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Abstract. We present a computational approach to the saddle-point formulation
for the Nash equilibria of two-person, zero-sum sequential games of imperfect
information. The algorithm is a first-order gradient method based on modern
smoothing techniques for non-smooth convex optimization. The algorithm re-
quiresO(1/ε) iterations to compute anε-equilibrium, and the work per iteration
is extremely low. These features enable us to find approximate Nash equilibria
for sequential games with a tree representation of about1010 nodes. This is three
orders of magnitude larger than what previous algorithms can handle. We present
two heuristic improvements to the basic algorithm and demonstrate their efficacy
on a range of real-world games. Furthermore, we demonstrate how thealgorithm
can be customized to a specific class of problems with enormous memory sav-
ings.

1 Introduction

Extensive form games model the interaction of multiple, self-interested agents
in stochastic environments with hidden information. The goal of each agent is
to maximize its own utility. Since the outcome for a particular agent depends on
the actions of the other agents, each agent must reason about the other agents’
behavior before acting. A fundamental solution concept for these gamesis the
Nash equilibrium, i.e. a specification of strategies for each agent such that no
agent is better off by deviating from their prescribed equilibrium strategy.Gen-
erally, Nash equilibrium strategies involve randomized actions (calledmixed
strategies). For two-player zero-sum sequential games of imperfect informa-
tion, the Nash equilibrium problem can be formulated using the sequence form
representation [1–3] as the following saddle-point problem:

max
x∈Q1

min
y∈Q2

〈Ay,x〉 = min
y∈Q2

max
x∈Q1

〈Ay,x〉. (1)

In this formulation,x is player 1’s strategy andy is player 2’s strategy. The
bilinear term〈Ay,x〉 is the payoff that player 1 receives from player 2 when
the players play the strategiesx andy. The strategy spaces are represented by
Qi ⊆ R

Si , whereSi is the set of sequences of moves of playeri, andQi is the
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set of realization plans of playeri. Thusx (y) encodes probability distributions
over actions at each point in the game where player 1 (2) acts. The setQi has
an explicit linear description of the form{z ≥ 0 : Ez = e}. Consequently,
problem (1) can be modeled as a linear program (see [3] for details).

The linear programs that result from this formulation have size linear in the
size of the game tree. Thus, in principle, these linear programs can be solved us-
ing any algorithm for linear programming such as the simplex or interior-point
methods. For some smaller games, this approach is successful [4]. However,
for many games the size of the game tree and the corresponding linear pro-
gram is enormous. For example, the Nash equilibrium problem for Rhode Island
Hold’em poker [5], after a substantial reduction in size via theGameShrink loss-
less abstraction algorithm [6], leads to a linear program with about106 variables
and constraints, whose solution using the state-of-the-art CPLEX interior-point
linear programming solver takes over one week on a 1.65 GHz IBM eServerp5
570, and consumes 25 GB of memory [6]. Prior to the work presented in this
paper, this was the largest poker game instance solved to date. Recently there
has been substantial interest in two-player limit Texas Hold’em poker, whose
game tree has about1018 variables and constraints. The latter problem is well
beyond current computational technology.

A recent and fruitful approach to finding strategies for sequential games is to
employ lossy abstractions [7, 8, 6, 9, 10] to approximate the Nash equilibrium.
These abstractions yield smaller games that capture some of the main features
of the full game. The quality of the approximate Nash equilibrium solution de-
pends on the coarseness of the abstraction. The main current limitation on the
degree of coarseness is the magnitude of the abstracted game that standard lin-
ear programming solvers can handle. With the current state-of-the art CPLEX
solver the dimension is limited to games whose tree representation has about
107 nodes (the interior-point method is unusable primarily due to memory lim-
itations and the simplex method is too slow [6]).

We propose a new approach to the approximation of Nash equilibria that
directly tackles the saddle-point formulation of Equation 1. In particular, we
compute, inO(1/ε) iterations, strategiesx∗ ∈ Q1 andy∗ ∈ Q2 such that

max
x∈Q1

〈Ay∗,x〉 − min
y∈Q2

〈Ay,x∗〉 ≤ ε. (2)

Strategies that satisfy this inequality are calledε-equilibria. This class of game-
theoretic solution concepts encapsulates strategies in which either player can
gain at mostε by deviating to another strategy. For most applications this type
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of approximation is acceptable ifε is small.3 The algorithms of this paper are
anytime algorithms and guarantee thatε approaches zero, and quickly find so-
lutions that have a very smallε. In this respect, they are similar to other algo-
rithms, such as fictitious play or multiplicative weighting [16]. Our algorithm
differs from fictitious play in that the convergence of the algorithm is much
faster, and it differs from the weighted-majority algorithm in that we assume
that all aspects of the game are already known.

Our approach is based on modern smoothing techniques for saddle-point
problems [17]. A particularly attractive feature of our approach is its simple
work per iteration as well as the low cost per iteration: the most complicated
operation is a matrix-vector multiplication involving the payoff matrixA. In
addition, we can take advantage of the structure of the problem to improve the
performance of this operation both in terms of time and memory requirements.
As a result, we are able to handle games that are several orders of magnitude
larger than games that can be solved using conventional linear programming
solvers. For example, we compute approximate solutions to an abstracted ver-
sion of Texas Hold’em poker whose LP formulation has 18,536,842 rows and
18,536,852 columns, and has 61,450,990,224 non-zeros in the payoff matrix.
This is more than 1,200 times the number of non-zeros in the Rhode Island
Hold’em problem mentioned above. Since conventional LP solvers require an
explicit representation of the problem (in addition to their internal data struc-
tures), this would require such a solver to use more than 458 GB of memory
simply to represent the problem. On the other hand, our algorithm only requires
2.49 GB of memory.

The algorithm we present herein can be seen as a primal-dual first-order
algorithm applied to the pair of optimization problems

max
x∈Q1

f(x) = min
y∈Q2

φ(y)

where
f(x) = min

y∈Q2

〈Ay,x〉 and φ(y) = max
x∈Q1

〈Ay,x〉.

It is easy to see thatf andφ are respectively concave and convex non-smooth
(i.e. not differentiable) functions. Our algorithm is based on a modern smoothing
technique for non-smooth convex minimization [17]. This smoothing technique
provides first-order algorithms whose theoretical iteration-complexity to finda
feasible primal-dual solution with gapε > 0 isO(1/ε) iterations. We note that
this is a substantial improvement to the black-box generic complexity bound

3 There has been work on findingε-equilibria in two-player normal-form games [11, 12]. Other
recent work has investigated the complexity of approximating Nash equilibria in non-zero-sum
games [13–15].
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O(1/ε2) of general first-order methods for non-smooth convex minimization
(concave maximization) [18].

Some recent work has applied smoothing techniques to the solution of large-
scale semidefinite programming problems [19] and to large-scale linear pro-
gramming problems [20]. However, our work appears to be the first application
of smoothing techniques to Nash equilibrium computation in sequential games.

2 Nesterov’s Excessive Gap Technique (EGT)

We next describe Nesterov’s excessive gap smoothing technique [17], special-
ized to extensive form games. Fori = 1, 2, assume thatSi is the set of sequences
of moves of playeri andQi ⊆ R

Si is theset of realization plans of playeri.
For i = 1, 2, assume thatdi is a strongly convex function onQi, i.e. there exists
ρi > 0 such that

di(αz + (1 − α)w) ≤ αdi(z) + (1 − α)di(w) −
1

2
ρα‖z − w‖2 (3)

for all α ∈ [0, 1] andz,w ∈ Qi. The largestρi satisfying (3) is thestrong
convexity parameter of di. For convenience, we assume thatminz∈Qi

di(z) = 0.
Theprox functions d1 andd2 can be used tosmooth the non-smooth func-

tionsf andφ as follows. Forµ1, µ2 > 0 consider

fµ2
(x) = min

y∈Q2

{〈Ay,x〉 + µ2d2(y)}

and
φµ1

(y) = max
x∈Q1

{〈Ay,x〉 − µ1d1(x)} .

Becaused1 andd2 are strongly convex, it follows [17] thatfµ2
andφµ1

are
smooth (i.e. differentiable). Notice thatf(x) ≤ φ(y) for all x ∈ Q1,y ∈ Q2.
Consider the following relatedexcessive gap condition:

fµ2
(x) ≥ φµ1

(y). (4)

Let Di := maxz∈Qi
di(z). If µ1, µ2 > 0, x ∈ Q1,y ∈ Q2 and(µ1, µ2,x,y)

satisfies (4), then [17, Lemma 3.1] yields

0 ≤ φ(y) − f(x) ≤ µ1D1 + µ2D2. (5)

This suggests the following strategy to find an approximate solution to (1): gen-
erate a sequence(µk

1, µ
k
2,x

k,yk), k = 0, 1, . . ., with µk
1 andµk

2 decreasing to
zero ask increases, whilexk ∈ Q1, yk ∈ Q2 and while maintaining the loop
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invariant that(µk
1, µ

k
2,x

k,yk) satisfies (4). This is the strategy underlying the
EGT algorithms we present in this paper.

The building blocks of our algorithms are the mappingsargmax and the
proceduresinitial andshrink. Let d be a strongly convex function with a
convex, closed, and bounded domainQ ⊆ R

n. Let sargmax(d, ·) : R
n → Q be

defined as

sargmax(d,g) := argmax
x∈Q

{〈g,x〉 − d(x)}. (6)

By [17, Lemma 5.1], the following procedureinitial yields an initial
point that satisfies the excessive gap condition (4). The notation‖A‖ indicates
an appropriate operator norm (see [17] and Examples 1 and 2 for details), and
∇d2 (x̂) is the gradient ofd2 at x̂.

initial(A, d1, d2)

1. µ0
1 := µ0

2 := ‖A‖√
ρ1ρ2

2. ŷ := sargmax (d2,0)

3. x0 := sargmax
(

d1,
1
µ0

1

Aŷ
)

4. y0 := sargmax
(

d2,∇d2 (x̂) + 1
µ0

2

ATx0
)

5. return (µ0
1, µ

0
2,x

0,y0)

The following procedureshrink enables us to reduceµ1 and µ2 while
maintaining (4).

shrink(A,µ1, µ2, τ,x,y, d1, d2)

1. y̆ := sargmax
(

d2,−
1
µ2
ATx

)

2. ŷ := (1 − τ)y + τ y̆

3. x̂ := sargmax
(

d1,
1
µ1
Aŷ

)

4. ỹ := sargmax
(

d2,∇d2 (y̆) + τ
(1−τ)µ2

ATx̂
)

5. x+ := (1 − τ)x + τ x̂

6. y+ := (1 − τ)y + τ ỹ

7. µ+
2 := (1 − τ)µ2

8. return (µ+
2 ,x

+,y+)

By [17, Theorem 4.1], if the input(µ1, µ2,x,y) to shrink satisfies (4) then
so does(µ1, µ

+
2 ,x

+,y+) as long asτ satisfiesτ2/(1 − τ) ≤ µ1µ2ρ1ρ2‖A‖
2.

Consequently, the iterates generated by procedureEGT below satisfy (4). In
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particular, afterN iterations, AlgorithmEGT yields pointsxN ∈ Q1 andyN ∈
Q2 with

0 ≤ max
x∈Q1

〈AyN ,x〉 − min
y∈Q2

〈Ay,xN 〉 ≤
4 ‖A‖

N

√

D1D2

ρ1ρ2
.

EGT

1. (µ0
1, µ

0
2,x

0,y0) = initial(A, d1, d2)

2. For k = 0, 1, . . .:

(a) τ := 2
k+3

(b) If k is even: // shrink µ2

i. (µk+1
2 ,xk+1,yk+1) := shrink(A,µk

1, µ
k
2, τ,x

k,yk, d1, d2)
ii. µk+1

1 := µk
1

(c) If k is odd: // shrink µ1

i. (µk+1
1 ,yk+1,xk+1) := shrink(AT,−µk

1,−µ
k
2, τ,y

k,xk, d2, d1)
ii. µk+1

2 := µk
2

Notice that AlgorithmEGT is aconceptual algorithm that finds anε-solution
to (1). It is conceptual only because the algorithm requires that the mappings
sargmax(di, ·) be computed several times at each iteration. Consequently, a
specific choice of the functionsd1 andd2 is a critical step to convert Algorithm
EGT into an actual algorithm.

2.1 Nice Prox Functions

AssumeQ is a convex, closed, and bounded set. We say that a functiond : Q→
R is anice prox function for Q if it satisfies the following three conditions:

1. d is strongly convex and continuous everywhere inQ and is differentiable
in the relative interior ofQ;

2. min{d(z) : z ∈ Q} = 0;
3. The mappingsargmax(d, ·) : R

n → Q is easily computable,e.g., it has a
closed-form expression.

We next provide two specific examples of nice prox functions for the simplex

∆n = {x ∈ R
n : x ≥ 0,

n
∑

i=1

xi = 1}.
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Example 1. Consider theentropy function d(x) = lnn +
∑n

i=1 xi lnxi. The
function d is strongly convex and continuous in∆n andminx∈∆n

d(x) = 0.
It is also differentiable in the relative interior of∆n. It has strong convexity
parameterρ = 1 for the 1-norm inR

n, namely,‖x‖ =
∑n

i=1 |xi|. The corre-
sponding operator norm,‖A‖, for this setting is simply the value of the largest
entry inA in absolute value. Finally, the mappingsargmax(d,g) has the easily
computable expression

sargmax(d,g)j =
egj

n
∑

i=1
egi

.

Example 2. Consider the (squared)Euclidean distance to the center of∆n, that
is, d(x) = 1

2

∑n
i=1

(

xi −
1
n

)2
. This function is strongly convex, continuous

and differentiable in∆n, andminx∈∆n
d(x) = 0. It has strong convexity pa-

rameterρ = 1 for the Euclidean norm, namely,‖x‖ =
(
∑n

i=1 |xi|
2
)1/2

. The
corresponding operator norm,‖A‖, for this setting is the spectral norm ofA,
i.e. the square root of the largest eigenvalue ofATA. Although the mapping
sargmax(d,g) does not have a closed-form expression, it can easily be com-
puted inO(n logn) steps [20].

In order to apply AlgorithmEGT to problem (1) for sequential games we
need nice prox-functions for the realization setsQ1 andQ2 (which are more
complex than the simplex discussed above in Examples 1 and 2). This problem
was recently solved [21]:

Theorem 1. Any nice prox-function ψ for the simplex induces a nice prox-
function for a set of realization plans Q. The mapping sargmax(d, ·) can be
computed by repeatedly applying sargmax(ψ, ·).

Figure 1 displays the relative performance of the entropy and Euclidean prox
functions, described in Examples 1 and 2, respectively. (Heuristics 1 and 2 were
enabled in this experiment.) In all of the figures, the units of the vertical axis are
small bet sizes in the corresponding poker games.

The entropy prox function outperformed the Euclidean prox function on all
four instances. Therefore, in the remaining experiments we use the entropy prox
function.

3 Heuristics for Improving Speed of Convergence

While AlgorithmEGT has theoretical iteration-complexityO(1/ε), and (as our
experiments onEGT show later in this paper)EGT is already an improvement
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Fig. 1. Comparison of the entropy and Euclidean prox functions. The value axisis the gapε
(Equation 2).

over the state of the art (in particular, the simplex method and standard interior
point methods for solving the game modeled as a linear program), we intro-
duce two heuristics for makingEGT drastically faster. The heuristics attempt to
speed up the decrease inµ1 andµ2, and thus the overall convergence time of
the algorithm, while maintaining the excessive gap condition (4) as well as the
guaranteed convergence ofO(1/ε).

3.1 Heuristic 1: Aggressive µ Reduction

The first heuristic is based on the following observation: although the value
τ = 2/(k + 3) computed in step 2(a) ofEGT guarantees the excessive gap con-
dition (4), computational experiments indicate that this is an overly conservative
value, particularly during the first few iterations. Instead we can use an adaptive
procedure to choose a larger value ofτ . Since we now can no longer guaran-
tee the excessive gap condition (4)a priori, we are required to do aposterior
verification which occasionally leads to adjustments in the parameterτ . In or-
der to check (4), we need to compute the values offµ2

andφµ1
. To that end,

consider the following mappingsmax, a variation ofsargmax. Assumed is a
prox-function with domainQ ⊆ R

n. Let smax(d, ·) : R
n → R be defined as

smax(d,g) := max
x∈Q

{〈g,x〉 − d(x)}. (7)
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It is immediate thatsmax(d, ·) is easily computable providedsargmax(d, ·) is.
Notice thatφµ1

(y) = smax(d1,
1
µ1
Ay) andfµ2

(x) = − smax(d2,−
1
µ2
ATx).

To incorporate Heuristic 1 in AlgorithmEGT we modify the procedureshrink
as follows.

decrease(A,µ1, µ2, τ,x,y, d1, d2)

1. (µ+
2 ,x

+,y+) := shrink(A,µ1, µ2, τ,x,y, d1, d2)
2. while smax(d1,

1
µ1
Ay+) > − smax(d2,

−1
µ+

2

ATx+)

// reduced too much, τ is too big
(a) τ := τ/2
(b) (µ+

2 ,x
+,y+) := shrink(A,µ1, µ2, τ,x,y, d1, d2)

3. return (µ+
2 ,x

+,y+)

By [17, Theorem 4.1], when the input(µ1, µ2,x,y) to decrease satisfies
(4), the proceduredecrease will halt.

Figure 2 demonstrates the impact of applying Heuristic 1 only. On all four
instances, Heuristic 1 reduced the gap significantly; on the larger instances, this
reduction was an order of magnitude.
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Fig. 2. Experimental evaluation of Heuristic 1.

3.2 Heuristic 2: Balancing and Reduction of µ1 and µ2

Our second heuristic is motivated by the observation that after several calls of
thedecrease procedure, one ofµ1 andµ2 may be much smaller than the other.
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This imbalance is undesirable because the larger one dominates in the bound
given by (5). Hence after a certain number of iterations we perform abalancing
step to bring these values closer together. The balancing consists of repeatedly
shrinking the larger one ofµ1 andµ2.

We also observed that after such balancing, the values ofµ1 andµ2 can
sometimes be further reduced without violating the excessive gap condition (4).
We thus include a final reduction step in the balancing heuristic.

This balancing and reduction heuristic is incorporated via the following pro-
cedure.4

balance(µ1, µ2,x,y, A)

1. while µ2 > 1.5µ1 // shrink µ2

(µ2,x,y) := decrease(A,µ1, µ2, τ,x,y, d1, d2)
2. while µ1 > 1.5µ2 // shrink µ1

(µ1,y,x) := decrease(AT,−µ2,−µ1, τ,y,x, d2, d1)
3. while smax(d1,

1
0.9µ1

Ay) ≤ − smax(d2,
−1

0.9µ2
ATx)

// decrease µ1 and µ2 if possible
µ1 := 0.9µ1

µ2 := 0.9µ2

We are now ready to describe the variant ofEGT with Heuristics 1 and 2.

EGT-2

1. (µ0
1, µ

0
2,x

0,y0) = initial(A,Q1, Q2)
2. τ := 0.5
3. For k = 0, 1, . . .:

(a) If k is even: // Shrink µ2

i. (µk+1
1 ,xk+1,yk+1) := decrease(A,µk

1, µ
k
2, τ,x

k,yk, d1, d2)
ii. µk+1

1 = µk
1

(b) If k is odd: // Shrink µ1

i. (µk+1
1 ,yk+1,xk+1) := decrease(−AT, µk

2, µ
k
1, τ,y

k,xk, d2, d1)
ii. µk+1

2 = µk
2

(c) If k mod 10 = 0 // balance and reduce
balance(µk

1, µ
k
2,x

k,yk, A)

Because Heuristic 2 takes more time to compute, we experimented with
how often the algorithm should run it. (We did this by varying the constant in
line 3(c) of AlgorithmEGT-2. In this experiment, Heuristic 1 was turned off.)
Figure 3 shows that it is better to run it than to not run it, and on most instances,
it is better to run it every 100 iterations than every 10 iterations.

4 We set the parameters (0.9 and1.5) based on some initial experimentation.
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Fig. 3. Heuristic 2 applied at different intervals.

4 Customizing the Algorithm for Poker Games

The bulk of the computational work at each iteration of AlgorithmsEGT and
EGT-2 consists of matrix-vector multiplicationsx 7→ ATx andy 7→ Ay in
addition to calls to the mappingssmax(di, ·) andsargmax(di, ·). Of these oper-
ations, the matrix-vector multiplications are by far the most expensive, both in
terms of memory (for storingA) and time (for computing the product).

4.1 Addressing the Space Requirements

To address the memory requirements, we exploit the problem structure to obtain
a concise representation for the payoff matrixA. This representation relies on
a uniform structure that is present in poker games and many other games. For
example, the betting sequences that can occur in most poker games are indepen-
dent of the cards that are dealt. This conceptual separation of betting sequences
and card deals is used by automated abstraction algorithms [6]. Analogously,
we can decompose the payoff matrix based on these two aspects.

The basic operation we use in this decomposition is theKronecker product,
denoted by⊗. Given two matricesB ∈ R

m×n andC ∈ R
p×q, the Kronecker

product is

B ⊗ C =







b11C · · · b1nC
...

.. .
...

bm1C · · · bmnC






∈ R

mp×nq.
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For ease of exposition, we explain the concise representation in the con-
text of Rhode Island Hold’em poker [5], although the general technique applies
much more broadly. The payoff matrixA can be written as

A =





A1

A2

A3





whereA1 = F1 ⊗ B1, A2 = F2 ⊗B2, andA3 = F3 ⊗B3 + S ⊗W for much
smaller matricesFi,Bi, S, andW . The matricesFi correspond to sequences of
moves in roundi that end with a fold, andS corresponds to the sequences in
round 3 that end in a showdown. The matricesBi encode the betting structures
in roundi, whileW encodes the win/lose/draw information determined by poker
hand ranks.

Given this concise representation ofA, computingx 7→ ATx andy 7→ Ay

is straightforward, and the space required is sublinear in the size of the game
tree. For example, in Rhode Island Hold’em, the dimensions of theFi andS
matrices are10× 10, and the dimensions ofB1,B2, andB3 are13× 13, 205×
205, and 1,774× 1,774, respectively—in contrast to theA-matrix, which is
883,741× 883,741. Furthermore, the matricesFi,Bi, S, andW are themselves
sparse which allows us to use the Compressed Row Storage (CRS) data structure
(which stores only non-zero entries).

Table 1 provides the sizes of the four test instances; each models some
variant of poker, an important challenge problem in AI [22]. The first three
instances,10k, 160k, andRI, are abstractions of Rhode Island Hold’em [5]
computed using theGameShrink automated abstraction algorithm [6]. The first
two instances are lossy (non-equilibrium preserving) abstractions, whiletheRI
instance is a lossless abstraction. The last instance,Texas, is a lossy abstrac-
tion of Texas Hold’em. A similar instance was used to generate the playerGS3,
one of the most competitive poker-playing programs [10]. We wanted to testthe
algorithms on problems of widely varying sizes, which is reflected by the data in
Table 1. We also chose these four problems because we wanted to evaluatethe
algorithms on real-world instances, rather than on randomly generated games
(which may not reflect any realistic setting).

Table 2 clearly demonstrates the extremely low memory requirements of
the EGT algorithms. Most notably, on theTexas instance, both of the CPLEX
algorithms require more than 458 GB simply torepresent the problem. In con-
trast, using the decomposed payoff matrix representation, the EGT algorithms
require only 2.49 GB. Furthermore, in order to solve the problem, both the sim-
plex and interior-point algorithms would require additional memory for their
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Name Rows Columns Non-zeros
10k 14,590 14,590 536,502
160k 226,074 226,074 9,238,993
RI 1,237,238 1,237,238 50,428,638
Texas 18,536,84218,536,85261,498,656,400

Table 1. Problem sizes (when formulated as an LP) for the instances used in our experiments.

internal data structures.5 Therefore, the EGT family of algorithms is already an
improvement over the state-of-the-art (even without the heuristics).

Name CPLEX IPM CPLEX Simplex EGT

10k 0.082 GB > 0.051 GB 0.012 GB
160k 2.25 GB > 0.664 GB 0.035 GB
RI 25.2 GB > 3.45 GB 0.15 GB
Texas > 458 GB > 458 GB 2.49 GB

Table 2. Memory footprint in gigabytes of CPLEX interior-point method (IPM), CPLEX Sim-
plex, and EGT algorithms. CPLEX requires more than 458 GB for theTexas instance.

4.2 Speedup from Parallelizing the Matrix-vector Product

To address the time requirements of the matrix-vector product, we can effec-
tively parallelize the operation by simply partitioning the work inton pieces
whenn CPUs are available. The speedup we can achieve on parallel CPUs
is demonstrated in Table 3. The instance used for this test is theTexas in-
stance described above. The matrix-vector product operation scales linearly in
the number of CPUs, and the time to perform one iteration of the algorithm (us-
ing the entropy prox function and including the time for applying Heuristic 1)
scales nearly linearly, decreasing by a factor of 3.72 when using 4 CPUs.

5 Conclusions and Future Research

We applied Nesterov’s excessive gap technique to extensive form games. We in-
troduced two heuristics for improving convergence speed, and showedthat each

5 The memory usage for the CPLEX simplex algorithm reported in Table 2 is thememory used
after 10 minutes of execution (except for theTexas instance which did not run at all as de-
scribed above). This algorithm’s memory requirements grow and shrink during the execution
depending on its internal data structures. Therefore, the number reported is a lower bound on
the maximum memory usage during execution.
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CPUs matrix-vector product EGT iteration
time (s) speedup time (s) speedup

1 278.958 1.00x 1425.786 1.00x
2 140.579 1.98x 734.366 1.94x
3 92.851 3.00x 489.947 2.91x
4 68.831 4.05x 383.793 3.72x

Table 3. Effect of parallelization for theTexas instance.

of them reduces the gap by an order of magnitude. Best results were achieved by
using Heuristic 2 only every so often. It was best to use both heuristics together.
We also observed that the entropy prox function yielded faster convergence than
the Euclidean prox function. For poker games and similar games, we introduced
a decomposed matrix representation that reduces storage requirements drasti-
cally. We also showed near-perfect efficacy of parallelization. Overall, our tech-
niques enable one to solve orders of magnitude larger games than the prior state
of the art.

Although current general-purpose simplex and interior-point solvers can-
not handle problems of more than around106 nodes [6], it is conceivable that
specialized versions of these algorithms could be effective. However, taking ad-
vantage of the problem structure in these linear programming methods appears
to be quite challenging. For example, a single interior-point iteration requires
the solution of a symmetric non-definite system of equations whose matrix has
the payoff matrixA and its transposeAT in some blocks. Such a step is inher-
ently far more complex than the simple matrix-vector multiplications required in
EGT-2. On the upside, overcoming this obstacle would enable us to capitalize
on the superb speed of convergence of interior-point methods. While first-order
methods requireO(1/ε) iterations to find anε-solution, interior-point methods
require onlyO(log(1/ε)) iterations. We leave the study of these alternative al-
gorithms for Nash equilibrium finding as future work.
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