
Potential-aware automated abstraction of sequential games,
and holistic equilibrium analysis of Texas Hold’em poker∗

Andrew Gilpin
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

gilpin@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

sandholm@cs.cmu.edu

Troels Bjerre Sørensen
Department of Computer Science

University of Aarhus
Åbogade 34, Århus, Denmark
trold@daimi.au.dk

Abstract
We present a new abstraction algorithm for sequential im-
perfect information games. While most prior abstraction
algorithms employ a myopic expected-value computation
as a similarity metric, our algorithm considers a higher-
dimensional space consisting of histograms over abstracted
classes of states from later stages of the game. This en-
ables our bottom-up abstraction algorithm to automatically
take into account potential: a hand can become relatively bet-
ter (or worse) over time and the strength of different hands
can get resolved earlier or later in the game. We further im-
prove the abstraction quality by making multiple passes over
the abstraction, enabling the algorithm to narrow the scope of
analysis to information that is relevant given abstraction de-
cisions made for earlier parts of the game. We also present a
custom indexing scheme based on suit isomorphisms that en-
ables one to work on significantly larger models than before.
We apply the techniques to heads-up limit Texas Hold’em
poker. Whereas all prior game theory-based work for Texas
Hold’em poker used generic off-the-shelf linear program
solvers for the equilibrium analysis of the abstracted game,
we make use of a recently developed algorithm based on
the excessive gap technique from convex optimization. This
paper is, to our knowledge, the first to abstract and game-
theoretically analyze all four betting rounds in one run (rather
than splitting the game into phases). The resulting player,
GS3, beats BluffBot, GS2, Hyperborean, Monash-BPP, Spar-
bot, Teddy, and Vexbot, each with statistical significance. To
our knowledge, those competitors are the best prior programs
for the game.

Introduction
Automatically determining effective strategies in stochastic
environments with hidden information is an important and
difficult problem. In multiagent systems, the problem is ex-
acerbated because the outcome for each agent depends on
the strategies of the other agents. Poker games are well-
defined environments exhibiting many challenging proper-
ties, including adversarial competition, uncertainty (with re-
spect to the cards the opponent currently holds), and stochas-
ticity (with respect to the uncertain future card deals). Poker
games been identified as an important testbed for research
on these topics (Billings et al. 2002). Consequently, many
researchers have chosen poker as an application area in

∗This material is based upon work supported by the National
Science Foundation under ITR grant IIS-0427858.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which to test new techniques. In particular, heads-up limit
Texas Hold’em poker has recently received a large amount
of research attention, e.g., (Korb, Nicholson, & Jitnah 1999;
Billings et al. 2002; 2003; 2004; Gilpin & Sandholm 2006a;
2007). It can be modeled as a two-person zero-sum game,
which has both strategic and computational implications.

From a strategic perspective, two-person zero-sum games
are attractive because the set of Nash equilibria for these
games are interchangeable and offer a guaranteed security
level. The interchangeable property states that if (x, y) is
a Nash equilibrium (where x is player 1’s mixed strategy
and y is player 2’s mixed strategy) and (x′, y′) is a Nash
equilibrium, then (x, y′) and (x′, y) are also Nash equilib-
ria. Among other things, this eliminates the equilibrium se-
lection problem, which occurs in some games where there
are multiple equilibria. The guaranteed security level means
that by playing a Nash equilibrium strategy, a player is guar-
anteed a certain minimum expected payoff, regardless of the
strategy used by the other player. In two-person zero-sum
games, the value that one player can guarantee is the nega-
tive of what the other player can guarantee.

From a computational perspective, two-person zero-sum
games have the benefit that Nash equilibria can be com-
puted in time polynomial in the size of the game descrip-
tion. In particular, the equilibrium problem can be modeled
and solved as a linear program (LP) (Romanovskii 1962;
Koller & Megiddo 1992; von Stengel 1996).

Although equilibrium strategies for two-person zero-sum
games can be computed efficiently in theory, there are two
important reasons why new techniques are still needed to en-
able the application of game theory to large problems, such
as poker. The first is that the games themselves are huge. For
example, heads-up limit Texas Hold’em has a game tree with
around 1018 nodes. Even explicitly representing this game
would require an enormous (impractical) amount of mem-
ory. The second reason is that even in cases where a game
can be represented in memory (for example, after abstract-
ing the game to find a smaller, almost equivalent representa-
tion), the LP solvers that are currently fastest for these prob-
lems (CPLEX’s interior-point method) require an amount of
memory that is several orders of magnitude larger than the
representation of the game (Gilpin & Sandholm 2006b).

Most existing approaches handle these two problems by
abstraction and splitting the game into two phases. These
cause strategic errors. Our player differs from prior ap-
proaches along both of these lines. First, the abstraction in



the prior approaches is typically crafted manually (Billings
et al. 2003) or by myopic algorithms (Gilpin & Sand-
holm 2006a; 2007). In this paper, we develop a non-
myopic abstraction algorithm that addresses not only the
winning probability but also the potential. Second, we do
not split the game into phases; instead, we tackle the en-
tire four-round model holistically in one single optimiza-
tion. Such scalability of equilibrium finding is made possi-
ble by our application of the excessive gap technique (Nes-
terov 2005), which was recently specialized to equilibrium
finding in two-person zero-sum sequential imperfect infor-
mation games (Hoda, Gilpin, & Peña 2006).

Rules of the game
There are many variations of poker. Like most prior work,
we focus on two-player (heads-up) limit Texas Hold’em.
The rules are as follows. The small bet is two chips. Before
any cards are dealt, the first player (i.e., small blind) puts
one chip into the pot, and the second player (i.e., big blind)
puts two chips into the pot. There are four betting rounds.
In the first, each player is dealt two cards, face down (these
are called the hole cards). The small blind may either call
the big blind (add one chip to the pot), raise (three chips),
or fold (zero chips). The players then alternate either calling
the current bet (contributing two chips), raising the bet (four
chips), or folding (zero chips). In the event of a fold, the
folding player forfeits the game and the other player wins
all of the chips in the pot. Once a player calls a bet, the
betting round finishes. The number of raises is limited to
four in each round. In the second, third, and fourth rounds,
three, one, and one community cards are dealt face up, re-
spectively. In each of these rounds the big blind acts first;
betting proceeds as in the first round. The bets in the last
two rounds are twice as large as in the first two rounds. If
the final round ends with neither player folding, the player
who forms the best five-card hand using any of his two cards
and the five community cards wins the chips in the pot; in
the event of a tie, the players split the pot.

Prior programs for Texas Hold’em poker
There has been a recent surge of research into developing ef-
fective computer programs for playing heads-up limit Texas
Hold’em. We now describe these prior approaches.

The first successful game theory-based player for Texas
Hold’em was constructed by modeling the game as two
phases. For each phase, a domain expert manually designed
a coarse abstraction, which was then solved as an LP using
an interior-point method. The player is competitive with ad-
vanced human players (Billings et al. 2003). A player based
on these techniques is available in the commercial software
package Poker Academy Pro as Sparbot.

Opponent modeling is a technique in which a pro-
gram attempts to identify and exploit opponents’ weak-
nesses (Billings et al. 2004; Sturtevant, Zinkevich, & Bowl-
ing 2006). This can be done by building a model for predict-
ing opponents’ actions based on observations made through-
out game play. The most successful Texas Hold’em program
from that line of research is Vexbot (Billings et al. 2004). It

combines opponent modeling with miximax search (a vari-
ant of minimax search, which allows the players to move
probabilistically according to some model to account for the
presence of imperfect information).

Recently, the game theory-based player GS1 was pre-
sented, which featured automated abstraction and real-time
equilibrium approximation (Gilpin & Sandholm 2006a).
The abstraction algorithm used for that player was a simple
approximation version of the GameShrink algorithm (Gilpin
& Sandholm 2006b). GS1 is competitive with Sparbot and
Vexbot, but there is no statistically significant evidence to
demonstrate that it is better or worse than them. Recently,
the authors of GS1 introduced an improved abstraction algo-
rithm and a method for computing leaf payoffs of truncated
games, which led to the newer player GS2 (Gilpin & Sand-
holm 2007), which was shown to be better than GS1 (by a
statistically significant margin) and competitive with Spar-
bot and Vexbot.

The first AAAI Computer Poker Competition was held in
2006 (Littman & Zinkevich 2006). There were two competi-
tions: the Bankroll Competition and the Series Competition.
The Bankroll Competition determined the winner based on
which player won the most money overall (thus emphasiz-
ing the exploitation of weak opponents), whereas the Series
Competition determined the winner based on who beat the
most opponents (thus emphasizing strong players that can-
not be easily exploited). Given this, the Series Competition
is the most relevant to our research goal of developing strong
unbeatable game-theoretic agents.

The first and second place winners of that competition
were Hyperborean and BluffBot, respectively. (GS2, dis-
cussed above, came in third place.) Although detailed in-
formation about these two players is not publicly available,
it is known that both are based on game-theoretic tech-
niques. Hyperborean is similar to Sparbot; both were devel-
oped by the University of Alberta Computer Poker Research
Group. BluffBot was developed by Teppo Salonen, and is
described as “a combination of an expert system and a game-
theoretic pseudo-optimal strategy.”1 Another competitor in
that competition was Monash-BPP (Korb, Nicholson, & Jit-
nah 1999), which is based on Bayesian networks for mod-
eling the player’s hand, the opponent’s hand, and the oppo-
nent’s strategy (conditional on its hand). The final program
in the competition was Teddy, developed by Morten Lynge.
To our knowledge, there is no information on this program
publicly available. Later in this paper we will present exper-
iments against each of these prior programs.

All of the players described above are for (non-
tournament) heads-up limit Texas Hold’em. Another form of
Texas Hold’em is a no-limit tournament. In a poker tourna-
ment, each player begins with the same number of chips, and
poker is played repeatedly until only one player has chips
left. In no-limit poker, each player can place bets with sizes
up to the amount of chips they have left. Recently, near-
optimal strategies for the later stages of a no-limit tourna-
ment were computed (Miltersen & Sørensen 2007). How-
ever, the results of that paper are not comparable to the

1http://www.bluffbot.com/



present work due to the differences in the game being stud-
ied. For one, their recommended strategy relies heavily on
the player being allowed to bet all of his remaining chips.

Overview of our approach
To construct our player, we first compute a four-round ab-
straction of the Texas Hold’em state space. Our abstraction
is constructed so that the resulting size of the state-space
is manageable by our equilibrium approximation algorithm.
We discuss the abstraction construction in the next two sec-
tions. After that, we discuss how our algorithms take ad-
vantage of suit isomorphisms to speed up running time and
decrease memory requirements.

Once the abstraction is computed, we run an algorithm for
finding an approximate equilibrium in the abstracted game.
The resulting strategies (once mapped back into the original
game) represent our player, GS3.

Deciding the coarseness of the abstraction
Before computing an abstraction, we need to decide how
coarse an abstraction we want. Ideally, we would compute
an abstraction as fine-grained as possible. However, we need
to limit the fineness of the abstraction to ensure that we are
able to compute an equilibrium approximation for the result-
ing abstracted game.

One important aspect of the abstraction is the branching
factor. One intuitively desirable property is to have an ab-
straction where the relative amount of information revealed
in each stage is similar to the relative amount revealed in the
game under consideration. For example, it would likely not
be effective to have an abstraction that only had one bucket
for each of the first three rounds, but had 1000 buckets for
the last round. Similarly, we don’t want to have 100 buckets
in the first round if we are going to only have 100 buckets
in the second, third, and fourth rounds, since then no new
information would be revealed after the first round.

One implication of this reasoning is that the branching
factor going into the flop (where three cards are dealt) should
be greater than the branching factor going into the turn or
river (where only one card is dealt in each round). Further-
more, it seems reasonable to require that the branching fac-
tor of the flop be at least the branching factor of the turn and
river combined, since more information is revealed on the
flop than on the turn and river together.

Based on these considerations, and based on some prelim-
inary experiments to determine the problem size we could
expect our equilibrium-finding algorithm to handle, we set-
tled on an abstraction that has 20 buckets in the first round,
800 buckets in the second round, 4,800 buckets in the third
round, and 28,800 buckets in the fourth round.2 This implies
a branching factor of 20 for the pre-flop, 40 for the flop, 6
for the turn, and 6 for the river.

2To enable the solving for equilibrium with such fine-grained
abstraction, we model the game as having at most three raises per
betting round instead of four. This approach is commonly adopted
when building computer programs for playing poker (Billings et
al. 2003; Gilpin & Sandholm 2006a; 2007). In practice, play very
seldom proceeds to a fourth raise anyway.

Potential-aware automated abstraction
The most successful prior approach to automated abstraction
in sequential games of imperfect information was based on
a myopic expected-value computation (Gilpin & Sandholm
2007), and used k-means clustering with integer program-
ming to compute the abstraction. A state of the game was
evaluated according to the probability of winning the hand.
The algorithm clustered together states with similar proba-
bilities of winning, and it started computing the abstraction
from the first round and then down through the card tree.
This top-down algorithm generated the abstraction for GS2.

That approach does not take into account the potential
of hands. For instance, certain poker hands are considered
drawing hands in which the hand is currently weak, but has
a chance of becoming very strong. A common example of a
drawing hand is one in which the player has four cards of the
same suit (five are required to make a flush);3 at the present
stage the hand is not very strong, but could become so if a
card of the same suit showed up later in the game. Since
the strength of such a hand could potentially turn out to be
much different later in the game, it is generally accepted
among poker experts that such a hand should be played dif-
ferently than another hand with a similar chance of winning,
but without as much potential (Sklansky 1999).4 However, if
using the difference between probabilities of winning as the
clustering metric, the abstraction algorithm would consider
these two very different situations similar.

One possible approach to handling the problem that cer-
tain hands with the same probability of winning may have
different potential would be to consider not only the ex-
pected strength of a hand, but also its variance. In other
words, the algorithm would be able to differentiate be-
tween two hands that have the same probability of winning,
but where one hand faces more uncertainty about its final
strength. Although this would likely be an improvement
over basic expectations-based abstraction, it fails to capture
two important issues that prevail in many sequential imper-
fect information games, including poker:

• Mean and variance are a lossy representation of a proba-
bility distribution, and the lost aspects of the probability
distribution over hand strength can be significant for de-
ciding how one should play in any given situation.

• The approach based on mean and variance does not take
into account the different paths of information revelation
that hands take in increasing or decreasing in strength. For
example, two hands could have similar means and vari-
ances, but one hand may get the bulk of its uncertainty re-

3The rules of poker define the rank (relative strength) of dif-
ferent hands. See, e.g., http://www.pagat.com/vying/
pokerrank.html.

4In the manual abstraction used in Sparbot, there are six buckets
of hands where the hands are selected based on likelihood of win-
ning and one extra bucket for hands that an expert considered to
have high potential (Billings et al. 2003). In contrast, our approach
is automated, and does its bucketing holistically based on a multi-
dimensional notion of potential (so it does not separate buckets into
ones based on winning probability and ones based on potential).
Furthermore, its abstraction is drastically finer grained.



solved in the next round, while the other hand needs two
more rounds before the bulk of its final strength is deter-
mined. The former hand is better because the player has
to pay less to find out the essential strength of his hand.
To address these issues, we instead introduce an approach

where we associate with each state of the game a histogram
over future possible states. This representation can encode
all the pertinent information from the rest of the game (such
as paths of information revelation), unlike the approach
based on mean and variance. As in prior automated ab-
straction approaches, the (k-means) clustering step requires
a distance function to measure the dissimilarity between dif-
ferent states. The metric we use in this paper is L2-distance.
Specifically, let S be a finite set of future states, and let
each hand i be associated with a histogram, hi, over the fu-
ture states S. Then, the distance between hands i and j is

dist(i, j) =
[∑

s∈S (hi(s)− hj(s))
2
] 1

2
.

There are at least two prohibitive problems with this
vanilla approach as stated. First, there are a huge num-
ber of possible reachable future states, so the dimensional-
ity of the histograms is too large to do meaningful cluster-
ing with a reasonable number of clusters (i.e., small enough
to lead to an abstracted game that can be solved for equi-
librium). Second, for any two states at the same level of
the game, the descendant states are disjoint. Thus the his-
tograms would have non-overlapping supports, so any two
states would have maximum dissimilarity and thus no basis
for clustering.

For both of these reasons (and for reducing memory us-
age and enhancing speed), we coarsen the domains of the
histograms. First, instead of having histograms over indi-
vidual states, we use histograms over abstracted states (clus-
ters), which contain a number of states each. We will have,
for each cluster, a histogram over clusters later in the game.
Second, we restrict the histogram of each cluster to be over
clusters at the next level of the game tree only (rather than
over clusters at all future levels). However, we introduce a
technique (a bottom-up pass of constructing abstractions up
the tree) that allows the clusters at the next level to capture
information from all later levels.

One way of constructing the histograms would be to per-
form a bottom-up pass of a tree representing the possible
card deals: abstracting level four (i.e., betting round 4) first,
creating histograms for level 3 nodes based on the level 4
clusters, then abstracting level 3, creating histograms for
level 2 nodes based on the level 3 clusters, and so on. This
is indeed what we do to find the abstraction for level 1.

However, for later betting rounds, we improve on this al-
gorithm further by leveraging our knowledge of the fact that
abstracted children of any cluster at the level above should
only include states that can actually be children of the states
in that cluster. We do this by multiple bottom-up passes, one
for each cluster at the level above. For example, if a cluster
at level 1 contains only those states where the hand consists
of two Aces, then when we are doing abstraction for level 2,
the bottom-up pass for that level-1 cluster should only con-
sider future states where the hand contains two Aces as the
hole cards. This enables the abstraction algorithm to narrow

the scope of analysis to information that is relevant given
the abstraction that it made for earlier levels. The following
subsections describe our abstraction algorithm in detail.5

Computing the abstraction for round 1
The first piece of the abstraction we computed was for the
first round, i.e., the pre-flop. In this round we have a target
of 20 buckets, out of the

(
52
2

)
= 1,326 possible combina-

tions of cards. As discussed above, we will have, for each
pair of hole cards, a histogram over clusters of cards at level
2. (These clusters are not necessarily the same that we will
eventually use in the abstraction for level 2, discussed later.)

To obtain the level-2 clusters, we perform a bottom-up
pass of the card tree as follows. Starting with the fourth
round, we cluster the

(
52
2

)(
50
5

)
= 2,809,475,760 hands into

5 clusters6 based on the probability of winning. Next, we
consider the

(
52
2

)(
50
4

)
= 305,377,800 third-round hands. For

each hand we compute its histogram over the 5 level-4 clus-
ters we computed. Then, we perform k-means clustering on
these histograms to identify 10 level-3 clusters. We repeat
a similar procedure for the

(
52
2

)(
50
3

)
= 25,989,600 hands in

the second round to identify 20 level-2 clusters.
Using those level-2 clusters, we compute the 20-

dimensional histograms for each of the
(
52
2

)
= 1,326 pos-

sible hands at level 1 (i.e., in the first betting round). Then
we perform k-means clustering on these histograms to ob-
tain the 20 buckets that constitute our abstraction for the first
betting round.

Computing the abstraction for rounds 2 and 3
Just as we did in computing the abstraction for the first
round, we start by performing a bottom-up clustering, be-
ginning in the fourth round. However, instead of doing this
bottom-up pass once, we do it once for each bucket in the
first round. Thus, instead of considering all

(
52
2

)(
50
5

)
=

2,809,475,760 hands in each pass, we only consider those
hands that contain as the hole cards those pairs that exist in
the particular first-round bucket we are looking at.

At this point we have, for each first-round bucket, a set of
second-round clusters. For each first-round bucket, we have
to determine how many child buckets it should actually have.
For each first-round bucket, we run k-means clustering on its
second-round clusters for k ∈ {1..80}. (In other words, we
are clustering those second-round clusters (i.e., data points)
into k clusters.) This yields, for each first-round bucket and

5If no limit is imposed on the fineness of the abstraction (num-
ber of clusters of states at each level of the game), then our algo-
rithm finds a lossless abstraction (at least if the subroutine for k-
means clustering returned optimal answers). In other words, every
equilibrium of that abstracted game corresponds to some equilib-
rium in the original game. We view this property as a necessary
condition (doing the right thing in the limit) of any sensible ab-
straction algorithm. As such, it serves as a “sanity check”.

6For this algorithm, the number of clusters at each level (5 at
level 4, 10 at level 3, and 20 at level 2) was chosen to honor the
constraint that when clustering data, the number of clusters needed
to represent meaningful information should be at least the level of
dimensionality of the data. So, the number of clusters on level r
should be at least as great as on level r + 1.



each value of k, an error measure for that bucket assuming
it will have k children. (The error is the sum of each data
point’s L2 distance from the centroid of its assigned cluster,
weighted by the probability of each data point occurring; in
poker these probabilities are all equal because cards are dealt
uniformly at random.)

Based on our design of the coarseness of the abstraction,
we know that we have a total limit of 800 children (i.e.,
buckets at level 2) to be spread across the 20 first-round
buckets. As in the abstraction algorithm used by GS2 (Gilpin
& Sandholm 2007), we formulate and solve an integer pro-
gram (IP) to determine how many children each first-round
bucket should have (i.e., what k should be for that bucket).
The IP simply minimizes the sum of the errors of the level-
1 buckets (weighted by the probability of reaching each
bucket) under the constraint that their k-values do not sum
to more than 800. (The optimal k-value for different level-
1 buckets varied between 18 and 51.) This determines the
final bucketing for the second betting round.

The bucketing for the third betting round is computed
analogously. We use level-2 buckets as the starting point
(instead of level-1 buckets), and in the integer program we
allow a total of 4,800 buckets for the third betting round.
(The optimal k-value for different level-2 buckets varied be-
tween 1 and 10.)

Computing the abstraction for round 4
In round 4 there is no need to use the sophisticated clustering
techniques discussed above since the players will not receive
any more information, that is, there is no potential. Instead,
we simply compute the fourth-round abstraction based on
each hand’s probability of winning, exactly the way as was
done for computing the abstraction for GS2 (Gilpin & Sand-
holm 2007). Specifically, for each third-round bucket, we
consider all possible rollouts of the fourth round. Each of
them constitutes a data point (whose value is computed as
the probability of winning plus half the probability of tying),
and we run k-means clustering on them for k ∈ {1..18}.
(The optimal k-value for different level-3 buckets varied be-
tween 1 and 14.) The error, for each third-round bucket and
each k, is the sum over the bucket’s data points, of the data
point’s L2 distance from the centroid of its cluster. (In gen-
eral, the data points would be again weighted by their prob-
abilities, but in poker they are all equal.)

Finally, we run an IP to decide the k for each third-round
bucket, with the objective of minimizing the sum of the
third-round buckets’ errors (weighted by the probability of
reaching each bucket) under the constraint that the sum of
those buckets’ k-values does not exceed 28,800 (which is
the number of buckets allowed for the fourth betting round,
as discussed earlier). This determines the final bucketing for
the fourth betting round.7

7As discussed, our overall technique optimizes the abstraction
one betting round at a time. A better abstraction could conceivably
be obtained by optimizing all rounds together. However, that seems
infeasible. First, the optimization problem would be nonlinear be-
cause the probabilities at a given level depend on the abstraction
at all previous levels of the tree. Second, the number of decision
variables in the problem would be exponential in the size of the

Exploiting suit isomorphisms
We now introduce ways in which we exploit suit isomor-
phisms. We first discuss a custom indexing scheme which
dramatically reduces the space requirements of representing
the abstraction. In the subsection after that, we present a way
to exploit suit isomorphisms to speed up a key computation.

Indexing for efficient abstraction representation
One challenge that is especially difficult when using a four-
round model is that the number of distinct hands a player
can face is huge. Our algorithm requires an integer index
for each distinct hand in order to perform the lookup to see
which abstracted bucket the given hand belongs to. The
number of distinct hands,

(
52
2

)
·
(
50
3

)
·
(
47
1

)
·
(
46
1

)
≈ 5.6 ·1010,

is an order of magnitude too big to give each hand a unique
index. For example, encoding the bucket for each hand us-
ing two bytes requires more than 104 gigabytes of storage.
This would severely limit the practicality of the approach,
since this storage is also required by our player at run-time.

We therefore introduce a more compact representation of
the abstraction that capitalizes on a canonical representation
of each hand based on suit symmetries. (This technique is
valid since the rules of poker state that all suits are equally
strong.) These canonical representations are computed us-
ing permutations (total orderings of the suits) and partial
permutations (partial orderings of the suits), as we will de-
scribe later in this section.

The best size reduction one could hope for with this ap-
proach is a factor of 4! = 24, since we can map any per-
mutation of the four suits to the same canonical hand. That
this is not fully achievable is due to the fact that some hands
are unaffected by some of the permutations of the suits, e.g.
4♣4♥ is equivalent to 4♥4♣, in which case there are less
than 24 distinct hands mapping to the same canonical one.
We call this phenomenon self symmetry.

Our approach uses the following concept. The colexico-
graphical index (Bollobás 1986) of a set of integers x =
{x1..xk} ⊂ {0..n − 1}, with xi < xj whenever i < j, is
colex(x) =

∑k
i=1

(
xi

i

)
. This index has the important prop-

erty that for a given n, each of the
(
n
k

)
sets of size k has a

distinct colexicographical index. Furthermore, these indices
are compactly encoded as the integers from 0 to

(
n
k

)
− 1.

We need to compute indices for hands from each of the
four rounds. We compute these indices incrementally, us-
ing the index from round i to compute the index in round
i + 1. This approach gradually computes the permutations
that map the given hand to its canonical representation. This
incremental computation is useful both for providing a con-
venient way of computing the indices and for speeding up
the index computation.

The index for the first round is computed, of course, using
only the hole cards. If they are of the same suit, e.g. A♣7♣,
that suit is named “suit 1”, and we get the partial permutation
♣ < {♠,♥,♦}. If they are of different suits and different

card tree (even if the number of abstraction classes for each level is
fixed). Third, one would have to solve a k-means clustering prob-
lem for each of those variables to determine its coefficient in the
optimization problem.



values, e.g. A♣7♠, we name the suit of the card with the
highest value “suit 1” and the other “suit 2”, resulting in
the partial permutation ♣ < ♠ < {♥,♦}. Lastly, if they
have the same value, e.g. 7♠7♥, the hand is self symmetric,
and we have the partial permutation {♠,♥} < {♣,♦}. (At
this point it is unspecified which of ♠ and ♥ is “suit 1” and
which is “suit 2”.)

The later rounds also give rise to partial permutations,
which are then used to refine the permutation of suits that
were undecided in previous rounds. For instance if the hole
cards are 7♠7♥ and the flop is 3♦J♦A♥, we refine the par-
tial permutation {♠,♥} < {♣,♦} with ♦ < ♥ < {♠,♣}
to get {♥ < ♠} < {♦ < ♣}, i.e., ♥ < ♠ < ♦ < ♣.

Then, to compute the index from the (perhaps partial) per-
mutation, our algorithm uses a case analysis which has far
too many cases (60) to describe here. As an example, if
the hole cards are 7♠7♥ and the flop is 3♦J♦A♥, then
the analysis is in the category of one new suit in two cards
and one old suit in a single card, breaking the self symmetry
from the previous round. In this case the card with the old
suit (♥) only has 12 possible canonical values (even though
there are 24 ♠s and ♥s left in the deck), since no matter
whether that new card would have been a ♠ or a ♥, its suit
will now have become “suit 1”. In the same way, the two
other cards only have

(
13
2

)
possible canonical values, since

their suit will now have become “suit 3” no matter whether
it is ♦ or ♣. Thus this case has

(
13
2

)
· 12 = 936 canonical

hands representing four times that many actual hands, all of
which share 7♠7♥ as the hole cards.

Each of the cases simply breaks the hand up into sets to be
encoded with colexicographical indexing. In the case above,
the sets are {1,9} and {11} (index 11 is the highest of the
12 cards in the group). Here, 1 corresponds to the three, 9
corresponds to the Jack, and 11 corresponds to an Ace. The
index within this case is then computed as colex({1, 9}) ·
12 + colex({11}). This is then combined with the index
within the case of the first round. There are 13 possible pairs,
and our sevens have index 5. We thus get (colex({1, 9}) ·
12 + colex({11})) · 13 + 5. Finally, to get the index, this is
added to a global offset associated with this particular case.

With this indexing scheme, the memory consumption of
the index for all four rounds reduces by a factor of 23.1
(which is close to the optimistic upper bound of 24).

Using symmetries to speed up 9-card rollout
For each pair of buckets in the fourth round, we need to
compute the expected number of wins, losses, and draws
for hands randomly drawn from those buckets. The straight-
forward approach of generating all

(
52
2

)(
50
2

)(
48
3

)(
45
1

)(
44
1

)
≈

5.56 · 1013 possible ways the cards can be dealt would re-
quire more than a month of CPU time. Furthermore, this
computation would have to be started from scratch when we
consider a new, different abstraction. But since we know that
the indexing scheme will do the “suit renaming” anyway, we
are able to just generate cards for all possible indices, with
a weight indicating how many symmetric situations the cur-
rent cards are representing. Furthermore, we use the fact
that the two sets of hole cards are symmetric to only gener-
ate those where Player 1’s cards are “less” than Player 2’s

cards, using an arbitrary ordering of the hole cards. Doing
all this gives us more than a factor 44 speed up of the 9-card
rollout, bringing it down to less than a day.

Computing equilibrium strategies for the
holistic abstracted four-round model

Once the abstraction has been computed, the difficult prob-
lem of computing equilibrium strategies for the abstracted
game remains. The existing game-theory based players
(GS1, GS2, and Sparbot) computed strategies by first split-
ting the game into two phases, and then solving the phases
separately and then gluing together the separate solutions. In
particular, GS1 considers rounds 1 and 2 in the first phase,
and rounds 3 and 4 in the second phase. GS2 considers
round 1, 2, and 3 in the first phase, and rounds 3 and 4 in
the second phase. Sparbot considers rounds 1, 2, and 3 in
the first phase, and rounds 2, 3, and 4 in the second phase.
These approaches allow for finer-grained abstractions than
what would be possible if a single, monolithic four-round
model were used. However, the equilibrium finding algo-
rithm used in each of those players was based on standard
algorithms for LP that do not scale to a four-round model
(except possibly for a trivially coarse abstraction).

Solving the (two) different phases separately causes im-
portant strategic errors in the player (in addition to those
caused by lossy abstraction). First, it will play the first phase
of the game inaccurately because it does not properly con-
sider the later stages (the second phase) when determining
the strategy for the first phase of the game. Second, it does
not accurately play the second phase of the game because
strategies for the second phase are derived based on beliefs
at the end of the first phase, which are inaccurate.

Therefore, we want to solve for equilibrium while keep-
ing the game in one holistic phase. To our knowledge, this is
the first time this has been done. Using a holistic four-round
model makes the equilibrium computation a difficult prob-
lem, particularly since our abstraction is very fine grained.
As noted earlier, standard LP solvers (like CPLEX’s sim-
plex method and CPLEX’s interior-point method) are insuf-
ficient for solving such a large problem. Instead, we used an
implementation of Nesterov’s excessive gap technique algo-
rithm (Nesterov 2005), which was recently specialized for
two-person zero-sum sequential games of imperfect infor-
mation (Hoda, Gilpin, & Peña 2006). This algorithm is a
gradient-based algorithm that requires O(1/ε) iterations to
compute an ε-equilibrium, that is, a strategy for each player
such that his incentive to deviate to another strategy is at
most ε. This algorithm is an anytime algorithm since at ev-
ery iteration it has a pair of feasible solutions, and the ε does
not have to be fixed in advance. After 24 days of computing
on 4 CPUs running in parallel, the algorithm had produced
a pair of strategies with ε = 0.027 small bets.

Experiments
We tested our player, GS3, against seven prior pro-
grams: BluffBot, GS2, Hyperborean,8 Monash-BPP, Spar-

8There are actually two versions of Hyperborean:
Hyperborean-Bankroll and Hyperborean-Series. The differ-



Opponent # hands played GS3’s win rate Empirical standard deviation 95% confidence interval
Always Call 50,000 0.532 4.843 [0.490, 0.575]
Always Raise 50,000 0.442 8.160 [0.371, 0.514]
BluffBot 20,000 0.148 1.823 [0.123, 0.173]
GS2 25,000 0.222 5.724 [0.151, 0.293]
Hyperborean-Bankroll 20,000 0.099 1.779 [0.074, 0.124]
Hyperborean-Series 20,000 0.071 1.812 [0.045, 0.096]
Monash-BPP 20,000 0.669 2.834 [0.630, 0.709]
Sparbot 200,000 0.033 5.150 [0.010, 0.056]
Teddy 20,000 0.419 3.854 [0.366, 0.473]

Table 1: Experiments against static opponents. The win rate is the average number of small bets GS3 won per hand. (The win
rate against an opponent that always folds is 0.75.) GS3 beats each opponent by a statistically significant margin.

bot, Teddy, and Vexbot. To our knowledge, this collection of
opponents represents the “best of breed” in heads-up limit
Texas Hold’em computer poker players. It includes all com-
petitors from the 2006 AAAI Computer Poker Competition.

We also tested GS3 against two (self-explanatory) bench-
mark strategies: Always Call and Always Raise. Although
these last two strategies are completely predictable, it has
been pointed out that it is important to evaluate a player
against a wide range of opponents (Billings et al. 2003).

Experiments against static opponents
BluffBot, GS2, Hyperborean, Monash-BPP, Sparbot, and
Teddy are static players, that is, each of them uses a mixed
strategy that does not change over time.9 Of course, Always
Call and Always Raise are also static strategies.

Table 1 summarizes our experiments comparing GS3 with
the eight static opponents. One interpretation of the last col-
umn is that if zero is strictly below the interval, we can reject
the null hypothesis “GS3 is not better than the opponent” at
the 95% certainty level. Thus, GS3 beat each of the oppo-
nents with statistical significance.

The matches against Always Call and Always Raise were
conducted within Poker Academy Pro, a commercially avail-
able software package that facilitates the design of and ex-
perimentation with poker-playing programs. We played
these two strategies against GS3 for 50,000 hands. Unsur-
prisingly, GS3 beat these simple strategies very easily.

The matches against GS2 and Sparbot were also con-
ducted within Poker Academy Pro. GS3 outplayed its pre-
decessor, GS2, by a large margin. Sparbot provided GS3
with the toughest competition, but GS3 beat it, too, with sta-
tistical significance.

The matches against the other participants of the 2006
AAAI Computer Poker Competition beyond GS2 (BluffBot,
Hyperborean, Monash-BPP, and Teddy) were conducted on
the benchmark server available for participants of that com-
petition. One advantage of this testing environment is that it
allows for duplicate matches, in which each hand is played
twice with the same shuffle of the cards and the players’
positions reversed. (Of course, the player’s memories are
reset so that they do not know that the same hand is being

ences between those two players are not publicly available.
9Since no information about Bluffbot, Hyperborean, and Teddy

is publicly available, we are statistically evaluating GS3’s perfor-
mance against them as though they were static.

played a second time.) This reduces the role of luck, so
the empirical standard deviation is lower than it would be
in a normal match. Each match against these four players
consisted of 20,000 duplicate hands (40,000 total). An ad-
ditional way of evaluating the players in the AAAI compe-
tition is to split the experiment for each pair of competitors
into 20 equal-length series, and declare as the winner of the
pair the player who wins a larger number of the 20 series.
Under that measure, GS3 beat each of the opponents 20-0,
except for Hyperborean-Bankroll, which GS3 beat 19-1, and
Hyperborean-Series, which GS3 best 16-4.

Experiments against Vexbot
Vexbot does not employ a static strategy. It records obser-
vations about its opponents’ actions, and develops a model
of their style of play. It continually refines its model dur-
ing play and uses this knowledge of the opponent to try to
exploit his weaknesses (Billings et al. 2004), and is “the
strongest poker program to date, having defeated every op-
ponent it has faced” (Billings 2006; Billings & Kan 2006).
(Vexbot did not compete in the 2006 AAAI Computer Poker
Competition.)

Since Vexbot is remembering (and exploiting) information
from each hand, the outcomes of hands in the same match
are not statistically independent. Also, one known drawback
of Vexbot is that it is possible for it to get stuck in a local
minimum in its learned model (Billings 2006; Billings &
Kan 2006). Hence, demonstrating that GS3 beats Vexbot in
a single match (regardless of the number of hands played)
is not significant since it is possible that Vexbot happened to
get stuck in such a local minimum. Therefore, instead of
statistically evaluating the performance of GS3 on a hand-
by-hand basis as we did with the static players, we evaluate
GS3 against Vexbot on a match-by-match basis.

We performed 20 matches of GS3 against Vexbot. The de-
sign of each match was extremely conservative, that is, gen-
erous for Vexbot. Each match consisted of 100,000 hands,
and in each match Vexbot started with its default model of
the opponent. We allowed it to learn throughout the 100,000
hands in each match (rather than flushing its memory every
so often as is customary in computer poker competitions).
This number of hands is many more than would actually be
played between two players in practice. For example, the
number of hands played in each match in the 2006 AAAI
Computer Poker Competition was only 1,000.

The match results are summarized in Table 2. In every



match, GS3 beat Vexbot by a large margin, with a mean win
rate of 0.142 small bets per hand. The 95% confidence in-
terval for the overall win rate is [0.133, 0.151].

One criticism that could possibly be made against the
experimental methodology described above is that we did
not allow Vexbot to learn for some period before we started
recording the winnings. With this in mind, we also present
(in the third column of Table 2) GS3’s win rate over the last
10,000 hands only, which illustrates how well GS3 would
perform if we allowed Vexbot to train for 90,000 hands be-
fore recording any win/loss information. As can be seen
from the data, GS3 still outperforms Vexbot, winning 0.147
small bets per hand on average, with a 95% confidence in-
terval of [0.115, 0.179].

Match # Small bets GS3 won per hand
Over 100k hands Over final 10k hands

1 0.129 0.197
2 0.132 0.104
3 0.169 0.248
4 0.139 0.184
5 0.130 0.150
6 0.153 0.158
7 0.137 0.092
8 0.147 0.120
9 0.120 0.092

10 0.149 0.208
11 0.098 0.067
12 0.153 0.248
13 0.142 0.142
14 0.163 0.169
15 0.165 0.112
16 0.163 0.172
17 0.108 -0.064
18 0.180 0.255
19 0.147 0.143
20 0.118 0.138

Mean: 0.142 0.147
Std. dev: 0.021 0.073
95% CI: [0.133, 0.151] [0.115, 0.179]

Table 2: Experiments against Vexbot. The third column re-
ports GS3’s win rate over 10,000 hands after Vexbot is al-
lowed to train for 90,000 hands.

Conclusions and future research
We presented a potential-aware automated abstraction tech-
nique for sequential imperfect information games. We also
presented a custom indexing scheme based on suit isomor-
phisms that enables one to work on significantly larger mod-
els than was possible before.

We applied these to heads-up limit Texas Hold’em poker,
and solved the abstracted game using a variant of the exces-
sive gap technique. This is, to our knowledge, the first time
that all four betting rounds have been abstracted and game-
theoretically analyzed in one run (rather than splitting the
game into phases). The resulting player, GS3, beats Bluff-
Bot, GS2, Hyperborean, Monash-BPP, Sparbot, Teddy, and
Vexbot, each with statistical significance. To our knowledge,
those competitors are the best prior programs for the game.

In the future, we would like to prove how close to optimal
GS3 is, and to experiment with the tradeoff of finer abstrac-
tion versus quality (gap) in equilibrium solving.

Acknowledgments
We gratefully thank the anonymous reviewers for their sug-
gestions for improving the experimental methodology. We
would also like to thank Christian Smith and Martin Zinke-
vich for their efforts in enabling our experiments on the
benchmark server at the University of Alberta.

References
Billings, D., and Kan, M. 2006. A tool for the direct assessment
of poker decisions. ICGA Journal 29(3):119–142.
Billings, D.; Davidson, A.; Schaeffer, J.; and Szafron, D. 2002.
The challenge of poker. Artificial Intelligence 134(1-2):201–240.
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer, J.;
Schauenberg, T.; and Szafron, D. 2003. Approximating game-
theoretic optimal strategies for full-scale poker. In Proc. of the
Int. Joint Conf. on Artificial Intelligence (IJCAI), 661–668.
Billings, D.; Bowling, M.; Burch, N.; Davidson, A.; Holte, R.;
Schaeffer, J.; Schauenberg, T.; and Szafron, D. 2004. Game tree
search with adaptation in stochastic imperfect information games.
In Proc. of the Int. Conf. on Computers and Games (CG), 21–34.
Billings, D. 2006. Algorithms and Assessment in Computer
Poker. Ph.D. Dissertation, University of Alberta.
Bollobás, B. 1986. Combinatorics. Cambridge University Press.
Gilpin, A., and Sandholm, T. 2006a. A competitive Texas
Hold’em poker player via automated abstraction and real-time
equilibrium computation. In Proc. of the National Conf. on Arti-
ficial Intelligence (AAAI).
Gilpin, A., and Sandholm, T. 2006b. Finding equilibria in large
sequential games of imperfect information. In ACM Conference
on Electronic Commerce (ACM-EC), 160–169.
Gilpin, A., and Sandholm, T. 2007. Better automated abstraction
techniques for imperfect information games, with application to
Texas Hold’em poker. In Int. Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS).
Hoda, S.; Gilpin, A.; and Peña, J. 2006. A gradient-based ap-
proach for computing Nash equilibria of large sequential games.
Manuscript. Presented at INFORMS-06.
Koller, D., and Megiddo, N. 1992. The complexity of two-person
zero-sum games in extensive form. Games and Economic Behav-
ior 4(4):528–552.
Korb, K.; Nicholson, A.; and Jitnah, N. 1999. Bayesian poker. In
Proc. of the Conf. on Uncertainty in AI (UAI), 343–350.
Littman, M., and Zinkevich, M. 2006. The 2006 AAAI
Computer-Poker Competition. ICGA Journal 29(3):166.
Miltersen, P. B., and Sørensen, T. B. 2007. A near-optimal strat-
egy for a heads-up no-limit Texas Hold’em poker tournament. In
Int. Conf. on Autonomous Agents and Multi-Agent Systems.
Nesterov, Y. 2005. Excessive gap technique in nonsmooth convex
minimization. SIAM Journal of Optimization 16(1):235–249.
Romanovskii, I. 1962. Reduction of a game with complete mem-
ory to a matrix game. Soviet Mathematics 3:678–681.
Sklansky, D. 1999. The Theory of Poker. Two Plus Two Publish-
ing, fourth edition.
Sturtevant, N.; Zinkevich, M.; and Bowling, M. 2006. Prob-
maxn: Opponent modeling in n-player games. In Proc. of the
National Conf. on Artificial Intelligence (AAAI), 1057–1063.
von Stengel, B. 1996. Efficient computation of behavior strate-
gies. Games and Economic Behavior 14(2):220–246.


