
State-of-the-Art

Practical Game Abstraction

Tuomas Sandholm

Automated game abstraction
[Gilpin & Sandholm, EC-06/J. of the ACM 2007, AAAI-06…]

Now used basically by all competitive Texas Hold’em programs

Nash equilibriumNash equilibrium

Original game

Abstracted game

Abstraction algorithm

Equilibrium-finding

algorithm

Reverse model

Foreshadowed by Shi & Littman 01 and Billings et al., IJCAI-03

Lossless game abstraction

[Gilpin & Sandholm, EC-06, J. of the ACM 2007]

Information filters

• Observation: We can make games smaller by

filtering the information a player receives

• Instead of observing a specific signal exactly, a

player instead observes a filtered set of signals

– E.g., receiving signal {A♠,A♣,A♥,A♦} instead of A♥

Signal tree

• Each edge corresponds to the revelation of some

signal by nature to at least one player

• Our abstraction algorithm operates on it

– Doesn’t load full game into memory

Isomorphic relation

• Captures the notion of strategic symmetry between nodes

• Defined recursively:

– Two leaves in signal tree are isomorphic if for each action

history in the game, the payoff vectors (one payoff per player)

are the same

– Two internal nodes in signal tree are isomorphic if their

children are isomorphic

• Challenge: permutations of children

• Solution: custom perfect matching algorithm between children of the two

nodes such that only isomorphic children are matched

Abstraction transformation

• Merges two isomorphic nodes that are siblings

• Theorem. If a strategy profile is a Nash equilibrium

in the abstracted (smaller) game, then its interpretation

in the original game is a Nash equilibrium

GameShrink algorithm

• Bottom-up pass: Run DP to mark isomorphic pairs of
nodes in signal tree

• Top-down pass: Starting from top of signal tree, perform
the transformation for siblings where applicable

• Theorem. Conducts all these transformations
– Õ(n2), where n is #nodes in signal tree

– Usually highly sublinear in game tree size

Solved Rhode Island Hold’em poker

• AI challenge problem [Shi & Littman 01]

– 3.1 billion nodes in game tree

• Without abstraction, LP has 91,224,226 rows and
columns => unsolvable

• GameShrink runs in one second

• After that, LP has 1,237,238 rows and columns
(50,428,638 non-zeros)

• Solved the LP

– CPLEX barrier method took 8 days & 25 GB RAM

• Exact Nash equilibrium

• Largest incomplete-info game solved
by then by over 4 orders of magnitude

Lossy game abstraction

Example game for the rest of this lecture:

Texas hold’em poker

• 2-player Limit has

~1018 nodes

• 2-player No-Limit

has ~10165 nodes

• Losslessly abstracted

game too big to solve

=> abstract more

=> lossy

Nature deals 2 cards to each player

Nature deals 3 shared cards

Nature deals 1 shared card

Nature deals 1 shared card

Round of betting

Round of betting

Round of betting

Round of betting

First abstraction algorithm applied to

Texas hold’em [Gilpin & Sandholm, AAAI-06]

• GameShrink can be made to abstract more by not
requiring a perfect matching => lossy

– for speed of the matching we used a faster matching heuristic:
|winsnode1-winsnode2| + |lossesnode1-lossesnode2| < k

– Greedy => lopsided abstractions

Better and more scalable approach for lossy
abstraction than GameShrink:

[Gilpin & Sandholm, AAMAS-07]

• Operates in signal tree of one player’s signals & common signals
at a time (i.e., no longer in signal tree of both player’s signals)
– This’ll be the case also in the state-of-the-art algorithm described later

• “Clustering + IP”:
– For every betting round i, tell the algorithm how many buckets Ki it is

allowed to generate
• This determines the size of the abstraction, and should be set based on the available

computational resources for the equilibrium computation

– For the first betting round, run k1-means clustering to bucket the nodes

– In each later round i, run an IP to determine how many children each
parent should be allowed to have so the total number of children doesn’t
exceed Ki

• The value of allowing a parent to have k children is done by running k-means clustering
for different values of k under each parent before running the IP

Potential-aware abstraction

• All prior abstraction algorithms had probability of winning

(assuming no more betting) as the similarity metric

– Doesn’t capture potential

• Potential not only positive or negative, but “multidimensional”

• We developed an abstraction algorithm that captures potential …

[Gilpin, Sandholm & Sørensen, AAAI-07; Gilpin & Sandholm,

AAAI-08]

Bottom-up pass to determine

abstraction for round 1

• Clustering using L1 norm
– Predetermined number of clusters, depending on size of abstraction we are shooting for

• In the last (4th) round, there is no more potential => we use probability of winning
(assuming rollout) as similarity metric

Round r

Round r-1

.3 .2 0 .5

Determining abstraction for round 2

• For each 1st-round bucket i:

– Make a bottom-up pass to determine 3rd-round buckets,

considering only hands compatible with i

– For ki = 1, 2, …, max

• Cluster the 2nd-round hands into ki clusters

– based on each hand’s histogram over 3rd-round buckets

• IP to decide how many children each 1st-round bucket

may have, subject to Σi ki ≤ K2

– Error metric for each bucket is the sum of L2 distances of the

hands from the bucket’s centroid

– Total error to minimize is the sum of the buckets’ errors

• weighted by the probability of reaching the bucket

Determining abstraction for round 3

• Done analogously to how we did round 2

Determining abstraction for round 4

• Done analogously, except that now there is no

potential left, so clustering is done based on

probability of winning (assuming rollout)

• Now the potential-aware abstraction has been

computed!

Important ideas for practical

lossy abstraction 2007-13

• Integer programming [Gilpin & Sandholm, AAMAS-07]

• Potential-aware [Gilpin, Sandholm & Sørensen, AAAI-07;

Gilpin & Sandholm, AAAI-08]

• Imperfect recall [Waugh et al., SARA-09. Johanson et al.,

AAMAS-13]

STATE OF THE ART:

Potential-Aware Imperfect-Recall Abstraction
with Earth Mover's Distance in Imperfect-Information Games

[Ganzfried & Sandholm, AAAI-14]

Expected Hand Strength (EHS)
• EHS (aka equity) is the probability of winning (plus ½ x probability of tying)

– against a uniform random draw of private cards for the opponent,

– assuming a uniform random rollout of the remaining public cards

• Early poker abstraction approaches used EHS (or EHS exponentiated to some

power) to cluster hands [e.g., Billings et al., IJCAI-03; Gilpin & Sandholm,

AAAI-06; Zinkevich et al., NIPS-07; Waugh et al., SARA-09]

• EHS fails to account for the distribution of hand strength

– 4s4h and TsJs have very similar EHS (0.575 and 0.570), but 44 frequently has EHS in

[0.4,0.6] and rarely in [0.7,0.9], while the reverse is true for TsJs

Distribution-aware abstraction

• Takes into account the full distribution of hand strength. Uses

earth-mover’s distance (EMD) as distance metric between

histograms

– EMD: “minimum cost of turning one pile into the other, where cost is

amount of dirt moved times the distance by which it is moved”

• EMD can be computed in linear time for 1D setting, but more

challenging in higher dimensions

• Prior best approach used distribution-aware abstraction with imperfect recall for flop and turn rounds. The histograms were over

equities after all public cards are dealt (assuming uniform random hand for opponent) [Johanson et al., AAMAS-13]

Potential-aware abstraction
• Hands can have very similar distributions over strength at the end, but realize the equity at different ways/rates

• Potential-aware abstraction [Gilpin, Sandholm & Soerensen, AAAI-07] considers all future rounds, not just final round

• In distribution-aware abstraction, histograms are over cardinal equities

• In potential-aware abstraction, histograms are over non-ordinal next-round states

=> must compute EMD in higher-dimensional space

Private signal x1 Private signal x2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

B D E

x1 and x2 have the same histogram assuming game proceeds to the end
Histogram for private signal x2 at round 1 over non-ordinal information states at round 2

Algorithm for potential-aware imperfect-

recall abstraction with EMD

• Perform bottom-up pass of the tree, using histograms

over distributions of clusters at next round

– EMD is now in multi-dimensional space, where the ground

distance is assumed to be the (next-round) EMD between the

corresponding cluster means

• Best implementation of EMD is far too slow for Texas

Hold’em. We developed a fast custom heuristic for

approximating it in this setting

• Using our algorithm to compute the abstraction for the

flop round, we beat best prior abstraction algorithm

• Notes:
– No need to perform multiple bottom up passes like in potential-aware abstraction before, due to imperfect recall

– No need for IP, due to imperfect recall

Conclusions

• Domain-independent techniques

• Automated lossless information abstraction: exactly solved

3-billion-node game

• Lossy information abstraction is key to tackling large games like

Texas Hold’em. Main progress 2007-2013: integer programming,

potential-aware, imperfect recall

• State of the art from our 2014 paper:

– First information abstraction algorithm that combines potential aware and

imperfect recall

• Future research

– Applying these techniques to other domains

– Abstraction techniques that have theoretical bounds (discussed next time)

and good practical performance

