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Today’s lecture

● Near-optimal regret in self-play
○ Optimistic regret minimization
○ The RVU property
○ Zero-sum and general-sum games

● Last-iterate convergence
○ Connections to optimistic regret minimization
○ Connections to price of anarchy and smooth games



Regret minimization against an adversary vs. self-play

● We have seen that players with no-regret 
converge to equilibria

● The rate of convergence is driven by their 
regrets

● What’s the best rate we can hope for?
● The adversarial setting is overly 

pessimistic; when learning in games, we 
have control over the sequence of utilities

● Can we improve our analysis?



Barriers with traditional learning algorithms

Theorem. For any learning rate, 
when both players in a two-player 
game employ MWU, at least one of 
the players will have         regret

● Similar lower bounds are known 
for other common algorithms, 
such as RM and RM+

We need new 
algorithmic ideas!



Optimistic regret minimization

Optimistic FTRL Optimistic mirror descent

The only difference is that we have a prediction vector,
typically set as the previously observed utility



Regret bounded by variation in utilities

Two key differences with the usual regret bound:

● The regret is bounded by the misprediction error
● There is a negative term that decreases the 

regret when the player is changing its strategies 
rapidly (!)

Theorem. Both OFTRL and 
OMD satisfy the RVU bound



Predictive regret matching



PRM in action From Farina et al.



Faster rates using stability

Regularized algorithms, such as 
(O)FTRL and (O)MD guarantee

● Two consecutive strategies 
do not change by a lot

● Does not hold for regret 
matching

● If all players employ regularized 
algorithms, the utilities are changing slowly

● The utility is a polynomial (by expanding 
the expectation), so it’s also Lipschitz 
continuous in the strategies



Faster rates using stability

● Optimizing the learning rate, the regret is bounded by 
● This is still far from the lower bound
● Can we do better?



The sum of the regrets is bounded

We care about the 
maximum of the regrets



Games with nonnegative sum of regrets

Theorem. For any game with nonnegative sum of regrets, 

The misprediction 
error is bounded!

The assumption holds for zero-sum games:



Polymatrix zero-sum games

● A generalization of two-player zero-sum games
● There is a graph, and every player is uniquely 

associated with a node
● Every edge represents a (two-player) zero-sum 

game between the incident players
● A player gets the sum of the utilities from all the 

individual games

Taken from Deng et al.



Extending to general-sum games

● The previous argument only applies to games with nonnegative sum of 
regrets, which is a severe restriction

● How can we extend it to general-sum games?
● What if we consider instead a nonnegative measure of regret?

Swap regret is nonnegative!
It suffices to prove an RVU 

bound for swap regret



A reminder of Blum-Mansour



RVU bound for Blum-Mansour

We can use the RVU bound for each individual local regret minimizer

It suffices to prove



Stability of fixed points



Stability of fixed points

● Those two Markov chains are close to each other in terms of transition probs
● But their stationary distributions are not!



Multiplicative stability

We need a more refined notion of stability—multiplicative stability

● The ratio of two consecutive coordinates has to be close to 1
● In the previous example, the stochastic matrices are not 

multiplicatively close
● Most algorithms we have seen do not guarantee this notion of 

stability; but MWU does



Stability of fixed points

Theorem. If the transition probabilities of two Markov chains are multiplicatively 
close, their fixed points will also be close.

Proof by Markov chain tree 
theorem:

Stability ensures we can get a bound of 



Improved regularizer

The second key idea is to use the logarithmic regularizer:

● The range is unbounded, but can be handled by 
pushing the comparator away from the boundary

● The main benefit is that we get a refined local 
norm, which is dynamically changing over time

Adds a  
dependence



RVU for swap regret

Using the Markov chain tree theorem, 

Theorem. There is an algorithm that satisfies the RVU bound with respect 
to swap regret. 

Corollary. 

As a result, we can guarantee that every player in a general-sum game will 
have logarithmic regret, which is near-optimal.

● Improving this to a constant is an open question



Adversarial robustness

● What if one or more players deviate from the protocol?
● Can we still get the best regret possible when facing an adversary?



Adversarial robustness

● What if one or more players deviate from the protocol?
● Can we still get the best regret possible when facing an adversary?
● It’s enough to keep track of the misprediction error

If it gets larger than logarithmic, we can switch to an algorithm 
tuned for the adversarial regime



Last-iterate convergence

● Guarantees for the regret translate to some form of average convergence
● What can be said about the last iterate of the dynamics?

Common algorithms such 
as MWU and gradient 
descent can fail miserably!



Optimism to the rescue

● It turns out that optimism, besides improving the regret, can also ensure 
last-iterate convergence in some classes of games

● We proved earlier that, in games with nonnegative sum of regrets, 

Under some assumptions, small variation implies 
convergence to Nash equilibria. 



Convergence of optimistic learning

Theorem. For any game with nonnegative sum of regrets, after                    
rounds, most strategies are         -Nash equilibria.

● This rate is known to be tight
● Convergence is the ultimate form of predictability, trivializing the 

problem of online learning
● But what if the dynamics do not converge to Nash equilibria?



Small variation without Nash convergence

Small variation doesn’t necessarily imply convergence to Nash equilibria



Social welfare and smooth games

● As we have seen, some equilibria are better 
than others

● Is regret minimization converging to good 
equilibria?

● As is standard, we measure goodness through 
social welfare, although there are many other 
ways to quantify the quality of equilibria

● The framework of price of anarchy quantifies 
the inefficiency of equilibria

From Roughgarden



Smooth games

● If each player follows its component from the welfare-optimal strategy, the 
players collectively get some fraction of the optimal welfare

● Many classes of games are known to be smooth (Roughgarden, 2015)
● In some sense, a generalization of zero-sum games



Connection with regret minimization

In any smooth game, 

● Convergence to a near-optimal equilibrium is driven by the 
sum of the players’ regrets

● The ratio λ/(1+μ) is called robust price of anarchy
● What if the regrets are negative?



Optimistic mirror descent in smooth games

Theorem. Optimistic mirror descent

● Either converges to a Nash equilibrium
● Or the average welfare outperforms the robust price of anarchy

● Individually each problem is hard!
● The further away from Nash equilibria, the larger the improvement 

in terms of the social welfare



Optimistic mirror descent in two-player games



Optimistic mirror descent in two-player games


