Learning in General-Sum Games: Correlated Equilibria and Phi-Regret

15 888 **Computational Game Solving** (Fall 2025) loannis Anagnostides

Today's lecture

- Correlated and coarse correlated equilibrium
 - Interpretation and examples
 - Computational properties
- Phi-regret
 - Connections to correlated equilibria
 - Swap regret versus external
- A framework for minimizing Phi-regret
 - Reducing Phi-regret to external regret
 - Application to swap regret in normal-form games

Criticism of Nash equilibria

- Nash equilibria are amenable to linear programming in zero-sum games, but they are hard to compute in general-sum games
- Besides intractability, there is also the equilibrium selection problem—a game can have multiple disparate equilibria
- We don't expect Nash equilibria to arise as the limit points of simple, computationally bounded, algorithms such as regret matching
- But what are these no-regret algorithms converging to?

Correlated distributions

- A key premise in the Nash equilibrium is that players are randomizing independently
- What if they don't?
- What if the distribution of outcomes is correlated?

$$\boldsymbol{\mu} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}, \quad \boldsymbol{\mu}' = \begin{bmatrix} 1/6 & 1/6 \\ 1/3 & 1/3 \end{bmatrix}$$

Not a product distribution!

Coarse correlated equilibrium

Definition 1.1 (Coarse correlated equilibrium). A correlated distribution $\mu \in \Delta(\mathcal{R}_1 \times \cdots \times \mathcal{R}_n)$ is an ϵ -coarse correlated equilibrium (CCE) if for any player $i \in [n]$ and deviation $a'_i \in \mathcal{R}_i$,

$$\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(a_1,\ldots,a_n)\geq\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(a_i',a_{-i})-\epsilon.$$

- Under that correlated distribution, no unilateral deviation makes the player better off
- Similar to the Nash equilibrium definition, but enables correlation
- A Nash equilibrium is a CCE—an uncorrelated CCE

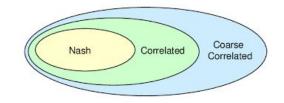
Correlated equilibrium



Definition 1.2 (Correlated equilibrium). A correlated distribution $\mu \in \Delta(\mathcal{A}_1 \times \cdots \times \mathcal{A}_n)$ is an ϵ -correlated equilibrium (CE) if for any player $i \in [n]$ and deviation function $\phi_i : \mathcal{A}_i \to \mathcal{A}_i$,

$$\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(a_1,\ldots,a_n)\geq\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(\phi_i(a_i),a_{-i})-\epsilon.$$

- The class of deviations in CEs is richer than CCEs
- CE is a stronger notion: any CE is also a CCE



By Jason Marden

Interpretation via a mediator or correlation device

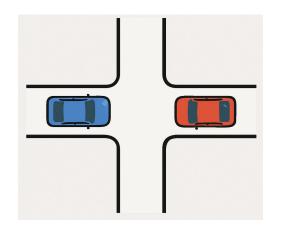
- Let's say we have a trusted third-party or mediator
- It first samples a joint action
- It recommends to each player the corresponding action from that sample
- In equilibrium, no player has an incentive to deviate from the recommendation

In a CCE, player decides whether to follow *before* seeing the recommendation

Hard to enforce without a binding mechanism

An example: the game of chicken

- Two drivers are fast approaching an intersection
- Each has the option of stopping or going
- Nash equilibria are unsatisfactory in this case
 - Either it's unfair for one of the players,
 - Or there is chance of a crash

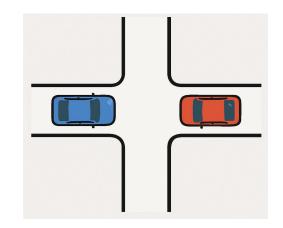


	Stop	Go		
Stop	0, 0	0, 1		
Go	1, 0	-5, -5		

An example: the game of chicken

- Two drivers are fast approaching an intersection
- Each has the option of stopping or going
- Nash equilibria are unsatisfactory in this case
 - o Either it's unfair for one of the players,
 - Or there is chance of a crash.
- CCEs and CE unlock new, better outcomes: we can mix between (Stop, Go) and (Go, Stop)

This can be interpreted as a traffic light that correlates the actions of the players



	Stop	Go		
Stop	0, 0	0, 1		
Go	1, 0	-5, -5		

Another example: correlated vs coarse correlated equilibria

- Let's say we have a bimatrix game with four actions
- We are mixing uniformly between (1,1) and (2,2); this is not a product
- Is this distribution a CCE? Is it a CE?

$$\mathbf{R} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Computation

Definition 1.2 (Correlated equilibrium). A correlated distribution $\mu \in \Delta(\mathcal{A}_1 \times \cdots \times \mathcal{A}_n)$ is an ϵ -correlated equilibrium (CE) if for any player $i \in [n]$ and deviation function $\phi_i : \mathcal{A}_i \to \mathcal{A}_i$,

$$\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(a_1,\ldots,a_n)\geq\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(\phi_i(a_i),a_{-i})-\epsilon.$$

Theorem. There is a *linear program* that describes the set of (C)CEs.

How many variables?

How many constraints?

Computation

Definition 1.2 (Correlated equilibrium). A correlated distribution $\mu \in \Delta(\mathcal{A}_1 \times \cdots \times \mathcal{A}_n)$ is an ϵ -correlated equilibrium (CE) if for any player $i \in [n]$ and deviation function $\phi_i : \mathcal{A}_i \to \mathcal{A}_i$,

$$\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(a_1,\ldots,a_n)\geq\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(\phi_i(a_i),a_{-i})-\epsilon.$$

Theorem. There is a *linear program* that describes the set of (C)CEs.

How many variables?

- A correlated distribution grows exponentially with the number of players!
- It only works for a small number of players

How many constraints?

Definition 1.2 (Correlated equilibrium). A correlated distribution $\mu \in \Delta(\mathcal{A}_1 \times \cdots \times \mathcal{A}_n)$ is an ϵ -correlated equilibrium (CE) if for any player $i \in [n]$ and deviation function $\phi_i : \mathcal{A}_i \to \mathcal{A}_i$,

Computation

$$\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(a_1,\ldots,a_n)\geq\mathbb{E}_{(a_1,\ldots,a_n)\sim\mu}u_i(\phi_i(a_i),a_{-i})-\epsilon.$$

Theorem. There is a *linear program* that describes the set of (C)CEs.

How many variables?

- A correlated distribution grows exponentially with the number of players!
- It only works for a small number of players

How many constraints?

- There are exponentially many swap deviations
- But it's enough to consider only ones that change a single action

$$\leq \rightarrow + \rightarrow + \rightarrow$$

Phi-regret

A more general measure of performance in the online learning setting

$$\Phi \operatorname{Reg}^{(T)} \coloneqq \max_{\phi \in \Phi} \left\{ \sum_{t=1}^{T} \langle \phi(\boldsymbol{x}^{(t)}), \boldsymbol{u}^{(t)} \rangle \right\} - \sum_{t=1}^{T} \langle \boldsymbol{x}^{(t)}, \boldsymbol{u}^{(t)} \rangle.$$

- Φ is a set of *strategy deviations*
- When it contains only constant functions, we have external regret
 - This is the usual notion of regret, already covered
- The richer the set of deviations, the stronger the notion of hindsight rationality
- Swap regret contains all possible deviations

Swap regret versus external regret

What's the relation between external and swap regret?

1	0	0	1	0	0	1	0	0	1
2	0	1	0	0	1	0	0	1	0
3	1	0	0	1	0	0	1	0	0

- The learner experiences *zero external regret*, but the swap regret grows linearly with the time horizon
- Algorithms such as MWU can have large swap regret
- We need new algorithmic ideas to minimize swap regret

Connecting Phi-regret with correlated equilibria

Definition 1.7 (Φ -equilibrium). A correlated distribution $\mu \in \Delta(X_1 \times \cdots \times X_n)$ is an ϵ - Φ -equilibrium if for any player $i \in [n]$ and deviation function $\Phi_i \ni \phi_i : X_i \to X_i$,

$$\mathbb{E}_{(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)\sim\mu}u_i(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)\geq\mathbb{E}_{(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)\sim\mu}u_i(\phi_i(\boldsymbol{x}_i),\boldsymbol{x}_{-i})-\epsilon.$$

This captures both correlated and coarse correlated equilibria

Theorem. If each players is minimizing Phi-regret, the average correlated distribution of play converges to a Phi-equilibrium.

A framework for minimizing Phi-regret

The framework of Gordon et al. shows how to minimize Phi-regret using the following two basic oracles

- 1. For any deviation function, an oracle that returns a **fixed point** of that function
 - a. A fixed point exists by Brouwer's fixed-point theorem
 - b. It is easy to compute a fixed point of a linear function
- 2. An external regret minimizer for the set of deviations
 - a. This increases the complexity since the set of deviations is more complex

$$\max_{\phi \in \Phi} \left\{ \sum_{t=1}^{T} u_{\Phi}^{(t)}(\phi) \right\} - \sum_{t=1}^{T} u_{\Phi}^{(t)}(\phi^{(t)})$$

The algorithm of Gordon et al.

Algorithm 1: The template of Gordon et al. [2008] for minimizing Φ -regret.

- 1 **Input:** An external regret minimizer \Re_{Φ} for the set Φ
- 2 NextStrategy():
- Set $\phi^{(t)} := \Re_{\Phi}$. NextStrategy();
- 4 **return** $X \ni x^{(t)} = \phi^{(t)}(x^{(t)});$
- 5 ObserveUtility($u^{(t)}$):
- 6 Set $u_{\Phi}^{(t)}: \phi \mapsto \langle \phi(\mathbf{x}^{(t)}), \mathbf{u}^{(t)} \rangle;$
- 7 \Re_{Φ} .ObserveUtility $(u_{\Phi}^{(t)})$;

From Phi-regret to external regret

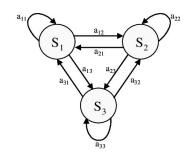
Theorem. The Phi-regret of the algorithm is equal to the external regret with respect to the set of deviations.

$$\Phi \operatorname{Reg}^{(T)} = \max_{\phi \in \Phi} \left\{ \sum_{t=1}^{T} \langle \phi(\boldsymbol{x}^{(t)}), \boldsymbol{u}^{(t)} \rangle \right\} - \sum_{t=1}^{T} \langle \boldsymbol{x}^{(t)}, \boldsymbol{u}^{(t)} \rangle
= \max_{\phi \in \Phi} \left\{ \sum_{t=1}^{T} \langle \phi(\boldsymbol{x}^{(t)}), \boldsymbol{u}^{(t)} \rangle \right\} - \sum_{t=1}^{T} \langle \phi^{(t)}(\boldsymbol{x}^{(t)}), \boldsymbol{u}^{(t)} \rangle$$

since $\mathbf{x}^{(t)} = \phi^{(t)}(\mathbf{x}^{(t)}).$

$$\Phi \mathrm{Reg}^{(T)} = \max_{\phi \in \Phi} \left\{ \sum_{t=1}^{T} u_{\Phi}^{(t)}(\phi) \right\} - \sum_{t=1}^{T} u_{\Phi}^{(t)}(\phi^{(t)}) = \mathrm{Reg}^{(T)}.$$

Swap regret in normal-form games



The set of deviations is the set of stochastic matrices

$$\{[(\mathbf{x}_a)_{a\in\mathcal{A}}]: \mathbf{x}_a\in\Delta(\mathcal{A}) \quad \forall a\in\mathcal{A}\}$$

- Any deviation gives rise to a Markov chain
- Any stationary distribution is a fixed point—easy to compute
- The set of stochastic matrices is a Cartesian product of probability distributions; we can use regret circuits!

Algorithm 1: Blum-Mansour algorithm for minimizing swap regret

```
1 Input: A regret minimizer \Re_a for each action a \in \mathcal{A}
 2 NextStrategy():
            for each action a \in \mathcal{A} do
                  \Delta(\mathcal{A}) \ni \mathbf{x}_a^{(t)} \coloneqq \mathbf{\Re}_a.\text{NextStrategy}();
           Set \mathbf{M}^{(t)} \coloneqq [(\mathbf{x}_a^{(t)})_{a \in \mathcal{A}}]
           return \Delta(\mathcal{A}) \ni x^{(t)} = \mathbf{M}^{(t)}x^{(t)};
 7 OBSERVEUTILITY(\boldsymbol{u}^{(t)} \in \mathbb{R}^{\mathcal{A}}):
            for each action a \in \mathcal{A} do
                  \boldsymbol{u}_a^{(t)} \coloneqq \boldsymbol{x}^{(t)} [a] \boldsymbol{u}^{(t)} ;
 9
                   \Re_a.OBSERVEUTILITY(u_a^{(t)});
10
```