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Today’s lecture

e Near-optimal regret in self-play
o  Optimistic regret minimization
o The RVU property
o Zero-sum and general-sum games
e Last-iterate convergence

o Connections to optimistic regret minimization
o Connections to price of anarchy and smooth games



Regret minimization against an adversary vs. self-play

e \We have seen that players with no-regret
converge to equilibria

e The rate of convergence is driven by their
regrets

e What's the best rate we can hope for?

e The adversarial setting is overly
pessimistic, when learning in games, we
have control over the sequence of utilities

e Can we improve our analysis?




Barriers with traditional learning algorithms

Theorem. For any learning rate,
when both players in a two-player
game employ MWU, at least one of
the players will have /T regret

We need new
algorithmic ideas!

e Similar lower bounds are known
for other common algorithms,
such as RM and RM+



Optimistic regret minimization

Optimistic FTRL Optimistic mirror descent
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The only difference is that we have a prediction vector,

<5 typically set as the previously observed utility



Regret bounded by variation in utilities
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Two key differences with the usual regret bound:

e The regretis bounded by the misprediction error

e There is a negative term that decreases the Theorem. Both OFTRL and
regret when the player is changing its strategies OMD satisfy the RVU bound
rapidly (!)



Predictive regret matching

Algorithm 1: Predictive RM (PRM)

Algorithm 2: Predictive RM™ (RM™)

1 Initialize cumulative regrets r® =0,

2 fort=1,...,T do
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Define 0 =

[r(t_l) + m(t) — <m(t)’x(t_l)>1]+;

if 6®) = 0 then

| Let x®) € A(A) be arbitrary
else

| Compute x(*) = 0/j6),;
Output strategy x() € A(A) ;
Observe utility ¥ € [0, 1]%;
PO = b D) 4 (0 _ (0 3 Dyq.

1 Initialize cumulative regrets r® =,
2 fort=1,...,T do
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Define () :=

[P 4+ m® — (m(® x(-Dy1]+,
if 0() = 0 then

| Let x®) € A(A) be arbitrary
else

‘ Compute x(*) :== 69/160)|;;
Output strategy x(*) € A(A) ;
Observe utility u® € [0, 1]7;
r® = [r@D £ 4O — (x4 ®)1]*,;




PRM in action

[A] Goofspiel

[B] Liar’s dice

From Farina et al.

[C] Battleship




Faster rates using stability

Regularized algorithms, such as
(O)FTRL and (O)MD guarantee

lx® — x| < O(n).

e Two consecutive strategies
do not change by a lot

e Does not hold for regret
matching

e Voo < g I =2 V1l1, whereu

(t)

i

= ui(xgti))-

If all players employ regularized
algorithms, the utilities are changing slowly
The utility is a polynomial (by expanding
the expectation), so it’'s also Lipschitz
continuous in the strategies



Faster rates using stability
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e Optimizing the learning rate, the regret is bounded by T4
e This is still far from the lower bound
e (Can we do better?



The sum of the regrets is bounded
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Games with nonnegative sum of regrets

Theorem. For any game with nonnegative sum of regrets,

n T A The misprediction
D ==V < 01). error is bounded!
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The assumption holds for zero-sum games:
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Polymatrix zero-sum games

e A generalization of two-player zero-sum games

e Thereis a graph, and every player is uniquely
associated with a node

e Every edge represents a (two-player) zero-sum
game between the incident players

e Anplayer gets the sum of the utilities from all the
individual games

Taken from Deng et al.



Extending to general-sum games

e The previous argument only applies to games with nonnegative sum of
regrets, which is a severe restriction

e How can we extend it to general-sum games?
e \What if we consider instead a nonnegative measure of regret?

. : It suffices to prove an RVU
!
¢ Swap regret is nonnegative! bound for swap regret

T
Swapteg™ = max 33 - 0,0

€Dswap =1



A reminder of Blum-Mansour

Algorithm 2: Blum-Mansour algorithm for minimizing swap regret

1 Input: A regret minimizer R, for each action a € A
2 NEXTSTRATEGY():
3 for each actiona € A do

’ A(A) > x((,t) := R, NEXTSTRATEGY();
Set M) = [(x4”)acnl ;
return A(A) > x) = MO x®);

=~

o
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OBserRVEUTILITY(u(®) € RA):
for each actiona € A do

9 Set u((,t) =x®O[a]u® ;

10 ma.OBSERVEUTILITY(ugt));

. 3




RVU bound for Blum-Mansour

We can use the RVU bound for each individual local regret minimizer

SwapReg‘T><0() .m Znu(” ug V|- Q ()ZZux“’ )P
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It suffices to prove ||x(t) x(t- 1)|| <C Z ||x(t) c(lt_l)ll
acA



Stability of fixed points
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Stability of fixed points

1—¢€ 2€
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e Those two Markov chains are close to each other in terms of transition probs
e But their stationary distributions are not!



Multiplicative stability

We need a more refined notion of stability—multiplicative stability

(O (t-1) [
max max {1 — —2 @] ,1—xa 4] < 0(n).
/A x Vel x (]

e The ratio of two consecutive coordinates has to be close to 1
e In the previous example, the stochastic matrices are not
multiplicatively close

e Most algorithms we have seen do not guarantee this notion of
stability; but MWU does




Stability of fixed points

Theorem. If the transition probabilities of two Markov chains are multiplicatively
close, their fixed points will also be close.

Proof by Markov chain tree x[a] = LT €T, 1_[(11,0)61“3(7') Mo, u] .
theorem: 2aeA 27T, | (uo)er) Mo, u]

-z Stability ensures we can get a bound of T4



Improved regularizer

The second key idea is to use the logarithmic regularizer:

R:xH— — Z log x|[a].
acA

e The range is unbounded, but can be handled by
pushing the comparator away from the boundary

e The main benefit is that we get a refined local [1¢] |
norm, which is dynamically changing over time

Adds a log T’
dependence

_ Z (x[a]
ac€A x’[a]



RVU for swap regret

Using the Markov chain tree theorem, [lx*) —x“"V|l; <€ Z xS — xc(zt_l)||x§t—1)-
acA

Theorem. There is an algorithm that satisfies the RVU bound with respect

to swap regret. =

Corollary. Z ||xi(t) - x,-(t_l)”% < O(logT).

i=1 t=1

=

As a result, we can guarantee that every player in a general-sum game will
have logarithmic regret, which is near-optimal.

e Improving this to a constant is an open question



Adversarial robustness

e \What if one or more players deviate from the protocol?
e Can we still get the best regret possible when facing an adversary?



Adversarial robustness

e \What if one or more players deviate from the protocol?
e Can we still get the best regret possible when facing an adversary?
e It's enough to keep track of the misprediction error

t
Dl — w2,
7=1

If it gets larger than logarithmic, we can switch to an algorithm

= tuned for the adversarial regime



Last-iterate convergence

e Guarantees for the regret translate to some form of average convergence
e What can be said about the last iterate of the dynamics?

Common algorithms such
as MWU and gradient
descent can fail miserably! X X




Optimism to the rescue

e It turns out that optimism, besides improving the regret, can also ensure
last-iterate convergence in some classes of games
e \We proved earlier that, in games with nonnegative sum of regrets,

T

D lx? = %V < 0(D).

i=1 t=1

=

Under some assumptions, small variation implies
*  convergence to Nash equilibria.



Convergence of optimistic learning

Theorem. For any game with nonnegative sum of regrets, after 1" = O<1/€2)
rounds, most strategies are O(¢)-Nash equilibria.

e This rate is known to be tight

e Convergence is the ultimate form of predictability, trivializing the
problem of online learning

e But what if the dynamics do not converge to Nash equilibria?



Small variation without Nash convergence
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& Small variation doesn’t necessarily imply convergence to Nash equilibria



Social welfare and smooth games

As we have seen, some equilibria are better
than others

Is regret minimization converging to good
equilibria?

As is standard, we measure goodness through
social welfare, although there are many other
ways to quantify the quality of equilibria

The framework of price of anarchy quantifies
the inefficiency of equilibria

From Roughgarden



Smooth games

Definition 2.3 (Smooth games). A game is (A, y)-smooth with respect to a welfare-optimal strat-
egy profile (xi,...,x}) if

n

n
Zu,-(xlf, x_;) > AOPT — ,uZui(xl, oo Xn) Y(xq,...,x).

i=1 t=1

e If each player follows its component from the welfare-optimal strategy, the
players collectively get some fraction of the optimal welfare

e Many classes of games are known to be smooth (Roughgarden, 2015)

e |n some sense, a generalization of zero-sum games



Connection with regret minimization

In any smooth game,

n

OO L 1 (1),
SW(x", .. > ——OPT - -
Z (x ) 1+ J7; 1+ ’uT IZ] €8

e Convergence to a near-optimal equilibrium is driven by the
sum of the players’ regrets

e The ratio A/(1+n) is called robust price of anarchy

e \What if the regrets are negative?



Optimistic mirror descent in smooth games

Theorem. Optimistic mirror descent

e Either converges to a Nash equilibrium
e Or the average welfare outperforms the robust price of anarchy

e Individually each problem is hard!
e The further away from Nash equilibria, the larger the improvement
in terms of the social welfare



Optimistic mirror descent in two-player games

Zero-Sum Game General-Sum Game
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Optimistic mirror descent in two-player games

10 A
= Player X 0.500 1 %* q' 0.10
0 - = = Player ) 0.475 - = ‘n&
s P - 0.05
L 0450 4+
55 _10 = ? L)
& A 0.425 - . - 0.00
g e !
F5 20 & 0.400 :
= : - —0.05
5 0.375 1 .
g5 0.375 ]
0.350 - ": —0.10
04 ! . : : : 0.325 : :
0 50 100 150 200 250 0.3 0.4

Iteration Utility of Player X



