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Abstract

We study the design of pricing mechanisms and auctions when the mechanism designer does
not know the distribution of buyers’ values. Instead, the mechanism designer receives a set of
samples from this distribution and his goal is to use the sample to design a pricing mechanism
or auction with high expected profit. We provide generalization guarantees which bound the
difference between average profit on the sample and expected profit over the distribution. These
bounds are directly proportional to the intrinsic complexity of the mechanism class the designer
is optimizing over. We present a single, general theorem that uses empirical Rademacher com-
plexity to measure the intrinsic complexity of a variety of widely-studied single- and multi-item
auction classes, including affine maximizer auctions, mixed-bundling auctions, and second-price
item auctions. This theorem also applies to multi- and single-item pricing mechanisms in both
multi- and single-unit settings, such as linear and non-linear pricing mechanisms. Despite the
extensive applicability of our main theorem, we match or improve over the best-known gen-
eralization guarantees for many mechanism classes. Finally, our central theorem allows us to
easily derive generalization guarantees for every class in several finely grained hierarchies of
auction and pricing mechanism classes. We demonstrate how to determine the precise level in
a hierarchy with the optimal tradeoff between profit and generalization using structural profit
maximization. The mechanism classes we study are significantly different from well-understood
function classes typically found in machine learning, so bounding their complexity requires a
sharp understanding of the interplay between mechanism parameters and buyer valuations.

1 Introduction

Machine learning is an indispensable tool for large-scale mechanism design given the vast quantity
of consumer data companies have at their disposal. Its applicability to mechanism design is a
natural consequence of a standard assumption made in economics: a buyer’s value for a bundle
of goods is defined by a probability distribution over all the possible valuations he might have for
that bundle. In the model most applicable to machine learning, the mechanism designer receives a
sample from this distribution and his goal is to derive a mechanism with high expected profit.

A recent line of work has augmented the sample-based mechanism design literature with provable
guarantees via learning-theoretic analyses. For example, given a set of samples from the distribution
over buyers’ values, a natural way to determine a mechanism that will likely have strong expected
performance is to choose one with high average profit over the sample. Implicit in this procedure is
the assumption that a mechanism’s performance on the sample will generalize to the distribution.
For a fixed mechanism class A, a bound on the difference between the average profit over the sample
and the expected profit on the distribution for any mechanism in A is known as a generalization

∗This work was posted on arXiv on April 29, 2017 [Balcan et al., 2017].
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(a) Multi-unit pricing mechanisms (b) Single-unit pricing mechanisms

Figure 1: The hierarchies of pricing mechanism families studied in this paper. Generality increases
upwards in the hierarchies.

guarantee. These guarantees are often highly dependent on the intrinsic complexity of the class
A and we use tools from learning theory such as pseudo-dimension and Rademacher complexity
to bound this quantity. Bounding the complexity of a class is the bottleneck in deriving strong
generalization guarantees.

Despite the growing literature on sample-based mechanism design, there is not yet a unifying
framework guiding the derivation of complexity bounds for both simple mechanisms such as take-
it-or-leave-it pricing mechanisms and more combinatorially challenging VCG-based mechanisms
such as affine maximizer auctions (AMAs). Existing frameworks apply to “simple” mechanisms
that can be reduced to the single-buyer setting [Morgenstern and Roughgarden, 2016] or only to
specific learning algorithms that return the mechanism with empirically maximal profit [Syrgkanis,
2017]. Determining the empirically optimal mechanism is typically not feasible for highly complex
mechanism classes such as affine maximizer auctions.

In this work, we extract the common features linking mechanisms that have been studied in
the sample-based mechanism design literature as well as many more. Taking advantage of this
structure,

...we present one general theorem that bounds the intrinsic complexity of a wide swath
of mechanism classes, from simple take-it-or-leave-it pricing mechanisms to complex
VCG-based auctions such as affine maximizer auctions.

We measure intrinsic complexity using empirical Rademacher complexity, a learning theoretic no-
tion that we define in Section 3. Our central theorem immediately implies strong generalization
guarantees for every mechanism class it applies to. See Figures 1 and 2 for hierarchical depictions
of the mechanism classes we study. Surprisingly, despite the theorem’s generality and widespread
applicability, it matches or improves upon the best-known generalization guarantees for many of
the auction classes already studied in the literature.

Next, we apply this machinery to a learning framework known as structural profit maximization
(SPM). Oftentimes, the mechanism classes we study exhibit a finely grained hierarchical structure
and the intrinsic complexity of the subclasses decreases as we traverse down the hierarchy. Of
course, the mechanism designer should not choose the simplest class available simply to guarantee
good generalization because the more complex a mechanism class is, the more likely it is to con-
tain a nearly optimal mechanism. Inevitably, there is a tradeoff between profit maximization and
generalization. The mechanism designer can apply our main theorem to each level in the hierarchy
to derive subclass-specific generalization guarantees and use structural profit maximization to de-
termine the precise level in the hierarchy that will assure him the optimal tradeoff between profit
maximization and generalization. For example, we present several hierarchies of affine maximizer
auctions, a family that was first introduced by Roberts [Roberts, 1979]. At a high level, an AMA
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Figure 2: The hierarchy of auction families studied in this paper. Generality increases upwards in
the hierarchy.

is defined by a set of bidder weights wi, where all of Bidder i’s bids are increased multiplicatively
by a factor of wi, and outcome boosts, where the social welfare of any allocation Q is increased
additively by a factor of λ(Q). The Vickrey-Clarke-Groves mechanism is then run on this trans-
formed bid space. For any set of allocations O, we introduce the class of O-boosted AMAs, where
only allocations in O are boosted. More generally, the class of k-sparse AMAs consists of those
auctions where at most k outcomes are boosted. By varying the value of k or the set O, the
mechanism designer can carefully control the intrinsic complexity of the auction class. Structural
profit maximization allows the mechanism designer to determine the class O or the sparsity k that
guarantees the optimal tradeoff between profit and generalization.

We also apply our main theorem and the SPM learning framework to pricing mechanisms. The
pricing mechanisms we study fall into two categories: single-unit and multi-unit. In the multi-unit
setting, we study both linear and non-linear unit prices. Non-linear pricing allows the mechanism
designer to set differing costs per unit. For example, he may offer a discount for each additional
unit that the buyer buys. Non-linear pricing is ubiquitous throughout many sectors of the economy,
such as the shipping industry, electricity market, cellular service market, air travel industry, and
advertising industry [Wilson, 1993]. A two-part tariff is one of the simplest examples of non-linear
pricing. It consists of a fixed, up-front fee charged to each buyer that buys at least one unit of
the good and a price per unit bought. The fixed fee is often described as an installation, access,
or subscription charge. Oftentimes, producers will offer a menu of two-part tariffs from which the
buyer chooses a payment plan. As Wilson describes, offering a menu of two-part tariffs is often
equivalent to offering a multipart tariff. A multipart tariff consists of a fixed fee and b different
marginal prices that apply in different volume bands or intervals. When the marginal prices are
successively decreasing, a multipart tariff is equivalent to offering a menu of b two-part tariffs
[Wilson, 1993].

In the single-unit setting, the simplest mechanism we study is an item-pricing mechanism,
where each item has a price. Buyers arrive one at a time in a fixed but arbitrary order to buy the
bundle maximizing their utility among the remaining items. We also study generalizations such
as B-pricing mechanisms, where B is a set of bundles and every bundle in B has a price. Buyers
arrive one at a time to buy the bundle maximizing their utility among the remaining items. The
class of (B1, . . . ,Bn)-pricing mechanisms generalizes the class of B-pricing mechanisms to include
bidder-specific prices, as we describe in Section 3.
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Reference theorem and
mechanism class A Price category εA(δ,N) upper bound
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Theorem 4.7:
Length-M menus of two-part tariffs
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Table 1: Generalization guarantees for multi-unit pricing mechanisms. The variables κ and κi for
all i ∈ [m] are upper bounds on the number of units available, as described in Section 3.

We show that when the buyers have simple valuations, such as additive or unit-demand val-
uations, “simple” mechanisms become even simpler, in that our upper bounds on their empirical
Rademacher complexity shrink. Empirical Rademacher complexity is a modern complexity measure
used for obtaining data-dependent, beyond-worst-case generalization guarantees in learning theory
[Bartlett and Mendelson, 2002, Koltchinskii, 2001, Shalev-Shwartz and Ben-David, 2014, Mohri
et al., 2012]. Empirical Rademacher complexity can be measured on the sample and implies gen-
eralization guarantees that improve based on structure exhibited by the sample. Therefore, the
mechanism designer need not know a priori whether the buyers are additive or unit-demand in
order to benefit from these improved guarantees. Rather, if their valuations are simple, this will be
reflected in the empirical Rademacher complexity of the simple mechanism classes we study, and
as a result, the mechanism designer can derive the strong guarantees afforded by simple buyers.

Tables 1, 2, and 3 display each mechanism class A together with the generalization guarantee
upper bound we derive in this work.1 Formally, for a class of mechanisms A, we denote our
generalization guarantee using the notation εA(N, δ), where with probability at least 1 − δ over
the draw of a sample of size N , for all mechanisms in the class A, average profit over the sample
is εA(N, δ)-close to expected profit over the distribution. A generalization guarantee can easily be
converted to a sample complexity guarantee NA(ε, δ), where with probability at least 1−δ over the
draw of a sample of size NA(ε, δ), for every mechanism in A, average profit is ε-close to expected
profit.

For several of the mechanism classes we study, we improve over the previously best-known
generalization guarantees. First of all, we prove generalization bounds for several “simple” mecha-
nism classes when the buyers have valuation profiles not studied by Morgenstern and Roughgarden

1For item pricing mechanisms, our bound for general valuations and anonymous prices matches that by Morgen-
stern and Roughgarden whenever n ≤ O(2m) [Morgenstern and Roughgarden, 2016]. The same holds for additive
buyers with anonymous prices whenever n ≤ O(m) and for non-anonymous prices for all values of n and m. Finally
our bound for general valuations with non-anonymous buyers improves upon that by Morgenstern and Roughgarden.
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Mechanism
class A

Reference theorem and
valuation category

Price category εA(δ,N) upper bound
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Table 2: Generalization guarantees for single-unit pricing mechanisms.

[Morgenstern and Roughgarden, 2016]. For example, Morgenstern and Roughgarden studied item
pricing mechanisms when the buyers have general and additive valuations, and we prove improved
bounds when the buyers have unit-demand valuations. Similarly, we provide generalization bounds
for VCG auctions with item reserves when the buyers have general valuations, thus generalizing
Morgenstern and Roughgarden’s analysis, which covered buyers with additive valuations.2 Finally,
for the class of affine maximizer auctions with single-unit supply, Balcan et al. gave a general-

ization bound of O

(
nm+2(HwHv+Hλ)

Hw

√
m logn
N

(
nĤv(nHw+Hλ)

Hw
+
√
nm logN

)
+ U

√
log(1/δ)

N

)
, where

Hw, Hw, Hv, Hλ, and Ĥv are constants bounding the range of the parameter search space [Balcan
et al., 2016]. The bound in this paper is significantly simpler, applies to the multi-unit setting,
and does not rely on the range of the parameter space. We also improve over Balcan et al.’s gener-

alization bound of O

(
U
√

m3 logn
N + U

√
log(1/δ)

N

)
for mixed bundling auctions with reserve prices

(MBARPs) and our proof is significantly simpler [Balcan et al., 2016].

Key challenges. A major strength of our generalization guarantees is their applicability to any
algorithm that determines the optimal mechanism over the sample, a nearly optimal approxima-
tion, or any other black box procedure. For example, our results apply to any algorithm that uses
samples to optimize over the classes of AMAs or virtual valuation combinatorial auctions (VVCAs),
such as those developed by Sandholm and Likhodedov [Sandholm and Likhodedov, 2015]. How-
ever, generalization guarantees over the full classes of AMAs and VVCAs have proven pessimistic,

2Morgenstern and Roughgarden’s pseudo-dimension upper bounds imply Rademacher complexity upper bounds,
since for any class F with a finite pseudo-dimension of d and any sample S of size N , the empirical Rademacher

complexity is at most O
(√

d/N
)

[Dudley, 1967].
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Reference theorem and
auction class A εA(δ,N) upper bound
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Table 3: Generalization guarantees for auction classes. The variables κi for all i ∈ [m] are upper
bounds on the number of units available, as described in Section 3.

growing exponentially with the number of items [Balcan et al., 2016]. The SPM framework can
ameliorate these worst-case bounds, but depends on a set of hierarchies breaking up these complex
mechanism classes. The development of these hierarchies is the first challenge we address in this
work. We require that these hierarchies be both economically sensible, permitting the mechanism
designer to incorporate his prior knowledge about the buyers, and finely grained, allowing the
designer to utilize the SPM framework and thereby determine a class in the hierarchy with the
optimal tradeoff between profit and generalization.

Moreover, we favor hierarchies whose lower layers are much less complex than the full classes
of AMAs and VVCAs, which raises a second key challenge: understanding the structure of these
mechanism classes in order to bound their empirical Rademacher complexity. We observe that
these mechanism classes are unlike many well-understood function classes in machine learning,
where there is typically a simple connection between the parameter space and hypothesis space.
For example, in linear or polynomial regression, there is a straight-forward mapping from the
parameters of a hypothesis to its output on a given example, and a small change in parameters will
lead to a predictable change in output. In our context, we discover that on a given bidding instance,
the mechanism parameter space is splintered into regions such that the profit of a mechanism defined
by parameters from one region is essentially unrelated to that of another. Roughly speaking, the
number of significantly different profit functions over the range of parameters translates to the
empirical Rademacher complexity of the mechanism class over the sample. As a result, we need to
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understand the structure of the partition induced on the parameter space by the sample in order to
derive our generalization guarantees and traditional methods of bounding empirical Rademacher
complexity do not apply. In light of our analyses, we believe that this work is of auction-theoretic
interest, since we develop novel insights into the structure of these well-studied mechanisms, as
well as learning-theoretic interest, since we study function classes that diverge from those well-
understood classes typically found in machine learning.

2 Related literature

The sample complexity of revenue maximization has proven to be a fruitful research area over the
past several years [Elkind, 2007, Cole and Roughgarden, 2014, Huang et al., 2015, Medina and
Mohri, 2014, Morgenstern and Roughgarden, 2015, Roughgarden and Schrijvers, 2016, Devanur
et al., 2016, Morgenstern and Roughgarden, 2016, Balcan et al., 2016, Syrgkanis, 2017]. Unlike this
work, previous work has primarily concentrated on the single-item setting, with the exception of
work by Morgenstern and Roughgarden, Balcan et al., and Syrgkanis [Morgenstern and Roughgar-
den, 2016, Balcan et al., 2016, Syrgkanis, 2017]. Learning theory tools such as pseudo-dimension
and Rademacher complexity were used by Medina and Mohri, Balcan et al., Morgenstern and
Roughgarden, and Syrgkanis to prove strong guarantees [Medina and Mohri, 2014, Balcan et al.,
2016, Morgenstern and Roughgarden, 2015, Morgenstern and Roughgarden, 2016, Syrgkanis, 2017].
In a similar direction, Feldman et al. and Hsu et al. have developed bounds on the sample com-
plexity of welfare-optimal item pricing mechanisms [Feldman et al., 2015, Hsu et al., 2016]. Earlier
work of Balcan et al. addressed sample complexity results for revenue maximization in unrestricted
supply settings [Balcan et al., 2008].

Morgenstern and Roughgarden proved both generalization guarantees and bounded the differ-
ence between the maximum revenue achievable via a single-item t-level auction and the revenue
achievable via Myerson’s optimal auction [Morgenstern and Roughgarden, 2015]. In this way, the
authors study the trade-off between generalization and revenue guarantees in the single-item case,
though in a worst-case sense. In contrast, we analyze this tradeoff for the multi-item, multi-unit
setting and in a data-dependent, beyond-worst-case sense.

Sample-based mechanism design is closely related to automated mechanism design, a research
area where revenue maximization in multi-item settings is a central topic. The goal is to design
algorithms which take as input information about a set of buyers and return a mechanism that will
extract high revenue from those buyers [Conitzer and Sandholm, 2002, Sandholm, 2003]. The input
information about the buyers could be an explicit description of their priors or, as in this paper,
a set of samples from their priors [Likhodedov and Sandholm, 2004, Likhodedov and Sandholm,
2005, Sandholm and Likhodedov, 2015]. Recently, automated mechanism design has been explored
for applications beyond revenue maximization, such as mechanism design without money and more
general assignment problems [Narasimhan and Parkes, 2016, Narasimhan et al., 2016].

Affine maximizer auctions were introduced by Roberts, who proved that they are the only ex
post strategy-proof mechanisms over unrestricted domains of valuations [Roberts, 1979]. Lavi et
al. went on to prove that under certain natural assumptions, every incentive compatible multi-item
auction is an “almost” affine maximizer, i.e. an AMA for sufficiently high valuations [Lavi et al.,
2003]. Lavi et al. conjecture that the “almost” qualifier is merely technical, and can be removed
in future research.

There is a wealth of work on characterizing the optimal multi-item auction for restricted settings
and designing mechanisms which achieve high, if not optimal revenue in specific contexts (e.g.
[Daskalakis and Weinberg, 2012, Cai et al., 2012, Cai et al., 2013]). Revenue-maximizing mechanism
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design complements a research area which strives to answer the question: can simple mechanisms
achieve near-optimal revenue [Hartline and Roughgarden, 2009]? Recent work has shown that
many of the mechanism classes we study achieve constant-factor approximations to the optimal
revenue in certain settings, including item pricing mechanisms and grand bundle pricing mechanisms
(e.g. [Chawla et al., 2007, Chawla et al., 2010, Hart and Nisan, 2012, Kleinberg and Weinberg,
2012, Babaioff et al., 2014, Cai et al., 2016]) and a special case of B-pricing mechanisms known as
partition mechanisms [Babaioff et al., 2014, Rubinstein, 2016]. We note that these approximation
guarantees only hold in certain settings, such as when the buyers are unit-demand or subadditive.
This highlights a strength of our results: our data-dependent bounds adapt nicely to the structure
of the buyers, and we do not need to know this structure a priori in order to derive the improved
guarantees that simple buyers afford. Further, even if the buyers do not have well-structured
valuations, we can nevertheless bound generalizability.

3 Preliminaries, notation, and the mechanism hierarchies

We consider the problem of selling m heterogeneous goods to n consumers. We denote a bundle of
goods as a quantity vector q and we denote the ith component of q as q[i]. Accordingly, the bundle
consisting only of the ith item is denoted by the standard basis vector ei, where e[i] = 1 and e[j] = 0
for all j 6= i. In the single-unit case, q ∈ {0, 1}m. Each consumer i ∈ [n] has a valuation function
vi over bundles of goods. If one bundle q0 is contained within another bundle q1 (i.e., q0[j] ≤ q1[j]
for all j ∈ [m]), then vi (q0) ≤ vi (q1) and vi(0) = 0. We denote an allocation as Q = (q1, . . . ,qn)
where qi is the bundle of goods that consumer i receives under allocation Q. There is an unknown
distribution D over buyers’ values.

In the multi-unit setting, we assume that the seller has a cost function c(Q) which equals the
amount it costs the seller to produce the goods allocated under Q. We need to make a simple as-
sumption about the total number of units demanded by the consumers or else the pseudo-dimension
of many mechanism classes we study will be infinite. We assume that the cost function naturally
caps the total number of units of each item that the producer will supply. In other words, for each
item i, there is some cap κi such that for all valuation functions in the support of D, it will cost
the producer more to produce κi units of item i than the buyers are willing to pay. Formally, this
means that there exists a vector (κ1, . . . , κm) such that for all valuation vectors in the support of
D and for all allocations Q = (q1, . . . ,qm), if there exists an item i such that

∑n
j=1 qj [i] > κi, then∑n

j=1 vj(qj)− c(Q) < 0.

In the multi-unit setting, there are
∏m
i=1

(
κi+n
n

)
different allocations possible. This is because

the number of ways to allocate at most κi unlabeled units among n consumers is
(
κi+n
n

)
. In the

single-unit setting, the number of different allocations is (n+ 1)m because each of the m items can
go to one of the n buyers or to no one. We denote the total number of different quantity vectors
as K. In the multi-unit setting, K =

∏m
i=1 (κi + 1) and in the single-unit setting, K = 2m. We

use the notation v1 = (v1 (q1) , . . . , v1 (qK)) and v = (v1, . . . ,vn) to denote a vector of consumer
valuation functions. In the multi-item setting, we study consumers with general valuations. In

the single-item setting, we study consumers with general, additive
(
vi(q) =

∑
j:q[j]=1 vi(ej)

)
, and

unit-demand
(
vi(q) = maxj:q[j]=1 vi(ej)

)
valuations.

We say that profitA(v) is the profit of a mechanism A on the valuation vector v. Denoting
the payment of any one consumer i under mechanism A given valuation vector v as pi,A (v) and the
outcome as QA(v), we have that profitA(v) =

∑n
i=1 pi,A (v)− c (QA(v)). Throughout this work,

we study mechanisms parameterized by a vector p ∈ Rd for some d, and we refer to the profit of
the mechanism defined by p on the valuation vector v as profitp(v). If we fix v and consider the
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profit as a function of p, then we use the notation profitv(p). Finally, we define UD,A to be an
upper bound on the profit achievable by any mechanism in the class A over the support of D. For
the sake of readability, we drop the subscript when the mechanism class and distribution are clear
from context.

Many of the auction classes that we consider have a design based on the classic Vickrey-Clarke-
Groves mechanism (VCG) [Vickrey, 1961, Clarke, 1971, Groves, 1973]. The VCG allocates the items
such that the social welfare of the bidders, that is, the sum of their valuations for the allocated
items, is maximized. Each winning bidder then pays her bid minus a “rebate” equal to the increase
in welfare attributable to her presence in the auction. We note that every auction in the classes we
study is incentive compatible, so we may assume that the bids equal the bidders’ valuations.

3.1 Mechanism classes

We now define the mechanism families in the hierarchies we study. See Figures 1 and 2 for the
hierarchical organization of the mechanism classes, together with the papers that introduced each
family.

3.1.1 Multi-unit pricing mechanisms

First, we describe the pricing mechanisms we study, beginning with multi-unit mechanisms. All of
these mechanisms can utilize either anonymous or non-anonymous prices. Under an anonymous
pricing mechanism each consumer is subject to the same prices as every other consumer. Under
a non-anonymous pricing mechanism different consumers are subject to different prices. This
typically results in higher profit.

Non-linear pricing mechanisms. This paper studies non-linear pricing under the bundling
interpretation described in Chapter 4.3 of Wilson’s book on non-linear pricing [Wilson, 1993]. The
mechanism designer sets a price per quantity vector q denoted p(q). Consumer j will purchase the
bundle that maximizes vj(q)− p(q).

Additively decomposable non-linear pricing mechanisms. There exists m functions pi :
[κi]→ R for all i ∈ [m] such that for every quantity vector q, p(q) =

∑m
i=1 pi (q[i]).

Two-part tariffs. A two-part tariff is a non-linear pricing scheme for a single good made up of two
parts: 1) A fixed, up-front fee charged to each consumer who buys at least one unit of the good and
2) A price per unit bought. We denote a menu of M two-part tariffs as

{(
p1

0, p
1
1

)
, . . . ,

(
pM0 , pM1

)}
,

where
(
pi0, p

i
1

)
is the ith entry on the menu with a fixed fee pi0 and a price per unit pi1. Each

consumer can choose his payment plan among any of the M menu entries. Since there is only one
item, we denote the cap on the total number of units the producer will supply as κ.

3.1.2 Single-unit pricing mechanisms

For single-unit pricing mechanisms, we assume that there is some fixed but arbitrary ordering on
the consumers such that the first consumer in the ordering arrives first at the marketplace and
buys the bundle of goods that maximizes his utility, then the next consumer in the ordering arrives
at the marketplace and buys the bundle of remaining goods that maximizes his utility, and so on.
We assume that this ordering over bidders is known to the mechanism designer. It is important for
the mechanism designer to know this ordering in the single-unit setting because the order in which
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heterogeneous consumers arrive at the marketplace could affect profit drastically. In this setting,
we assume the seller does not have a cost function.

Bundle pricing mechanisms. First, we define bundle pricing mechanisms with non-anonymous
reserve prices, which we refer to as (B1, . . . ,Bn)-pricing mechanisms, where B1, . . . ,Bn are sets of
bundles. Each bundle (or equivalently, quantity vector) q ∈ Bi has a buyer-specific reserve price
pi(q). We require that the singleton set ej is in Bi for each item j ∈ [m] and each buyer i ∈ [n] so
that if q 6∈ Bi, then we define pi(q) =

∑
j:q[j]=1 pi(ej). In the case of anonymous reserve prices, we

refer to the mechanism as a B-pricing mechanism, where B = B1 = · · · = Bn and p1 = · · · = pn.

Item pricing mechanisms. Item pricing mechanisms are a special case of bundle pricing mech-
anisms where only the bundles consisting of a single item receive prices.

3.1.3 Multi-unit auction classes

Next we define the multi-unit auction classes we study in this work.

Affine maximizer auctions (AMAs). An AMA A is defined by a set of weights per bidder
wj ∈ R>0 and boosts per allocation λ (Q) ∈ R. These parameters allow the mechanism designer to
multiplicatively boost any bidder’s bids by their corresponding weight and to increase the likelihood
that any allocation Q is returned as the output of an auction by increasing λ(Q). More concretely,
the allocation Q∗ of an AMA A is the one which maximizes the weighted social welfare, i.e. Q∗ =

argmax
{∑n

j=1wjvj (qj) + λ (Q)− c(Q)
}
. The payment function of A has the same form as the

VCG payment rule, with the parameters factored in to ensure incentive compatibility. For all
j ∈ [n], the payments are

pj,A (v) =
1

wj

∑
` 6=j

w`v`

(
q−j`

)
+ λ

(
Q−j

)
− c

(
Q−j

)
−

∑
`6=j

w`v` (q∗` ) + λ (Q∗)− c (Q∗)

 ,
where Q−j = argmax

{∑
6̀=j w`v` (q`) + λ (Q)− c(Q)

}
.

λ-auctions. A λ-auction is an AMA where w1 = · · · = wn = 1.

O-boosted AMAs and λ-auctions. Let O be a set of allocations. The set of O-boosted AMAs
(respectively, λ-auctions) consists of all AMAs (respectively, λ-auctions) where only outcomes in
O are boosted. In other words, if λ(Q) > 0, then it must be that Q ∈ O.

k-sparse AMAs and λ-auctions. The set of k-sparse AMAs (respectively, λ-auctions) consists
of all AMAs (respectively, λ-auctions) where at most k outcomes are boosted. Notice that if AO
is the set of O-boosted AMAs for some set O, then the set of k-sparse AMAs is equal to the union
of all AO where |O| ≤ k.

Virtual valuation combinatorial auctions (VVCAs). VVCAs are a subset of AMAs. The
defining characteristic of a VVCA is that each λ (Q) is split into n terms such that λ (Q) =∑n

i=1 λi (Q) where λi (Q) = ci,q for all allocations Q that give Bidder i exactly bundle q.
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3.1.4 Single-unit auction classes

As in the case of single-unit pricing mechanisms, we assume the seller does not has a cost function.

VCG auctions with anonymous bundle reserves. Each auction is defined by a set of bundles
B and each bundle q ∈ B has a reserve price p(q). We require that B contains the singleton bundle
ej for all items j ∈ [m]. This way, if a bundle q is not in B, then we define the reserve price of
q to be p(q) =

∑
j:q[j]=1 p(ej). For an outcome Q, let qQ be the bundle of items not allocated.

The allocation Q∗ of this auction is the one that maximizes
∑n

i=1 vi (qi) + p (qQ). Bidder j pays∑
i 6=j vi

(
q−ji

)
+ p

(
qQ−j

)
−
(∑

i 6=j vi (q∗i ) + p (qQ∗)
)

, where Q−j is the allocation that maximizes∑
i 6=j vi (qi) + p (qQ).

Mixed bundling auctions with reserve prices (MBARPs). The class of mixed bundling
auctions (MBAs) is parameterized by a constant c ≥ 0 which can be seen as a discount for any
bidder who receives the grand bundle. Formally, the c-MBA is the λ-auction with λ(Q) = c if some
bidder receives the grand bundle in allocation Q and 0 otherwise.3 MBARPs are identical to MBAs
though with reserve prices. In a single-item VCG auction (i.e. second price auction) with a reserve
price, the item is only sold if the highest bidder’s bid exceeds the reserve price, and the winner
must pay the maximum of the second highest bid and the reserve price. To generalize this intuition
to the multi-item case, we enlarge the set of agents to include the seller, who is now Bidder 0 and
whose valuation for a set of items is the set’s reserve price. Working with this expanded set of
agents, the bidder weights are all 1 and the λ terms are the same as in the standard MBA setup.
Importantly, the seller makes no payments, no matter her allocation. More formally, given a vector
of valuation functions v, the MBARP allocation is Q∗ = argmax {

∑n
i=0 vi (qi) + λ (Q)} . For each

i ∈ {1, . . . , n}, Bidder i’s payment is

pA,i(v) =
∑

j∈{0,...,n}\{i}

vj

(
q−ij

)
+ λ

(
Q−i

)
−

∑
j∈{0,...,n}\{i}

vj
(
q∗j
)
− λ (Q∗) ,

where

Q−i = argmax

 ∑
j∈{0,...,n}\{i}

vj (qj) + λ (Q)

 .

3.2 Learning theory background

In this work, we are concerned with generalization guarantees for uniformly learnable classes of
mechanisms. We begin with a formal definition of these concepts.

Definition 3.1 (Uniformly learnable). A class A is uniformly learnable if there exists a function
εA(N, δ) such that for any δ ∈ (0, 1), with probability at least 1−δ over the draw of a sample of size
N from the distribution over buyers’ values D, for any mechanism A in A, the difference between
the average profit of A over the sample and its expected profit over D is at most εA(N, δ).

The function εA(N, δ) is known as a generalization guarantee for learning over the class A.
Learning theorists have developed many tools to help derive generalization guarantees such as em-
pirical Rademacher complexity and pseudo-dimension which quantify the “complexity” of a class of

3Balcan et al. proved that if A is the class of MBAs, then εA(N, δ) ≤ O
(
U
√

1
N

log 1
δ

)
[Balcan et al., 2016].
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functions. First, we formally define empirical Rademacher complexity in terms of mechanism profit
functions and then provide a more intuitive notion of the quantity that it measures. Throughout
this paper, we slightly abuse notation and use A both to refer to a class of mechanisms and the
class of those mechanisms’ profit functions.

Definition 3.2 (Empirical Rademacher complexity). The empirical Rademacher complexity of A
with respect to the sample S =

{
v1, . . . ,vN

}
is defined as

R̂S(A) = Eσ

[
sup
A∈A

1

N

N∑
i=1

σi · profitA
(
vi
)]
,

where σ = (σ1, . . . , σN )>, with σi ∼ U ({−1, 1}).

Intuitively, the supremum measures, for a given sample S and Rademacher vector σ, the max-
imum correlation between profitA

(
vi
)

and σi over all A ∈ A. Taking the expectation over σ, we
can then say that the empirical Rademacher complexity of A measures the ability of profit functions
from A (when applied to a fixed sample S) to fit random noise. We are able to derive strong sample
complexity bounds with empirical Rademacher complexity. For example, the following bound is
well-known.

Theorem 3.3 ([Shalev-Shwartz and Ben-David, 2014]). Suppose that for any sample S of size N ,
R̂S(A) ≤M for some M ∈ R. Then

εA(N, δ) ≤ 2M + 4U

√
2

N
ln

4

δ
.

Moreover, for a sample S, suppose profitÂ ∈ A is a profit function with the maximum aver-
age value over S and profitA∗ is a function with maximum expected value with respect to the
distribution D. Then with probability at least 1− δ,

Ev∼D [profitA∗ (v)]− Ev∼D
[
profitÂ (v)

]
≤ 2R̂S(A) + 5U

√
2

N
ln

8

δ
.

The pseudo-dimension of a mechanism class A is another means of analyzing the complexity
of A, and thereby deriving useful generalization guarantees. To define pseudo-dimension, let S ={
v1, . . . ,vN

}
be a sample drawn from D and let (r1, . . . , rN ) ∈ RN be a set of targets. We say

that (r1, . . . , rN ) witnesses the shattering of S by A if for all T ⊆ S, there exists some mechanism
AT ∈ A such that for all vi ∈ T , profitAT

(
vi
)
≤ ri and for all vi 6∈ T , profitAT

(
vi
)
> ri. If

there exists some r that witnesses the shattering of S by A, then we say that S is shatterable by
A. Finally, the pseudo-dimension of A is the size of the largest set that is shatterable by A. The
following theorem is well-known.

Theorem 3.4 ([Dudley, 1967]). If the pseudo-dimension of a class A is d, then for any sample S

of size N , R̂S(A) = O

(
U
√

d
N

)
.

4 Generalization guarantees

In this section, we uncover structural connections between the mechanism classes that we study
which allow us to abstractly reason about their Rademacher complexity. The profit function de-
pends first and foremost on the allocation made to each of the buyers. In the case of pricing
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Figure 3: An illustration of the partition induced on R2
≥0 by the scenario described in Example 4.1.

mechanisms, profit is completely determined once these allocations are set. Meanwhile, the auction
classes we study are variants on the classic VCG mechanism, so the profit also depends on the
n allocations that would be made without each buyer’s participation in turn. Once all of these
n+ 1 allocations are fixed, the payment function is simple — it is a linear function of the auction’s
parameters and the buyers’ valuations for each of the n+ 1 allocations. The challenge of bounding
the complexity of these classes of mechanisms therefore comes down to understanding the connec-
tion between a mechanism’s parameters and the resulting allocation, or in the case of auctions,
the resulting n + 1 relevant allocations on a given valuation vector. We can often partition the
mechanism parameter space into a finite number of regions over which these allocations are fixed for
a given valuation vector and over which the profit is a fixed linear function. The following example
illustrates the partition induced on R2

≥0 by a specific valuation profile and the VCG auction with
anonymous item reserve prices.

Example 4.1. Suppose that there are two bidders and two items for sale in the single-unit set-
ting. Bidder 1 has the valuation function v1((1, 0)) = 3, v1((0, 1)) = 4, and v1((1, 1)) = 6.
Bidder 2 has the valuation function v2((1, 0)) = 5, v2((0, 1)) = 3, and v2((1, 1)) = 6. We ana-
lyze the class of VCG auctions with anonymous item reserves, so the auction’s parameters are in
R2
≥0. First, we show that R2

≥0 can be partitioned into 4 regions so that if (p((1, 0)), p((0, 1))) and
(p′((1, 0)), p′((0, 1))) are from the same region, the outcome of the resulting VCG auction will be
the same. To this end, notice that the allocation ((0, 1), (1, 0)), where Bidder 1 receives item 2 and
Bidder 2 receives item 1, will be the allocation of any auction so long as v1((0, 1)) + v2((1, 0)) ≥
v1 (q1) + v2 (q2) + p (qQ) for any allocation Q. Simple calculations show that this will be the case
so long as p((1, 0)) ≤ 5 and p((0, 1)) ≤ 4. Along the same lines, the allocation will be ((0, 1), (0, 0))
so long as p((1, 0)) ≥ 5 and p((0, 1)) ≤ 4 and the allocation will be ((0, 0), (1, 0)) so long as
p((1, 0)) ≤ 5 and p((0, 1)) ≥ 4. Otherwise, the allocation is ((0, 0), (0, 0)). This is illustrated by
Figure 3(a), where p((1, 0)) scales along the x-axis and p((0, 1)) scales along the y-axis.

In Figure 3(b) we perform the same analysis in the case where Bidder 2 is not present in the
auction and Figure 3(c) shows the same analysis when Bidder 1 is not present in the auction.
Finally, Figure 3(d) displays the overlay of these three partitions. By construction, the profit in
each region is a linear function of the prices. For example, consider the region marked by a star.
From Figure 3(a), we know that the allocation of auction defined by any price pair from this region
is ((0, 1), (1, 0)). From Figure 3(b), the allocation without Bidder 2’s participation is ((0, 0), (0, 0)),
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and from Figure 3(c), the allocation without Bidder 1’s participation is ((0, 0), (0, 1)). Therefore,
Bidder 1 pays v2((0, 1))+p((1, 0))−v2((1, 0)) = p((1, 0))−2 and Bidder 2 pays p((1, 0))+p((0, 1))−
v1((0, 1)) = p((1, 0)) + p((0, 1))− 4, so the profit in this region is 2p((1, 0)) + p((0, 1))− 6, a linear
function of (p((1, 0)), p((0, 1))).

In this section, we show that the empirical Rademacher complexity of a class of mechanisms
can be bounded by a function of both the number of regions an arbitrary sample induces on the
parameter space and the dimension of the parameter space. We find that mechanisms that have
been deemed “simple” in the literature often admit partitions that are small and easy to characterize
over a low-dimensional parameter space. We also demonstrate that the complexity of the partition
induced by a sample, and thus the empirical Rademacher complexity of a class of mechanisms over
that sample, is intricately bound to the complexity of the buyers. Since empirical Rademacher
complexity is a measurement the mechanism designer can make on the sample, he can count or
bound the number of regions induced by the sample on the parameter space and calculate his
generalization guarantee accordingly. In this way, he does not need to make any assumption about
whether the distribution is over simple buyers or not.

We now present our main empirical Rademacher complexity guarantee, which we then instanti-
ate for a wide variety of mechanisms. These bounds immediately imply the generalization guarantee
upper bounds listed in Tables 1, 2, and 3 by Theorem 3.3.

Theorem 4.2. Let F be a class of mechanism profit functions such that each mechanism is pa-
rameterized by a vector p ∈ X ⊆ Rd and let S =

{
v1, . . . ,vN

}
be a sample of valuation vectors.

Suppose that there are at most r regions partitioning X such that on each sample vi, profitvi (p)
is linear as p ranges over a single region R, i.e. profitvi (p) = uiR ·p + aR for some uiR ∈ Rd and

aR ∈ R. Then R̂S(F) ≤ O
(
U
√

(log r + d log d) /N
)
.

Proof. Suppose that N is the size of the largest shatterable set, so Pdim(F) = N . As we see in
Lemma 4.3, it must be that N ≤ d logN+log(rd). We can deduce that N ≤ 4d log(2d)+2 log(rd) =
O(d log d+log r) by using the fact that for c ≥ 1 and b > 0, if x ≤ c log x+b, then x ≤ 4c log(2c)+2b
[Shalev-Shwartz and Ben-David, 2014], and setting x = N, c = d, and b = log(rd). Therefore,
Pdim(F) ≤ O(d log d+ log r). The Rademacher complexity bound follows from Theorem 3.4.

Lemma 4.3. Let F be a class of mechanism profit functions such that each mechanism is param-
eterized by a vector p ∈ X ⊆ Rd and let S =

{
v1, . . . ,vN

}
be a shatterable sample of valuation

vectors. Suppose that there are at most r regions partitioning X such that on each sample vi,
profitvi (p) is linear as p ranges over a single region R, i.e. profitvi (p) = uiR ·p + aR for some
uiR ∈ Rd and aR ∈ R. Then N ≤ d logN + log(rd)

Proof. Since S is shatterable, there must be a set of N targets r1, . . . , rN that witness the shat-
tering of S by F . In other words, for all T ⊆ [N ], there exists a parameter vector pT such that
profitvi (pT ) ≤ ri if i ∈ T and profitvi (pT ) > ri if i 6∈ T . We refer to the set of these 2N

special vectors pT as P . Since the regions R partition the parameter space X , we know that each
parameter vector in P comes from some region R. We will now count the maximum number of
vectors in P from a single arbitrary region R.

Fix a region R and a single sample vi with its corresponding witness. For a single sample vi,
we know that profitvi (p) = uiR · p + aR. The set of all p such that uiR · p + aR is less than its
witness ri form a halfspace defined by the hyperplane uiR · p + aR = ri. There exists one such
hyperplane per sample, leading to a total of N hyperplanes. These hyperplanes induce a partition
of R consisting of at most dNd cells [Buck, 1943]. By construction, as we range p over any one
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cell, for all i ∈ [N ], profitvi (p) can only be either less than its witness or greater than its witness.
Therefore, at most one parameter vector in P can come from each cell, so the maximum number
of vectors in P from R is dNd. We chose R to be arbitrary, so this bound holds for all r regions.
Therefore, 2N = |P | ≤ rdNd, which means that N ≤ d logN + log(rd).

We observe that the partitions induced by the mechanism classes we study can be described
as hyperplane arrangements. In particular, let v be a fixed valuation vector and consider any
mechanism class featured in this paper that is defined by a parameter vector p ∈ X . We show that
we can identify a set H of hyperplanes such that the regions induced on X over which profitv(p)
is linear are the connected components of X \H. Buck proved that if X is a subset of Rd, then the
number of connected components is bounded by

∑d
i=1

(|H|
i

)
≤ d|H|d [Buck, 1943]. We use this fact

to prove the following corollary of Theorem 4.2 in this context.

Corollary 4.4. Suppose that for every v ∈ S, there are at most t hyperplanes that partition X into

regions such that profitv(p) is linear over any given region. Then R̂S(F) ≤ O
(
U
√
d log(dt)/N

)
.

Proof. First, each sample in S comes with at most t hyperplanes which partition X into regions
where the corresponding profit function is linear. We denote the partition corresponding to vi by
Pi. Next, the union of all Nt hyperplanes also partition X , and we refer to this partition as P.
Notice that for each region R ∈ P and each index i ∈ [N ], R is fully contained within a single region
in Pi. Therefore, for each region in R ∈ P and for all i ∈ [N ], profitvi(p) is a fixed linear function.
This means that r = |P| ≤ d(Nt)d [Buck, 1943]. By Lemma 4.3 we see that if S is shatterable, then
N ≤ d logN + log(rd) ≤ d logN + 2 log d + d log(Nt) = 2d logN + 2 log d + d log t. Recall that for
c ≥ 1 and b > 0, if x ≤ c log x+ b, then x ≤ 4c log(2c) + 2b [Shalev-Shwartz and Ben-David, 2014].
We set x = N, c = 2d, and b = 2 log d+d log t and derive that N ≤ 8d log(4d)+2(2 log d+d log t) =
O(d log(dt)).

We now use these results to prove bounds on the empirical Rademacher complexity of an array
of mechanism classes.

4.1 Multi-unit pricing mechanisms

We begin by applying Theorem 4.2 to multi-unit pricing mechanisms. Our most general result is
for non-linear pricing mechanisms.

Theorem 4.5. Let A and A′ be the classes of non-linear pricing mechanisms with anonymous and
non-anonymous prices, respectively. Then for any sample S of size N ,

R̂S(A) ≤ O

U
√√√√ 1

N

m∏
i=1

κi

(
log n+

m∑
i=1

log κi

)
and

R̂S(A′) ≤ O

U
√√√√ n

N

m∏
i=1

κi

(
log n+

m∑
i=1

log κi

) .

Proof. In the case of anonymous prices, any non-linear pricing mechanism is defined by
∏m
i=1 (κi + 1)

parameters because that is the number of different bundles. Consumer j will prefer the bundle cor-
responding to the quantity vector q over the bundle corresponding to the quantity vector q′ if
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vj(q) − p(q) ≥ vj(q
′) − p(q′). Therefore, there are at most

∏m
i=1 (κi + 1)2 hyperplanes determin-

ing each buyer’s preferred bundle — one hyperplane per pair of bundles. This means that there
are a total of n

∏m
i=1 (κi + 1)2 hyperplanes in (

∏m
i=1 (κi + 1))-dimensional space such that in any

one region induced by these hyperplanes, the demand bundles of all n consumers are fixed and
profit is linear in the prices of these n bundles. By Corollary 4.4, with d =

∏m
i=1 (κi + 1) and

t = n
∏m
i=1 (κi + 1)2, we have that R̂S(A) ≤ O

(
U
√

1
N

∏m
i=1 κi (log n+

∑m
i=1 log κi)

)
.

In the case of non-anonymous prices, the same argument holds, except that every non-linear
pricing mechanism is defined by n

∏m
i=1 (κi + 1) parameters — one parameter per bundle per con-

sumer. Therefore, d = n
∏m
i=1 (κi + 1), and the result follows from Corollary 4.4.

We achieve improved bounds when the non-linear prices decompose additively over the items
(see the definition of additively decomposable non-linear pricing mechanisms in Section 3.1.1).

Theorem 4.6. Let A and A′ be the classes of additively decomposable non-linear pricing mech-
anisms with anonymous and non-anonymous prices, respectively. Then for any sample S of size
N ,

R̂S(A) ≤ O

U
√√√√ 1

N

m∑
i=1

κi

(
log n+

m∑
i=1

log κi

)
and

R̂S(A′) ≤ O

U
√√√√ n

N

m∑
i=1

κi

(
log n+

m∑
i=1

log κi

) .

Proof. In the case of anonymous prices, any additively decomposable non-linear pricing mecha-
nism is defined by

∑m
i=1 (κi + 1) parameters. As in the proof of Theorem 4.5, there are a to-

tal of n
∏m
i=1 (κi + 1)2 hyperplanes such that in any one region induced by these hyperplanes,

the demand bundles of all n consumers are fixed and profit is linear in the prices of these n
bundles. By Corollary 4.4, with d =

∑m
i=1 (κi + 1) and t = n

∏m
i=1 (κi + 1)2, we have that

R̂S(A) ≤ O
(
U
√

1
N

∑m
i=1 κi (log n+

∑m
i=1 log κi)

)
.

In the case of non-anonymous prices, the same argument holds, except that every non-linear
pricing mechanism is defined by n

∑m
i=1 (κi + 1) parameters — one parameter per item, quantity,

and consumer tuple. Therefore, d = n
∑m

i=1 (κi + 1), and the result follows from Corollary 4.4.

Finally, we apply Theorem 4.2 to menus of two-part tariffs.

Theorem 4.7. Let A and A′ be the classes of length-M menus of two-part tariffs with anony-
mous and non-anonymous prices, respectively. Then for any sample S of size N , R̂S(A) ≤

O

(
U
√

M
N log(nκM)

)
and R̂S(A) ≤ O

(
U
√

nM
N log(nκM)

)
.

Proof. In the case of anonymous prices, every length-M menu of two-part tariffs is defined by
2M parameters: the fixed fee and unit price for each of the M menu entries. Consumer j will
choose the quantity q and menu entry (pi0, p

i
1) that maximizes vj(q)−

(
pi0 · 1q>0 + pi1q

)
. Therefore,

the quantity q and menu entry that she chooses is determined by (κM)2 hyperplanes of the form
vj(q) −

(
pi0 · 1q>0 + pi1q

)
≥ vj(q

′) −
(
pk0 · 1q′>0 + pk1q

′). In total, there are n(Mκ)2 hyperplanes
that determine the menu entry and quantity demanded by all n buyers, over which profit is linear
in the fixed fees and unit prices. Therefore, with d = 2M and t = n(Mκ)2, by Corollary 4.4,

R̂S(A) ≤ O
(
U
√

M
N log(nκM)

)
.
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In the case of non-anonymous reserve prices, the same argument holds, except that every length-
M menu of two-part tariffs is defined by 2nM parameters: for each buyer, we must set the fixed
fee and unit price for each of the M menu entries. Therefore, d = 2nM , and the result follows from
Corollary 4.4.

4.2 Single-unit pricing mechanisms

We begin by deriving bounds for the simplest type of single-unit pricing mechanisms: item pricing
mechanisms when the buyers have additive valuations. When we say that the buyers are additive
(respectively, unit-demand), we mean that the support of the distribution of buyers’ values is over
additive (respectively, unit-demand) valuations.

Theorem 4.8. Let A and A′ be the classes of item pricing mechanisms with anonymous prices
and non-anonymous prices, respectively. If the buyers are additive, then for any sample S of size

N , R̂S(A) ≤ O
(
U
√

m logm
N

)
and R̂S(A′) ≤ O

(
U

√
nm log(nm)

N

)
.

Proof. For anonymous prices, we appeal to Corollary 4.4. We know that an item i will be bought
under the valuation vector vk if there exists a buyer j such that vkj (ei) ≥ p(ei). For a sample vk,

let vk(ei) be the maximum amount that any buyer values item i, i.e. vk(ei) = maxj v
k
j (ei). Item i

is bought under the valuation vector vk if and only if vk(ei) ≥ p(ei). Therefore, for each sample,
there are at most m hyperplanes determining the set of items bought. On a single region induced
by these hyperplanes, profit is a linear function of the prices. Therefore, by Corollary 4.4 with

d = m and t = m, we have that R̂S(A) ≤ O
(√

m logm
N

)
.

The proof for anonymous prices easily generalizes to the case with non-anonymous prices and
we include it below for completeness. We know that an item i will be bought under valuation
vector vk if there exists a buyer j such that vkj (ei) ≥ pj(ei). Therefore, for each sample, there are
at most nm hyperplanes determining the set of items bought. On a single region induced by these
hyperplanes, profit is a linear function of the prices. Therefore, by Corollary 4.4 with d = nm and

t = nm, we have that R̂S(A′) ≤ O
(
U

√
nm log(nm)

N

)
.

A similar analysis allows us to derive the Rademacher complexity of item pricing mechanisms
when the buyers have unit-demand valuations.

Theorem 4.9. Let A and A′ be the classes of item pricing mechanisms with anonymous prices
and non-anonymous prices, respectively. If the buyers are unit-demand, then for any sample S of

size N , R̂S(A) ≤ O
(
U

√
m log(nm)

N

)
and R̂S(A′) ≤ O

(
U

√
nm log(nm)

N

)
.

Proof. For unit-demand buyers with anonymous item pricing, each buyer i will buy the item j
that maximizes vi(ej) − p(ej). Therefore, the outcome of the mechanism is determined by the
n
(
m
2

)
hyperplanes vi(ej) − p(ej) = vi(ek) − p(ek) for all i ∈ [n] and j, k ∈ [m]. With d = m and

t = O(nm2), Corollary 4.4 guarantees the theorem statement. For unit-demand buyers with non-
anonymous prices, the only difference is that d = nm, and the theorem holds by Corollary 4.4.

For the generalized class of bundle pricing mechanisms, we prove the following bounds.
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Theorem 4.10. Let A be the class of B-pricing mechanisms and let A′ be the class of (B1, . . . ,Bn)-

pricing mechanisms. Then for any sample S of size N , R̂S (A) ≤ O

(
U

√
|B|(m+log(n|B|))

N

)
and

R̂S(A′) ≤ O
(
U

√∑n
i=1|Bi|(m+log(n

∑n
i=1|Bi|))

N

)
.

Proof. Every B-pricing mechanism is defined by |B| parameters: the |B| reserve prices. Let p ∈ R|B|
be a vector of the reserve prices. Without loss of generality, suppose that Buyer 1 is the first
consumer to choose which bundle to buy, then Buyer 2, and so on, until Buyer n has bought his
desired bundle. Given a vector of valuations v, Buyer 1’s desired bundle will be q so long as
v1(q) − p(q) ≥ v1(q′) − p(q′) for all other bundles q′. Therefore, this decision is based on

(
2m

2

)
hyperplanes: one for every pair of bundles. Similarly, each Buyer i’s desired bundle will be based
on
(

2m

2

)
hyperplanes: vi(q) − p(q) = vi(q

′) − p(q′). (Technically, this decision may be based on
fewer hyperplanes for all buyers after Buyer 1, since not all items may be available to them when
they choose which bundle to buy.) By Corollary 4.4, with t = O

(
n22m

)
and d = |B| we have that

R̂S(A) ≤ O
(
U

√
|B| log(n|B|22m)

N

)
= O

(
U

√
|B|(m+log(n|B|))

N

)
.

If there are non-anonymous reserve prices, then the same reasoning holds, except now there are∑n
i=1 |Bi| parameters defining each mechanism. Therefore,

R̂S(A′) ≤ O

(
U

√∑n
i=1 |Bi| (m+ log (n

∑n
i=1 |Bi|))

N

)
,

as claimed.

4.3 Multi-unit auctions

We now cover the classes of AMAs and VVCAs, which are the only classes with an exponential
Rademacher complexity upper bound. This is the best we can hope for, since Balcan et al. also
prove an exponential lower bound [Balcan et al., 2016].4

Theorem 4.11. Let A be the class of AMAs, let A′ be the class of VVCAs, and let A′′ be the class
of λ-auctions. For any sample S of size N ,

1. R̂S(A) ≤ O
(
U
√

1
N

∏m
i=1

(
κi+n
n

)∑m
i=1 log

(
κi+n
n

))
,

2. R̂S(A′) ≤ O
(
U
√

1
N · n

∏m
i=1 κi

∑m
i=1 log

(
κi+n
n

))
, and

3. R̂S(A′′) ≤ O
(
U
√

1
N

∏m
i=1

(
κi+n
n

)∑m
i=1 log

(
κi+n
n

))
.

Proof. Every AMA is defined by n +
∏m
i=1

(
κi+n
n

)
≤ 2

∏m
i=1

(
κi+n
n

)
parameters since there are n

bidder weights and at most
∏m
i=1

(
κi+n
n

)
allocation boosts. Given a vector v of valuations, an

allocation Q = (q1, . . . ,qn) will be the allocation of the AMA so long as
∑n

i=1wivi (qi) + λ(Q) −
c(Q) ≥

∑n
i=1wivi (q′i) + λ (Q′)− c(Q′) for all allocations Q′ = (q′1, . . . ,q

′
n) 6= Q. Since the number

of different allocations is at most
∏m
i=1

(
κi+n
n

)
, the allocation of the auction on v is defined by at

4Specifically, Balcan et al. prove that exponentially-many samples are required for uniform convergence over the
classes of AMAs and VVCAs. This implies that the Rademacher complexity of these classes is also exponential.
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most
∏m
i=1

(
κi+n
n

)2
hyperplanes. Similarly, the allocations Q−1, . . . , Q−n are also determined by at

most
∏m
i=1

(
κi+n
n

)2
hyperplanes in

(
2
∏m
i=1

(
κi+n
n

))
-dimensional space. Therefore, by Corollary 4.4,

setting d = 2
∏m
i=1

(
κi+n
n

)
and t = (n+ 1)

(
κi+n
n

)2
we have that

R̂S(A) ≤ O

U
√√√√ 1

N
·
m∏
i=1

(
κi + n

n

)
log

(
(n+ 1)

m∏
i=1

(
κi + n

n

)3
)

≤ O

U
√√√√ 1

N
·
m∏
i=1

(
κi + n

n

)
log

m∏
i=1

(
κi + n

n

)4


≤ O

U
√√√√ 1

N
·
m∏
i=1

(
κi + n

n

) m∑
i=1

log

(
κi + n

n

) .

For the class of VVCAs, the same argument holds except that every VVCA is defined by
n+n

∏m
i=1 (κi + 1) parameters, since there are n bidders weights and n

∏m
i=1 (κi + 1) bidder-specific

bundle boosts ci,q. Similarly, for the class of λ-auctions, the same argument holds except there are
zero bidder weights and

∏m
i=1

(
κi+n
n

)
allocation boosts. Therefore, d = O (n

∏m
i=1 κi) for VVCAs

and d =
∏m
i=1

(
κi+n
n

)
for λ-auctions, and we may again apply Corollary 4.4 to arrive at the theorem

statement.

Next, we analyze the class of O-boosted AMAs.

Theorem 4.12. Let A be the class of O-boosted AMAs. Then for any sample S of size N ,

R̂S(A) ≤ O
(
U

√
(n+|O|)(log(n+|O|)+m logn)

N

)
.

Proof. EveryO-boosted AMA is defined by n+|O| parameters, since there are n bidders weights and
|O| allocation boosts. Fix some valuation vector v. We claim that the allocation of any O-boosted

AMA is determined by at most (n+1)
∏m
i=1

(
κi+n
n

)2
hyperplanes, where

∏m
i=1

(
κi+n
n

)
is the number of

different allocations. To see why this is, notice that the VCG allocation will be the AMA allocation

by default unless there exists some Qj =
(
qj1, . . . ,q

j
n

)
such that

∑
wivi

(
qji

)
+ λ

(
Qj
)
− c(Qj) ≥∑

wivi
(
qki
)

+ λ
(
Qk
)
− c(Qk) for all allocations Qk =

(
qk1, . . . ,q

k
n

)
. This decision governing which

of the
∏m
i=1

(
κi+n
n

)
possible allocations will be the AMA allocation is defined by the

∏m
i=1

(
κi+n
n

)2
hyperplanes, one per pair of distinct allocations Qj and Qk. We now give a precise characterization
of the hyperplane corresponding to an arbitrary pair Qj and Qk, which depends on whether both
allocations are in O, neither are in O, or just one is in O. Therefore, there are three cases:

1. If Qj and Qk are both in O, then Qk will not be allocated by any AMA where the parameters

w1, . . . , wn, λ
(
Qj
)
, and λ

(
Qk
)

are such that
∑
wivi

(
qji

)
+ λ

(
Qj
)
− c(Qj) >

∑
wivi

(
qki
)

+

λ
(
Qk
)
− c(Qk). This corresponds to a hyperplane in the following way. We will use the nota-

tion vj to denote the (n+ 1)-dimensional vector consisting of each bidder’s value for the allo-

cation Qj , i.e., vj =
(
v1

(
qj1

)
, . . . , vn

(
qjn
))

. Also, we use the notation vj ◦ ej to denote the

vector of valuations vj concatenated with the standard basis vector ej ∈ R|O|, which implies

that (w, λ)·vj ◦ej =
∑
wivi

(
qji

)
+λ

(
Qj
)
. This notation allows us to conclude that the set of
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parameter vectors (w, λ)
(
where λ ∈ R|O|

)
under which Qk is never allocated under the corre-

sponding AMA is the halfspace
{

(w, λ) | (w, λ) · vj ◦ ej − c(Qj) > (w, λ) · vk ◦ ek − c(Qk)
}

.
This halfspace’s separating hyperplane is defined by the equation (w, λ)·

(
vj ◦ ej − vk ◦ ek

)
=

c(Qj)− c(Qk).

2. Without loss of generality, suppose that Qk is in O and Qj is not. Then Qk will not be

allocated so long as the parameters w1, . . . , wn, and λ
(
Qk
)

are such that
∑
wivi

(
qji

)
−

c(Qj) >
∑
wivi

(
qki
)

+ λ
(
Qk
)
− c(Qk) (since Qj is not in O, λ

(
Qj
)

= 0). In other
words, the set of parameter vectors (w, λ) where Qk is never allocated are in the halfspace{

(w, λ) | (w, λ) · vj ◦ 0− c(Qj) > (w, λ) · vk ◦ ek − c(Qk)
}

. This halfspace’s separating hy-
perplane is defined by the equation (w, λ) ·

(
vj ◦ 0− vk ◦ ek

)
= c(Qj)− c(Qk).

3. If neither Qj nor Qk are in O, then by the same reasoning as in the above two cases, one of

the
∏m
i=1

(
κi+n
n

)2
hyperplanes defining which parameters lead to which AMA allocations on

the valuation vector v is (w, λ) ·
(
vj ◦ 0− vk ◦ 0

)
= c(Qj)− c(Qk).

These
∏m
i=1

(
κi+n
n

)2
hyperplanes split the parameter space into regions so that for any two

AMAs defined by parameters in the same region, the allocation will be the same. Specifically, given a

parameter vector (w, λ), there must be some allocation Qj such that
∑
wivi

(
qji

)
+λ
(
Qj
)
−c(Qj) ≥∑

wivi
(
qki
)

+ λ
(
Qk
)
− c(Qk) for all allocations Qk, and therefore Qj is the allocation of the

corresponding AMA (or an allocation with the same weighted social welfare, which implies the
same profit, and thus we are unconcerned with specific tie-breaking rules). By construction, for
any set of parameters in the same region as (w, λ), the allocation of the corresponding AMA will
also be Qj .

By a similar argument, it is straightforward to see that
∏m
i=1

(
κi+n
n

)2
hyperplanes determine

the allocation of any AMA in this restricted space without any one bidder’s participation. This

leads us to a total of (n + 1)
∏m
i=1

(
κi+n
n

)2
hyperplanes which partition the space of O-boosted

AMA parameters in a way such that for any two parameter vectors in the same cell, the auction
allocations are the same, as are the allocations without any one bidder’s participation.

Therefore, by Corollary 4.4, setting d = n+|O| and t = (n+1)
∏m
i=1

(
κi+n
n

)2
= O

(∏m
i=1

(
κi+n
n

)3)
,

we have that R̂S(A) ≤ O
(
U
√

1
N (n+ |O|)

(
log(n+ |O|) +

∑m
i=1 log

(
κi+n
n

)))
.

A similar proof technique admits the following theorem.

Theorem 4.13. Let A be the class of O-boosted λ-auctions. Then for any sample S of size N ,

R̂S(A) ≤ O
(
U
√

1
N · |O| log(n|O|)

)
.

Proof. This proof is very similar to that of Theorem 4.12. However, we claim that the allocation
of any O-boosted λ-auction is determined by at most (n + 1)(|O| + 1)2 hyperplanes. This is be-
cause without the bidder weights, the VCG allocation is the only unboosted allocation that has
any chance of being the allocation of the O-boosted λ-auction. Therefore, there are only (|O|+ 1)2

hyperplanes determining the allocation of the λ-auction, and the same number of hyperplanes
determine the allocation of the λ-auction in this restricted space without any one bidder’s par-
ticipation. Therefore, by Corollary 4.4, setting d = |O| and t = (n + 1)(|O| + 1)2, we have that

R̂S(A) ≤ O
(
U
√

1
N · |O| log ((n+ 1)|O|(|O|+ 1)2)

)
= O

(
U
√

1
N · |O| log (n|O|)

)
.
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We use Theorems 4.12 and 4.13 to prove the following generalization guarantees regarding
k-sparse AMAs and λ-auctions.

Theorem 4.14. Let A be the class of k-sparse AMAs and let A′ be the class of k-sparse λ-auctions.
Then εA(N, δ) is at most

O

U
√√√√n+ k

N

(
log(n+ k) +

m∑
i=1

log

(
κi + n

n

))
+ U

√√√√ 1

N

(
k

m∑
i=1

log

(
κi + n

n

)
+ log

1

δ

)
and εA′(N, δ) is at most

O

U√(n+ k) log(n+ k)

N
+ U

√√√√ 1

N

(
k

m∑
i=1

log

(
κi + n

n

)
+ log

1

δ

) .

Proof. We prove this theorem by effectively spreading the confidence parameter δ over all O-

boosted AMAs where |O| = k of which there are at most α :=
∏m
i=1

(
κi+n
n

)k
. Let AO be the set of

O-boosted AMAs for an arbitrary set of allocations O and let Ak be the set of all k-sparse AMAs.
By Theorem 4.12 and the generalization guarantee stated in Section 3, we know that for all sets
of allocations O such that |O| ≤ k, the probability that there exists an auction A ∈ AO such that
|profitD(A)− profitS(A)| ≥ εAO(N, δ/α) is at most δ/α, where

εAO(N, δ/α) ≤ O

U
√√√√n+ k

N

(
log(n+ k) +

m∑
i=1

log

(
κi + n

n

))
+ U

√
1

N
log

α

δ

 .

Notice that εAO(N, δ/α) = εAk(N, δ), where εAk(N, δ/α) equals

O

U
√√√√n+ k

N

(
log(n+ k) +

m∑
i=1

log

(
κi + n

n

))
+ U

√√√√ 1

N

(
k

m∑
i=1

log

(
κi + n

n

)
+ log

1

δ

)
since O

(
log α

δ

)
= O

(
k
∑m

i=1 log
(
κi+n
n

)
+ log 1

δ

)
.

Next, letBS be the bad event where there existsA ∈ Ak such that |profitD(A)− profitS(A)| ≥
εAk(N, δ). We want to show that PrS∼DN [BS ] < δ. To this end, let BS,O be the event where there
exists an auction A ∈ AO such that |profitD(A)− profitS(A)| ≥ εAO(N, δ/α). Again, by Theo-
rem 4.12, we have that PrS∼DN [BS,O] < δ/α. Since Ak = ∪O:|O|=kAO, a union bound ensures that
Pr[BS ] ≤

∑
O:|O|=k PrS∼DN [BS,O] < αδ/α = δ, as desired.

The bound on εA′(N, δ) follows by the exact same reasoning from Theorem 4.13.

4.4 Single-unit auctions

For the class of VCG auctions with bundle reserve prices, we prove the following theorem.

Theorem 4.15. Let A be the class of VCG auctions with anonymous reserve prices over B. Then

for any sample S of size N , R̂S(A) ≤ O
(
U

√
|B|(m+log(n|B|))

N

)
.

Proof. The VCG auction with anonymous item reserve prices over B is defined by |B| parameters:
the |B| reserve prices. Let p ∈ R|B| be a vector of the reserve prices. Given a vector of valuations
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v, any allocation allocating in total the items in a bundle q will partition them among the bidders
in such a way that the social welfare is maximized. Let Qq =

(
qq

1 , . . . ,q
q
n

)
be this allocation. This

will be the allocation of the auction if it maximizes
∑n

i=1 vi
(
qq
i

)
+ p (1− q) since 1 − q is the

bundle of items not allocated under Qq. Therefore, the allocation of the auction is determined by

at most
(

2m

2

)
hyperplanes:

∑n
i=1 vi

(
qq
i

)
+ p (1− q) =

∑n
i=1 vi

(
qq′

i

)
+ p (1− q′) for all bundles

q,q′ ⊆ {0, 1}m. Similarly, at most
(

2m

2

)
hyperplanes determine the allocation without any one

bidder’s participation, so there are at most (n+1)22m relevant hyperplanes per sample. Given a fixed
set of the n+1 allocations Q∗, Q−1, . . . , Q−n, the profit of the VCG auction is a fixed linear function.

Therefore, by Corollary 4.4, with t = O
(
n22m

)
, we have that R̂S(A) ≤ O

(
U

√
|B| log(n|B|22m)

N

)
=

O

(
U

√
|B|(m+log(n|B|))

N

)
.

We conclude by bounding the Rademacher complexity of the class of MBARPs.

Theorem 4.16. Let A be the set of MBARPs and let S be a sample of size N . Then R̂S(A) ≤

O

(
U

√
m(logn+m)

N

)
.

Proof. Fix vt ∈ S. First, for each bundle q ∈ {0, 1}m, let Oq be the set of allocations where exactly
the elements of q are allocated, and let

Qq = argmax
Q∈Oq

{
n∑
i=1

vti (qi)

}
.

Notice that regardless of the reserve prices, if q is comprised of the items allocated in the allocation
of an MBARP, then Qq will be the allocation. After all, if (r1, . . . , rm) are the reserve prices of an
arbitrary MBARP, then it will always be the case that

n∑
i=1

vti
(
qq
i

)
+

∑
j:qq[j]=0

rj ≥
n∑
i=1

vti
(
q′i
)

+
∑

j:q′[j]=0

rj

for any allocation Q′ = (q′1, . . . ,q
′
n) ∈ Oq by definition of Qq.

Next, let Rvt
q be the subset of Rm+1 such that if an MBARP is parameterized by (c, r1, . . . , rm) ∈

Rvt
q , then the allocation of the MBARP on vt is Qq. This means that if q 6= 1,

n∑
i=1

vti
(
qq
i

)
+

∑
j:qq[j]=0

rj ≥
n∑
i=1

vti

(
qq′

i

)
+

∑
j:q′[j]=0

rj ∀q′ 6∈ {q,1} and

n∑
i=1

vti
(
qq
i

)
+

∑
j:qq[j]=0

rj ≥
n∑
i=1

vti
(
q1
i

)
+ c.

In other words, (c, r1, . . . , rm) ∈ Rvt
q if and only if it falls in the intersection of 2m − 1 halfspaces:

∑
j:qq[j]=0

rj −
∑

j:q′[j]=0

rj ≥
n∑
i=1

vti

(
qq′

i

)
− vti

(
qq
i

)
∀q′ 6∈ {q,1}

∑
j:qq[j]=0

rj − c ≥
n∑
i=1

vti
(
q1
i

)
− vti

(
qq
i

)
.
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Similarly, if q = 1, it is not hard to see that we can write Rvt
1 as the intersection of 2m − 1

halfspaces. The same holds for the MBARP without any one bidder’s participation, leading to a
total of (n + 1)2m (2m − 1) = O

(
n22m

)
relevant hyperplanes. Whenever these n + 1 allocations

are fixed, the profit is a fixed linear function of the m reserve prices. By Corollary 4.4, with t =

O
(
n22m

)
and p ∈ Rm+1, we have that R̂S(A) ≤ O

(
U

√
m log(nm22m)

N

)
= O

(
U

√
m(logn+m)

N

)
.

5 Structural profit maximization

In this section, we provide a data-dependent methodology by which the mechanism designer can
determine a mechanism class which provides him the optimal profit-generalization tradeoff. This
tradeoff can be described in terms of two types of profit loss: approximation loss and estimation loss.
To understand this trade-off, let opt(D) be the mechanism which maximizes expected profit over
the distribution of buyers’ values D. Crucially, we do not assume that opt(D) is in the mechanism
class A that the mechanism designer is optimizing over. Further, for a set S of N samples from
D, with a slight abuse of notation, let A(S) be the mechanism in A which maximizes empirical
profit, and let profitD (A(S)) be the expected profit of the mechanism A(S) over D. Similarly,
let A(D) be the mechanism in A that maximizes expected profit over D. We can write the true
profit loss as the difference between the expected profit of opt(D) and the expected profit of A(S),
which decomposes as

profitD(opt(D))− profitD (A(S))︸ ︷︷ ︸
true loss

= profitD(opt(D))− profitD(A(D))︸ ︷︷ ︸
approximation loss

+ profitD(A(D))− profitD (A(S))︸ ︷︷ ︸
estimation loss

.

In words, approximation loss is the amount of profit lost given that the optimal mechanism,
opt(D), is not in the design space A, and estimation loss measures the amount of profit lost given
that we do not know the distribution D, but only have samples from D. Structural risk minimization
is a general technique used in machine learning to pin down the optimal tradeoff between estimation
and approximation loss. In the case of sample-based mechanism design, we are not minimizing risk,
but maximizing profit, so we refer to this process as structural profit maximization (SPM).

We will demonstrate this tradeoff using the abstract notion of a generalization guarantee
εA(N, δ), as defined in Definition 3.1. For a given class A, the form of εA(N, δ) invariably de-
pends on a measure of the class’s intrinsic complexity, which we will refer to as comp(A). For
example, c could be a bound on R̂S(A), in which case εA(N, δ) ≤ 2comp(A) + 4U

√
2 ln(4/δ)/N .

Suppose that A is a rich class of mechanisms which can be decomposed into a nested se-
quence of subclasses A1 ⊆ A2 ⊆ · · · ⊆ Ap = A. For example, if A is the class of AMAs, then
Ak could be the class of k-sparse AMAs. For any standard complexity measure, we have that
comp (A1) ≤ comp (A2) ≤ · · · ≤ comp (Ap). Prior work has primarily given uniform generalization
bounds without taking advantage of hierarchical structure within a mechanism class, as we illus-
trate in the left panel of Figure 4 with p = 4. On the x-axis, we chart the growth in mechanism
complexity. On the y-axis, for i = 1, 2, 3, 4, we plot the hypothetical average revenue over an
arbitrary sample of the mechanism A∗i ∈ Ai that maximizes empirical revenue, i.e. profitS (A∗i ).
We also plot the lower bound on the expected profit of A∗i which is equal to the empirical profit
of A∗i minus the fixed constant εA(N, δ) (the dash-dot line). Finally, we know that the expected
profit of A∗i falls somewhere above this lower bound and potentially below its empirical profit, or
in other words, somewhere in the constant band between the solid and dash-dot line. Our goal is
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Figure 4: These charts are a theoretical illustration of the stronger bounds guaranteed via SPM
(the right panel) as compared to uniform generalization guarantees (the left panel).

to maximize expected profit, but without knowing the underlying distribution, we can only choose
the mechanism that maximizes the lower bound on expected profit. Crucially, the lower bound
on expected profit is always increasing in this scenario and as a result, the mechanism designer
may erroneously think that A∗4 is the best mechanism to field. The mechanism designer will not
know when the mechanism class has grown so complex that performance on the sample no longer
generalizes to the distribution, a phenomenon known as overfitting.

Meanwhile, our general theorem allows us to easily provide a generalization bound εAi(N, δ·w(i))
for each individual class Ai, where w : N→ [0, 1] is a weight function which we explain later in this
section. This is illustrated in the right panel of Figure 4, where for i = 1, 2, 3, 4, the lower bound on
the expected profit of A∗i is equal to its empirical profit minus εAi(N, δ ·w(i)), which is proportional
to the complexity of Ai. Since simpler classes have lower intrinsic complexity, we will have tighter
bounds for classes that are lower in the hierarchy. This lower bound is much more informative and
indicates roughly when the mechanism complexity has grown so large that overfitting has occurred.
By maximizing this complexity-dependent lower bound on expected profit, the mechanism designer
can correctly determine that A∗2 is a better mechanism to field than A∗4. In this way, the mechanism
designer can optimize profit versus generalization. This leads us to the notion of a non-uniformly
learnable class of mechanisms, upon which SPM can be performed.

Definition 5.1 (Non-uniformly learnable). A class A of mechanisms is non-uniformly learnable
if A is the countable union of a set of uniformly learnable classes C = {A1,A2, . . . } with functions
εAi bounding the estimation loss of learning over Ai. This means that given a weight function
w : N→ [0, 1] such that

∑∞
i=1w(i) = 1, for all δ ∈ (0, 1) and for all distributions D, with probability

at least 1 − δ, for all mechanism classes Ai such that w(i) 6= 0 and all mechanisms A ∈ Ai, the
empirical profit of A is εAi(N, δ · w(i))-close to its expected profit.

In effect, the weight function allows us to spread the confidence δ across all mechanism sub-
families in A. Given a non-uniformly learnable class of mechanisms, structural profit maximiza-
tion is the process of determining the mechanism class Ai and the mechanism A ∈ Ai such that
profitS(A)− εAi(N, δ ·w(i)) is maximized, since we know that the expected profit of A is at least
this value. Further, the following theorem shows that the profit of A is close to optimal. Though
this result is well-known for general learning problems, we include the proof for completeness in
Appendix A.
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Theorem 5.2. Let A(S) be the mechanism that maximizes profitS(A)−mini:A∈Ai εAi(N, δ ·w(i))
and let A∗ ∈ A be the mechanism that maximizes profitD(A). Then with probability at least 1−2δ,

profitD (A(S)) ≥ profitD (A∗)− min
i:A∗∈Ai

εAi(N, δ · w(i))− U
√

1

2N
ln

2

δ
.

Both the structural decomposition of A into subsets and the assignment w of weights to these
subsets allow the mechanism designer to encode any prior knowledge he might have about the
buyers. After all, the larger the weight w(i) assigned to a mechanism class Ai is, the larger δ ·w(i)
is, and a larger δ · w(i) implies a smaller εAi(N, δ · w(i)), thereby implying stronger guarantees.
Where might this prior knowledge come from? Oftentimes, it might come from domain expertise;
perhaps the mechanism designer knows that some mechanisms are likely to be more profitable
than others, so assigning a higher weight to classes containing those mechanisms will lead to better
profit. To present this section’s results, we will need the following notation. For an AMA A, let OA
be the set of all allocations Q such that λ(Q) > 0 in A. We first derive the following generalization
guarantee for the SPM hierarchy consisting of the classes of O-boosted AMAs.

Theorem 5.3. Let A be the class of AMAs and let w be a weight function which maps sets of
allocations O to R such that

∑
w(O) ≤ 1. Then for any δ ∈ (0, 1), with probability at least 1 − δ

over the draw of a sample of size N from D, for any auction A ∈ A, the difference between the
average profit of A over the sample and the expected profit of A over D is at most

O

U
√√√√ 1

N
(n+ |OA|)

(
log(n+ |OA|) +

m∑
i=1

log

(
κi + n

n

))
+ U

√
1

N
log

1

δ · w (OA)

 .

We prove a similar theorem for the class of anonymous pricing mechanisms, by which we mean
the union of all B-pricing mechanisms over all sets of bundles B. For a particular anonymous pricing
mechanism A, let BA be the set of bundles with set prices in A.

Theorem 5.4. Let A be the class of anonymous pricing mechanisms and let w be a weight function
which maps sets of bundles B to [0, 1] such that

∑
w(B) ≤ 1. Then for any δ ∈ (0, 1), with

probability at least 1 − δ over the draw of a sample of size N from D, for any mechanism A ∈ A,
the difference between the average profit of A over the sample and the expected profit of A over D
is at most

O

(
U

√
1

N
|BA| (m+ log (n |BA|)) + U

√
1

N
log

1

δ · w (BA)

)
.

Theorem 5.3 follows directly from Theorem 4.12 and Theorem 5.4 follows from Theorem 4.10,
since we only need to multiply the weight term with δ as it appears in both Theorem 4.12 and 4.10.
Theorems 4.7, 4.13, 4.14 and 4.10 similarly imply SPM results for length-M menus of two-part
tariffs, O-boosted λ-auctions, k-sparse AMAs, k-sparse λ-auctions, and bundle pricing mechanisms
with non-anonymous prices.

6 Conclusion

In this work, we provide a unifying framework for bounding the complexity of a wide variety of
mechanism classes. We characterize structural similarities of mechanism classes ranging from simple
take-it-or-leave-it pricing mechanisms to combinatorially challenging VCG-based mechanisms such
as affine maximizer auctions. These similarities lead us to an overarching theorem that bounds

25



the empirical Rademacher complexity of these mechanism classes. Despite this theorem’s wide
applicability, we match and improve over many of the generalization guarantees already provided
in the sample-based mechanism design literature. This all-encompassing theorem also allows us
to easily bound the complexity of finely grained mechanism hierarchies in one swoop. We then
call upon the learning framework known as structural profit maximization in order to show how
the mechanism designer can find the precise level of each hierarchy that will provide him with the
optimal tradeoff between revenue and generalization.

Our work opens many directions for future exploration. A particularly interesting one is an
investigation into data-driven mechanism design from a computational complexity perspective.
Assuming full expressiveness, there is an inevitable tradeoff between deriving data-dependent gen-
eralization guarantees and computational complexity because scanning the input alone will take an
exponential number of steps. Further, empirical Rademacher complexity can be computationally
challenging to compute exactly, but it is sometimes possible to formulate a data-dependent upper
bound as a convex optimization problem (e.g. [Riondato and Upfal, 2015]). A similar approach
might work here. In another direction, as of yet, there has been no research into generalization
guarantees for multi-dimensional sample-based mechanism design when the bidders have valuation
profiles other than general, additive, or unit-demand. It would be interesting to see whether the
wealth of knowledge regarding other valuation profiles, such as submodular valuations, can lead to
improved generalization bounds.
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A Proof of Theorem 5.2

Proof of Theorem 5.2. By assumption, we have that

profitD (A∗)− profitD (A(S)) = profitD (A∗)− profitS (A(S))

+ profitS (A(S))− profitD (A(S))

≤ profitD (A∗)− profitS (A(S)) + min
i:A(S)∈Ai

εAi(N, δ · w(i))

≤ profitD (A∗)− profitS (A∗) + min
i:A(S)∈Ai

εAi(N, δ · w(i))

≤ U
√

ln(2/δ)

2N
+ min
i:A(S)∈Ai

εAi(N, δ · w(i)).

The final inequality holds because by Hoeffding’s inequality, with probability at least 1 − δ,
profitD (A∗)− profitS (A∗) ≤ U

√
ln(2/δ)

2N .
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