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Today’s lecture

● Correlated and coarse correlated equilibrium
○ Interpretation and examples
○ Computational properties

● Phi-regret 
○ Connections to correlated equilibria
○ Swap regret versus external

● A framework for minimizing Phi-regret
○ Reducing Phi-regret to external regret
○ Application to swap regret in normal-form games



Criticism of Nash equilibria

● Nash equilibria are amenable to linear programming in zero-sum games, but 
they are hard to compute in general-sum games

● Besides intractability, there is also the equilibrium selection problem—a game 
can have multiple disparate equilibria

● We don’t expect Nash equilibria to arise as the limit points of simple, 
computationally bounded, algorithms such as regret matching

● But what are these no-regret algorithms converging to?



Correlated distributions

● A key premise in the Nash equilibrium is that players are randomizing 
independently

● What if they don’t?
● What if the distribution of outcomes is correlated?

Not a product 
distribution!



Coarse correlated equilibrium

● Under that correlated distribution, no unilateral deviation makes 
the player better off

● Similar to the Nash equilibrium definition, but enables correlation
● A Nash equilibrium is a CCE—an uncorrelated CCE



Correlated equilibrium

● The class of deviations in CEs is richer than CCEs
● CE is a stronger notion: any CE is also a CCE

By Jason Marden



Interpretation via a mediator or correlation device

● Let’s say we have a trusted third-party or mediator
● It first samples a joint action
● It recommends to each player the corresponding 

action from that sample
● In equilibrium, no player has an incentive to deviate 

from the recommendation

In a CCE, player decides whether to follow 
before seeing the recommendation

Hard to enforce without a 
binding mechanism



An example: the game of chicken

● Two drivers are fast approaching an intersection
● Each has the option of stopping or going
● Nash equilibria are unsatisfactory in this case

○ Either it’s unfair for one of the players,
○ Or there is chance of a crash



An example: the game of chicken

● Two drivers are fast approaching an intersection
● Each has the option of stopping or going
● Nash equilibria are unsatisfactory in this case

○ Either it’s unfair for one of the players,
○ Or there is chance of a crash

● CCEs and CE unlock new, better outcomes: we 
can mix between (Stop, Go) and (Go, Stop)

This can be interpreted as a traffic light that correlates 
the actions of the players



Another example: correlated vs coarse correlated equilibria

● Let’s say we have a bimatrix game with four actions
● We are mixing uniformly between (1,1) and (2,2); this is not a product
● Is this distribution a CCE? Is it a CE?



Computation

Theorem. There is a linear program that 
describes the set of (C)CEs. 

How many variables? How many constraints?
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Computation

Theorem. There is a linear program that 
describes the set of (C)CEs. 

How many variables?

● A correlated distribution grows 
exponentially with the number 
of players!

● It only works for a small number 
of players

How many constraints?

● There are exponentially many 
swap deviations

● But it’s enough to consider 
only ones that change a 
single action



Phi-regret

A more general measure of performance in the online learning setting

●    is a set of strategy deviations
● When it contains only constant functions, we have external regret

○ This is the usual notion of regret, already covered
● The richer the set of deviations, the stronger the notion of 

hindsight rationality
● Swap regret contains all possible deviations



Swap regret versus external regret

What’s the relation between external and swap regret?

● The learner experiences zero external regret, but the swap 
regret grows linearly with the time horizon

● Algorithms such as MWU can have large swap regret
● We need new algorithmic ideas to minimize swap regret



Connecting Phi-regret with correlated equilibria

Theorem. If each players is minimizing Phi-regret, 
the average correlated distribution of play converges 
to a Phi-equilibrium.

This captures both correlated 
and coarse correlated equilibria



A framework for minimizing Phi-regret

The framework of Gordon et al. shows how to minimize Phi-regret using the 
following two basic oracles

1. For any deviation function, an oracle that returns a fixed point of that function
a. A fixed point exists by Brouwer’s fixed-point theorem
b. It is easy to compute a fixed point of a linear function

2. An external regret minimizer for the set of deviations
a. This increases the complexity since the set of deviations is more complex



The algorithm of Gordon et al.



From Phi-regret to external regret

Theorem. The Phi-regret of the algorithm is equal to the external regret with 
respect to the set of deviations.



Swap regret in normal-form games

● Any deviation gives rise to a Markov chain
● Any stationary distribution is a fixed point—easy to compute
● The set of stochastic matrices is a Cartesian product of probability 

distributions; we can use regret circuits!

The set of deviations is the set of 
stochastic matrices



The algorithm of Blum-Mansour


