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Abstract

The capability to reallocate items|e.g. tasks, securi-
ties, bandwidth slices, Mega Watt hours of electric-
ity, and collectibles|is a key feature in automated
negotiation. Especially when agents have preferences
over combinations of items, this is highly nontrivial.
Marginal cost based reallocation leads to an anytime
algorithm where every agent's payo� increases mono-
tonically over time. Di�erent contract types head
toward di�erent locally optimal allocations of items,
and OCSM-contracts head toward the global optimum.
Reaching it can take impractically long, so it is im-
portant to trade o� solution quality against negoti-
ation time. To construct negotiation protocols that
lead to good allocations quickly, we evaluated original
(O), cluster (C), swap (S), and multiagent (M) con-
tracts experimentally. O-contracts led to the highest
social welfare when the ratio of agents to tasks was
large, and C-contract were best when that ratio was
small. O-contracts led to the largest number of con-
tracts made. M-contracts were slower per contract, and
required a signi�cantly larger number of contracts to be
tried to verify that a local optimum had been reached.
S-contracts were not competitive because they restrict
the search space by keeping the number of items per
agent invariant. O-contracts spread the items across
agents while C-contracts and M-contracts concentrated
them on a few agents.

Introduction
The importance of automated negotiation systems is
increasing as a consequence of the development of tech-
nology as well as increased application pull, e.g., elec-
tronic commerce (Kalakota & Whinston 1996), electric-
ity markets (Sandholm & Ygge 1997), and transporta-
tion exchanges (Sandholm 1993). A central part of such
systems is the ability to (re)allocate tasks (or analo-
gously, other types of items, e.g. securities, bandwidth
slices, Mega Watt hours of electricity, or collectibles)
among the agents. Generally, the tasks have a depen-
dency upon each other, as well as upon the agents.
That is, some of the tasks are synergistic and prefer-
ably handled by the same agent, whereas others interact
negatively and are better handled by di�erent agents.
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The agents can also have di�erent resources that lead
to di�erent costs for handling the various tasks.1 Fur-
thermore, an agent may not be capable of handling all
combinations of the tasks. We analyze task allocation
(or, analogously, the allocation of other types of items)
under the following model which captures these consid-
erations.

De�nition. 1 Our task allocation problem is a set of
tasks T , a set of agents A, a cost function ci : 2

T !
< [ f1g (which states the cost that agent i incurs by
handling a particular subset of tasks), and the initial
allocation of tasks among agents hT init

1
; :::; T init

jAj i, whereS
i2A T init

i = T , and T init
i \ T init

j = ; for all i 6= j.2

In the case where agent i cannot handle a speci�c set
of tasks, Ti, the cost function ci(Ti) = 1. In our ex-
ample problem domain the agents incur di�erent costs
for handling tasks but each agent has the capability to
handle any tasks.
In task allocation, the agents try to minimize the cost

functions. The same would hold for reallocation of any
types of undesirable items. To model settings where the
items are desirable, such as bandwidth slices, the cost
functions can be interpreted as value functions which
the agents attempt to maximize.
Combinatorial auctions, i.e. auctions where the bid-

ders can bid on combinations of items, have recently re-
ceived a lot of interest because they often lead to better
allocations than traditional auctions in settings where
the items' valuations are not additive (Rothkopf, Peke�c,
& Harstad 1998; Rassenti, Smith, & Bul�n 1982). Com-
binatorial auctions are a special case of our setting,
where one agent has all the tasks initially, and allocates
them to the other agents. Unlike combinatorial auc-
tions which are one-to-many, our setting allows many-
to-manymarkets. This is needed in settings where there
are inherently many buyers and many sellers. Our ap-
proach can also be used as a reallocative market to

1Dependencies between tasks in human negotiations are
discussed e.g. in (Rai�a 1982). The concepts of linkage and
log-rolling are also presented, which are similar to swapping
tasks and clustering tasks.

2This de�nition generalizes the "Task Oriented Domain"
presented by (Rosenschein & Zlotkin 1994). Particularly
asymmetric cost functions among agents are allowed, as well
as the possibility that some agents may be unable to handle
some tasks. In that case the cost of handling the task will
be in�nite.



correct ine�cient allocations after some one-to-many
auction has been held. In other words, some of the bid-
ders may not have received the (combinations of) items
that they want, and may have received (combinations
of) items that they do not want. The bidders can then
participate in our reallocative many-to-many aftermar-
ket to improve the overall allocation of items.
The agents can change the task allocation by real-

locating tasks among themselves by contracting. The
agents can also recontract out tasks that they con-
tracted in earlier. We study agents that are self-
interested and myopically individually rational. This
means that an agent agrees to a contract if and only if
the contract increases the agent's immediate payo�. An
agent's payo� consists of the payments received from
others for handling their tasks minus the current value
of the cost function, ci, minus payments sent to others
for them to handle some of the former agent's tasks.
This paper experimentally studies task reallocation

among such agents using combinatorial contract types
that were recently introduced (Sandholm 1993; 1996;
1998) to be used in contract nets (Smith 1980). The
next section presents the application domain of the ex-
periments. The di�erent contract types and their use is
described in the following section. Then evaluation cri-
teria are discussed and the results are presented. The
�nal section concludes the paper.

Example problem: Multiagent TSP
We study contracting in a particular task allocation
problem, the multiagent Traveling Salesman Problem
(TSP). This domain is used as an example because it is
structurally simple|providing repeatability and easy
presentability|yet it captures the essence of the dif-
�culties in reallocative negotiation. The TSP is NP-
complete and the space of task allocations contains
many local optima when using hill-climbing-based con-
tracting algorithms (Sandholm 1993; 1998).
The multiagent TSP is de�ned as follows (Andersson

& Sandholm 1998a; 1998b). Several salesmen are going
to visit several cities in a world that consists of a unit
square, see Figure 1. Each city must be visited by ex-
actly one salesman, and each salesman must return to
his starting location after visiting the cities assigned to
him. A salesman can visit the cities assigned to him in
any order. The locations of the cities and the starting
points of the salesmen are randomly chosen as is each
salesman's initial assignment of cities to visit.

Agents' objectives

From this initial assignment, the salesmen can exchange
cities, i.e. tasks, with each other. Each salesman, i.e.
agent, tries to maximize his immediate payo�. The
payo� of salesman i consists of the payments received
from others for handling their cities, minus his distance
traveled, ci, minus payments sent to others for them to
handle some of the former agent's cities.
The cost of travel between any two locations,

q and r, is the Euclidean distance: cqr =
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Figure 1: An example problem instance of a multiagent
TSP consisting of �ve cities (*) and two salesmen (X). If
salesman A contracts out city 1 to salesman B, the social
welfare will increase due to less travel, i.e., lower costs.

p
(xq � xr)2 + (yq � yr)2. The cost that salesman i in-

curs when visiting his cities is the sum of the costs along
his tour:

ci =
X

q;r2 tour of salesman i

cqr

Solution quality, social welfare, is the sum of the dis-
tances traveled by the salesmen:

Social welfare = �

jAjX

i=1

ci

The side payments do not a�ect social welfare because
they just redistribute wealth among the agents. Since
the salesmen are individually rational in giving and tak-
ing tasks and side payments, each agent's payo� im-
proves monotonically during the negotiation. It follows
that social welfare improves monotonically.
In our experiments the negotiation occurs before the

salesmen are dispatched. The contracting scheme can
also directly be used in dynamic settings where new
tasks arrive and are handled during the negotiation.
Each new domain event simply changes the cost func-
tion, ci, of the corresponding agent.

Summary of contract types

The contracts most commonly used in multiagent con-
tracting systems only allow for one task to move
from one agent to another at a time (Smith 1980;
Sen 1993). We will refer to this type as an original
(O) contract. In settings where an agent's cost (or even
feasibility) of handling a task depends on what other
tasks the agent has, O-contracts often reach local op-
tima where no agreeable contract exists|i.e. a contract
that improves social welfare so that it could be made
pro�table for both parties using a side payment|but a
globally optimal allocation has not been reached (Sand-
holm 1998). To address this problem, new types of
contracts were recently introduced (Sandholm 1993;
Sandholm & Lesser 1995; Sandholm 1996; 1998): clus-
ter (C), swap (S), andmultiagent (M) contracts, as well
as all the above, including the original contracts, com-
bined (OCSM-contracts). These new contract types al-
low more than one task to be transferred between the



agents participating in the contract. C-contracts trans-
fer two or more tasks from one agent to another. S-
contracts let two agents swap tasks with each other:
one task is transferred from each agent to the other.
M-contracts allow atomic transfers of tasks amongmore
than two agents. We now present these contract types
in more detail.

Original contracts (O-contracts)

The most common contracts used in contract net imple-
mentations and analysis of contracting games are ones
in which one task is transferred from one agent to an-
other. A side payment can also be transferred between
the agents to compensate the party that is worse o�
after the transfer of the tasks, i.e., the agent taking on
the task will be paid to do so. Due to this, any social
welfare improving contract can be made bene�cial to
both parties. Formally:

De�nition. 2 An O-contract is a pair hTi;j ; �i;ji,
where jTi;jj = 1. Ti;j is the task set (including one
task) that agent i gives to agent j, and �i;j is the con-
tract price that i pays to j for handling the task set.

If the agents carried out a full lookahead, i.e., com-
pletely searched the tree of all possible future contracts,
O-contracts would su�ce to reach the globally optimal
task allocation (Sandholm 1998). However, this gener-
ally cannot be accomplished, except for small problem
instances, due to the complexity of searching the tree.
The global optimum is not necessarily reached if the
agents are myopically individually rational when con-
tracting. Such agents may get stuck in a local optimum
since they will not accept a temporary decrease of pay-
o�, which may be necessary to reach the global opti-
mum. Individually rational contracting can be seen as
hill-climbing in the task allocation space, where there
is a risk of being trapped in a local optimum instead of
reaching the globally optimal task allocation.

Cluster contracts (C-contracts)

Cluster contracts allow the agents to exchange more
than one task in each contract, together with a side
payment (Sandholm 1993; 1998):

De�nition. 3 (Sandholm 1997; 1998) A cluster con-
tract (C-contract) is a pair hTi;j ; �i;ji, where jTi;jj > 1.
Ti;j is the task set that agent i gives to agent j, and �i;j
is the contract price that i pays to j for handling the
task set.

Swap contracts (S-contracts)

Even when both O-contracts and C-contracts are used,
local optima exist. For example, even if there is no prof-
itable O- or C-contract, there may be bene�cial swaps
of tasks to be made between two agents. In a swap
contract (Sandholm 1998), one agent gives a task to
another agent and receives another task from the latter
agent. A side payment may also be paid between the
agents to compensate for any value di�erence between
the tasks. Formally:

De�nition. 4 (Sandholm 1997; 1998) A swap con-
tract (S-contract) is a 4-tuple hTi;j; Tj;i; �i;j; �j;ii, where
jTi;jj = jTj;ij = 1. Ti;j is the task set (including one
task) that agent i gives to agent j. Tj;i is the task set
(including one task) that agent j gives to agent i. �i;j
is the amount that i pays to j, and �j;i is the amount
that j pays to i.

Multiagent contracts (M-contracts)

Even when all three of the contracts described above
(O, C, and S) are used, the global optimum may still
not be reached if the agents are myopically individu-
ally rational when contracting. To avoid some of the
remaining local optima, M-contracts were introduced
(Sandholm 1998):3

De�nition. 5 (Sandholm 1997; 1998) A multiagent
contract (M-contract) is a pair hT;�i of jAj � jAj ma-
trices, where at least three elements of T are non-empty
(otherwise this would be just a 2-agent contract), and
for all i and j, jTi;jj � 1. An element Ti;j is the set of
tasks that agent i gives to agent j, and an element �i;j
is the amount that i pays to j.

OCSM-contracts

OCSM-contracts are de�ned as contracts that merge
the characteristic of all the contract types discussed so
far. That is, any number of tasks can be transferred
from and to any agent or between many agents in one
single contract:

De�nition. 6 An OCSM-contract is a pair hT;�i of
jAj � jAj matrices. An element Ti;j is the set of tasks
that agent i gives to agent j, and an element �i;j is the
amount that i pays to j.

OCSM-contracts are necessary and su�cient for
reaching a globally optimal allocation (Sandholm 1996;
1997; 1998). A global optimum will be reached in a
�nite number of contracts using any hill-climbing al-
gorithm, i.e. via any sequence of individually ratio-
nal contracts. So, from a social welfare perspective,
the agents need not look ahead in the tree of possi-
ble future contracts. They do not have to take unprof-
itable contracts in anticipation of synergic ones later on
that would make the combination pro�table. Further-
more, when accepting a pro�table contract, an agent
does not need to worry that it will preclude other prof-
itable contracts later on. This is a powerful result for
small problem instances, but for large ones the number
of contracts made before the global optimum is reached
may be prohibitively large. Also, identifying pro�table
OCSM-contracts can be di�cult in the large. There-
fore, in large-scale problem instances it is important
to be able trade o� solution quality against negotia-
tion time. For example, the agents may want to �nd
the best solution that is obtainable in a given amount

3Sathi and Fox (1989) (Sathi & Fox 1989) studied a sim-
pler version of multiagent contracts where bids were grouped
into cascades.



of time. This paper studies how the di�erent contract
types a�ect that tradeo�.

Contracting system

In principle our contracting system implementation can
be used to solve reallocation problems with any number
of agents and items. The simulations of this paper fo-
cus on the multiagent TSP domain with up to 8 agents
and 8 tasks per problem instance. For all combinations
of numbers of agents between 2 and 8, and numbers of
tasks between 2 and 8, 1000 TSP instances were ran-
domly generated.
Each problem instance was solved �ve times, four of

which used myopically individually rational (i.e. hill-
climbing) contracting. In the �rst run, O-contracts were
used until a local optimumwas found. In the second, C-
contracts were used until a local optimumwas found. In
the third, S-contracts were used until a local optimum
was found. In the fourth, M-contracts were used until
a local optimum was found. In addition, an exhaus-
tive enumeration of task allocations was conducted in
order to �nd the globally optimal allocation. This cor-
responds to the outcome that would be reached via my-
opically individually rational contracting using OCSM-
contracts.
In the experiments, each problem instance was tack-

led in two phases. First, all possible TSPs were solved
(for each salesman, there is one TSP corresponding to
each subset of cities).4 Second, the four contracting
runs and the exhaustive enumeration of task allocations
were conducted.

Contract sequencing

During the contracting run, contracts of the particular
type (O, C, S, or M) were applied repeatedly. The
algorithm knows that a local optimumhas been reached
when all possible contracts of the type have been tried
but none have been performed. The next subsections
discuss the order of trying di�erent contracts within
each contract type. The agents are numbered from 1 to
jAj, and each agent's tasks from 1 to jTij.

Sequencing of original contracts An O-contract
allows one agent to move one task to one other agent.
The former agent pays the latter for accepting the con-
tract at least as much as it costs the latter agent to
handle the task, and at most as much as it costs the for-
mer agent to handle it. In our experiments, O-contracts
were sequenced as follows. First, agent 1's tasks are at-
tempted to be moved, one at a time, to agent 2. If any

4The IDA* search algorithm (Korf 1985) was used to
solve the TSPs. To ensure that the optimal solution was

reached an admissible ĥ-function was used. It was con-
structed by underestimating the cost function of the remain-
ing nodes by the minimum spanning tree (Cormen, Leiser-
son, & Rivest 1990) of those nodes (that is, of nodes not yet
on that path of the search tree, the last city of that path
of the search tree, and the �nish (=start) location of the
salesman).

contract (move of a task) is pro�table, it is performed
and the next contract is tried. After having tried to
move all tasks one at a time from agent 1 to 2, agent 1
tries to move its tasks to agent 3. This continues un-
til agent 1 has attempted to move all its tasks to all
the other agents. Then the procedure continues with
agent 2, which tries to move its tasks to agent 1, fol-
lowed by all the other agents in increasing order. When
agent jAj has attempted to move all its tasks to all the
other agents, each O-contract has been tried. However,
the process repeats because some O-contracts may have
made other O-contracts pro�table that were not prof-
itable before. The process stops when no O-contracts
have been made during one of these loops were all of
them are tried.

Sequencing of cluster contracts In a C-contract
one agent moves at least two tasks to another agent,
and a side payment is used as with O-contracts. C-
contracts were sequenced as follows. We start by trying
out all combinations of two tasks followed by all com-
binations of three tasks, and so on. The order in which
the tasks are tried to be moved is: (1,2), (1,3), . . . ,
(1, jT1j), (2,3), (2,4), . . . , (jT1j-1, jT1j), (1,2,3), (1,2,4),
. . . . If any contract is pro�table, it is performed and
the next contract is tried. After having tried to move
all tasks (one at a time) from agent 1 to 2, agent 1
tries to move its tasks to agent 3. This continues until
agent 1 has attempted to move all its tasks to all the
other agents. Then the procedure continues with agent
2, which tries to move its tasks to agent 1, followed by
all the other agents in increasing order. When agent
jAj has attempted to move its tasks to all other agents,
each C-contract has been tried. However, the process
repeats because some C-contracts may have made other
C-contracts pro�table that were not pro�table before.
The process stops when no C-contracts have been made
during one of these loops were all of them are tried.

Sequencing of swap contracts In an S-contract,
one agent transfers one task to another agent and it
also receives one task from that agent. If the S-contract
is acceptable, i.e., social welfare improving, a side pay-
ment can be used so that each one of the two agents
is better o� than before the contract. S-contracts were
sequenced as follows. One at a time, agent 1 tries to
move its tasks to agent 2, and in exchange agent 2 tries
to move one task to agent 1. For every task agent 1 tries
to move, agent 2 tries to move all its tasks to agent 1 one
at a time before agent 1 continues with its next task.
If any contract is pro�table, it is performed and the
next contract is tried. When all contracts that include
agent 1 and agent 2 have been attempted, all possi-
ble contracts including agent 1 and agent 3 are tried
according to the procedure above. When agent 1 has
attempted all contracts with all the other agents, agent
2 tries all contracts, according to the procedure above,
with agent 1 followed by the other agents in increas-
ing order. When agent jAj has attempted to exchange
tasks with all other agents, each S-contract has been



tried. However, the process repeats because some S-
contracts may have made other S-contracts pro�table
that were not pro�table before. The process stops when
no S-contracts have been made during one of these loops
were all of them are tried.

Sequencing of multiagent contracts In an M-
contract tasks are being moved between at least three
agents. Each agent can transfer at most one task to
each other agent. If an M-contract increases social wel-
fare, side payments can be used so that each contract
party is better o� than before the contract.
First, all combinations where only agent jAj trans-

fers tasks to 3 other agents are tried. The combina-
tions of agents receiving tasks are in order: (1,2,3),
(1,2,4), : : :, (1,2,jAj-1), (1,3,2), (1,3,4), : : :, (jAj-1,jAj-
2,jAj-3). For each of these combinations all possible
tasks transfers are tried. For agent combination (1,2,3)
that is (from agent jAj to agent 1, from agent jAj to
agent 2, from agent jAj to agent 3): (1,2,3), (1,2,4),
: : :, (jT jjAj,jT jjAj�1,jT jjAj�2). Then, all combinations
where only agent jAj-1 transfers 3 tasks to other agents
are tried in the same manner as above.
After that, contracts where agent jAj transfers tasks

to 4 other agents are tried. After that agent jAj-1 tries
to transfer tasks to 4 other agents, etc. After that, the
loop is repeated with giving tasks to 5 other agents,
then 6, etc.
After individual agents have tried to move their tasks,

all combinations of two agents try to move their tasks.
First agents jAj and jAj-1 try to transfer their tasks
(all combinations of their tasks are tried) to all combi-
nations of agents. The order of all agents that will try
to transfer their tasks is: (jAj), : : :, (1), (jAj,jAj-1), : : :,
(1,2), (jAj,jAj-1,jAj-2), : : : If one of the agents does not
have the task needed, that combination is skipped.
As soon as a contract is performed, the scheme starts

over from the beginning. The process stops when no M-
contracts have been made during one loop were all of
them are tried.

Results

To compare the solution quality obtained by the di�er-
ent contract types, the ratio bound was used. Let xlj
denote the social welfare of the task allocation achieved
by protocol l 2 fO,C,S,Mg on problem instance j,
j 2 f1; : : : ; 1000g. Let xGj denote the social welfare of

the global optimum (or equivalently OCSM-contracts).
The ratio bound, rlj, is the optimal welfare divided by

the welfare obtained by a given protocol: rlj =
xGj

xl
j

. The

average ratio bound is

rl =
1

1000

1000X

j=1

rlj

This average ratio bound was calculated for all possi-
ble combinations of numbers of agents and numbers of
tasks.

The di�erences of the ratio bounds between the con-
tract types were also calculated for statistical signi�-
cance testing. The di�erence in ratio bounds between
two di�erent contract types, k and l, applied to the
same problem instance j, is

rklj = rkj � rlj

The mean di�erence between the contract types is

rkl =
1

n

nX

j=1

rklj

Comparison of social welfare

Compared to the other contract types, the mean ratio
bound for O-contracts, rO, does not vary as much in the
number of agents or tasks. The ratio bound increases
slightly with both the numbers of agents (Figure 2) and
the number of tasks (Figure 3). The ratio bound for O-
contracts varies between 1.1 and 1.2, which means that
the social welfare using O-contracts is 10% - 20% from
optimal.
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Figure 2: Ratio bound as a function of the number of
agents. The graphs for M-contracts do not include any val-
ues for two agents or two tasks since at least three agents
and three tasks are needed in an M-contract.

As the number of tasks increases, the mean ratio
bound, rC , for C-contracts decreases (Figure 3), i.e.,
using C-contracts leads to local optima that are closer
to the global optimum when the number of tasks is
large. While the decrease is monotonic, it is greatest
for small numbers of tasks. The ratio bound increases
as the number of agents increases (Figure 2). This is
especially noticeable in the cases with few tasks (2-5).
For greater numbers of tasks, the increase in the ratio
bound is smaller (Figure 2, bottom left).
The mean ratio bound, rS , for S-contracts also de-

creases with the number of tasks, and increases with
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Figure 3: Ratio bound as a function of the number of tasks.

the number of agents. However, for S-contracts the in-
crease in the ratio bound is considerable even for large
numbers of tasks.
As expected, M-contracts perform better both when

the number of agents increases (Figure 2) and when the
number of tasks increases (Figure 3). In other words,

the mean ratio bound, rM , decreases with the number
of tasks and agents. This is obvious in the bottom right
graph in Figure 3. Extrapolating from these results sug-
gests that M-contracts could reach a lower ratio bound
than any of the other contract types for much greater
numbers of agents and tasks than eight.
Figure 4 shows that O-contracts always perform bet-

ter than S- and M-contracts. C-contracts provide a
lower ratio bound than O-contracts when the number
of tasks is greater than the number of agents. For those
numbers of agents and tasks, C-contracts are the best
contract type also when compared to S- and M- con-
tracts. So, the top left graph in Figure 4 summarizes
which contract types are best for which numbers of
agents and tasks.5

Computational aspects

The number of contracts that has to be tried before
reaching a local optimum varies considerably across the
contract types, as does the number of contracts that is
needed to verify that a local optimumhas been reached,
Figure 5. As expected, the number of contracts made

5The black and white areas represent results that are
signi�cant at the 0.05 con�dence level of the mean di�erence
ratio bounds in a paired t-test. The gray areas represent
results that are not signi�cant at the 0.05 level, yet one of
the contracts is better. In the dark gray areas the latter
contract is better while in the lighter gray areas the former
is better. While the paired t-test formally assumes normal
distributions, we use it because it has been shown to be very
robust against distributional variations (Cohen 1995).
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Figure 4: Pairwise comparison of the di�erences in ratio
bounds r

kl for O-, C-, S-, and M-contracts. Above each
graph the two contract types under comparison are stated.
The darker the color in a square is, the better the latter
contract type.

and tried before reaching a local optimum, and the
number of contracts needed to verify the local optimum
increase with the number of tasks. These numbers are
polynomial in tasks for all contract types (the curves are
sublinear on a logarithmic scale). Similarly, the num-
bers are polynomial in agents|these curves are omitted
for brevity.

O-contracts perform on average the largest number
of contracts before reaching a local optimum, followed
by C-contracts, S-contracts, and M-contracts. The fact
that O-contracts only move one task in each contract
is likely to contribute to this result. This result is in-
teresting since O-contracts are desirable because they
require the smallest number of contracts to verify that
a local optimum has been reached. On the other hand,
O- and C-contracts need to try a larger number of con-
tracts before reaching a local optimum than S- and M-
contracts do. In the case of six agents and six tasks, O-
contracts and C-contracts still need less than 100 con-
tracts to reach a local optimum|except in a small num-
ber of cases. With the exclusion of some exceptional
cases where several thousand contracts are needed, M-
contracts �nd local optima after a small number of con-
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Figure 5: Number of contracts tried (including those to
verify the local optimum) before the system reached a local
optimum (dotted line), and number of contracts performed
before reaching the local optimum (solid line). Left graphs
have linear scales. The scales on the value axes di�er be-
tween the graphs. The value axes of the graphs on the right
have logarithmic scales.

tracts have been tried. This may be a�ected by the spe-
ci�c order of trying M-contracts. Note that the discus-
sion until now concerns the number of contracts needed
to reach a local optimum, not the number needed to ver-
ify that one has been reached. M-contracts need by far
the greatest number of contracts to verify that the so-
lution is a local optimum. Then, in order, C-contracts,
S-contracts, and O-contracts follow.

The CPU-time used for negotiation is proportional to
the number of contracts tried, but the constant of pro-
portionality varies greatly between the contract types:
it is much greater for M-contracts than O-, C-, and S-
contracts. This is because M-contracts are more com-
plicated than the other contract types, and because

many contracts need to be checked to verify that a local
optimum has been reached.

Dynamics of contracting

The typical �nal task allocations are very di�erent be-
tween the contract types. C-contracts tend to concen-
trate the tasks to one agent or a few of them. O-
contracts tend to spread the contracts to all the agents.
Due to the sequencing of M-contracts, the tasks tend
to be allocated too often to agent 1. One could avoid
such anomalies by randomly picking M-contracts to try.
However, a systematic scheme is necessary to verify
that a local optimum has been reached. The number of
tasks per agent cannot change at all when S-contracts
are used, which contributes to their poor performance.
As is desired from an anytime contracting perspective,
contracts performed earlier often improved the social
welfare more than later contracts.

Conclusions

The capability to pro�tably reallocate items is a key
feature in automated negotiation. Currently, the most
widely used contract type allows for only one task at
a time to be moved from one agent to another (O-
contracts). New contract types (cluster (C), swap (S),
multiagent (M), and OCSM-contracts) were recently in-
troduced to avoid some of the local optima in which
O-contracts can get stuck when used by myopic self-
interested agents. They are all based on moving several
tasks in a single contract. This reduces the number of
local optima in the search space of task allocations for
hill-climbing-based contracting algorithms.
OCSM-contracts guarantee that a global optimum is

reached in a �nite number of contracts independent of
the order of the contracts. Although this is a powerful
result for small problem instances, in large-scale prob-
lems the number of steps needed to reach the global
optimum may be impractically large. In such problems
it is better to accept the best achievable solution in a
limited amount of time than to strive for the global
optimum. Marginal cost based contracting allows this
because it is an anytime algorithm: each agent's payo�
increases monotonically in time. However, the rate of
increase depends on which contract types are used. To
determine how best to increase social welfare quickly in
time, we compared the �ve contract types on an exam-
ple problem called the multiagent TSP.
The results regarding the social welfare of the local

optima of the di�erent contract types provide guidelines
to system builders regarding what contract types to use
in di�erent environments when computation is limited.
We also presented timing results which can be used in
the choice of contract type if there is not enough time
to even reach a local optimum. In addition, our results
help in the choice of contract type when certain prop-
erties of the �nal outcome are desired, e.g., that tasks
are distributed among multiple agents or concentrated
to just a small number of agents. For six agents and six



tasks, a local optimumwas reached within the �rst 100
contracts tried, with the exclusion of some exceptional
cases. This is important since several hundred - some-
times several thousand - contracts were often tried be-
fore it could be veri�ed that a local optimum had been
reached. M-contracts reached a local optimum faster
(when measured in the number of contracts tried or in
the number of contracts performed before the optimum
was reached) than the other contract types. However,
M-contracts require more CPU-time per contract than
O-, C-, or S-contracts. They also require a signi�cantly
larger number of contracts to be tried in order to verify
that a local optimum has been reached.
For these relatively small problem instances, O- and

C-contracts led to better local optima than S- and M-
contracts. C-contracts performed best when the num-
ber of tasks was greater than the number of agents; oth-
erwise O-contracts were best. Extrapolating to prob-
lems containing more agents and tasks, M-contracts
may reach the best local optima. Despite the fact that
O- and C-contracts lead to similar social welfare val-
ues, the typical task allocations are very di�erent: O-
contracts tend to spread the tasks among all agents
while C-contracts tend to concentrate the tasks to only
one agent or a few agents.
Sequencing of contracts within a particular contract

type in
uences the results. Analyzing this e�ect fur-
ther is part of our future research. Also, to improve the
social welfare, more than one contract type can be used
during contracting (Andersson & Sandholm 1998c).
Further research is required to determine the optimal
way to sequence the di�erent contract types in order
to obtain satisfactory social welfare with bounded ne-
gotiation time. There are several possible approaches:
change the contract type for every single contract, ap-
ply many possible contracts (maybe all) of one contract
type before changing the type, or �nd a local optimum
using one contract type before changing to another con-
tract type. There is also the question of which of the
contract types should be interleaved with each other.
Yet another interesting area for future work is combin-
ing the di�erent contract types, thus forming atomic
contracts having characteristics of more than one of the
O-, C-, S-, and M-contracts, but not all of them (un-
like OCSM-contracts). These composite contract types
would not guarantee that myopic individually rational
agents will reach the globally optimal allocation, but
they would lead to a local optimum faster than OCSM-
contracts, and to higher average social welfares than
O-, C-, S-, or M-contracts individually.
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