
Monte Carlo Tree Search (MCTS)

Presenter: Tuomas Sandholm

















UCB in Bandits



Upper Confidence bounds applied to Trees (UCT) Algorithm

- Selecting child node: multi-armed bandit problem
- UCB for child selection

- UCT

- v: value estimate

- C: exploration parameter

- N: number of parent node visits

- n: number of visits



UCT Algorithm

- n = 0 means infinite weight
- Guarantees we explore each child at least once

- Each child has non-zero probability of selection

- Adjust C to change explore-exploit tradeoff

Theorem. MCTS with UCT action selection in the Selection phase finds an 

optimal policy [Kocsis and Szepesvári. ECML ‘06]



Black’s move



Black’s move















AlphaGo





AlphaGo

Uses a value network and policy network to augment MCTS

1. Policy network first trained on professional Go games and then trained further 

using reinforcement learning

2. Value network trained using self-play using the policy network

3. Then MCTS is run leveraging the two networks







High-level idea 1:



High-level idea 2:



AlphaGo’s MCTS

u depends on policy network’s P and visit count

Once search is complete, the algorithm selects 

the most visited move from the root.



AlphaGo Zero



AlphaGo Zero

- No human data besides rules of the game

- The value and policy network are trained in self-play in the context of MCTS 

instead of human data or without search
- MCTS as a policy improvement operator!

- Trained on 4 TPUs for 70 days 
- Compared to tens of thousands of TPUs for Gemini





Neural Network Loss Function

Value error

Maximise similarity of the 

neural network move 

probabilities p to the search 

probabilities π

Regularizer



Search Algorithm

Once the search is 

complete, search 

probabilities π are returned 

proportional to N1/μ, where 

N is the visit count of each 

move from the root state 

and μ is a parameter 

controlling temperature



Search Algorithm

- Each node s in the search tree contains edges (s, a) for all legal actions

- Each edge stores a set of statistics, {N(s, a), W(s, a), Q(s, a), P(s, a)}
- N: number of visits to that edge

- W: Total value 

- Q: Average value

- P: Policy output



Expand and Evaluate

- When we reach a leaf node, we run the state through the neural network to 

get a value estimate and policy estimate

- Each edge (N, W, Q) is initialized to 0

- Backup value



Backup

- We update N, W, Q with the value that the neural network proposes

- N(s, a) = N(s, a) +1

- W(s,a) = W(s,a) + v

- Q(s, a) = W(s, a) / N(s, a)



These Techniques are Useful Also in Single-Agent Settings

E.g.1: Rubik’s cube

McAleer et al. "Solving the Rubik's cube with approximate policy iteration." ICLR. 2018.

Agostinelli et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence. 2019

E.g.2: Edge test selection in kidney exchange

McElfresh, Curry, Sandholm, Dickerson, “Improving Policy-Constrained Kidney Exchange via Pre-Screening”, NeurIPS-20


