Gradient-based Algorithmsfor Finding Nash Equilibria
in Extensive Form Games

Andrew Gilpint, Samid Hod3, Javier P&&2, and Tuomas Sandholm

! Computer Science Department, Carnegie Mellon Univer§gijpin,sandholm@cs.cmu.edu
2 Tepper School of Business, Carnegie Mellon Univerdishoda,jfy @andrew.cmu.edu

Abstract. We present a computational approach to the saddle-point formulation
for the Nash equilibria of two-person, zero-sum sequential games pErfect
information. The algorithm is a first-order gradient method based onemod
smoothing techniques for non-smooth convex optimization. The algoridim r
quiresO(1/e) iterations to compute asrequilibrium, and the work per iteration
is extremely low. These features enable us to find approximate Nash equilib
for sequential games with a tree representation of ab@¥tnodes. This is three
orders of magnitude larger than what previous algorithms can handlpr&gent
two heuristic improvements to the basic algorithm and demonstrate theircgffica
on a range of real-world games. Furthermore, we demonstrate haldgivéthm
can be customized to a specific class of problems with enormous memory s
ings.

1 Introduction

Extensive form games model the interaction of multiple, self-interested agents
in stochastic environments with hidden information. The goal of each agent is
to maximize its own utility. Since the outcome for a particular agent depends on
the actions of the other agents, each agent must reason about thegethis' a
behavior before acting. A fundamental solution concept for these ganties
Nash equilibrium, i.e. a specification of strategies for each agent such that no
agent is better off by deviating from their prescribed equilibrium strat@egy-
erally, Nash equilibrium strategies involve randomized actions (catiedd
strategies). For two-player zero-sum sequential games of imperfect informa-
tion, the Nash equilibrium problem can be formulated using the sequemoe for
representation [1-3] as the following saddle-point problem:

in (Ay,x) = mi Ay, x). 1
R 2, Ay =l s Ay @
In this formulation,x is player 1's strategy angt is player 2’'s strategy. The
bilinear term(Ay, x) is the payoff that player 1 receives from player 2 when
the players play the strategigsandy. The strategy spaces are represented by
Q; € R%, whereS; is the set of sequences of moves of playeand(Q; is the

set of realization plans of playeri. Thusx (y) encodes probability distributions
over actions at each point in the game where player 1 (2) acts. Thig $ets
an explicit linear description of the forfz > 0 : Ez = e}. Consequently,
problem (1) can be modeled as a linear program (see [3] for details).

The linear programs that result from this formulation have size linear in the
size of the game tree. Thus, in principle, these linear programs can bd sslve
ing any algorithm for linear programming such as the simplex or interior-point
methods. For some smaller games, this approach is successful [4]. efpwev
for many games the size of the game tree and the corresponding linear pro-
gram is enormous. For example, the Nash equilibrium problem for Rhtzdwlls
Hold’em poker [5], after a substantial reduction in size viaGaeShrink loss-
less abstraction algorithm [6], leads to a linear program with ab@wariables
and constraints, whose solution using the state-of-the-art CPLEX infawiot
linear programming solver takes over one week on a 1.65 GHz IBM eSgfver
570, and consumes 25 GB of memory [6]. Prior to the work presented in this
paper, this was the largest poker game instance solved to date. Recerdly the
has been substantial interest in two-player limit Texas Hold’em pokersaho
game tree has abow6'® variables and constraints. The latter problem is well
beyond current computational technology.

A recent and fruitful approach to finding strategies for sequential gésie
employlossy abstractions [7, 8, 6, 9, 10] to approximate the Nash equilibrium.
These abstractions yield smaller games that capture some of the main features
of the full game. The quality of the approximate Nash equilibrium solution de-
pends on the coarseness of the abstraction. The main current limitation on the
degree of coarseness is the magnitude of the abstracted game thatdstardar
ear programming solvers can handle. With the current state-of-the &EXCP
solver the dimension is limited to games whose tree representation has about
107 nodes (the interior-point method is unusable primarily due to memory lim-
itations and the simplex method is too slow [6]).

We propose a hew approach to the approximation of Nash equilibria that
directly tackles the saddle-point formulation of Equation 1. In particular, we
compute, inO(1/¢) iterations, strategies™ € 1 andy™ € Q)2 such that

Ay*,x) — min (Ay,x*) < e. 2
)gg%>§<y X) yrrelggyX)_e 2

Strategies that satisfy this inequality are callestjuilibria. This class of game-
theoretic solution concepts encapsulates strategies in which either player ca
gain at most by deviating to another strategy. For most applications this type

3

of approximation is acceptable dfis small® The algorithms of this paper are
anytime algorithms and guarantee thatpproaches zero, and quickly find so-
lutions that have a very small In this respect, they are similar to other algo-
rithms, such as fictitious play or multiplicative weighting [16]. Our algorithm
differs from fictitious play in that the convergence of the algorithm is much
faster, and it differs from the weighted-majority algorithm in that we assume
that all aspects of the game are already known.

Our approach is based on modern smoothing technigues for saddle-point
problems [17]. A patrticularly attractive feature of our approach is its simple
work per iteration as well as the low cost per iteration: the most complicated
operation is a matrix-vector multiplication involving the payoff matrx In
addition, we can take advantage of the structure of the problem to improve the
performance of this operation both in terms of time and memory requirements.
As a result, we are able to handle games that are several orders of rdagnitu
larger than games that can be solved using conventional linear programming
solvers. For example, we compute approximate solutions to an abstracted ver
sion of Texas Hold’em poker whose LP formulation has 18,536,842 rods an
18,536,852 columns, and has 61,450,990,224 non-zeros in the payaft.matr
This is more than 1,200 times the number of non-zeros in the Rhode Island
Hold’em problem mentioned above. Since conventional LP solvers eeguir
explicit representation of the problem (in addition to their internal data struc-
tures), this would require such a solver to use more than 458 GB of memory
simply to represent the problem. On the other hand, our algorithm only requires
2.49 GB of memory.

The algorithm we present herein can be seen as a primal-dual first-orde
algorithm applied to the pair of optimization problems

max f(x) = min
max f(x) = min ¢(y)
where
x) = min (Ay,x) and = max (Ay, x).
f(x) yeQ2< Y, X) o(y) er1< Y, X)
It is easy to see that and¢ are respectively concave and convex non-smooth
(i.e. not differentiable) functions. Our algorithm is based on a modern smoothing
technique for non-smooth convex minimization [17]. This smoothing technique
provides first-order algorithms whose theoretical iteration-complexity todind
feasible primal-dual solution with gap> 0 is O(1/¢) iterations. We note that
this is a substantial improvement to the black-box generic complexity bound

% There has been work on findireequilibria in two-player normal-form games [11, 12]. Other
recent work has investigated the complexity of approximating Nash edailibnon-zero-sum
games [13-15].

4

O(1/€?) of general first-order methods for non-smooth convex minimization
(concave maximization) [18].

Some recent work has applied smoothing techniques to the solution of large-
scale semidefinite programming problems [19] and to large-scale linear pro-
gramming problems [20]. However, our work appears to be the first apiolic
of smoothing techniques to Nash equilibrium computation in sequential games.

2 Nesterov’'s Excessive Gap Technique (EGT)

We next describe Nesterov’s excessive gap smoothing techniquesfiedial-
ized to extensive form games. Foe 1, 2, assume thaf; is the set of sequences
of moves of playes andQ; C R is theset of realization plans of players.
Fori = 1,2, assume that; is a strongly convex function of;, i.e. there exists
p; > 0 such that

1
di(az + (1 - a)w) < adi(z) + (1 — a)di(w) — 5 pallz — wl? @)
forall « € [0,1] andz,w € Q;. The largestp; satisfying (3) is thestrong
convexity parameter of d;. For convenience, we assume théh,cg, d;(z) = 0.
The prox functions d; andd, can be used temooth the non-smooth func-
tions f and¢ as follows. Fonuy, o > 0 consider

fuz(x) = min {(Ay,x) + pada(y)}
YEQ2

and

b (y) = max {{Ay,x) — mdi(x)} .

Becaused; anddy are strongly convey, it follows [17] that,, and¢,, are
smooth {.e. differentiable). Notice thaf(x) < ¢(y) forall x € @1,y € Q2.
Consider the following relateekcessive gap condition:

Jua (%) = by () 4)

Let D; := maxyeq, di(z). If 1,2 > 0, x € Q1,y € Q2 and(u1, p2,X,y)
satisfies (4), then [17, Lemma 3.1] yields

0<o(y) — f(x) < p1 D1 + paDs. (5)

This suggests the following strategy to find an approximate solution to (1): gen
erate a sequendg’t, u5, x*, y*), k = 0,1,..., with 4} and % decreasing to
zero ask increases, while” € Q1, y* € @, and while maintaining the loop

5

invariant that(u}, 5, x*, y*) satisfies (4). This is the strategy underlying the
EGT algorithms we present in this paper.

The building blocks of our algorithms are the mappiaggmax and the
proceduresinitial andshrink. Let d be a strongly convex function with a
convex, closed, and bounded dom@irc R™. Letsargmax(d,-) : R™ — @ be
defined as

sargmax(d, g) := argmax{(g,x) — d(x)}. (6)
x€eQ

By [17, Lemma 5.1], the following procedurmitial yields an initial
point that satisfies the excessive gap condition (4). The notdtighindicates
an appropriate operator norm (see [17] and Examples 1 and 2 for Jledaits
Vds (%) is the gradient ofl; atx.

initial(A,d;,ds)

0. ,0._ _lA]
S HL = M2 S e,
.y := sargmax (dg, 0)

. xY := sargmax (dl, ﬁA&)
1
. yY := sargmax (dg, Vds (%) + ﬁATXO)
2

creturn (uf, 53, %% y?)

g h W DN PP

The following procedureshrink enables us to reduce; and us while
maintaining (4).

shrink(A, M1, p2, 7, X, Yy, dy, d2)

¥y := sargmax <d2, —iATX)
yi=00-7)y+71¥

X := sargmax (dl, H%Ay

¥ := sargmax (dg, Vds (¥) + WATX)

xTi=(1-7)x+7X
Y= =)y 47y
ctg = (1= 7)o

creturn (ug,xT,y")

NG A W p

By [17, Theorem 4.1], if the inputu1, i2, X, y) to shrink satisfies (4) then
so doeu1, i3 ,xt,yT) as long as satisfiesr?/(1 — 1) < pipap1pal Al2.
Consequently, the iterates generated by proce@8®E below satisfy (4). In

6

particular, afterV iterations, AlgorithmEGT yields pointsx’¥ € Q; andy? ¢
Q2 with

EGT

1. (1, 19,x°% y°) = initial(A4,dy,ds)
2. For £k=0,1,...
(@ r:= %
() If kis even: [/ shrink pus
| %gtl’xkﬂ’ykﬂ)
i, = ph
(c)If kis odd: // shrink p;
i (it gk xR = shrink(AT, — b, kT, yF xE do, dy)

i g5t =

:= shrink(A, uf, u, 7, x5, y* di, ds)

Notice that AlgorithmEGT is aconceptual algorithm that finds aa-solution
to (1). It is conceptual only because the algorithm requires that the nggppin
sargmax(d;, -) be computed several times at each iteration. Consequently, a
specific choice of the functiong andds is a critical step to convert Algorithm
EGT into an actual algorithm.

2.1 NiceProx Functions

Assume() is a convex, closed, and bounded set. We say that a funttigh —
R is anice prox function for @ if it satisfies the following three conditions:

1. d is strongly convex and continuous everywheréjrand is differentiable
in the relative interior ofy;

2. min{d(z) :z € Q} =0;

3. The mappingargmax(d,-): R" — @ is easily computables.g., it has a
closed-form expression.

We next provide two specific examples of nice prox functions for the simplex

n
An:{XGRn:XZO,Z$i21}.
i=1

7

Example 1. Consider theentropy functiond(x) = Inn + > | z; Inz;. The
function d is strongly convex and continuous ift,, andmingea,, d(x) = 0.

It is also differentiable in the relative interior ai,,. It has strong convexity
parametep = 1 for the 1-norm inR™, namely,||x|| = >, |=;|. The corre-
sponding operator nornfA||, for this setting is simply the value of the largest
entry in A in absolute value. Finally, the mappirgrgmax(d, g) has the easily
computable expression

eJi

sargmax(d, g); = —

Z edi

=1
Example 2. Consider the (square&uclidean distance to the center ofA,,, that
is, d(x) = 330, (zi— %)2 This function is strongly convex, continuous
and differentiable in4,,, andminkea, d(x) = 0. It has strong convexity pa-
rameterp = 1 for the Euclidean norm, nameljjx|| = (37, |xi|2)1/2. The
corresponding operator normiA||, for this setting is the spectral norm df,
i.e. the square root of the largest eigenvalueAdtA. Although the mapping
sargmax(d, g) does not have a closed-form expression, it can easily be com-
puted inO(nlogn) steps [20].

In order to apply AlgorithmEGT to problem (1) for sequential games we
need nice prox-functions for the realization sés and @, (which are more
complex than the simplex discussed above in Examples 1 and 2). This problem
was recently solved [21]:

Theorem 1. Any nice prox-function ¢ for the simplex induces a nice prox-
function for a set of realization plans . The mapping sargmax(d, -) can be
computed by repeatedly applying sargmax(, -).

Figure 1 displays the relative performance of the entropy and Euclidean p
functions, described in Examples 1 and 2, respectively. (Heuristicd 2 arere
enabled in this experiment.) In all of the figures, the units of the vertical agis a
small bet sizes in the corresponding poker games.

The entropy prox function outperformed the Euclidean prox functionllon a
four instances. Therefore, in the remaining experiments we use the g ptop
function.

3 Heuristicsfor Improving Speed of Convergence

While Algorithm EGT has theoretical iteration-complexi€y(1/¢), and (as our
experiments orEGT show later in this papeiGT is already an improvement

10k 160k

10° Entropy —— 10° Entropy ——

107 | Euclidean Euclidean

10 102

10{; 10t

10

102 1

0 1 2 3 4 5 6 0O 2 4 6 8 10 12
Time (hours) Time (hours)
RI Texas

iy Entropy —— 10° Entropy ——
Euclidean 7N Euclidean

10°

107

10t

10t
0 2 4 6 8 10 12 0 12 24 36 48 60 72
Time (hours) Time (hours)

Fig. 1. Comparison of the entropy and Euclidean prox functions. The valueigti®e gape
(Equation 2).

over the state of the art (in particular, the simplex method and standard interior
point methods for solving the game modeled as a linear program), we intro-
duce two heuristics for makingGT drastically faster. The heuristics attempt to
speed up the decrease i and 9, and thus the overall convergence time of
the algorithm, while maintaining the excessive gap condition (4) as well as the
guaranteed convergence@f1/e).

3.1 Heuristic 1: Aggressive p Reduction

The first heuristic is based on the following observation: although the value
T = 2/(k + 3) computed in step 2(a) > guarantees the excessive gap con-
dition (4), computational experiments indicate that this is an overly consesvati
value, particularly during the first few iterations. Instead we can uselaptize
procedure to choose a larger valuerofSince we now can no longer guaran-
tee the excessive gap condition gpriori, we are required to do posterior
verification which occasionally leads to adjustments in the parameteror-

der to check (4), we need to compute the valueg,gfand¢,,,. To that end,
consider the following mappingmax, a variation ofsargmax. Assumed is a
prox-function with domair@) C R”. Letsmax(d,-) : R” — R be defined as

smax(d, g) := rﬁgg{(g, x) —d(x)}. (7)

It is immediate thatmax(d, -) is easily computable providedrgmax(d, -) is.
Notice thate,,, (y) = smax(di, /711AY) and f,, (x) = — smax(da, —iATx).
To incorporate Heuristic 1 in AlgorithiBGT we modify the procedurghrink
as follows.

decrease(A, M, f2, 7, X, Y, d17 d2)
1. (ug,x*,yt) = shrink(A, 1, 2, 7, X, y, d1, d2)
2. Whi | e smax(dy, iAy*) > — smax(do, ;—jATxﬂ

/! reduced too nmuch, 7 is too *bi g

(@ 7:=7/2

(b) (/.Lg—, X+> y+> = Shrink(A7 M1, 02, 7,X,Y, d1> d2)
3.return (ug,x",y")

By [17, Theorem 4.1], when the inpQt, 112, X, y) t0 decrease satisfies
(4), the proceduréecrease will halt.

Figure 2 demonstrates the impact of applying Heuristic 1 only. On all four
instances, Heuristic 1 reduced the gap significantly; on the larger instahise
reduction was an order of magnitude.

10k @ 160k
1 No Heuristics

No Heuristics
107 Heuristic 1 Heuristic 1
10t 107
10° 10t

10
102 10°
0 1 2 3 4 5 6 0O 2 4 6 8 10 12
Time (hours) Time (hours)
RI Texas

10! No Heuristics 10° No Heuristics
Heuristic 1 Heuristic 1

10°

100}
107
10

10*
0o 2 4 6 8 10 12 0 12 24 36 48 60 72
Time (hours) Time (hours)

Fig. 2. Experimental evaluation of Heuristic 1.

3.2 Heuristic 2: Balancing and Reduction of g7 and o

Our second heuristic is motivated by the observation that after sevdisabta
thedecrease procedure, one gi; andu, may be much smaller than the other.

10

This imbalance is undesirable because the larger one dominates in the bound
given by (5). Hence after a certain number of iterations we perfdpaiancing

step to bring these values closer together. The balancing consists afadiye
shrinking the larger one qf; and ..

We also observed that after such balancing, the values @nd uo can
sometimes be further reduced without violating the excessive gap condijion (
We thus include a final reduction step in the balancing heuristic.

This balancing and reduction heuristic is incorporated via the following pro-
cedure?

balance(uq, p2,X,y, A)

1L.whilepus>15u; /1 shrink ps

(12,%,y) := decrease(A, u1, 2, 7,X,y, d1,d2)
2. whilepu; >1.5u2 I/ shrink p

(p1,y,%) := decrease(AT, —po, —p1,7,y,X, da, dy)
3. whi | e smax(dy, ﬁAy) < —.SHIaX(dQ,. ﬁATX)

/1 decrease pu; and po if possible
p1 = 0.9u1
p2 = 0.9u2

We are now ready to describe the varianE@T with Heuristics 1 and 2.

EGT- 2

Lo (1,13, x%,y°) =initial (4,Q1,Q2)
2. 7:=0.5

3. For k=0,1,...

@ If kis even: [/ Shrink pus
i. (ulfﬂ,xk“‘l,yk“‘l) := decrease(A, uf, uk, 7, x* y* dy, d2)
W py = Hy
() If kis odd: // Shrink p
I (le+17yk+1>xk+l) = decrease(—AT,,ulg,,ulf, T, ykaxka d27d1)
ookl k
iy = sy
(c) If kK mod10=0 // bal ance and reduce
balance(uf, uk, x*, y*, A)

Because Heuristic 2 takes more time to compute, we experimented with
how often the algorithm should run it. (We did this by varying the constant in
line 3(c) of AlgorithmEGT- 2. In this experiment, Heuristic 1 was turned off.)
Figure 3 shows that it is better to run it than to not run it, and on most instances
it is better to run it every 100 iterations than every 10 iterations.

* We set the parameters.§ and1.5) based on some initial experimentation.

11

10k " 160k
No Heuristics 1 No Heuristics

10 Iterations 10 Iterations
10° \ 100 Iterations= - - 10° 100 Iterations= - -
100 I\ 107
VS s

Bl ——]
100y TS T T T 10t s

10t 10°
0 1 2 3 4 5 6 0O 2 4 6 8 10 12
Time (hours) Time (hours)
RI Texas
10 120 X

No Heuristics No Heuristics

10 Iterations 110 2 Iterations
10° | 100 Iterations= - - 100 10 lterations- - -
\ 90F e e
10 | 80 /_A
S 70

10t b TS T T 60
0 2 4 6 8 10 12 0 12 24 36 48 60 72
Time (hours) Time (hours)

Fig. 3. Heuristic 2 applied at different intervals.

4 Customizing the Algorithm for Poker Games

The bulk of the computational work at each iteration of AlgorithB@GT and
EGT- 2 consists of matrix-vector multiplications — A'x andy — Ay in
addition to calls to the mappingsax(d;, -) andsargmax(d;, -). Of these oper-
ations, the matrix-vector multiplications are by far the most expensive, both in
terms of memory (for storingl) and time (for computing the product).

4.1 Addressing the Space Requirements

To address the memory requirements, we exploit the problem structure o obta
a concise representation for the payoff matdixThis representation relies on

a uniform structure that is present in poker games and many other gaones. F
example, the betting sequences that can occur in most poker games aeninde
dent of the cards that are dealt. This conceptual separation of bettjngrsmes

and card deals is used by automated abstraction algorithms [6]. Analogously
we can decompose the payoff matrix based on these two aspects.

The basic operation we use in this decomposition istamecker product,
denoted byx. Given two matriced3 € R™*™ andC € RP*9, the Kronecker
product is

b11C -+ b1, C
B®C= oo, € RMPX™,

12

For ease of exposition, we explain the concise representation in the con-
text of Rhode Island Hold’em poker [5], although the general tectenapplies
much more broadly. The payoff matrix can be written as

Ay
A= As
As

whered; = I} ® By, Ay = I, ® By, andAs = I3 ® B3 + .5 ®@ W for much
smaller matrice$’;, B;, S, andl¥/. The matrices; correspond to sequences of
moves in round that end with a fold, and' corresponds to the sequences in
round 3 that end in a showdown. The matriégsencode the betting structures
in round:, while W encodes the win/lose/draw information determined by poker
hand ranks.

Given this concise representation4f computingx — ATx andy — Ay
is straightforward, and the space required is sublinear in the size of the ga
tree. For example, in Rhode Island Hold’em, the dimensions offthend S
matrices ara0 x 10, and the dimensions d¥;, By, andBs arel3 x 13, 205 x
205, and 1,774x 1,774, respectively—in contrast to thie-matrix, which is
883,741x 883,741. Furthermore, the matricEs B;, S, andWW are themselves
sparse which allows us to use the Compressed Row Storage (CRS) dettarstru
(which stores only non-zero entries).

Table 1 provides the sizes of the four test instances; each models some
variant of poker, an important challenge problem in Al [22]. The firse¢h
instances10k, 160k, andRI , are abstractions of Rhode Island Hold’em [5]
computed using th&ameShrink automated abstraction algorithm [6]. The first
two instances are lossy (non-equilibrium preserving) abstractions, thieikRi
instance is a lossless abstraction. The last instareeas, is a lossy abstrac-
tion of Texas Hold’em. A similar instance was used to generate the pBS&r
one of the most competitive poker-playing programs [10]. We wanted tthiest
algorithms on problems of widely varying sizes, which is reflected by the datain
Table 1. We also chose these four problems because we wanted to etladuate
algorithms on real-world instances, rather than on randomly generatedsgame
(which may not reflect any realistic setting).

Table 2 clearly demonstrates the extremely low memory requirements of
the EGT algorithms. Most notably, on thexas instance, both of the CPLEX
algorithms require more than 458 GB simplyrapresent the problem. In con-
trast, using the decomposed payoff matrix representation, the EGT algorithms
require only 2.49 GB. Furthermore, in order to solve the problem, both the sim-
plex and interior-point algorithms would require additional memory for their

13

Name Rows| Columns Non-zeros
10k 14,590 14,590 536,502
160k 226,074 226,074 9,238,993
RI 1,237,238 1,237,238 50,428,638
Texas||18,536,84218,536,85%61,498,656,400

Table 1. Problem sizes (when formulated as an LP) for the instances used inpeniraents.

internal data structuresTherefore, the EGT family of algorithms is already an
improvement over the state-of-the-art (even without the heuristics).

[Name [[CPLEX IPM[CPLEX Simplex| EGT]|

10k 0.082 GB > 0.051 GB|0.012 GB
160k 2.25GB > 0.664 GB|0.035 GB
RI 25.2GB > 3.45 GB| 0.15 GB
Texas > 458 GB > 458 GB| 2.49 GB

Table 2. Memory footprint in gigabytes of CPLEX interior-point method (IPM), IEX Sim-
plex, and EGT algorithms. CPLEX requires more than 458 GB fof#teas instance.

4.2 Speedup from Parallelizing the M atrix-vector Product

To address the time requirements of the matrix-vector product, we can effec
tively parallelize the operation by simply partitioning the work intieces
whenn CPUs are available. The speedup we can achieve on parallel CPUs
is demonstrated in Table 3. The instance used for this test iFdlkas in-
stance described above. The matrix-vector product operation scaagyiin

the number of CPUs, and the time to perform one iteration of the algorithm (us-
ing the entropy prox function and including the time for applying Heuristic 1)
scales nearly linearly, decreasing by a factor of 3.72 when using 4 CPUs

5 Conclusions and Future Research

We applied Nesterov’s excessive gap technique to extensive formsgéiviean-
troduced two heuristics for improving convergence speed, and shitwakeach

5 The memory usage for the CPLEX simplex algorithm reported in Table 2 ismémeory used
after 10 minutes of execution (except for fhexas instance which did not run at all as de-
scribed above). This algorithm’s memory requirements grow andksHriring the execution
depending on its internal data structures. Therefore, the numbetedp® a lower bound on
the maximum memory usage during execution.

14

CPUs||matrix-vector product|| EGT iteration

time(s) speedup|| time(s)|speedup
1 [|278.958 1.00%|1425.786 1.00X
2 {|140.579 1.98x| 734.366 1.94x
3 92.851 3.00x| 489.947 2.91X
4 68.831 4.05x| 383.793 3.72X

Table 3. Effect of parallelization for th@exas instance.

of them reduces the gap by an order of magnitude. Best results wéegedtby
using Heuristic 2 only every so often. It was best to use both heuristietheg
We also observed that the entropy prox function yielded faster coeneeghan
the Euclidean prox function. For poker games and similar games, we ingdduc
a decomposed matrix representation that reduces storage requirenastits dr
cally. We also showed near-perfect efficacy of parallelization. Qlyexa tech-
niques enable one to solve orders of magnitude larger games than theatgor s
of the art.

Although current general-purpose simplex and interior-point solvans c
not handle problems of more than arour@f nodes [6], it is conceivable that
specialized versions of these algorithms could be effective. Howekargtad-
vantage of the problem structure in these linear programming methods sppear
to be quite challenging. For example, a single interior-point iteration requires
the solution of a symmetric non-definite system of equations whose matrix has
the payoff matrix4 and its transposd™ in some blocks. Such a step is inher-
ently far more complex than the simple matrix-vector multiplications required in
EGT- 2. On the upside, overcoming this obstacle would enable us to capitalize
on the superb speed of convergence of interior-point methods. Wisilefider
methods requiré€(1/¢) iterations to find ar-solution, interior-point methods
require onlyO(log(1/¢)) iterations. We leave the study of these alternative al-
gorithms for Nash equilibrium finding as future work.

References

1. Romanovskii, I.: Reduction of a game with complete memory to a matrxegaSoviet
Mathematics3 (1962) 678—681

2. Koller, D., Megiddo, N.: The complexity of two-person zero-surmga in extensive form.
Games and Economic Behavid@l) (1992) 528-552

3. von Stengel, B.: Efficient computation of behavior strategies. Gamg&conomic Behav-
ior 14(2) (1996) 220-246

4. Koller, D., Pfeffer, A.: Representations and solutions for gameerttic problems. Artificial
Intelligence94(1) (1997) 167-215 (Early version appeared in IJCAI-95.).

5. Shi, J., Littman, M.: Abstraction methods for game theoretic poker.Cobmputers and
Games, Springer-Verlag (2001) 333-345

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

15

Gilpin, A., Sandholm, T.: Lossless abstraction method for sequegarakes of imperfect
information. Journal of the ACM (2007) To appear. (Early versiopegped as “Finding
equilibria in large sequential games of imperfect information” in Proicegdof the ACM
Conference on Electronic Commerce (ACM-EC), Ann Arbor, Ml,)0

Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, &h&uenberg, T., Szafron, D.:
Approximating game-theoretic optimal strategies for full-scale poker.Pinceedings of
the Eighteenth International Joint Conference on Atrtificial Intelligend€All), Acapulco,
Mexico (2003) 661-668

Gilpin, A., Sandholm, T.: A competitive Texas Hold'em poker playiarautomated abstrac-
tion and real-time equilibrium computation. In: Proceedings of the Nationaféence on
Artificial Intelligence (AAAI), Boston, MA (2006)

Gilpin, A., Sandholm, T.: Better automated abstraction techniques friect information
games, with application to Texas Hold’em poker. In: International Jobnf€rence on
Autonomous Agents and Multi-Agent Systems (AAMAS), Honolulu, HIGZD

Gilpin, A., Sandholm, T., Sgrensen, T.B.: Potential-aware autahabstraction of sequen-
tial games, and holistic equilibrium analysis of Texas Hold’em poker. foc&edings of the
National Conference on Artificial Intelligence (AAAI), Vancouver, BCanada (2007)
Lipton, R.J., Young, N.E.: Simple strategies for large zero-sames with applications
to complexity theory. In: Proceedings of the Annual Symposium on fhebComputing
(STOC), Montreal, Quebec, Canada (1994) 734-740

Lipton, R., Markakis, E., Mehta, A.: Playing large games using Ersfrategies. In: Pro-
ceedings of the ACM Conference on Electronic Commerce (ACM-E@) Biego, CA
(2003) 36-41

Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approxifNath equilibria. In:
WINE. (2006)

Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in appaie Nash equilibria. In:
Proceedings of the ACM Conference on Electronic Commerce (ACNI-Eén Diego, CA
(2007) 355-358

Feder, T., Nazerzadeh, H., Saberi, A.: Approximating Nasfiibga using small-support
strategies. In: Proceedings of the ACM Conference on Electronic Guoen(ACM-EC),
San Diego, CA (2007) 352—354

Freund, Y., Schapire, R.: Adaptive game playing using multiplieatigights. Games and
Economic Behavio29 (1999) 79-103

Nesterov, Y.: Excessive gap technique in nonsmooth convex imation. SIAM Journal
of Optimization16(1) (2005) 235—-249

Nesterov, Y.: Introductory Lectures on Convex Optimization: AiB&ourse. Kluwer
Academic Publishers (2004)

Lu, Z., Nemirovski, A., Monteiro, R.D.C.: Large-scale semitiéfi programming via a
saddle point mirror-prox algorithm. Mathematical Programming, S&i#89(2—3) (2007)
211-237

Chudak, F.A., Eleétio, V.: Improved approximation schemes for linear programming re
laxations of combinatorial optimization problems. In: IPCO, Berlin, Geyn@005) 81-96
Hoda, S., Gilpin, A., He, J.: A gradient-based approach for computing Nash equilibria
of large sequential games. Availablehatt p: / / ww. opti mi zati on- onl i ne. org/
(2007)

Billings, D., Davidson, A., Schaeffer, J., Szafron, D.: Thallgmge of poker. Atrtificial
Intelligencel34(1-2) (2002) 201—-240

