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Automated game abstraction

[Gilpin & Sandholm, EC-06/J. of the ACM 2007, AAAI-06...]
Now used basically by all competitive Texas Hold’em programs

Original game

Abstracted game

Abstraction algorithm i E

Equilibrium-finding
algorithm

Reverse model

Nash equilibrium Nash equilibrium

Foreshadowed by Shi & Littman 01 and Billings et al., IJCAI-03



Lossless game abstraction

[Gilpin & Sandholm, EC-06, J. of the ACM 2007]



Information filters

« Observation: We can make games smaller by
filtering the information a player receives

* Instead of observing a specific signal exactly, a
player instead observes a of signals

— E.g., receiving signal {As, A% Av Ae} instead of Av



Signal tree

 Each edge corresponds to the revelation of some
signal by nature to at least one player

 Our abstraction algorithm operates on it

— Doesn’t load full game 1into memory



Isomorphic relation

 Captures the notion of strategic symmetry between nodes

 Defined recursively:

— Two leaves in signal tree are isomorphic if for each action
history in the game, the payoff vectors (one payoff per player)
are the same

— Two internal nodes in signal tree are isomorphic if their
children are isomorphic
 Challenge: permutations of children

« Solution: custom perfect matching algorithm between children of the two
nodes such that only isomorphic children are matched



Abstraction transformation

« Merges two isomorphic nodes that are siblings

« Theorem. If a strategy profile is a Nash equilibrium
In the abstracted (smaller) game, then its interpretation
In the original game is a Nash equilibrium



GameShrink algorithm

« Bottom-up pass: Run DP to mark isomorphic pairs of
nodes in signal tree

» Top-down pass: Starting from top of signal tree, perform
the transformation for siblings where applicable

« Theorem. Conducts all these transformations
— O(n?), where n is #nodes in signal tree
— Usually highly sublinear in game tree size



Solved Rhode Island Hold’em poker

Al challenge problem [Shi & Littman 01]
— 3.1 billion nodes in game tree

Without abstraction, LP has 91,224,226 rows and
columns => unsolvable

GameShrink runs in one second

After that, LP has 1,237,238 rows and columns
(50,428,638 non-zeros)

Solved the LP
— CPLEX barrier method took 8 days & 25 GB RAM

Exact Nash equilibrium

Largest incomplete-info game solved
by then by over 4 orders of magnitude




L_ossy game abstraction



Example game for the rest of this lecture:
Texas hold’em poker

Nature deals 2 cards to each player — ® 2-p|ayer Limit has

~1018
Round of betting 10 nOdeS
Nature deals 3 shared cards C 2_p|ayer No-Limit
Round of betting has ~101%°> nodes
Nature deals 1 shared card a Losslessly abstracted
Round of betting game too big to solve
Nature deals 1 shared card => abstract more

=> |ossy

Round of betting



First abstraction algorithm applied to
Texas hold’em [Gilpin & Sandholm, AAAI-06]

« GameShrink can be made to abstract more by not
requiring a perfect matching => lossy

— for speed of the matching we used a faster matching heuristic:
WINS, 14e1-WINS,  4eo| + [10SSES 04e1-10SS€S0ge| < K

nodel

— Greedy => lopsided abstractions



Better and more scalable approach for lossy
abstraction than GameShrink:
[Gilpin & Sandholm, AAMAS-07]

 QOperates in signal tree of one player’s signals & common signals
at a time (1.€., no longer 1n signal tree of both player’s signals)
— This’ll be the case also in the state-of-the-art algorithm described later

e “Clustering + IP”;

— For every betting round i, tell the algorithm how many buckets K; it is
allowed to generate

» This determines the size of the abstraction, and should be set based on the available
computational resources for the equilibrium computation

— For the first betting round, run k;-means clustering to bucket the nodes

— Ineach later round i, run an IP to determine how many children each
parent should be allowed to have so the total number of children doesn’t
exceed K;

» The value of allowing a parent to have k children is done by running k-means clustering
for different values of k under each parent before running the IP



Potential-aware abstraction

 All prior abstraction algorithms had probability of winning
(assuming no more betting) as the similarity metric
— Doesn’t capture potential

« Potential not only positive or negative, but “multidimensional”

* We developed an abstraction algorithm that captures potential ...
[Gilpin, Sandholm & Sgrensen, AAAI-07; Gilpin & Sandholm,
AAAI-08]



Bottom-up pass to determine
abstraction for round 1

rondr1 S8 & &7 &8 8 &8

Round r i) i) i) i)

Clustering using L, norm
— Predetermined number of clusters, depending on size of abstraction we are shooting for

In the last (4th) round, there is no more potential => we use probability of winning
(assuming rollout) as similarity metric



Determining abstraction for round 2

e For each 1st-round bucket I:

— Make a bottom-up pass to determine 3"-round buckets,
considering only hands compatible with i

— Fork; =1, 2, ..., max
e Cluster the 2"-round hands into k; clusters
— based on each hand’s histogram over 3"-round buckets

 |P to decide how many children each 15-round bucket
may have, subject to 2; ki< K,
— Error metric for each bucket is the sum of L, distances of the
hands from the bucket’s centroid

— Total error to minimize is the sum of the buckets’ errors
 weighted by the probability of reaching the bucket



Determining abstraction for round 3

 Done analogously to how we did round 2



Determining abstraction for round 4

* Done analogously, except that now there Is no
potential left, so clustering Is done based on
orobability of winning (assuming rollout)

» Now the potential-aware abstraction has been
computed!



Important ideas for practical
lossy abstraction 2007-13

* Integer programming [Gilpin & Sandholm, AAMAS-07]

e Potential-aware [Gilpin, Sandholm & Sgrensen, AAAI-07;
Gilpin & Sandholm, AAAI-08]

 Imperfect recall [waugh et al., SARA-09. Johanson et al.,
AAMAS-13]



STATE OF THE ART:

Potential-Aware Imperfect-Recall Abstraction
with Earth Mover's Distance in Imperfect-Information Games

[Ganzfried & Sandholm, AAAI-14]



Expected Hand Strength (EHS)

« EHS (aka equity) is the probability of winning (plus 2 x probability of tying)
— against a uniform random draw of private cards for the opponent,
— assuming a uniform random rollout of the remaining public cards

« Early poker abstraction approaches used EHS (or EHS exponentiated to some
power) to cluster hands [e.g., Billings et al., IJCAI-03; Gilpin & Sandholm,
AAAI-06; Zinkevich et al., NIPS-07; Waugh et al., SARA-09]

« EHS fails to account for the distribution of hand strength

— 4s4h and TsJs have very similar EHS (0.575 and 0.570), but 44 frequently has EHS in
[0.4,0.6] and rarely in [0.7,0.9], while the reverse is true for TsJs




Distribution-aware abstraction

« Takes into account the full distribution of hand strength. Uses
earth-mover’s distance (EMD) as distance metric between
histograms

— EMD: “minimum cost of turning one pile into the other, where cost is
amount of dirt moved times the distance by which it 1s moved”

« EMD can be computed in linear time for 1D setting, but more
challenging in higher dimensions

Prior best approach used distribution-aware abstraction with imperfect recall for flop and turn rounds. The histograms were over
equities after all public cards are dealt (assuming uniform random hand for opponent) [Johanson et al., AAMAS-13]



Potential-aware abstraction

. Hands can have very similar distributions over strength at the end, but realize the equity at different ways/rates
. Potential-aware abstraction [Gilpin, Sandholm & Soerensen, AAAI-07] considers all future rounds, not just final round
. In distribution-aware abstraction, histograms are over cardinal equities

. In potential-aware abstraction, histograms are over non-ordinal next-round states
=> must compute EMD in higher-dimensional space

Private signal x; Private signal x,

LA ) \ € ]

Prob. 1/2

Prob. 1/2

>Equit\r. 0 |

[- Eqﬁl(y; 0 ]

X, and X, have the same histogram assuming game proceeds to the end
Histogram for private signal x, at round 1 over non-ordinal information states at round 2

|
COOO000000
ORNW A UIH~I0WOH




Algorithm for potential-aware imperfect-
recall abstraction with EMD

 Perform bottom-up pass of the tree, using histograms
over distributions of clusters at next round

— EMD is now in multi-dimensional space, where the ground
distance Is assumed to be the (next-round) EMD between the
corresponding cluster means

» Best implementation of EMD is far too slow for Texas
Hold’em. We developed a fast custom heuristic for
approximating it in this setting

 Using our algorithm to compute the abstraction for the
flop round, we beat best prior abstraction algorithm

 Notes:

— No need to perform multiple bottom up passes like in potential-aware abstraction before, due to imperfect recall
—  No need for IP, due to imperfect recall



Conclusions

Domain-independent techniques

Automated lossless information abstraction: exactly solved
3-billion-node game

Lossy information abstraction is key to tackling large games like
Texas Hold’em. Main progress 2007-2013: integer programming,
potential-aware, imperfect recall

State of the art from our 2014 paper:

— First information abstraction algorithm that combines potential aware and
imperfect recall

Future research
— Applying these techniques to other domains

— Abstraction technigues that have theoretical bounds (discussed next time)
and good practical performance



