
15-888 Computational Game Solving (Fall 2025) Monday, September 15th, 2025

Lecture 6
Learning in General-Sum Games: Correlated Equilibria and Φ-Regret

Ioannis Anagnostides

Having introduced efficient algorithms for minimizing regret in an online environment, we

start focusing on what happens when all players in a multi-player general-sum game employ

no-regret learning to update their strategies.

To answer this question, we begin by introducing and motivating the concept of (coarse)
correlated equilibrium (Section 1); this is a relaxation of the Nash equilibrium in which players

no longer have to randomize independently. We will see that correlated equilibria enjoy more

favorable computational properties than their uncorrelated counterparts. To connect correlated

equilibria with regret minimization, we will introduce the notion of Φ-regret (Section 1.2), which

strengthens the usual notion of (external) regret covered in an earlier lecture. The upshot is that

the distribution of play arising fromplayersminimizingΦ-regret converges to the set of correlated
equilibria. We will then present, in Section 2, a general, abstract framework for minimizing Φ-
regret, and will then see how this framework can be applied to minimize swap regret—and thereby
converge to correlated equilibria—in normal-form games.

1 Correlated and coarse correlated equilibria
Amajor criticism of the Nash equilibrium is that, even though one always exists [Nash, 1950], it is

computationally intractable to find one [Daskalakis et al., 2008]—let alone an optimal one [Gilboa

and Zemel, 1989]. In light of this fact, we shouldn’t expect simple learning algorithms—such

as online gradient descent or regret matching—to converge to Nash equilibria; but, then, what

are no-regret dynamics converging to in general-sum games? As we mentioned in passing in a

previous lecture, no-regret learning is inherently tied to the notion of coarse correlated equilib-
rium [Moulin and Vial, 1978]. Let’s begin by recalling the basic definition and start building some

intuition about this solution concept; we confine our discussion to normal-form games.

Definition 1.1 (Coarse correlated equilibrium). A correlated distribution 𝝁 ∈ Δ(A1 × · · · × A𝑛)
is an 𝜖-coarse correlated equilibrium (CCE) if for any player 𝑖 ∈ [𝑛] and deviation 𝑎′𝑖 ∈ A𝑖 ,

E(𝑎1,...,𝑎𝑛)∼𝜇𝑢𝑖 (𝑎1, . . . , 𝑎𝑛) ≥ E(𝑎1,...,𝑎𝑛)∼𝜇𝑢𝑖 (𝑎′𝑖, 𝑎−𝑖) − 𝜖.

This definition echoes the Nash equilibrium notion, but with one crucial difference: the un-

derlying distribution 𝝁 in Definition 1.1 can be correlated, while in a Nash equilibrium 𝝁 has to

be a product distribution—reflecting the fact that players randomize independently. To explain

this difference, let’s consider the following two distributions with respect to some 2 × 2 bimatrix

game (meaning that each of the two players has two available actions).

1

𝝁 =

[
1/2 0

0 1/2

]
, 𝝁′ =

[
1/6 1/6
1/3 1/3

]
.

Both are distributions over A1 × A2 = {1, 2} × {1, 2}, but we claim that only 𝝁′
is a product

distribution. Indeed, if Player 1—the row player—plays (1/3, 2/3) and Player 2 plays (1/2, 1/2), the
induced distribution over the 4 outcomes of the game exactly matches 𝝁′

. By contrast, it’s easy

to see that no pair of strategies gives rise to 𝝁.
It follows readily from Definition 1.1 that a Nash equilibrium is always a CCE; a Nash equilib-

rium is basically an uncorrelated (coarse) correlated equilibrium. But the set of CCEs can unlock

new, sometimes more desirable, outcomes. Before we examine a concrete example, let’s also

introduce the stronger notion of a correlated equilibrium, due to Aumann [1974].

Definition 1.2 (Correlated equilibrium). A correlated distribution 𝝁 ∈ Δ(A1 × · · · × A𝑛) is an
𝜖-correlated equilibrium (CE) if for any player 𝑖 ∈ [𝑛] and deviation function 𝜙𝑖 : A𝑖 → A𝑖 ,

E(𝑎1,...,𝑎𝑛)∼𝜇𝑢𝑖 (𝑎1, . . . , 𝑎𝑛) ≥ E(𝑎1,...,𝑎𝑛)∼𝜇𝑢𝑖 (𝜙𝑖 (𝑎𝑖), 𝑎−𝑖) − 𝜖.

Definitions 1.1 and 1.2 can both be interpreted through the use of a trusted third party—a

mediator or correlation device—who samples an action profile (𝑎1, . . . , 𝑎𝑛) from the correlated

distribution 𝝁, and then provides 𝑎𝑖 to each player 𝑖 ∈ [𝑛] as a recommendation. A distribution

is a CCE or a CE if no player has an incentive to deviate from the recommendation, but for CEs

the set of possible deviations is richer, making that set of equilibria tighter. In particular, in a CE,

a player can decide whether to deviate after observing the recommendation, while in a CCE the

decision has to be made beforehand. From that perspective, a CCE may seem harder to justify,

for one would need some binding mechanism to ensure the player would not be able to deviate

after observing the recommendation.

Example 1.3. Let’s look at a concrete example to explain these concepts. We consider the “game of

chicken.” This is a 2×2 game—played between two competitive drivers who are fast approaching

an intersection from different streets—whose utilities are tabulated in Figure 1. Each player can

either play Stop or Go. If both players elect Go a crash ensues, a bad outcome for both players. If

a player stalls, it gets no utility from the game, while if it proceeds while the other player stops,

it gets a utility of 1 for managing to quickly cross the intersection without crashing.

It’s easy to see that this game has exactly three Nash equilibria: i) (Go, Stop), ii) (Stop,Go),
and ((5/6, 1/6), (5/6, 1/6)), meaning that both players play Stopwith probability 5/6. From these three

outcomes, the first two are not equitable in that they favor one player over the other. The third

outcome is even worse: it leads to a crash with some non-negligible probability, so much so that

each player gets zero utility in expectation.

Fortunately, (C)CEs address these issues. In particular, let’s consider the correlated distribu-

tion
1

2
(Go, Stop) + 1

2
(Stop,Go). It’s easy to verify that this is a CE, and thus a CCE as well. Under

that outcome, both players get in expectation a utility of 1/2. Turning our attention to CEs, there

is a natural interpretation of this outcome through a traffic light, which provides a signal to each

player. If Player 1 is recommended Stop, it means that Player 2 will play Go with probability 1,

so stopping is in Player 1’s interest. On the flip side, if Player 1 is recommended Go, it means

2

that Player 2 will play Stop with probability 1, so proceeding is safe for Player 1. In other words,

in a CE, the signal a player observes updates that player’s beliefs concerning the behavior of the

other players. (A Nash equilibrium can be seen as the corner case in which the signal carries no

pertinent information on account of the fact that players are acting independently.)

Stop Go
Stop 0, 0 0, 1

Go 1, 0 -5, -5

Figure 1: The game of chicken.

Example 1.4. The purpose of our next example is to further clarify the difference between CCEs

and CEs. Let’s consider a 4 × 4 bimatrix game described with the payoff matrices

R =


2 0 0 0

0 2 0 0

3 0 0 0

0 3 0 0

 and C =


2 0 3 0

0 2 0 3

0 0 0 0

0 0 0 0

 (1)

for the row and column player, respectively. We label each player’s actions as 1, 2, 3, and 4. We

claim that the distribution 𝝁 = 1

2
(1, 1) + 1

2
(2, 2) is an exact CCE of game (1), whereas the CE gap

of 𝝁 is large—namely, 1. The swap deviation 𝜙 that results in a large deviation gain is such that

1 ↦→ 3 and 2 ↦→ 4; the mapping for the rest of the actions is moot, as they are almost surely never

played under 𝝁. While each player obtains a utility of 2 under 𝝁, deviating according to 𝜙 gives

a utility of 3. Even so, it can be verified that 𝝁 is a CCE as it is robust with respect to constant

deviations.

1.1 Computational properties
We have seen that CCEs and CEs unlock new outcomes not attainable under independent ran-

domization. What’smore, they have better computational properties thanNash equilibria. Specif-

ically, the set of (C)CEs is convex and can be described through a linear program.

Proposition 1.5. There is a linear program with
∏𝑛

𝑖=1 |A𝑖 | variables and
∑𝑛

𝑖=1 |A𝑖 | (|A𝑖 | − 1) con-
straints whose solution is an exact correlated equilibrium of the game.

While the number of swap deviations of each player 𝑖 ∈ [𝑛] is |A𝑖 | |A𝑖 |
, to arrive at Proposi-

tion 1.5, it’s enough to consider only a certain subset of swap deviations—ones that only change

a single action; such a deviation is called internal—with size |A𝑖 | (|A𝑖 | − 1); the simple proof is

left as an exercise.

The key caveat with Proposition 1.5 is that the size of the LP grows exponentially with the

number of players; the basic reason why this happens is that a correlated distribution in multi-

player games is an exponential objective—one needs to specify the value of

∏𝑛
𝑖=1 |A𝑖 | − 1 coor-

dinates. If time permits, next lecture will cover a sophisticated, famous algorithm for addressing

3

this issue; for now, at least we know that we can compute a CE in games with a constant number

of players. Furthermore, one can also incorporate any linear objective function into the linear

program, such as the social welfare—the sum of the players’ utilities.

1.2 Connection to no-regret learning
As we have alluded to, (coarse) correlated equilibria are closely tied to the framework of regret

minimization in online learning.

Φ-regret To formalize this connection in its full generality, wewill now introduce the important

concept of Φ-regret. It is a measure of the learner’s performance parameterized by a family of

strategy deviations Φ. In what follows, we operate in the usual online learning setting: in every

round 𝑡 ∈ [𝑇] the learner first specifies a strategy 𝒙 (𝑡) ∈ X that lies in a convex and compact

set X, whereupon the environment devises a linear utility function 𝒙 ↦→ ⟨𝒙, 𝒖 (𝑡)⟩ for some utility

vector 𝒖 (𝑡)
. For a set of deviations Φ comprising functions 𝜙 : X → X, Φ-regret is defined as

ΦReg(𝑇) :=max

𝜙∈Φ

{
𝑇∑︁
𝑡=1

⟨𝜙 (𝒙 (𝑡)), 𝒖 (𝑡)⟩
}
−

𝑇∑︁
𝑡=1

⟨𝒙 (𝑡), 𝒖 (𝑡)⟩. (2)

An earlier lecture focused on the special case where Φ comprises only constant deviations:
Φconst = {𝜙 : ∃𝒙′ ∈ X such that 𝜙 (𝒙) = 𝒙′}; this is the most standard definition of regret in online

learning, typically referred to as external regret to disambiguate with other stronger notions. The

key point about (2) is that the richer the set of deviations Φ, the stronger the induced notion of

hindsight rationality. The other end of the spectrum where Φ consists of all possible deviations

X → X is called swap regret. As expected, an algorithm can experience large swap regret even

when its external regret is small.

Example 1.6. Let’s say the learner picks a distribution over three actions, 1, 2, and 3. Suppose
further that the sequence of utilities and selected actions follow the pattern of Figure 2, where

𝑇 = 0 mod 3. We see that the learner collects overall a utility of 𝑇 /3, which in fact matches the

optimal strategy in hindsight. So, the external regret of the learner is 0 in this example. On the

other hand, consider the swap deviation

𝜙 : 𝑎 ↦→

2 if 𝑎 = 1,
1 if 𝑎 = 2
3 if 𝑎 = 3.

Under that deviation, the learner would be able to collect maximal utility, meaning that the swap

regret of the learner is 2𝑇 /3 = Ω(𝑇).
The techniques we have covered so far for minimizing external regret will not be enough to

minimize swap regret; for example, it is known that multiplicative weights update (MWU) can have

linear swap regret [Cesa-Bianchi and Lugosi, 2006]. Before we introduce some new algorithmic

ideas to cope with the richer set of deviations (Section 2), let’s first formalize the connection

4

1 0 0 1 0 0 1 0 0 1

2 0 1 0 0 1 0 0 1 0

3 1 0 0 1 0 0 1 0 0

Figure 2: An example of a learner with large swap regret but zero external regret.

between minimizing Φ-regret and correlated equilibrium concepts. In accordance with (2), we

expand the scope of Definition 1.2 to general multilinear games. Here, each player 𝑖 ∈ [𝑛] selects
a strategy 𝒙𝑖 ∈ X𝑖 from a convex and compact set X𝑖 , so that for any joint strategy (𝒙1, . . . , 𝒙𝑛) ∈
X1 × · · · × X𝑛 , the utility can be expressed as 𝑢𝑖 (𝒙1, . . . , 𝒙𝑛) = ⟨𝒙𝑖, 𝒖𝑖 (𝒙−𝑖)⟩ for some utility vector

𝒖𝑖 that does not depend on 𝒙𝑖 . This is a useful abstraction for encompassing both normal- and

extensive-form games, the latter under the sequence-form representation covered in the previous

lecture.

Definition 1.7 (Φ-equilibrium). A correlated distribution 𝝁 ∈ Δ(X1 × · · · × X𝑛) is an 𝜖-Φ-
equilibrium if for any player 𝑖 ∈ [𝑛] and deviation function Φ𝑖 ∋ 𝜙𝑖 : X𝑖 → X𝑖 ,

E(𝒙1,...,𝒙𝑛)∼𝜇𝑢𝑖 (𝒙1, . . . , 𝒙𝑛) ≥ E(𝒙1,...,𝒙𝑛)∼𝜇𝑢𝑖 (𝜙𝑖 (𝒙𝑖), 𝒙−𝑖) − 𝜖.

Theorem 1.8. Suppose that each player 𝑖 ∈ [𝑛] incurs Φ𝑖-regret ΦReg
(𝑇)
𝑖

under the sequence of
utilities (𝒖𝑖 (𝒙 (𝑡)

−𝑖))𝑇𝑡=1. Then the average correlated distribution of play 𝝁 := 1

𝑇

∑𝑇
𝑡=1 𝒙

(𝑡)
1

⊗ · · · ⊗ 𝒙 (𝑡)
𝑛

is an 𝜖-Φ-equilibrium with 𝜖 = 1

𝑇
max1≤𝑖≤𝑛 ΦReg

(𝑇)
𝑖

.

Above, 𝒙 (𝑡)
1

⊗ · · · ⊗ 𝒙 (𝑡)
𝑛 is the product distribution induced by (𝒙 (𝑡)

1
, . . . , 𝒙 (𝑡)

𝑛); that is, ⊗ de-

notes the tensor product. This means that 𝝁 produced by Theorem 1.8 is a mixture of 𝑇 product

distributions. Correlation arises by playing multiple iterations of the game. As a special case,

Theorem 1.8 implies that players minimizing swap regret converge—in terms of the average cor-

related distribution of play—to correlated equilibria, whereas external regret is associated with

coarse correlated equilibria.

Proof of Theorem 1.8. For any player 𝑖 ∈ [𝑛], we have

ΦReg(𝑇) = max

𝜙𝑖∈Φ𝑖

{
𝑇∑︁
𝑡=1

⟨𝜙 (𝒙 (𝑡)
𝑖
), 𝒖 (𝑡)

𝑖
⟩
}
−

𝑇∑︁
𝑡=1

⟨𝒙 (𝑡)
𝑖
, 𝒖 (𝑡)

𝑖
⟩

= max

𝜙𝑖∈Φ𝑖

{
𝑇∑︁
𝑡=1

𝑢𝑖 (𝜙𝑖 (𝒙 (𝑡)
𝑖
), 𝒙 (𝑡)

−𝑖)
}
−

𝑇∑︁
𝑡=1

𝑢𝑖 (𝒙 (𝑡)
1
, . . . , 𝒙 (𝑡)

𝑛), (3)

by multilinearity. Let 𝝁 = 1

𝑇

∑𝑇
𝑡=1

⊗𝑛

𝑖=1 𝒙
(𝑡)
𝑖
. Continuing from (3),

1

𝑇
ΦReg(𝑇) = max

𝜙𝑖∈Φ𝑖

E(𝒙1,...,𝒙𝑛)∼𝝁𝑢𝑖 (𝜙𝑖 (𝒙𝑖), 𝒙−𝑖) − E(𝒙1,...,𝒙𝑛)∼𝝁𝑢𝑖 (𝒙1, . . . , 𝒙𝑛).

□

5

2 A framework for minimizing Φ-regret
Having connected Φ-regret with correlated equilibrium concepts, we now introduce the elegant

framework of Gordon et al. [2008] to minimize Φ-regret in the online learning setting; by virtue

of Theorem 1.8, one can then compute a Φ-equilibrium by having each player employ the algo-

rithm of Gordon et al. [2008].

Reducing Φ-regret to external regret The upshot of the construction of Gordon et al. [2008]

is that one can reduce Φ-regret to external regret, albeit with some important caveats. We recall

that the basic goal is to produce a sequence of strategies that minimizes Φ-regret per (2); Φ is

assumed to be convex and compact. The framework of Gordon et al. [2008] provides a general

template for doing that. It asks for two basic subroutines.

1. A fixed-point oracle: for any deviation 𝜙 ∈ Φ, it outputs a fixed point X ∋ 𝒙 = 𝜙 (𝒙).

2. An online algorithm ℜΦ minimizing external regret with respect to the set Φ.

With regard to Item 1, we will for now assume that Φ consists of continuous functions map-

pingX toX, so that the existence of a fixed point is guaranteed by Brouwer’s fixed-point theorem.

But whether such a fixed point can be computed efficiently is a different story. In fact, computing

approximate fixed points of general functions is known to be equivalent to finding Nash equilib-

ria [Daskalakis et al., 2008], which defeats the purpose. For the time being, we can assume that Φ
is structured enough so that it admits an efficient fixed-point oracle; for example, this is so when

Φ contains only linear deviations. A final noteworthy point about Item 1 is that it will be enough

if one has instead an approximate fixed-point oracle, in that ∥𝒙 − 𝜙 (𝒙)∥ ≤ 𝜖 .

Assuming access to a fixed-point oracle, the reduction of Gordon et al. [2008] reducesΦ-regret
to external regret, but with an important catch: the algorithm minimizing external regret needs

to operate over the set of deviations Φ (Item 2). This is a significantly more complex set than the

one we started with, X, and will be the key to establishing efficient Φ-regret minimizers.

In any event, assuming access to the oracles posited in Item 1 and Item 2, the algorithm

of Gordon et al. [2008] (Algorithm 1) produces a Φ-regret minimizer ℜ as follows.

• In every time 𝑡 ∈ [𝑇], it obtains the next strategy 𝜙 (𝑡)
of ℜΦ. ℜ then produces as the next

strategy 𝒙 (𝑡) ∈ X any fixed point of 𝜙 (𝑡)
through the fixed-point oracle.

• Next, upon observing 𝒖 (𝑡)
, ℜ feeds to ℜΦ the utility function 𝑢

(𝑡)
Φ : 𝜙 ↦→ ⟨𝜙 (𝒙 (𝑡)), 𝒖 (𝑡)⟩.

Theorem 2.1 (Gordon et al., 2008). If Reg(𝑇) is the external regret ofℜΦ andΦReg(𝑇) is theΦ-regret
of ℜ, then Reg(𝑇) = ΦReg(𝑇) .

Proof. We have

ΦReg(𝑇) =max

𝜙∈Φ

{
𝑇∑︁
𝑡=1

⟨𝜙 (𝒙 (𝑡)), 𝒖 (𝑡)⟩
}
−

𝑇∑︁
𝑡=1

⟨𝒙 (𝑡), 𝒖 (𝑡)⟩

=max

𝜙∈Φ

{
𝑇∑︁
𝑡=1

⟨𝜙 (𝒙 (𝑡)), 𝒖 (𝑡)⟩
}
−

𝑇∑︁
𝑡=1

⟨𝜙 (𝑡) (𝒙 (𝑡)), 𝒖 (𝑡)⟩ (4)

6

since 𝒙 (𝑡) = 𝜙 (𝑡) (𝒙 (𝑡)). Continuing from (4),

ΦReg(𝑇) =max

𝜙∈Φ

{
𝑇∑︁
𝑡=1

𝑢
(𝑡)
Φ (𝜙)

}
−

𝑇∑︁
𝑡=1

𝑢
(𝑡)
Φ (𝜙 (𝑡)) = Reg(𝑇) .

□

Algorithm 1: The template of Gordon et al. [2008] for minimizing Φ-regret.

1 Input: An external regret minimizer ℜΦ for the set Φ
2 NextStrategy():

3 Set 𝜙 (𝑡)
:= ℜΦ.NextStrategy();

4 return X ∋ 𝒙 (𝑡) = 𝜙 (𝑡) (𝒙 (𝑡));
5 ObserveUtility(𝒖 (𝑡)):
6 Set 𝑢

(𝑡)
Φ : 𝜙 ↦→ ⟨𝜙 (𝒙 (𝑡)), 𝒖 (𝑡)⟩;

7 ℜΦ.ObserveUtility(𝑢 (𝑡)
Φ);

2.1 The algorithm of Blum and Mansour
We will now see how to make use of the previous framework so as to minimize swap regret in

a normal-form game setting. The resulting algorithm was first developed by Blum and Mansour

[2007] (we also refer to a closely related algorithm by Stoltz and Lugosi, 2005). The key to applying

the framework of Gordon et al. [2008] is to understand the structure of the set of deviations Φ.
In the special case of normal-form games, it is enough to consider only linear functions mapping

Δ(A) to Δ(A), for which there is a simple combinatorial characterization in terms of (column)-
stochastic matrices.

Lemma 2.2. Any linear function 𝜙 : Δ(A) → Δ(A) can be equivalently expressed as 𝒙 ↦→ M𝒙 for
some stochastic matrixM.

Indeed, since𝜙 is linear it can be expressed as 𝒙 ↦→ M𝒙 for somematrixM. Now, every column

of M is equal to the output of 𝜙 for the probability distribution that places all the probability in

the corresponding action profile. But, given that 𝜙 maps Δ(A) to Δ(A), this implies that every

column ofM is a probability distribution.

Armed with the characterization of Lemma 2.2, let’s now see how to implement the two

oracles required in the framework of Gordon et al. [2008]. First, in relation to Item 1, a stochastic

matrix induces aMarkov chain overA. Any stationary distribution of that Markov chain is a fixed

point, which can be computed efficiently since it boils down to solving a linear system. (More

broadly, when the underlying set X is a polytope and Φ comprises linear deviations, computing

a fixed point amounts to solving a linear program, which can be done in polynomial time.)

Moving on to Item 2, we will next show how to minimize regret with respect to the set of

stochastic matrices. By definition, the set of stochastic matrices is a product of simplices—one

probability distribution for each column:

{[(𝒙𝑎)𝑎∈A] : 𝒙𝑎 ∈ Δ(A) ∀𝑎 ∈ A},

7

where, for 𝒙, 𝒙′ ∈ RA
, [(𝒙, 𝒙′)] denotes the matrix with columns 𝒙 and 𝒙′. But, as we saw last

time, minimizing (external) regret over such a set can be accomplished using the regret circuit

for the Cartesian product: simply have an independent regret minimizer for each column.

Lemma 2.3. There is an efficient no-regret algorithm for minimizing external regret over the set of
stochastic matrices.

The overall construction is given in Algorithm 2. It consists of |A| separate regret minimizers,

(ℜ𝑎)𝑎∈A , each of which operates over Δ(A). To obtain the next strategy, we create the stochastic

matrixM(𝑡)
in which each column is given by the strategy of the corresponding regret minimizer

(Line 5), and then output any fixed point of M(𝑡)
(Line 6). To explain the second part of the

algorithm, let’s first note that the utility observed by ℜΦ, per the construction in Theorem 2.1,

can be cast as 𝑢Φ(𝜙) = ⟨𝜙 (𝒙 (𝑡)), 𝒖 (𝑡)⟩ = ⟨M𝒙 (𝑡), 𝒖 (𝑡)⟩ = ⟨M, 𝒖 (𝑡) ⊗ 𝒙 (𝑡)⟩, where we used that

𝜙 (𝒙 (𝑡)) = M𝒙 (𝑡)
. In other words, ℜΦ observes the utility vector 𝒖 (𝑡) ⊗ 𝒙 (𝑡)

. Per the regret circuit

of the Cartesian product, one should forward to each ℜ𝑎 its corresponding component, which is

𝒙 (𝑡) [𝑎]𝒖 (𝑡)
(Line 9). If we instantiate each ℜ𝑎 with MWU and invoke Theorem 2.1, we arrive at the

following result.

Theorem 2.4. There is an online algorithm whose swap regret is bounded by 𝑂 (
√︁
𝑇 |A| log |A|).

The naive argument here would give 𝑂 (|A|
√︁
𝑇 log |A|) since each MWU algorithm incurs an

external regret bounded by𝑂 (
√︁
𝑇 log |A|), but one can make use of the structure of the observed

utilities to obtain the improved bound claimed in Theorem 2.4. The basic reason is that, for any

𝑡 ∈ [𝑇], ∑︁
𝑎∈A

∥𝒖 (𝑡)
𝑎 ∥2∞ = ∥𝒖 (𝑡) ∥2∞

∑︁
𝑎∈A

(𝒙 (𝑡) [𝑎])2 ≤ ∥𝒖 (𝑡) ∥2∞.

So, using the regret bound of MWU together with Theorem 2.1,

ΦReg(𝑇) ≤ |A| log |A|
𝜂

+ 𝜂

𝑇∑︁
𝑡=1

∥𝒖 (𝑡) ∥2∞ ≤ |A| log |A|
𝜂

+ 𝜂𝑇 .

Optimizing the learning rate 𝜂 gives the claim.

Algorithm 2: Blum-Mansour algorithm for minimizing swap regret

1 Input: A regret minimizer ℜ𝑎 for each action 𝑎 ∈ A
2 NextStrategy():

3 for each action 𝑎 ∈ A do
4 Δ(A) ∋ 𝒙 (𝑡)

𝑎 := ℜ𝑎 .NextStrategy();
5 SetM(𝑡)

:= [(𝒙 (𝑡)
𝑎)𝑎∈A] ;

6 return Δ(A) ∋ 𝒙 (𝑡) =M(𝑡)𝒙 (𝑡)
;

7 ObserveUtility(𝒖 (𝑡) ∈ RA):
8 for each action 𝑎 ∈ A do
9 Set 𝒖 (𝑡)

𝑎 := 𝒙 (𝑡) [𝑎]𝒖 (𝑡)
;

10 ℜ𝑎 .ObserveUtility(𝒖 (𝑡)
𝑎);

8

References
JohnNash. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences,
36:48–49, 1950.

Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity of com-

puting a Nash equilibrium. SIAM Journal on Computing, 2008.

Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity considerations.

Games and Economic Behavior, 1:80–93, 1989.

H. Moulin and J.-P. Vial. Strategically zero-sum games: The class of games whose completely

mixed equilibria cannot be improved upon. International Journal of Game Theory, 7(3-4):201–
221, 1978.

Robert Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1:67–96, 1974.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university

press, 2006.

Geoffrey J Gordon, Amy Greenwald, and Casey Marks. No-regret learning in convex games. In

International Conference on Machine Learning, 2008.

Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine Learning
Research, 8:1307–1324, 2007.

Gilles Stoltz and Gábor Lugosi. Internal regret in on-line portfolio selection. Machine Learning,
59(1-2):125–159, 2005.

9

