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Today’s lecture

e Extensive-form games
o Imperfect information and perfect recall
o Representing strategies
m Mixed strategies
m Behavioral strategies
m  Sequence-form strategies
e Tree-form decision problems
o Inductive decomposition of the strategy set

e Counterfactual regret minimization
o Regret circuits



Extensive-form games

e Represented through a rooted game tree

e Each node is either a decision node or a
leaf (terminal) node

e Each decision node belongs to a player,
who selects an action linking to new node

e Payoffs are given at the terminal nodes

e The nodes of each player are partitioned
into information sets

e An information sets contains all nodes that
cannot be distinguished by that player




Perfect recall

e Aplayer has perfect recall if it never
forgets previously acquired information

e For all nodes in the same information set,
the sequence of previous information sets
and actions should coincide

e If the sequence differed, a perfect-recall
player could distinguish the nodes

e The game on the right has imperfect recall 1 0 0 0 0 0 0 1




Converting to normal form

e A pure strategy is a mapping from information
sets to actions at those information sets

e A mixed strategy is a distribution over pure
strategies

e One can create an equivalent normal-form game
with actions being the set of pure strategies

e How large is the induced normal-form game?



Converting to normal form

e A pure strategy is a mapping from information
sets to actions at those information sets

e A mixed strategy is a distribution over pure
strategies

e One can create an equivalent normal-form game
with actions being the set of pure strategies

e How large is the induced normal-form game?

e The issue is that the number of pure strategies
scales with the product of the information sets



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to
optimize one’s utility efficiently.

e The set of strategies needs to be a compact convex
polytope

e The utility function needs to be linear—or at least
concave—in that player’s strategy



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to
optimize one’s utility efficiently.

e The set of strategies needs to be a compact convex
polytope

For mixed strategies



Behavioral strategies

e Operating over mixed strategies is
prohibitive: the dimension of that set is
exponential in the size of the game tree

e A behavioral strategy maps information
sets to distributions over the actions

e We treat each information set separately:
we employ uncorrelated randomization
between information sets

e Does that limit our expressivity?



Behavioral strategies
Q) No, for perfect-recall games!
e Operating over mixed strategies is )
prohibitive: the dimension of that set is
exponential in the size of the game tree ~ Theorem (Kuhn). For any mixed
e Abehavioral strategy maps information ~ Strategy, there is a behavioral
sets to distributions over the actions strategy that is utility-equivalent to
_ _ ~ that mixed strategy no matter the
e \We treat each information set separately: strategies of the rest of the players.
we employ uncorrelated randomization
between information sets

imi ivity?
e Does that limit our expressivity” Mixed strategies can be useful

even under perfect-recall



Mixed strategies can be superior under imperfect recall

e The conclusion of Kuhn's theorem does
not hold without perfect recall

e In the game on the right, there is a mixed
strategy that gets a utility of 0.5

e But any behavioral strategy gets at most
0.25 when Player 2 is minimizing the utility
of Player 1




The problem with behavioral strategies

e Unlike mixed strategies, behavioral strategies
have a compact representation
e But there is still a basic problem
e Let's look at the utility function Zezzlu’(z)pC(z) 111] (hla_)Lzb 1G.a)l.
e It contains products of the same player’s Wz
strategy
e This is very much nonlinear/nonconcave



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to
optimize one’s utility efficiently.

e The set of strategies needs to be a compact convex
polytope

e The utility function needs to be linear—or at least
concave—in that player’s strategy

For behavioral strategies



Try #3: sequence-form representation

e We apply the basic transformation  xi[o] = [1(; e, bi[(J, @)]

e A vector is a sequence-form strategy if and only
if it obeys probability flow conservation

x,-:={x,-eR§a=Zx,-[<j,a>]={1 B =2 vJ'eJ;}

€A, xi[pj] otherwise.

Q We have a compact representation



Desiderata from an optimization standpoint

When the rest of the players are fixed, we need to be able to
optimize one’s utility efficiently.

e The set of strategies needs to be a compact convex
polytope

e The utility function needs to be linear—or at least
concave—in that player’s strategy

For seq.-form strategies



LP for zero-sum games in extensive form

In sequence form, we are dealing again with a bilinear optimization problem

MiNyex MaXyey X' Ay
It suffices to solve
Fixing the strategy of P1, the following LP:

‘e s T
3y 3 B minimize K4
maximize x Ay o . _

Dual minimize f, v subject to  Fix = fi,

subjectto A'x >F,o. x>0,

y=0. \ A'x >F,v.

Sequence form

subject to Foy = f,,




Tree-form decision problems

Taking the perspective of a single player, we can abstract away all other players
The player faces a tree-form decision problem

We have either decision nodes or observation nodes

The player acts at a decision node and observes a signal at observation nodes




Inductive decomposition of strategies

e We proceed in a bottom-up fashion
e \We start from the terminal decision points,
where each strategy set is a probability simplex

Observation nodes can be Decision nodes can be
decomposed using a Cartesian product decomposed using a convex hull
(3] e ey
Xk:XPIXXPZX...XXPV XP1 0 0
Xj::C0< 0 ) XPz 5161 5 i3 0 |t

o/\o Xp,



Regret circuits

e We know how to minimize regret over the simplex (RM, MWU,...)

e How to compose multiple such regret minimizers to tackle more complex sets,
such as the sequence-form polytope?

e We will use the framework of regret circuits (Farina et al., 2019)

e Because of the previous decomposition, it's enough to handle

o Cartesian products
o Convex hulls



Cartesian product

Regret minimization over a Cartesian product
easily decomposes into independent
subproblems

e The next strategy is just the concatenation of
the individual strategies

e [Each utility is split into components and then
forwarded to the individual algorithms

g

Taken from Farina et al.



Convex hull

Convex hull is relatively more involved

e \We require a regret minimizer for mixing over

e 2 A& Mat + 2t

the sets 5 yW Ra RO
o Each action keeps track of a different regret : Ry - :
minimizer TTTrmmTmmmmmmmmmmmmmmmmmmnnnees

e The next strategy is the mixture of the
individual strategies

e The feedback of each action reflects how well
the corresponding regret minimizer is doing

Taken from Farina et al.



Counterfactual regret minimization

NEXTSTRATEGY():

for each decision point j € J do
A(A;) 3 b;t) i= R; NEXTSTRATEGY();

for each decision point j € J in top-down order do
for each actiona € A; do

if p; = 0 then
- xOMGa) =bal;
else
x0[(j,a)] = xD[p;] - b} [a];

return x) € RZ;

OBservEUTILITY (") € R%):

v® [L] =0;

for each node in the tree p € J U K in bottom-up order do
if p € J then

Let j =u;

VO[] = Boen, b [a] - @O, @)] + VO [p(j, a)]);
else
Let k = p;
VOLk] = Eees, VO [p(k,9)];
for each decision point j € J do
for each action a € A; do
u[a] = u®[(j,a)] + VO [p(j, )]
);

R;.OBSERVEUTILITY (u;




Remarks on CFR

e It was introduced by Zinkevich et al. (2007)

e |tis based on the notion of counterfactual utilities

e Itis a family of algorithms: there are different ways of instantiating the local
regret minimizers

e By far the most common choice is RM and its modern variants

e More on that in the next lecture



