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The  “unmet  need”  for  mechanistic  explanation  of  large-­scale  data

Joe  Cornish,  https://www.biostars.org/p/119918/

“The  rate  limiting  factor  has  never  been  the  computational  power,  and  is  more  
infrequently  a  result  of  not  having  enough  data,  the  problem  has  and  still  is  that  
no  matter  how  much  data  is  generated  or  how  much  cleaner/precise/etc the  
data  is,  I  still  can't  do  a  whole  lot  of  anything  with  it  because  the  ability  to  turn  
these  piles  of  data  into  information  is  feeble  at  best.  Whether  it  be  the  latest  
Illumina tech  or  the  hottest  MS  approach,  all  you  get  is  a  list  of  p-­values  that  
you  dump  into  your  pathway  enrichment  tool  of  choice,  [generate]  a  few  
heatmaps and  clustering  diagrams  and  call  it  a  day.”

On  “big  data”  hype  in  bioinformatics:



“Unmet  need”  for  mechanistic  explanation  of  large-­scale  data

Detailed  mechanistic  studies

ERK  
rebound

RAS
increase

“Bottom-­up”
Interpretation  of  large  datasets

“Top-­down”

Heiser et  al.,  2011

Approach: Machine  assembly  of  detailed  models  at  large  scale.
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INDRA:  Integrated  Network  and  Dynamical  Reasoning  Assembler

www.indra.bio



Sources and  formats  of  mechanistic  information:  pathway  databases

• Mechanistic  information  expressed  as  biochemical  reactions
– NCI  Pathway  Interaction  Database
– Reactome
– BioGRID
– PhosphoSitePlus
– KEGG
– et  al.

BioPAX:  Pathway  Commons  (22  databases)

• BEL  Large  Corpus
– BEL  expresses  causal  relations
– ~80,000  assertions
– Both  mechanistic and  observational assertions

Biological  Expression  Language



Extracting  mechanisms  from  natural  language  (1)

TRIPS system:  general  purpose,  deep,  semantic  
reading  with  domain-­specific  ontologies  

“ASPP2  can  be  phosphorylated  at  serine  827  by  MAPK1.”

Allen  et  al.  (2015)



Extracting  mechanisms  from  natural  language  (2)

REACH system:  domain-­specific  set  of  patterns  used  to  
identify  mechanisms  in  text



INDRA  represents  detailed  biochemical  entities  and  their  interactions

Statement

evidence : Evidence

Phosphorylation

Modification

enzyme : Agent
substrate : Agent
residue : string
position : string

"is a" (inheritance)
composition (has one or more, life-cycle dependence)

Statements
Agent and components

Agent

name : string
mods : list[ModCondition]
mutations : list[MutCondition]
bound_conditions : list [BoundCondition]
location : string
activity : ActivityCondition
db_refs : dict

Hydroxylation Dehydroxylation

Ubiquitination Deubiquitination

Dephosphorylation

Acetylation Deacetylation

Glycosylation Deglycosylation

Sumoylation Desumoylation

SelfModification

enzyme : Agent
residue : string
position : string Autophosphorylation

ActiveForm

agent : Agent
activity_type : string
is_active : boolean

Conversion
subj : Agent
obj_from : list[Agent]
obj_to : list[Agent]

Activation

Transphosphorylation

Gef

gef : Agent
gtpase : Agent
gef_activity : string

Gap

gap : Agent
gtpase : Agent
gap_activity : string

ModCondition

mod_type : string
residue : string
position : string
is_modified : boolean

MutCondition

from_residue : string
to_residue : string
position : string

BoundCondition

agent : Agent
is_bound : string

Farnesylation

ActivityCondition

activity_type : string
is_active : boolean

Inhibition

RegulateActivity

subject : Agent
object : Agent
obj_activity : string

RegulateAmount

subject : Agent
object : Agent

Evidence

text : string
source_api : string
source_id : string
pmid : string
annotations : dict
epistemics : dict

IncreaseAmount

DecreaseAmount

Ribosylation Deribosylation

Defarnesylation

Geranylgeranylation Degeranylgeranylation

Palmitoylation Depalmitoylation

Myristoylation Demyristoylation

Other

AddModification

RemoveModification

Methylation Demethylation

Complex

members : list[Agent]
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Knowledge  assembly  is  like  genome  assembly

MEK  phosphorylates  ERK

ERK  phosphorylates  MEK

MEK1  phosphorylates  ERK2  at  T185  

MEK1p218p222  phosphorylates  ERK2  at  T184

MEK1p218p222  phosphorylates  ERK2  at  T185.  

Methyl  Ethyl  Ketone phosphorylates  ERK

“Raw”  mechanisms
MEK  phosphorylates  ERK

MEK  phosphorylates  ERK

Assembled  mechanisms



INDRA  assembly  resolves  hierarchical  redundancies

Phosphorylation(RAF,  MEK)

Phosphorylation(BRAF,  MAP2K1,  218)

Phosphorylation(BRAF,  MAP2K1)

Phosphorylation(BRAF,  MAP2K1,  S,  218) Phosphorylation(BRAF,  MAP2K1,  S,  222)

Phosphorylation(BRAF,  MAP2K1,  S)

Phosphorylation(BRAF,  MAP2K1,  222)

Combine  entity,  modification,  location  and  activity  hierarchies



INDRA  uses  belief  propagation  to  determine  probability  of  correctness

Estimate  reliability  of  Statements  
probabilistically  by:

• Calculating  joint  probability  of  an  
incorrect  statement  given  repeated  
extractions  from  different  sentences

• Propagating  error  estimates  
through  the  network  of  related  
statements

• Combining  results  from  different  
readers

Overlap  between  readers
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EGFR	
  binds	
  the	
  growth	
  factor	
  ligand	
  EGF.	
  
The	
  EGFR-­‐EGF	
  complex	
  binds	
  another	
  EGFR-­‐EGF	
  complex.
The	
  EGFR-­‐EGFR	
  complex	
  binds	
  GRB2.
EGFR-­‐bound	
  GRB2	
  binds	
  SOS1	
  that	
  is	
  not	
  phosphorylated.
GRB2-­‐bound	
  SOS1	
  that	
  is	
  not	
  phosphorylated	
  binds	
  NRAS	
  that	
  is	
  
not	
  bound	
  to	
  BRAF.
SOS1-­‐bound	
  NRAS	
  binds	
  GTP.
GTP-­‐bound	
  NRAS	
  that	
  is	
  not	
  bound	
  to	
  SOS1	
  binds	
  BRAF.
NRAS-­‐bound	
  BRAF	
  binds	
  NRAS-­‐bound	
  BRAF.
Vemurafenib binds	
  BRAF	
  that	
  is	
  not	
  bound	
  to	
  BRAF.
Vemurafenib binds	
  BRAF-­‐bound	
  BRAF.
BRAF	
  V600E	
  that	
  is	
  not	
  bound	
  to	
  Vemurafenib phosphorylates	
  
MAP2K1.
PP2A-­‐alpha	
  dephosphorylates	
  MAP2K1	
  that	
  is	
  not	
  bound	
  to	
  
ERK2.
Phosphorylated	
  MAP2K1	
  is	
  activated.
Active	
  MAP2K1	
  that	
  is	
  not	
  bound	
  to	
  PP2A-­‐alpha	
  phosphorylates	
  
ERK2.
Phosphorylated	
  ERK2	
  is	
  activated.
DUSP6	
  dephosphorylates	
  ERK2	
  that	
  is	
  not	
  bound	
  to	
  SOS1.
Active	
  ERK2	
  that	
  is	
  not	
  bound	
  to	
  DUSP6	
  phosphorylates	
  SOS1	
  
that	
  is	
  not	
  bound	
  to	
  NRAS.
A	
  phosphatase	
  dephosphorylates	
  SOS1.

Word	
  Model

(Luca  Gerosa)

Application:  “Natural  language  modeling”



Application:  “Natural  language  modeling”

EGFR	
  binds	
  the	
  growth	
  factor	
  ligand	
  EGF.
The	
  EGFR-­‐EGF	
  complex	
  binds	
  another	
  EGFR-­‐EGF	
  complex.
The	
  EGFR-­‐EGFR	
  complex	
  binds	
  GRB2.
EGFR-­‐bound	
  GRB2	
  binds	
  SOS1	
  that	
  is	
  not	
  phosphorylated.
GRB2-­‐bound	
  SOS1	
  that	
  is	
  not	
  phosphorylated	
  binds	
  NRAS	
  that	
  is	
  
not	
  bound	
  to	
  BRAF.
SOS1-­‐bound	
  NRAS	
  binds	
  GTP.
GTP-­‐bound	
  NRAS	
  that	
  is	
  not	
  bound	
  to	
  SOS1	
  binds	
  BRAF.
NRAS-­‐bound	
  BRAF	
  binds	
  NRAS-­‐bound	
  BRAF.
Vemurafenib binds	
  BRAF	
  that	
  is	
  not	
  bound	
  to	
  BRAF.
Vemurafenib binds	
  BRAF-­‐bound	
  BRAF.
BRAF	
  V600E	
  that	
  is	
  not	
  bound	
  to	
  Vemurafenib phosphorylates	
  
MAP2K1.
PP2A-­‐alpha	
  dephosphorylates	
  MAP2K1	
  that	
  is	
  not	
  bound	
  to	
  
ERK2.
Phosphorylated	
  MAP2K1	
  is	
  activated.
Active	
  MAP2K1	
  that	
  is	
  not	
  bound	
  to	
  PP2A-­‐alpha	
  phosphorylates	
  
ERK2.
Phosphorylated	
  ERK2	
  is	
  activated.
DUSP6	
  dephosphorylates	
  ERK2	
  that	
  is	
  not	
  bound	
  to	
  SOS1.
Active	
  ERK2	
  that	
  is	
  not	
  bound	
  to	
  DUSP6	
  phosphorylates	
  SOS1	
  
that	
  is	
  not	
  bound	
  to	
  NRAS.
A	
  phosphatase	
  dephosphorylates	
  SOS1.

Word	
  Model

37	
  rules,	
  
451	
  ODEs

Active	
  RAS

ERK	
  
rebound

RAS
increase

Phospho-­‐ERK

Vemurafenib

Preprint:
“From  word  models  to  executable  models  of  signaling  networks  using  automated  assembly”
http://www.biorxiv.org/content/early/2017/03/24/119834



Application: @TheRasMachine, a  self-­updating  network  model  of  Ras
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Model  representations  for  statically  identifying  causal  paths
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Causal  analysis  of  the  influence  map of  a  rule-­based  model  (Kappa)

Explain:  “Pervanadate increases  MAPK1  phosphorylation.”

Pros:  Meaningful  
explanations;;  fewer  false  
positives;;  link  to  simulation

Cons:  False  positives  
possible  depending  on  
model—influence  is  not  
necessarily  transitive

Pvd_binds_DUSP

Pvd_binds_DUSP_rev

[0->0];[1->1]

DUSP_binds_MAPK1_phosT185

[1->0]

[0->0];[1->1]

[1->0]

[0->1]

DUSP_binds_MAPK1_phosT185_rev

[0->0];[1->1]DUSP_dephos_MAPK1_at_T185

[0->0];[1->1]

[0->1]

[0->0];[1->1]

[0->0];[1->1]

[0->1]

[0->0]

[0->0];[1->1]

MAPK1_pT185

[1->0]

Ioana Cristescu,  Pierre  Boutillier,  Jerome  Feret,  Walter  Fontana  et  al.



Kin_phosphorylation_Substrate_phospho

Phos_dephosphorylation_Substrate_phospho

[1->1]

Substrate_phospho_p_obs

[1->0]

[1->1]

[1->0]

The  problem  of  “transitive  triangles”  in  the  influence  map

Kin_phosphorylation_Substrate_phospho

Phos_dephosphorylation_Substrate_phospho

[1->1]

Substrate_phospho_p_obs

[1->0]

[1->1]

[1->0]

Kinase  phosphorylates  Substrate
Phosphatase  dephosphorylates  Substrate

Model:



The  problem  of  “transitive  triangles”  in  the  influence  map

Kin_phosphorylation_Substrate_phospho

Phos_dephosphorylation_Substrate_phospho

[1->1]

Substrate_phospho_p_obs

[1->0]

[1->1]

[1->0]

Kinase  phosphorylates  Substrate
Phosphatase  dephosphorylates  Substrate

Model:

Kinase  decreases phospho-­Substrate  (!)



The  problem  of  “transitive  triangles”  in  the  influence  map

Kin_phosphorylation_Substrate_phospho

Phos_dephosphorylation_Substrate_phospho

[1->1]

Substrate_phospho_p_obs

[1->0]

[1->1]

[1->0]

Kinase  phosphorylates  Substrate
Phosphatase  dephosphorylates  Substrate

Model:

Phosphatase  increases phospho-­Substrate  (!)



After  pruning  out  links  in  “transitive  triangles”

Kinase  phosphorylates  Substrate
Phosphatase  dephosphorylates  Substrate

Model:

Kin_phosphorylation_Substrate_phospho

Substrate_phospho_p_obs

[1->0]

Phos_dephosphorylation_Substrate_phospho

[1->0]

Systematically  removing  links  between  rules  that  share  
downstream  targets  eliminates  these  paths.



Use  case  for  explanation:  interpreting  phosphoproteomic data

• Previously  published  phosphoproteomic dataset  (Korkut et  al.)
• Melanoma  cell  line  treated  with  different  drug  combinations
• Protein  and  phospho-­protein  abundances  measured  at  24  hrs

D
ru
g  
co
m
bi
na
tio
ns

RPPA  measurements

How  did  this happen?

http://www.sanderlab.org/pertbio/



What  we  did:  Model  construction

• Reading
– Read  ~95,000  papers  covering  relevant  genes  with  three  NLP  
systems

– Retrieved  mechanisms  from  Pathway  Commons  and  the  BEL  
Large  Corpus

• Assembly
– Fixed  grounding  and  sequence  errors
– Expanded  statements  involving  protein  families  and  complexes
– Identified  duplicates  and  refinements
– Identified  activations/inhibitions  superseded  by  detailed  
mechanisms  (Mechanism  Linker)

– Filtered  out  low-­probability  statements
– Filtered  out  statements  with  no  causal  relevance  to  the  observables  
of  interest

– Assembled  a  rule-­based  model  (221  proteins,  1451  rules)



Paths  obtained  for  largest  effects  (>50%)

Drug 
Target

Antibody
Fold-

change
Path

? 

MEK MAPK pT202 0.47

SRC CHK2 pT68 1.75

SRC 4EBP1 pT37 0.44

AKT AKT pT308 0.25

AKT GSK3A/B pS21 0.44

AKT AKT pS473 0.17

AKT S6 pS235 0.36

CDK4 4EBP1 pS65 0.44

CDK4 YBI pS102 2.13

MTOR AKT pT308 2.19

MTOR S6 pS240 0.05

MTOR AKT pS473 3.19

MTOR p70S6K pT389 0.33

MTOR S6 pS235 0.06

PKC GSK3A/B pS21 1.59

PKC S6 pS240 0.47

PKC S6 pS235 0.3

PI3K p70S6K pT389 0.5

PI3K S6 pS240 0.44

PI3K AKT pS473 0.2

PI3K S6 pS235 0.27

Explanations  obtained  for  20  out  of  the  22  strongest  drug  effects  (91%)



SRC  phosphorylated  on  Y418  
phosphorylates  PAK2  on  S20.  PAK2  
phosphorylated  on  S20  
phosphorylates  RAF1  on  S338.  RAF1  
phosphorylated  on  S338,  T269  and  
S471  phosphorylates  MAPK1  on  T185.  
MAPK1  phosphorylated  on  T185  and  
Y187  phosphorylates  TP53  on  S15.  
TP53  phosphorylated  on  S20  and  S15  
decreases  the  amount  of  PLK1.  PLK1  
phosphorylates  CHEK2  on  T68,  which  
is  measured  by  CHK2_pT68.

Example  explanation: How  does  
Src inhibition  increase  CHK2  pT68?  

An  example  explanation



Every  step  in  the  path  is  auditable

PMID Text
21726628 In(addition,(activation(of(p53,has,been,shown,to,suppress,the,transcription,of,Plk1 (directly(or(via(the(p21(

dependent(mechanism.
24407240 Our(finding(that(p21(mediates(the(DNA(damage(induced(p53,dependent,suppression,of,PLK1(does(not(

exclude(the(possibility(of(direct(suppression(of(PLK1(transcription(by(p53.
We(have(previously(shown(in(H1299(cells(stably(transfected(with(a(temperature(sensitive(p53(mutant(
(tsp53)(that(the(induction(of(functional(p53,decreases,PLK1(protein(levels(in(a(p21(dependent(manner.

26595675 Recent(evidence(from(a(knockout(mouse(model(suggests(that(p21(is(required(for(p53,dependent,
repression,of,Plk1,expression

22405092 Mechanistically,(this(is(mediated(by(p53,which,represses,PLK1(expression(through(chromatin(remodelling.
PLK1,is,down?regulated,by,p53(as(part(of(the(G2/M(cell(cycle(checkpoint

24152729 Restoring(p53,by,depletion,of,E6,also,reduced,the,level,of,active,Plk1(on(chromatin((T210P(level
24076372 Together,(these(data(indicate(that(p53,negatively,regulates,PLK1,expression,(while(E2F1(positively(

regulates(PLK1(expression.
Consistently,(overZexpression(of(p53,and,p21,down?regulates,PLK1(gene(transcription(in(anaplastic(
thyroid(carcinoma(cells.

20962589 Downregulation,of,PLK1,expression,by,p53 (is(relieved(by(the(histone(deacetylase(inhibitor,(trichostatin(A,(
and(involves(recruitment(of(histone(deacetylase(to(the(vicinity(of(p53RE2,(further(supporting(a(
transcriptional(repression(mechanism.
Additionally,(wild(type,(but(not(mutant,(p53,represses,expression,of,the,PLK1(promoter(when(fused(
upstream(of(a(reporter(gene.

Pathway  Commons  URI:
http://pathwaycommons.org/pc2/Control_6cd5f2d5cd2d3a5e33e33154560eb3e6

Text  extracted  by  REACH:

Evidence  for  “TP53  decreases  PLK1”



Evaluation  including  smaller  effects  (>  20%)

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

100"

PI3
K"

PK
C"

SR
C"

MT
OR
"
ME
K"

AK
T"

RA
F"

JAK
"
CD
K4
"

MD
M2
"
ST
AT
"

Pc
t.%
Eff

ec
ts
%E
xp
la
in
ed

%

Drug%Target%

Overall  performance:  95/135  paths  found  (70%)

Few  explanations  for  effects  of  CDK4,  MDM2,  and  STAT  inhibition



Using  the  experimental  data  to  rank  causal  paths

A_phosphorylation_B_phospho

B_phospho_phosphorylation_D_phospho

[1->0]

B_phospho_p_obs

[1->0]

D_phospho_p_obs

[1->0]

A_phosphorylation_C_phospho

C_phospho_phosphorylation_D_phospho

[1->0]

C_phospho_p_obs

[1->0]

[1->0]

A

B C

D

Observation: Stimulation  of  A  increases  phospho-­DModel:

Phospho-­
protein

Log(Fold-­change)

B
C
D 1

Data:

Influence  map:



If  B  and  C  are  unmeasured,  both  paths  are  equally  likely

A_phosphorylation_B_phospho

B_phospho_phosphorylation_D_phospho

[1->0]

B_phospho_p_obs

[1->0]

D_phospho_p_obs

[1->0]

A_phosphorylation_C_phospho

C_phospho_phosphorylation_D_phospho

[1->0]

C_phospho_p_obs

[1->0]

[1->0]

A

B C

D

Observation: Stimulation  of  A  increases  phospho-­DModel:

Phospho-­
protein

Log(Fold-­change)

B (unmeasured)
C (unmeasured)
D 1

Data:

Influence  map:



If  B  and  C  are  both  unchanged,  both  paths  are  equally  likely

A_phosphorylation_B_phospho

B_phospho_phosphorylation_D_phospho

[1->0]

B_phospho_p_obs

[1->0]

D_phospho_p_obs

[1->0]

A_phosphorylation_C_phospho

C_phospho_phosphorylation_D_phospho

[1->0]

C_phospho_p_obs

[1->0]

[1->0]

A

B C

D

Observation: Stimulation  of  A  increases  phospho-­DModel:

Phospho-­
protein

Log(Fold-­change)

B 0
C 0
D 1

Data:

Influence  map:



B  increases  but  C  goes  down  or  is  unchanged:  A-­B-­D  is  more  likely

A_phosphorylation_B_phospho

B_phospho_phosphorylation_D_phospho

[1->0]

B_phospho_p_obs

[1->0]

D_phospho_p_obs

[1->0]

A_phosphorylation_C_phospho

C_phospho_phosphorylation_D_phospho

[1->0]

C_phospho_p_obs

[1->0]

[1->0]

A

B C

D

Observation: Stimulation  of  A  increases  phospho-­DModel:

Phospho-­
protein

Log(Fold-­change)

B 1
C -­1
D 1

Data:

Influence  map:



Probability  model  to  rank  likelihood  of  different  paths

�2 �1 0 1 2
Log(Fold-Change)
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P(increase|D) = 0.50P(decrease|D) = 0.50
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P(increase|D) = 0.77P(decrease|D) = 0.23

Probability  model  to  rank  likelihood  of  different  paths
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P(increase|D) = 1.00P(decrease|D) = 0.00

Probability  model  to  rank  likelihood  of  different  paths
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P(increase|D) = 0.00P(decrease|D) = 1.00

Probability  model  to  rank  likelihood  of  different  paths



Does	
  this	
  path	
  
make	
  sense?

✔

✔

✔
✔

Petar Todorov



Summary

• INDRA  is  a  system  that  builds  many  types  of  mechanistic  models  and  
networks,  from  many  sources  including  the  literature

• Assembly  involves  correcting,  merging,  and  filtering  large  numbers  of  
mechanistic  fragments

• Large  models  can  be  extracted  from  the  literature  and  used  to  explain  
effects  in  large  perturbation  datasets

• The  Kappa  influence  map  serves  as  a  useful  tool  for  identifying  causal  
paths

• Experimental  data  can  be  used  to  rank  rule  influence  paths  
probabilistically

• New  analytical  methods  will  be  needed  to  make  best  use  of  causal  
mechanistic  models  that  are  both  large  and  detailed.

www.indra.bio
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