Extensive-Form Games and Counterfactual Regret Minimization

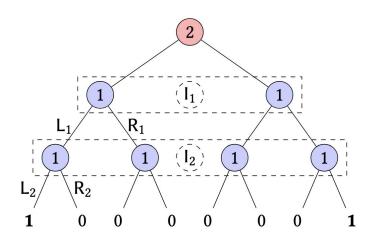
15 888 **Computational Game Solving** (Fall 2025) loannis Anagnostides

Today's lecture

- Extensive-form games
 - Imperfect information and perfect recall
 - Representing strategies
 - Mixed strategies
 - Behavioral strategies
 - Sequence-form strategies
- Tree-form decision problems
 - o Inductive decomposition of the strategy set
- Counterfactual regret minimization
 - Regret circuits

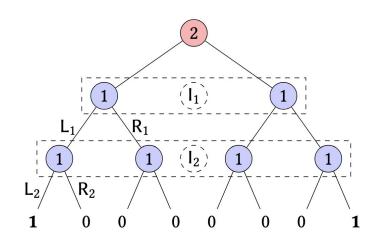
Extensive-form games

- Represented through a rooted game tree
- Each node is either a decision node or a leaf (terminal) node
- Each decision node belongs to a player,
 who selects an action linking to new node
- Payoffs are given at the terminal nodes
- The nodes of each player are partitioned into information sets
- An information sets contains all nodes that cannot be distinguished by that player



Perfect recall

- A player has perfect recall if it never forgets previously acquired information
- For all nodes in the same information set, the sequence of previous information sets and actions should coincide
- If the sequence differed, a perfect-recall player could distinguish the nodes
- The game on the right has imperfect recall



Converting to normal form

- A pure strategy is a mapping from information sets to actions at those information sets
- A mixed strategy is a distribution over pure strategies
- One can create an equivalent normal-form game with actions being the set of pure strategies
- How large is the induced normal-form game?

Converting to normal form

- A pure strategy is a mapping from information sets to actions at those information sets
- A mixed strategy is a distribution over pure strategies
- One can create an equivalent normal-form game with actions being the set of pure strategies
- How large is the induced normal-form game?
- The issue is that the number of pure strategies Combinatorial blow up! scales with the product of the information sets

Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to optimize one's utility efficiently.

- The set of strategies needs to be a compact convex polytope
- The utility function needs to be linear—or at least concave—in that player's strategy

Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to optimize one's utility efficiently.

- The set of strategies needs to be a compact convex polytope
- The utility function needs to be linear—or at least concave—in that player's strategy

For mixed strategies

Behavioral strategies

- Operating over mixed strategies is prohibitive: the dimension of that set is exponential in the size of the game tree
- A behavioral strategy maps information sets to distributions over the actions
- We treat each information set separately: we employ uncorrelated randomization between information sets
- Does that limit our expressivity?

Behavioral strategies

- Operating over mixed strategies is prohibitive: the dimension of that set is exponential in the size of the game tree
- A behavioral strategy maps information sets to distributions over the actions
- We treat each information set separately: we employ uncorrelated randomization between information sets
- Does that limit our expressivity?

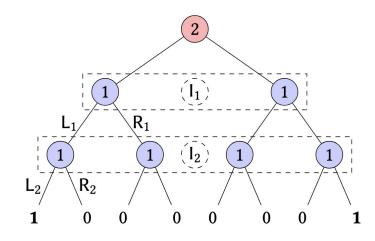
No, for perfect-recall games!

Theorem (Kuhn). For any mixed strategy, there is a behavioral strategy that is utility-equivalent to that mixed strategy no matter the strategies of the rest of the players.

Mixed strategies can be useful even under perfect-recall

Mixed strategies can be superior under imperfect recall

- The conclusion of Kuhn's theorem does
 not hold without perfect recall
- In the game on the right, there is a mixed strategy that gets a utility of 0.5
- But any behavioral strategy gets at most
 0.25 when Player 2 is minimizing the utility of Player 1



The problem with behavioral strategies

- Unlike mixed strategies, behavioral strategies have a compact representation
- But there is still a basic problem
- Let's look at the utility function
- It contains **products** of the same player's strategy
- This is very much nonlinear/nonconcave

$$\sum_{z\in\mathcal{Z}}u_i(z)p_c(z)\prod_{i'\in[n]}\prod_{\substack{(h,a)\leq z\\h\in\mathcal{H}_{i'}}}\boldsymbol{b}_{i'}[(j,a)].$$

Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to optimize one's utility efficiently.

- The set of strategies needs to be a compact convex polytope
- The utility function needs to be linear—or at least concave—in that player's strategy

For behavioral strategies

Try #3: sequence-form representation

• We apply the basic transformation $x_i[\sigma] \coloneqq \prod_{(j,a) \in \sigma} b_i[(j,a)]$

 A vector is a sequence-form strategy if and only if it obeys probability flow conservation

$$X_i \coloneqq \left\{ oldsymbol{x}_i \in \mathbb{R}^{\Sigma_i}_{\geq 0} : \sum_{a \in \mathcal{A}_j} oldsymbol{x}_i[(j,a)] = \left\{ egin{matrix} 1 & \text{if } p_j = \emptyset \\ oldsymbol{x}_i[p_j] & \text{otherwise.} \end{matrix} & \forall j \in \mathcal{J}_i \right\}$$

We have a compact representation

Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to optimize one's utility efficiently.

- The set of strategies needs to be a compact convex polytope
- The utility function needs to be linear—or at least concave—in that player's strategy

For seq.-form strategies

LP for zero-sum games in extensive form

In sequence form, we are dealing again with a bilinear optimization problem

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} x^{\top} A y$$

Fixing the strategy of P1,

maximize
$$\mathbf{x}^{\top} \mathbf{A} \mathbf{y}$$

subject to $\mathbf{F}_2 \mathbf{y} = \mathbf{f}_2$, Dual minimize $\mathbf{f}_2^{\top} \mathbf{v}$
subject to $\mathbf{A}^{\top} \mathbf{x} \ge \mathbf{F}_2^{\top} \mathbf{v}$.

Sequence form

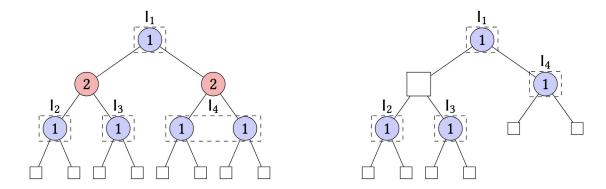
It suffices to solve the following LP:

minimize
$$f_2^{\top} v$$

subject to $\mathbf{F}_1 x = f_1$,
 $x \ge 0$,
 $\mathbf{A}^{\top} x \ge \mathbf{F}_2^{\top} v$.

Tree-form decision problems

- Taking the perspective of a single player, we can abstract away all other players
- The player faces a tree-form decision problem
- We have either decision nodes or observation nodes
- The player acts at a decision node and observes a signal at observation nodes



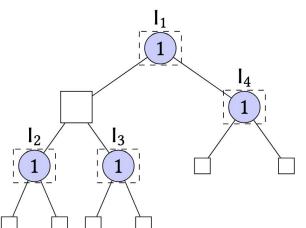
Inductive decomposition of strategies

- We proceed in a bottom-up fashion
- We start from the terminal decision points,
 where each strategy set is a probability simplex

Decision nodes can be decomposed using a convex hull

Observation nodes can be decomposed using a Cartesian product

$$\mathcal{X}_k = \mathcal{X}_{p_1} \times \mathcal{X}_{p_2} \times \cdots \times \mathcal{X}_{p_{\nu^*}}$$



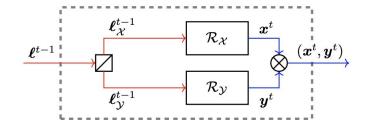
Regret circuits

- We know how to minimize regret over the simplex (RM, MWU,...)
- How to compose multiple such regret minimizers to tackle more complex sets, such as the sequence-form polytope?
- We will use the framework of regret circuits (Farina et al., 2019)
- Because of the previous decomposition, it's enough to handle
 - Cartesian products
 - Convex hulls

Cartesian product

Regret minimization over a Cartesian product easily decomposes into independent subproblems

- The next strategy is just the concatenation of the individual strategies
- Each utility is split into components and then forwarded to the individual algorithms

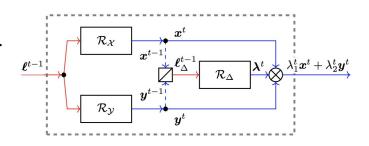


Taken from Farina et al.

Convex hull

Convex hull is relatively more involved

- We require a regret minimizer for mixing over the sets
 - Each action keeps track of a different regret minimizer
- The next strategy is the mixture of the individual strategies
- The feedback of each action reflects how well the corresponding regret minimizer is doing



Taken from Farina et al.

Counterfactual regret minimization

```
NextStrategy():
      for each decision point j \in \mathcal{J} do
           \Delta(\mathcal{A}_j) \ni b_i^{(t)} \coloneqq \Re_j.\text{NextStrategy}();
      for each decision point j \in \mathcal{J} in top-down order do
           for each action a \in \mathcal{A}_i do
                 if p_i = \emptyset then
                       \mathbf{x}^{(t)}[(j,a)] \coloneqq b_i^{(t)}[a];
                 else
                       \mathbf{x}^{(t)}[(j,a)] \coloneqq \mathbf{x}^{(t)}[p_j] \cdot b_j^{(t)}[a];
      return x^{(t)} \in \mathbb{R}^{\Sigma}:
```

```
ObserveUtility(\boldsymbol{u}^{(t)} \in \mathbb{R}^{\Sigma}):
     V^{(t)}[\bot] \coloneqq 0;
     for each node in the tree p \in \mathcal{J} \cup \mathcal{K} in bottom-up order do
           if p \in \mathcal{J} then
                 Let i = v;
                 V^{(t)}[j] := \sum_{a \in \mathcal{A}_i} b_i^{(t)}[a] \cdot (\mathbf{u}^{(t)}[(j,a)] + V^{(t)}[\rho(j,a)]);
           else
                 Let k = p;
                 V^{(t)}[k] \coloneqq \sum_{s \in S_k} V^{(t)}[\rho(k, s)];
     for each decision point j \in \mathcal{J} do
           for each action a \in \mathcal{A}_i do
                 u_i^{(t)}[a] := u^{(t)}[(j,a)] + V^{(t)}[\rho(j,a)];
           \Re_{j}.ObserveUtility(u_{i}^{(t)});
```

Remarks on CFR

- It was introduced by Zinkevich et al. (2007)
- It is based on the notion of counterfactual utilities
- It is a family of algorithms: there are different ways of instantiating the local regret minimizers
- By far the most common choice is RM and its modern variants
- More on that in the next lecture