

CAUSAL ANALYSIS OF RULE-BASED MODELS THROUGH COUNTERFACTUAL REASONING

Carnegie
Mellon
University

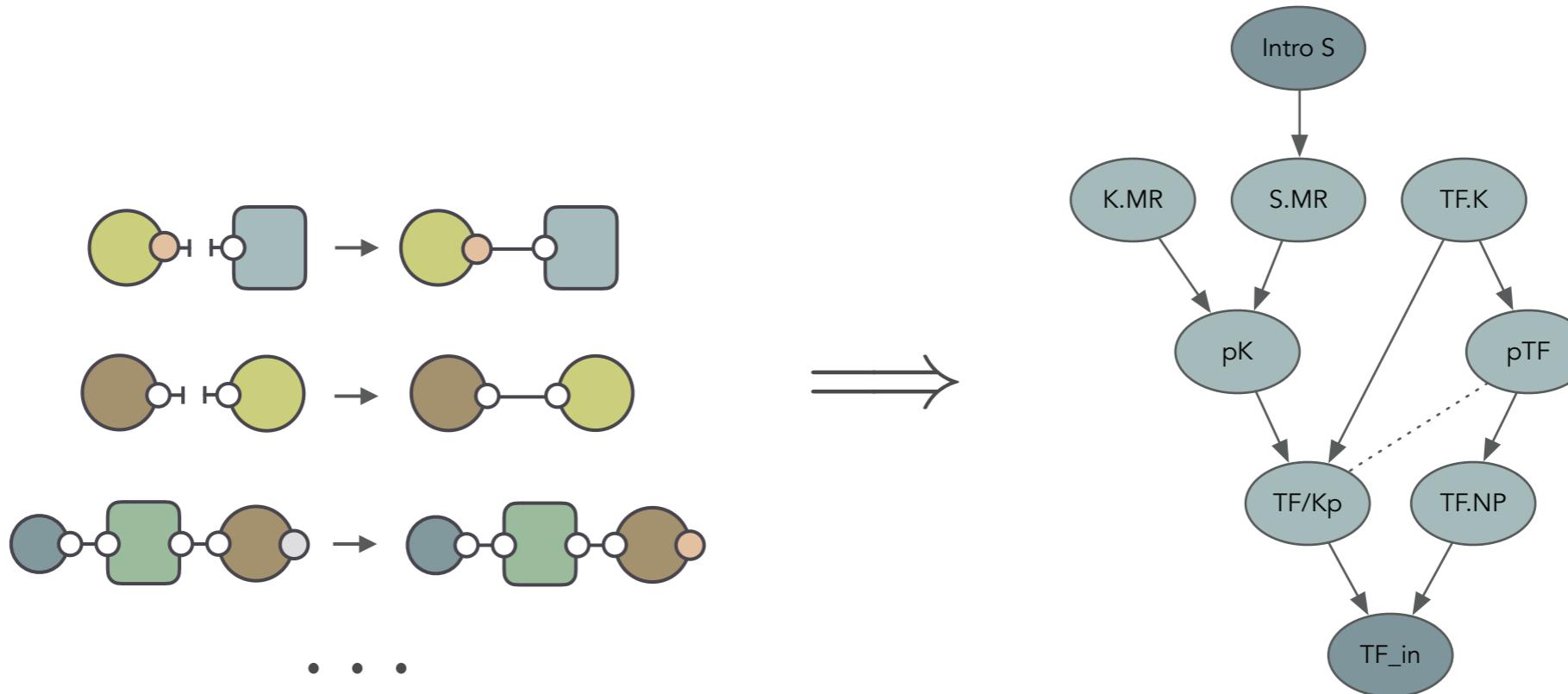
HARVARD
MEDICAL SCHOOL

Jonathan Laurent, Jean Yang (Carnegie Mellon University),

Walter Fontana (Harvard Medical School)

CAUSAL ANALYSIS

Some techniques have been developed to analyze the **causal structure** of rule-based models [Feret, Fontana and Krivine].

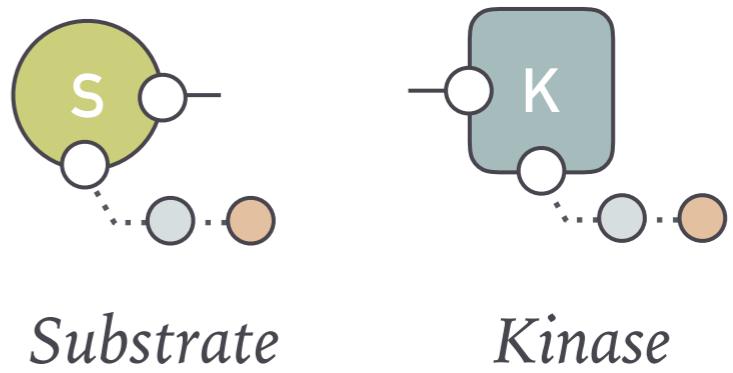
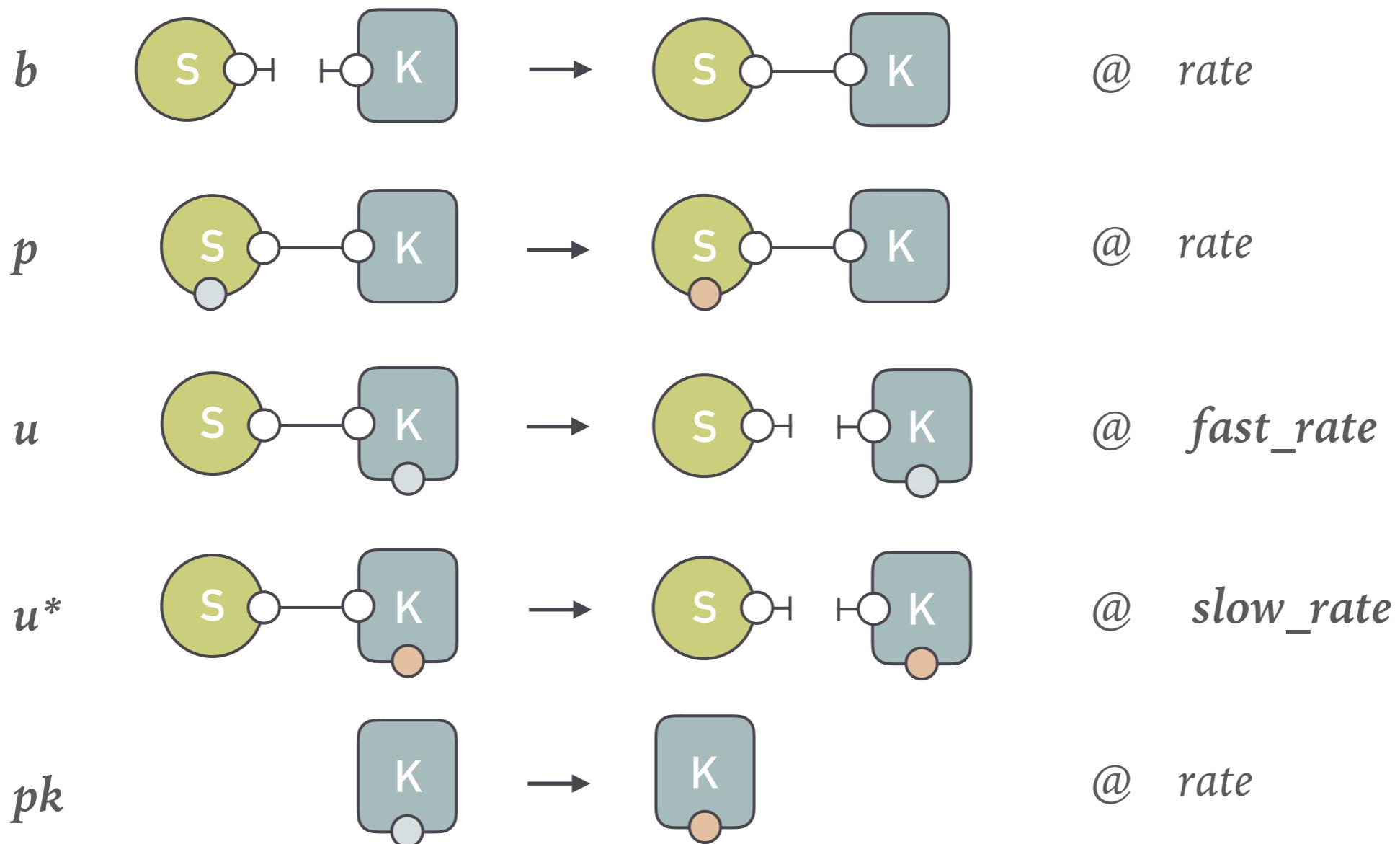


They take advantage of the structure of the rules to:

- slice simulation traces into minimal subsets of **necessary events**
- highlight **causal influences** between non-concurrent events

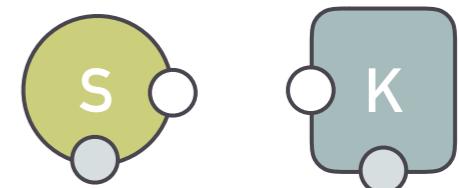
A MOTIVATING EXAMPLE

Here is a toy Kappa model that represents one step of a phosphorylation cascade:



A MOTIVATING EXAMPLE

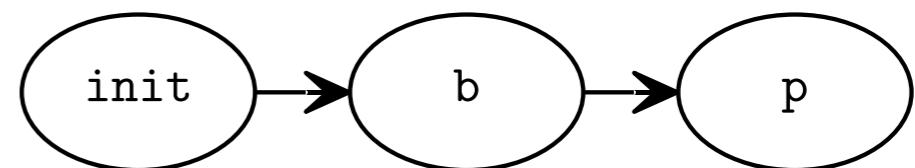
Starting from the following initial mixture, how does rule p get triggered ?



Initial mixture

Here is a stochastic simulation of the system:

Existing causal analysis techniques would provide the following narrative:



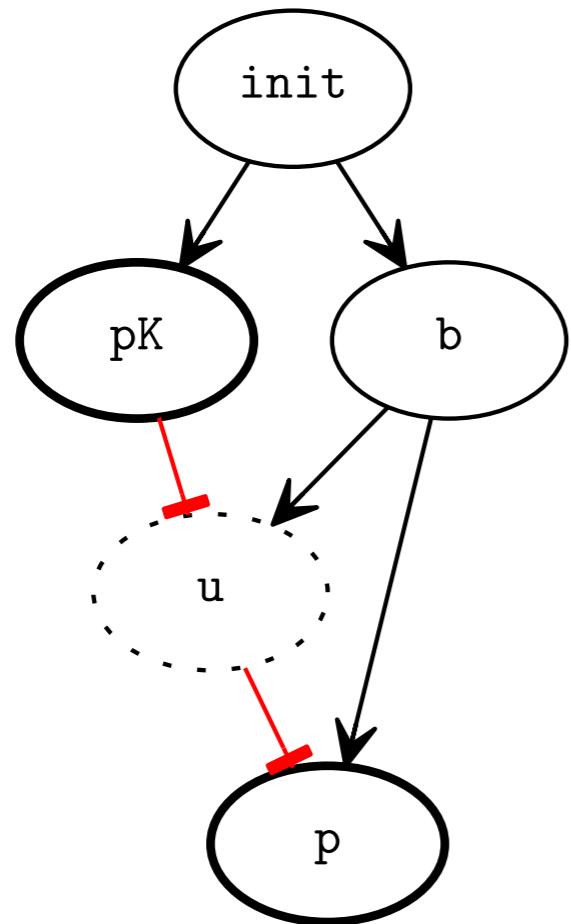
This seems wrong because it downplays the role of event *pk*. Indeed:

Event p would probably not have happened had pk not happened, being prevented by an early unbinding event.

Counterfactual

A MOTIVATING EXAMPLE

A better causal explanation for pk would look like this:



Contributions

In this work, we make the following contributions:

- We propose a semantics for **counterfactual statements** in Kappa.
- We provide an algorithm to **evaluate** such statements efficiently.
- We show how inhibition arrows can be used to **explain** counterfactual experiments.

A MONTE CARLO SEMANTICS FOR KAPPA

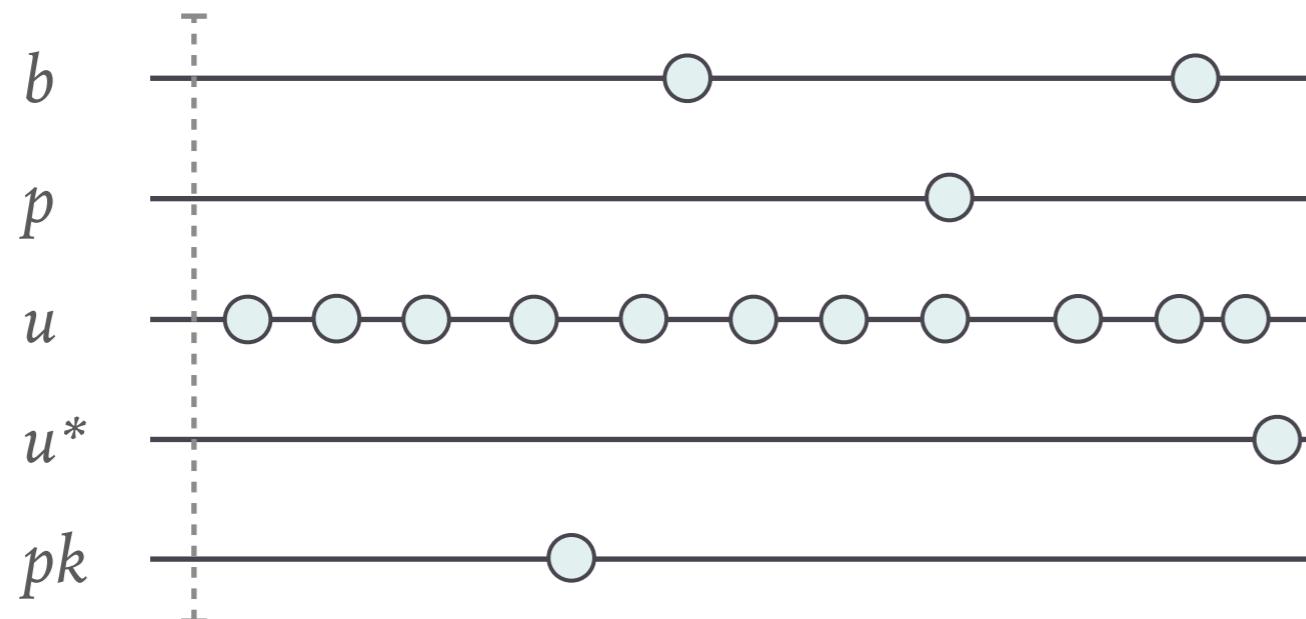
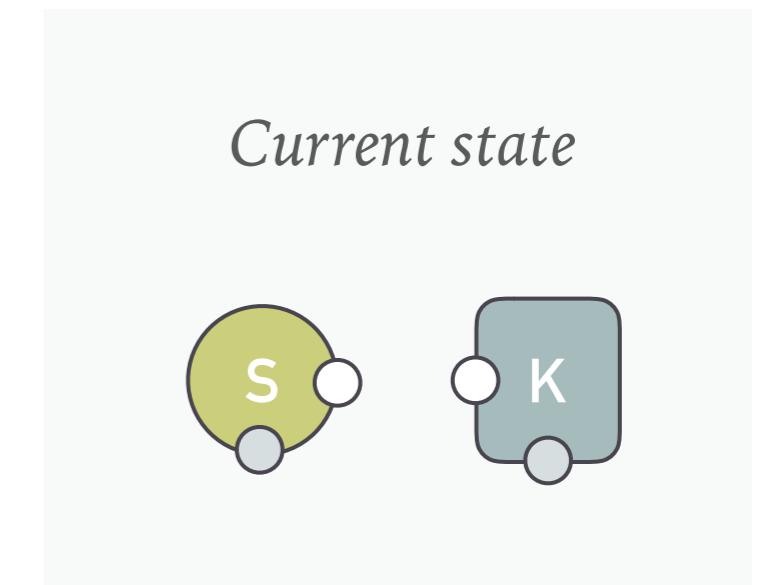
A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.

A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

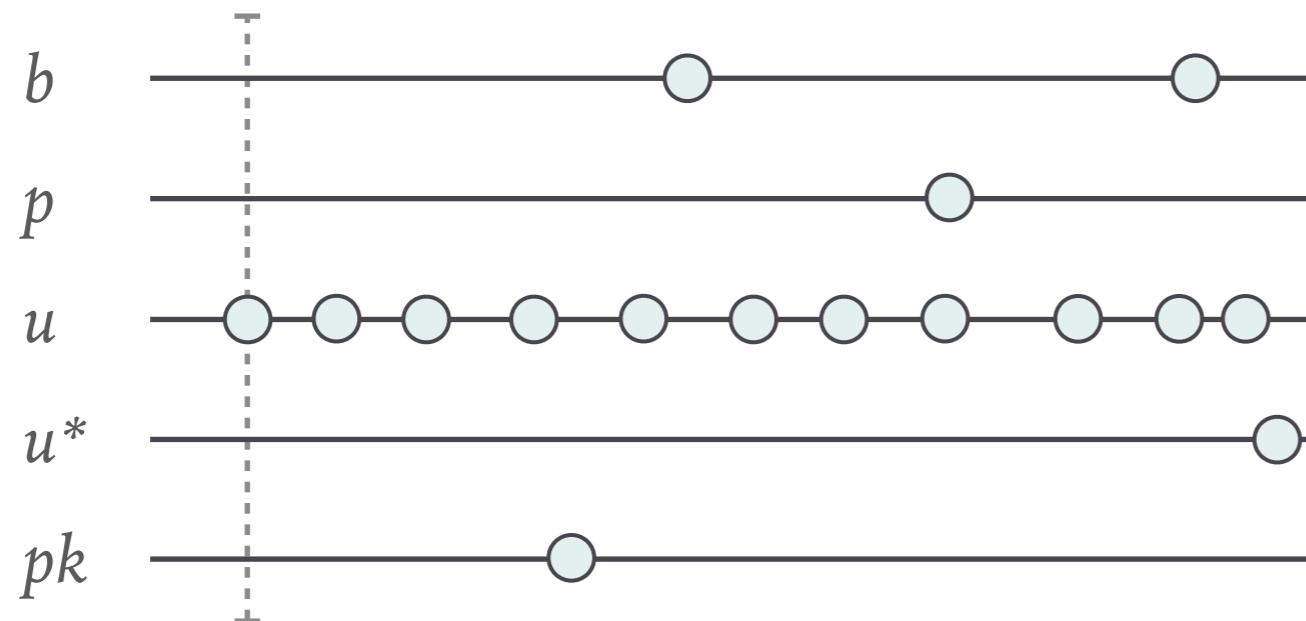
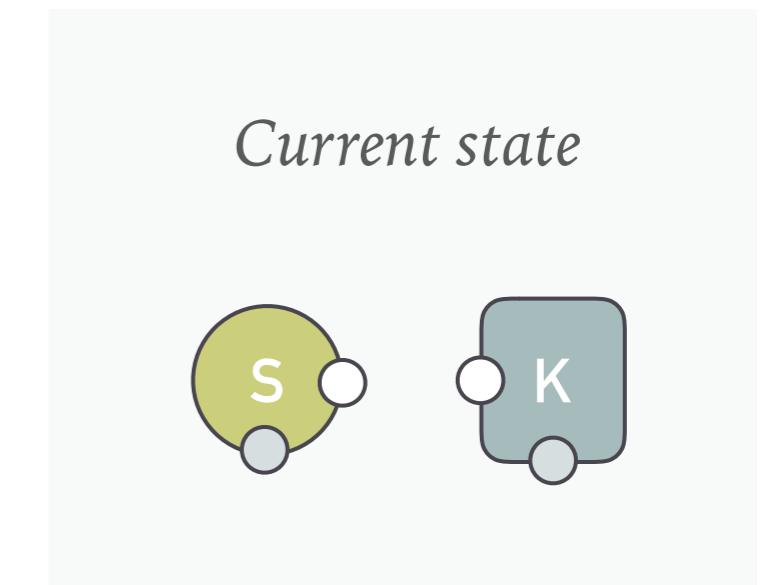
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

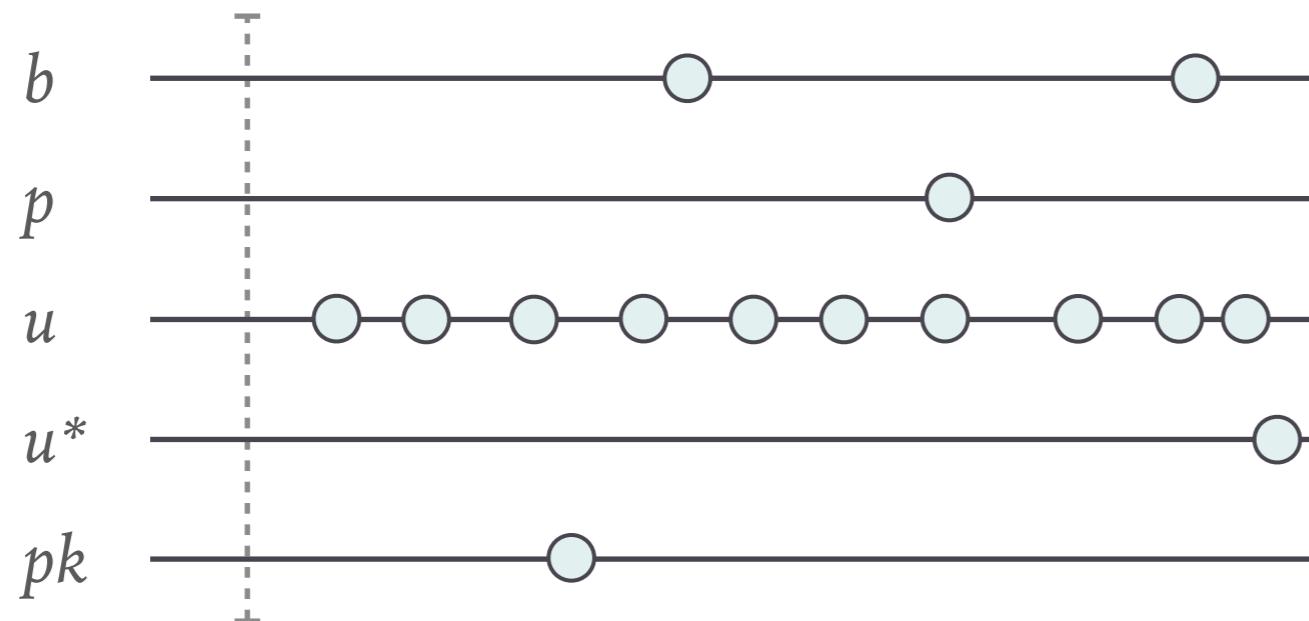
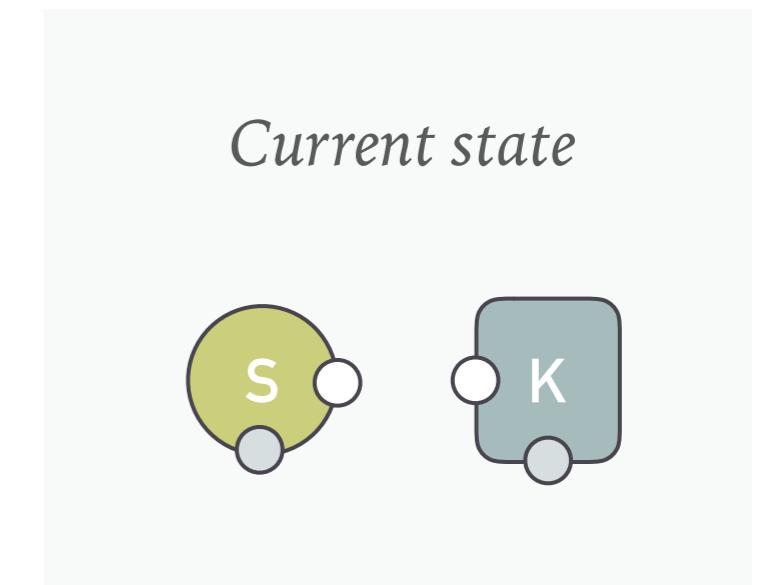
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

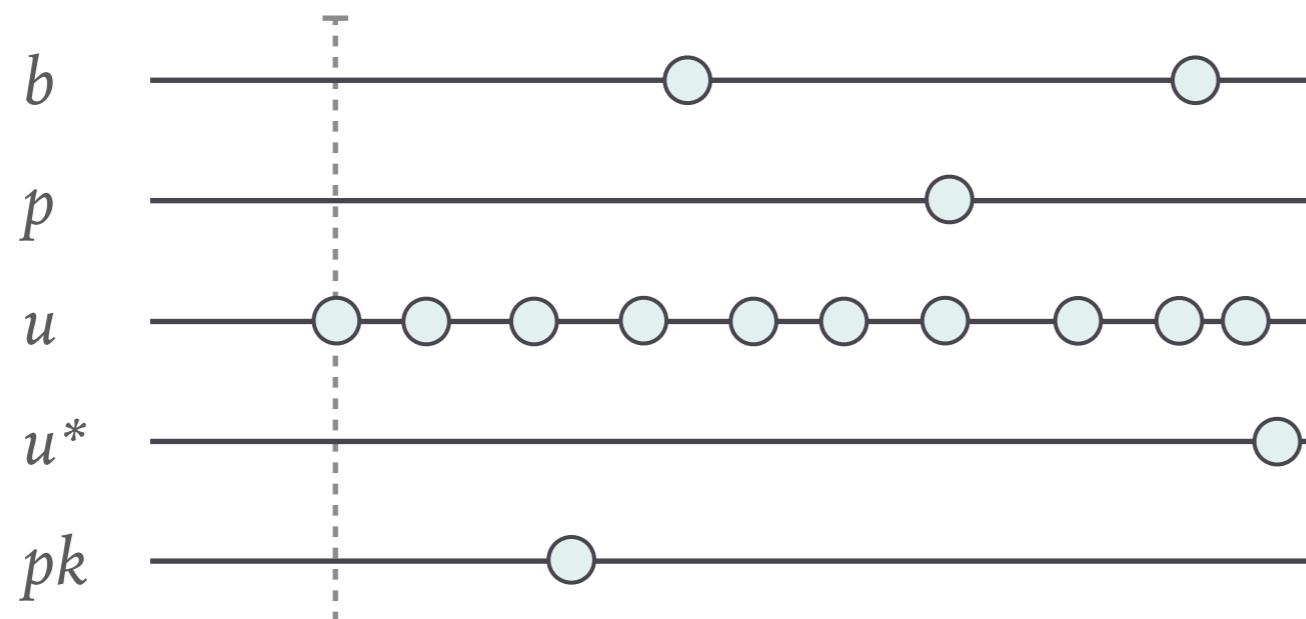
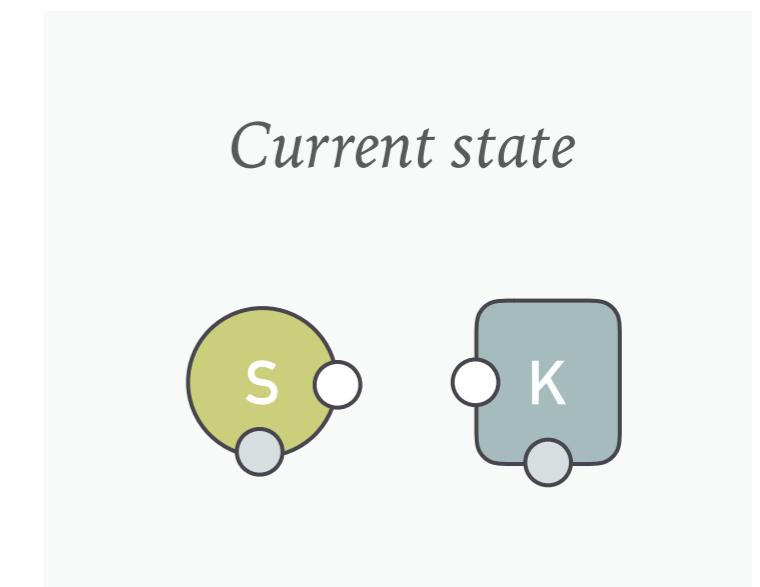
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

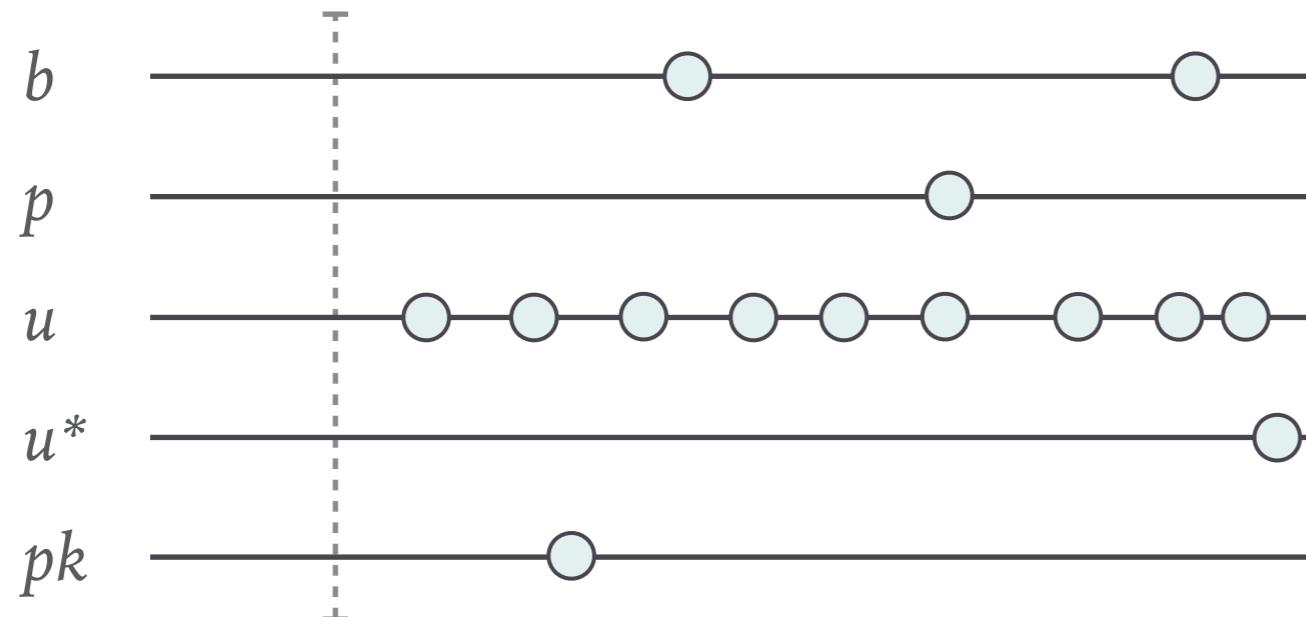
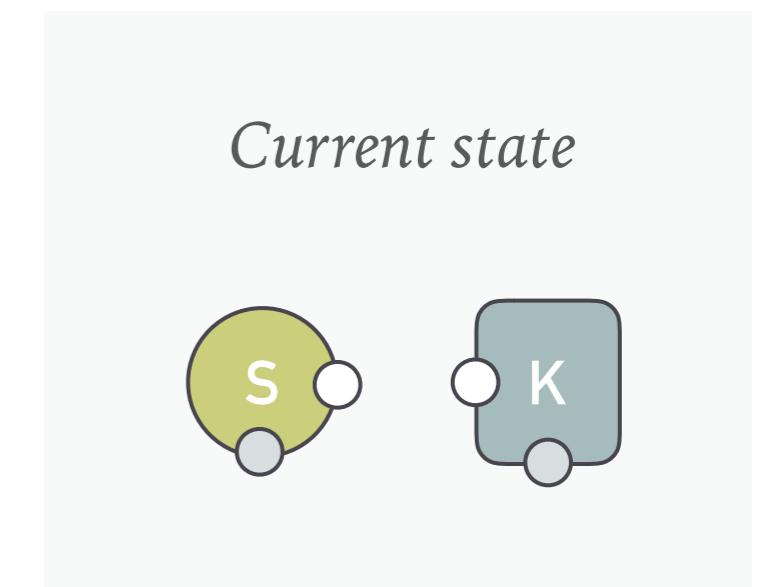
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

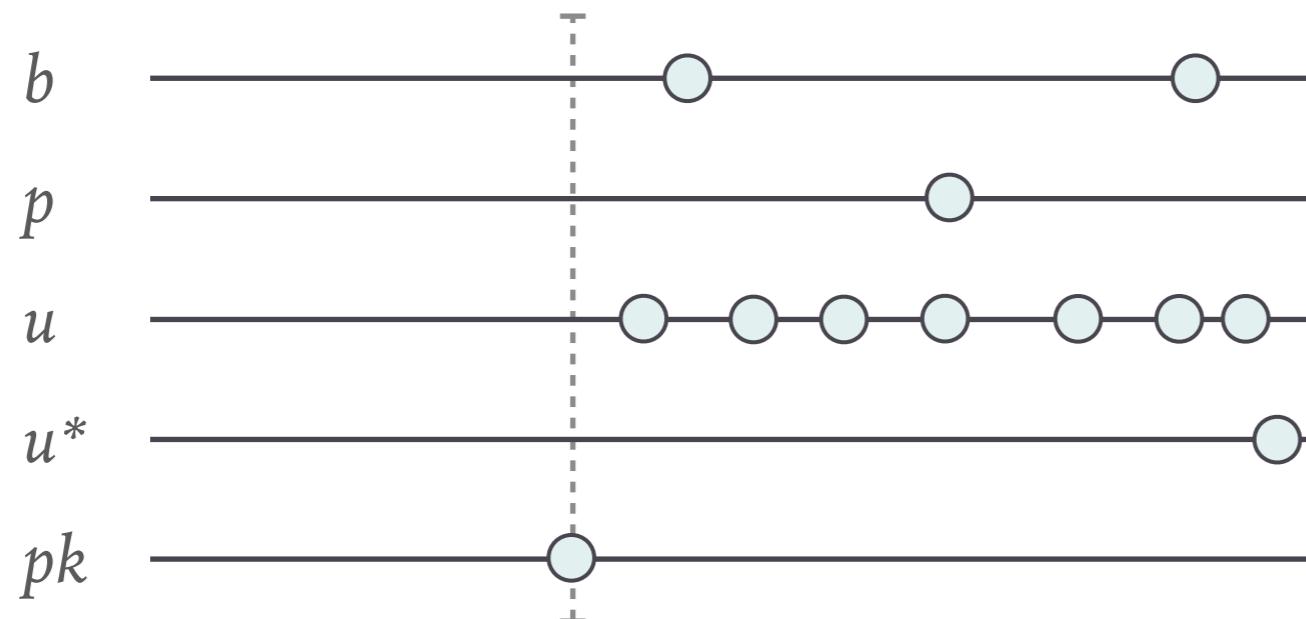
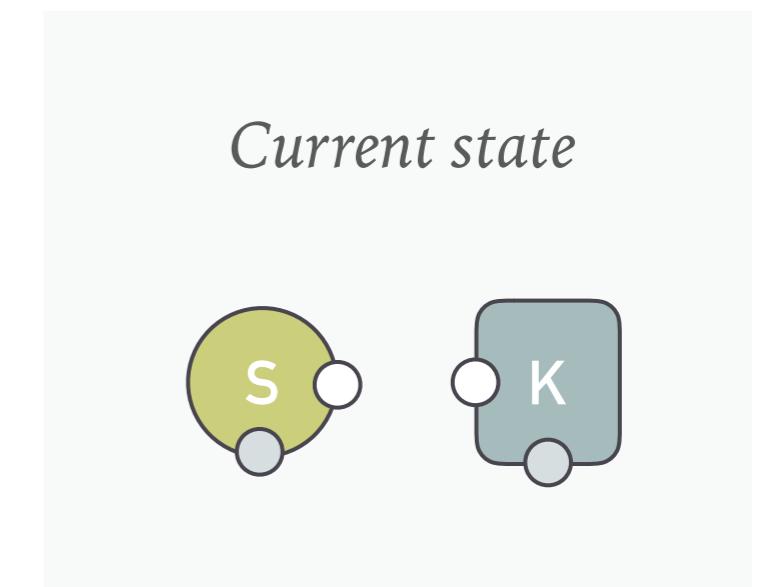
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

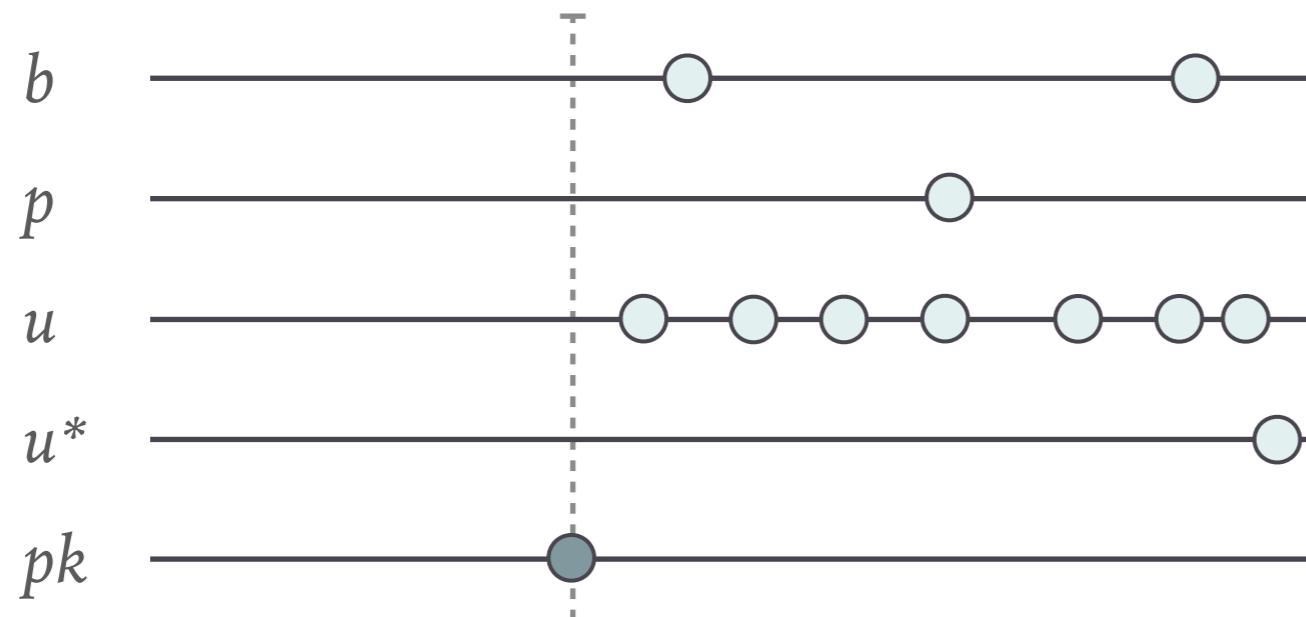
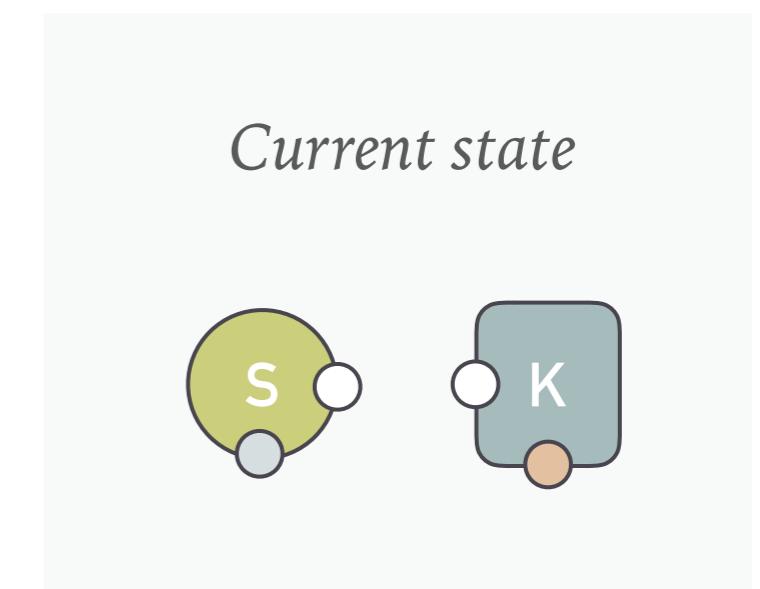
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

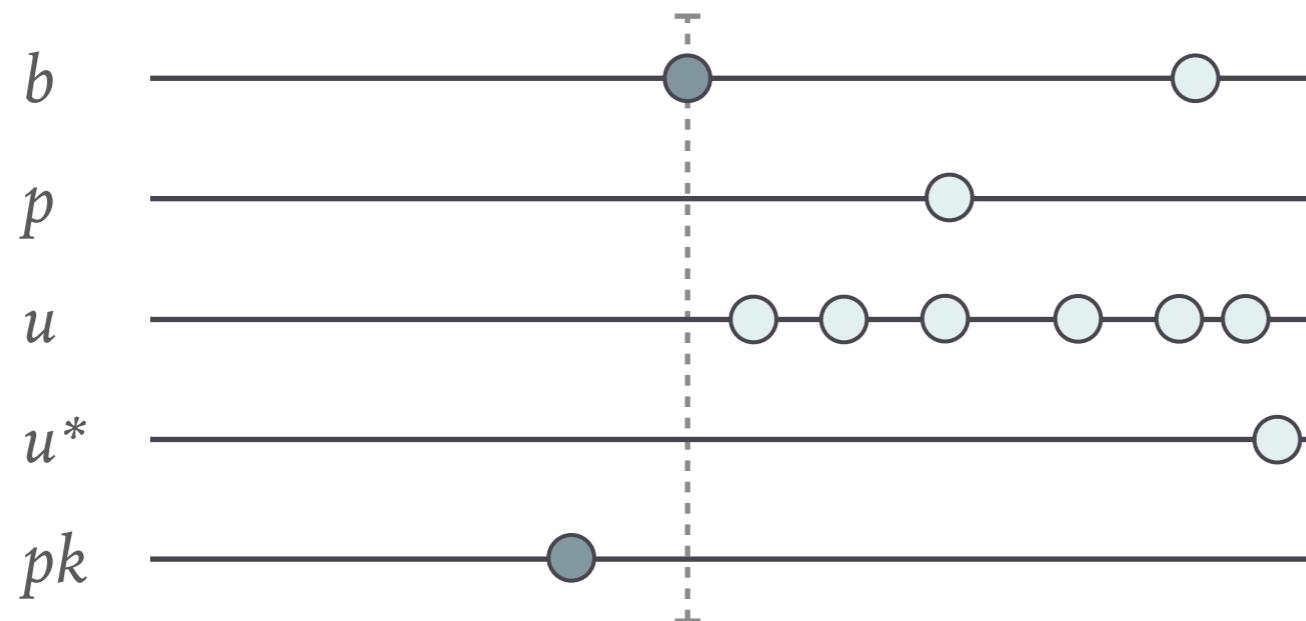
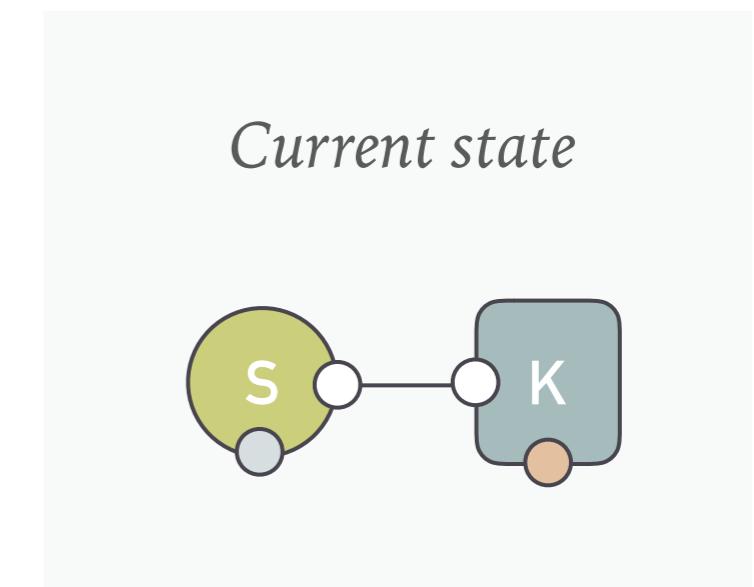
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

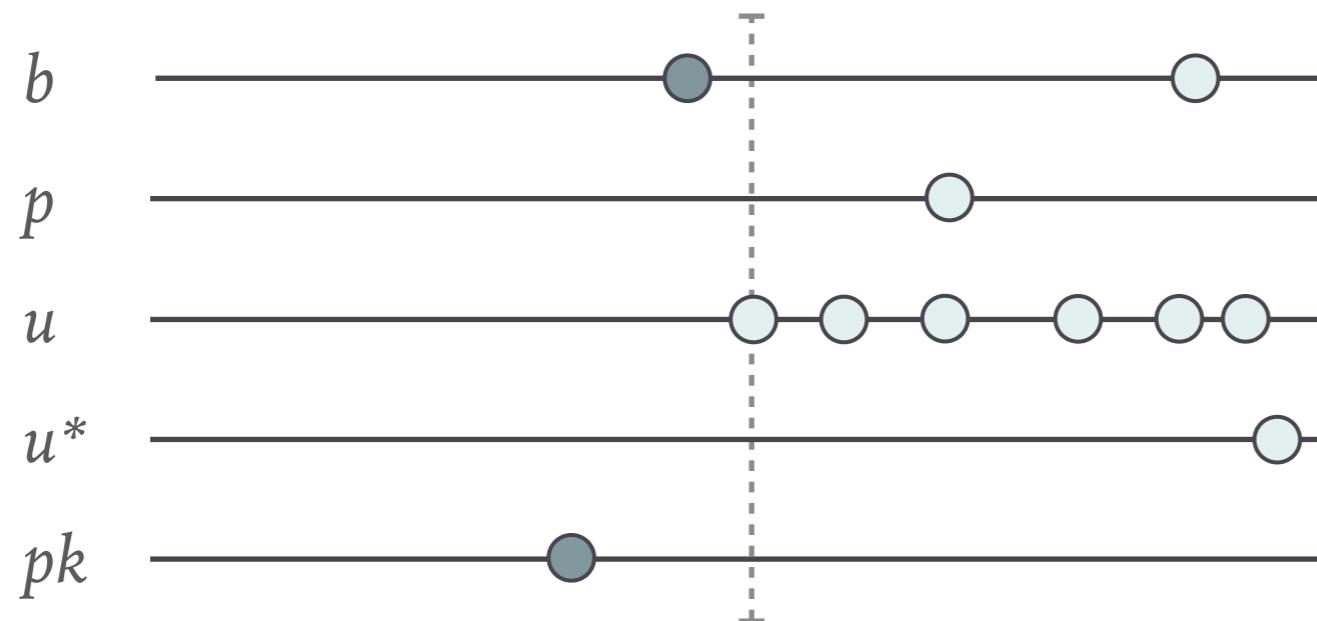
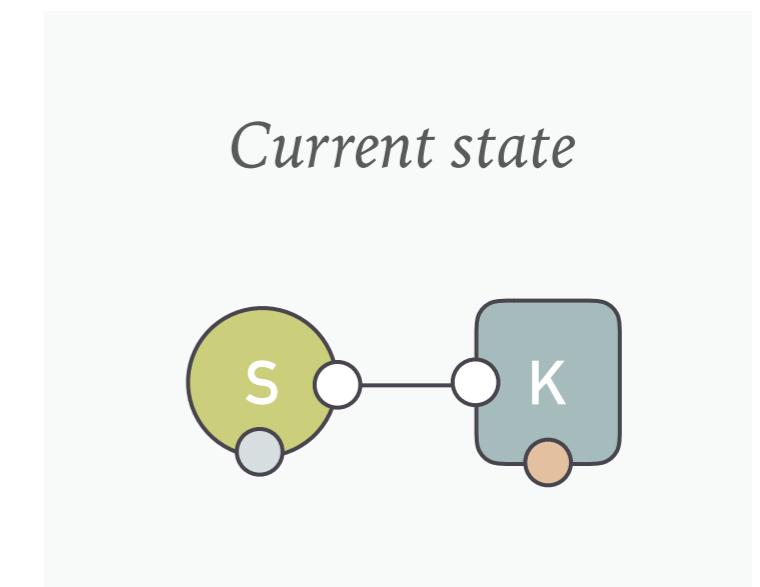
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

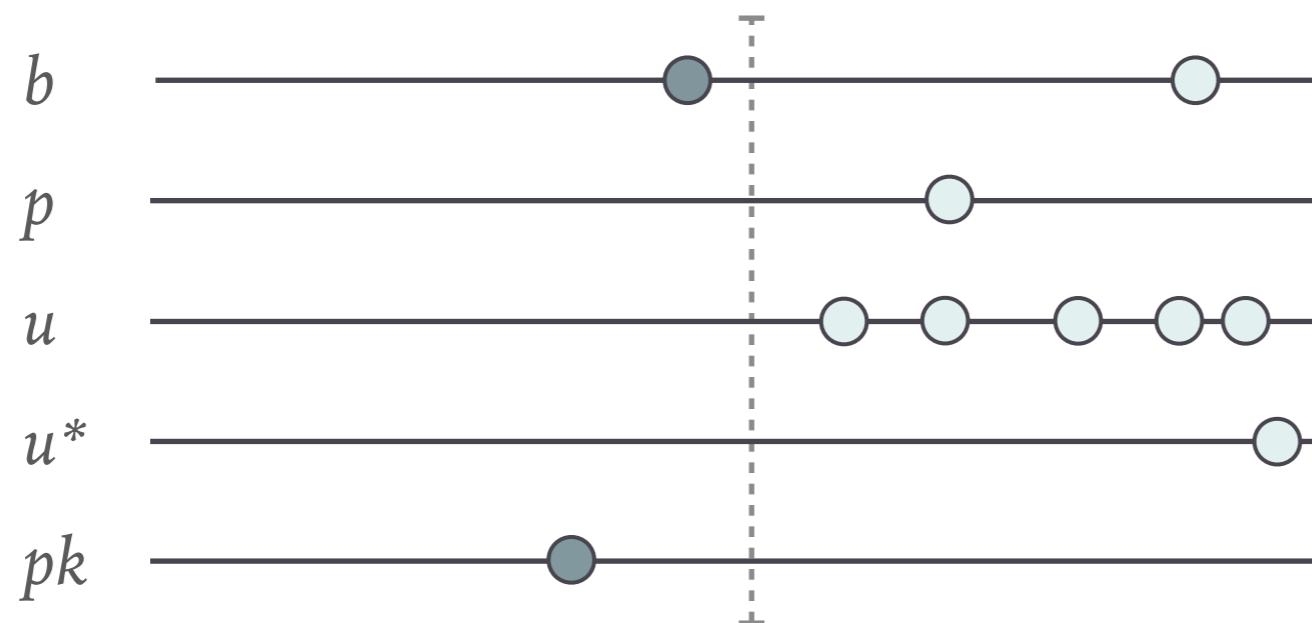
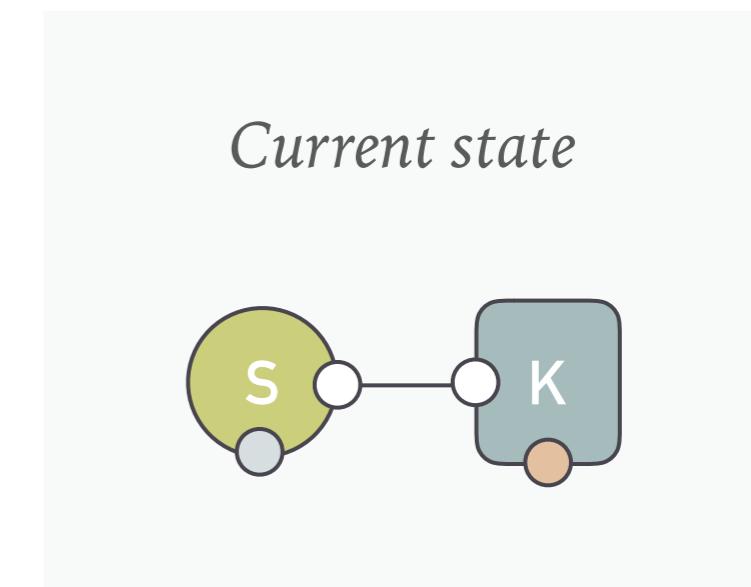
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

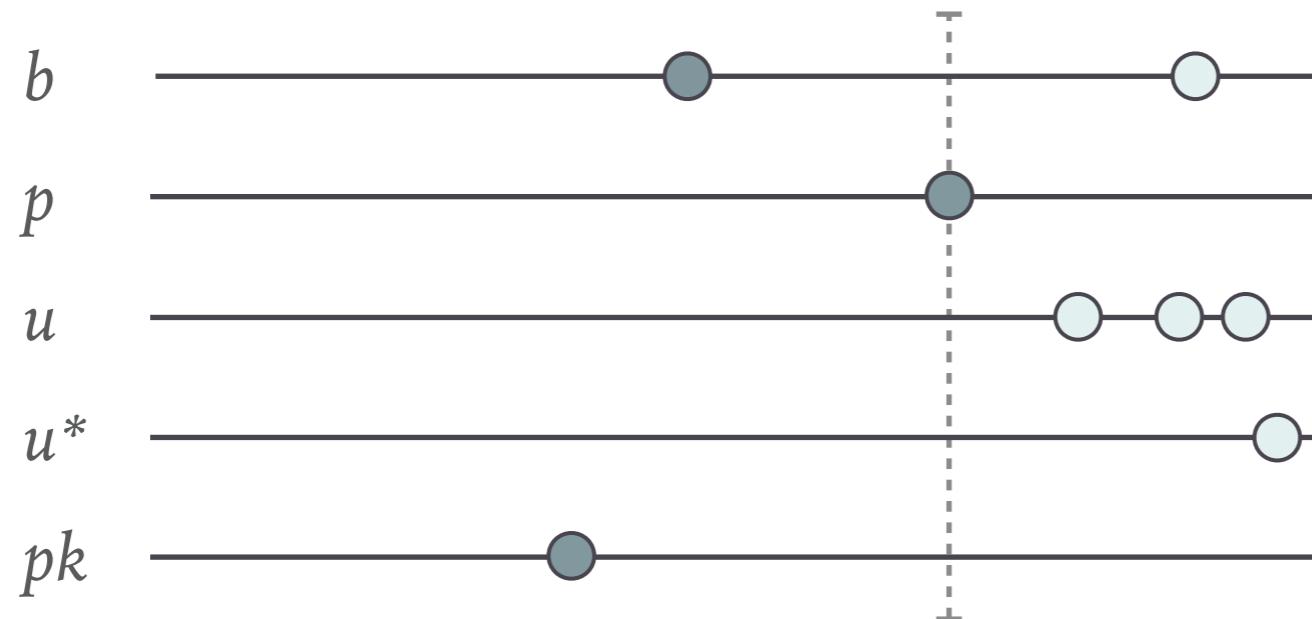
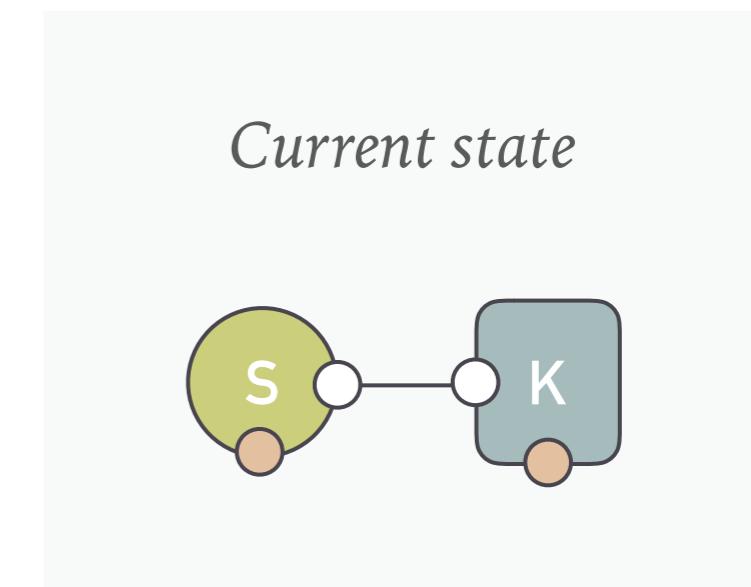
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

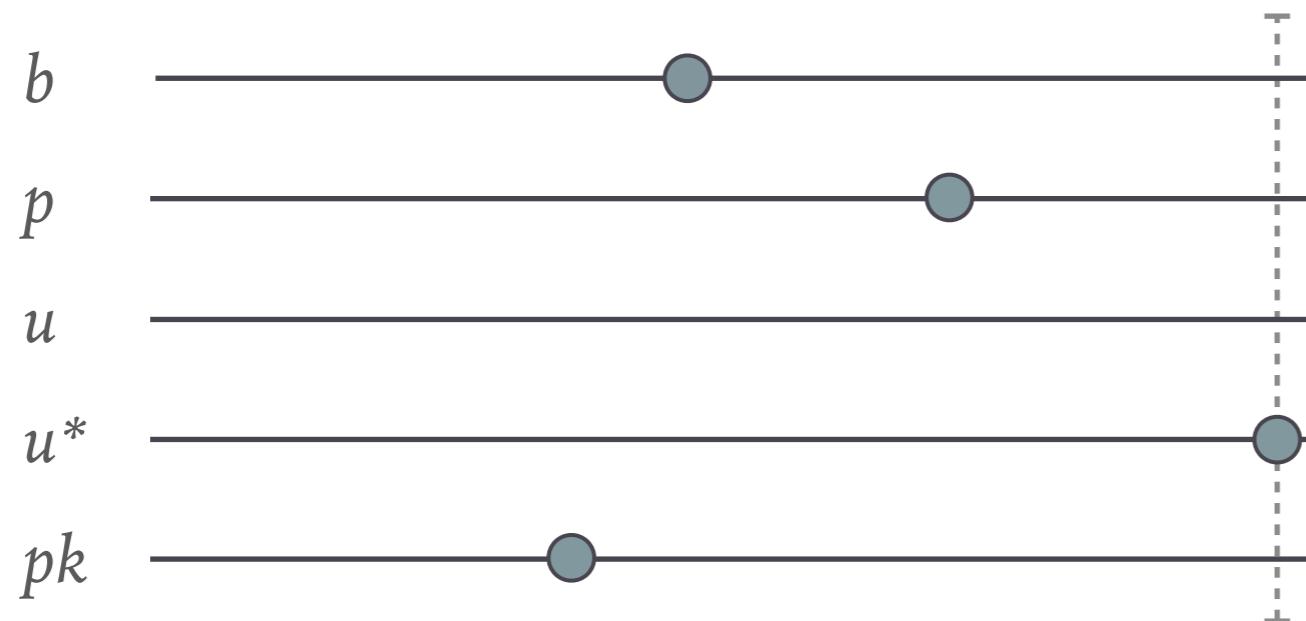
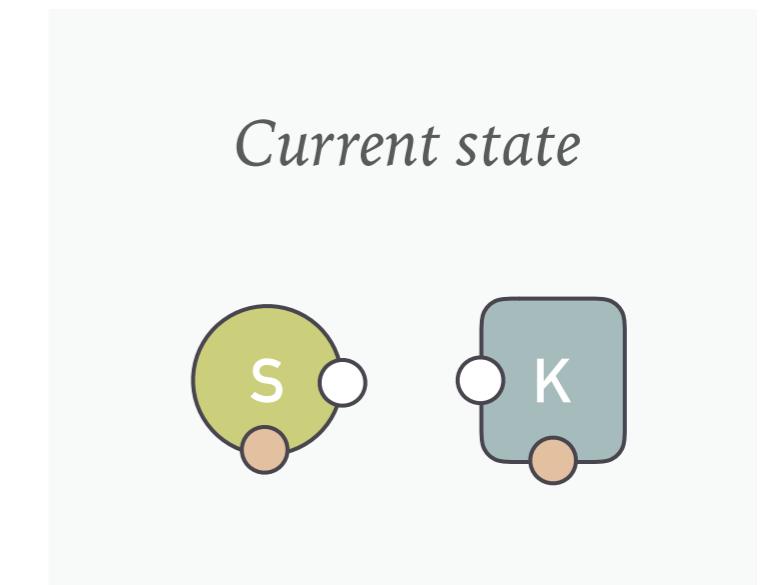
To every such potential event, we associate a **Poisson process**.



A MONTE CARLO SEMANTICS FOR KAPPA

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

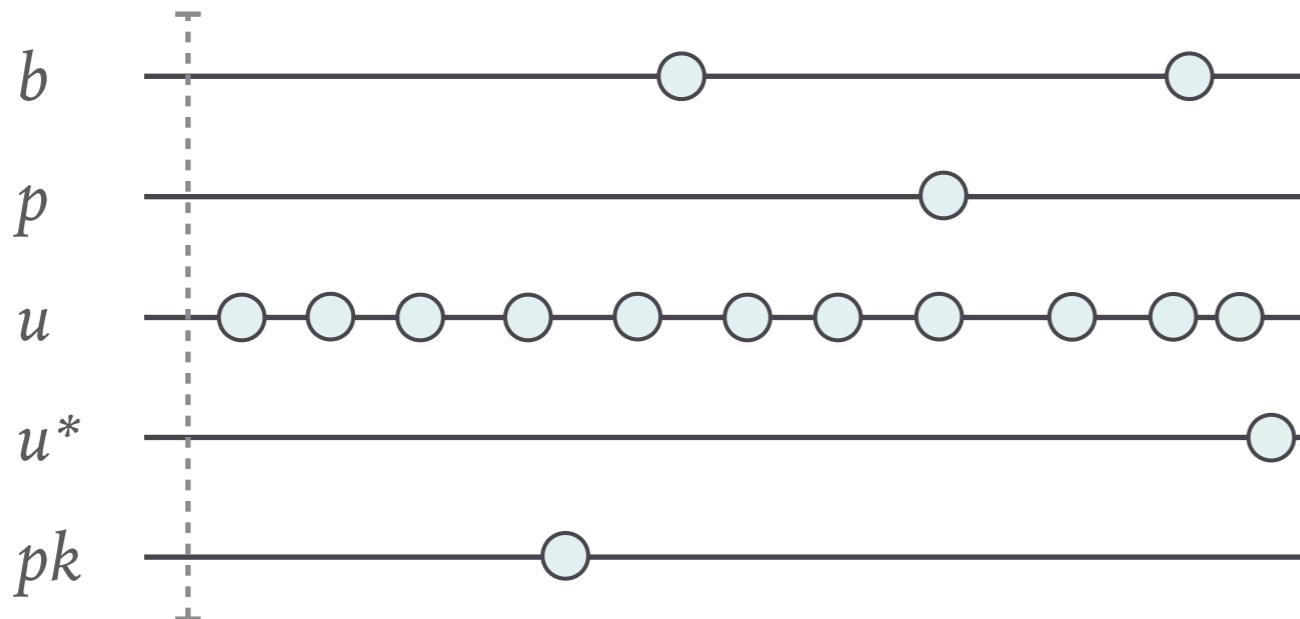
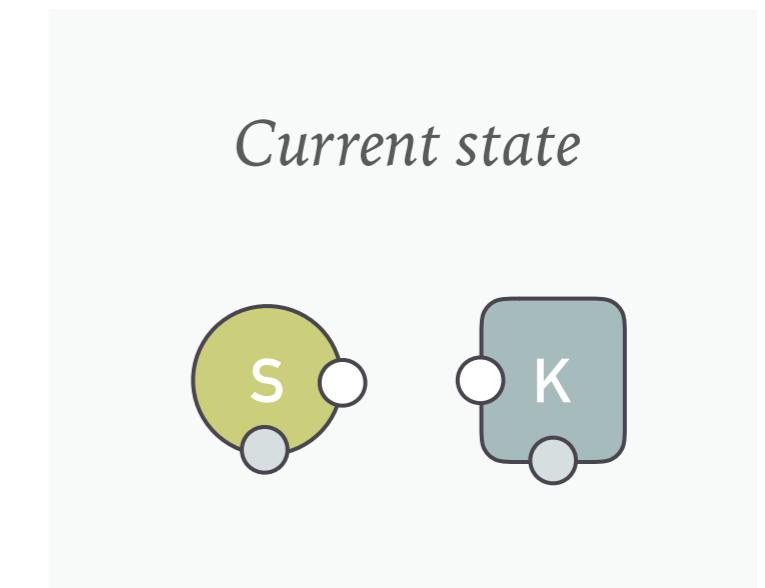
To every such potential event, we associate a **Poisson process**.



SIMULATING MODULO AN INTERVENTION

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.

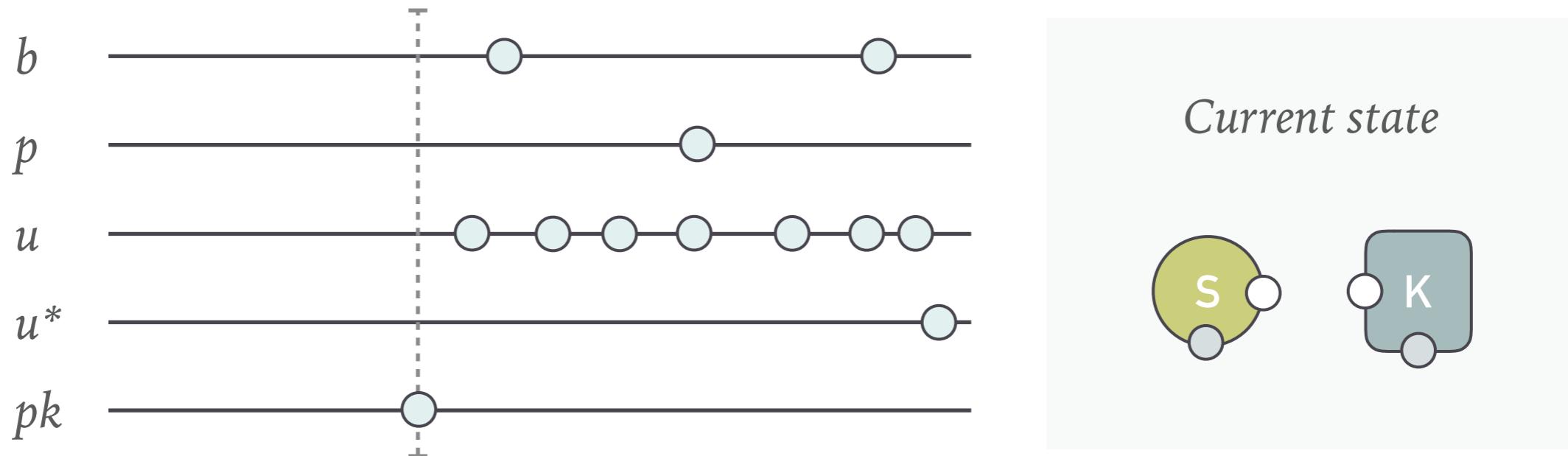


An **intervention** ι is defined as a predicate that specifies what events should be blocked. Let's simulate again, blocking the triggering of pk .

SIMULATING MODULO AN INTERVENTION

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.

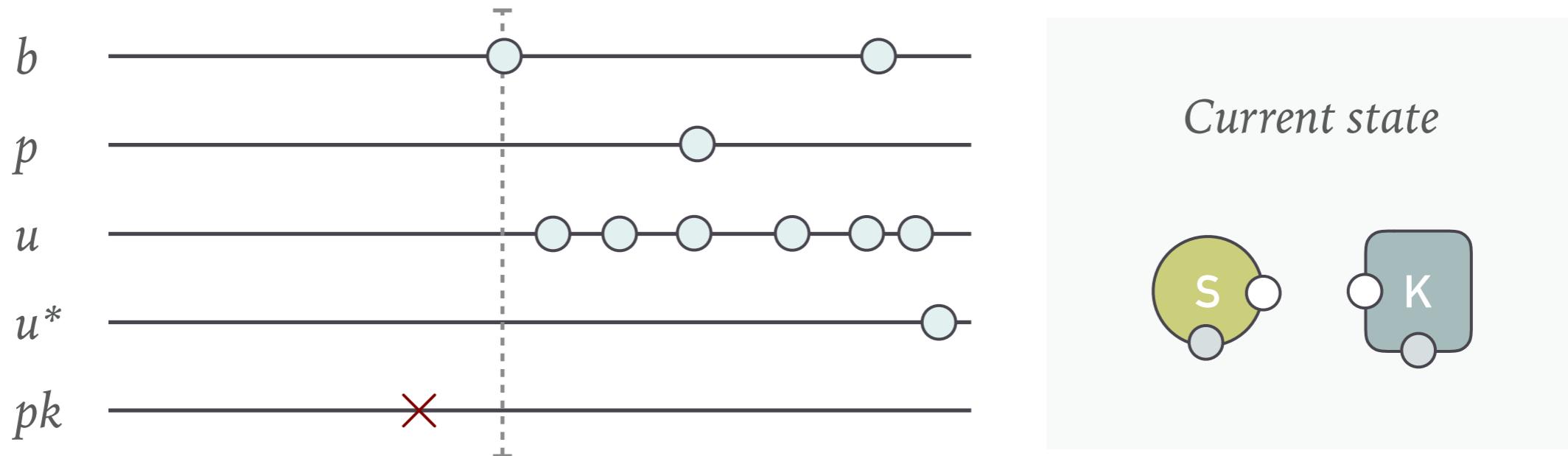


An **intervention** i is defined as a predicate that specifies what events should be blocked. Let's simulate again, blocking the triggering of pk .

SIMULATING MODULO AN INTERVENTION

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.

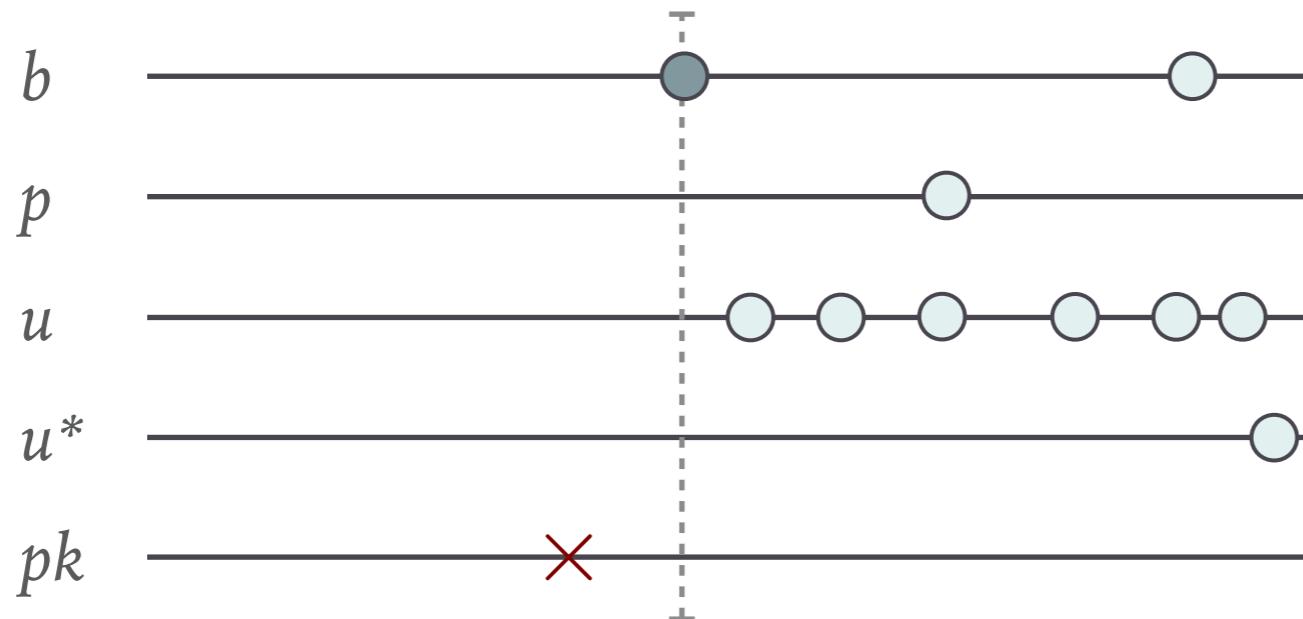
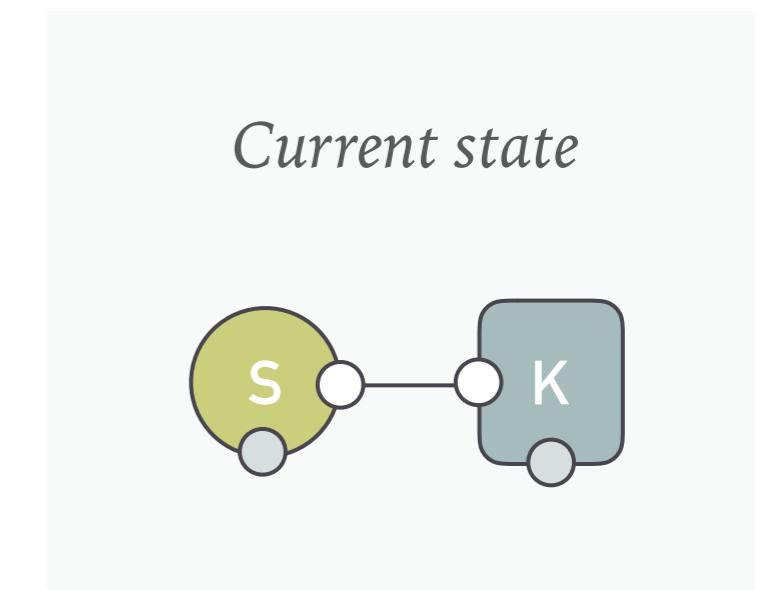


An **intervention** i is defined as a predicate that specifies what events should be blocked. Let's simulate again, blocking the triggering of pk .

SIMULATING MODULO AN INTERVENTION

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.

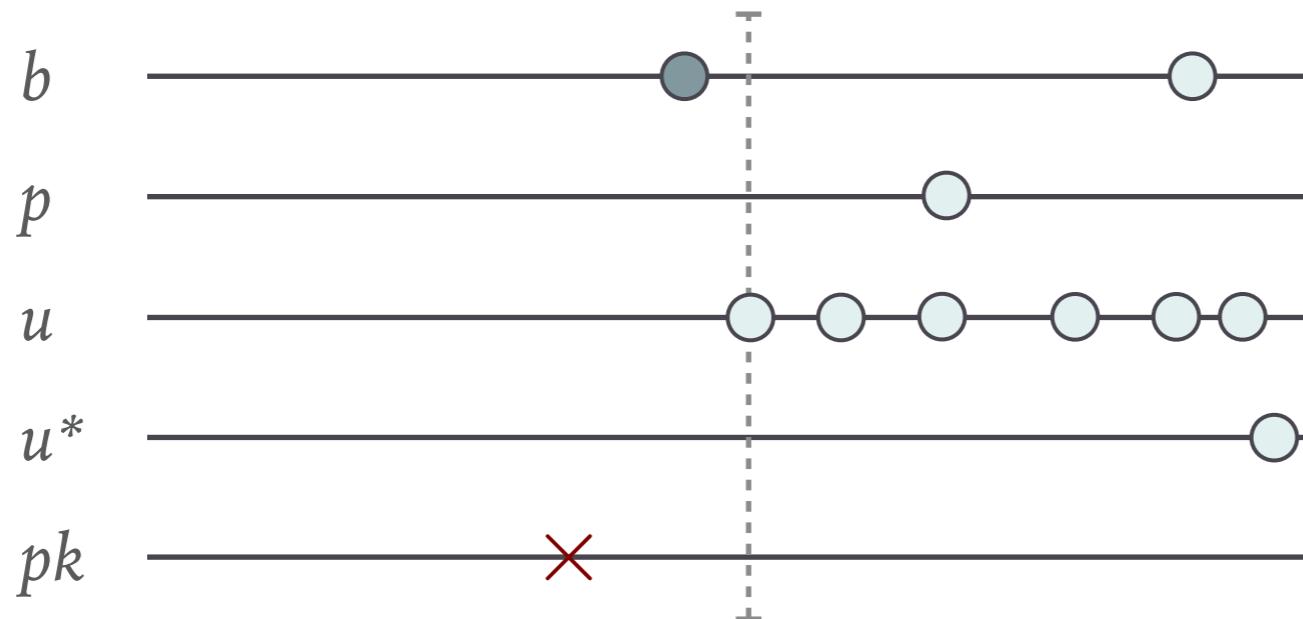
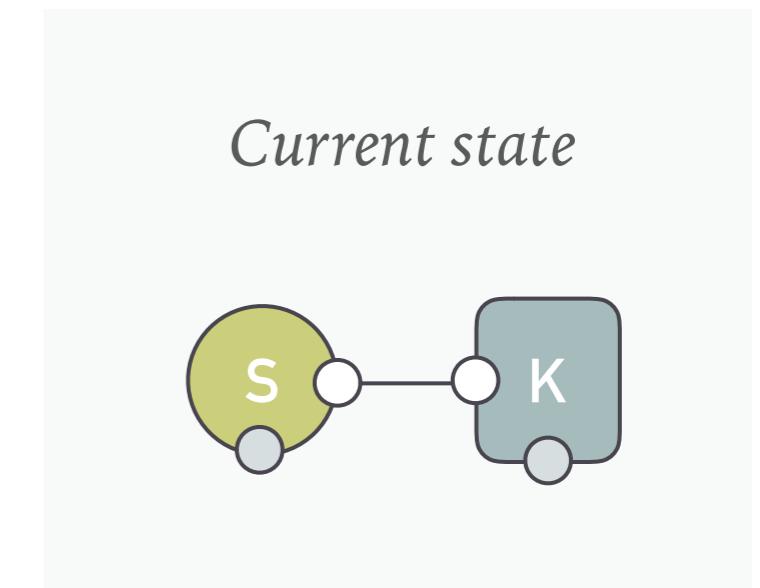


An **intervention** i is defined as a predicate that specifies what events should be blocked. Let's simulate again, blocking the triggering of pk .

SIMULATING MODULO AN INTERVENTION

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.

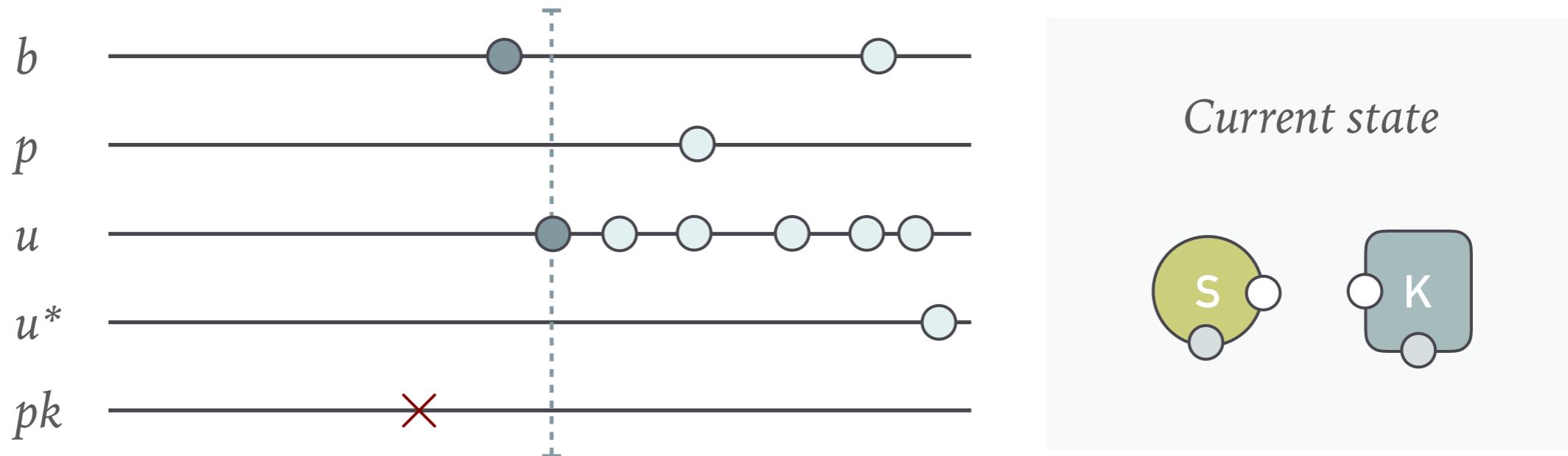


An **intervention** i is defined as a predicate that specifies what events should be blocked. Let's simulate again, blocking the triggering of pk .

SIMULATING MODULO AN INTERVENTION

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.

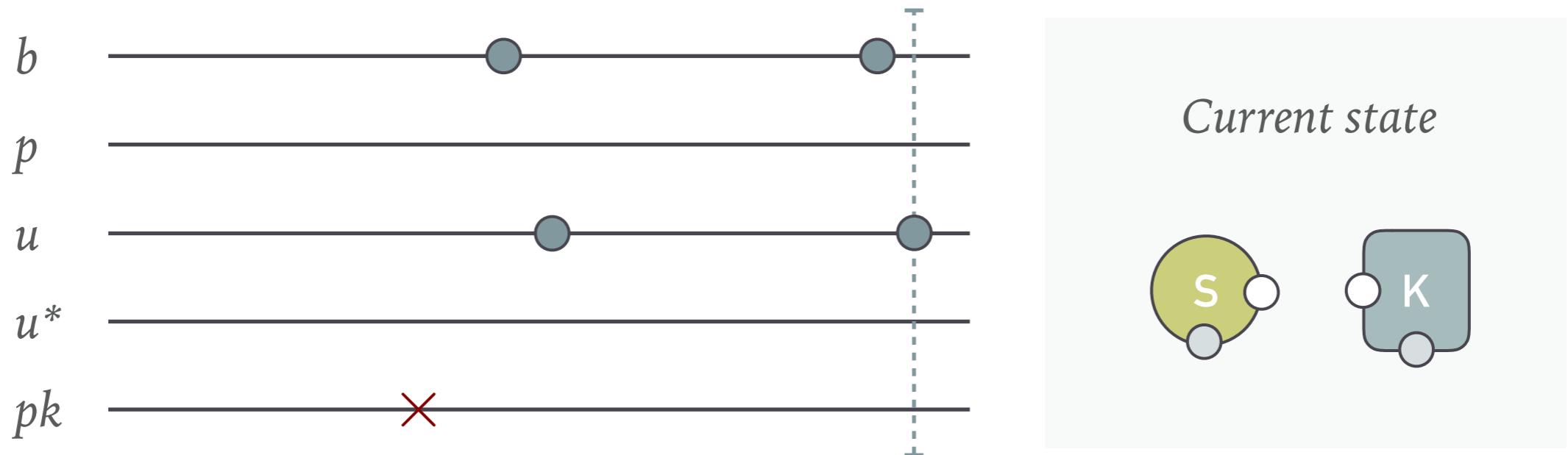


An **intervention** i is defined as a predicate that specifies what events should be blocked. Let's simulate again, blocking the triggering of pk .

SIMULATING MODULO AN INTERVENTION

A **potential event** is given by a rule r along with an injective mapping from the agents of r to global agents.

To every such potential event, we associate a **Poisson process**.



An **intervention** i is defined as a predicate that specifies what events should be blocked. Let's simulate again, blocking the triggering of pk .

COUNTERFACTUAL STATEMENTS

If we write:

T Random variable corresponding to a simulation trace
 \hat{T}_ι Simulation trace modulo intervention ι

The probability that a predicate Ψ would have been true on trace τ had intervention ι happened is defined as:

$$\mathbf{P} (\psi[\hat{T}_\iota] \mid T = \tau)$$

In order to estimate this quantity, we sample trajectories from $\hat{T}_\iota \mid \{T = \tau\}$ using a variation of the Gillespie algorithm: the counterfactual simulation algorithm — or **co-simulation algorithm**.

CO-SIMULATION ALGORITHM

Given a reference trace and an intervention ι , the **co-simulation** algorithm produces a random **counterfactual trace** that gives an account of what may have happened had ι occurred.

Ref.	CF
init	init
pk	\times
b	b
.	u
p	.

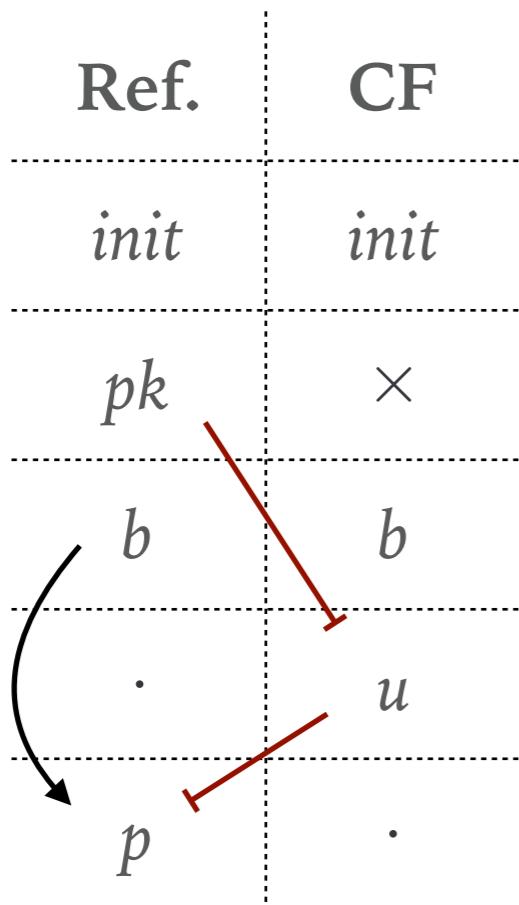
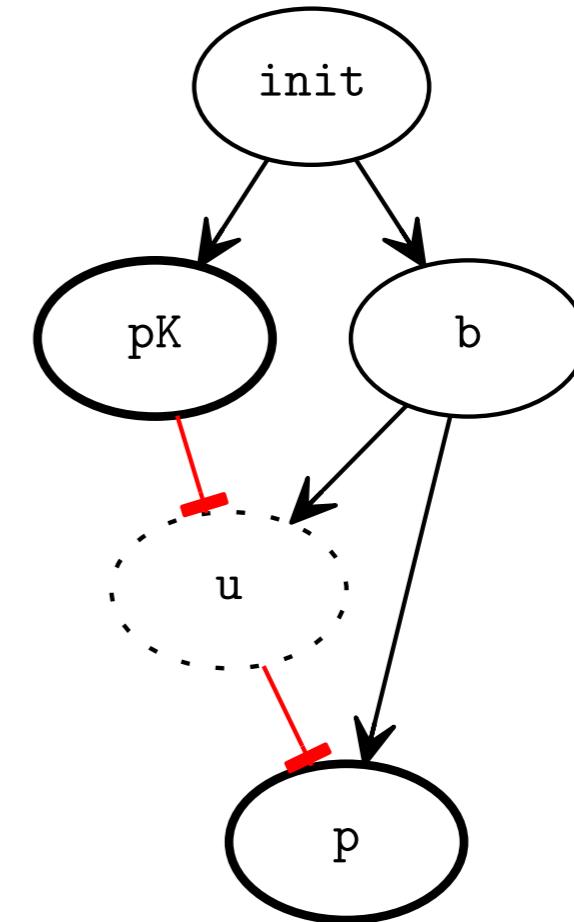
Example

On the left, we show a run of the co-simulation algorithm, the intervention consisting in blocking rule pk .

On performances: on average, co-simulating a trace is about 3 times slower than simulating it in the first place.

INHIBITION ARROWS

We can explain the differences between a reference trace and a corresponding counterfactual trace using **inhibition arrows**.



Theorem

Any event that is proper to the factual trace is connected by an event that is directly blocked by the intervention through a path containing an even number of inhibition arrows.

CONCLUSION AND PERSPECTIVES

The use of counterfactual reasoning enables us to produce **better causal explanations** by:

- being more sensitive to the **kinetic** aspects of a model
- providing a proper account of **inhibition** between molecular events

Current work

- What counterfactual experiments are worth trying ?
- How does counterfactual reasoning interact with trace slicing ?
[Mickaël Laurent's internship]

Other applications for counterfactual reasoning ?

Our intuition is that counterfactual simulation could provide an interesting **experimental tool**, especially when studying highly stochastic models.

Special thanks to

Pierre Boutilier

Matt Fredrikson

Jérôme Feret

Jean Krivine

Iona Critescu

Algorithm 1 Resimulation loop.

{ t is the current time, M the current state mixture
and M_0 the intermediate state of τ at time t }

```
 $\alpha' \leftarrow \sum_r \lambda_r \cdot |\Delta_r(M, M_0)|$ 
draw  $\delta \sim \text{EXP}(\alpha')$ 
 $t_c \leftarrow t + \delta$ 
 $t_f \leftarrow \text{time of the next event in } \tau$ 
 $t' \leftarrow \min\{t_c, t_f\}$ 
if  $t' = t_c$  then
    draw a rule  $r$  with prob.  $\propto \lambda_r \cdot |\Delta_r(M, M_0)|$ 
    draw a divergent embedding  $\varphi \in \Delta_r(M, M_0)$ 
     $e \leftarrow (r, \varphi)$ 
else
     $e \leftarrow \text{next event in } \tau$ 
end if
if  $\neg \text{blocked}_t(t, e) \wedge e \text{ triggerable in } M$  then
    update  $M$  by triggering event  $e$ 
end if
 $t \leftarrow t'$ 
```

MORE ON INHIBITION

Definition

An event e that happens at time t in the factual trace is said to **inhibit** an event e' that happens at time t' in the counterfactual trace if:

- $t < t'$
- there exists a site s such that e is the last event in the factual trace before time t that modifies s from the value it is tested to by e to a different value
- there are no events in the counterfactual trace modifying s in the time interval (t, t')