Equilibrium Computation in Normal-form Games:
Linear Programming and Online Learning

15 888 Computational Game Solving (Fall 2025)
loannis Anagnostides

Today’s lecture

e Solving (two-player) zero-sum games through linear programming
o Polynomial-time algorithms
o Proof of the minimax theorem
e Simple iterative algorithms for zero-sum games
o Best-response dynamics
o Fictitious play
e Online learning and regret minimization

o Basic learning algorithms (FTRL, MD, RM)
o Connections to game-theoretic equilibria

Recap on normal-form games

We think of them as simultaneous-move interactions
Each player selects an action from a finite set
Utility function maps actions to a real value
Players can randomize by specifying distributions
Players maximize expected utility

Any finite game can be represented in normal form
The normal-form is often inefficient (more on this in
the next lecture)

Q\@ ‘

Zero-sum games

e Two players with exactly opposing interests
e The row player wants to solve

min max x Ay = x[a;1]Alay, az]y[as].
x€A(A;) yeA(Az) Y a;u a;lz : dfalol

e The row player first specifies a mixed strategy, and then the column player
responds optimally to that strategy

Minimax through linear programming

min max x'Ay = x[a;]Alay, az2]ylas].
x€A(A;) yeA(A) Y a;ﬂl a;ﬂg ; B Sl

e Equivalent to MiNyeA(A,) MaXg,e A, X Al az]

e The column player can always respond optimally

through a pure strategy
e What if we introduce an auxiliary variable? t > x'A[: az] for all a, € A,

Linear programming formulation

LP for row player

minimize t

subjectto t > xTA[:, a,] for all a, € A,,
Z x[a1] =1,
a1€EA;

x 2> 0.

Linear programming formulation

LP for row player

minimize t

subjectto t > xTA[:, a,] for all a, € A,,
Z x[a1] =1,
a1€5‘h

x 2> 0.

LP for column player

maximize t

subject to t <y'Alay,:] for all a; € Aj,
Z ylaz] =1,
azeﬂz

y=>0.

Linear programming formulation

LP for row player LP for column player
minimize t maximize ¢
subject to t > x'A[:, ay] for all a, € Aj, subject to ¢t <y'Alay,:] forall a; € A,
> xla] =1, > yla =1,
a1€A; aeA,
x20. y=>0.

Q) These are duals!

Proof of the minimax theorem

Linear programming duality implies

min max x Ay = max min x'Ay =o.
XA A) yeA () ye(Ay) xeA(Ar)

Theorem. There is a polynomial-time algorithm for finding minimax (or
Nash) equilibria in zero-sum games.

Are we done? Unfortunately, LP solvers scale poorly in large games

lterative algorithms: best-response dynamics

e Simple idea: best-respond to
each other’s strategy
e Does it converge?

lterative algorithms: best-response dynamics

e Simple idea: best-respond to i x x Q i

each other’s strategy

e Does it converge? @ Q i d& d&

e Some games don’t even have
pure-strategy equilibria

O .

lterative algorithms: best-response dynamics

e Simple idea: best-respond to i x x Q i

each other’s strategy
e Does it converge? @ Q i d& d%
e Some games don’t even have
pure-strategy equilibria
e \What about the average?
e \What if winning by paper is twice
more valuable?

O .

lterative algorithms: fictitious play

e A more sophisticated algorithm is fictitious play

e It best-responds not to the previous strategy, but to
the average strategy of the opponent so far

e Basic opponent modeling

e Julia Robinson showed it always converges

e But the rate of convergence can be exponentially
slow (Daskalakis and Pan, 2014)

e Open question beyond adversarial tiebreaks

lterative algorithms: fictitious play

e A more sophisticated algorithm is fictitious play

e It best-responds not to the previous strategy, but to
the average strategy of the opponent so far

e Basic opponent modeling

e Julia Robinson showed it always converges

e But the rate of convergence can be exponentially
slow (Daskalakis and Pan, 2014)

e Open question beyond adversarial tiebreaks

e If our opponent knows we are using fictitious play,
are we exploitable?

Online learning

e Alearner interacts with an environment over a sequence of rounds
e The learner first selects a mixed strategy
e The environment provides as feedback some utility vector (x(, u?)

Online learning

e Alearner interacts with an environment over a sequence of rounds
e The learner first selects a mixed strategy
e The environment provides as feedback some utility vector (x(, u?)

Regret is the most common measure of performance

T ,
% Regret can be negative!
Reg(T) = max { E (x, u(t))} E (x(t) (t))

xeA(A)
01010101010
10101010101

N

101010101
010101010

s fictitious play no-regret?

Aka. “follow the leader”
t—1
Z<x, u(T)). /
7=1

x® e argmax
xeAm

What happens if fictitious play encounters
the following sequence of utilities?

 ¢c01010101
L 010101010

s fictitious play no-regret?

Aka. “follow the leader”
t—1
Z<x, u(T)). /
7=1

x® e argmax
xeAm

What happens if fictitious play encounters
the following sequence of utilities?

@ 01010101 Thegrgm. There is q sgguence
I 010101010 of utl_lltles suph that fictitious
play incurs linear regret.

Follow the regularized leader (FTRL)

A small tweak to fictitious play:

t—1
x = = argmax {Z(x u®) - ;R(x)}

xeEA™

e R is a strictly convex regularizer

e 7 is the learning rate

Multiplicative weights update:
Let R: x> Y, cqax[a]lnx[a]

x[a] o exp (17 k= u(® [a])

Euclidean regularization:
Let R:x - 5 Toca(x[al)? = 3lIx|3

x® = (,, b3 u(r))

FTRL has no-regret

Theorem. Under any sequence of utilities, the

regret of FTRL is bounded as
R T
Reg™ <= +1) [lu®]l2
T =

e R is the range of the regularizer,
strongly convex w.r.t. || - ||

e ||+ is the dual norm

By selecting the learning
rate optimally,

Reg!D) < 2BVRT.

For MWU,
RegD) < 2VTInm.

Online mirror descent

Another class of online algorithms:
Online gradient descent:

x\ := argmax {(x, w0y - 2 Bp(x, x(t‘l))} . xW =TI ("7 + quD).
x€A(A) n

We measure distance through the Bregman divergence: . E?:?T_O'me reQU'IariZtG;rSMD
IS equivalent 1o

Br(x,x') = R(x) - R(x') = (VR(x'),x — x")
The regret bound of MD
“% s similar to that of FTRL

Regret matching

e MWU can be expressed as

x0[a] o exp (1 2L @ [a] - (x®,u®))) = exp(pr-) [a])

e FTRL with Euclidean regularization can be expressed as

x® = Tp() (prY)

e Whatabout x® o max(r0,0) = [r¢-D]*

Regret matching

Algorithm 1: Regret matching (RM) Algorithm 2: Regret matching™ (RM")
1 Initialize cumulative regrets r(%) := 0; 1 Initialize cumulative regrets r(¥ := 0;
2 fort=1,...,T do 2 fort=1,...,T do
3 Define 8 := max(r(t~1, 0); 3 Define 8 = p(t-1.
1 if) = 0 then 1 if) = 0 then
5 ‘ Let x() € A(A) be arbitrary 5 ‘ Let x(Y) € A(A) be arbitrary
6 else 6 else
7 ‘ Compute x(®) = 09 /90, 7 ‘ Compute x®) = 69/160,;
8 Output strategy x) e A(A) ; 8 Output strategy x(*) € A(A) ;
9 Observe utility u® € [0, 1], 9 Observe utility u® € [0, 1]#;
16 r® = =1 4 (O _ (50 4By, 10 r® = [4 40— (O 4()1]+;

Analysis of RM

Theorem. For any sequence of utilities, the regret of RM is at most /m/T".

Instantaneous regret: ¢ = u® — (2)1 Pythagorean lemma:

Instantaneous regret is always
Q orthogonal to the regret
accumulated thus far

(¥, g®) =0 = (P I)*, g) g

Self-play in zero-sum games

e Both players follow a no-regret algorithm Theorem. If both players have
e This is called “self-play” no-regret, the average strategies

converge to a minimax equilibrium.

T
(T) _)y — () (t) (T)
R E x —x® _A = E x\, A T min (x’ Ay
egl x'eA(ﬂl) < y) — (y > x’ EA}ﬂ1)< >

Similarly,

(T) _ E : () AT,y = T 2(T) E (1) Aqy®)
R A x T max A X x, A
eg, ,eA(ﬂz) Y -y) = yeA(ﬂ2)<y = A 1(y).

Self-play in general-sum games

Definition 4.10 (Coarse correlated equilibrium). A correlated distribution g € A(A; X - - X A,)
is an e-coarse correlated equilibrium if for any player i € [n] and deviation a; € A,,

E(al,...,an)~yui(a1s ooy Qn) 2 E(a1 a,,)~pui(a;a a_;) — €.

Theorem. If all players follow a no-regret algorithm, the average correlated
distribution of play converges to a coarse correlated equilibrium.

