
Extensive-Form Games and 
Counterfactual Regret Minimization

15 888 Computational Game Solving (Fall 2025)
Ioannis Anagnostides



Today’s lecture

● Extensive-form games
○ Imperfect information and perfect recall
○ Representing strategies

■ Mixed strategies
■ Behavioral strategies
■ Sequence-form strategies

● Tree-form decision problems
○ Inductive decomposition of the strategy set

● Counterfactual regret minimization
○ Regret circuits



Extensive-form games

● Represented through a rooted game tree
● Each node is either a decision node or a 

leaf (terminal) node
● Each decision node belongs to a player, 

who selects an action linking to new node
● Payoffs are given at the terminal nodes
● The nodes of each player are partitioned 

into information sets
● An information sets contains all nodes that 

cannot be distinguished by that player



Perfect recall

● A player has perfect recall if it never 
forgets previously acquired information

● For all nodes in the same information set, 
the sequence of previous information sets 
and actions should coincide

● If the sequence differed, a perfect-recall 
player could distinguish the nodes

● The game on the right has imperfect recall



Converting to normal form

● A pure strategy is a mapping from information 
sets to actions at those information sets

● A mixed strategy is a distribution over pure 
strategies

● One can create an equivalent normal-form game 
with actions being the set of pure strategies

● How large is the induced normal-form game?



Converting to normal form

● A pure strategy is a mapping from information 
sets to actions at those information sets

● A mixed strategy is a distribution over pure 
strategies

● One can create an equivalent normal-form game 
with actions being the set of pure strategies

● How large is the induced normal-form game?
● The issue is that the number of pure strategies 

scales with the product of the information sets
Combinatorial blow up!



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to 
optimize one’s utility efficiently.

● The set of strategies needs to be a compact convex 
polytope

● The utility function needs to be linear—or at least 
concave—in that player’s strategy



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to 
optimize one’s utility efficiently.

● The set of strategies needs to be a compact convex 
polytope

● The utility function needs to be linear—or at least 
concave—in that player’s strategy

For mixed strategies



Behavioral strategies

● Operating over mixed strategies is 
prohibitive: the dimension of that set is 
exponential in the size of the game tree

● A behavioral strategy maps information 
sets to distributions over the actions

● We treat each information set separately: 
we employ uncorrelated randomization 
between information sets

● Does that limit our expressivity?



Behavioral strategies

● Operating over mixed strategies is 
prohibitive: the dimension of that set is 
exponential in the size of the game tree

● A behavioral strategy maps information 
sets to distributions over the actions

● We treat each information set separately: 
we employ uncorrelated randomization 
between information sets

● Does that limit our expressivity?

No, for perfect-recall games!

Theorem (Kuhn). For any mixed 
strategy, there is a behavioral 
strategy that is utility-equivalent to 
that mixed strategy no matter the 
strategies of the rest of the players.

Mixed strategies can be useful 
even under perfect-recall



Mixed strategies can be superior under imperfect recall

● The conclusion of Kuhn’s theorem does 
not hold without perfect recall

● In the game on the right, there is a mixed 
strategy that gets a utility of 0.5

● But any behavioral strategy gets at most 
0.25 when Player 2 is minimizing the utility 
of Player 1



The problem with behavioral strategies

● Unlike mixed strategies, behavioral strategies 
have a compact representation

● But there is still a basic problem
● Let’s look at the utility function
● It contains products of the same player’s 

strategy
● This is very much nonlinear/nonconcave



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to 
optimize one’s utility efficiently.

● The set of strategies needs to be a compact convex 
polytope

● The utility function needs to be linear—or at least 
concave—in that player’s strategy

For behavioral strategies



Try #3: sequence-form representation

● We apply the basic transformation

● A vector is a sequence-form strategy if and only 
if it obeys probability flow conservation

We have a compact representation



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to 
optimize one’s utility efficiently.

● The set of strategies needs to be a compact convex 
polytope

● The utility function needs to be linear—or at least 
concave—in that player’s strategy

For seq.-form strategies



LP for zero-sum games in extensive form

In sequence form, we are dealing again with a bilinear optimization problem

Fixing the strategy of P1,

Sequence form

Dual

It suffices to solve 
the following LP:



Tree-form decision problems

● Taking the perspective of a single player, we can abstract away all other players
● The player faces a tree-form decision problem
● We have either decision nodes or observation nodes
● The player acts at a decision node and observes a signal at observation nodes



Inductive decomposition of strategies

● We proceed in a bottom-up fashion
● We start from the terminal decision points, 

where each strategy set is a probability simplex

Observation nodes can be 
decomposed using a Cartesian product

Decision nodes can be 
decomposed using a convex hull



Regret circuits

● We know how to minimize regret over the simplex (RM, MWU,...)
● How to compose multiple such regret minimizers to tackle more complex sets, 

such as the sequence-form polytope?
● We will use the framework of regret circuits (Farina et al., 2019)
● Because of the previous decomposition, it’s enough to handle

○ Cartesian products
○ Convex hulls



Cartesian product

Regret minimization over a Cartesian product 
easily decomposes into independent 
subproblems

● The next strategy is just the concatenation of 
the individual strategies

● Each utility is split into components and then 
forwarded to the individual algorithms

Taken from Farina et al.



Convex hull

Convex hull is relatively more involved

● We require a regret minimizer for mixing over 
the sets

○ Each action keeps track of a different regret 
minimizer

● The next strategy is the mixture of the 
individual strategies

● The feedback of each action reflects how well 
the corresponding regret minimizer is doing

Taken from Farina et al.



Counterfactual regret minimization



Remarks on CFR

● It was introduced by Zinkevich et al. (2007)
● It is based on the notion of counterfactual utilities
● It is a family of algorithms: there are different ways of instantiating the local 

regret minimizers
● By far the most common choice is RM and its modern variants
● More on that in the next lecture


