
Game Abstraction Lecture 2

Tuomas Sandholm

ACTION ABSTRACTION

Action abstraction
• Typically done manually

• Prior action abstraction algorithms for extensive games

(even for just poker) had no guarantees on solution

quality [Hawkin et al. AAAI-11, 12]

• For stochastic games there is an action abstraction

algorithm with bounds (based on discrete optimization)

[Sandholm & Singh EC-12]

• We present the first algorithm for parameter

optimization for one player (in 2-player 0-sum games)

– We use it for action size abstraction

– Leverage regret matching (or CFR) warm starting by regret

transfer

“Regret Transfer and Parameter Optimization

with Application to Optimal Action Abstraction”

[Brown & Sandholm, AAAI-14]

Setting: game payoffs change as we change the actions

(e.g., bet sizes in poker or bid sizes in auctions),

but the game topology doesn’t change

Motivation: A Simple Game

Bet
Fold

-1, 1

We solve with No-Regret Learning

Fold Call

1, -1 ±2, ±2

Convergence to 𝜖-Nash equilibrium

0

0.02

0.04

0.06

0.08

0.1

0.12

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

E
p

si
lo

n

Iterations

Convergence to Nash

Original Run

Motivation: A Simple Game

Bet
Fold

-1, 1

Fold Call

1, -1 ±2, ±2

Suppose we change the Bet-Call payoff

part-way through our run

Motivation: A Simple Game

Bet
Fold

-1, 1

Fold Call

1, -1 ±𝟐. 𝟏, ±𝟐. 𝟏

𝛿 = 2.1 − 2 = 0.1

Convergence to 𝜖-Nash equilibrium

0

0.02

0.04

0.06

0.08

0.1

0.12

1
0

0

2
0
0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2
0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

2
1

0
0

2
2
0
0

2
3

0
0

2
4

0
0

2
5
0
0

2
6

0
0

2
7

0
0

2
8

0
0

2
9

0
0

3
0

0
0

3
1

0
0

3
2
0
0

3
3

0
0

3
4

0
0

3
5
0
0

3
6

0
0

E
p

si
lo

n

Iterations

Convergence to Nash

Naïve Regret Transfer

Convergence to 𝜖-Nash equilibrium

0

0.02

0.04

0.06

0.08

0.1

0.12

1
0

0

2
0
0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2
0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

2
1

0
0

2
2
0
0

2
3

0
0

2
4

0
0

2
5
0
0

2
6

0
0

2
7

0
0

2
8

0
0

2
9

0
0

3
0

0
0

3
1

0
0

3
2
0
0

3
3

0
0

3
4

0
0

3
5
0
0

3
6

0
0

E
p

si
lo

n

Iterations

Convergence to Nash

Start Over

Naïve Regret Transfer

Convergence to 𝜖-Nash equilibrium

0

0.02

0.04

0.06

0.08

0.1

0.12

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0
0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8
0
0

1
9

0
0

2
0

0
0

2
1

0
0

2
2
0
0

2
3

0
0

2
4

0
0

2
5

0
0

2
6

0
0

2
7

0
0

2
8

0
0

2
9

0
0

3
0

0
0

3
1
0
0

3
2

0
0

3
3

0
0

3
4

0
0

3
5

0
0

3
6

0
0

E
p

si
lo

n

Iterations

Convergence to Nash

Correct Regret Transfer

Start Over

Naïve Regret Transfer

Scale Amount:O
1

1+𝛿 𝑇
2

Optimal Parameter Selection

• Action abstraction: action size selection

– (Optimizing together with probabilities would be

quadratic)

• Each abstraction has a Nash equilibrium value

that isn’t known until we solve it

• We want to pick the optimal action abstraction

(one with highest equilibrium value for us)

Optimizing A Simple Game

Bet
Fold

-1, 1

What is the optimal value of 𝜃 for P1?

Fold Call

1, -1 ±𝜃, ±𝜃

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

1
.6

4

1
.6

8

1
.7

2

1
.7

6

1
.8

1
.8

4

1
.8

8

1
.9

2

1
.9

6 2

N
a
sh

 E
q

u
il

ib
r
iu

m
 V

a
lu

e

Theta

NE Value vs Theta

Step 1:Do 𝐾1 iters of No-Regret Learning

Epsilon Bars

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

1
.6

4

1
.6

8

1
.7

2

1
.7

6

1
.8

1
.8

4

1
.8

8

1
.9

2

1
.9

6 2

N
a
sh

 E
q

u
il

ib
r
iu

m
 V

a
lu

e

Theta

NE Value vs Theta

Step 2:Estimate Gradient

Epsilon Bars

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

1
.6

4

1
.6

8

1
.7

2

1
.7

6

1
.8

1
.8

4

1
.8

8

1
.9

2

1
.9

6 2

N
a
sh

 E
q

u
il

ib
r
iu

m
 V

a
lu

e

Theta

NE Value vs Theta

Step 3:Move Theta, Transfer Regret (deweight

regrets and strategies for averaging)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

1
.6

4

1
.6

8

1
.7

2

1
.7

6

1
.8

1
.8

4

1
.8

8

1
.9

2

1
.9

6 2

N
a
sh

 E
q

u
il

ib
r
iu

m
 V

a
lu

e

Theta

NE Value vs Theta

Step 4: Do 𝐾2 iters of No-Regret Learning

Epsilon bars expand

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

1
.2

4

1
.2

8

1
.3

2

1
.3

6

1
.4

1
.4

4

1
.4

8

1
.5

2

1
.5

6

1
.6

1
.6

4

1
.6

8

1
.7

2

1
.7

6

1
.8

1
.8

4

1
.8

8

1
.9

2

1
.9

6 2

N
a
sh

 E
q

u
il

ib
r
iu

m
 V

a
lu

e

Theta

NE Value vs Theta

Repeat to convergence

Epsilon bars shrink

• We have applied this to

– No-Limit Texas Hold’em (1 bet being sized in that

experiment), and

– Leduc Hold’em (2 bet sizes being sized

simultaneously in that experiment)

SIMULTANEOUS

ABSTRACTION AND

EQUILIBRIUM FINDING

Strategy-based abstraction

• So far, we have done this for adding actions into

the abstraction (and warm starting via discounting)

[“Simultaneous Abstraction and Equilibrium

Finding in Games”, Brown & Sandholm, IJCAI-15]

Abstraction Equilibrium finding

http://www.cs.cmu.edu/~sandholm/simultaneous.ijcai15.pdf

REVERSE MAPPING

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom

equilibrium-finding

algorithm

Reverse model

Action translation

f(x) ≡ probability we map x to A

Desiderata about f

1. f(A) = 1, f(B) = 0

2. Monotonicity

3. Scale invariance

4. Small change in x doesn’t lead

to large change in f

5. Small change in A or B doesn’t

lead to large change in f

[Ganzfried & Sandholm, IJCAI-13]

$A B

x
“Pseudo-harmonic mapping”

• f(x) = [(B-x)(1+A)] / [(B-A)(1+x)]

• Derived from Nash equilibrium of

a simplified no-limit poker game

• Satisfies the desiderata

• Much less exploitable than prior

mappings in simplified domains

• Performs well in practice in no-

limit Texas Hold’em
• Significantly outperforms best

prior reverse mapping,

randomized geometric

LOSSY ABSTRACTION

WITH EXPLOITABILITY BOUNDS

Game abstraction is nonmonotonic

• Such “abstraction pathologies” also in small poker games [Waugh et al., AAMAS-09]

0, 2 1, 1 2, 0

2, 0 1, 1 0, 2
Attacker

Defender

A

A

B

BBetween
In each equilibrium:

• Attacker randomizes 50-50 between A and B

• Defender plays A w.p. p, B w.p. p, and Between w.p. 1-2p

• There is an equilibrium for each p  [0, ½]

0, 2 1, 1 2, 0

A

A

BBetweenAn abstraction:
Defender would choose A, but that is far from equilibrium

in the original game where attacker would choose B

1, 1 2, 0A

BBetweenCoarser abstraction:
Defender would choose Between. That is an equilibrium in

the original game

Can we get bounds on exploitability

despite abstraction pathologies?

• First answer: Yes, in stochastic games [Sandholm & Singh, EC-12]

• I’ll present a unified abstraction framework for extensive-form games [Kroer

& Sandholm, NeurIPS-18]

– n-player, general-sum game

– Generalizes and improves over prior work [Lanctot et al., ICML-12; Kroer & Sandholm,

EC-14, EC-16]

• Applies to modeling also

Abstraction example

We think of this as two steps, which can be analyzed separately:

Lifted strategies

• Given a strategy profile 𝜎′ for the abstraction, a

lifted strategy is a profile 𝜎 s.t. for each abstract

𝐼′ and corresponding 𝐼:

– Probability mass on abstract action is spread any

way across the set of actions that map to it

• Formally, 𝜎′ 𝐼′, 𝑎′ = σ𝑎∈𝑔−1(𝑎′)𝜎(𝐼, 𝑎)

Abstraction theorem
[Kroer & Sandholm, NeurIPS-18]

• Given:
– a perfect-recall game,

– an acyclic abstract game,

– a mapping between them that satisfies our mild, natural assumptions, and

– an 𝜖-Nash equilibrium in the abstract game

• Then: Any lifted strategy is an 𝜖′-Nash equilibrium in the original game,
where 𝜖′ = maxi 𝜖𝑖

′ and

𝜖𝑖
′ = 𝜖 + 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟𝑖 + 𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟𝑖

• Advantages over prior work:
– Exact decomposition of error

– Equilibrium in abstract game doesn’t have to be exact

– Doesn’t make restrictive assumption of prior work

– Exponentially better bound than Lanctot et al. [ICML-12]

– We also derive a similar result for solution to abstract game with bounded
counterfactual regret (gain at most 𝜖𝑎 by switching to any action 𝑎)

Error from mapping real game onto

perfect-recall refinement of abstract game

Error between perfect-recall refinement

of abstract game and abstract game

Mapping errori

Sum of

• Payoff error:

– Expectation over leaf nodes in real game

of utility difference between real leaf and the node it maps

onto

• Distribution error:

– Sum over leaf nodes in abstraction

of difference in probability of reaching abstract leaf and

sum of reach probabilities on real leaves that map to it

Refinement errori

• Sum over infosets 𝐼𝑝 in the perfect-recall

refinement of the abstraction (let 𝐼′ be the

corresponding abstract infoset):

Sum of:

• Payoff error:

– Expectation over leaves under 𝐼′

of utility difference compared to corresponding leaf under 𝐼𝑝

• Distribution error:

– Sum over leaves under 𝐼𝑝

of difference in probability of reaching refinement leaf from 𝐼𝑝
versus sum of reach probabilities on abstract leaves from 𝐼′

Future research on lossy abstraction

with exploitability bounds

• The distribution error terms in our decomposition are in
general not computable ex ante
(i.e., before running a solver on the abstract game)

– …because they can depend on players’ strategies

• Prior approaches required that for pairs of leaves mapped to each
other, the leaves have the same sequence of information-set-action
pairs leading to them in the abstraction

• Under that assumption, we can compute ex ante bounds (take max’s)

• Idea: Find other specialized but practical game classes
where game structure can be leveraged to give
computable ex ante bounds

• One approach:
Our decomposition relies on utility differences (not absolute value
thereof as prior approaches did), so structured game classes could
potentially even cancel out error terms

Conclusions on this lecture

• Domain-independent techniques

• First action abstraction algorithm with optimality guarantees:

iterative action size vector changing

• Simultaneous abstraction and equilibrium finding

• Reverse mapping: “pseudoharmonic”

• Lossy abstraction with exploitability bounds

• Future research

– Applying these techniques to other domains

– Better algorithms within our lossy-abstraction-with-bounds framework

(or different such framework to be developed in the future)

