
15-888 Computational Game Solving (Fall 2025) Wednesday, September 10th, 2025

Lecture 5
Extensive-Form Games and Counterfactual Regret Minimization

Ioannis Anagnostides

Our last lecture covered some basic equilibrium computation algorithms in games represented

in normal form. As alluded to, while every finite game can be cast into normal form, that repre-

sentation is often inefficient. This is particularly so when one is modeling sequential interactions,

as we shall see. A more compact representation in such settings is the extensive form. This lecture

centers on extensive-form games and decision making therein, culminating in the counterfactual
regret minimization (CFR) algorithm, which is at the heart of many practical breakthrough results.

In more detail, we will cover the following topics. To begin with, in Section 1, we will intro-

duce the formalism of (imperfect-information) extensive-form games. Wewill focus especially on

the question of how to represent strategies. The upshot is that, under a suitable, compact way of

representing strategies, one can still express the utility of each player as a linear functionwith re-

spect to its own strategy—when retaining the rest of the players’ strategies fixed. This will enable

us to import much of the technology developed for normal-form games. Section 2 introduces the

framework of tree-form decision problems (TFDPs), which results from an extensive-form game

when one analyzes solely the decision problem faced by each player individually. We will see

how the strategy set of each player can be decomposed inductively through a series of basic op-

erations. Together with the framework of regret circuits (Section 3), we will see how one can

minimize regret in a tree-form decision problem by relying solely on regret minimizers operating

over a simplex. The resulting algorithm is CFR.

1 Extensive-form games
An extensive-form game is represented through a rooted game tree. The set of nodes in the tree is

denoted byH . H contains either leaf (that is, terminal) nodes or decision nodes. Every decision

node is associated with a player that acts at that node. The set of all decision nodes that belong

to player 𝑖 is denoted by H𝑖 ⊆ H . By convention, the set of players [𝑛] ∪ {𝑐} includes a (non-
strategic) chance player who selects actions according to some fixed probability distribution; the

chance player intends to model external stochasticity, such as the roll of a dice. The player who

acts at a node ℎ ∈ H is to select one of the available actions at that node, denoted by Aℎ . The

game tree contains an edge for each possible action 𝑎 ∈ Aℎ that connects ℎ to the node the game

transitions to when 𝑎 is acted upon. When the game transitions to a leaf node 𝑧 ∈ Z, each player

𝑖 ∈ [𝑛] obtains a payoff specified by a utility function 𝑢𝑖 : Z → R.

Imperfect information and perfect recall To capture imperfect information, the nodesH𝑖 of

each player 𝑖 ∈ [𝑛] are partitioned into information sets J𝑖 . Every information set 𝑗 ∈ J𝑖 contains

all nodes that are indistinguishable for that player. We can thus assume that Aℎ = Aℎ′ = A 𝑗

1

for all nodes ℎ,ℎ′ that belong to the same information set 𝑗 ∈ J𝑖 , for otherwise that player could

distinguish between ℎ and ℎ′. The set of sequences Σ𝑖 is defined as Σ𝑖 := {(𝑗, 𝑎) : 𝑗 ∈ J𝑖, 𝑎 ∈ A 𝑗 }.
For a node ℎ ∈ J𝑖 , we denote by 𝜎𝑖 (ℎ) the ordered list of previous information sets encountered

by that player and actions played at those information sets.

We will mostly assume that the game has perfect recall, which intuitively means that players

never forget previously acquired information. Figure 1 gives an example of an imperfect-recall

game. Player 1 has two information sets, I1 and I2. There are two available actions at I1 (labeled
R1 and L1) and two available actions at I2 (labeled R2 and L2). By the time Player 1 gets to act at I2,
it has forgotten its action at I1. Formally, we say that a player 𝑖 ∈ [𝑛] has perfect if 𝜎𝑖 (ℎ) = 𝜎𝑖 (ℎ′)
for all nodes ℎ,ℎ′ that belong to the same information set 𝑗 ∈ J𝑖 . A game is of perfect recall of all

players therein have perfect recall.

1.1 Representation of strategies
A pure strategy for a player 𝑖 ∈ [𝑛] is any function of the form J𝑖 ∋ 𝑗 ↦→ A 𝑗 . We let Π𝑖 be the set

of deterministic strategies for player 𝑖 ∈ [𝑛]. Δ(Π𝑖) is the set ofmixed strategies; in what follows,

a mixed strategy will be denoted by 𝝁𝑖 ∈ Δ(Π𝑖).
Every extensive-form game can be cast into normal form as follows. We can construct a

normal-form game—with the same set of players excluding the chance player—in which the pure

strategies of a player 𝑖 is Π𝑖 and the utilities are in accordance with the original extensive-form

game; namely, under a joint pure strategy (𝜋1, . . . , 𝜋𝑛) ∈ Π1 × · · · × Π𝑛 ,∑︁
𝑧∈Z

𝑢𝑖 (𝑧)𝑝𝑐 (𝑧)
∏
𝑖′∈[𝑛]

∏
(ℎ,𝑎)⪯𝑧
ℎ∈H𝑖′

𝜋𝑖′ (𝑎 | ℎ). (1)

A few clarifications are in order.

• the notation (ℎ, 𝑎) ⪯ 𝑧 means that the path from the root to the leaf 𝑧 contains (ℎ, 𝑎);

• if 𝑗 ∈ J𝑖 is the information set for which ℎ ∈ 𝑗 , 𝜋𝑖 (𝑎 | ℎ) is to interpreted as 𝜋𝑖 (𝑎 | 𝑗); and

• 𝑝𝑐 (𝑧) is the probability that the chance player plays all actions on the path from root to 𝑧.

The key issue here is that |Π𝑖 | =
∏

𝑗∈J𝑖 |A 𝑗 |, so the number of pure strategies grows exponen-

tially with the number of information sets. As a concrete example, let’s say we have two players.

Player 1 acts first and selects an action from the set [𝑚]. Player 2 observes the action of Player

1, and gets to play either L or R in either of its information sets. Even though the extensive-form

game has Θ(𝑚) nodes, the number of actions for Player 2 in the induced normal-form game is

2
𝑚
, which is clearly prohibitive. We summarize this issue below.

Observation 1.1. There is a two-player extensive-form game with Θ(𝑚) nodes whose induced
normal-form representation requires at least 2𝑚 actions for one of the players.

This is not just a theoretical pathology: this type of example is ubiquitous whenever a player

needs to account for a large number of possible contingencies. So we certainly cannot afford to

2

treat every extensive-form game in normal form; we will need to develop specialized techniques

to tackle extensive-form games.

In light of the foregoing example, operating over the entire set of mixed strategies seems

like a daunting task. Instead, we will seek alternative, more compact representations. From an

optimization standpoint, there are two basic desiderata one should keep in mind.

1. The set of strategies needs to be a convex polytope described with a polynomial—in the

size of the game tree—number of constraints.

2. each player’s utility needs to be linear—or at least concave—in that player’s strategy.

At the very least, when the rest of the players are fixed, one should be able to optimize one’s

utility efficiently.

Behavioral strategies and Kuhn’s theorem A behavioral strategy 𝒃𝑖 ∈ >
𝑗∈J𝑖 Δ(A 𝑗) for a

player 𝑖 ∈ [𝑛] assigns at each action 𝑎 ∈ A 𝑗 at information set 𝑗 a probability. A behavioral

strategy is a mixed strategy in which one mixes independently at each information set. The fa-

mous theorem of Kuhn [1953] implies that, for perfect-recall games, behavioral strategies are as

expressive as mixed strategies in the following formal sense.

Theorem 1.2 (Kuhn, 1953). Consider any perfect-recall game. For any mixed strategy 𝝁𝑖 ∈ Δ(Π𝑖),
there exists a behavioral strategy 𝒃𝑖 ∈

>
𝑗∈J𝑖 Δ(A 𝑗) such that 𝑢𝑖 (𝒃𝑖, 𝒃−𝑖) = 𝑢𝑖 (𝝁𝑖, 𝒃−𝑖) for all 𝒃−𝑖 .

An example with imperfect recall The conclusion of Theorem 1.2 does not hold beyond

games of perfect recall. Let’s examine again the imperfect-recall game of Figure 1. We recall (no

pun intended) that Player 1 has two information sets, I1 and I2. It has two actions at I1 (R1 and L1)
and two actions at I2 (R2 and L2). The values at the terminal nodes represent the utility of Player

1. The game is zero-sum, so Player 2 is striving to minimize the utility of Player 1.

Now, if Player 1 is allowed to employ mixed strategies, Player 1 could choose 𝝁1
:= 1

2
(L1, L2) +

1

2
(R1,R2); this involves correlating the randomization between I1 and I2, so 𝝁1 is not a behavioral

strategy. No matter how Player 2 responds, Player 1 is then guaranteed to get a utility of 1/2. On
the other hand, let’s suppose that Player 1 is restricted to only play behavioral strategies. Since

Player 2 is minimizing the utility of Player 1, Player 1 will get a utility of

min(𝒃1 [I1, L1] · 𝒃1 [I2, L2], 𝒃1 [I1,R1] · 𝒃1 [I2,R2]) =
min (𝒃1 [I1, L1] · 𝒃1 [I2, L2], (1 − 𝒃1 [I1, L1]) · (1 − 𝒃1 [I2, L2])) . (2)

It’s not hard to see that the optimal solution of this expression is 1/4, which is considerably lower

than what is possible using mixed strategies—namely, 1/2. But Theorem 1.2 reassures us that this

cannot happen under perfect recall.

3

2

1

1

1

L2

0

R2

L1

1

0 0

R1

1

1

0 0

1

0 1

I1

I2

Figure 1: An imperfect-recall game where not correlating between information sets hurts the

player’s utility (cf. Theorem 1.2).

Sequence form While operating over behavioral strategies in perfect-recall games is as ex-

pressive as considering the entire set of mixed strategies (Theorem 1.2), working with behavioral

strategies has a basic flaw from an optimization perspective: even when one fixes the strategies of

the rest of the players, the utility of that player is not a linear function—not even concave—in that

player’s strategy, thereby failing to meet the second desideratum (Item 2) laid out earlier. (Item 1

is, by contrast, satisfied: the set of behavioral strategies is simply a Cartesian product of simplices,

which is a convex polytope that can be described with a polynomial number of constraints.) This

becomes evident already from the expression of the utility in (2). More broadly, similarly to (1),

the utility as a function of a behavioral strategy profile (𝒃1, . . . , 𝒃𝑛) can be expressed as∑︁
𝑧∈Z

𝑢𝑖 (𝑧)𝑝𝑐 (𝑧)
∏
𝑖′∈[𝑛]

∏
(ℎ,𝑎)⪯𝑧
ℎ∈H𝑖′

𝒃𝑖′ [(𝑗, 𝑎)] .

The basic issue is that, even after fixing all but one player, the utility function of that player

will contain products, which are not easy to handle from an optimization standpoint. Thankfully,

there is a neat trick that sidesteps this issue—the sequence-form representation of strategies.

The sequence form was discovered independently by Romanovskii [1962] and Koller et al.

[1996]. A sequence-form vector, denoted by 𝒙𝑖 , again belongs toRΣ𝑖
. But the key difference is that,

for each sequence (𝑗, 𝑎) ∈ Σ𝑖 , the entry of 𝒙𝑖 [(𝑗, 𝑎)] contains the product of the probabilities on
the path from the root to action 𝑎 at decision point 𝑗 . In particular, 𝒙𝑖 [𝜎] :=

∏
(𝑗,𝑎)⪯𝜎 𝒃𝑖 [(𝑗, 𝑎)] for

all sequences 𝜎 ∈ Σ𝑖 , where 𝒃𝑖 is a behavioral strategy. For 𝒙𝑖 to be a valid sequence-form strategy,

it is enough to ensure that the probability mass is conserved, in that

∑
𝑎∈A 𝑗

𝒙𝑖 [(𝑗, 𝑎)] = 𝒙𝑖 [𝑝 𝑗],
where 𝑝 𝑗 is 𝑖’s sequence preceding 𝑗 ; if 𝑗 is not preceded by some another sequence—in which

case we write 𝑝 𝑗 = ∅—we instead have

∑
𝑎∈A 𝑗

𝒙𝑖 [(𝑗, 𝑎)] = 1.

Definition 1.3 (Sequence-form polytope). The sequence-form polytope is the convex set

X𝑖 :=

𝒙𝑖 ∈ RΣ𝑖
≥0 :

∑︁
𝑎∈A 𝑗

𝒙𝑖 [(𝑗, 𝑎)] =
{
1 if 𝑝 𝑗 = ∅
𝒙𝑖 [𝑝 𝑗] otherwise.

∀𝑗 ∈ J𝑖

 .

4

In particular, the number of constraints of X𝑖 is polynomial in the size of the game. What’s

more, the utility of each player 𝑖 can nowbe expressed as𝑢𝑖 (𝒙) =
∑

𝑧∈Z 𝑢𝑖 (𝑧)𝑝𝑐 (𝑧)
∏𝑛

𝑖′=1 𝒙𝑖′ [𝜎𝑖′ (𝑧)],
where 𝜎𝑖′ (𝑧) is the last sequence of player 𝑖′ from the path of the root to 𝑧. We see that 𝑢𝑖 (𝒙) can
be expressed as ⟨𝒙𝑖, 𝒖𝑖 (𝒙−𝑖)⟩ for some function 𝒖𝑖 (𝒙−𝑖) ∈ RΣ𝑖

that does not depend on 𝒙𝑖 .

Zero-sum games In the special case of zero-sum games, the utility of Player 2 reads 𝒙⊤A𝒚,
where 𝒙 and 𝒚 are sequence-form vectors (per Definition 1.3); as in the previous lecture, we

take Player 1—who selects 𝒙—to be the minimizer. We will now show how to make use of the

sequence-form representation to efficiently compute minimax equilibria in zero-sum extensive-

form games.

By Definition 1.3, we can represent the sequence-form strategy polytope of Player 1 as X :=

{𝒙 ∈ RΣ1

≥0 : F1𝒙 = 𝒇1}, and similarly, Y := {𝒙 ∈ RΣ2

≥0 : F2𝒚 = 𝒇2}. Let’s fix the strategy of Player 1,

𝒙 ∈ X, and consider the following linear program.

maximize 𝒙⊤A𝒚
subject to F2𝒚 = 𝒇2,

𝒚 ≥ 0.

(P)

By strong duality, we know that for any 𝒙 , the value of (P) is equal to the value of its dual; namely,

minimize 𝒇⊤
2
𝒗

subject to A⊤𝒙 ≥ F⊤
2
𝒗 .

(D)

In other words, we have shown that, for any 𝒙 ∈ X, max𝒚∈Y 𝒙⊤A𝒚 = min𝒗:A⊤𝒙≥F⊤
2
𝒗 𝒇

⊤
2
𝒗. This

implies that one can compute a solution to min𝒙∈X max𝒚∈Y 𝒙⊤A𝒚 by solving the following linear

program with respect to the variables (𝒙, 𝒗).

minimize 𝒇⊤
2
𝒗

subject to F1𝒙 = 𝒇1,

𝒙 ≥ 0,

A⊤𝒙 ≥ F⊤
2
𝒗 .

We thus arrive at the following theorem, which extends a result covered in the last lecture

pertaining to normal-form zero-sum games.

Theorem 1.4. For any perfect-recall zero-sum extensive-form game, a minimax equilibrium can be
computed in time polynomial in the size of the game tree.

2 Tree-form decision problems
We now introduce the framework of tree-form decision making. In a nutshell, it describes the

decision problem faced by a single player in an extensive-form game when we abstract away all

other players.

5

1

2

1 1

2

1 1

I1

I2 I3 I4

1

1 1

1

I1

I2 I3

I4

Figure 2: Left: a two-player extensive-form game. Right: the induced tree-form decision problem

faced by Player 1. It contains 4 decision points and a single observation point.

Under this abstraction, the player interacts with an environment in two basic ways. In a

decision point 𝑗 ∈ J , corresponding to an information set, the player is to select an action from

a set A 𝑗 . At an observation point 𝑘 ∈ K , the player observes a signal 𝑠 ∈ S𝑘 . It is assumed that

decision and observation points form a tree. Figure 2 gives a simple example showing how one

can think about the decision problem faced by Player 1 in terms of a tree-form decision problem.

We further assume that there is a transition function 𝜌 . Given a decision node 𝑗 ∈ J and an

action 𝑎 ∈ A 𝑗 , 𝜌 (𝑗, 𝑎) returns the next point 𝑝 ∈ J ∪K ∪ {⊥} in the tree reached upon selecting

𝑎 in 𝑗 , or ⊥ if the decision process ends. Similarly, given an observation node 𝑘 ∈ K and a signal

𝑠 ∈ S𝑘 , 𝜌 (𝑘, 𝑠) returns the next point 𝑝 ∈ J ∪ K ∪ {⊥} in the tree reached upon observing 𝑠 in

𝑘 , or ⊥ if the decision process ends.

2.1 Inductive decomposition of strategies
Let X be the sequence-form strategy set in the underlying tree-form decision problem (per Def-

inition 1.3). We will now see how to decompose X using two basic operations: convex hulls

and Cartesian products. Let’s start from the example of Figure 2. We proceed in a bottom-up
fashion. At the terminal decision points 𝑗 = I2, I3, I4, the strategy set X𝑗 is a probability sim-

plex; namely, X𝑗 = Δ2
. Next, at the only observation point, say 𝑘 , we have X𝑘 = XI2 × XI3 ; that

is, it can be decomposed into two independent subproblems. Finally, at I1, the player needs to

specify a probability for playing each of the two actions. Let’s denote them by 𝝀 [𝑎1] and 𝝀 [𝑎2].
By definition of the sequence-form polytope, one then has to multiply by 𝝀 [𝑎1] the strategies in
the subtree rooted at 𝑘 and by 𝝀 [𝑎2] the strategies in the subtree rooted at I4. In other words,

X := XI1 = {(𝝀 [𝑎1],𝝀 [𝑎2],𝝀 [𝑎1]𝒙𝑘 ,𝝀 [𝑎2]𝒙I4) : (𝝀 [𝑎1],𝝀 [𝑎2]) ∈ Δ2, 𝒙𝑘 ∈ X𝑘 , 𝒙I4 ∈ XI4}.
There is a direct way of extending this bottom-up decomposition of the sequence-form poly-

tope in general tree-form decision problems. First, in any observation point 𝑘 ∈ K with a set of

children {𝑝1, . . . , 𝑝𝜈 } = {𝜌 (𝑘, 𝑠) : 𝑠 ∈ S𝑘} =: C𝑘 , we have

X𝑘 = X𝑝1 × X𝑝2 × · · · × X𝑝𝜈 ,

where X𝑝𝑖 is the sequence-form polytope corresponding to the subtree rooted at point 𝑝𝑖 . In any

6

decision point 𝑗 ∈ J with a set of children {𝑝1, . . . , 𝑝𝜈 } = {𝜌 (𝑗, 𝑎) : 𝑎 ∈ A 𝑗 } =: C𝑗 ,

X𝑗 := co


©­­­­­­«

𝒆1
X𝑝1

0
...

0

ª®®®®®®¬
,

©­­­­­­«

𝒆2
0
X𝑝2
...

0

ª®®®®®®¬
, . . . ,

©­­­­­­«

𝒆𝜈
0
0
...

X𝑝𝜈

ª®®®®®®¬


,

where 𝒆𝑖 ∈ RA 𝑗
is the 𝑖th unit vector.

3 Regret circuits and counterfactual regret minimization
We will now leverage the decomposition of Section 2.1 to construct a regret minimizer for the

sequence-form polytope. This section follows the framework of regret circuits, introduced by Fa-

rina et al. [2019]. The resulting algorithm—in fact, family of algorithms—is CFR.
Regret circuits address the following basic question. Let’s say we know how to efficiently

minimize regret over a certain set. Can one compose multiple such regret minimizers to tackle

a composite, more complex set? Last lecture gave multiple efficient no-regret algorithms for the

probability simplex. Further, Section 2.1 shows that one can express the sequence-form polytope

as a composite set of probability simplices involving only i) Cartesian products and ii) convex

hulls. As a result, it will be enough to design regret circuits for those two basic operations.

Remark 3.1. Before we proceed, we remark that while the previous lecture introduced the frame-

work of regret minimization in the special case where the learner outputs a probability distribu-

tion, the definitions readily carry over when the learner outputs a point 𝒙 in a general convex

set X (for example, the sequence-form polytope), and then obtains a linear utility function of the

form 𝒙 ↦→ ⟨𝒙, 𝒖⟩.

3.1 Cartesian product
Let’s say we have an online algorithm ℜ𝑝 that efficiently minimizes regret over a set X𝑝 for each

𝑝 ∈ C𝑘 . We will now develop a regret minimizer ℜ𝑘 for X𝑘 :=
>

𝑝∈C𝑘 X𝑝 . Recall from the last

lecture that an online algorithm interacts with the environment by first specifying a strategy

in X𝑘 . Then it observes a utility feedback and can update the internal state of the algorithm

accordingly. We will handle those two separately.

• Any time ℜ𝑘 needs to specify a strategy, it obtains the strategy 𝒙𝑝 of ℜ𝑝 for all 𝑝 ∈ C𝑘 , and
then outputs the Cartesian product (𝒙𝑝)𝑝∈C𝑘 .

• Any time ℜ𝑘 obtains a utility vector 𝒖𝑘 = (𝒖𝑝)𝑝∈C𝑘 as feedback from the environment, it

forwards 𝒖𝑝 to each ℜ𝑝 .

It is straightforward to show that the regret of ℜ𝑘 is the sum of the regrets of (ℜ𝑝)𝑝∈C𝑘 ; the
proof is left as a simple exercise.

7

Proposition 3.2. The regret of ℜ𝑘 is equal to
∑

𝑝∈C𝑘 Reg
(𝑇)
𝑝 , where Reg(𝑇)𝑝 is the regret of ℜ𝑝 .

In particular, if the regret of each ℜ𝑝 grows sublinearly in 𝑇 , so does the regret of ℜ𝑘 .

3.2 Convex hull
The convex hull requires a slightly more involved construction. Here, we assume that we have a

regret minimizer ℜ𝑝 with respect to a set C𝑗 , for each 𝑝 ∈ C𝑗 , and the goal is to produce a regret

minimizer ℜ𝑗 for the set X𝑗 := co{(X𝑝)𝑝∈C𝑗
}. We will make use of a regret minimizer ℜΔ that

operates over Δ(C𝑗); the basic role ofℜΔ is to specify how to mix over (ℜ𝑝)𝑝∈C𝑗
. As before, there

is a natural algorithm for implementing a regret circuit for the convex hull.

• Any timeℜ𝑗 needs to specify a strategy, it obtains the strategy 𝒙𝑝 ofℜ𝑝 , for all 𝑝 ∈ C𝑗 , and

the strategy 𝝀 ∈ Δ(C𝑗) of ℜΔ, and then outputs (𝝀 [𝑝]𝒙𝑝)𝑝∈C𝑗
.

• Any time ℜ𝑗 obtains a utility vector 𝒖 𝑗 as feedback from the environment, it first forwards

𝒖 𝑗 to each ℜ𝑝 . It then forwards to ℜΔ the utility vector (⟨𝒙𝑝, 𝒖 𝑗 ⟩)𝑝∈C𝑗
.

It’s not hard to show that the above construction yields a sound regret circuit for the convex

hull; the proof is left again as an exercise.

Proposition 3.3. The regret ofℜ𝑗 is at most Reg(𝑇)Δ +max𝑝∈C𝑗
Reg(𝑇)𝑝 , where Reg(𝑇)Δ is the regret of

ℜΔ and Reg(𝑇)𝑝 is the regret of each ℜ𝑝 .

Combining Propositions 3.2 and 3.3 with the decomposition of Section 2.1, together with the

fact that efficient regret minimizers over the simplex exist, we obtain an efficient online algorithm

for minimizing regret over the sequence-form polytope.

Theorem 3.4. There exists an efficient algorithm for minimizing regret with respect to the sequence-
form polytope.

3.3 Counterfactual regret minimization
We spell out the resulting construction in Algorithm 1. This algorithm was first proposed and

analyzed by Zinkevich et al. [2007], although the preceding analysis follows the framework of Fa-

rina et al. [2019]. CFR can be thought of as a family of algorithms: it can be instantiated with any

regret minimizer over the simplex. By far the most common choice in practice is to use regret

matching and its modern variants, to be discussed more in the next lecture.

In Algorithm 1, we denote by NextStrategy the function that outputs the next strategy of

CFR. It invokes each local regret minimizer, and it then proceeds by converting the resulting

behavioral strategy into a sequence-form vector; this conversion is essential for reasons we have

already discussed. The function ObserveUtility updates the so-called counterfactual utilities
that are given as input to the local regret minimizers that operate over each decision point.

8

Algorithm 1: Counterfactual regret minimization (CFR)

1 Input: A regret minimizer ℜ𝑗 for each decision point 𝑗 ∈ J of the TFDP.

2 NextStrategy():

3 for each decision point 𝑗 ∈ J do
4 Δ(A 𝑗) ∋ 𝑏

(𝑡)
𝑗

:= ℜ𝑗 .NextStrategy();
5 for each decision point 𝑗 ∈ J in top-down order do
6 for each action 𝑎 ∈ A 𝑗 do
7 if 𝑝 𝑗 = ∅ then
8 𝒙 (𝑡) [(𝑗, 𝑎)] := 𝑏

(𝑡)
𝑗
[𝑎];

9 else
10 𝒙 (𝑡) [(𝑗, 𝑎)] := 𝒙 (𝑡) [𝑝 𝑗] · 𝑏 (𝑡)𝑗 [𝑎];
11 return 𝒙 (𝑡) ∈ RΣ

;

12 ObserveUtility(𝒖 (𝑡) ∈ RΣ):
13 𝑉 (𝑡) [⊥] := 0;

14 for each node in the tree 𝑝 ∈ J ∪ K in bottom-up order do
15 if 𝑝 ∈ J then
16 Let 𝑗 = 𝑝;

17 𝑉 (𝑡) [𝑗] :=∑
𝑎∈A 𝑗

𝑏
(𝑡)
𝑗
[𝑎] · (𝒖 (𝑡) [(𝑗, 𝑎)] +𝑉 (𝑡) [𝜌 (𝑗, 𝑎)]);

18 else
19 Let 𝑘 = 𝑝;

20 𝑉 (𝑡) [𝑘] :=∑
𝑠∈S𝑘

𝑉 (𝑡) [𝜌 (𝑘, 𝑠)];
21 for each decision point 𝑗 ∈ J do
22 for each action 𝑎 ∈ A 𝑗 do
23 𝒖 (𝑡)

𝑗
[𝑎] := 𝒖 (𝑡) [(𝑗, 𝑎)] +𝑉 (𝑡) [𝜌 (𝑗, 𝑎)];

24 ℜ𝑗 .ObserveUtility(𝒖 (𝑡)
𝑗
);

References
H. W. Kuhn. Extensive games and the problem of information. In Contributions to the Theory
of Games, volume 2 of Annals of Mathematics Studies, 28, pages 193–216. Princeton University

Press, 1953.

I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet Mathemat-
ics, 3, 1962.

Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria

for extensive two-person games. Games and Economic Behavior, 14(2), 1996.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Regret circuits: Composability of regret

minimizers. In International Conference on Machine Learning (ICML), 2019.

9

Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret minimiza-

tion in games with incomplete information. In Neural Information Processing Systems (NIPS),
2007.

10

