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Today’s lecture

e Correlated and coarse correlated equilibrium
o Interpretation and examples
o Computational properties
e Phi-regret
o Connections to correlated equilibria
o Swap regret versus external
e A framework for minimizing Phi-regret

o Reducing Phi-regret to external regret
o Application to swap regret in normal-form games



Criticism of Nash equilibria

e Nash equilibria are amenable to linear programming in zero-sum games, but
they are hard to compute in general-sum games

e Besides intractability, there is also the equilibrium selection problem—a game
can have multiple disparate equilibria

e \We don'’t expect Nash equilibria to arise as the limit points of simple,
computationally bounded, algorithms such as regret matching

e But what are these no-regret algorithms converging to?



Correlated distributions

e Akey premise in the Nash equilibrium is that players are randomizing
independently

e \What if they don’t?

e What if the distribution of outcomes is correlated?
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Coarse correlated equilibrium

Definition 1.1 (Coarse correlated equilibrium). A correlated distribution g € A(A; X - - - X A,)
is an e-coarse correlated equilibrium (CCE) if for any player i € [n] and deviation a; € A;,

E(ay,...an)~uti (a1, . . ., an) 2 E(q,,. a,)~uthi(a}, a_;) — €.

e Under that correlated distribution, no unilateral deviation makes

the player better off
e Similar to the Nash equilibrium definition, but enables correlation

e A Nash equilibrium is a CCE—an uncorrelated CCE



Correlated equilibrium

Definition 1.2 (Correlated equilibrium). A correlated distribution g € A(A; X - -+ X Ay) is an
e-correlated equilibrium (CE) if for any player i € [n] and deviation function ¢; : A; — A,,

]E(al,...,a,,)~;1ui(a1s s an) s E(al,...,an)~pui(¢i(ai), a—i) — €.

Coarse
Comrelated Correlated

By Jason Marden

e The class of deviations in CEs is richer than CCEs
e CE is a stronger notion: any CE is also a CCE




Interpretation via a mediator or correlation device

e Let's say we have a trusted third-party or mediator

e |t first samples a joint action

e It recommends to each player the corresponding
action from that sample

e In equilibrium, no player has an incentive to deviate
from the recommendation

In a CCE, player decides whether to follow Hard to enforce without a
before seeing the recommendation <5 binding mechanism



An example: the game of chicken

e Each has the option of stopping or going

e Nash equilibria are unsatisfactory in this case

o Either it's unfair for one of the players,
o Orthere is chance of a crash

e Two drivers are fast approaching an intersection - -

Stop Go
Stop 0,0 0,1
Go 1,0 -5,-5



An example: the game of chicken

e Two drivers are fast approaching an intersection - -

e Each has the option of stopping or going

e Nash equilibria are unsatisfactory in this case
o Either it's unfair for one of the players,
o Or there is chance of a crash

e (CCEs and CE unlock new, better outcomes: we
can mix between (Stop, Go) and (Go, Stop)

Stop Go
This can be interpreted as a traffic light that correlates Stop 0,0 0,1

the actions of the players Go 1,0 -5,-5




Another example: correlated vs coarse correlated equilibria

e Let's say we have a bimatrix game with four actions
e We are mixing uniformly between (1,1) and (2,2); this is not a product
e |[s this distribution a CCE? Isita CE?
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Definition 1.2 (Correlated equilibrium). A correlated distribution g € A(A; X -+ - X A,) is an
e-correlated equilibrium (CE) if for any player i € [n] and deviation function ¢; : A; — A,,

Computation

IE'(al,...,a,,)~,uui(al ----- an) > E(al,...,an)~yui(¢i(ai), a-;) — €.

Theorem. There is a linear program that
describes the set of (C)CEs.

How many variables? How many constraints?




Definition 1.2 (Correlated equilibrium). A correlated distribution g € A(A; X -+ - X A,) is an
. e-correlated equilibrium (CE) if for any player i € [n] and deviation function ¢; : A; — A,,
Computation

IE'((111,...,a,,)~,u7*‘i(al ,,,,, an) > E(al,...,an)~uui(¢i(ai), a-j) —e.

Theorem. There is a linear program that
describes the set of (C)CEs.

How many variables? How many constraints?

e A correlated distribution grows
exponentially with the number
of players!

e |t only works for a small number
of players




Definition 1.2 (Correlated equilibrium). A correlated distribution g € A(A; X -+ - X A,) is an
. e-correlated equilibrium (CE) if for any player i € [n] and deviation function ¢; : A; — A,,
Computation

IE'((111,...,a,,)~,¢ﬂ*‘i(al ,,,,, an) > E(al,...,an)~yui(¢i(ai), a-;) — €.

Theorem. There is a linear program that
describes the set of (C)CEs.

How many variables? How many constraints?
e Acorrelated distribution grows e There are exponentially many
exponentially with the number swap deviations _
of players! e Butit's enough to consider
e It only works for a small number only ones that change a
of players single action
< — St
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Phi-regret

A more general measure of performance in the online learning setting

i T
®Reg!") := max {Z(fﬁ(x(t)), u(t)>} - Z(x(t), ult)).
t=1 t=1
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e O is a set of strategy deviations
e When it contains only constant functions, we have external regret
o This is the usual notion of regret, already covered
e The richer the set of deviations, the stronger the notion of
hindsight rationality
e Swap regret contains all possible deviations



Swap regret versus external regret

What'’s the relation between external and swap regret?
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e The learner experiences zero external regret, but the swap
regret grows linearly with the time horizon

e Algorithms such as MWU can have large swap regret

e \We need new algorithmic ideas to minimize swap regret



Connecting Phi-regret with correlated equilibria

Definition 1.7 (®-equilibrium). A correlated distribution g € A(X; X --- X X)) is an e-®-
equilibrium if for any player i € [n] and deviation function ®; 5 ¢; : X; — X,

IEi(xl,...,x,,)~;1ui(xl ----- xn) 2> E(xl,...,xn)fvyui(qsi(xi), x—i) — €.

- This captures both correlated
and coarse correlated equilibria

Theorem. If each players is minimizing Phi-regret,
the average correlated distribution of play converges
to a Phi-equilibrium.



A framework for minimizing Phi-regret

The framework of Gordon et al. shows how to minimize Phi-regret using the
following two basic oracles

1. For any deviation function, an oracle that returns a fixed point of that function

a. Afixed point exists by Brouwer’s fixed-point theorem
b. Itis easy to compute a fixed point of a linear function

2. An external regret minimizer for the set of deviations
a. This increases the complexity since the set of deviations is more complex
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The algorithm of Gordon et al.

Algorithm 1: The template of Gordon et al. [2008] for minimizing ®-regret.

1 Input: An external regret minimizer Ry for the set @
2 NEXTSTRATEGY():

Set ¢ := Ry NEXTSTRATEGY();

a return X 3 x() = ¢(®) (x());

W

5 OBSERVEUTILITY(u(?)):
Setul) : ¢ > ((x®),u®);
9{¢.OBSERVEUTILITY(ug));

(=)}
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From Phi-regret to external regret

Theorem. The Phi-regret of the algorithm is equal to the external regret with
respect to the set of deviations.
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Swap regret in normal-form games

@) The set of deviations is the set of
) stochastic matrices

{[(xa)acal : xa € A(A) Vae A}

e Any deviation gives rise to a Markov chain
e Any stationary distribution is a fixed point—easy to compute

e The set of stochastic matrices is a Cartesian product of probability
distributions; we can use regret circuits!



The algorithm of Blum-Mansour

Algorithm 1: Blum-Mansour algorithm for minimizing swap regret

1 Input: A regret minimizer R, for each action a € A
2 NEXTSTRATEGY():
3 for each actiona € A do

1 | A(A) 5 x == R, NEXTSTRATEGY ();
Set M) = [(xc(zt))aeﬂ]
return A(A) 3 x = MO x®);

(5]
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OBserveUTILITY (u®) € RA):
for each actiona € A do

9 ul? = xO[au® ;

10 R, .OBSERVEUTILITY(uff) );
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