
On Dominant Strategy
Mechanisms

–1–

Universiteit
Maastricht

Truthful Mechanisms and Shortest Paths

Rudolf Müller

Universiteit Maastricht
The Netherlands

joined work with Hongwei Gui and Rakesh V. Vohra
Kellog School of Management, Northwestern University

Guest Lecture
Foundations of Electronic Marketplaces

September 22, 2005



On Dominant Strategy
Mechanisms

–2–

Universiteit
Maastricht

Motivation

• Given adecision problem (e.g., a combinatorial optimization
problem)

• Input: split among different agents, private information.

• Output: computed by a center on basis of input reports.

• Assumption: agents vary in their valuations over the chosen out-
put.

• Incentives to manipulate: report of wrong input might give fa-
vored decision.

• Question: can we introduce (side-)payments that depend on agent
reports which give incentives to tell the truth?
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Example: Minimum Spanning Tree

• Setting: every agent owns one edge in a graph, no agent owns a
cut, edge lengths are private information.

• Valuation: if edge is chosen, cost to operate it is equal to the
length.

• Input: every agent reports his edge length.

• Output: center chooses a minimum spanning tree based on these
reports, pays cost of chosen edges.

• Incentives to manipulate:higher reports increase revenue, while
there might be still a chance to be in the minimum spanning tree.

• Question: which payment should be made in order to make
agents tell the truth?
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Example II: Sealed bid, single item auction

• Setting: 1 item, n bidders, we want to reward the item to the
bidder who values it most.

• Valuation: each bidder has a private value for the item.

• Input: maximum price each bidder is willing to pay.

• Output: the winner of the auction, and a price he has to pay.

• Incentives to manipulate: lower reports might still win, but re-
sult in a lower price.

• Question: which payment gives incentives to tell the truth?

• Vickrey (1961): if the payment is equal to the highest loosing
bid, then every bidder cannot do better than reporting his valua-
tion.
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Mechanism Design Setting

N = {1, . . . , n} set of agents.

Ti set oftypes, ti ∈ Ti type of agenti, T = ×i∈NTi

Y set ofoutcomes(output)

vi : Y × Ti → R valuationof agenti for outcomey if of type ti.
Notation:vi(y|ti).
A social choice function: f : T → Y.
A payment function: p : T → Rn.

We assume(quasi-linear) utilities: agenti, if of type ti, values out-
comey and paymentpi:

ui : Y × R× Ti → R
ui(y, pi|ti) = vi(y|ti)− pi
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Example: Minimum Spanning Tree

Every agent inN = {1, . . . , n} owns an edgeei.

Ti = [0,∞) represents costsci of operating edgeei

Y set of spanning trees

vi(y|ci) =

{−ci if ei ∈ y
0 else

Social choice function: any algorithm that computes a spanning
tree.
A payment function: p : T → Rn rewards agents in the spanning
tree.
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Mechanism Design Setting (II)

Definition. (f, p) is dominant strategy incentive compatibleif and
only if for all i, for all si, ti ∈ Ti, for all t−i ∈ T−i:

vi(f (ti, t−i)|ti)− p(ti, t−i) ≥ vi(f (si, t−i)|ti)− p(si, t−i)

Definition. f is dominant strategy incentive compatible(or imple-
mentable) if and only if there exists a payment functionp such that
(f, p) is dominant strategy incentive compatible.

Example: Choose a weightwy for everyy ∈ Γ, and a multiplierqi
for every agent, then theweighted utilitarian social choice function

f (t) ∈ argmax{wy +

n∑

i=1

qivi(y|ti) | y ∈ Y }

is dominant strategy incentive compatible (Vickrey (1961), Clarke
(1970), Groves (1971), Roberts (1979)).
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Example: VCG payment for minimum spanning tree

Choose allocation rulemin total cost(= max -(total cost)) and define

pi(ci) = ci(y
opt) + (c−i(y

opt
−i )− c(yopt))

Interpretation: Add to declared cost the marginal increase of the
cost of a minimum spanning tree if bidderi would not be present.

Let y′ be the solution chosen if bidderi reportsc′i rather than his
true typeci, andp′ the payment.
Note that:

ui(y
′, p′|ci) = −ci(y

′) + (c′i(y′) + (c′−i(y
opt
−i )− c′(y′)))

= c−i(y
opt
−i )− c(y′)

≤ c−i(y
opt
−i )− c(yopt)

= −ci(y
opt) + (ci(y

opt) + (c−i(y
opt
−i )− c(yopt)))

= ui(y
opt, p|ci)
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Mechanism Design Setting (III)

Problems:

• In many settings (e.g., combinatorial auctions) computing the
weighted utilitarian s.c.f. is NP-complete or reporting the types
requires exponential communication.

• Sometimes the utilitarian s.c.f. is not in the interest of the center
(e.g., task scheduling (Nisan and Ronen, 2001)).

• Sometimes the center might want to modify the utilitarian so-
cial choice function in order to increase revenue (e.g., optimal
auctions).

• Very little is known about implementable social choice functions
(i.e., algorithms) for multi-dimensional type spaces.
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This presentation

• Given type spacesTi ⊆ Rk, outcomesY , valuationsvi(y|ti)
• Characterize

f : ×i∈NTi → Y

that are dominant strategy incentive compatible.

• Approach: a construction of payments or a prove that no pay-
ments exist.

• Based on relation between shortest paths and negative cycles.
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Outline

• Introduction to Mechanism Design

• Projection to the single-agent case

• Allocation graphs

• Necessary condition: no negative 2-cycles

• Environments in which no negative 2-cycles is sufficient:

– Combinatorial auctions with bounded type domains

– Multi-item auctions with decreasing marginal utilities
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Projection to the single-agent case

GivenN , T , v, f , p.
Fix agenti, and report of the other agentst−i.
Define:

fi(ti) = f (ti, t−i)

pi(ti) = (p(ti, t−i))i

For simplicity we drop the dependence ont−i in our notation.

Lemma f is dominant strategy incentive compatible if and only if
for all i ∈ N and t−i ∈ T−i, fi is dominant strategy incentive
compatible (orrationalizable).



On Dominant Strategy
Mechanisms

–13–

Universiteit
Maastricht

Allocation Graph

From now on: fixi, t−i, dropi in the notation:f = fi.

Define an (infinite) digraphG = (T, A), arc lengths

l(s, t) = v(f (t)|t)− v(f (s)|t).
Note thatf is dominant strategy incentive compatible if and only if
there existsp such that for alls, t:

p(t)− p(s) ≤ v(f (t)|t)− v(f (s)|t)
= l(s, t)

Theorem (Rochet, 1987).f is dominant strategy implementable
(or, rationalizable) if and only ifG does not contain a negative
length cycle.
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Proof

Necessity.

Let p be a payment function that makesf d.s.i.c.. LetC = {t0, . . . , tk−1, tk = t0}
be a cycle.

l(C) =

k−1∑
j=0

l(tj, tj+1)

≥
k−1∑
j=0

p(tj+1)− p(tj) = 0

Sufficiency.
Fix a typet0 and definep(t0) = 0 andp(t) = inf(l(P ) | P is a path froms to t).

Note thatp(t) > −∞, sincel(P )− l(t, t0) ≥ 0.

Finally, observe thatp(t) ≤ p(s) + l(s, t), that is this payment makesf d.s.i.c..
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A special case
• Homogeneous, multi-item auctions,k items on sale.

• Additive valuations:t ∈ Rk, v(k|t) =
∑k

j=1 tj.

• Length of an edge (iff (s) ≤ f (t)):

l(s, t) =

f(t)∑
j=1

tj −
f(s)∑
j=1

tj =

f(t)∑

j=f(s)+1

tj

Theorem (Bikhchandani, Chatterij, Sen, 2003).f is dominant strategy incentive
compatible if and only if for alls, t, f (s) < f (t):

f(t)∑

j=f(s)+1

tj −
f(t)∑

j=f(s)+1

sj ≥ 0.

(⇔ l(s, t) + l(t, s) ≥ 0).
Corollary. G does not have a negative length cycle, if and only if it does not have
a negative length 2-cycle.

Question: Does this generalize to other settings?
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Weak monotonicity sufficient for d.s.i.c.

When are the following equivalent:

1. G does not have a negative cycle

2. G does not have a negative 2-cycle (calledweak monotonicity)

Lavi, Mu’alem, and Nisan (2003): Combinatorial auctions, if valuations are
non-negative, and monotone (free-disposal).
Gui, M., and Vohra (2004): Holds for the environments:

• Y finite, T = RY , or T = RY
+, or T = [0, 1]Y ,

• Combinatorial auctions,T = R2S
, or T = R2S

+ , or T = [0, 1]2
S
,

• Multi-item auctions withdecreasing marginal utilities, i.e.,
T = {t ∈ [0, 1]m | tk+1 ≤ tk, k = 1, . . . , m− 1},

Saks and Yu (2004): Holds for any finiteY , T ⊂ RY , v(y|t) = ty, T convex.



On Dominant Strategy
Mechanisms

–17–

Universiteit
Maastricht

Core idea of proofs in Gui, M., and Vohra (2004)

To prove:

G does not have a negative 2-cycle
⇒

G does not have a negative cycle

Step 1: Study instead of a graph onT a graph onY :

• Γ = (Y, A)

• for α ∈ Y let Rα = {t ∈ T | f (t) = α}
• for α, β ∈ Y define

l(α, β) = inf{v(f (t)| t)− v(f (s)| t) | s ∈ Rα, t ∈ Rβ}
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Core idea of the proofs (II)

Step 2: Verify that Γ has no negative (2-)cycle if and only ifG has
no negative (2-)cycle.

Step 3: AssumeΓ has no negative 2-cycle. Observe that for all
t ∈ Rβ and for allα 6= β:

v(β | t)− v(α | t) ≥ inf{v(β | s)− v(α | s) | s ∈ Rβ}
= l(α, β)

≥ −l(β, α)

Step 4: Observe that in our casesv(β|t)− v(α|t) is linear int.

Thus

Rβ ⊆ Qβ := {t ∈ Rk | v(α | t)− v(β | t) ≤ l(β, α) for all α ∈ Y },
whereQβ are polyhedra (k is the dimension ofT ).
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Core idea of the proofs (III)

Step 5: Observe that

T =
⋃

α∈Y

(T ∩Qα)

and thatQα intersect only on their boundaries.

Step 6: Now suppose there exists a strictly negative cycleC in Γ.
Assume for a moment, that this cycle visits every node inY :

C = [α0, . . . , αk−1, αk = α0].

Observe:l(C) < 0 implies that the system:

zi+1 − zi ≥ l(αi, αi+1) + ε for all i = 0, . . . , k − 1

has a feasible solution (setz0 = 0, compute longest paths).
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Core idea of the proofs (IV)
Step 7: Let us look at the caseT = RY , i.e.,v(y|t) = ty.

Consider the following type:ti = zi wherezi is a solution of the
system above.

Observe:

v(αi+1|t)− v(αi|t) = ti+1 − ti > l(αi, αi+1)

Thust 6∈ Qαi, i = 1, . . . , k.

But observe that, in this case,t ∈ T . Therefore, we have found a
type for whichf doesn’t define an allocation. A contradiction.

Complication: C may not contain all nodes inY .

Solution: add extra arcs such that the extended system does not
have a positive cycle.
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Core idea of the proofs (V)

This proves the theorem for general valuations and for combinato-
rial auctions, with arbitrary, and with non-negative valuations.

For the cases of bounded valuations we have to overcome another:

Complication: The solutionz may not be an element ofT .

Solution: build up a careful line of argumentation that constructs a
solutionz ∈ T (doable, but lengthy...)



On Dominant Strategy
Mechanisms

–22–

Universiteit
Maastricht

Literature
Hongwei Gui, R.M., Rakesh V. Vohra (2004),Dominant Strategy
Mechanisms with Multidimensional Types,
http://www.kellogg.northwestern.edu/research/math/dplist 4.htm

Roberts (1979). If|Y | = k andT = Rk then:
f is d.s. implementable⇔ f is weighted utilitarian maximizer.

Lavi, Mu’alem, and Nisan (2003). Weak-monotonicity is sufficient
for combinatorial auctions. (appeared in STOCS Proceedings 2003)

Saks and Yu (2005). Weak monotonicity is sufficient for truthful-
ness on any convex type domains. (appeared in Proceedings of
ACM Conf. Electr. Commerce, 2005).



On Dominant Strategy
Mechanisms

–23–

Universiteit
Maastricht

Related research

Bayesian setting:

• Projection does also work.

• Γ is not finite anymore, but a set of probability distributions.

• studied by Rochet (various papers), Jehiel and Moldovanu (2001)

• Generalizations of previous results can be found in:
M., Perea, and Wolf. “Weak Monotonicity and Bayes-Nash In-
centive Compatibility” (available on request).


