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CAUSAL ANALYSIS

Some techniques have been developed to analyze the causal structure of

rule-based models [Feret, Fontana and Krivine].
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They take advantage of the structure of the rules to:
- slice simulation traces into minimal subsets of necessary events

* highlight causal influences between non-concurrent events




A MOTIVATING EXAMPLE

Here is a toy Kappa model that represents

one step of a phosphorylation cascade: Substrate Kinase
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A MOTIVATING EXAMPLE

Starting from the following initial mixture, how @) Ca

does rule p get triggered ?

Initial mixture
Here is a stochastic simulation of the system:

init b . w  pk b . p o w

Existing causal analysis techniques @ ° °
would provide the following narrative:
This seems wrong because it downplays the role of event pk. Indeed:

Event p would probably not have happened had pk not happened, being

prevented by an early unbinding event.

Counterfactual



A MOTIVATING EXAMPLE

A better causal explanation for

pk would look like this:

Contributions

In this work, we make the following

contributions:

- We propose a semantics for counterfactual

statements in Kappa.

« We provide an algorithm to evaluate such

statements efficiently.

« We show how inhibition arrows can be used

to explain counterfactual experiments.




A MONTE CARLO SEMANTICS FOR KAPPA

A potential event is given by a rule r along with an injective mapping from

the agents of r to global agents.

To every such potential event, we associate a Poisson process.
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A MONTE CARLO SEMANTICS FOR KAPPA

A potential event is given by a rule r along with an injective mapping from

the agents of r to global agents.

To every such potential event, we associate a Poisson process.
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SIMULATING MODULO AN INTERVENTION

A potential event is given by a rule r along with an injective mapping from

the agents of r to global agents.

To every such potential event, we associate a Poisson process.
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An intervention 1 is defined as a predicate that specifies what events should

be blocked. Let’s simulate again, blocking the triggering of pk.
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An intervention 1 is defined as a predicate that specifies what events should
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SIMULATING MODULO AN INTERVENTION

A potential event is given by a rule r along with an injective mapping from

the agents of r to global agents.

To every such potential event, we associate a Poisson process.
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An intervention 1 is defined as a predicate that specifies what events should

be blocked. Let’s simulate again, blocking the triggering of pk.




COUNTERFACTUAL STATEMENTS

If we write:
1 Random variable corresponding to a simulation trace
T, Simulation trace modulo intervention 1

The probability that a predicate ¥ would have been true on trace t

had intervention 1 happened is defined as:

P(y[T)] | T=r)

In order to estimate this quantity, we sample trajectories from 7T, | {T = 7}

using a variation of the Gillespie algorithm: the counterfactual simulation

algorithm — or co-simulation algorithm.




CO-SIMULATION ALGORITHM

Given a reference trace and an intervention 1, the co-simulation algorithm
produces a random counterfactual trace that gives an account of what may

have happened had 1 occurred.

Ref. = CF Example
""""" U On the left, we show a run of the co-simulation
init | init
........................ algorithm, the intervention consisting in
pk X blocking rule pk.
b | b
"""""""""""""""""""""" u On performances: on average, co-simulating a

------------------------ trace is about 3 times slower than simulating it

p ' in the first place.



INHIBITION ARROWS

We can explain the differences between a
reference trace and a corresponding

counterfactual trace using inhibition arrows.

Theorem

Any event that is proper to the factual trace is
connected by an event that is directly blocked

by the intervention through a path containing

an even number of inhibition arrows.



CONCLUSION AND PERSPECTIVES

The use of counterfactual reasoning enables us to produce better

causal explanations by:
- being more sensitive to the kinetic aspects of a model

- providing a proper account of inhibition between molecular events

Current work
- What counterfactual experiments are worth trying ?

- How does counterfactual reasoning interact with trace slicing ?

[Mickaél Laurent’s internship]

Other applications for counterfactual reasoning ?

Our intuition is that counterfactual simulation could provide an interesting

experimental tool, especially when studying highly stochastic models.
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Algorithm 1 Resimulation loop.

{ t is the current time, M the current state mixture
and M, the intermediate state of 7 at time ¢ }

o Zr Ar - | A (M, MO)I

draw § ~ Exp(a’)

te —t+90

t¢ < time of the next event in 7

t' < min{t., t¢}

if t' =t. then
draw a rule r with prob. o< A, - |A,(M, M))|
draw a divergent embedding ¢ € A,.(M, M)
e <+ (r,p)

else
e < next event in 7

end if

if —blocked,(t,e) A e triggerable in M then
update M by triggering event e

end if

t <t




MORE ON INHIBITION

Definition

An event e that happens at time t in the factual
trace is said to inhibit an event e’ that happens

at time t’ in the counterfactual trace if:

ct <t

* there exists a site s such that e is the last
event in the factual trace before time tthat
modifies s from the value it is tested to by e

to a different value

« there are no events in the counterfactual

trace modifying s in the time interval (t, t°)




