluate such 
statements efficiently. 

• We show how inhibition arrows can be used 
to explain counterfactual experiments.

Contributions

A better causal explanation for 
pk would look like this:
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A potential event is given by a rule r along with an injective mapping from 
the agents of r to global agents. 

To every such potential event, we associate a Poisson process.
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COUNTERFACTUAL STATEMENTS
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Random variable corresponding to a simulation trace

Simulation trace modulo intervention ɩ

If we write:

The probability that a predicate Ψ would have been true on trace τ 
had intervention ɩ happened is defined as: 

P
�
�[T̂�] | T = �

�

In order to estimate this quantity, we sample trajectories from T̂� | {T = �}
using a variation of the Gillespie algorithm: the counterfactual simulation 
algorithm — or co-simulation algorithm.



CO-SIMULATION ALGORITHM

Given a reference trace and an intervention ɩ, the co-simulation algorithm 
produces a random counterfactual trace that gives an account of what may 
have happened had ɩ occurred.

On performances: on average, co-simulating a 
trace is about 3 times slower than simulating it 
in the first place.
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On the left, we show a run of the co-simulation 
algorithm, the intervention consisting in 
blocking rule pk.

Example



INHIBITION ARROWS
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We can explain the differences between a 
reference trace and a corresponding 
counterfactual trace using inhibition arrows.

Any event that is proper to the factual trace is 
connected by an event that is directly blocked 
by the intervention through a path containing 
an even number of inhibition arrows.

Theorem



CONCLUSION AND PERSPECTIVES

The use of counterfactual reasoning enables us to produce better 
causal explanations by: 

• being more sensitive to the kinetic aspects of a model 

• providing a proper account of inhibition between molecular events

Current work
• What counterfactual experiments are worth trying ? 

• How does counterfactual reasoning interact with trace slicing ? 
[Mickaël Laurent’s internship]

Other applications for counterfactual reasoning ?
Our intuition is that counterfactual simulation could provide an interesting 
experimental tool, especially when studying highly stochastic models.
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An event e that happens at time t in the factual 
trace is said to inhibit an event e’ that happens 
at time t’ in the  counterfactual trace if: 

• t < t’ 

• there exists a site s such that e is the last 
event in the factual trace before time t′ that 
modifies s from the value it is tested to by e′ 

to a different value  

• there are no events in the counterfactual 
trace modifying s in the time interval (t, t’)

Definition

MORE ON INHIBITION


