Monte Carlo Tree Search (MCTS)

Presenter: Tuomas Sandholm

MCTS Overview

e lteratively building partial search tree
e lteration
o Most urgent node
m Tree policy
m Exploration/exploitation
o Simulation
m Add child node
m Default policy
o Update weights]

-
e

-~
-

- -

- -

Fig. 1. The basic MCTS process [17].

Algorithm Overview

/—-> Selection — Expansion — Simulation — Backpropagation B

Tree Def.ault

Policy Po{icy
v
s o P

Fig. 2. One iteration of the general MCTS approach.

Policies

e Policies are crucial for how MCTS operates
e Tree policy
o Used to determine how children are selected

e Default policy

o Used to determine how simulations are run (ex. randomized)
o Result of simulation used to update values

Selection

e Start at root node
e Based on Tree Policy select child

e Apply recursively - descend through tree
o Stop when expandable node is reached
o Expandable -
m Node that is non-terminal and has unexplored children

—> Selection —

Expansion

e Add one or more child nodes to tree

o Depends on what actions are available for the current position
o Method in which this is done depends on Tree Policy
—> Expansion —

Simulation T SR

e Runs simulation of path that was selected

e (et position at end of simulation

e Default Policy determines how simulation is run
e Board outcome determines value

Def.ault
Policy

v
A

Backpropagation

e Moves backward through saved path _
e Value of Node - Backpropagation -
o representative of benefit of going down that path from parent

e Values are updated dependent on board outcome
o Based on how the simulated game ends, values are updated

UCB In Bandits

Upper Confidence Bound: UCB(a;) = Q.(a) + ¢

log(t) { T wd ty{;

‘/\f!_ 1 ((1«)

Q:(a)

Upper Confidence bounds applied to Trees (UCT) Algorithm

Selecting child node: multi-armed bandit problem
- UCB for child selection

- UCT

1

:
DN]

n 1 \[number of visits

(’,‘—FCX

value estimate

v: value estimate

C: exploration parameter

N: number of parent node visits
n: number of visits

UCT Algorithm

In(V),

parent node visits

Uy ~+ C\Y X

value estimale

g

number of visits

tunable parameter

- n =0 means infinite weight
- Guarantees we explore each child at least once

- Each child has non-zero probability of selection
- Adjust C to change explore-exploit tradeoff

Theorem. MCTS with UCT action selection in the Selection phase finds an
optimal policy [Kocsis and Szepesvari. ECML ‘06]

Example - The Game of Othello

(o)
Black’s movg/

\“/ \ ms\ I
>y &Y &

(X n, n) (Mean Value, Parent VISIlS Child Visits)

=7

* n- initially O
o all weights are initially infinity -
- initially O
Cp- some constant > 0
o For this example ‘
o C=(1/2V2) -
S Xj- mean reward of selecting this ~ ~ ! !
position
o [0, 1]
o Initially N/A

Example - The Game of Othello cont. s

e Sulingia {u.aolcpam

After first 4 iterations: (X n, n) (Mean Value, Parent Visits, Child Visits)
— Suppose m1, m2, m3

™

/ .
(_ root) black wins in simulation
Black's move - ~<<\ and m4 whlte wins

i // o

el Y oY

\T_-/ me i \m3 Wl / »
| | X/ | n | n,
m1 1 4 1 ™
m2 1 4 1 =
m3 1 4 1

m4 0 -+ 1

Example - The Game of Othello Iter #5 __. -« /===

of
" | unable parameter | _.._fl”_“i"."_

\ (X n.n ,) (Mean Value, Parent Visits, Child Visits)
_-/i
N
'_\ \
AN —
/ \. 'r'/
m3] \ m4)
‘/ N 4 m1
(1,4, 1) (0,4,1)
| \\ i ,
5’ % White's Move
/‘_“ \ //"-“\\‘ /5/“'—“\\\
(mi1) (m2)(m3)
N 7 NE B o 4 m12

(VA 1,0) (N/A1,0) (N/A.1,0)

e First selection picks m1
e Second selection picks m11

Example - The Game of Othello lter #5 . +¢x

s seimeie (u.aolcpa.vw P

(X n,n) (Mean Value, Parent Visits, Child Visits)

/ N
{ root)
\ <
Black’s Move \ \
FE NN T

\\m1 \ m2 / \ m3 //. 1\-r‘n__4— o) [[
(5,5, 2) (1,5, 1 1) (, 5. 1) (0,5, 1)
White's Move .’/ \\.‘
A _ N_ /| |
&m11) | \

e Run a simulation

e White Wins

e Backtrack, and update mean scores
accordingly.

Example - The Game of Othello lter #6 - ek
(o

/Z (X n.n) (Mean Value, Parent Visits, Child Visits)

9 root
Black's Move ﬁg ENE
/ 2269

/\ DEE @

(.5,5,2) (1,5, 1) '.. (151) (0,5, 1)
White's Move

(o) \

(1.2,1) \

e Suppose we first select m2

Example - The Game of Othello lter #6 = +¢x

e sulingia {u.aolcpa.'w

/ ¢ \ (X nn) {Mean Value, Parent Visits, Child Visits)
roo
/ \)
Black’s Move y 1,269
2269 Ny <
i \V,__\
1 m1 l m2 m4)
/ ’) / \ / m21 m22
// () (1 5\1) \ (1,5, 1) (o 5, 1)
/ / Wl:nte s Move | | ' ‘
"’—L/—‘\ — J/* /‘*“\ e ———
\ < r/ \ : : ! — —
\/ m m21\; (m22)(m23) £
\ _ I/ \\ / \\ -/// mz3 I\]
1.2,1) (NA 1,00 (NATO0 (NA 10 S

e Suppose we pick m22

Example - The Game of Othello lter #6 « +¢x

Black's Move f 5
/< (/ \

m1/\ 4

/(56,2 (1.6.2) (1,6, 1) (0,6, 1)
1/ White’s Move

S —

\/m11) (o2)
N e
(1,2,1) 0,2, 1)

Run simulated game from this position.

Suppose black wins the simulated game.

Backtrack and update values

Yous alinpe fu.aolcpam

(X n.n) (Mean Value, Parent Visits, Child Visits)

@,

)

— NG

N__/

—

In(Nrea

£ T ey

4 number of visits

Example - The Game of Othello lter #6 .+~

valua ostimafio |, nabie paramele

(Xf n.n ,) - (Mean Value, Parent Visits, Child Visits)

Black's Move

1.833

121 (NA20) (ya20) (NA20) (0.2 (NA20)

e This is how our tree looks after 6 iterations.

e Red Nodes not actually in tree

e Now given a tree, actual moves can be made using max, robust, max-
robust, or other child selection policies.

e Only care about subtree after moves have been made

AlphaGo

AlphaGo

Uses a value network and policy network to augment MCTS
1. Policy network first trained on professional Go games and then trained further

using reinforcement learning
2. Value network trained using self-play using the policy network

3. Then MCTS is run leveraging the two networks

Value network

Evaluation
<
y | \b(s)
°
o
S

Position

Policy network

Move probabilities

Position

High-level idea 1:

Reducing depth with value network

RS
T
/\ /\
TS T e e

Mo oBmE OBE R AR RS AE A

High-level idea 2:

Reducing breadth with policy network

.
g W g

/oo

~\ o'o:jc
L A

L -

9 »

¢ ¥

AlphaGo’'s MCTS

a Selection b Expansion c
‘ | > [
max Q +ulP)

u depends on policy network’s P and visit count

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network p,, and the output probabilities are stored as prior
probabilities P for each action. ¢, At the end of a simulation, the leaf node

Evaluation d

— /‘ Q .
; i

oot

is evaluated in two ways: using the value network vy and by running

a rollout to the end of the game with the fast rollout policy p-, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(-) and v4(-) in the subtree below
that action.

Once search is complete, the algorithm selects
the most visited move from the root.

AlphaGo Zero

AlphaGo Zero

- No human data besides rules of the game
- The value and policy network are trained in self-play in the context of MCTS
instead of human data or without search
- MCTS as a policy improvement operator!

- Trained on 4 TPUs for 70 days

Compared to tens of thousands of TPUs for Gemini

= S 8 B
a. Self-Play 1 ay ~ m 2 a» ~ T 3 a; ~
ﬁ ﬁ % » e0o0 » %
7N >\ /\
™ T2 3 Z
b. Neural Network Training
51 82 S3
3 3 3

=
-ne
Ov)ov/-""'
=
Ll

P 0'; o ..'l’/‘ .‘\. .;. - P :. \: ".
(Py) rjp! Py Uy ‘f}’s} (Dy)
0 i n i i i
™ 2 3
2

Neural Network Loss Function

(p,v)=f,(s) and I=(z—v)* — =" logp+ c||0|]*

Maximise similarity of the

neural network move

probabilities p to the search Regularizer
probabilities 1T

Value error

Search Algorithm

a. S:Iect b. Expand and evaluate c. Backup d. Play
)

Repeat

Reru i g i
£ 3R % B B v AN
Q + U frax : '/‘ 3 - l P& 1
) llly

Once the search is
complete, search
probabilities 1 are returned
proportional to N4, where
N is the visit count of each
move from the root state
and p is a parameter
controlling temperature

Search Algorithm

Each node s in the search tree contains edges (s, a) for all legal actions

Each edge stores a set of statistics, {N(s, a), W(s, a), Q(s, a), P(s, a)}
- N: number of visits to that edge
W: Total value
Q: Average value
P: Policy output

| a; = argmax(Q(ss a) + U(sy, a))

\/ZbN(5> b)
1+ N(s,a)

U(Sa a) = Cpuctp(5> a)

Expand and Evaluate

- When we reach a leaf node, we run the state through the neural network to
get a value estimate and policy estimate

- Each edge (N, W, Q) is initialized to O

- Backup value

Backup

- We update N, W, Q with the value that the neural network proposes
- N(s,a) =N(s, a) +1

- W(s,a)=W(s,a) +v

- Q(s,a) =W(s,a)/ N(s, a)

These Techniques are Useful Also in Single-Agent Settings

S
B lu
TET ER L
v (U) vr(U') vr (L) vz (F) vz (F')

: y., = max(vs(a) + R(A (2, a))) fora € {U, U', ... ,| F, F'}
(.) a
' vi,= argmaz(v:(a) + R(A (z. a))) for a € $U, U F, F'}

- =y

E.g.1: Rubik’s cube
McAleer et al. "Solving the Rubik's cube with approximate policy iteration." ICLR. 2018.
Agostinelli et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence. 2019

E.g.2: Edge test selection in kidney exchange
McElfresh, Curry, Sandholm, Dickerson, “Improving Policy-Constrained Kidney Exchange via Pre-Screening”, NeurlPS-20

