15-888 Computational Game Solving (Fall 2025) Wednesday, September 10th, 2025

Lecture 5
Extensive-Form Games and Counterfactual Regret Minimization

Ioannis Anagnostides

Our last lecture covered some basic equilibrium computation algorithms in games represented
in normal form. As alluded to, while every finite game can be cast into normal form, that repre-
sentation is often inefficient. This is particularly so when one is modeling sequential interactions,
as we shall see. A more compact representation in such settings is the extensive form. This lecture
centers on extensive-form games and decision making therein, culminating in the counterfactual
regret minimization (CFR) algorithm, which is at the heart of many practical breakthrough results.

In more detail, we will cover the following topics. To begin with, in Section 1, we will intro-
duce the formalism of (imperfect-information) extensive-form games. We will focus especially on
the question of how to represent strategies. The upshot is that, under a suitable, compact way of
representing strategies, one can still express the utility of each player as a linear function with re-
spect to its own strategy—when retaining the rest of the players’ strategies fixed. This will enable
us to import much of the technology developed for normal-form games. Section 2 introduces the
framework of tree-form decision problems (TFDPs), which results from an extensive-form game
when one analyzes solely the decision problem faced by each player individually. We will see
how the strategy set of each player can be decomposed inductively through a series of basic op-
erations. Together with the framework of regret circuits (Section 3), we will see how one can
minimize regret in a tree-form decision problem by relying solely on regret minimizers operating
over a simplex. The resulting algorithm is CFR.

1 Extensive-form games

An extensive-form game is represented through a rooted game tree. The set of nodes in the tree is
denoted by H. H contains either leaf (that is, terminal) nodes or decision nodes. Every decision
node is associated with a player that acts at that node. The set of all decision nodes that belong
to player i is denoted by H; € H. By convention, the set of players [n] U {c} includes a (non-
strategic) chance player who selects actions according to some fixed probability distribution; the
chance player intends to model external stochasticity, such as the roll of a dice. The player who
acts at a node h € H is to select one of the available actions at that node, denoted by Aj. The
game tree contains an edge for each possible action a € Ay, that connects h to the node the game
transitions to when a is acted upon. When the game transitions to a leaf node z € Z, each player
i € [n] obtains a payoft specified by a utility function u; : Z — R.

Imperfect information and perfectrecall To capture imperfect information, the nodes H; of
each player i € [n] are partitioned into information sets ;. Every information set j € J; contains
all nodes that are indistinguishable for that player. We can thus assume that A, = Ap = A;



for all nodes h, b’ that belong to the same information set j € J;, for otherwise that player could
distinguish between h and h’. The set of sequences X; is defined as Z; == {(j,a) : j € J;,a € A;}.
For a node h € J;, we denote by o;(h) the ordered list of previous information sets encountered
by that player and actions played at those information sets.

We will mostly assume that the game has perfect recall, which intuitively means that players
never forget previously acquired information. Figure 1 gives an example of an imperfect-recall
game. Player 1 has two information sets, I; and I,. There are two available actions at I; (labeled
R; and L;) and two available actions at I, (labeled R, and L;). By the time Player 1 gets to act at I,
it has forgotten its action at |;. Formally, we say that a player i € [n] has perfect if 0;(h) = 0;(h")
for all nodes h, b’ that belong to the same information set j € ;. A game is of perfect recall of all
players therein have perfect recall.

1.1 Representation of strategies

A pure strategy for a player i € [n] is any function of the form J; 3 j — A;. We let II; be the set
of deterministic strategies for player i € [n]. A(IL;) is the set of mixed strategies; in what follows,
a mixed strategy will be denoted by p; € A(IL;).

Every extensive-form game can be cast into normal form as follows. We can construct a
normal-form game—with the same set of players excluding the chance player—in which the pure
strategies of a player i is II; and the utilities are in accordance with the original extensive-form
game; namely, under a joint pure strategy (7[1, e, JTn) ell; xX---x1II,,

D u@pe2 || |] mlaln. (1)

zeZ i’e[n] (ha)Xz
he(}‘{i/

A few clarifications are in order.
« the notation (h, a) X z means that the path from the root to the leaf z contains (h, a);
. if j € J; is the information set for which h € j, m;(a | h) is to interpreted as ;(a | j); and
+ p.(z) is the probability that the chance player plays all actions on the path from root to z.

The key issue here is that |IT;| = [];c 4 |A;|, so the number of pure strategies grows exponen-
tially with the number of information sets. As a concrete example, let’s say we have two players.
Player 1 acts first and selects an action from the set [m]. Player 2 observes the action of Player
1, and gets to play either L or R in either of its information sets. Even though the extensive-form
game has ©(m) nodes, the number of actions for Player 2 in the induced normal-form game is
2™, which is clearly prohibitive. We summarize this issue below.

Observation 1.1. There is a two-player extensive-form game with ©(m) nodes whose induced
normal-form representation requires at least 2™ actions for one of the players.

This is not just a theoretical pathology: this type of example is ubiquitous whenever a player
needs to account for a large number of possible contingencies. So we certainly cannot afford to



treat every extensive-form game in normal form; we will need to develop specialized techniques
to tackle extensive-form games.

In light of the foregoing example, operating over the entire set of mixed strategies seems
like a daunting task. Instead, we will seek alternative, more compact representations. From an
optimization standpoint, there are two basic desiderata one should keep in mind.

1. The set of strategies needs to be a convex polytope described with a polynomial—in the
size of the game tree—number of constraints.

2. each player’s utility needs to be linear—or at least concave—in that player’s strategy.

At the very least, when the rest of the players are fixed, one should be able to optimize one’s
utility efficiently.

Behavioral strategies and Kuhn’s theorem A behavioral strategy b; € X jcq; A(A;) for a
player i € [n] assigns at each action a € A; at information set j a probability. A behavioral
strategy is a mixed strategy in which one mixes independently at each information set. The fa-
mous theorem of Kuhn [1953] implies that, for perfect-recall games, behavioral strategies are as
expressive as mixed strategies in the following formal sense.

Theorem 1.2 (Kuhn, 1953). Consider any perfect-recall game. For any mixed strategy p; € A(I1;),
there exists a behavioral strategy b; € ><j€$ A(A;) such that u;(b;,b_;) = u;(p;, b—;) for allb_;.

An example with imperfect recall The conclusion of Theorem 1.2 does not hold beyond
games of perfect recall. Let’s examine again the imperfect-recall game of Figure 1. We recall (no
pun intended) that Player 1 has two information sets, I; and I,. It has two actions at |; (R; and L,)
and two actions at I, (R and L;). The values at the terminal nodes represent the utility of Player
1. The game is zero-sum, so Player 2 is striving to minimize the utility of Player 1.

Now, if Player 1 is allowed to employ mixed strategies, Player 1 could choose p; = %(Ll, L,)+
%(Rl, Rz); this involves correlating the randomization between |; and I, so p; is not a behavioral
strategy. No matter how Player 2 responds, Player 1 is then guaranteed to get a utility of /2. On
the other hand, let’s suppose that Player 1 is restricted to only play behavioral strategies. Since
Player 2 is minimizing the utility of Player 1, Player 1 will get a utility of

min(b; [1;, L1] - b1[l2, L], bi[l1, Ri] - bi[l2, Ra]) =
min (b [13, L1] - by [l2, L2], (1 = bi[I, Li]) - (1 = by [l2, L2])) . (2)
It’s not hard to see that the optimal solution of this expression is 1/4, which is considerably lower

than what is possible using mixed strategies—namely, 1/2. But Theorem 1.2 reassures us that this
cannot happen under perfect recall.



Figure 1: An imperfect-recall game where not correlating between information sets hurts the
player’s utility (cf. Theorem 1.2).

Sequence form While operating over behavioral strategies in perfect-recall games is as ex-
pressive as considering the entire set of mixed strategies (Theorem 1.2), working with behavioral
strategies has a basic flaw from an optimization perspective: even when one fixes the strategies of
the rest of the players, the utility of that player is not a linear function—not even concave—in that
player’s strategy, thereby failing to meet the second desideratum (Item 2) laid out earlier. (Item 1
is, by contrast, satisfied: the set of behavioral strategies is simply a Cartesian product of simplices,
which is a convex polytope that can be described with a polynomial number of constraints.) This
becomes evident already from the expression of the utility in (2). More broadly, similarly to (1),

the utility as a function of a behavioral strategy profile (by,...,b,) can be expressed as
D ui(2)pe(2) H [ ] belGa)l.
zeZ n] (ha)=<z
heH;

The basic issue is that, even after fixing all but one player, the utility function of that player
will contain products, which are not easy to handle from an optimization standpoint. Thankfully,
there is a neat trick that sidesteps this issue—the sequence-form representation of strategies.

The sequence form was discovered independently by Romanovskii [1962] and Koller et al.
[1996]. A sequence-form vector, denoted by x;, again belongs to R*. But the key difference is that,
for each sequence (j,a) € ;, the entry of x;[(j, a)] contains the product of the probabilities on
the path from the root to action a at decision point j. In particular, x;[o] = []; 0z, bi[ (j, @)] for
all sequences o € X;, where b; is a behavioral strategy. For x; to be a valid sequence-form strategy,
it is enough to ensure that the probability mass is conserved, in that ). a; Xi [(J,a)] = xi[p)],
where p; is i’s sequence preceding j; if j is not preceded by some another sequence—in which
case we write p; = @—we instead have Zaeﬂj xi[(j,a)] = 1.

Definition 1.3 (Sequence-form polytope). The sequence-form polytope is the convex set

K= xRy in[(j’a)]:{ ff T Vjed
acA; xi[pj] otherwise.



In particular, the number of constraints of X; is polynomial in the size of the game. What’s
more, the utility of each player i can now be expressed as u;(x) = }.,c 7 ui(2)pc(2) [ 15— xir[ov (2)],
where o/ (2) is the last sequence of player i’ from the path of the root to z. We see that u;(x) can
be expressed as {x;, u;(x_;)) for some function u;(x_;) € R* that does not depend on x;.

Zero-sum games In the special case of zero-sum games, the utility of Player 2 reads x ' Ay,
where x and y are sequence-form vectors (per Definition 1.3); as in the previous lecture, we
take Player 1—who selects x—to be the minimizer. We will now show how to make use of the
sequence-form representation to efficiently compute minimax equilibria in zero-sum extensive-
form games.

By Definition 1.3, we can represent the sequence-form strategy polytope of Player 1 as X =
{x € REB : F1x = f1}, and similarly, = {x € RE(Z) : Foy = f,}. Let’s fix the strategy of Player 1,
x € X, and consider the following linear program.

maximize x'Ay
subject to Foy = f5, (P)
y=0.

By strong duality, we know that for any x, the value of (P) is equal to the value of its dual; namely,

minimize f, v
subjectto A'x > F,v.

(D)

In other words, we have shown that, for any x € X, maxyey x"Ay = min,avy>r7, fy . This
implies that one can compute a solution to minycy maxyey x ' Ay by solving the following linear
program with respect to the variables (x, v).

minimize f, v
subject to Fix = fi,
x>0,

A'x >F,o0.

We thus arrive at the following theorem, which extends a result covered in the last lecture
pertaining to normal-form zero-sum games.

Theorem 1.4. For any perfect-recall zero-sum extensive-form game, a minimax equilibrium can be
computed in time polynomial in the size of the game tree.

2 Tree-form decision problems

We now introduce the framework of tree-form decision making. In a nutshell, it describes the
decision problem faced by a single player in an extensive-form game when we abstract away all
other players.



Figure 2: Left: a two-player extensive-form game. Right: the induced tree-form decision problem
faced by Player 1. It contains 4 decision points and a single observation point.

Under this abstraction, the player interacts with an environment in two basic ways. In a
decision point j € 7, corresponding to an information set, the player is to select an action from
a set A;. At an observation point k € K, the player observes a signal s € Si. It is assumed that
decision and observation points form a tree. Figure 2 gives a simple example showing how one
can think about the decision problem faced by Player 1 in terms of a tree-form decision problem.

We further assume that there is a transition function p. Given a decision node j € J and an
action a € Aj, p(j, a) returns the next point p € J UK U {L} in the tree reached upon selecting
ain j, or L if the decision process ends. Similarly, given an observation node k € K and a signal
s € Sk, p(k, s) returns the next point p € J UK U {L} in the tree reached upon observing s in
k, or L if the decision process ends.

2.1 Inductive decomposition of strategies

Let X be the sequence-form strategy set in the underlying tree-form decision problem (per Def-
inition 1.3). We will now see how to decompose X using two basic operations: convex hulls
and Cartesian products. Let’s start from the example of Figure 2. We proceed in a bottom-up
fashion. At the terminal decision points j = Iy, I3, l4, the strategy set X is a probability sim-
plex; namely, X; = A?. Next, at the only observation point, say k, we have X; = X, X Xj,; that
is, it can be decomposed into two independent subproblems. Finally, at |;, the player needs to
specify a probability for playing each of the two actions. Let’s denote them by A[a;] and A[az].
By definition of the sequence-form polytope, one then has to multiply by A[a;] the strategies in
the subtree rooted at k and by A[a;] the strategies in the subtree rooted at l. In other words,
X =X, = {(Alar] Alaz], Ala e Alaslx,) - (Alarl, Alas]) € A% xi € X, x1, € Xi, ).

There is a direct way of extending this bottom-up decomposition of the sequence-form poly-
tope in general tree-form decision problems. First, in any observation point k € K with a set of

children {py,...,p,} = {p(k,s) : s € S} = Ck, we have
Xk :XPI XXPZ X"'XXPV,

where X, is the sequence-form polytope corresponding to the subtree rooted at point p;. In any



decision point j € J with a set of children {p1,...,p,} = {p(j,a) :a € A;} =C;j,

€1 (] e,
X, || 0 0
Xj::CO 0 5 sz s e e e 0 5
0o/ \o Xy,

where e; € R7 is the ith unit vector.

3 Regret circuits and counterfactual regret minimization

We will now leverage the decomposition of Section 2.1 to construct a regret minimizer for the
sequence-form polytope. This section follows the framework of regret circuits, introduced by Fa-
rina et al. [2019]. The resulting algorithm—in fact, family of algorithms—is CFR.

Regret circuits address the following basic question. Let’s say we know how to efficiently
minimize regret over a certain set. Can one compose multiple such regret minimizers to tackle
a composite, more complex set? Last lecture gave multiple efficient no-regret algorithms for the
probability simplex. Further, Section 2.1 shows that one can express the sequence-form polytope
as a composite set of probability simplices involving only i) Cartesian products and ii) convex
hulls. As a result, it will be enough to design regret circuits for those two basic operations.

Remark 3.1. Before we proceed, we remark that while the previous lecture introduced the frame-
work of regret minimization in the special case where the learner outputs a probability distribu-
tion, the definitions readily carry over when the learner outputs a point x in a general convex
set X (for example, the sequence-form polytope), and then obtains a linear utility function of the
form x — (x, u).

3.1 Cartesian product

Let’s say we have an online algorithm R, that efficiently minimizes regret over a set X,, for each
p € Cx. We will now develop a regret minimizer Ry for Xy = X,¢c, Xp. Recall from the last
lecture that an online algorithm interacts with the environment by first specifying a strategy
in X. Then it observes a utility feedback and can update the internal state of the algorithm
accordingly. We will handle those two separately.

« Any time Ry needs to specify a strategy, it obtains the strategy x, of R, for all p € C, and
then outputs the Cartesian product (x,)pec, -

+ Any time Ry obtains a utility vector uy = (up)pec, as feedback from the environment, it
forwards u,, to each R,,.

It is straightforward to show that the regret of Ry is the sum of the regrets of (R,),ec,; the
proof is left as a simple exercise.



(T)

Proposition 3.2. The regret of Ry is equal to Y. cc, Reg, °, where Regl()T) is the regret of R,.

In particular, if the regret of each R, grows sublinearly in T, so does the regret of Ry.

3.2 Convex hull

The convex hull requires a slightly more involved construction. Here, we assume that we have a
regret minimizer R, with respect to a set C;, for each p € C;, and the goal is to produce a regret
minimizer R; for the set X; := co{(X,),ec;}. We will make use of a regret minimizer R, that
operates over A(Cj); the basic role of R, is to specify how to mix over (R,)yec;. As before, there
is a natural algorithm for implementing a regret circuit for the convex hull.

« Any time R; needs to specify a strategy, it obtains the strategy x,, of R, for all p € C;, and
the strategy A € A(C;) of Ry, and then outputs (A[p]xp),ec;-

+ Any time R; obtains a utility vector u; as feedback from the environment, it first forwards
u; to each R,,. It then forwards to R, the utility vector ({xp, u;))pec;-

It’s not hard to show that the above construction yields a sound regret circuit for the convex
hull; the proof is left again as an exercise.

Proposition 3.3. The regret of R; is at most Reg(AT) + max,ec, Reg;,T), where Reg(AT) is the regret of

Ra and Reg;,T) is the regret of each R,,.

Combining Propositions 3.2 and 3.3 with the decomposition of Section 2.1, together with the
fact that efficient regret minimizers over the simplex exist, we obtain an efficient online algorithm
for minimizing regret over the sequence-form polytope.

Theorem 3.4. There exists an efficient algorithm for minimizing regret with respect to the sequence-
form polytope.

3.3 Counterfactual regret minimization

We spell out the resulting construction in Algorithm 1. This algorithm was first proposed and
analyzed by Zinkevich et al. [2007], although the preceding analysis follows the framework of Fa-
rina et al. [2019]. CFR can be thought of as a family of algorithms: it can be instantiated with any
regret minimizer over the simplex. By far the most common choice in practice is to use regret
matching and its modern variants, to be discussed more in the next lecture.

In Algorithm 1, we denote by NEXTSTRATEGY the function that outputs the next strategy of
CFR. It invokes each local regret minimizer, and it then proceeds by converting the resulting
behavioral strategy into a sequence-form vector; this conversion is essential for reasons we have
already discussed. The function OBSERVEUTILITY updates the so-called counterfactual utilities
that are given as input to the local regret minimizers that operate over each decision point.



Algorithm 1: Counterfactual regret minimization (CFR)

1 Input: A regret minimizer R; for each decision point j € J of the TFDP.
2 NEXTSTRATEGY():
3 for each decision point j € J do

4 A(A;j) > b](.t) = R; NEXTSTRATEGY();

5 for each decision point j € J in top-down order do
6 for each actiona € A; do

7 if p; =0 then

’ L xO[Ga)] = b al;

j

9 else

10 - x0[G0)] =xO0p;] - b [al;
11 return x(Y) € R%;

12 OBsERVEUTILITY(u?) € R”):
13 vO[L] =0;
14 for each node in the tree p € J U K in bottom-up order do

15 if p € J then

16 Let j = p;

17 VO] = Saen, b 1al - @01 0] + VO [p(i @)D
Jj ]

18 else

19 Let k = p;

20 VO[K] = Zyes, VO Lp(k,5)1;

21 for each decision point j € J do

22 for each actiona € A; do

2 u"[a] = u®[(j, )] + VO [p(j, a)];

24 R j.OBSERVEUTILITY(uJ(.t));

References

H. W. Kuhn. Extensive games and the problem of information. In Contributions to the Theory
of Games, volume 2 of Annals of Mathematics Studies, 28, pages 193-216. Princeton University
Press, 1953.

I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet Mathemat-
ics, 3, 1962.

Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria
for extensive two-person games. Games and Economic Behavior, 14(2), 1996.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Regret circuits: Composability of regret
minimizers. In International Conference on Machine Learning (ICML), 2019.



Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret minimiza-
tion in games with incomplete information. In Neural Information Processing Systems (NIPS),
2007.

10



