Game Abstraction Lecture 2

Tuomas Sandholm



ACTION ABSTRACTION



Action abstraction

Typically done manually

Prior action abstraction algorithms for extensive games
(even for just poker) had no guarantees on solution
quality [Hawkin et al. AAAI-11, 12]

For stochastic games there is an action abstraction
algorithm with bounds (based on discrete optimization)
[Sandholm & Singh EC-12]

We present the first algorithm for parameter
optimization for one player (in 2-player 0-sum games)
— We use It for action size abstraction

— Leverage regret matching (or CFR) warm starting by regret
transfer



“Regret Transfer and Parameter Optimization
with Application to Optimal Action Abstraction”™

[Brown & Sandholm, AAAI-14]

Setting: game payoffs change as we change the actions
(e.g., bet sizes in poker or bid sizes in auctions),
but the game topology doesn’t change



Motivation: A Simple Game

1, -1 +2, +2

We solve with No-Regret Learning



Convergence to e-Nash equilibrium

Convergence to Nash
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Motivation: A Simple Game

1, -1 +2, +2

Suppose we change the Bet-Call payoff
part-way through our run



Motivation: A Simple Game

60=21-2=0.1



Convergence to e-Nash equilibrium

Convergence to Nash

Naive Regret Transfer
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Convergence to e-Nash equilibrium

Convergence to Nash

e Start Over

— Naive Regret Transfer
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Convergence to e-Nash equilibrium
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Optimal Parameter Selection

e Action abstraction: action size selection

— (Optimizing together with probabilities would be
quadratic)

 Each abstraction has a Nash equilibrium value
that 1sn’t known until we solve 1t

 \We want to pick the optimal action abstraction
(one with highest equilibrium value for us)



Optimizing A Simple Game

1,-1 10, +6

What is the optimal value of 6 for P17
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Step 3:Move Theta, Transfer Regret (deweight
regrets and strategies for averaging)

NE Value vs Theta
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Epsilon bars expand
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Repeat to convergence

NE Value vs Theta

Epsilon bars shrink
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We have applied this to

— No-Limit Texas Hold’em (1 bet being sized in that
experiment), and

— Leduc Hold’em (2 bet sizes being sized
simultaneously in that experiment)



SIMULTANEOUS
ABSTRACTION AND
EQUILIBRIUM FINDING



Strategy-based abstraction

 So far, we have done this for adding actions into
the abstraction (and warm starting via discounting)
[“Simultaneous Abstraction and Equilibrium
Finding in Games”, Brown & Sandholm, 1JCAI-15]



http://www.cs.cmu.edu/~sandholm/simultaneous.ijcai15.pdf

REVERSE MAPPING






Action translation

I ->

$

f(x) = probability we map x to A

Desiderata about f
f( )=1, 1( )=0
Monotonicity
Scale invariance

Small change in  doesn’t lead
to large change in f

5. Small change in  or doesn’t
lead to large change in f

[Ganzfried & Sandholm, 1JCAI-13]

B A

“Pseudo-harmonic mapping”’

f(x) = [(B-x)(1+A)] / [(B-A)(1+X)]

Derived from Nash equilibrium of
a simplified no-limit poker game

Satisfies the desiderata

Much less exploitable than prior
mappings in simplified domains

Performs well in practice in no-

limit Texas Hold’em
« Significantly outperforms best
prior reverse mapping,
randomized geometric



LOSSY ABSTRACTION
WITH EXPLOITABILITY BOUNDS



Game abstraction 1S nonmonotonic

Defender
A Between B

In each equilibrium:

Attacker 0,2 1,1 2,0 e  Attacker randomizes 50-50 between A and B
B |20 1.1 0.2 «  Defender plays Aw.p. p, B w.p. p, and Between w.p. 1-2p
: ’ ’ *  There is an equilibrium for each p € [0, ¥2]

An abstraction: A Between 5 Defend Id ch A, but that is far f ilibri
efender would choose A, but that is far from equilibrium
A 102 1,1 2,0 in the original game where attacker would choose B

Coarser abstraction: Between B

Defender would choose Between. That is an equilibrium in
A 1,1 2, 0 the original game

» Such “abstraction pathologies” also in small poker games [Waugh et al., AAMAS-09]



Can we get bounds on exploitability
despite abstraction pathologies?

First answer: Yes, in stochastic games [Sandholm & Singh, EC-12]

I’1l present a unified abstraction framework for extensive-form games [Kroer
& Sandholm, NeurlPS-18]

— n-player, general-sum game
— Generalizes and improves over prior work [Lanctot et al., ICML-12; Kroer & Sandholm,
EC-14, EC-16]

« Applies to modeling also



Abstraction example
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Lifted strategies

 Given a strategy profile ¢’ for the abstraction, a
lifted strategy Is a profile o s.t. for each abstract
I and corresponding I:

— Probability mass on abstract action is spread any
way across the set of actions that map to it

« Formally, ¢’ (I',a’) = ) a(l,a)

aeg~1(a’)



Abstraction theorem

[Kroer & Sandholm, NeurlPS-18]

Given:

— a perfect-recall game,

— an acyclic abstract game,

— amapping between them that satisfies our mild, natural assumptions, and

— an e-Nash equilibrium in the abstract game
Then: Any lifted strategy is an €'-Nash equilibrium in the original game,
where €’ = max; €, and

€;' = € + mapping errori + refinement errori

f
Error from mapping real game onto Error between perfect-recall refinement
perfect-recall refinement of abstract game of abstract game and abstract game

Advantages over prior work:
— Exact decomposition of error
— Equilibrium in abstract game doesn’t have to be exact
— Doesn’t make restrictive assumption of prior work
— Exponentially better bound than Lanctot et al. [ICML-12]

— We also derive a similar result for solution to abstract game with bounded
counterfactual regret (gain at most €, by switching to any action a)




Mapping error,

Sum of

 Payoff error:

— EXxpectation over leaf nodes in real game

of utility difference between real leaf and the node it maps
onto

e Distribution error:

— Sum over leaf nodes In abstraction

of difference in probability of reaching abstract leaf and
sum of reach probabilities on real leaves that map to it



Refinement error,

- Sum over infosets I, in the perfect-recall

refinement of the abstraction (let I" be the
corresponding abstract infoset):

Sum of:

« Payoff error:
— Expectation over leaves under I’
of utility difference compared to corresponding leaf under I,

e Distribution error:
— Sum over leaves under I

of difference in probability of reaching refinement leaf from I,
versus sum of reach probabilities on abstract leaves from I’



Future research on lossy abstraction
with exploitability bounds

The distribution error terms in our decomposition are in
general not computable ex ante
(1.e., before running a solver on the abstract game)

— ...because they can depend on players’ strategies

* Prior approaches required that for pairs of leaves mapped to each
other, the leaves have the same sequence of information-set-action
pairs leading to them in the abstraction

 Under that assumption, we can compute ex ante bounds (take max’s)

Idea: Find other specialized but practical game classes
where game structure can be leveraged to give

computable ex ante bounds

 One approach:
Our decomposition relies on utility differences (not absolute value
thereof as prior approaches did), so structured game classes could
potentially even cancel out error terms



Conclusions on this lecture

Domain-independent technigues

First action abstraction algorithm with optimality guarantees:
Iterative action size vector changing

Simultaneous abstraction and equilibrium finding
Reverse mapping: “pseudoharmonic”
Lossy abstraction with exploitability bounds

Future research
— Applying these techniques to other domains

— Better algorithms within our lossy-abstraction-with-bounds framework
(or different such framework to be developed in the future)



