Algorithms for Minimizing Phi-Regret: Nonlinear
Deviations and Ellipsoid

15 888 Computational Game Solving (Fall 2025)
loannis Anagnostides



Today’s lecture

e Are the oracles required by Gordon et al. necessary?
o Necessity of fixed points
o The role of mixed strategies
o Can we always minimize regret over the set of deviations?

e Ellipsoid against hope
o The natural LP for CE has exponentially many variables

o Algorithmic maneuver to handle multi-player games
o Parallels with Gordon et al.



The importance of nonlinear deviations

Linear deviations suffice in The XOR problem

normal-form games

But are restrictive more generally (0) (0) (1) (0) (1) (1) i (0) (*)
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Are fixed points necessary for minimizing Phi-regret?

Yes
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Are fixed points necessary for minimizing Phi-regret?
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Q No if the learner is using mixed strategies!  (Despite Kuhn’s theorem)



Expected fixed points

We define a relaxation of fixed points:

[Bxmp[d(x) — x]|| < €.
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EXpeCted fixed pomtS O Expected fixed points are

: . , _ easy to compute!
We define a relaxation of fixed points:
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Theorem. There is a polynomial-time
algorithm for computing expected FPs.



Refining the framework of Gordon et al.

Algorithm 1: A refinement of Gordon et al. [2008] using expected fixed points.

1 Input: An external regret minimizer Re for the set @
2 NEXTSTRATEGY():

Set ¢(*) := Ro NEXTSTRATEGY();

return A(X) 3 u® = ExpecTEDFP(¢");
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Refining the framework of Gordon et al.

Theorem. The Phi-regret of the algorithm is roughly equal to the external regret
over the set of deviations.
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Computing correlated equilibria using ellipsoid

e Regret minimization gives an algorithm for computing (C)CEs that is
polynomial in 1/e. But what if € is very close to zero?

e Alinear program returns an exact solution, but the number of variables scales
exponentially with the number of players

e Can we compute an exact (C)CE even in multi-player games?

E(xl,...,xn)~pui(x1, cees xn) > E(xl,...,xn)~,uui(¢i(xi), x—i) — €.



The ellipsoid against hope algorithm

find p € A(X) such that E,.,(y,G(x)) >0 VyeJY,

e Thisis a zero-sum game!

e One player—the mediator—picks a
correlated distribution, and then
each player tries to deviate optimally

e The strategy set of the mediator is
massive!

find y € Y such that (y,G(x)) < —e¢ Vx e X.

e The dual has polynomially
many variables

e The ideais to apply
ellipsoid on the dual

e \What do we need?



The ellipsoid against hope algorithm

find p € A(X) such that E,.,(y,G(x)) >0 Vye U, find y € Y such that (y,G(x)) < —e¢ Vx e X.

This can be solved under two basic assumptions:

e \We can optimize over the set of deviations



Optimization over a set

Under mild geometric assumptions, the
following are equivalent:

1. Deciding membership of a point
2. Seperating a point from the set

3. Given a utility vector, find a best
response within the set

<— Regret minimization over that set!

e Necessity follows by
considering a static utility

e Sufficiency uses follow the
regularized leader



The ellipsoid against hope algorithm

find p € A(X) such that E,.,(y,G(x)) >0 Vye U, find y € Y such that (y,G(x)) < —e¢ Vx e X.

This can be solved under two basic assumptions:

e \We can optimize over the set of deviations
e There is a good-enough-response (GER) oracle:

Vy3x such that (y, G(x)) > 0

¢ This implies that the dual is infeasible!



Good-enough-response oracle for CE

Do we have a good-enough-response oracle in our problem?
E(xl,...,xn)~yui(x1a coes xn) > E(xl,...,xn)~pui(¢i(xi)s x—i) — €.
<

E(xl,...,xn)~;1<l - Mi, u; (x—i) ® xi) >—€ Vi€ [n], Mi € ~yi,

because ]E(x1 _____ xn)~y(x,~ - M,-x,-, u,-(x_,-)) = E(xl xn)"ll(I - Mi, u,-(x_i) ® xi).
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Good-enough-response oracle for CE

Do we have a good-enough-response oracle in our problem?
E(xl,...,xn)~yui(x1a coes xn) > E(xl,...,xn)~pui(¢i(xi)s x—i) — €.
<

E(xl,...,xn)~;1<l - Mis u; (x—i) ® xi) >—€ Vi€ [n], Mi € ~yi,

because E(x1 ..... xn)~y<xi - Mix;, ui(x_;)) = E(xl ..... x,,)~,u<I - M, u;(x-;) ® x;).
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2 Fixed points implement a GER!



The ellipsoid against hope algorithm

find p € A(X) such that E,,(y,G(x)) 20 VyeUY, find y € Y such that (y,G(x)) < —e¢ Vx e X.

e Even though the dual is infeasible, we still run the ellipsoid algorithm—this is
why the algorithm is called ellipsoid against hope

e In every step, the ellipsoid starts from a point in the dual, and we use the
good-enough-response oracle to refute that point—an entire halfspace

e Eventually the ellipsoid shrinks to have exponentially small volume



The ellipsoid against hope algorithm

find p € A(X) such that E,.,(y,G(x)) >0 Vye U, find y € Y such that (y,G(x)) < —e¢ Vx e X.
Vy € Y3t € [T] such that (y, G(x")) > —e.

minimax

(t) ()
i (t) () max mmZp (y,G(x)) > —e.

min ma ,G(x > —€.

yeyY yeA([}Y("]) ;” {y,G(x)) < peA([T]) yeY

U The certificate of infeasibility is a correlated equilibrium.

¢  We end up with a much smaller zero-sum game!



Nonlinear deviations
We want to minimize regret with respect to the following set of deviations

Definition 3.1. Given amap ¢/ : X — R¥, the set of deviations @ is the set of all maps ¢ : X —
X that can be expressed as the matrix-vector product K(¢)¥(x) +c(¢) for some matrix K € R¥>¥’
and ¢ € R%. We denote by k = d X k’ + d the dimension of (K ¢).

e A canonical example to have in mind is low-degree polynomials



Optimizing over the set of deviations is hard

e Minimizing external regret over the set of deviations is hard
e So we cannot use the algorithm of Gordon et al.

Daskalakis et al.

Gordon et al.
Separation over the deviations Separation over the deviations
AND ‘ OR

Computing (expected) fixed points Computing (expected) fixed points




Semi-separation

To minimize Phi-regret, or running
ellipsoid against hope, it's enough to
have semi-separation oracle:

From Daskalakis et al.

Definition 3.2 (Semi-separation). In the semi-separation problem we are given a function ¢ :
X — R? and we have to compute

« either an e-expected fixed point g € A(X) of ¢,
« or apoint x € X such that ¢(x) ¢ X.



Minimizing Phi-regret with nonlinear deviations

Theorem. There is an algorithm that minimizes Phi-regret with respect to all
deviations with polynomial dimension. Furthermore, it is possible to efficiently

run EAH with respect to this set.

e This relies on the semi-separation oracle
e Captures as a special case low-degree polynomials
e The dimension of the set represents a fundamental barrier



