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Abstract

People with type-1 diabetes exhibit a large range of variations in the physiological characteristics that
affect their response to blood glucose levels, including gender, weight, insulin sensitivity, dietary habits,
exercise and hormonal fluctuations. At the same time, control algorithms for the artificial pancreas can be
tuned using numerous parameters that affect the correctness and performance of the closed-loop system.
We present a new approach using non-deterministic relational models of human insulin-glucose regulation
inferred from patient data using multiple time scales. Treating the equations of this model as constraints,
we model the behavior of the entire closed loop system over a time horizon using an optimization problem.
Next, we demonstrate this approach using patient data gathered from a previously conducted outpatient
clinical study and perform reachability analysis for a PID control scheme taken from the literature.
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1 Introduction

The artificial pancreas refers to a device that automates insulin delivery to patients

with type-1 diabetes in a closed loop. Such a device is responsible for reacting

to rapid changes in the blood glucose level caused by meals and exercise [13,6,18].

However, the artificial pancreas is a safety-critical system. Excess insulin can lead

to extremely low blood glucose levels (termed hypoglycemia) causing seizures, loss

of consciousness, coma or even death in extreme cases. On the other hand, a lack of

insulin can lead to elevated blood glucose levels (termed hyperglycemia), damaging

critical organs such as the eyes, kidneys, heart and the nervous system in the long

term. Thus, the central goal of the artificial pancreas controller is to maintain the

patient’s blood glucose level inside a narrow euglycemic range [70, 180] mg/dl [4].

A large number of control algorithms have been proposed over the past decades,

ranging from a simple low glucose suspend [20], pump suspension using glucose pre-

diction [3], PID-based approaches [24,26,25], rule-based approaches [1,21], Model-

Predictive Control (MPC) [11,16,15,14,2,5,10], and multihoromone control that

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs



Kushner, Keenan, Maahs and Sankaranarayanan

combines the use of insulin with the counter-regulatory hormone glucagon and the

hormone amylin [9,8]. A classification of these approaches is proposed by Kowal-

ski [18]. Further, the control systems are currently all under various stages of clinical

evaluation. In particular, the Medtronic 670G is a hybrid closed loop device that

received regulatory approval from the US FDA in 2016 [12].

2 Personalized Devices

The control algorithms used in AP devices rely on parameters such as gains and

thresholds that affect their performance. At the same time, patients exhibit a

large range of variations based on factors that include age, gender, weight, exercise,

dietary habits and hormonal fluctuations, to name a few. Furthermore, the same

patient may exhibit variations in their insulin glucose regulation over time.

Personalization of the device is the process of choosing the parameters of the

device to ensure that key correctness properties are maintained for the specifics of

the patient’s physiology.

The problem of personalized design of control algorithms has received increas-

ing attention for medical devices in general, and the artificial pancreas domain,

in particular. Model Predictive Control (MPC) algorithms provide for person-

alization by learning model parameters from patient data. Hovorka et al pro-

pose a nonlinear MPC scheme that updates the parameters of the model peri-

odically using the patient data [15,14]. Dassau et al use a data driven approach

to derive plant models that are used to construct an explicit MPC system [7].
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Fig. 1: A verification approach to

personalized artificial pancreas.

Capel et al. evaluate a rule-based approach

that is based on training a neural network

model that predicts the future course of

the patient glucose values. This network is

trained from historical data collected from

the patient [17]. To address patient safety

concerns, these approaches place limits on

the insulin-on-board for the patient. How-

ever, they fail to account for the uncertainty

in the system identification process. The re-

cent work of Paoletti et al uses a robust MPC

scheme that accounts for meal uncertainties

but uses a deterministic patient model with

numerous parameters that are hard to estimate without highly intrusive lab mea-

surements on the patient [23]. Figure 1 proposes a more systematic approach based

on verification of a nondeterministic model inferred using patient data. The overall

procedure may then be placed in an outer loop that adjusts the controller parame-

ters to satisfy the correctness properties.

3 Data Driven Nondeterministic Modeling

We demonstrate our approach through a relational model inference scheme devised

by the authors to perform reachability analysis of a PID controller with saturation
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and anti-windup compensation.

3.1 Data Source

The demonstration is based on outpatient clinical study data collected from 50

patients with roughly 40 nightly monitoring session for each patient, leading to a

total of 2254 nightly sessions in total across all patients. The study was intented to

test a closed loop predictive pump shutoff algorithm for controlling night time insulin

delivery [3]. Each session provides values of blood glucose levels G(t) measured using

a continuous glucose monitor and the insulin inputs id(t) logged automatically by

an insulin pump [19]. The CGM readings are recorded for every minute.

As part of the pre-processing step, we omitted nights wherein the patient suffered

hypoglycemia, requiring rescue Carbohydrates. Since no meal data was provided,

we omitted data prior to 11 PM and after 6 AM to minimize the influence of post-

prandial glucose increase and the pre-meal boluses. We calculated the insulin on

board from the given data using a standard formula taken from the Open Artificial

Pancreas project source code [22]. We note that the insulin on board calculation

used is not patient-specific. In particular, we assumed a peak action time of 75

minutes and a total duration of insulin action of 180 minutes.

3.2 Relational Models

The relational model infers simple relations from the data of the form:

G(t+ ∆g) ∈ a1G(t) + a2G(t−∆g) + a3u(t−∆I) + [l, u] (1)

The model predicts a future value of the patient’s blood glucose G(t+ ∆g) in terms

of a linear combination of the current value G(t), a past value G(t −∆g) and the

insulin-on-board calculated at time t − ∆I . We note that rather than assigning a

value, the model provides a constraint over the value at time t+∆g. The uncertainty

interval [l, u] captures the deviation between the model and reality. To discover such

models, we adopt a simple statistical procedure as follows:

(a) First, we discover a1, a2 and a3 through linear regression, with the constraint

a3 ≤ 0 to reflect the inhabiting effect of insulin action on glucose values. The

regression was carried out using MATLAB.

(b) Next, we find limits [l, u] by analyzing the residual error. In particular, we

use the 99% confidence intervals around the mean value of the residual error.

Figure 2 shows the relations obtained for various time delays that were set using

our background knowledge of insulin kinetics, including the peak insulin action and

insulin action delay times. The relations are viewed as constraints that jointly

constrain the possible values of blood glucose over time.

Figure 3 shows the predicted ranges for the blood glucose levels by our models

against the actual blood glucose levels measured in the patient for two sessions.

Note that the blood glucose level can sometimes lie outside the predicted range due

to two sources of errors: the approximation error in the model itself and the use of

99% confidence intervals over the residuals.
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G(t) ∈ [0, 500] t ∈ [0, T ]

G(t) ∈ [120, 300] t < 0

G(t+ 5) ∈ G(t) + [−10, 10]

G(t+ 30) ∈ 0.36G(t) + 0.59G(t− 30)− 2.25u(t− 30) + [−5.9, 7.1]

G(t+ 45) ∈ 0.38G(t) + 0.67G(t− 45)− 13.35u(t− 45) + [−4.6, 7.4]

G(t+ 60) ∈ 0.51G(t) + 0.52G(t− 60)− 13.31u(t− 60) + [−2, 3]

G(t+ 120) ∈ 0.46G(t) + 0.46G(t− 120)− 17.01u(t− 120) + [−3.1, 4.9]

u(t) = 1.89u(t− 5)− 0.9u(t− 10)

+ 1
60

(∑5
j=1 id(t− j)− 0.9

∑10
j=6 id(t− j)

)
Ie(t) = Ie(t− 5) + (G(t)−G0)

D(t) = G(t)−G(t)
5

Ip(t) = K0id(t− 5) +K1Ip(t− 5) +K2Ip(t− 10)

r(t) =

Kp(G(t)−G0) +KiIe(t)+

KdD(t)− γIp(t)


id(t) =


0 r(t) ≤ 0

r(t) 0 ≤ r(t) ≤ imax

imax r(t) ≥ imax

Fig. 2. (Top) Model relations showing the dependence of the glucose G(t) on the insulin-on-board u(t) and
the insulin delivery rate i(t) for Patient ID PSO3-001-0001. (Bottom) The PID control law that is run in
a 5 minute time-triggered loop. Control parameters are shown in blue.

3.3 Control Feedback Law

The value of insulin id(t) is controlled by a discrete PID controller described by

Steil at al. [24,26,25]. The controller executes synchronously once every 5 minutes

and the insulin delivery is held constant over the subsequent 5 minute interval.

This controller has been evaluated in numerous inpatient and outpatient clinical

trials. The PID gains and parameters are currently chosen using a rule of thumb

approach based on the patient weight and daily insulin requirement, as described

by Weinzimer at al. [26]. Figure 2 shows the equations of the controller.

3.4 Reachability Analysis

Our goal is to predict the maximum/minimum value of blood glucose levels achieved

by the closed loop composition of the model and controller shown in Figure 2. We

encode the action of the entire closed loop over some time interval [0, T ] as an mixed

integer program, that is solved to find the maximum and minimum values of glucose

achievable at time T . In particular, the integer variables arise from the saturation
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Fig. 3. Comparison of the predicted ranges by our relational models against the actual blood glucose levels
for patient PSO3-001-0001.

terms in the PID controller. By varying the time horizon over a range from T = 10

minutes to T = 5 hours (in steps of 10 minutes), we obtain range estimates for the

blood glucose levels. The reachability analysis was performed in Python, using the

state-of-the-art Gurobi solver for mixed integer programs.

Figure 4 shows the overall bounds obtained over the entire time horizon. The

solution to the MILPs required 71 minutes of wall clock time measured in a Macbook

Air laptop with 8GB RAM, 1.8 GHz Intel Core i5 processor, running OSX 10.12.

We compare two different settings of the parameter Kp, while setting the remaining

parameters in relation to Kp, as recommended by the control design [26]. The first

setting is the one calculated using the rule of thumb that uses the patient’s daily

insulin requirement. The second setting was chosen by repeated trial and error.

Reachability analysis is unable to establish safety in the nominal case. However,

it establishes that the controller is able to maintain the blood glucose within a nor-

mal range using the modified values. Furthermore, as the controller is allowed to

run longer, it is able to narrow the gap between the worst and the best case, indi-

cating the possible stabilization of glucose values under the action of the controller.

We also note the initial violations are expected due to the delay in the action of
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insulin that is captured in our model. We also notice a jump in the range at time

t = 30 likely caused by the introduction of a new relation from Figure 2.

3.5 Threats to Validity

We briefly note that our model is fit using linear relations, wherein the times ∆G,∆I

are chosen by us with some insight into the nature of insulin action. However, con-

sidering the uncertainty in the model mitigates against this choice. The calculation

of the insulin on board u(t) is not patient specific. It is a standard calculation per-

formed for a given type of insulin assuming average time to peak action (75 minutes)

and average duration of insulin action (180 minutes). Finally, our model does not

incorporate meal or exercise disturbances that can cause hypoglycemia due to the

persistence of insulin in the patient well after the meal. Likewise, patient boluses

are not factored into our model. Handling these limitations will form an important

part of our future work.

4 Conclusion

In conclusion, we have outlined a preliminary approach that can infer simple re-

lations from data through a combination of regression and statistical analysis of

the residuals. By combining multiple relations, we obtain nondeterministic models

that are suitable for verification of properties of control systems. In the future, we

wish to investigate the problem of finding optimal parameters for this controller

and translate our findings into the clinical practice for setting parameter values for

devices such as the Medtronic 670G.
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