Monte Carlo Tree Search (MCTS)

Presenter: Tuomas Sandholm

MCTS Overview

- Iteratively building partial search tree
- Iteration
 - Most urgent node
 - Tree policy
 - Exploration/exploitation
 - Simulation
 - Add child node
 - Default policy
 - Update weights

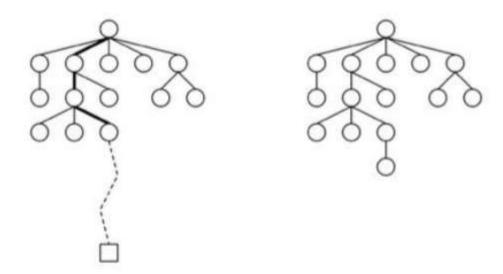


Fig. 1. The basic MCTS process [17].

Algorithm Overview

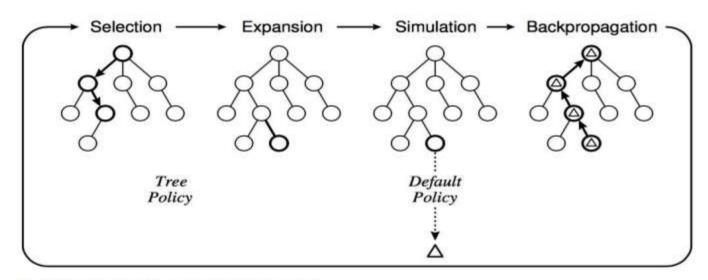


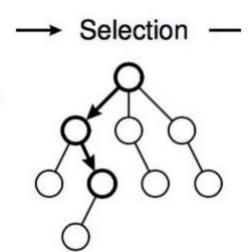
Fig. 2. One iteration of the general MCTS approach.

Policies

- Policies are crucial for how MCTS operates
- Tree policy
 - Used to determine how children are selected
- Default policy
 - Used to determine how simulations are run (ex. randomized)
 - Result of simulation used to update values

Selection

- Start at root node
- Based on Tree Policy select child
- Apply recursively descend through tree
 - Stop when expandable node is reached
 - Expandable -
 - Node that is non-terminal and has unexplored children



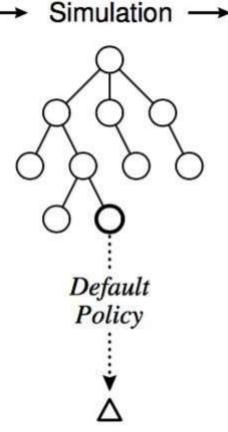
Expansion

- Add one or more child nodes to tree
 - Depends on what actions are available for the current position
 - Method in which this is done depends on Tree Policy



Simulation

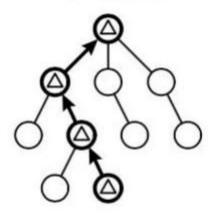
- Runs simulation of path that was selected
- Get position at end of simulation
- Default Policy determines how simulation is run
- Board outcome determines value



Backpropagation

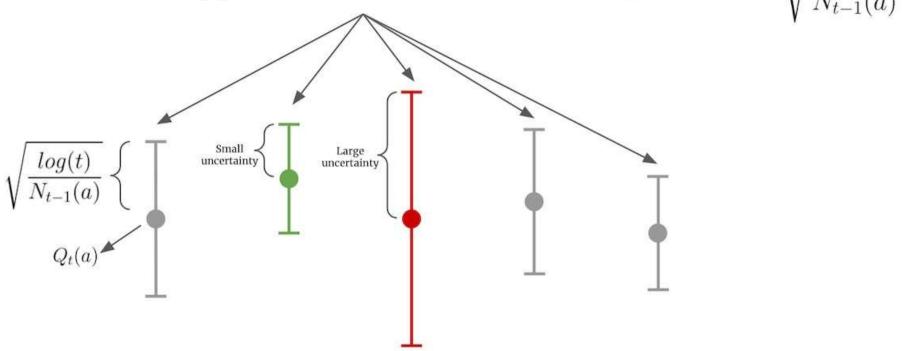
- Moves backward through saved path
- Value of Node
 - representative of benefit of going down that path from parent
- Values are updated dependent on board outcome
 - Based on how the simulated game ends, values are updated

→ Backpropagation -



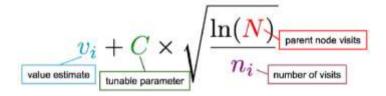
UCB in Bandits

Upper Confidence Bound: $UCB(a_t) = Q_t(a) + c\sqrt{\frac{log(t)}{N_{t-1}(a)}}$



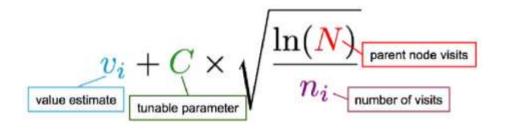
Upper Confidence bounds applied to Trees (UCT) Algorithm

- Selecting child node: multi-armed bandit problem
 - UCB for child selection
- UCT



- v: value estimate
- C: exploration parameter
- N: number of parent node visits
- n: number of visits

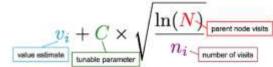
UCT Algorithm

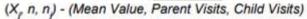


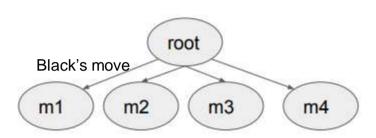
- n = 0 means infinite weight
 - Guarantees we explore each child at least once
- Each child has non-zero probability of selection
- Adjust C to change explore-exploit tradeoff

Theorem. MCTS with UCT action selection in the Selection phase finds an optimal policy [Kocsis and Szepesvári. ECML '06]

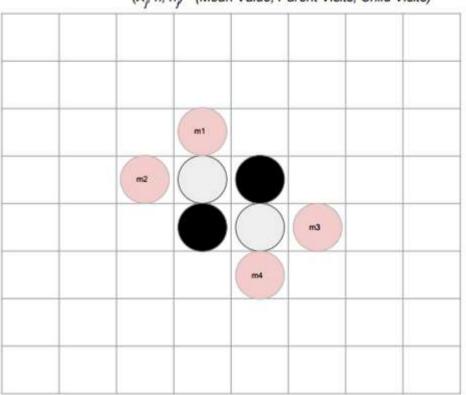
Example - The Game of Othello



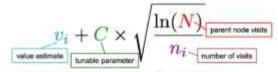




- n_i initially 0
 - o all weights are initially infinity
- n initially 0
- C_p some constant > 0
 - o For this example
 - o $C = (1/2\sqrt{2})$
- X_j mean reward of selecting this position
 - o [0, 1]
 - Initially N/A



Example - The Game of Othello cont.

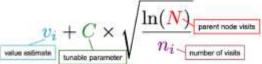


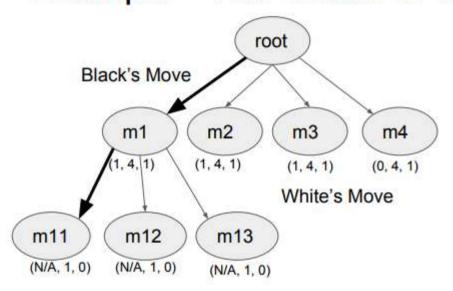
After first 4 iterations:
Suppose m1, m2, m3
black wins in simulation
and m4 white wins

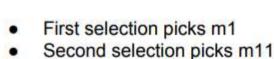
m1 m2 m3 m4

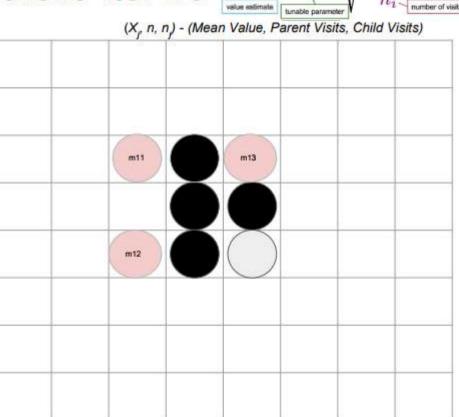
	X_{j}	n	n _j
m1	1	4	1
m2	1	4	1
m3	1	4	1
m4	0	4	1

(X _p n, 1	n _j) - (Mear	i value, P	arent VISI	is, Chila	risits)
	mt				
m2		•			
	•	m4	m3		

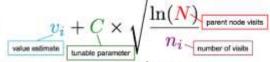


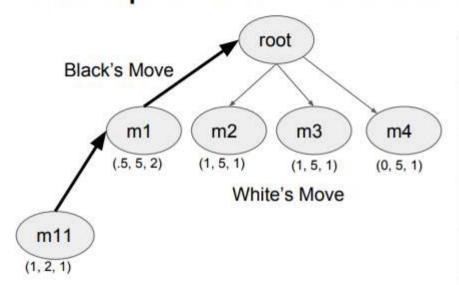




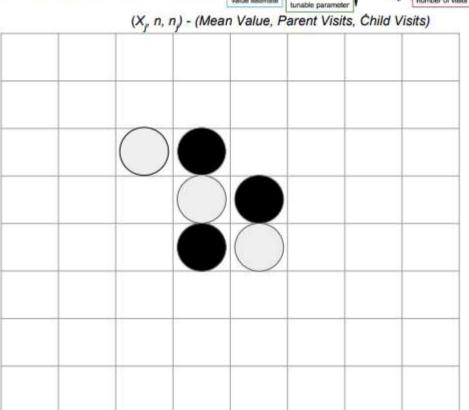


Example - The Game of Othello Iter #5 $v_i + C \times C$



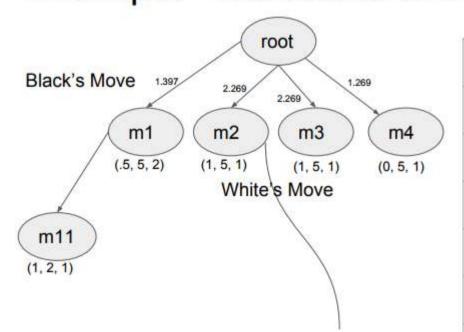


- Run a simulation
- White Wins
- Backtrack, and update mean scores accordingly.

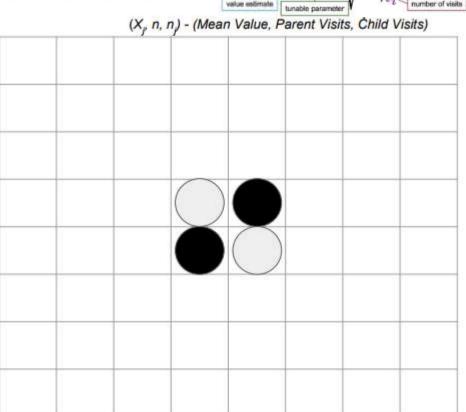


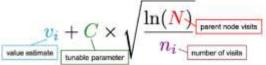
Example - The Game of Othello Iter #6 __vi+C×

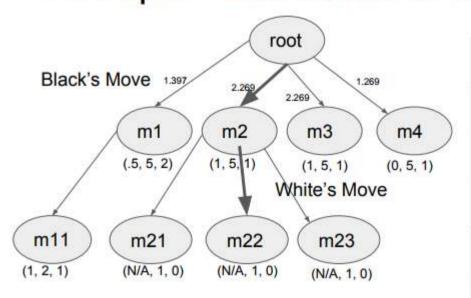




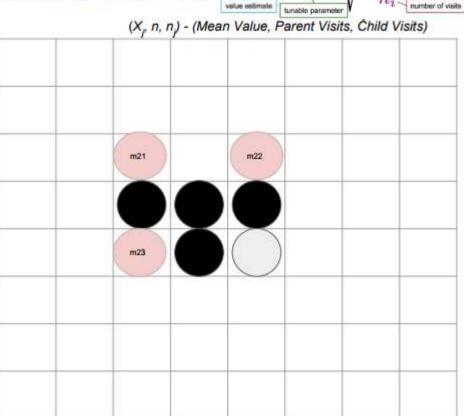
Suppose we first select m2

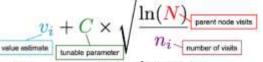


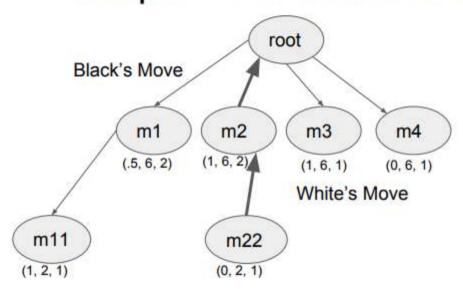


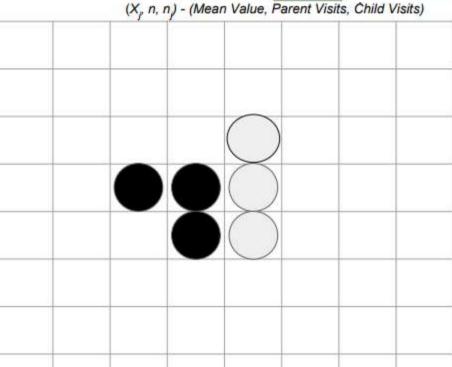


Suppose we pick m22

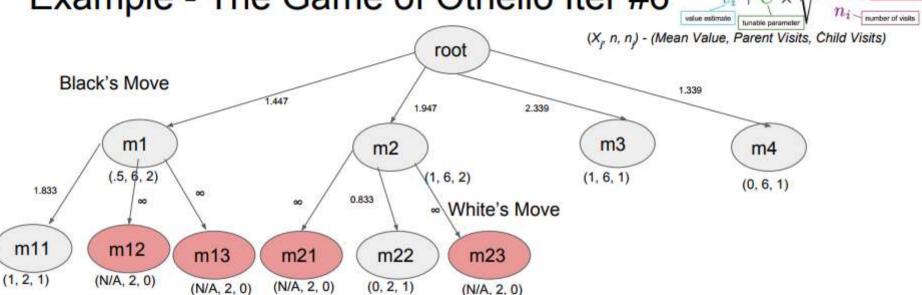








- Run simulated game from this position.
- Suppose black wins the simulated game.
- Backtrack and update values



- This is how our tree looks after 6 iterations.
- Red Nodes not actually in tree
- Now given a tree, actual moves can be made using max, robust, maxrobust, or other child selection policies.
- Only care about subtree after moves have been made

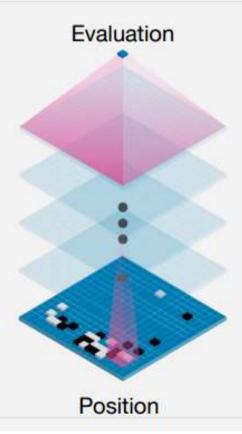
AlphaGo

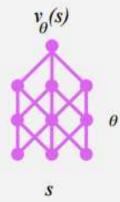
AlphaGo

Uses a value network and policy network to augment MCTS

- 1. Policy network first trained on professional Go games and then trained further using reinforcement learning
- 2. Value network trained using self-play using the policy network
- 3. Then MCTS is run leveraging the two networks

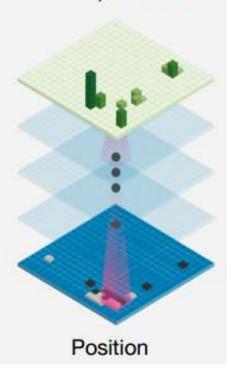
Value network

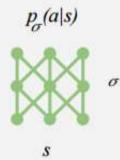




Policy network

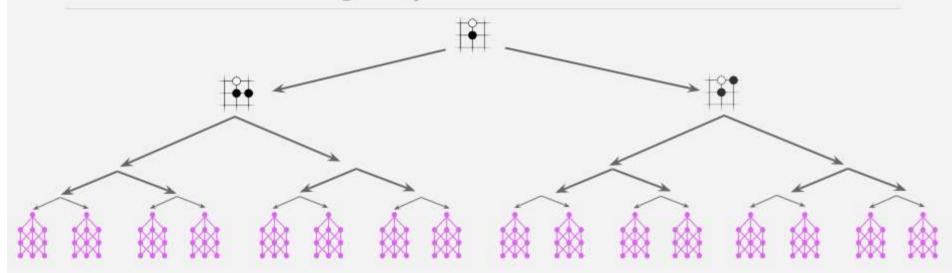
Move probabilities





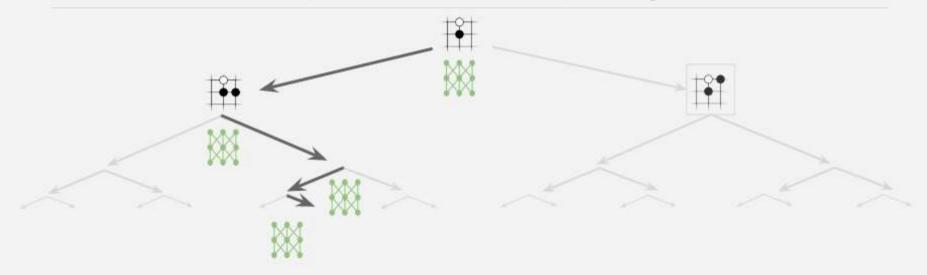
High-level idea 1:

Reducing depth with value network



High-level idea 2:

Reducing breadth with policy network



AlphaGo's MCTS

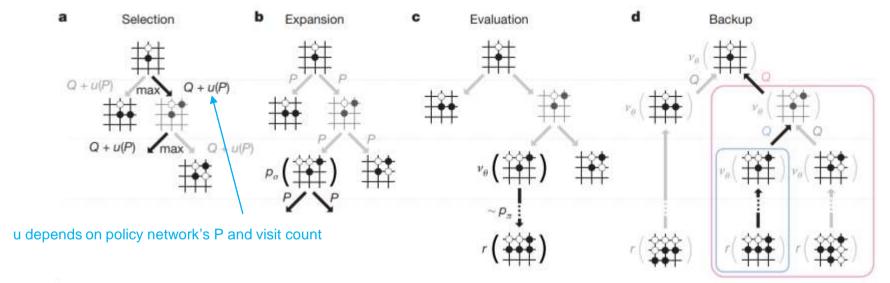


Figure 3 | **Monte Carlo tree search in AlphaGo. a**, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus u(P) that depends on a stored prior probability P for that edge. **b**, The leaf node may be expanded; the new node is processed once by the policy network p_{σ} and the output probabilities are stored as prior probabilities P for each action. **c**, At the end of a simulation, the leaf node

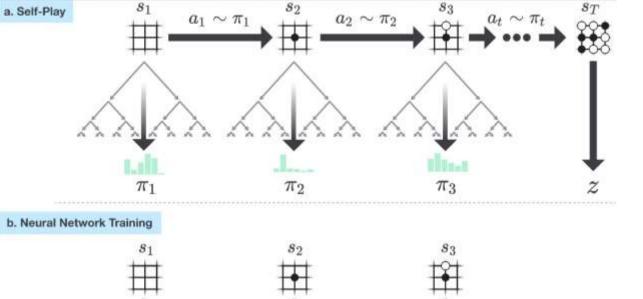
is evaluated in two ways: using the value network v_θ ; and by running a rollout to the end of the game with the fast rollout policy p_π , then computing the winner with function r. \mathbf{d} , Action values Q are updated to track the mean value of all evaluations $r(\cdot)$ and $v_\theta(\cdot)$ in the subtree below that action.

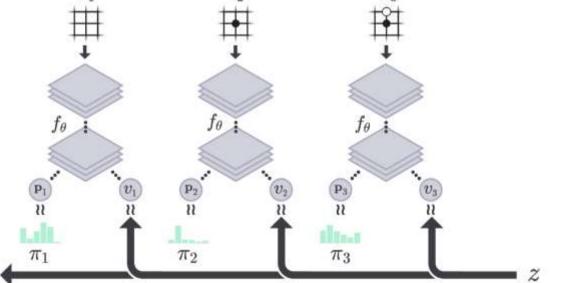
Once search is complete, the algorithm selects the most visited move from the root.

AlphaGo Zero

AlphaGo Zero

- No human data besides rules of the game
- The value and policy network are trained in self-play in the context of MCTS instead of human data or without search
 - MCTS as a policy improvement operator!
- Trained on 4 TPUs for 70 days
 - Compared to tens of thousands of TPUs for Gemini



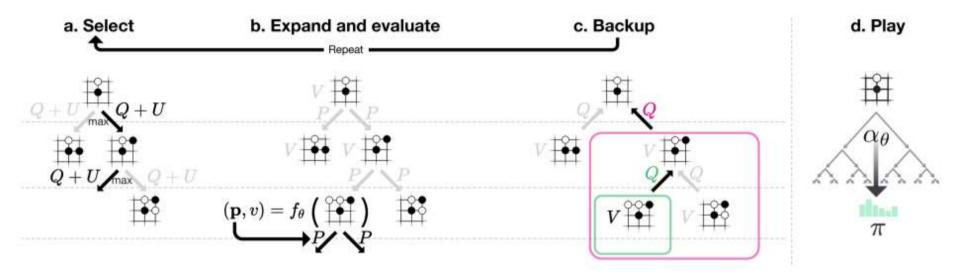


Neural Network Loss Function

$$(p, v) = f_{\theta}(s)$$
 and $l = (z - v)^2 - \pi^T \log p + c \|\theta\|^2$

Maximise similarity of the neural network move probabilities p to the search probabilities π

Search Algorithm



Once the search is complete, search probabilities π are returned proportional to N^{1/ μ}, where N is the visit count of each move from the root state and μ is a parameter controlling temperature

Search Algorithm

- Each node s in the search tree contains edges (s, a) for all legal actions
- Each edge stores a set of statistics, {N(s, a), W(s, a), Q(s, a), P(s, a)}
 - N: number of visits to that edge
 - W: Total value
 - Q: Average value
 - P: Policy output

$$a_t = \operatorname{argmax}(Q(s_t, a) + U(s_t, a))$$

$$U(s, a) = c_{\text{puct}} P(s, a) \frac{\sqrt{\sum_b N(s, b)}}{1 + N(s, a)}$$

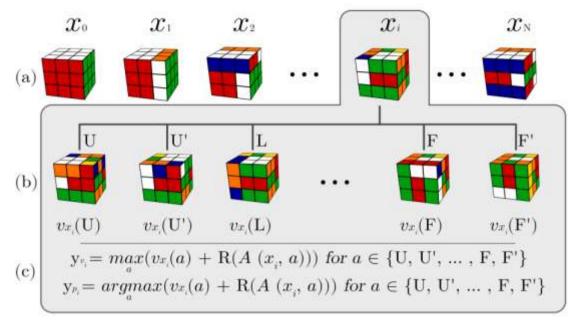
Expand and Evaluate

- When we reach a leaf node, we run the state through the neural network to get a value estimate and policy estimate
- Each edge (N, W, Q) is initialized to 0
- Backup value

Backup

- We update N, W, Q with the value that the neural network proposes
- N(s, a) = N(s, a) + 1
- W(s,a) = W(s,a) + v
- Q(s, a) = W(s, a) / N(s, a)

These Techniques are Useful Also in Single-Agent Settings



E.g.1: Rubik's cube

McAleer et al. "Solving the Rubik's cube with approximate policy iteration." *ICLR*. 2018.

Agostinelli et al. "Solving the Rubik's cube with deep reinforcement learning and search." *Nature Machine Intelligence*. 2019

E.g.2: Edge test selection in kidney exchange McElfresh, Curry, Sandholm, Dickerson, "Improving Policy-Constrained Kidney Exchange via Pre-Screening", NeurIPS-20