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1. Introduction

Computational issues in mechanism design are important, but have received insufficient research interest until recently.
Limited computing hinders mechanism design in several ways, and presents deep strategic interactions between com-
puting and incentives. On the bright side, the vast increase in computing power has enabled better mechanisms.
Perhaps most interestingly, limited computing of the agents can be used as a tool to implement mechanisms that would
not be implementable among computationally unlimited agents. This chapter briefly reviews some of the key ideas,
with the goal of alerting the reader to the importance of these issues and hopefully spurring future research.

I will discuss computing by thecenter, such as an auction server or vote aggregator, in Section 2. Then, in
Section 3, I will address theagents’computing, be they human or software.

2. Computing by the center

Computing by the center plays significant roles in mechanism design. In the following three subsections I will review
three prominent directions.

2.1. Executing expressive mechanisms

As algorithms have advanced drastically and computing power has increased, it has become feasible to field mecha-
nisms that were previously impractical. The most famous example is acombinatorial auction (CA). In a CA, there
are multiple distinguishable items for sale, and the bidders can submit bids on self-selected packages of the items.
(Sometimes each bidder is also allowed to submit exclusivity constraints of different forms among his bids.) This
increase in the expressiveness of the bids drastically reduces the strategic complexity that bidders face. For one, it
removes the exposure problems that bidders face when they have preferences over packages but in traditional auctions
are allowed to submit bids on individual items only.

CAs shift the computational burden from the bidders to the center. There is an associated gain because the center
has all the information in hand to optimize while in traditional auctions the bidders only have estimated projected
(probabilistic) information about how others will bid. Thus CAs yield more efficient allocations.

On the downside, the center’s task of determining the winners in a CA (deciding which bids to accept so as to
maximize the sum of the accepted bids’ prices subject to not selling any item to more than one bid) is a complex
combinatorial optimization problem, even without exclusivity constraints among bids. Three main approaches have
been studied for solving it:

• Optimal winner determination using some form of tree search.For a review, see Sandholm (2006). The ad-
vantage is that the bidding language is not restricted and the optimal solution is found. The downside is that
no optimal winner determination algorithm can run in polynomial time in the size of the problem instance in
the worst case, because the problem isNP-complete (Rothkopf et al., 1998). (NP-complete problems are
problems for which the fastest known algorithms take exponential time in the size of the problem instance in the
worst case.P is the class of easy problems solvable in polynomial time. The statement of winner determination
not being solvable in polynomial time in the worst case relies on the usual assumptionP6=NP. This is an open
question in complexity theory, but is widely believed to be true. If false, that would have sweeping implications
throughout computer science.)

∗This work was funded by the National Science Foundation under ITR grant IIS-0427858, and a Sloan Foundation Fellowship. I thank Felix
Brandt, Christina Fong, Joe Halpern, and David Parkes for helpful comments on drafts of this paper.
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• Approximate winner determination.The advantage is that many approximation algorithms run in polynomial
time in the size of the instance even in the worst case. For reviews of such algorithms, see Sandholm (2002a) and
Lehmann et al. (2006). (Other suboptimal algorithms do not have such time guarantees, such as local search,
stochastic local search, simulated annealing, genetic algorithms, and tabu search.) The downside is that the
solution is sometimes far from optimal: no such algorithm can always find a solution that is within a factor

min
{

#bids1−ε,#items
1
2−ε

}
(1)

of optimal (Sandholm, 2002a). (This assumesZPP6= NP. It is widely believed that these two complexity
classes are indeed unequal.) For example, with just 9 items for sale, no such algorithm can extract even 33% of
the available revenue from the bids in the worst case. With 81 items, that drops to 11%.

• Restricting the bidding languageso much that optimal (within the restricted language) winner determination
can be conducted. For a review, see Müller (2006). For example, if each package bid is only allowed to include
at most two items, then winners can be determined in worst-case polynomial time (Rothkopf et al., 1998). The
downside is that bidders have to shoe-horn their preferences into a restricted bidding language; this gives rise
to similar problems as in non-combinatorial mechanisms for multi-item auctions: exposure problems, need to
speculate how others will bid, inefficient allocation, etc.

Truthful bidding can be made a dominant strategy by applying theVickrey-Clarke-Groves (VCG) mechanismto
a CA. Such incentive compatibility removes strategic complexity of the bidders. The mechanism works as follows.
The optimal allocation is used, but the bidders do not pay their winning bids. Instead each bidder pays the amount of
value he takes away from the others by taking some of the items. This value is measured as the difference between the
others’ winning bids’ prices and what the others’ winning bids’ prices would have been had the agent not submitted
any bids. This mechanism can be executed by determining the winners once overall, and once for each agent removed
in turn. (This may be accomplishable with less computing. For example, in certain network auctions it can be done in
the same asymptotic complexity as one winner determination (Hershberger and Suri, 2001).)

Very few canonical CAs have found their way to practice. However, auctions with richer bid expressiveness
forms (that are more natural in the given application and more concise) and that support expressiveness also by the
bid taker, have made a major breakthrough into practice (Sandholm, 2007; Bichler et al., 2006). This is sometimes
calledexpressive commerceto distinguish it from vanilla CAs. The widest area of application is currently industrial
sourcing. Tens of billions of dollars worth of materials, transportation, and services are being sourced annually using
such mechanisms, yielding billions of dollars in efficiency improvements. The bidders’ expressiveness forms include
different forms of flexible package bids, conditional discounts, discount schedules, side constraints (such as capacity
constraints), and often hundreds of cost drivers (e.g., fixed costs, variable costs, transshipment costs, and costs asso-
ciated with changes). The item specifications can also be left partially open, and the bidders can specify some of the
item attributes (delivery date, insurance terms, etc.) in alternate ways. The bid taker also specifies preferences and
constraints. Winner determination then not only decides who wins what, but also automatically configures the items.
In some of these events it also configures the supply chain several levels deep as a side effect. On the high end, such
an auction can have tens of thousands of items (multiple units of each), millions of bids, and hundreds of thousands of
side constraints. Expressive mechanisms have also been designed for settings beyond auctions, such as combinatorial
exchanges, charity donations, and settings with externalities.

Basically all of the fielded expressive auctions use the simple pay-your-winning-bids pricing rule. There are
numerous important reasons why few, if any, use the VCG mechanism. It can lead to low revenue. It is vulnerable to
collusion. Bidders would not tell the truth because they do not want to reveal their cost structures which the auctioneer
could exploit the next time when the auction is conducted, and so on (Sandholm, 2000; Rothkopf, 2007).

Basically all of the fielded expressive auctions use tree search for winner determination. In practice, modern tree
search algorithms for the problem scale to the large and winners can be determined optimally. If winner determination
were not done optimally in a CA, the VCG mechanism can lose its truth-dominance property (Sandholm, 2002b). In
fact, any truthful suboptimal VCG-based mechanism for CAs is unreasonable in the sense that it sometimes does not
allocate an item to a bidder even if he is the only bidder whose bids assign non-zero value to that item (Nisan and
Ronen, 2000).
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2.2. Algorithmic mechanism design

Motivated by the worry that some instances ofNP-hard problems may not be solvable within reasonable time, a
common research direction in theory of computing is approximation algorithms. They trade off solution quality for a
guarantee that even in the worst case, the algorithm runs in polynomial time in the size of the input.

Analogously, Nisan and Ronen (2001) proposedalgorithmic mechanism design: designing approximately optimal
mechanisms that take the center a polynomial number of computing steps even in the worst case. However, this is
more difficult than designing approximately optimal algorithms because the mechanism has to motivate the agents to
tell the truth.

Lehmann et al. (2002) studied this for CAs with single-minded bidders (each bidder being only interested in one
specific package of items). They present a fast greedy algorithm that guarantees a solution within a factor

√
#items of

optimal. They show that the algorithm is not incentive compatible with VCG pricing, but is with their custom pricing
scheme. They also identify sufficient conditions for any (approximate) mechanism to be incentive compatible. See
also Kfir-Dahav et al. (2000). There has been substantial follow-on work on subclasses of single-minded CAs.

Lavi and Swamy (2005) developed a technique for a range of packing problems with which anyk-approximation
algorithm (i.e., algorithm that guarantees that the solution is within a factork of optimal) that also bounds the inte-
grality gap of the linear programming (LP) relaxation of the problem byk can be used to construct ak-approximation
mechanism. The LP solution, scaled down byk, can be represented as a convex combination of integer solutions,
and viewing this convex combination as specifying a probability distribution over integer solutions begets a VCG-
based randomized mechanism that is truthful in expectation. For CAs with general valuations, this yields an of
O(
√

#items)-approximate mechanism.
In a different direction, several mechanisms have been proposed where the agents can help the center find better

outcomes. This is done either by giving the agents the information to do the center’s computing (Banks et al., 1989;
Land et al., 2006; Parkes and Shneidman, 2004), or by allowing the agents to change what they told the mechanism
based on the mechanism’s output and potentially also based on what other agents told the mechanism (Nisan and
Ronen, 2000). In VCG-based mechanisms, an agent benefits from lying only if the lie causes the mechanism to find
an outcome that is better overall.

2.3. Automated mechanism design

Conitzer and Sandholm (2002) proposed the idea ofautomated mechanism design: having a computer, rather than a
human, design the mechanism. Because human effort is eliminated, this enables custom design of mechanisms for
every setting. (The setting can be described by the agents’ (discretized) type spaces, the designer’s prior over types,
the desired notion of incentive compatibility (e.g., dominant strategies vs. Bayes-Nash implementation), the desired
notion of participation constraints (e.g.,ex interim, ex post, or none), whether payments are allowed, and whether the
mechanism is allowed to use randomization.) This can yield better mechanisms for previously studied settings because
the mechanism is designed for the specific setting rather than a class of settings. It can also be used for settings not
previously studied in mechanism design.

For almost all natural (linear) objectives, all variants of the design problem areNP-complete if the mechanism is
not allowed to use randomization, but randomized mechanisms can be constructed for all these settings in polynomial
time using linear programming. Custom algorithms have been developed for some problems in each of these two
categories. (Even the latter category warrants research. While the linear program is polynomial in the size of the input,
the input itself can be exponential in the number of agents.) Structured representations of the problem can also make
the design process drastically faster.

Beyond the general setting, automated mechanism design has been applied to specific settings, such as creating
revenue-maximizing CAs (without the need to discretize types) (Likhodedov and Sandholm, 2005) (a recognized
problem that eludes analytical characterization; even the 2-item case is open), reputation systems (Jurca and Falt-
ings, 2006), safe exchange mechanisms (Sandholm and Ferrandon, 2000), and supply chain settings (Vorobeychik
et al., 2006). Automated mechanism design software has recently also been adopted by several mechanism design
theoreticians to speed up their research.

It turns out that evenmultistage mechanismscan be designed automatically (Sandholm et al., 2007). Furthermore,
automated mechanism design has been applied to the design ofonline mechanisms(Hajiaghayi et al., 2007), that is,
mechanisms that execute while the world changes—e.g., agents enter and exit the system.
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3. Computing by the agents

I will now move to discussing computing by the agents.

3.1. Mechanisms that are hard to manipulate

This section demonstrates that one can use the fact that agents are computationally limited to achieve things that are
not achievable via any mechanism among perfectly rational agents.

A seminal negative result, theGibbard-Satterthwaite theorem, states that if there are three or more candidates,
then in any nondictatorial voting scheme, there are candidate rankings of the other voters, and preferences of the
agent, under which the agent is better off voting manipulatively than truthfully. One avenue around this impossibil-
ity is to construct desirable general nondictatorial voting protocols under whichfinding a beneficial manipulation is
prohibitively hard computationally.

There are two natural alternative goals of manipulation. Inconstructive manipulation, the manipulator tries to
find an order of candidates that he can reveal so that his favorite candidate wins. Indestructive manipulation, the
manipulator tries to find an order of candidates that he can reveal so that his hated candidate does not win. These are
special cases of the utility-theoretic notion of improving one’s utility, so the hardness results carry over to the usual
utility-theoretic setting.

Unfortunately, finding a constructive manipulation is easy (inP) for the plurality, Borda, andmaximinvoting
rules (Bartholdi et al., 1989), which are commonly used. On the bright side, constructive manipulation of theSingle
Transferable Vote (STV)protocol isNP -hard (Bartholdi and Orlin, 1991) (as is manipulation of the is theSecond
Order Copelandprotocol (Bartholdi et al., 1989), but that hardness is driven solely by the tie-breaking rule). Even
better, there is a systematic methodology for slightly tweaking the voting protocols that are easy to manipulate, so that
they become hard to manipulate (Conitzer and Sandholm, 2003). Specifically, before the original protocol is executed,
one pairwise elimination round is executed among the candidates, and only the winning candidates survive to the
original protocol. This makes the protocolsNP-hard,#P-hard (#P-hard problems are at least as hard as counting
the number of solutions to a problem inP), or evenPSPACE-hard (PSPACE-hard problems are at least as hard
as any problem that can be solved using a polynomial amount of memory) to manipulate constructively, depending
on whether the schedule of the preround is determined before the votes are collected, randomly after the votes are
collected, or the scheduling and the vote collecting are carefully interleaved, respectively.

All of the hardness results of the previous paragraph rely on both the number of voters and the number of candidates
growing. The number of candidates can be large in some domains, for example when voting over task or resource
allocations. However, in other elections—such as presidential elections—the number of candidates is small. If the
number of candidates is a constant, both constructive and destructive manipulation are easy (inP), regardless of the
number of voters (Conitzer et al., 2007) . This holds even if the voters are weighted, or if a coalition of voters tries to
manipulate. On the bright side, when a coalition of weighted voters tries to manipulate, complexity can arise even for
a constant number of candidates, see Table 1 (Conitzer et al., 2007). Another lesson from that table is that randomizing
over instantiations of the mechanism (such as schedules of acup) can be used to make manipulation hard.

Number of candidates: 2 3 4,5,6 ≥ 7

Borda P NP-complete NP-complete NP-complete
veto P NP-complete NP-complete NP-complete
STV P NP-complete NP-complete NP-complete
plurality with runoff P NP-complete NP-complete NP-complete
Copeland P P NP-complete NP-complete
maximin P P NP-complete NP-complete
randomized cup P P P NP-complete
cup P P P P
plurality P P P P

Number of candidates: 2 ≥ 3

STV P NP-complete
plurality with runoff P NP-complete
randomized cup P ?
Borda P P
veto P P
Copeland P P
maximin P P
cup P P
plurality P P

Table 1: Left: Complexity of constructive weighted coalitional manipulation. Right: Complexity of destructive
weighted coalitional manipulation.

As usual in computer science, the results are worst-case hardness. Unfortunately, under weak assumptions on
the preference distribution and voting rule, most instances of any voting rule are easy to manipulate (Conitzer and
Sandholm, 2006).

All of the hardness results discussed above hold even if the manipulators know the nonmanipulators’ votes exactly.
Under weak assumptions, if weighted coalitional manipulation with complete information about the others’ votes is
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hard in some voting protocol, then individual and unweighted manipulation is hard when there is uncertainty about the
others’ votes (Conitzer et al., 2007).

3.2. Non-truth-promoting mechanisms

A challenging issue is that even if it is prohibitively hard to find a beneficial manipulation, the agents might not tell
the truth. For example, an agent might take a chance that he will do better with a lie. The following result shows
that, nevertheless, mechanism design can be improved by making the agents face complexity. (This is one reason why
computational issues can render therevelation principleinapplicable. One of the things the principle says is that for
any non-truth-promoting mechanism it is possible to construct an incentive-compatible mechanism that is at least as
good. The theorem below challenges this.)

Theorem 1 (Conitzer and Sandholm, 2004) Suppose the center is trying to maximize social welfare, and neither
payments nor randomization is allowed. Then, even with just two agents (one of whom does not even report a type,
so dominant strategy implementation and Bayes-Nash implementation coincide), there exists a family of preference
aggregation settings such that:

• the execution of any optimal incentive-compatible mechanism isNP-complete for the center, and

• there exists a non-incentive-compatible mechanism which 1) requires the center to carry out only polynomial
computation, and 2) makes finding any beneficial insincere revelationNP-complete for the type-reporting
agent. Additionally, if the type-reporting agent manages to find a beneficial insincere revelation, or no ben-
eficial insincere revelation exists, the social welfare of the outcome is identical to the social welfare that would
be produced by any optimal incentive-compatible mechanism. Finally, if the type-reporting agent does not man-
age to find a beneficial insincere revelation where one exists, thesocial welfare of the outcome is strictly greater
than the social welfare that would be produced by any optimal incentive-compatible mechanism.

An analogous theorem holds if, instead of counting computational steps, we count calls to a commonly accessible
oracle which, when supplied with an agent, that agent’s type, and an outcome, returns a utility value for that agent.

3.3. Preference (valuation) determination via computing or information acquisition

In many (auction) settings, even determining one’s valuation for an item (or a bundle of items) is complex. For example
when bidding for trucking lanes (tasks), this involves solving twoNP-complete local planning problems: the vehicle
routing problem with the new lanes of the bundle and the problem without them (Sandholm, 1993). The difference in
the costs of those two local plans is the cost (valuation) of taking on the new lanes.

In these types of settings, therevelation principleapplies only in a trivial way: the agents report their data and
optimization models to the center, and the center does the computation for them. It stands to reason that in many
applications the center would not want to take on that burden, in which case such extreme direct mechanisms are not
an option. Therefore, I will now focus on mechanisms where the agents report valuations to the center, as in traditional
auctions.

Bidders usually have limited computing and time, so they cannot exactly evaluate all (or even any) bundles—
at least not without cost. This leads to a host of interesting issues where computing and incentives are intimately
intertwined.

For example, in a 1-object auction, should a bidder evaluate the object if there is a cost to doing so? It turns out
that the Vickrey auction loses its dominant-strategy property: whether or not the bidder should pay the evaluation cost
depends on the other bidders’ valuations (Sandholm, 2000).

If a bidder has the opportunity toapproximate his valuation to different degrees, how much computing time should
the bidder spend on refining its valuation? If there are multiple items for sale, how much computing time should the
bidder allocate on different bundles? A bidder may even allocate some computing time to evaluate other bidders’
valuations so as to be able to bid more strategically; this is calledstrategic computing.

To answer these questions, Larson and Sandholm (2001) developed a deliberation control method called aper-
formance profile treefor projecting how an anytime algorithm (i.e., an algorithm that has an answer available at any
time, but where the quality of the answer improves the more computing time the algorithm is allocated) will change
the valuation if additional computing is allocated toward refining (or improving) it. This deliberation control method
applies to any anytime algorithm. Unlike earlier deliberation control methods for anytime algorithms, the performance
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profile tree is afully normative model of bounded rationality: it takes into account all the information that an agent can
use to make its deliberation control decisions. This is necessary in the game-theoretic context; otherwise a strategic
agent could take into account some information that the model does not.

Using this deliberation control method, the auction can be modeled as a game where the agents’ strategy spaces
include computing actions. At every point, each agent can decide on which bundle to allocate its next step of computing
as a function of the agent’s computing results so far (and in open-cry auction format also the others’ bids observed so
far). At every point, the agent can also decide to submit bids. One can then solve this for equilibrium: each agent’s
(deliberation and bidding) strategy is a best-response to the others’ strategies. This is calleddeliberation equilibrium.

This notion, and the performance profile tree, apply not only to computational actions but also to information
gathering actions for determining valuations. (In contrast, most of the literature on information acquisition in auctions
does not take into account that valuations can be determined to different degrees and that an agent may want to invest
effort to determine others’ valuations as well—even in private-value settings.)

Table 2 shows in which settings strategic computing can and cannot occur in deliberation equilibrium. This de-
pends on the auction mechanism. Interestingly, it also depends on whether the agent has limited computing (e.g.,
owning a desktop computer that the agent can use until the auction’s deadline) or costly computing (e.g., being able to
buy any amount of supercomputer time where each cycle comes at a cost).

Strategic computing?
Auction Speculation by Limited Costly
mechanism perfectly computing computing

rational agents?

Single item First price yes yes yes
Dutch yes yes yes
English no no yes
Vickrey no no yes

Multiple items First price yes yes yes
VCG no yes yes

Table 2: Can strategic computing occur in deliberation equilibrium? The most interesting results are in bold. As a
benchmark from classical auction theory, the table also shows whether or not perfectly rational agents, that can de-
termine their valuations instantly without cost, would benefit from considering each others’ valuations when deciding
how to bid.

The notion of deliberation equilibrium can also be used as the basis for designing new mechanism which hopefully
would work well among agents whose computing is costly or limited. Unfortunately, there is an impossibility (Larson
and Sandholm, 2005): there exists no mechanisms that issensitive(the outcome is affected by each agent’s strategy),
preference formation independent(does not do the computations for the agents; the agents report valuations),non-
misleading(no agent acts in a way that causes others to believe his true type has zero probability), anddeliberation-
proof (no strategic computing occurs in equilibrium, i.e., agents compute only on their own problems). Current work
involves designing mechanisms that take part in preference formation in a limited way: agents report their performance
profile trees to the center, which then coordinates the deliberations incrementally as agents report deliberation results.
Current research also includes designing mechanisms where strategic computing occurs but its wastefulness is limited.

3.3.1. Preference elicitation by the center

To reduce the agents’ preference determination effort, Conen and Sandholm (2001) proposed a framework where the
center (akaelicitor) explicitly elicits preference information from the agents incrementally on an as-needed basis by
posing queries to the agents. The center thereby builds a model of the agents’ preferences, and decides what to ask,
and from which agent, based on this model. Usually the process can be terminated with the provably correct outcome
while requiring only a small portion of the agents’ preferences to be determined. Multistage mechanisms can yield up
to exponential savings in preference determination and communication effort the agents need to go through compared
to single-stage mechanisms (Conitzer and Sandholm, 2004).

The explicit preference elicitation framework was originally proposed for CAs (but the approach has since been
used for other settings as well, such as voting). For general valuations, an exponential number of bits in the number
of items for sale has to be communicated in the worst case no matter what queries are used (Nisan and Segal, 2006).
However, experimentally only a small fraction of the preference information needs to be elicited before the provably
optimal solution is found. Furthermore, for valuations that have certain types of structure, even the worst-case number
of queries needed is small. Research has also been done on the relative power of different query types.
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If enough information is elicited to also determine the VCG payments, and these are the payments charged to
the bidders, answering the elicitor’s queries truthfully is anex postequilibrium (a strengthening of Nash equilibrium
that does not rely on priors). (This assumes there is no explicit cost or limit to valuation determination; mechanisms
have also been designed for settings where there is an explicit cost (Larson, 2006).). This holds even if the agents are
allowed to answer queries that the elicitor did not ask (e.g., queries that are easy for the agent to answer and which the
agent thinks will significantly advance the elicitation process). We thus have apull-push mechanismwhere both the
center and the agents guide the preference elicitation (and preference determination/refinement by the agents). For a
review, see Sandholm and Boutilier (2006). Ascending (combinatorial) auctions are an earlier special case, and have
limited power compared to the general framework (Blumrosen and Nisan, 2005).

Preference elicitation can sometimes be computationally complex for the center. It can be complex to intelligently
decide what to ask next, and from whom. It can also be complex to determine whether enough information has been
elicited to determine the optimal outcome. Even if the elicitor knows that enough has been elicited, it can be complex
to determine the outcome—e.g., allocation of items to bidders in some CAs.

3.4. Distributed (center-free) mechanisms

Computer scientists often have a preference for distributed applications that do not have any centralized coordination
point (center). Depending on the application, the reasons for this preference may include avoiding a single vulnera-
ble point of failure, distributing the computing effort (for computational efficiency or because the data is inherently
distributed), and enhancing privacy. The preference carries over from traditional computer science applications to dif-
ferent forms of negotiation systems—for example, see Sandholm (1993) for an early distributed automated negotiation
system for software agents.

Feigenbaum et al. (2005) have studied lowest-cost inter-domain routing on the Internet, modifying a distributed
protocol so that the agents (routing domains) are motivated to report their true costs and the solution is found with
minimal message passing. For a review of some other research topics in this space, see Feigenbaum and Shenker
(2002).

One can go further by taking into account that agents might not choose to follow the prescribed protocol. They
may cheat not only on information-revelation actions, but also on message-passing and computational actions. Despite
computation actions not being observable by others, an agent can be motivated to compute as prescribed by tasking at
least one other agent with the same computation, and comparing the results (Sandholm et al., 1999). Careful problem
partitioning can also be used to achieve the same outcome without redundancy by only requiring agents to perform
computing and message passing tasks that are in their own interest (Parkes and Shneidman, 2004). Shneidman and
Parkes (2004) propose a general proof technique and instantiate it to provide a non-manipulable protocol for inter-
domain routing. Monderer and Tennenholtz (1999) develop protocols for 1-item auctions executed among agents on
a communication network. The protocols motivate the agents to correctly reveal preferences and communicate. For
the setting where agents with private utility functions have to agree on variable assignments subject to side constraints
(e.g., meeting scheduling), Petcu et al. (2006) developed a VCG-based distributed optimization protocol that finds the
social welfare maximizing allocation and each agent is motivated to follow the protocol in terms of all three types of
action. The only centralized party needed is a bank that can extract payments from the agents.

Cryptography is a powerful tool for achieving privacy when trying to execute a mechanism in a distributed way
without a center, using private communication channels among the agents. Consider first the setting with passive
adversaries, that is, agents that faithfully execute the specified distributed communication protocol, but who try to
infer (at least something about) some agent’s private information.

• If agents are computationally limited, e.g., they are assumed to be unable to factor large numbers, then arbitrary
functions can be computed while guaranteeing that each agent maintains his privacy (except, of course, to the
extent that the answer of the computation says something about the inputs) (Goldreich et al., 1987). Thus the
desire for privacy does not constrain what social choice functions can be implemented.

• In contrast, only very limited social choice functions can be computed privately among computationally unlim-
ited agents. For example, when there are just two alternatives, every monotonic, non-dictatorial social choice
function that can be privately computed is constant (Brandt and Sandholm, 2005). With special structure in the
preferences, this impossibility can sometimes be avoided. For example, with the standard model of quasilinear
utility, first-price auctions can be implemented privately; second-price (Vickrey) auctions with more than two
bidders cannot (Brandt and Sandholm, 2004).
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A more general model is that of active adversaries who can execute the distributed communication protocol un-
faithfully in a coordinated way. A more game-theoretic model is that of rational adversaries that are not passive, but
not malicious either. For a brief overview of such work, see Section 4 of the Palgrave chapter “Computer Science and
Game Theory: A Brief Survey”.
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