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Today’s lecture

● Solving (two-player) zero-sum games through linear programming
○ Polynomial-time algorithms
○ Proof of the minimax theorem

● Simple iterative algorithms for zero-sum games
○ Best-response dynamics
○ Fictitious play

● Online learning and regret minimization
○ Basic learning algorithms (FTRL, MD, RM)
○ Connections to game-theoretic equilibria



Recap on normal-form games

● We think of them as simultaneous-move interactions
● Each player selects an action from a finite set
● Utility function maps actions to a real value
● Players can randomize by specifying distributions
● Players maximize expected utility
● Any finite game can be represented in normal form
● The normal-form is often inefficient (more on this in 

the next lecture)



Zero-sum games

● Two players with exactly opposing interests
● The row player wants to solve

● The row player first specifies a mixed strategy, and then the column player 
responds optimally to that strategy



Minimax through linear programming

● Equivalent to  

● The column player can always respond optimally 
through a pure strategy

● What if we introduce an auxiliary variable? 



Linear programming formulation

LP for row player
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Linear programming formulation

LP for row player LP for column player

These are duals!



Proof of the minimax theorem

Linear programming duality implies

Theorem. There is a polynomial-time algorithm for finding minimax (or 
Nash) equilibria in zero-sum games.

Are we done? Unfortunately, LP solvers scale poorly in large games



Iterative algorithms: best-response dynamics

● Simple idea: best-respond to 
each other’s strategy

● Does it converge?
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Iterative algorithms: best-response dynamics

● Simple idea: best-respond to 
each other’s strategy

● Does it converge?
● Some games don’t even have 

pure-strategy equilibria
● What about the average?
● What if winning by paper is twice 

more valuable?



Iterative algorithms: fictitious play

● A more sophisticated algorithm is fictitious play
● It best-responds not to the previous strategy, but to 

the average strategy of the opponent so far
● Basic opponent modeling
● Julia Robinson showed it always converges
● But the rate of convergence can be exponentially 

slow (Daskalakis and Pan, 2014)
● Open question beyond adversarial tiebreaks



Iterative algorithms: fictitious play

● A more sophisticated algorithm is fictitious play
● It best-responds not to the previous strategy, but to 

the average strategy of the opponent so far
● Basic opponent modeling
● Julia Robinson showed it always converges
● But the rate of convergence can be exponentially 

slow (Daskalakis and Pan, 2014)
● Open question beyond adversarial tiebreaks
● If our opponent knows we are using fictitious play, 

are we exploitable?



Online learning

● A learner interacts with an environment over a sequence of rounds
● The learner first selects a mixed strategy
● The environment provides as feedback some utility vector



Online learning

● A learner interacts with an environment over a sequence of rounds
● The learner first selects a mixed strategy
● The environment provides as feedback some utility vector

Regret is the most common measure of performance

Regret can be negative!

0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1



Is fictitious play no-regret?

What happens if fictitious play encounters 
the following sequence of utilities?

ε 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0

Aka. “follow the leader”



Is fictitious play no-regret?

What happens if fictitious play encounters 
the following sequence of utilities?

ε 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0

Theorem. There is a sequence 
of utilities such that fictitious 
play incurs linear regret.

Aka. “follow the leader”



Follow the regularized leader (FTRL)

A small tweak to fictitious play:

●   is a strictly convex regularizer
    

●   is the learning rate

Multiplicative weights update:

Let 

Euclidean regularization:

Let 



FTRL has no-regret

Theorem. Under any sequence of utilities, the 
regret of FTRL is bounded as 

●     is the range of the regularizer, 
strongly convex w.r.t. 

●        is the dual norm

By selecting the learning 
rate optimally,

For MWU, 



Online mirror descent

Another class of online algorithms:

We measure distance through the Bregman divergence: For some regularizers, 
FTRL is equivalent to MD

Online gradient descent:

The regret bound of MD 
is similar to that of FTRL



Regret matching

● MWU can be expressed as 

● FTRL with Euclidean regularization can be expressed as

● What about 



Regret matching



Analysis of RM

Theorem. For any sequence of utilities, the regret of RM is at most            .

Pythagorean lemma:

Instantaneous regret is always 
orthogonal to the regret 
accumulated thus far

Instantaneous regret: 



Self-play in zero-sum games

● Both players follow a no-regret algorithm
● This is called “self-play”

Theorem. If both players have 
no-regret, the average strategies 
converge to a minimax equilibrium.



Self-play in general-sum games

Theorem. If all players follow a no-regret algorithm, the average correlated 
distribution of play converges to a coarse correlated equilibrium.


