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Abstract

We study how to learn to play a Pareto-optimal strict Nash equilibrium
when there exist multiple equilibria and agents may have different pref-
erences among the equilibria. We focus on repeated coordination games
of non-identical interest where agents do not know the game structure
up front and receive noisy payoffs. We design efficient near-optimal al-
gorithms for both the perfect monitoring and the imperfect monitoring
setting(where the agents only observe their own payoffs and the joint
actions).

1 Introduction

Recent years have witnessed a rapid development of multiagent learning theory. In partic-
ular, the use of reinforcement learning (RL) and game theory has attracted great attentions.
However, research on multiagent RL (MARL) is still facing some rudimentary problems.
Most importantly, what is the goal of a MARL algorithm? In a multiagent system, a learn-
ing agent generally cannot achieve its goal independent of other agents, which in turn tend
to pursue their own goals. This questions the definition of optimality: No silver bullet
guarantees maximization of each agent’s payoff.

In the setting of self play (where all agents use the same algorithm), most existing MARL
algorithms seek to learn to play a Nash equilibrium. It is the fixed point of the agents’
best-response process, that is, each agent maximizes its payoff given the other’s strategy.
An equilibrium can be viewed as a convention that the learning agents reach for playing the
unknown game. A key difficulty here is that a game usually contains multiple equilibria,
and the agents need to coordinate on which one to play. Furthermore, the agents may have
different preferences among the equilibria. Most prior work has avoided this problem by
focusing on games with a unique equilibrium or games in which the agents have common
interests.

In this paper, we advocate Pareto-optimal Nash equilibria as the equilibria that a MARL
algorithm should drive agents to. This is a natural goal: Pareto-optimal equilibria are
equilibria for which no other equilibrium exists where both agents are better off. We further
design efficient algorithms for learning agents to achieve this goal in polynomial time.



2 Definitions and background

We study a repeated 2-agent game where the agents do not know the game up front, and
try to learn how to play based on the experiences in the previous rounds of the game. As
usual, we assume that the agents observe each others’ actions. We allow for the possibility
that the agents receive noisy but bounded payoffs (as is the case in many real-world MARL
settings); this complicates the game because the joint action does not determine the agents’
payoffs deterministically. Furthermore, the agents may prefer different outcomes of the
game. In the next subsection we discuss the (stage) game that is repeated over and over.

2.1 Coordination games (of potentially non-identical interest)

We consider two agents, 1 and 2. The set of actions that agent
�

can choose from is denoted
by ��� . We denote the other agent by � � . Agents choose their individual actions �����	�
�
independently and concurrently. The results of their joint action can be represented in
matrix form: The rows correspond to agent 1’s actions and the columns correspond to agent
2’s actions. Each cell ������������ in the matrix has the payoffs ������������������������������� ��!������� .
The agents may receive noisy payoffs. In this case, the ��� functions are expected payoffs.

A strategy for agent
�

is a distribution "#� over its action set ��� . A pure strategy determinis-
tically chooses one of the agent’s individual actions. A Nash equilibrium (NE) is a strategy
profile "%$&�'"�����")(��*� in which no agent can improve its payoff by unilaterally deviating
to a different strategy: �#�����'"��*��")(#�����,+-�#�*����").� �*"�(��*��� for both agents (

� $&/0�21 ) and any
strategy "�.� . We call a NE a pure strategy NE if the individuals’ strategies in it are pure.
Otherwise, we call it a mixed strategy NE. The NE is strict if we can replace “ + ” with “ 3 ”.

We focus on the important and widely studied class of games called coordination games: 
Definition 1 [Coordination game] A 2-agent coordination game 4 is an 57685 matrix
game with 5 strict Nash equilibria (called conventions). (It follows that there are no other
pure-strategy equilibria.)

A coordination game captures the notion that agents have the common interest of being
coordinated (they both get higher payoffs by playing equilibria than other strategy profiles),
but at the same time there are potentially non-identical interests (each agent may prefer
different equilibria). The following small games illustrates this:

OPT OUT LARGE DEMAND SMALL DEMAND

OPT OUT 0,0 0,-0.1 0,-0.1
SMALL DEMAND -0.1,0 0.3,0.5 0.3,0.3
LARGE DEMAND -0.1,0 -0.1,-0.1 0.5,0.3

Table 1: Two agents negotiate to split a coin. Each one can demand a small share (0.4) or
a large share (0.6). There is a cost for bargaining (0.1). If the agents’ demands add to less
than 1, each one gets its demand. In this game, though agents favor different conventions,
they would rather have a deal than opt out. The convention where both agents opt out is
Pareto-dominated and the other two conventions are Pareto-optimal.

Definition 2 [Pareto-optimality] A convention ���  �!� � � is Pareto-dominated if there ex-
ists at least one other convention ����. �!��.� � such that �#������������������:9;�#�*������. �!�<.� ��� and�=(��*����� ��!��������>?��(#�*������. ����.� ��� . If the inequality is strict, the Pareto domination is strict.
Otherwise, it is weak. A convention is Pareto-optimal (PO) if and only if it is not Pareto-
dominated.@

The term “coordination game” has sometimes been used to refer to special cases of coordination games, such as identical-
interest games where agents have the same preferences [2], minimum-effort games that have strict Nash equilibria on the diagonal
and both agents prefer equilibria further to the top left. Our definition is the most general (except that some have even called
games that have weak Nash equilibria coordination games).



A Pareto-dominated convention is unpreferable because there is another convention that
makes both agents better off. Therefore, we advocate that a MARL algorithm should at
least cause agents to learn a PO convention.

In the rest of the paper we assume, without loss of generality, that the game is normalized
so that all payoffs are strictly positive. We do this so that we can set artificial payoffs of
zero (as described later) and be guaranteed that they are lower than any real payoffs. This is
merely for ease of exposition; in reality we can set the artificial payoffs to a negative value
below any real payoff.

2.2 Learning in game theory: Necessary background

Learning in game theory [6] studies repeated interactions of agents, usually with the goal
of having the agents learn to play Nash equilibrium. There are key differences between
learning in game theory and MARL. In the former, the agents are usually assumed to know
the game before play, while in MARL the agents have to learn the game structure in addition
to learning how to play. Second, the former has paid little attention to the efficiency of
learning, a central issue in MARL. Despite the differences, the theory of learning in games
has provided important principle for MARL.

One most widely used learning model is fictitious play (FP). The basic FP does not guar-
antee to converge in coordination games while its variance, adaptive play (AP) [17], does.
Therefore, we take AP as a building block for our MARL algorithms.

2.2.1 Adaptive play (AP)

The learning process of AP is as follows: Learning agents are assumed to have a memory
to keep record of recent � plays of the game. Let � � � � be a joint action played at time�

over a game. Fix integers � and � such that / >�� > � . When
� > � , each agent

�
randomly chooses its actions. Starting from

� $ ��� / , each agent looks back at the � most
recent plays � � $ � � � (	� ��� � (	��
= ����� �!� � () � and randomly (without replacement) selects
� samples from � � . Let � � � ��(�� � be the number of times that an action ��(#� � �,(#� appears
in the � samples at

�
. Agent

�
calculates its expected payoff w.r.t its individual action � � as��� � � � � $���������������� � � ����� � �!� (�� ��� �"!�# �����%$& , and then randomly chooses an action from a

set of best responses: ')( �� $-��� �"* � � $�+ ,.-"/0+21 �43� ���5� ��� � ��.� �2� .
The learning process of AP can be modeled as a Markov chain. We take the initial � ��6 ��798�:
�;�?$ � �  ��� � ����� �!� � � as the initial state of the Markov chain. The definition of the other
states is inductive: A successor of state � is any state �#. obtained by deleting the left-most
element of � and appending a new right-most element. Let � . be a successor of � , and let��.�$ ���<. ����.� � be the new element (joint action) that was appended to the right of � to get
��. . Let <>=�? = 3 be the transition probability from � to ��. . Now, <>=�? = 3 3A@ if and only if for
each agent

�
, there exists a sample of size � in � to which � .� is

�
’s best response. Because

agent
�

chooses such a sample with probability independent of time
�
, the Markov chain is

stationary. In the Markov chain model, each state � $ � �������'����� with � being a convention
is an absorbing state. According to Theorem 1 in [17], AP in coordination games converge
to such an absorbing state with probability 1 if � +CBD� .

2.2.2 Adaptive play with persistent noise

AP does not choose a particular convention. However, Young showed that if there is small
constant noise in action selection, AP usually selects a particular convention. Young stud-
ied the problem under an independent random tremble model: Suppose that instead of al-
ways taking a best-response action, with a small probability E , the agent chooses a random
action. This yields an irreducible and aperiodic perturbed process of the original Markov
chain (unperturbed process). Young showed that with sufficiently small E , the perturbed



process converges to a stationary distribution in which the probability to play so called
stochastic stable convention(s) is at least / � � E , where

�
is a positive constant (Theorem

4 and its proof in [17]).

The stochastic stable conventions of a game can be identified by considering the mistakes
being made during state transitions. We say an agent made a mistake if it chose an action
that is not a best response to any sample, of size � , taken from the � most recent steps
of history. Call the absorbing states in the unperturbed process convention states in the
perturbed process. For each convention state � , we construct an � -tree � = (with each node
being a convention state) such that there is a unique direct path from every other convention
state to � . Label the direct edges ��������. � in ��= with the number of mistakes

8�� ? � 3 needed to
make the transition from convention state � to convention state � . . The resistance of the
� -tree is

8 ��� = � $ � #
� ? � 3 $ ���
	 8 � ? � 3 . The stochastic potential of the convention state � is

the least resistance among all possible � -trees � = . Young proved that the stochastic stable
states are the states with the minimal stochastic potentials.

2.3 Reinforcement learning

Reinforcement learning offers an effective way for agents to estimate the expected pay-
offs associated with individual actions based on previous experience—without knowing
the game structure. A simple and well-understood algorithm for single-agent RL is Q-
learning [9]. The general form of Q-learning is for learning in a Markov decision process.
It is more than we need here. In our single-state setting, we take a simplified form of the
algorithm, with Q-value � �� � ��� recording the estimate of the expected payoffs �)�*� ��� for
agent

�
at time

�
. The agent updates its Q-values based on the sample of the payoff ( � and

the observed action � .

� �� 
= � ��� $�� �� � ��� �� � ( � ��� �� � ����� (1)

In single-agent RL, if each action is sampled infinitely and the learning rate  is decreased
over time fast enough but not too fast, the Q-values will converge to agent

�
’s expected

payoff �#� . In our setting, we set  $ � ! # �4$ , where � � � ��� is the number of times that action� has been taken.

Most early literature on RL was about asymptotic convergence to optimum. The ex-
tension of the convergence results to MARL include the minimax-Q [11], Nash-Q [8],
friend-foe-Q [12] and correlated-Q [7]. Recently, significant attention has been paid to
efficiency results: near-optimal polynomial-time learning algorithms. Important results in-
clude Fiechter’s algorithm [5], Kearns and Singh’s

���
[10], Brafman and Tennenholtz’s R-

max [3], and Pivazyan and Shoham’s efficient algorithms for learning a near-optimal policy
[14]. These algorithms aim at efficiency, accumulating a provably close-to-optimal average
payoff in polynomial running time with large probability. The equilibrium-selection prob-
lem in MARL has also been explored in the form of team games, a very restricted version
of coordination games [4, 16].

In this paper, we develop efficient MARL algorithms for learning a PO convention in an
unknown coordination game. We consider both the perfect monitoring setting where agents
observe each others’ payoffs, and the imperfect monitoring setting where agents do not
observe each others’ payoffs (and do not want to tell each other their payoffs). In the latter
setting, our agents learn to play PO conventions without learning each others’ preferences
over conventions. Formally, the objectives of our MARL algorithms are:

Efficiency: Let @ 9�� 9 / and � 3 @ be constants. Then with probability at least / ��� ,
agents will start to play a joint policy � within steps polynomial in  � , � , and 5 , such that
there exists no convention � . that satisfies �)�� ��� � � 9 � �� ��. � and ���0� ��� � ��9 ��� � ��. � . We
call such a policy an � -PO convention.



3 An efficient algorithm for the perfect monitoring setting

In order to play an � -PO convention in polynomial time, agents need to find all these con-
ventions first. This can be achieved by sufficiently sampling unknown coordination game4 to update Q-values. We call this process learning game structure. Following is an algo-
rithm for agent

�
to estimate PO conventions in the presence of noisy payoffs.

Learning game structure (perfect monitoring setting)
1. Choose

� ���
,
��� ��� � ���

. Set �	�  .
2. Compute the number of samples 
 # �� ?�� � ��� $ by using Chernoff/Hoeffding bound [14], such that��������������� �� ! � " # �4$ ($# � # �4$� �% ���&('  ( � � ��� .

3. Start from
� � � , randomly try 
 actions with uniform distributions and update the Q-values using Equation 1.

4. If (1) ) " � # !
�" ? ! � " $ has * conventions, and (2) for every convention

� � � ? ����� & in ) " and every agent � ,! � " # � � � ? � ��� & $ � !
� "
# � � 3� ? � ��� & $ 
 � �� for every � 3�,+� � � , then Stop; else �.-/� 
  , Goto Step 2.

In Step 2 and Step 3, agent
�

samples the coordination game 4 sufficiently so that the game4 
 $ � � 
 � � � 
 � formed from 0 samples is within
�
� of 4 with probability at least/ � �� � ��� . This is plausible because the agent can observe the other’s payoffs. In Step 4, if

Condition (1) and (2) are met and 4 
 are within
�
� of 4 , we know that 4 
 has the same

set of conventions as 4 . So, any convention not strictly Pareto-dominated in 4 
 is a 1 � -PO
convention in 4 by definition. The loop from Step 2 to Step 4 searches for a sufficiently
small

�
� which has Condition (1) and (2) met. Throughout the learning, the probability that4 
 always stays within

�
� of 4 after Step 3 is at least /�� � �

�� � ��� 3 /�� 1 � . This implies
that the algorithm will identify all the conventions of 4 with probability at least /�� 1 � . The
total number of samples drawn is polynomial in � 5 � � �  � � according to Chernoff/Hoeffding
bound [14].

After learning the game, the agents will further learn how to play, that is, to determine
which PO convention in 4 
 to choose. A simple solution is to let two agents randomize
their action selection until they arrive at a PO convention in 4 
 . However, this treatment
is problematic because each agent may have different preferences over the conventions and
thus will not randomly choose an action unless it believes the action is a best response to
the other’s strategy. In this paper, we consider the learning agents which use adaptive play
to negotiate the convention they should play. In game theory, AP was suggested as a simple
learning model for bargaining [18], where each agent dynamically adjusts its offer w.r.t its
belief about the other’s strategy. Here we further propose a new algorithm called k-step
adaptive play (KSAP) whose expected running time is polynomial in � and � .
Learning how to play (perfect monitoring setting)

1. Let 1,) " � # !
�" ? ! � " $ . Now, set those entries in 12) " to zero that do not correspond to PO conventions.

2. Starting from a random initial state, sample the memory only every
&

steps. Specifically, with probability 0.5,
sample the most recent

&
plays, otherwise, just randomly draw

&
samples from the earlier � ( &

observations
without replacement.

3. Choose an action against 1�) " as in adaptive play except that when there exist multiple best-response actions that
correspond to some conventions in the game, choose an action that belongs to a convention that offers the greatest
payoff (breaking remaining ties randomly).

4. Play that action
&

times.
5. Once observe that the last

&
steps are composed of the same strict NE, play that NE forever.

In Step 1, agents construct a virtual game 3 4 
 from the game 4 
 $7� � 
 � � � 
 � by
setting the payoffs of all actions except PO conventions to zero. This eliminates all Pareto-
dominated conventions in 4 
 . Step 2 to Step 5 is KSAP. Comparing with AP, KSAP lets
an agent sample the experience to update its opponent model every � steps. This makes
the expected steps to reach an absorbing state polynomial in � . A KSAP agent pays more
attentions on the most recent � observations and will freeze its action once coordinated.
This further enhances the performance of the learning algorithm.

Theorem 1 In any unknown 2-agent coordination game with perfect monitoring, if � +
BD� , agents that use the above algorithm will learn a 1 � -PO policy with probability at least/ �:1 � in time < 754 : � 5 � � �  � � � �.��� .



Due to limited space, we omit most proofs. They can be found in a longer version of this
paper [15].

4 An efficient algorithm for the imperfect monitoring setting

In this section, we present an efficient MARL algorithm for the imperfect monitoring set-
ting where the agents do not observe each others’ payoff during learning. Actually, since
agents can observe joint actions, they may explicitly signal to each other their preferences
over conventions through actions. This reduces the learning problem to that in the perfect
monitoring setting. Here we assume that agents are not willing to explicitly signal each
other their preferences over conventions, even part of such information (e.g., their most
preferable conventions). We study how to achieve optimal coordination without relying on
such preference information.

Because each agent is unable to observe the other’s payoffs and because there is noise in
payoffs received, it is difficult for the agent to determine when enough samples have been
taken to identify all conventions. We address this by allowing agents to demonstrate to each
other their understanding of game structure (where the conventions are) after sampling.
Learning the game structure (imperfect monitoring setting)

1. Each agent plays its actions in order, with wrap around, until both agents have just wrapped around.
�

The agents
name each others’ actions 1,2,... according to the order of first appearance in play.

2. Given
�

and
�

, agents are randomly sampling the game until every joint action has been visited at least
 # �� ? � � ��� $ times (with �	�  ) and updating their Q-values using Equation 1 along the way.

3. Starting at the same time, each agent � goes through the other’s * individual actions � ��� in order, playing the action�4� such that ! � " # � �4� ? ����� & $ � � �� 
 ! � " # � � 3� ? ����� & $ for any � 3� +� � � . (If such an action � � does not exists
for some �9��� , then agent � plays action 1 throughout this demonstration phase.)

4. Each agent determines whether the agents hold the same view of the * strict Nash equilibria. If not, they let�	-/� 
  , Goto Step 2.

After learning the game, the agents start to learn how to play. The difficulty is, without
knowing about the other’s preferences over conventions, agents cannot explicitly eliminate
Pareto-dominated conventions in 4 
 . A straightforward approach is to allow each agent
to choose its most preferable convention, and break tie randomly. This, however, requires
to disclose the preference information to the other agent, thereby violating our assumption.
Moreover, such a treatment limits the negotiation to only two solutions. Thus, even if there
exists a better convention in which one agent compromise a little but the other is better off
greatly, it will not be chosen. The intriguing question here is whether agents can learn to
play a PO convention without knowing the other’s preferences at all.

Adaptive play with persistent noise in action selection (see Section 2.2.2) causes agents
to choose “stochastic stable” conventions most of time. This provides a potential solution
to the above problem. Specifically, over � � 
 , each agent

�
first constructs a best-response

set by including, for each possible action of the other agent � (�� , the joint action ��� �� ����(����
where � �� is

�
’s best response to � (#� . Then, agent

�
forms a virtual Q-function 3 � � 


which equals � � 
 , except that the values of the joint actions not in the best-reponse set
are zero. We have proved that in the virtual game � 3 � 
 ��3 � � 
 � , conventions strictly
Pareto-dominated are not stochastic stable [15]. This implies that using AP with persistent
noise, agents will play 1�� -PO conventions most of time even without knowing the other’s
preferences. Therefore, if the agents can stop using noise in action selection at some point
(and will thus play a particular convention from then on), there is a high probability that
they end up playing a 1 � -PO convention. The rest of this section presents our algorithm in
more detail.

We first adapt KSAP (see Section 3) to a learning model with persistent noise. After choos-
ing the best-response action suggested by KSAP, each agent checks whether the current
�

In an *��$* game this occurs for both agents at the same time, but the technique also works for games with a different
number of actions per agent.



state (containing the � most recent joint actions) is a convention state. If it is not, the
agent plays KSAP as usual (i.e., � plays of the action selected). If it is, then in each of the
following � steps, the agent has probability E to randomly independently choose an action,
and probability / � E to play the best-response action. We call this algorithm E -KSAP.

We can model this learning process as a Markov chain, with the state space including all
and only convention states. Let

6 � be the state at time
�

and
6 �� be the first convention state

the agents reach after time
�
. The transition probability is < � =�? = 3 $ � 8 � 6��� $���. * 6 � $��)� ,

and it depends only on � , not
�

(for a fixed E ). Therefore, the Markov chain is stationary. It
is also irreducible and aperiodic, because with E 3 @ , all actions have positive probability
to be chosen in a convention state. Therefore, Theorem 4 in [17] applies and thus the chain
has a unique stationary distribution circling around the stochastic stable conventions of� 3 �  ��3 � � � . These conventions are 1 � -PO (Lemma 5 in [15]) with probability / � 1 � .
The proof of Lemma 1 in [17] further characterizes the support of the limit distribution.
With @ 9CE 9 / , it is easy to obtain from the proof of Lemma 1 in [17] that the probability
of playing 1�� -PO conventions is at least / � � E , where

� 3 @ is a constant.

Our algorithm intends to let agents stop taking noisy actions at some point and stick to a
particular convention. This amounts to sampling the stationary distribution of the Markov
chain. If the sampling is unbiased, the agents have a probability at least / � � E to learn
a 1�� -convention. The issue is how to make the sampling unbiased. We address this by
applying a simple and efficient Markov chain Monte Carlo algorithm proposed by Lovász
and Winkler [13]. The algorithm first randomly selects a state � and randomly walks along
the chain until all states have been visited. During the walk, it generates a function � = ���� �9�)��� �

, where
�

is the set of all convention states. � = can be represented as a direct
graph with a direct edge from each ��. to � =�� ��. � . After the walk, if agents find that � =
defines an � -tree (see Section 2.2.2), � becomes the convention the agents play forever.
Otherwise, agents take another random sample from

�
and repeat random walk, and so

on. Lovász and Winkler proved that the algorithm makes an exact sampling of the Markov
chain and that its expected running time is 	 ��
� ���� - 58� , where 
� is the maximum expected
time to transfer from one convention state to another. In our setting, we know that the
probability to transit from one convention state to another is polynomial in E (probability
to make mistakes in convention states). So, 
� is polynomial in � . In addition, recall that
our Markov chain is constructed on the convention states instead of all states. The expected
time for making a transition in this chain is upper-bounded by the expected convergence
time of KSAP which is polynomial in � and � .

Recall that Lovász and Winkler’s algorithm needs to do uniform random experiments when
choosing � and constructing � = . In our setting, individual agents generate random numbers
independently. Without knowing each others’ random numbers, agents cannot commit to
a convention together. If one of our learning agents commits to the final action before the
other, the other may never commit because it is unable to complete the random walk. It
is nontrivial to coordinate a joint commitment time between the agents because the agents
cannot communicate (except via actions). We solve this problem by making the agents
use the same random numbers (without requiring communication). We accomplish this
via a random hash function technique, an idea common in cryptograhy [1]. Formally, a
random hash function is a mapping from a pre-image space to an image space. Denote the
random hash function with an image space � by ��� . It has two properties: (1) For any
input, ��� randomly with uniform distribution draws an image from � as an output. (2)
With the same input, ��� gives the same output. Such functions are easy to construct (e.g.,
standard hash functions like MD5 and SHA can be converted to random hash functions by
truncating their output [1]). In our learning setting, the agents share the same observations
of previous plays. Therefore, we take the pre-image to be the most recent � joint actions
appended by the number of steps played so far. Our learning agents have the same random
hash function � � . Whenever an agent should make a call to a random number generator, it



instead inputs to � � the � most recent joint actions and the total number of steps played
so far, and uses the output of � � as the random number.

�
This way the agents see the same

uniform random numbers, and because the agents use the same algorithms, they will reach
commitment to the final action at the same step.
Learning how to play (imperfect monitoring setting)

1. Construct a virtual Q-function 1 ! � from ! �! .
2. For � ����� � �  ? � ?��?��? ��� � do

�
3. For �2� 4? �? � ? ����� ? � * do
4. = �
	�� # = ! ? � $ (Use random hash function 	� to choose a convention state = uniformly from � .)
5. �	� � = &
6. Do until �	���

(a) Play � -KSAP until a convention state = 3 +� � is reached
(b) ����	�� � � � � � � � !���� ��� # = ! 3 ?

� 3 $
(c) Play � -KSAP until convention states have been visited � times (counting duplicates). Denote the most recent

convention state by � 	 # = 3 $
(d) �	����� � = 3 &

7. If � 	 defines an = -tree, play = forever
8. Endfor
9. Endfor

Theorem 2 In any unknown 2-agent coordination game with imperfect monitoring, for
@ 9 E 9 / and some constant

� 3 @ , if � + B � , using the above algorithm, the
agents learn a 1�� -PO deterministic policy with probability at least /,� 1�� � � E in time
< 754 : � 5 � � �  � � � � � �.��� .
We present the proof in [15].

5 Conclusions and future research

In this paper, we studied how to learn to play a Pareto-optimal strict Nash equilibrium when
there exist multiple equilibria and agents may have different preferences among the equi-
libria. We focused on 2-agent repeated coordination games of non-identical interest where
the agents do not know the game structure up front and receive noisy payoffs. We designed
efficient near-optimal algorithms for both the perfect monitoring and the imperfect moni-
toring setting (where the agents only observe their own payoffs and the joint actions). In a
longer version of the paper [15], we also present the convergence algorithms. In the future
work, we plan to extend all these results to � -agent and multistage coordination games.

References
[1] Bellare and Rogaway. Random oracle are practical: A paradigm for designing efficient protocols. In Proceedings of First

ACM Annual Conference on Computer and Communication Security, 93.
[2] Boutilier. Planning, learning and coordination in multi-agent decision processes. In TARK, 96.
[3] Brafman and Tennenholtz. R-max: A general polynomial time algorithm for near-optimal reinforcement learning. In IJCAI,

01.
[4] Claus and Boutilier. The dynamics of reinforcement learning in cooperative multi-agent systems. In AAAI, 98.
[5] Fiechter. Efficient reinforcement learning. In COLT, 94.
[6] Fudenberg and Levine. The theory of learning in games. MIT Press, 98.
[7] Greenwald and Hall. Correlated-q learning. In AAAI Spring Symposium, 02.
[8] Hu and Wellman. Multiagent reinforcement learning: theoretical framework and an algorithm. In ICML, 98.
[9] Kaelbling, Littman, and Moore. Reinforcement learning: A survey. JAIR, 96.

[10] Kearns and Singh. Near-optimal reinforcement learning in polynomial time. In ICML, 98.
[11] Littman. Value-function reinforcement learning in markov games. J. of Cognitive System Research, 2:55–66, 00.
[12] Littman. Friend-or-Foe Q-learning in general sum game. In ICML, 01.
[13] Lovász and Winkler. Exact mixing in an unknown markov chain. Electronic Journal of Combinatorics, 95.
[14] Pivazyan and Shoham. Polynomial-time reinforcement learning of near-optimal policies. In AAAI, 02.
[15] Wang and Sandholm. Learning to play pareto-optimal equilibria: Convergence and efficiency.

www.cs.cmu.edu/˜xiaofeng/LearnPOC.ps.
[16] Wang and Sandholm. Reinforcement learning to play an optimal Nash equilibrium in team markov game. In NIPS, 02.
[17] Young. The evolution of conventions. Econometrica, 61:57–84, 93.
[18] Young. An evolutionary model of bargaining. Journal of Economic Theory, 59, 93.

 
Recall that agents have established the same numbering of actions. This allows them to encode their joint actions for

inputting into 	 in the same way.!
The pattern of the for-loops is from the Lovász-Winkler algorithm [13].


