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The “unmet need” for mechanistic explanation of large-scale data

Joe Cornish, https://www.biostars.org/p/119918/

On “big data” hype in bioinformatics:

“The rate limiting factor has never been the computational power, and is more
infrequently a result of not having enough data, the problem has and still is that
no matter how much data is generated or how much cleaner/precise/etc the
data is, | still can't do a whole lot of anything with it because the ability to turn
these piles of data into information is feeble at best. Whether it be the latest
lllumina tech or the hottest MS approach, all you get is a list of p-values that
you dump into your pathway enrichment tool of choice, [generate] a few
heatmaps and clustering diagrams and call it a day.”



“Unmet need” for mechanistic explanation of large-scale data

“Bottom-up” “Top-down”

Detailed mechanistic studies Interpretation of large datasets
Heiser et al., 2011
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Approach: Machine assembly of detailed models at large scale.



Conceptual overview of the modeling process
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INDRA: Integrated Network and Dynamical Reasoning Assembler
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Sources and formats of mechanistic information: pathway databases

BioPAX: Pathway Commons (22 databases)

* Mechanistic information expressed as biochemical reactions

NCI Pathway Interaction Database
Reactome

BioGRID

PhosphoSitePlus "d‘i@‘i?{f

KEGG INSTI U}
nature

et al.

Biological Expression Language

« BEL Large Corpus
— BEL expresses causal relations
— ~80,000 assertions

— Both mechanistic and observational assertions
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Extracting mechanisms from natural language (1)

TRIPS system: general purpose, deep, semantic = *
reading with domain-specific ontologies I Ih mc

“ASPP2 can be phosphorylated at serine 827 by MAPK1.”

(SPEECHACT V32224 SA_TELL)

Allen et al. (2015)
/NCTYPE NENT

(OR DECL DECIMALPOINT)  (F V31826 (:* PHOSPHORYLATION PHOSPHORYLATE))
"AFFECTED ﬂc AT |(n\l1 ENSE \UMODALITY PASSIVE
/
(BARE V31801 (:* PROTEIN ASPP-2)) AGENT (:1\8(])?:1 PRES  (:*ABILITY CAN)  \:NEGATION

/ DRUM \\f

[ . — (THE V31858
(:DRUM :ID Q13625)) (BARE V31896 (:* GENE MAPK-1)) (:* MOLECULAR.SITE SERINE-827)

‘ME-()F \DRUM lNAME-OF

((:DRUM :ID 16871l (SERINE 827)

Lol :NAME 'mitogen-activated protein kinase 1'...




Extracting mechanisms from natural language (2)

REACH system: domain-specific set of patterns used to EAS
identify mechanisms in text

name: Positive ${ ruleType }_syntax_8 verb
priority: ${ priority }
example: "We found that prolonged expression of active Ras resulted in up-regulation of the MKP3 gene"
label: ${ label }
action: ${ actionFlow }
pattern: |
trigger = [lemma=result] in [word=/(?1i)~(${ triggers })/]
controlled:${ controlledType }
controller:${ controllerType }

prep_of nn?

nsubj /appos|nn|prep_of|amod|conj_|cc/{,2}




INDRA represents detailed biochemical entities and their interactions

Modification RemoveModification
Statement  —
<t % | i ] i
evidence : Evidence substrate : Agent Acetylation Deacetylation
residue : string <t+— AddModification <t
* position : string
T _ — Farnesylation — Defarnesylation
- Conversion
Evidence subj : Agent
obj_from : list{Agent] | 5 i
text : string obj_to : istjAgent] Geranylgeranylation Degeranylgeranylation
source_api : string
source_id : string
pmid : string Glycosylation Deglycosylation
annotations : dict Complex 4 y ald i
Spistemicodich members : list{Agent]
|1 Hydroxylation || Dehydroxylation
Agent RegulateActivity | 4| Activation
name  sting SHERe AT I Methylation || Demethylation
oM - object : Agent e
mutations - Is{utCondlior] obj_activity:sting | <1 Inhibition -
bound_conditions : list [BoundCondition] — Myristoylation Demyristoylation
location : string
activity : ActivityCondition R
‘ egulateAmount <t+— IncreaseAmount . . . .
db_refs : dict 9 Palmitoylation Depalmitoylation
? ? ? subject : Agent
object : Agent
~— DecreaseAmount —— Phosphorylation | Dephosphorylation
ModCondition
mod_type : string SelfModification |<+— Transphosphorylation || Ribosylation Deribosylation
residue : string
Positic:’r_lf_: sc:riné; | [ | enzyme : Agent
is_modified : boolean residue : string A - -
position : string <}— Autophosphorylation |__| Sumoylation || Desumoylation
MutCondition
. ) ActiveForm R Lo
from_residue : string Ubiquitination Deubiquitination
to_r_e_sidue :§tring —1 agent : Agent
pOSHIONEISting activity_type : string
a: is_active : boolean
BoundCondition
agent : Agent Gef
is_bound : string
— — gf;;:f?;’gem 1 Agent and components
ActivityCondition gef?actilvity : string [ Statements
activity_type : string Other
is_active : boolean Gap —>"is a" (inheritance)
gap : Agent —® composition (has one or more, life-cycle dependence)
gtpase : Agent
gap_activity : string




From knowledge to model-based explanations: Assembly
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Knowledge assembly is like genome assembly

MEK phosphorylates ERK

MEK phosphorylates ERK Methyl Ethyl Ketone phosphorylates ERK
MEK phosphorylates ERK MEK1 phosphorylates ERK2 at T185 “Raw” mechanisms
ERK phosphorylates MEK MEK1p218p222 phosphorylates ERK2 at T184

=

MEK1p218p222 phosphorylates ERK2 at T185. Assem bled meChan ismS




INDRA assembly resolves hierarchical redundancies

Phosphorylation(BRAF, MAP2K1, S, 218) Phosphorylation(BRAF, MAP2K1, S, 222)

Phosphorylation(BRAF, MAP2K1, S)

NIN V

Phosphorylation(BRAF, MAP2K1, 218) Phosphorylation(BRAF, MAP2K1, 222)

Phosphorylation(BRAF, MAP2K1)

Phosphorylation(RAF, MEK)

Combine entity, modification, location and activity hierarchies



INDRA uses belief propagation to determine probability of correctness

Estimate reliability of Statements
probabilistically by: Overlap between readers
REACH
» Calculating joint probability of an TRIPS
incorrect statement given repeated

extractions from different sentences

305

« Combining results from different

readers o
55

* Propagating error estimates p

through the network of related
statements

91
NACTEM / ISI

0.75 MEK1 phosphorylates ERK2 at T185 MEK2 phosphorylates ERK1 at T202  0.92

e

0.89  MEK phosphorylates ERK2 at Ti_g?__-——-“"""'l\-/ié-}-(_gr-]osphorylates ERK1at T202 0.96

0.97 MEK phosphorylates ERK2 /
MEK phosphorylates ERK

0.99

—_Belief cutoff at 0.95

1.00 ERK s phosphorylated



From knowledge to model-based explanations: Assembly
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Application: “Natural language modeling”

Word Model

EGFR binds the growth factor ligand EGF.

The EGFR-EGF complex binds another EGFR-EGF complex.

The EGFR-EGFR complex binds GRB2.

EGFR-bound GRB2 binds SOS1 that is not phosphorylated.
GRB2-bound SOS1 that is not phosphorylated binds NRAS that is
not bound to BRAF.

SOS1-bound NRAS binds GTP.

GTP-bound NRAS that is not bound to SOS1 binds BRAF.
NRAS-bound BRAF binds NRAS-bound BRAF.

Vemurafenib binds BRAF that is not bound to BRAF.
Vemurafenib binds BRAF-bound BRAF.

BRAF V600E that is not bound to Vemurafenib phosphorylates
MAP2K1.

PP2A-alpha dephosphorylates MAP2K1 that is not bound to
ERK2.

Phosphorylated MAP2K1 is activated.

Active MAP2K1 that is not bound to PP2A-alpha phosphorylates
ERK2.

Phosphorylated ERK2 is activated.

DUSP6 dephosphorylates ERK2 that is not bound to SOS1.
Active ERK2 that is not bound to DUSP6 phosphorylates SOS1
that is not bound to NRAS.

A phosphatase dephosphorylates SOS1.

(Luca Gerosa)



Application: “Natural language modeling”

Word Model

EGFR binds the growth factor ligand EGF.

The EGFR-EGF complex binds another EGFR-EGF complex.
The EGFR-EGFR complex binds GRB2.

EGFR-bound GRB2 binds SOS1 that is not phosphorylated.
GRB2-bound SOS1 that is not phosphorylated binds NRAS that is
not bound to BRAF.

SOS1-bound NRAS binds GTP.

GTP-bound NRAS that is not bound to SOS1 binds BRAF.
NRAS-bound BRAF binds NRAS-bound BRAF.

Vemurafenib binds BRAF that is not bound to BRAF.
Vemurafenib binds BRAF-bound BRAF.

BRAF V600E that is not bound to Vemurafenib phosphorylates
MAP2K1.

PP2A-alpha dephosphorylates MAP2K1 that is not bound to
ERK2.

Phosphorylated MAP2K1 is activated.

Active MAP2K1 that is not bound to PP2A-alpha phosphorylates
ERK2.

Phosphorylated ERK2 is activated.

DUSP6 dephosphorylates ERK2 that is not bound to SOS1.
Active ERK2 that is not bound to DUSP6 phosphorylates SOS1
that is not bound to NRAS.

A phosphatase dephosphorylates SOS1.

Preprint:

Vemurafenib

ﬁ

37 rules,
451 ODEs

Amount

RAS

increase
ERK
rebound

L _—

Time

mm—— Active RAS
mmmmm Phospho-ERK

“From word models to executable models of signaling networks using automated assembly”
http://www.biorxiv.org/content/early/2017/03/24/119834




Application: @ TheRasMachine, a self-updating network model of Ras

Tweets Tweets & replies

< The RAS Machine @therasmachine - 14h

-~ Today | read 9 papers and 17 abstracts,
and learned 46 new mechanisms!

= e

CHEK2

RAF1

fﬁ Edges Nodes Provenance
4
e Subject v | Predicate v | Object v | Citations v | INDRA statement ~
PAK1
PAK1 x

PAK1 ActivityActivity RAF1 3 ActivityActivity(PAK1(), activity, increas...
PAK1 Complex RAF1 1 Complex(PAK1(), RAF1()
PAK1 Phosphorylation RAF1 1 Phosphorylation(PAK1(), RAF1(), S, 338)
PAK1 Phosphorylation RAF1 Phosphorylation(PAK1(), RAF1(), S, 339)

http://ndexbio.org/#/network/50e3dff7-133e-11e6-a039-06603eb 7303




From knowledge to model-based explanations: Explanation

,CDK6
Vﬁ

O/

Pathway
databases

Expert input

Literature

Executable models (PK/PD)

Contextual
data

=

- /
6 Dephosphorylation

o

Mechanistic networks

Explanation,
Prediction



Model representations for statically identifying causal paths

EGFR_GRB2_bind

(0505111 /[0-503(1->1]"

SOS1_GRB2_EGFR_bind

/ \
(105051511 10-501;(1->1]

|
SOS1_GRB2_dissociate |  [0->0]

0->0]
y
| SOS1_GRB2_activity_activates KRAS_gtpbound |

1>

- Activation j>0

',7 = Inhibition |Km mou..d_w;vm_nm_mse|

O s
Directed protein Logical network Kappa rule Chemical reaction
interaction graph influence map network

Mechanistic detail/causal context

More false positive paths More false negative paths
(less stringent context) (more stringent context)



Causal analysis of the influence map of a rule-based model (Kappa)

Explain: “Pervanadate increases MAPK1 phosphorylation.”

Pvd_binds_DUSP

[0->0];[1->1] [0->0];[1->1]

Pvd_binds_DUSP_rev

[0->1] |[1->0]

[0->1] [1->0]

DUSP_binds_ MAPK1_phosT185 [0->1]

P
[0->0] [0->0];[1->1]

DUSP_dephos_ MAPK1 at_T185

K>O] w] [0->0];[1->1]

[0->0];[1->1] |[0->0];[1->1]

MAPKI pT185 DUSP_binds_MAPK1_phosT185_rev

Pros: Meaningful
explanations; fewer false
positives; link to simulation

Cons: False positives
possible depending on
model—influence is not
necessarily transitive

loana Cristescu, Pierre Boutillier, Jerome Feret, Walter Fontana et al.



The problem of “transitive triangles” in the influence map

Model:

Kinase phosphorylates Substrate
Phosphatase dephosphorylates Substrate

Kin_phosphorylation_Substrate_phospho

[1->1]/[1->1]

Phos_dephosphorylation_Substrate_phospho | [1->0]

Substrate_phospho_p_obs




The problem of “transitive triangles” in the influence map

Model:

Kinase phosphorylates Substrate
Phosphatase dephosphorylates Substrate

Kin_phosphorylation_Substrate_phospho

[1->1]/[1->1]

Phos_dephosphorylation_Substrate_phospho | [1->0]

\11\.>0]
Substrate_phospho_p_obs

Kinase decreases phospho-Substrate (!)




The problem of “transitive triangles” in the influence map

Model:

Kinase phosphorylates Substrate
Phosphatase dephosphorylates Substrate

Kin_phosphorylation_Substrate_phospho

[1->1]/[1->1]

Phos_dephosphorylation_Substrate_phospho | [1->0]

\11\.>0]
Substrate_phospho_p_obs

Phosphatase increases phospho-Substrate (!)




After pruning out links in “transitive triangles”

Model:

Kinase phosphorylates Substrate
Phosphatase dephosphorylates Substrate

Kin_phosphorylation_Substrate_phospho Phos_dephosphorylation_Substrate_phospho

[1->0] [1->0]

Substrate_phospho_p_obs

Systematically removing links between rules that share
downstream targets eliminates these paths.



Drug combinations

Use

case for explanation: interpreting phosphoproteomic data

. P

reviously published phosphoproteomic dataset (Korkut et al.

« Melanoma cell line treated with different drug combinations
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What we did: Model construction

 Reading

Read ~95,000 papers covering relevant genes with three NLP
systems

Retrieved mechanisms from Pathway Commons and the BEL
Large Corpus

« Assembly

Fixed grounding and sequence errors
Expanded statements involving protein families and complexes
|dentified duplicates and refinements

|dentified activations/inhibitions superseded by detailed
mechanisms (Mechanism Linker)

Filtered out low-probability statements

Filtered out statements with no causal relevance to the observables
of interest

Assembled a rule-based model (221 proteins, 1451 rules)



Paths obtained for largest effects (>50%)

Explanations obtained for 20 out of the 22 strongest drug effects (91%)

Targat Antibody [l TS
MEK MAPK pT202 0.47
SRC CHK2 pT68 1.75
SRC 4EBP1 pT37 0.44
AKT AKT pT308 0.25
AKT GSK3A/B pS21 0.44
AKT AKT pS473 0.17
AKT S6 pS235 0.36
CDK4 4EBP1 pS65 0.44
CDK4 YBI pS102 213

MTOR AKT pT308 2.19

MTOR S6 pS240 0.05

MTOR AKT pS473 3.19

MTOR  p70S6K pT389 0.33

MTOR S6 pS235 0.06
PKC GSK3A/B pS21 1.59
PKC S6 pS240 0.47
PKC S6 pS235 0.3
PI3K p70S6K pT389 0.5
PI3K S6 pS240 0.44
PI3K AKT pS473 0.2

PI3K S6 pS235




An example explanation

Example explanation: How does
Src inhibition increase CHK2 pT687

SRC phosphorylated on Y418
phosphorylates PAK2 on S20. PAK2
phosphorylated on S20
phosphorylates RAF1 on S338. RAF1
phosphorylated on S338, T269 and
S471 phosphorylates MAPK1 on T185.
MAPK1 phosphorylated on T185 and
Y187 phosphorylates TP53 on S15.
TP53 phosphorylated on S20 and S15
decreases the amount of PLK1. PLK1
phosphorylates CHEK2 on T68, which
is measured by CHK2 pT68.




Every step in the path is auditable

Evidence for “TP53 decreases PLK1”

Pathway Commons URI:
http://pathwaycommons.org/pc2/Control_6cd5f2d5cd2d3a5e33e33154560eb3e6

Text extracted by REACH:

PMID
21726628

24407240

26595675

22405092

24152729
24076372

20962589

Text

In addition, activation of p53 has been shown to suppress the transcription of Plk1 directly or via the p21
dependent mechanism.

Our finding that p21 mediates the DNA damage induced p53 dependent suppression of PLK1 does not
exclude the possibility of direct suppression of PLK1 transcription by p53.

We have previously shown in H1299 cells stably transfected with a temperature sensitive p53 mutant
(tsp53) that the induction of functional p53 decreases PLK1 protein levels in a p21 dependent manner.
Recent evidence from a knockout mouse model suggests that p21 is required for p53 dependent
repression of Plkl expression

Mechanistically, this is mediated by p53 which represses PLK1 expression through chromatin remodelling.
PLK1 is down-regulated by p53 as part of the G2/M cell cycle checkpoint

Restoring p53 by depletion of E6 also reduced the level of active Plk1 on chromatin (T210P level
Together, these data indicate that p53 negatively regulates PLK1 expression, while E2F1 positively
regulates PLK1 expression.

Consistently, over-expression of p53 and p21 down-regulates PLK1 gene transcription in anaplastic
thyroid carcinoma cells.

Downregulation of PLK1 expression by p53 is relieved by the histone deacetylase inhibitor, trichostatin A,
and involves recruitment of histone deacetylase to the vicinity of p53RE2, further supporting a
transcriptional repression mechanism.

Additionally, wild type, but not mutant, p53 represses expression of the PLK1 promoter when fused
upstream of a reporter gene.



Evaluation including smaller effects (> 20%)

Overall performance: 95/135 paths found (70%)
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Drug Target

Few explanations for effects of CDK4, MDMZ2, and STAT inhibition



Using the experimental data to rank causal paths

Model: Observation: Stimulation of A increases phospho-D

e Data:

Phospho- Log(Fold-change)

protein
®) (C :
C
Q D 1

Influence map:

A_phosphorylation_B_phospho A_phosphorylation_C_phospho
[1->0] [1->0] [1->0] [1->0]
B_phospho_phosphorylation_D_phospho C_phospho_phosphorylation_D_phospho
[1->0] [1->0]

D_phospho_p_obs



If B and C are unmeasured, both paths are equally likely

Model: Observation: Stimulation of A increases phospho-D

e Data:

Phospho- Log(Fold-change)

protein
e G B (unmeasured)
C (unmeasured)
Q D 1

Influence map:

A_phosphorylation_B_phospho A_phosphorylation_C_phospho
[1->0] [1->0] [1->0] [1->0]
B_phospho_phosphorylation_D_phospho C_phospho_phosphorylation_D_phospho
[1->0] [1->0]

D_phospho_p_obs



If B and C are both unchanged, both paths are equally likely

Model: Observation: Stimulation of A increases phospho-D

e Data:

Phospho- Log(Fold-change)

protein
®) (C 5 o
C 0
Q D 1

Influence map:

A_phosphorylation_B_phospho A_phosphorylation_C_phospho
[1->0] [1->0] [1->0] [1->0]
B_phospho_phosphorylation_D_phospho @ C_phospho_phosphorylation_D_phospho
[1->0] [1->0]

D_phospho_p_obs



B increases but C goes down or is unchanged: A-B-D is more likely

Model: Observation: Stimulation of A increases phospho-D

e Data:

Phospho- Log(Fold-change)

protein
®) (S 5
C -1
Q D 1

Influence map:

A_phosphorylation_B_phospho A_phosphorylation_C_phospho
[1->0] [1->0] [1->0] [1->0]
B_phospho_phosphorylation_D_phospho C_phospho_phosphorylation_D_phospho
[1->0] [1->0]

D_phospho_p_obs



Probability model to rank likelihood of different paths

P(decrease|D) = 0.50 P(increase|D) = 0.50

Probability

_9 1
Log(Fold-Change)



Probability model to rank likelihood of different paths

P(decrease|D) = 0.23 P(increase|D) = 0.77

Probability

_9 1
Log(Fold-Change)



Probability model to rank likelihood of different paths

P(decrease|D) = 0.00 P(increase|D) = 1.00

Probability

—2 —1 0
Log(Fold-Change)



Probability model to rank likelihood of different paths

P(decrease|D) = 1.00 P(increase|D) = 0.00

Probability

2 —1 0 1
Log(Fold-Change)



7z>< INDRA

Integrated Network and Dynamical
Reasoning Assembler

= MODEL OPTIONS

)

(+] (%) 4

Does this path
make sense?

Petar Todorov



Summary

* INDRA is a system that builds many types of mechanistic models and
networks, from many sources including the literature

« Assembly involves correcting, merging, and filtering large numbers of
mechanistic fragments

« Large models can be extracted from the literature and used to explain
effects in large perturbation datasets

« The Kappa influence map serves as a useful tool for identifying causal
paths

« Experimental data can be used to rank rule influence paths
probabilistically

* New analytical methods will be needed to make best use of causal
mechanistic models that are both large and detailed.

www.indra.bio
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