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Lecture 6
Learning in General-Sum Games: Correlated Equilibria and ®-Regret

Ioannis Anagnostides

Having introduced efficient algorithms for minimizing regret in an online environment, we
start focusing on what happens when all players in a multi-player general-sum game employ
no-regret learning to update their strategies.

To answer this question, we begin by introducing and motivating the concept of (coarse)
correlated equilibrium (Section 1); this is a relaxation of the Nash equilibrium in which players
no longer have to randomize independently. We will see that correlated equilibria enjoy more
favorable computational properties than their uncorrelated counterparts. To connect correlated
equilibria with regret minimization, we will introduce the notion of ®-regret (Section 1.2), which
strengthens the usual notion of (external) regret covered in an earlier lecture. The upshot is that
the distribution of play arising from players minimizing ®-regret converges to the set of correlated
equilibria. We will then present, in Section 2, a general, abstract framework for minimizing ®-
regret, and will then see how this framework can be applied to minimize swap regret—and thereby
converge to correlated equilibria—in normal-form games.

1 Correlated and coarse correlated equilibria

A major criticism of the Nash equilibrium is that, even though one always exists [Nash, 1950], it is
computationally intractable to find one [Daskalakis et al., 2008]—let alone an optimal one [Gilboa
and Zemel, 1989]. In light of this fact, we shouldn’t expect simple learning algorithms—such
as online gradient descent or regret matching—to converge to Nash equilibria; but, then, what
are no-regret dynamics converging to in general-sum games? As we mentioned in passing in a
previous lecture, no-regret learning is inherently tied to the notion of coarse correlated equilib-
rium [Moulin and Vial, 1978]. Let’s begin by recalling the basic definition and start building some
intuition about this solution concept; we confine our discussion to normal-form games.

Definition 1.1 (Coarse correlated equilibrium). A correlated distribution g € A(A; X - - - X Ay)
is an e-coarse correlated equilibrium (CCE) if for any player i € [n] and deviation a; € A;,

E(al,...,an)~/1ui(a1a cee an) = E(al,“.,an)~,uui(a;> a—i) — €.

This definition echoes the Nash equilibrium notion, but with one crucial difference: the un-
derlying distribution g in Definition 1.1 can be correlated, while in a Nash equilibrium p has to
be a product distribution—reflecting the fact that players randomize independently. To explain
this difference, let’s consider the following two distributions with respect to some 2 X 2 bimatrix
game (meaning that each of the two players has two available actions).
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Both are distributions over A; X A, = {1,2} X {1,2}, but we claim that only g’ is a product
distribution. Indeed, if Player 1—the row player—plays (1/3,2/3) and Player 2 plays (1/2, 1/2), the
induced distribution over the 4 outcomes of the game exactly matches p’. By contrast, it’s easy
to see that no pair of strategies gives rise to p.

It follows readily from Definition 1.1 that a Nash equilibrium is always a CCE; a Nash equilib-
rium is basically an uncorrelated (coarse) correlated equilibrium. But the set of CCEs can unlock

new, sometimes more desirable, outcomes. Before we examine a concrete example, let’s also
introduce the stronger notion of a correlated equilibrium, due to Aumann [1974].

Definition 1.2 (Correlated equilibrium). A correlated distribution g € A(A; X -+ - X A,) is an
e-correlated equilibrium (CE) if for any player i € [n] and deviation function ¢; : A; — A,,

Definitions 1.1 and 1.2 can both be interpreted through the use of a trusted third party—a
mediator or correlation device—who samples an action profile (ay,...,a,) from the correlated
distribution y, and then provides a; to each player i € [n] as a recommendation. A distribution
is a CCE or a CE if no player has an incentive to deviate from the recommendation, but for CEs
the set of possible deviations is richer, making that set of equilibria tighter. In particular, in a CE,
a player can decide whether to deviate after observing the recommendation, while in a CCE the
decision has to be made beforehand. From that perspective, a CCE may seem harder to justify,
for one would need some binding mechanism to ensure the player would not be able to deviate
after observing the recommendation.

Example 1.3. Let’s look at a concrete example to explain these concepts. We consider the “game of
chicken” This is a 2 X 2 game—played between two competitive drivers who are fast approaching
an intersection from different streets—whose utilities are tabulated in Figure 1. Each player can
either play Stop or Go. If both players elect Go a crash ensues, a bad outcome for both players. If
a player stalls, it gets no utility from the game, while if it proceeds while the other player stops,
it gets a utility of 1 for managing to quickly cross the intersection without crashing.

It’s easy to see that this game has exactly three Nash equilibria: i) (Go, Stop), ii) (Stop, Go),
and ((5/s, 1/6), (5/6, 1/6)), meaning that both players play Stop with probability 5/6. From these three
outcomes, the first two are not equitable in that they favor one player over the other. The third
outcome is even worse: it leads to a crash with some non-negligible probability, so much so that
each player gets zero utility in expectation.

Fortunately, (C)CEs address these issues. In particular, let’s consider the correlated distribu-
tion %(Go, Stop) + %(Stop, Go). It’s easy to verify that this is a CE, and thus a CCE as well. Under
that outcome, both players get in expectation a utility of 1/2. Turning our attention to CEs, there
is a natural interpretation of this outcome through a traffic light, which provides a signal to each
player. If Player 1 is recommended Stop, it means that Player 2 will play Go with probability 1,
so stopping is in Player 1’s interest. On the flip side, if Player 1 is recommended Go, it means



that Player 2 will play Stop with probability 1, so proceeding is safe for Player 1. In other words,
in a CE, the signal a player observes updates that player’s beliefs concerning the behavior of the
other players. (A Nash equilibrium can be seen as the corner case in which the signal carries no
pertinent information on account of the fact that players are acting independently.)

Stop Go
Stop 0,0 0,1
Go 1,0 -5,-5

Figure 1: The game of chicken.

Example 1.4. The purpose of our next example is to further clarify the difference between CCEs
and CEs. Let’s consider a 4 X 4 bimatrix game described with the payoff matrices

2.0 00 2.0 3 0
0200 020 3

R=13 600 0o/ C={5 00 o ()
0300 000 0

for the row and column player, respectively. We label each player’s actions as 1, 2, 3, and 4. We
claim that the distribution g = %(1, 1)+ %(2, 2) is an exact CCE of game (1), whereas the CE gap
of p is large—namely, 1. The swap deviation ¢ that results in a large deviation gain is such that
1+ 3 and 2 — 4; the mapping for the rest of the actions is moot, as they are almost surely never
played under u. While each player obtains a utility of 2 under p, deviating according to ¢ gives
a utility of 3. Even so, it can be verified that p is a CCE as it is robust with respect to constant
deviations.

1.1 Computational properties

We have seen that CCEs and CEs unlock new outcomes not attainable under independent ran-
domization. What’s more, they have better computational properties than Nash equilibria. Specif-
ically, the set of (C)CEs is convex and can be described through a linear program.

Proposition 1.5. There is a linear program with [}, |A;| variables and ).}, | A;|(|A;| — 1) con-
straints whose solution is an exact correlated equilibrium of the game.

While the number of swap deviations of each player i € [n] is |A;|, to arrive at Proposi-
tion 1.5, it’s enough to consider only a certain subset of swap deviations—ones that only change
a single action; such a deviation is called internal—with size | A;|(|A;| — 1); the simple proof is
left as an exercise.

The key caveat with Proposition 1.5 is that the size of the LP grows exponentially with the
number of players; the basic reason why this happens is that a correlated distribution in multi-
player games is an exponential objective—one needs to specify the value of []}_, |A;| — 1 coor-
dinates. If time permits, next lecture will cover a sophisticated, famous algorithm for addressing



this issue; for now, at least we know that we can compute a CE in games with a constant number
of players. Furthermore, one can also incorporate any linear objective function into the linear
program, such as the social welfare—the sum of the players’ utilities.

1.2 Connection to no-regret learning

As we have alluded to, (coarse) correlated equilibria are closely tied to the framework of regret
minimization in online learning.

d-regret To formalize this connection in its full generality, we will now introduce the important
concept of ®-regret. It is a measure of the learner’s performance parameterized by a family of
strategy deviations ®. In what follows, we operate in the usual online learning setting: in every
round ¢ € [T] the learner first specifies a strategy x() € X that lies in a convex and compact
set X, whereupon the environment devises a linear utility function x — (x, u?) for some utility
vector u). For a set of deviations ® comprising functions ¢ : X — X, ®-regret is defined as

T T
OReg") = max {wa(”), u<”>} = ) u). (2)
t=1 t=1

An earlier lecture focused on the special case where ® comprises only constant deviations:
Dconst = {¢ : 3x’ € X such that ¢(x) = x’}; this is the most standard definition of regret in online
learning, typically referred to as external regret to disambiguate with other stronger notions. The
key point about (2) is that the richer the set of deviations @, the stronger the induced notion of
hindsight rationality. The other end of the spectrum where ® consists of all possible deviations
X — X is called swap regret. As expected, an algorithm can experience large swap regret even
when its external regret is small.

Example 1.6. Let’s say the learner picks a distribution over three actions, 1, 2, and 3. Suppose
further that the sequence of utilities and selected actions follow the pattern of Figure 2, where
T =0 mod 3. We see that the learner collects overall a utility of T/3, which in fact matches the
optimal strategy in hindsight. So, the external regret of the learner is 0 in this example. On the
other hand, consider the swap deviation

2 ifa=1,
p:a— 91 ifa=2
3 ifa=3.

Under that deviation, the learner would be able to collect maximal utility, meaning that the swap
regret of the learner is 2T /3 = Q(T).

The techniques we have covered so far for minimizing external regret will not be enough to
minimize swap regret; for example, it is known that multiplicative weights update (MWU) can have
linear swap regret [Cesa-Bianchi and Lugosi, 2006]. Before we introduce some new algorithmic
ideas to cope with the richer set of deviations (Section 2), let’s first formalize the connection
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Figure 2: An example of a learner with large swap regret but zero external regret.

between minimizing ®-regret and correlated equilibrium concepts. In accordance with (2), we
expand the scope of Definition 1.2 to general multilinear games. Here, each player i € [n] selects
a strategy x; € X; from a convex and compact set Xj, so that for any joint strategy (xy,...,x,) €
X1 X - - - X X, the utility can be expressed as u;(xy, ..., x,) = (x;, u;(x_;)) for some utility vector
u; that does not depend on x;. This is a useful abstraction for encompassing both normal- and
extensive-form games, the latter under the sequence-form representation covered in the previous
lecture.

Definition 1.7 (®-equilibrium). A correlated distribution g € A(X; X --- X X},) is an e-®-
equilibrium if for any player i € [n] and deviation function ®; 3 ¢; : X; — Xj,

E(xl,...,xn%uui(xl, s Xp) 2 E(x1 ..... xn)~,uui(¢i(xi)s X_j) — €.

Theorem 1.8. Suppose that each player i € [n] incurs ®;-regret (DRegm

./ under the sequence of

utilities (ui(xgti)))le. Then the average correlated distribution of play p = 1 M xit) ® - ® xr(lt)

is an e-®-equilibrium with € = % maxi<i<p dDRegET).

Above, xit) Q- ® x,(f) is the product distribution induced by (xit), .. .,x,(,t)); that is, ® de-

notes the tensor product. This means that g produced by Theorem 1.8 is a mixture of T product
distributions. Correlation arises by playing multiple iterations of the game. As a special case,
Theorem 1.8 implies that players minimizing swap regret converge—in terms of the average cor-
related distribution of play—to correlated equilibria, whereas external regret is associated with
coarse correlated equilibria.

Proof of Theorem 1.8. For any player i € [n], we have

T T
®dReg(D) = (1) ’ QNI (t)’ (1)
eg”) = max {;@s(xl ) u;”) ;@c, u)

T T
= max {Z ”i(¢i(xi(t)), x(_ti))} _ Z ui(xgt), Coxi, (3)

gicdi |41 t=1

by multilinearity. Let p = 2 3., K7, xi(t). Continuing from (3),

1
TCDReg(T) = max B(xy,.em)~pti (P (x1)s X-1) = By,oxp)~opthi (X155 X))



2 A framework for minimizing ®-regret

Having connected ®-regret with correlated equilibrium concepts, we now introduce the elegant
framework of Gordon et al. [2008] to minimize ®-regret in the online learning setting; by virtue
of Theorem 1.8, one can then compute a ®-equilibrium by having each player employ the algo-
rithm of Gordon et al. [2008].

Reducing ®-regret to external regret The upshot of the construction of Gordon et al. [2008]
is that one can reduce ®-regret to external regret, albeit with some important caveats. We recall
that the basic goal is to produce a sequence of strategies that minimizes ®-regret per (2); @ is
assumed to be convex and compact. The framework of Gordon et al. [2008] provides a general
template for doing that. It asks for two basic subroutines.

1. A fixed-point oracle: for any deviation ¢ € &, it outputs a fixed point X 3 x = ¢(x).

2. An online algorithm Re minimizing external regret with respect to the set .

With regard to Item 1, we will for now assume that ® consists of continuous functions map-
ping X to X, so that the existence of a fixed point is guaranteed by Brouwer’s fixed-point theorem.
But whether such a fixed point can be computed efficiently is a different story. In fact, computing
approximate fixed points of general functions is known to be equivalent to finding Nash equilib-
ria [Daskalakis et al., 2008], which defeats the purpose. For the time being, we can assume that ®
is structured enough so that it admits an efficient fixed-point oracle; for example, this is so when
® contains only linear deviations. A final noteworthy point about Item 1 is that it will be enough
if one has instead an approximate fixed-point oracle, in that ||x — ¢(x)|| < e.

Assuming access to a fixed-point oracle, the reduction of Gordon et al. [2008] reduces ®-regret
to external regret, but with an important catch: the algorithm minimizing external regret needs
to operate over the set of deviations ® (Item 2). This is a significantly more complex set than the
one we started with, X, and will be the key to establishing efficient ®-regret minimizers.

In any event, assuming access to the oracles posited in Item 1 and Item 2, the algorithm
of Gordon et al. [2008] (Algorithm 1) produces a ®-regret minimizer R as follows.

« In every time ¢ € [T], it obtains the next strategy ¢*) of Rp. R then produces as the next
strategy x() € X any fixed point of $*) through the fixed-point oracle.
« Next, upon observing u*), R feeds to Ry the utility function ug) s (Pp(xD), uD)y,

Theorem 2.1 (Gordon et al., 2008). IfReg'") is the external regret of Re and ®RegT) is the d-regret
of R, then Reg!") = dRegD).

Proof. We have

r
_ Z(gb(t)(x(t)),u(t)) (4)

t=1

T T
q)Reg(T) — I};ag {Z<¢(x(t))’ u(t)>} _ Z(x(t),u(t)>
€ =1

t=1
T
I {;wx(”), u(®)



since x(* = ¢ (x(")). Continuing from (4),

T T
T) _ (t) (t) _ T
PReg ") = max {Z g (¢>)} = > ug(¢") = Reg!P.

t=1 t=1

Algorithm 1: The template of Gordon et al. [2008] for minimizing ®-regret.

1 Input: An external regret minimizer Ry for the set ®
2 NEXTSTRATEGY():

3 Set ¢ := Ry NEXTSTRATEGY();

a return X 3 x) = ¢ (x());

5 OBSERVEUTILITY(u")):
o Setul) g (p(xW)ul);

7 mq).OBSERVEUTILITY(ug));

2.1 The algorithm of Blum and Mansour

We will now see how to make use of the previous framework so as to minimize swap regret in
a normal-form game setting. The resulting algorithm was first developed by Blum and Mansour
[2007] (we also refer to a closely related algorithm by Stoltz and Lugosi, 2005). The key to applying
the framework of Gordon et al. [2008] is to understand the structure of the set of deviations ®.
In the special case of normal-form games, it is enough to consider only linear functions mapping
A(A) to A(A), for which there is a simple combinatorial characterization in terms of (column)-
stochastic matrices.

Lemma 2.2. Any linear function ¢ : A(A) — A(A) can be equivalently expressed as x — Mx for
some stochastic matrix M.

Indeed, since ¢ is linear it can be expressed as x — Mx for some matrix M. Now, every column
of M is equal to the output of ¢ for the probability distribution that places all the probability in
the corresponding action profile. But, given that ¢ maps A(A) to A(A), this implies that every
column of M is a probability distribution.

Armed with the characterization of Lemma 2.2, let’s now see how to implement the two
oracles required in the framework of Gordon et al. [2008]. First, in relation to Item 1, a stochastic
matrix induces a Markov chain over A. Any stationary distribution of that Markov chain is a fixed
point, which can be computed efficiently since it boils down to solving a linear system. (More
broadly, when the underlying set X is a polytope and ® comprises linear deviations, computing
a fixed point amounts to solving a linear program, which can be done in polynomial time.)

Moving on to Item 2, we will next show how to minimize regret with respect to the set of
stochastic matrices. By definition, the set of stochastic matrices is a product of simplices—one
probability distribution for each column:

{[(xa)aeﬂ] 1 Xg € A(ﬂ) Va e ﬂ}a



where, for x, x’ € RA, [(x,x")] denotes the matrix with columns x and x’. But, as we saw last
time, minimizing (external) regret over such a set can be accomplished using the regret circuit
for the Cartesian product: simply have an independent regret minimizer for each column.

Lemma 2.3. There is an efficient no-regret algorithm for minimizing external regret over the set of
stochastic matrices.

The overall construction is given in Algorithm 2. It consists of |A| separate regret minimizers,
(Ra)aeca, each of which operates over A(A). To obtain the next strategy, we create the stochastic
matrix M) in which each column is given by the strategy of the corresponding regret minimizer
(Line 5), and then output any fixed point of MY (Line 6). To explain the second part of the
algorithm, let’s first note that the utility observed by R, per the construction in Theorem 2.1,
can be cast as ugp(¢) = (p(x®),u®)y = Mx® u®) = (M, u® ® x), where we used that
$(xD) = Mx®). In other words, R observes the utility vector u'® ® x(). Per the regret circuit
of the Cartesian product, one should forward to each R, its corresponding component, which is
xW[a]u' (Line 9). If we instantiate each R, with MWU and invoke Theorem 2.1, we arrive at the
following result.

Theorem 2.4. There is an online algorithm whose swap regret is bounded by O(~/T|A| log | A|).

The naive argument here would give O(|A|+/T log |A|) since each MWU algorithm incurs an
external regret bounded by O(4/T log | A|), but one can make use of the structure of the observed

utilities to obtain the improved bound claimed in Theorem 2.4. The basic reason is that, for any

te[Tl,
Dl 1E = D (x [a])? < a2,

aeA acA
So, using the regret bound of MWU together with Theorem 2.1,

Allog|A| < A log |A
1 =1

Optimizing the learning rate n gives the claim.

Algorithm 2: Blum-Mansour algorithm for minimizing swap regret

1 Input: A regret minimizer R, for each action a € A
2 NEXTSTRATEGY():
3 for each actiona € A do

- A(A) 3 x = R, NEXTSTRATEGY ();
Set MO i= [(x )oen] ;
6 return A(A) 3 x = MO x®);

(5}

OBserRVEUTILITY(u") € R7):

N

8 for each action a € A do
9 Set u{(lt) = x (0 [a]u(t) :
10 ma.OBSERVEUTILITy(uC(It));
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