
Computing similarity between multiscale biological
systems under uncertainty

Kris Ghosh

Miami University, Ohio

The Eighth International Workshop on Static Analysis for Systems
Biology



An Example: Model of chemical reactions

Reactions: R1,R2,R3,..R8.
Concentration of chemicals:
ca, cb, . . . , ce .
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Finite State System
representing chemical reactions
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Motivation: Scales in models

Why multiscale model? Biological systems need an integration of different
scales-cellular, molecular , atomic levels...

castart cb cc cd ce cf cg ch
a a a a b b c

(A)

castart ce cg ch
a b c

(B)

a,b and c are biological processes.
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Multiscales to Discrete Time Markov Chains

Discrete Time Markov Chains representing identical partial ordering of
pathways represented by edge labels a,b,c and d, respectively.pij represent
the probabilities on the edges where i , j ∈ N.
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Challenges in Modeling in Biology

Imprecise information
Incomplete information

A potential solution could be to use: nondeterminism and using
probabilistic models.
Computational challenge: Large state space of the models.
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Preliminaries

Definition

(Kripke structure) Given a set of propositions, AP , a Kripke structure,
K = 〈S , S0,E , L〉 consists of

1 S is the set of states.
2 S0 ⊆ S is the initial set of states.
3 E ⊆ S × S is the transition relation.
4 L : S → 2AP where L is the labeling function that labels each state

with a subset from the set, AP .
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Stuttering Equivalence on Paths

Two infinite paths in Kripke structure K, µ = so
α0
� s1

α1
� s2 . . . and

ν = r0
β0
� r1

β1
� . . . are stuttering equivalent (≡s)ent if there are two

infinite ordered sequences of positive integers, i = 0 < i0 < i1 < . . . and
j = 0 < j0 < j1 < . . . such that ∀k ≥ 0
L(sik ) = L(sik+1) = . . . = L(sik+1−1) = L(rjk ) = L(rjk+1) = . . . = L(rjk+1−1).
The indices ik and jk are the starting points of µ and ν, respectively.

Stuttering Equivalence
Two Kripke structures K and K′ are stuttering equivalent iff

1 The initial states of K and K′ are the same.
2 For all paths, µ from an initial state, s0 ∈ S0 of K , there exists a path
ν of K′ from the same initial state of s0 such that µ ≡s ν.

3 For all paths, ν from an initial state of s0 ∈ S0 of K′ , there exists a
path µ of K from the same initial state of s such that ν ≡s µ.

Ref: Clarke, E.M., Grumberg and Peled, Model Checking.



Theories

Interleaving asynchronous
Ref: Clarke et al, State space reduction using partial order techniques,
1999.
Bounded Asnchrony
Ref: J. Fisher et al Bounded asynchrony: Concurrency for modeling
cell-cell interactions, 2008.
Computing bisimulation on structures
Ref: Paige et al Three partition refinement algorithms, 1987.
Kullback Leibler Divergence in Systems Biology
Ref: Petrov Formal reductions of stochastic rule-based models of
biochemical systems, 2013.
Model Reduction in Systems Biology
Ref: Feret et al, Lumpability Abstractions of Rule-based Systems,
2012.
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Labeled transition system (LTS)
Given a set of propositions, AP being the set of labels for states and EL, a
set of labels for edges a labeled state transition system is defined as
M = 〈S0, S ,E , Le , L〉 where,

1 〈S ,S0,E , L〉 forms a Kripke structure.
2 Le : E 7→ EL is an edge-labeling function.
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Labeled Probabilistic System (LPS)
a LPS is a tuple, W = 〈S ,S0, ιinit ,P, Le , L,E 〉 where:
〈S ,S0, ιinit ,P, L〉 is DTMC.
Le : S × S → E where, E is the set of edge labels.
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Measures on Probability Distributions

Kullback Leibler Divergence (KLD) of two distributions:
H(P||Q) =

∑
i
P(i)log P(i)

Q(i) .

Jensen-Shannon Divergence (JSD) is symmetric verson of KLD:
JSD(P || Q) = 1

2H(P || M) + 1
2H(Q || M) where M = 1

2(P + Q).

KLD can only be computed on same state space.
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Formalization of System

Read
For an infinite path, π = e0, e1, e2, e3, . . . in a LPS W, (α0, α1, α2, . . .) is
the sequence of reaction labels in π. The read of a path is the subsequence
of reaction labels π̃ = α0, αi1 , αi2 where 0 ≤ i1 ≤ i2 ≤ . . ., αij is in π̃ iff
αij 6= αij−1 and α0 6= αi1 .

A finite path segment σ = e0 � e1 � e2 � e3 . . .→ em � . . ., is
identically labeled (il) if the reactions are identical. We explicitly allow
m = 0; in that case we write e0  e0
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Compact Probability on Paths
Pc(e, e ′) between two edges is computed by the following equations
dependent on the label of the successive edge.

Pc(e, e ′) =

{
P(e, e ′) if,e 6= e ′

P(e)× P(e1)× · · ·P(ek)if e � e1 � . . . , ek � e ′

The compact probability for an il path fragment is computed by the
products of the probabilities.
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Read equivalence on paths
Paths π1 ∈ Π(W1), π2 ∈ Π(W2) are read equivalent iff their reads are
identical and denoted by π1 ≡r π2.

Read equivalence on reactions
Given two LPSs, W1 and W2, the relation read on edges (≡r ) is defined on
reaction labels, e1 ∈ E1 and e2 ∈ E2. e1 ≡r e2 if and only if the following
conditions hold:

1 L(e1) = Le(e2).
2 For all paths, πe1 ∈ Π(e1) ∃ a path πe2 ∈ Π(e2) such that πe1 ≡r πe2 .
3 For all paths, πe2 ∈ Π(e2) ∃ a path πe1 ∈ Π(e1) such that πe1 ≡r πe2 .
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Problem Statement

Given two LTSs,M1 andM2, construct two LPSs,W1 and W2

Are W1 and W2 read equivalent?
If yes, compute the KLD between the two structures.

Important:
Only takes account of information of the edges.
Compares the partial ordering of the two LPSs based on the edge
labels.
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Ordered Pairs
A relation, Re defined on the edges of W1 and W2 is given by
(e1, e2) ∈ Re , e1 ∈ E1 and e2 ∈ E2 where, Le(e1) = Le(e2).

Predecessor
The subset of ordered pairs, Predecessor Pred r (Y ) is defined from the set
of ordered pairs, (e1, e2) ∈ Re represented by the Y is:
Pred r (Y ) = {(e1, e2) ∈ Y | ∀e ′1, e1 �
e ′1implies ∃ an il-path fragment e2 � . . .� em,2 � e ′2,∀i ≤
m, (e1, ei ,2) ∈ Y ∧ (e ′1, e

′
2) ∈ Y , and ∀e ′2, e2 � e ′2 implies ∃ an

ilpath-fragment e1 � . . .� em,1 � e ′1, ∀i ≤ m, (ei ,1, e2) ∈ Y ∧ (e ′1, e
′
2) ∈

Y }.



castart cb cc cd ce cf cg ch
a a a a b b c

castart ce cg ch
a b c

c1start c2 c3 c4 c5 c6 c7 c8
a a a a b b c
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Model Assumptions

Comparing LPSs is to be compared on the same state space (edge
labels) as required by KLD.
There is no self loop on the states.
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Computing:Greatest Fixed Point

Input: Set of Ordered Pairs,Re

Output: Set of ordered pairs in the greatest fixed point,Y∞.
1 Y := Re ;

2 Y ′ := 0;

3 H(W1‖W2) = 0;

4 while (Y 6= Y ′)

5 {
6 Y ′ := Y ;

7 Y := Y ∩ Pred r (Y );

8 H(W1‖W2) = H(W1 ||
W2) + Pc(Fst(Y ),Pre(Fst(Y ))log( Pc (Fst(Y ),Pre(Fst(Y )))

Pc (Snd(Y ),Pre(Snd(Y )))

9 }
10 Y∞ = Y ′
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Termination of the algorithm

Lemma
The algorithm terminates after finite number of steps and computes fixed
point, given by Y = Pred r (Y ).

Proof sketch:
Finite number of ordered pairs of edges in Re .
The algorithm computes the fixed point, i.e Y = Pred r (Y ).
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Complexity of the algorithm

The time complexity of the algorithm is O(m2) where m =| Re |. In the
worst case, the set of ordered pairs in Pred st(Y ) is constructed by
removing a pair (e1, e2) at a time . The while loop iterates m times over m
computations in Pred r (Y ).
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Correctness

Lemma

If e1 ≡i+1
r e2 then e1 ≡i

r e2.

Lemma

If (e1, e2) ∈ Yi+1 then e1 ≡i+1
r e2.

Lemma

If e1 ≡i+1
r e2 then (e1, e2) ∈ Yi+1.
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Quantification of Errors

Approximation leads to errors. What are the potential errors?

Can we
quantify it?

A path segment has il-path and the other does not, AP − Error

Both the paths have il path, CP − Error .
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AP-Error and CP-Error

1 AutoPath(AP)-Error: A trace has compact probability and the other
trace does not. The error is given by
Use Compact Probability of il-path fragment and maximum
probability,pmax of probabilities on the edges in the il path :
ApError= pmax log

pmax

Pc (p1,...,pk )

2 CoPath(CP)-Error: Both the paths have il path fragments.
Sum the error probabilities on the edges in the il path :

CpError =
∑
i
cErrori

where cErrori = pimax log
pimax

Pc (pi1,...,p
i
k )

where i = 1, 2.
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Current Directions

Modeling
A notion of similarity among probabilitic models is created.
Ongoing work on the statistics based on the errors such that models
can be generated.
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Thank You to Reviewers
Thank You to Organizers
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