

Computing similarity between multiscale biological systems under uncertainty

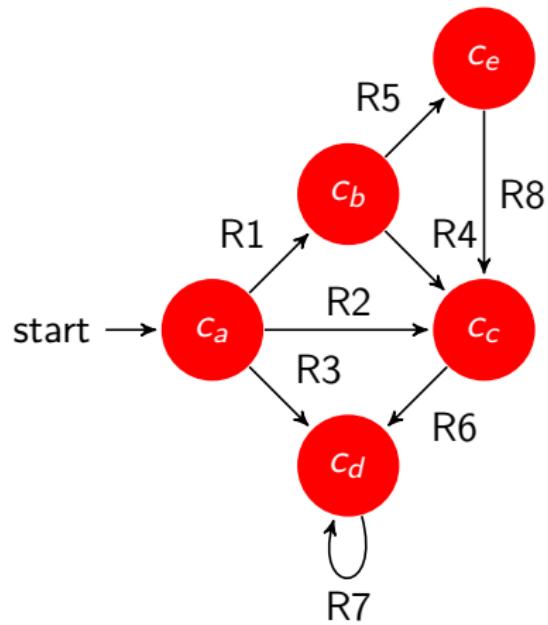
Kris Ghosh

Miami University, Ohio

The Eighth International Workshop on Static Analysis for Systems Biology

An Example: Model of chemical reactions

Reactions: R1,R2,R3,..R8.
Concentration of chemicals:
 c_a, c_b, \dots, c_e .



Finite State System
representing chemical reactions

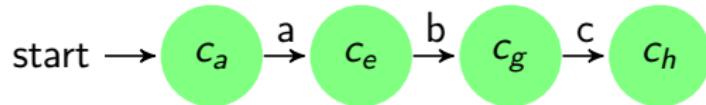
Motivation: Scales in models

Why **multiscale model**? Biological systems need an integration of different scales-cellular, molecular , atomic levels...

Motivation: Scales in models

Why **multiscale model**? Biological systems need an integration of different scales-cellular, molecular , atomic levels...

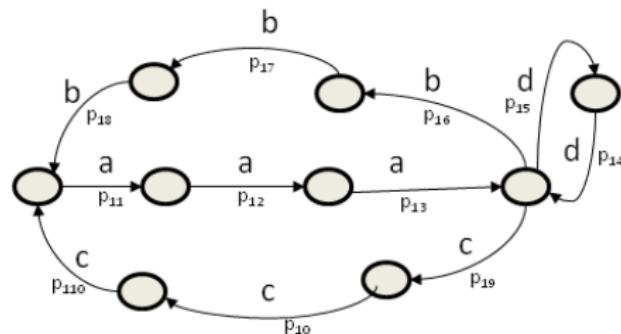
(A)



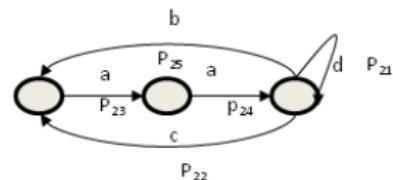
(B)

a,b and c are biological processes.

Multiscales to Discrete Time Markov Chains



(A)



(B)

Discrete Time Markov Chains representing identical partial ordering of pathways represented by edge labels a,b,c and d, respectively. p_{ij} represent the probabilities on the edges where $i, j \in \mathbb{N}$.

Challenges in Modeling in Biology

- Imprecise information
- Incomplete information

Challenges in Modeling in Biology

- Imprecise information
- Incomplete information

A potential solution could be to use: **nondeterminism** and using **probabilistic** models.

Challenges in Modeling in Biology

- Imprecise information
- Incomplete information

A potential solution could be to use: **nondeterminism** and using **probabilistic** models.

Computational challenge: Large state space of the models.

Outline

- 1 Related Work: theories and formalisms
- 2 Formalization
- 3 Current Work

Definition

(Kripke structure) Given a set of propositions, AP , a *Kripke structure*, $\mathcal{K} = \langle S, S_0, E, L \rangle$ consists of

- ① S is the set of states.
- ② $S_0 \subseteq S$ is the initial set of states.
- ③ $E \subseteq S \times S$ is the transition relation.
- ④ $L : S \rightarrow 2^{AP}$ where L is the labeling function that labels each state with a subset from the set, AP .

Stuttering Equivalence on Paths

Two infinite paths in Kripke structure \mathcal{K} , $\mu = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \dots$ and $\nu = r_0 \xrightarrow{\beta_0} r_1 \xrightarrow{\beta_1} \dots$ are stuttering equivalent (\equiv_s) if there are two infinite ordered sequences of positive integers, $i = 0 < i_0 < i_1 < \dots$ and $j = 0 < j_0 < j_1 < \dots$ such that $\forall k \geq 0$
 $L(s_{i_k}) = L(s_{i_k+1}) = \dots = L(s_{i_{k+1}-1}) = L(r_{j_k}) = L(r_{j_k+1}) = \dots = L(r_{j_{k+1}-1})$.
The indices i_k and j_k are the starting points of μ and ν , respectively.

Stuttering Equivalence

Two Kripke structures \mathcal{K} and \mathcal{K}' are stuttering equivalent iff

- ① The initial states of \mathcal{K} and \mathcal{K}' are the same.
- ② For all paths, μ from an initial state, $s_0 \in S_0$ of \mathcal{K} , there exists a path ν of \mathcal{K}' from the same initial state of s_0 such that $\mu \equiv_s \nu$.
- ③ For all paths, ν from an initial state of $s_0 \in S_0$ of \mathcal{K}' , there exists a path μ of \mathcal{K} from the same initial state of s such that $\nu \equiv_s \mu$.

Theories

- Interleaving asynchronous
Ref: Clarke et al, State space reduction using partial order techniques, 1999.
- Bounded Asynchrony
Ref: J. Fisher et al Bounded asynchrony: Concurrency for modeling cell-cell interactions, 2008.
- Computing bisimulation on structures
Ref: Paige et al Three partition refinement algorithms, 1987.
- Kullback Leibler Divergence in Systems Biology
Ref: Petrov Formal reductions of stochastic rule-based models of biochemical systems, 2013.
- Model Reduction in Systems Biology
Ref: Feret et al, Lumpability Abstractions of Rule-based Systems, 2012.

Labeled transition system (LTS)

Given a set of propositions, AP being the set of labels for states and EL , a set of labels for edges a *labeled state transition system* is defined as

$\mathcal{M} = \langle S_0, S, E, L_e, L \rangle$ where,

- ① $\langle S, S_0, E, L \rangle$ forms a Kripke structure.
- ② $L_e : E \mapsto EL$ is an edge-labeling function.

Labeled Probabilistic System (LPS)

a LPS is a tuple, $\mathcal{W} = \langle S, S_0, \iota_{init}, P, L_e, L, E \rangle$ where:

- $\langle S, S_0, \iota_{init}, P, L \rangle$ is DTMC.
- $L_e : S \times S \rightarrow E$ where, E is the set of edge labels.

Measures on Probability Distributions

- Kullback Leibler Divergence (KLD) of two distributions:

$$H(P||Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)}.$$

- Jensen-Shannon Divergence (JSD) is symmetric version of KLD:

$$JSD(P || Q) = \frac{1}{2}H(P || M) + \frac{1}{2}H(Q || M) \text{ where } M = \frac{1}{2}(P + Q).$$

KLD can only be computed on same state space.

Formalization of System

Read

For an infinite path, $\pi = e_0, e_1, e_2, e_3, \dots$ in a LPS \mathcal{W} , $(\alpha_0, \alpha_1, \alpha_2, \dots)$ is the sequence of reaction labels in π . The read of a path is the subsequence of *reaction* labels $\tilde{\pi} = \alpha_0, \alpha_{i_1}, \alpha_{i_2}, \dots$ where $0 \leq i_1 \leq i_2 \leq \dots$, α_{i_j} is in $\tilde{\pi}$ iff $\alpha_{i_j} \neq \alpha_{i_{j-1}}$ and $\alpha_0 \neq \alpha_{i_1}$.

A finite path segment $\sigma = e_0 \rightarrow e_1 \rightarrow e_2 \rightarrow e_3 \dots \rightarrow e_m \rightarrow \dots$, is identically labeled (*il*) if the reactions are identical. We explicitly allow $m = 0$; in that case we write $e_0 \rightsquigarrow e_0$

Compact Probability on Paths

$P_c(e, e')$ between two edges is computed by the following equations dependent on the label of the successive edge.

$$P_c(e, e') = \begin{cases} P(e, e') & \text{if } e \neq e' \\ P(e) \times P(e_1) \times \cdots \times P(e_k) & \text{if } e \rightarrow e_1 \rightarrow \dots \rightarrow e_k \rightarrow e' \end{cases}$$

The compact probability for an il path fragment is computed by the products of the probabilities.

Read equivalence on paths

Paths $\pi_1 \in \Pi(\mathcal{W}_1), \pi_2 \in \Pi(\mathcal{W}_2)$ are read equivalent iff their reads are identical and denoted by $\pi_1 \equiv_r \pi_2$.

Read equivalence on reactions

Given two LPSs, \mathcal{W}_1 and \mathcal{W}_2 , the relation read on edges (\equiv_r) is defined on reaction labels, $e_1 \in E_1$ and $e_2 \in E_2$. $e_1 \equiv_r e_2$ if and only if the following conditions hold:

- ① $L_{(e_1)} = L_e(e_2)$.
- ② For all paths, $\pi_{e_1} \in \Pi(e_1) \exists$ a path $\pi_{e_2} \in \Pi(e_2)$ such that $\pi_{e_1} \equiv_r \pi_{e_2}$.
- ③ For all paths, $\pi_{e_2} \in \Pi(e_2) \exists$ a path $\pi_{e_1} \in \Pi(e_1)$ such that $\pi_{e_1} \equiv_r \pi_{e_2}$.

Problem Statement

Given two LTSs, \mathcal{M}_1 and \mathcal{M}_2 , construct two LPSs, \mathcal{W}_1 and \mathcal{W}_2

- Are \mathcal{W}_1 and \mathcal{W}_2 read equivalent?
- If yes, compute the KLD between the two structures.

Important:

- Only takes account of information of the edges.
- Compares the partial ordering of the two LPSs based on the edge labels.

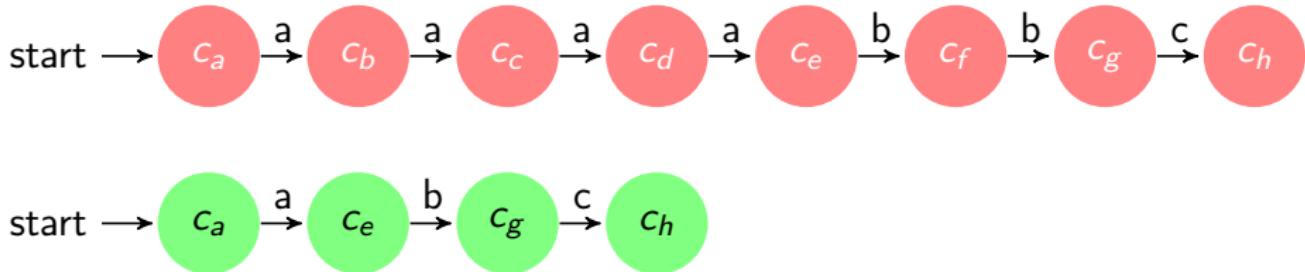
Ordered Pairs

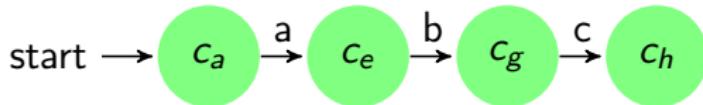
A relation, R_e defined on the edges of \mathcal{W}_1 and \mathcal{W}_2 is given by $(e_1, e_2) \in R_e, e_1 \in E_1$ and $e_2 \in E_2$ where, $L_e(e_1) = L_e(e_2)$.

Predecessor

The subset of ordered pairs, Predecessor $Pred^r(Y)$ is defined from the set of ordered pairs, $(e_1, e_2) \in R_e$ represented by the Y is:

$Pred^r(Y) = \{(e_1, e_2) \in Y \mid \forall e'_1, e_1 \rightarrow e'_1 \text{ implies } \exists \text{ an } il\text{-path fragment } e_2 \rightarrow \dots \rightarrow e_{m,2} \rightarrow e'_2, \forall i \leq m, (e_1, e_{i,2}) \in Y \wedge (e'_1, e'_2) \in Y, \text{ and } \forall e'_2, e_2 \rightarrow e'_2 \text{ implies } \exists \text{ an } il\text{-path-fragment } e_1 \rightarrow \dots \rightarrow e_{m,1} \rightarrow e'_1, \forall i \leq m, (e_{i,1}, e_2) \in Y \wedge (e'_1, e'_2) \in Y\}$.





Model Assumptions

- Comparing LPSs is to be compared on the same state space (edge labels) as required by KLD.
- There is no self loop on the states.

Computing: Greatest Fixed Point

Input: Set of Ordered Pairs, R_e

Output: Set of ordered pairs in the greatest fixed point, Y_∞ .

- ① $Y := R_e;$
- ② $Y' := 0;$
- ③ $H(\mathcal{W}_1 \parallel \mathcal{W}_2) = 0;$
- ④ while ($Y \neq Y'$)
 - ⑤ {
 - ⑥ $Y' := Y;$
 - ⑦ $Y := Y \cap \text{Pred}^r(Y);$
 - ⑧ $H(\mathcal{W}_1 \parallel \mathcal{W}_2) = H(\mathcal{W}_1 \parallel \mathcal{W}_2) + P_c(Fst(Y), Pre(Fst(Y))) \log\left(\frac{P_c(Fst(Y), Pre(Fst(Y)))}{P_c(Snd(Y), Pre(Snd(Y)))}\right)$
 - ⑨ }
- ⑩ $Y_\infty = Y'$

Termination of the algorithm

Lemma

The algorithm terminates after finite number of steps and computes fixed point, given by $Y = \text{Pred}^r(Y)$.

Proof sketch:

Finite number of ordered pairs of edges in R_e .

The algorithm computes the fixed point, i.e $Y = \text{Pred}^r(Y)$.

Complexity of the algorithm

The time complexity of the algorithm is $O(m^2)$ where $m = |R_e|$. In the worst case, the set of ordered pairs in $Pred^{st}(Y)$ is constructed by removing a pair (e_1, e_2) at a time. The while loop iterates m times over m computations in $Pred^r(Y)$.

Correctness

Lemma

If $e_1 \equiv_r^{i+1} e_2$ then $e_1 \equiv_r^i e_2$.

Lemma

If $(e_1, e_2) \in Y_{i+1}$ then $e_1 \equiv_r^{i+1} e_2$.

Lemma

If $e_1 \equiv_r^{i+1} e_2$ then $(e_1, e_2) \in Y_{i+1}$.

Quantification of Errors

Approximation leads to *errors*. What are the potential errors?

Quantification of Errors

Approximation leads to *errors*. What are the potential errors? Can we quantify it?

- A path segment has *il*-path and the other does not, *AP – Error*
- Both the paths have *il* path, *CP – Error*.

AP-Error and CP-Error

- ① AutoPath(AP)-Error: A trace has compact probability and the other trace does not. The error is given by

Use Compact Probability of il -path fragment and maximum probability, p_{max} of probabilities on the edges in the il path :

$$\text{ApError} = p_{max} \log \frac{p_{max}}{P_c(p_1, \dots, p_k)}$$

- ② CoPath(CP)-Error: Both the paths have il path fragments.

Sum the error probabilities on the edges in the il path :

$$\text{CpError} = \sum_i cError_i$$

$$\text{where } cError_i = p_{max}^i \log \frac{p_{max}^i}{P_c(p_1^i, \dots, p_k^i)} \text{ where } i = 1, 2.$$

Modeling

- A notion of similarity among probabilistic models is created.
- Ongoing work on the statistics based on the errors such that models can be generated.

- Thank You
- Thank You to Reviewers
- Thank You to Organizers