Faster No-Regret Learning Dynamics and Last-Iterate Convergence

15 888 Computational Game Solving (Fall 2025)
Ioannis Anagnostides

Today's lecture

- Near-optimal regret in self-play
 - Optimistic regret minimization
 - The RVU property
 - Zero-sum and general-sum games
- Last-iterate convergence
 - Connections to optimistic regret minimization
 - Connections to price of anarchy and smooth games

Regret minimization against an adversary vs. self-play

- We have seen that players with no-regret converge to equilibria
- The rate of convergence is driven by their regrets
- What's the best rate we can hope for?
- The adversarial setting is overly
 pessimistic; when learning in games, we
 have control over the sequence of utilities
- Can we improve our analysis?

Barriers with traditional learning algorithms

Theorem. For any learning rate, when both players in a two-player game employ MWU, at least one of the players will have \sqrt{T} regret

We need new algorithmic ideas!

 Similar lower bounds are known for other common algorithms, such as RM and RM+

Optimistic regret minimization

Optimistic FTRL

$$\boldsymbol{x}^{(t)} = \operatorname*{argmax}_{\boldsymbol{x} \in \mathcal{X}} \left\{ \left\langle \boldsymbol{x}, \boldsymbol{m}^{(t)} + \sum_{\tau=1}^{t-1} \boldsymbol{u}^{(\tau)} \right\rangle - \frac{1}{\eta} \mathcal{R}(\boldsymbol{x}) \right\}.$$

Optimistic mirror descent

$$\mathbf{x}^{(t)} \coloneqq \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} \left\{ \langle \mathbf{x}, \mathbf{m}^{(t)} \rangle - \frac{1}{\eta} \mathcal{B}_{\mathcal{R}}(\mathbf{x}, \hat{\mathbf{x}}^{(t-1)}) \right\},$$

$$\hat{\boldsymbol{x}}^{(t)} \coloneqq \operatorname*{argmax}_{\hat{\boldsymbol{x}} \in \mathcal{X}} \left\{ \langle \hat{\boldsymbol{x}}, \boldsymbol{u}^{(t)} \rangle - \frac{1}{\eta} \mathcal{B}_{\mathcal{R}}(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}}^{(t-1)}) \right\}.$$

The only difference is that we have a **prediction** vector, typically set as the *previously observed utility*

Regret bounded by variation in utilities

$$\operatorname{Reg}^{(T)} \leq \alpha + \beta \sum_{t=1}^{T} \| \boldsymbol{u}^{(t)} - \boldsymbol{m}^{(t)} \|_{*}^{2} - \gamma \sum_{t=1}^{T} \| \boldsymbol{x}^{(t)} - \boldsymbol{x}^{(t-1)} \|^{2}.$$

Two key differences with the usual regret bound:

- The regret is bounded by the misprediction error
- There is a negative term that *decreases* the regret when the player is changing its strategies rapidly (!)

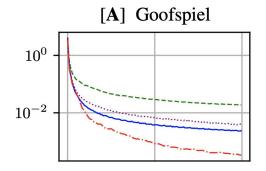
Theorem. Both OFTRL and OMD satisfy the RVU bound

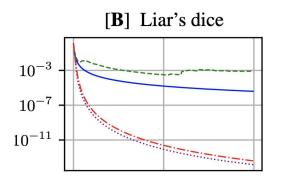
Predictive regret matching

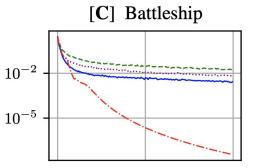
Algorithm 1: Predictive RM (PRM)		Algorithm 2: Predictive RM ⁺ (RM ⁺)	
1 Initialize cumulative regrets $r^{(0)} = 0$;		1 Initialize cumulative regrets $r^{(0)} = 0$;	
2 for $t = 1,, T$ do		2 for $t = 1,, T$ do	
3	Define $\boldsymbol{\theta}^{(t)}\coloneqq$	$\boldsymbol{\beta}$ Define $\boldsymbol{\theta}^{(t)}\coloneqq$	
	$[r^{(t-1)} + m^{(t)} - \langle m^{(t)}, x^{(t-1)} \rangle 1]^+;$	$[r^{(t-1)} + m^{(t)} - \langle m^{(t)}, x^{(t-1)} \rangle 1]^+;$	
4	if $\theta^{(t)} = 0$ then	4 if $\theta^{(t)} = 0$ then	
5	Let $\mathbf{x}^{(t)} \in \Delta(\mathcal{A})$ be arbitrary	Let $x^{(t)} \in \Delta(\mathcal{A})$ be arbitrary	
6	else	6 else	
7	Compute $\mathbf{x}^{(t)} \coloneqq \mathbf{\theta}^{(t)} / \ \mathbf{\theta}^{(t)}\ _1$;	7 Compute $\mathbf{x}^{(t)} \coloneqq \mathbf{\theta}^{(t)} / \ \mathbf{\theta}^{(t)}\ _1$;	
8	Output strategy $\mathbf{x}^{(t)} \in \Delta(\mathcal{A})$;	8 Output strategy $\mathbf{x}^{(t)} \in \Delta(\mathcal{A})$;	
9	Observe utility $\mathbf{u}^{(t)} \in [0, 1]^{\mathcal{A}}$;	Observe utility $\boldsymbol{u}^{(t)} \in [0, 1]^{\mathcal{A}}$;	
10	$r^{(t)} \coloneqq r^{(t-1)} + u^{(t)} - \langle x^{(t)}, u^{(t)} \rangle 1;$	10 $r^{(t)} := [r^{(t-1)} + u^{(t)} - \langle x^{(t)}, u^{(t)} \rangle 1]^+;$	

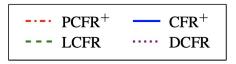
PRM in action

From Farina et al.









Faster rates using stability

Regularized algorithms, such as (O)FTRL and (O)MD guarantee

$$\|x^{(t)} - x^{(t-1)}\| \le O(\eta).$$

- Two consecutive strategies do not change by a lot
- Does *not* hold for regret matching

$$\|\boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)}\|_{\infty} \leq \sum_{i' \neq i} \|\boldsymbol{x}_{i'}^{(t)} - \boldsymbol{x}_{i'}^{(t-1)}\|_{1}, \text{ where } \boldsymbol{u}_{i}^{(t)} = \boldsymbol{u}_{i}(\boldsymbol{x}_{-i}^{(t)}).$$

- If all players employ regularized algorithms, the *utilities are changing slowly*
- The utility is a polynomial (by expanding the expectation), so it's also Lipschitz continuous in the strategies

Faster rates using stability

$$\operatorname{Reg}_{i}^{(T)} \leq O\left(\frac{1}{\eta}\right) + \eta \sum_{t=1}^{T} \|\boldsymbol{u}_{i}^{(t)} - \boldsymbol{u}_{i}^{(t-1)}\|_{*}^{2} \leq O\left(\frac{1}{\eta}\right) + O(\eta^{3}T).$$

- ullet Optimizing the learning rate, the regret is bounded by $T^{1/4}$
- This is still far from the lower bound
- Can we do better?

The sum of the regrets is bounded

$$\sum_{i=1}^{n} \operatorname{Reg}_{i}^{(T)} \leq \alpha n + (n-1)\beta \sum_{i=1}^{n} \sum_{i'\neq i}^{T} \sum_{t=1}^{T} \|\boldsymbol{x}_{i'}^{(t)} - \boldsymbol{x}_{i'}^{(t)}\|_{1}^{2} - \gamma \sum_{i=1}^{n} \sum_{t=1}^{T} \|\boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)}\|_{1}^{2}$$

$$\leq \alpha n + (n-1)^{2}\beta \sum_{i=1}^{n} \sum_{t=1}^{T} \|\boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t)}\|_{1}^{2} - \gamma \sum_{i=1}^{n} \sum_{t=1}^{T} \|\boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)}\|_{1}^{2}$$

$$\leq \alpha n + \sum_{i=1}^{n} \sum_{t=1}^{T} \|\boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)}\|_{1}^{2} \left((n-1)^{2}\beta - \gamma \right)$$

$$\leq \alpha n - \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)}\|_{1}^{2},$$

We care about the **maximum** of the regrets

Games with nonnegative sum of regrets

Theorem. For any game with nonnegative sum of regrets,

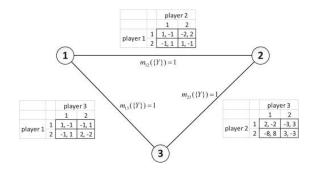
$$\sum_{i=1}^{n} \sum_{j=1}^{T} \|x_i^{(t)} - x_i^{(t-1)}\|_1^2 \le O(1).$$
 The misprediction error is bounded!

The assumption holds for zero-sum games:

$$\operatorname{Reg}_{1}^{(T)} + \operatorname{Reg}_{2}^{(T)} = \max_{\boldsymbol{x}' \in \mathcal{X}} \sum_{t=1}^{T} \langle \boldsymbol{x}' - \boldsymbol{x}^{(t)}, -\mathbf{A}\boldsymbol{y}^{(t)} \rangle + \max_{\boldsymbol{y}' \in \mathcal{Y}} \sum_{t=1}^{T} \langle \boldsymbol{y}' - \boldsymbol{y}^{(t)}, \mathbf{A}^{\top}\boldsymbol{x}^{(t)} \rangle$$
$$= T \left(\max_{\boldsymbol{y}' \in \mathcal{Y}} \langle \boldsymbol{y}', \mathbf{A}^{\top}\bar{\boldsymbol{x}}^{(T)} \rangle - \min_{\boldsymbol{x}' \in \mathcal{X}} \langle \boldsymbol{x}', \mathbf{A}\bar{\boldsymbol{y}}^{(T)} \rangle \right) \geq 0.$$

Polymatrix zero-sum games

- A generalization of two-player zero-sum games
- There is a graph, and every player is uniquely associated with a node
- Every edge represents a (two-player) zero-sum game between the incident players
- A player gets the sum of the utilities from all the individual games



Taken from Deng et al.

Extending to general-sum games

- The previous argument only applies to games with nonnegative sum of regrets, which is a severe restriction
- How can we extend it to general-sum games?
- What if we consider instead a nonnegative measure of regret?

Swap regret is nonnegative!

It suffices to prove an RVU bound for swap regret

SwapReg^(T) =
$$\max_{\phi \in \Phi_{\text{swap}}} \sum_{t=1}^{T} \langle \phi(\boldsymbol{x}^{(t)}) - \boldsymbol{x}^{(t)}, \boldsymbol{u}^{(t)} \rangle$$

A reminder of Blum-Mansour

Algorithm 2: Blum-Mansour algorithm for minimizing swap regret

```
1 Input: A regret minimizer \Re_a for each action a \in \mathcal{A}
 2 NextStrategy():
            for each action a \in \mathcal{A} do
                  \Delta(\mathcal{A}) \ni \mathbf{x}_a^{(t)} \coloneqq \Re_a.\text{NextStrategy}();
           Set \mathbf{M}^{(t)} \coloneqq [(\mathbf{x}_a^{(t)})_{a \in \mathcal{A}}];
 5
           return \Delta(\mathcal{A}) \ni \mathbf{x}^{(t)} = \mathbf{M}^{(t)} \mathbf{x}^{(t)};
    ObserveUtility(u^{(t)} \in \mathbb{R}^{\mathcal{A}}):
            for each action a \in \mathcal{A} do
                   Set \boldsymbol{u}_a^{(t)} \coloneqq \boldsymbol{x}^{(t)}[a]\boldsymbol{u}^{(t)};
 9
                   \Re_a.OBSERVEUTILITY(\boldsymbol{u}_a^{(t)});
10
```

RVU bound for Blum-Mansour

We can use the RVU bound for each individual local regret minimizer

SwapReg^(T)
$$\leq O\left(\frac{1}{\eta}\right) + \sum_{a \in \mathcal{A}} \eta \sum_{t=1}^{T} \|\boldsymbol{u}_{a}^{(t)} - \boldsymbol{u}_{a}^{(t-1)}\|_{*}^{2} - \Omega\left(\frac{1}{\eta}\right) \sum_{a \in \mathcal{A}} \sum_{t=1}^{T} \|\boldsymbol{x}_{a}^{(t)} - \boldsymbol{x}_{a}^{(t-1)}\|_{2}^{2}$$

It suffices to prove

$$\|\boldsymbol{x}^{(t)} - \boldsymbol{x}^{(t-1)}\|_{1} \le C \sum_{a \in \mathcal{A}} \|\boldsymbol{x}_{a}^{(t)} - \boldsymbol{x}_{a}^{(t-1)}\|_{1}$$

Stability of fixed points

$$\mathbf{M} = \begin{vmatrix} 1 - \epsilon & 2\epsilon \\ \epsilon & 1 - 2\epsilon \end{vmatrix} \text{ and } \mathbf{M}' = \begin{vmatrix} 1 - 2\epsilon & \epsilon \\ 2\epsilon & 1 - \epsilon \end{vmatrix}$$

Stability of fixed points

$$\mathbf{M} = \begin{bmatrix} 1 - \epsilon & 2\epsilon \\ \epsilon & 1 - 2\epsilon \end{bmatrix} \text{ and } \mathbf{M}' = \begin{bmatrix} 1 - 2\epsilon & \epsilon \\ 2\epsilon & 1 - \epsilon \end{bmatrix}$$

- Those two Markov chains are close to each other in terms of transition probs
- But their stationary distributions are not!

Multiplicative stability

We need a more refined notion of stability—multiplicative stability

$$\max_{a' \in \mathcal{A}} \max \left\{ 1 - \frac{\mathbf{x}_a^{(t)}[a']}{\mathbf{x}_a^{(t-1)}[a']}, 1 - \frac{\mathbf{x}_a^{(t-1)}[a']}{\mathbf{x}_a^{(t)}[a']} \right\} \le O(\eta).$$

- The ratio of two consecutive coordinates has to be close to 1
- In the previous example, the stochastic matrices are not multiplicatively close
- Most algorithms we have seen do not guarantee this notion of stability; but MWU does

Stability of fixed points

Theorem. If the transition probabilities of two Markov chains are multiplicatively close, their fixed points will also be close.

Proof by Markov chain tree theorem:

$$x[a] = \frac{\sum_{\mathcal{T} \in \mathbb{T}_a} \prod_{(u,v) \in E(\mathcal{T})} M[v,u]}{\sum_{a \in \mathcal{A}} \sum_{\mathcal{T} \in \mathbb{T}_a} \prod_{(u,v) \in E(\mathcal{T})} M[v,u]}.$$

Stability ensures we can get a bound of $T^{1/4}$

Improved regularizer

The second key idea is to use the **logarithmic regularizer**:

$$\mathcal{R}: \mathbf{x} \mapsto -\sum_{a \in \mathcal{A}} \log \mathbf{x}[a].$$

- The range is unbounded, but can be handled by pushing the comparator away from the boundary
- The main benefit is that we get a refined local norm, which is dynamically changing over time

Adds a $\log T$ dependence

$$||x||_{x'} = \sqrt{\sum_{a \in \mathcal{A}} \left(\frac{x[a]}{x'[a]}\right)^2}$$

RVU for swap regret

Using the Markov chain tree theorem, $\|\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)}\|_1 \le C \sum_{a \in \mathcal{A}} \|\mathbf{x}_a^{(t)} - \mathbf{x}_a^{(t-1)}\|_{\mathbf{x}_a^{(t-1)}}$.

Theorem. There is an algorithm that satisfies the RVU bound with respect to swap regret.

Corollary.
$$\sum_{i=1}^{n} \sum_{t=1}^{T} \| \mathbf{x}_{i}^{(t)} - \mathbf{x}_{i}^{(t-1)} \|_{1}^{2} \leq O(\log T).$$

As a result, we can guarantee that every player in a general-sum game will have **logarithmic regret**, which is near-optimal.

Improving this to a constant is an open question

Adversarial robustness

- What if one or more players deviate from the protocol?
- Can we still get the best regret possible when facing an adversary?

Adversarial robustness

- What if one or more players deviate from the protocol?
- Can we still get the best regret possible when facing an adversary?
- It's enough to keep track of the misprediction error

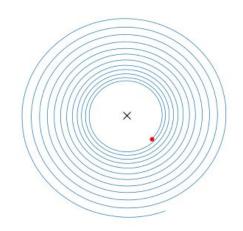
$$\sum_{\tau=1}^{t} \| \boldsymbol{u}^{(\tau)} - \boldsymbol{u}^{(\tau-1)} \|_{*}^{2}.$$

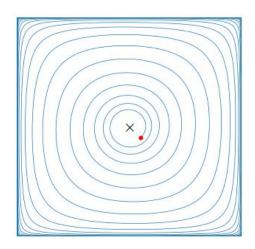
If it gets larger than logarithmic, we can switch to an algorithm tuned for the adversarial regime

Last-iterate convergence

- Guarantees for the regret translate to some form of average convergence
- What can be said about the last iterate of the dynamics?

Common algorithms such as MWU and gradient descent can fail miserably!





Optimism to the rescue

- It turns out that optimism, besides improving the regret, can also ensure last-iterate convergence in some classes of games
- We proved earlier that, in games with nonnegative sum of regrets,

$$\sum_{i=1}^{n} \sum_{t=1}^{T} \|\boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)}\|_{1}^{2} \leq O(1).$$

Under some assumptions, small variation implies convergence to Nash equilibria.

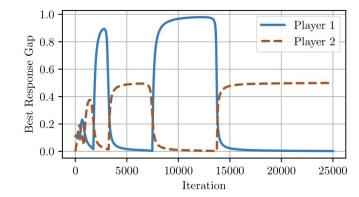
Convergence of optimistic learning

Theorem. For any game with nonnegative sum of regrets, after $T = O(1/\epsilon^2)$ rounds, most strategies are $O(\epsilon)$ -Nash equilibria.

- This rate is known to be tight
- Convergence is the ultimate form of predictability, trivializing the problem of online learning
- But what if the dynamics do not converge to Nash equilibria?

Small variation without Nash convergence



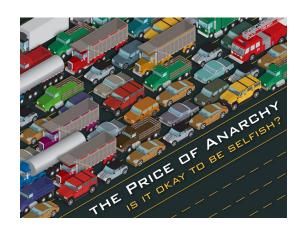


$$\sum_{i=1}^{n} \sum_{t=1}^{T} \|\boldsymbol{x}_{i}^{(t)} - \boldsymbol{x}_{i}^{(t-1)}\|_{1}^{2} \leq O(\log T).$$

Small variation doesn't necessarily imply convergence to Nash equilibria

Social welfare and smooth games

- As we have seen, some equilibria are better than others
- Is regret minimization converging to good equilibria?
- As is standard, we measure goodness through social welfare, although there are many other ways to quantify the quality of equilibria
- The framework of price of anarchy quantifies the inefficiency of equilibria



From Roughgarden

Smooth games

Definition 2.3 (Smooth games). A game is (λ, μ) -smooth with respect to a welfare-optimal strategy profile (x'_1, \ldots, x'_n) if

$$\sum_{i=1}^n u_i(\mathbf{x}_i', \mathbf{x}_{-i}) \ge \lambda \mathsf{OPT} - \mu \sum_{t=1}^n u_i(\mathbf{x}_1, \dots, \mathbf{x}_n) \quad \forall (\mathbf{x}_1, \dots, \mathbf{x}_n).$$

- If each player follows its component from the welfare-optimal strategy, the players collectively get some fraction of the optimal welfare
- Many classes of games are known to be smooth (Roughgarden, 2015)
- In some sense, a generalization of zero-sum games

Connection with regret minimization

In any smooth game,

$$\frac{1}{T} \sum_{t=1}^{T} SW(\mathbf{x}_{1}^{(t)}, \dots, \mathbf{x}_{n}^{(t)}) \ge \frac{\lambda}{1+\mu} OPT - \frac{1}{1+\mu} \frac{1}{T} \sum_{i=1}^{n} Reg_{i}^{(T)}.$$

- Convergence to a near-optimal equilibrium is driven by the sum of the players' regrets
- The ratio $\lambda/(1+\mu)$ is called **robust price of anarchy**
- What if the regrets are negative?

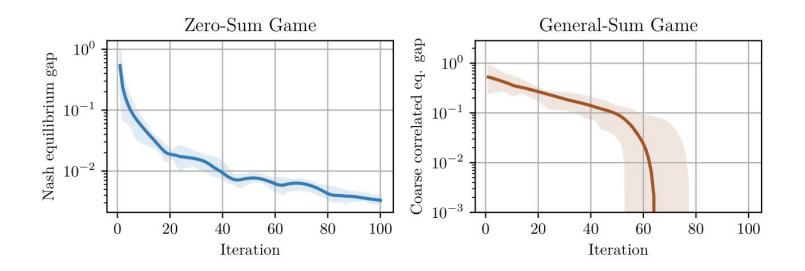
Optimistic mirror descent in smooth games

Theorem. Optimistic mirror descent

- Either converges to a Nash equilibrium
- Or the average welfare outperforms the robust price of anarchy

- Individually each problem is hard!
- The further away from Nash equilibria, the larger the improvement in terms of the social welfare

Optimistic mirror descent in two-player games



Optimistic mirror descent in two-player games

