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Focus of this lecture

• Theoretically sound techniques that are

• game-independent

• …although game-specific techniques also exist

– Johanson et al. IJCAI-11 faster traversal; applies at 
least to poker

– Farina & Sandholm 2021 sequence form LP 
sparsification; applies well at least to poker



TECHNIQUE FAMILY 1: 
“PREDICTIVITY AKA. OPTIMISM”

ALREADY COVERED IN AN EARLIER LECTURE



TECHNIQUE 2: “ALTERNATION”



Alternation
• In CFR, perform update for P1, then update for P2, and so on, 

instead of interleaving them

• Motivation: updates each agent based on the newest strategy of 
the opponent

• Converges faster in practice

• Still provable 𝑂( 𝑇) cumulative regret [Burch et al. JAIR-19]
• Wibisono-Tao-Piliouras (2022) showed that alternating mirror 

descent has T^{1/3} regret in zero-sum games, and Katona-Wang-
Wibisono (2025) improved this to T^{1/5}

• Farina et al. (2023) gave a lower bound of (roughly) T^{1/2} for 
alternating RM+

for 𝑡 = 1,… , 𝑇:

• 𝒙𝑡 ← request strategy from P1’s RM

• 𝒚𝑡 ← request strategy from P2’s RM

• Pass utility 𝑨𝒚𝑡 to P1’s RM

• Pass utility −𝑨⊤𝒙𝑡 to P2’s RM

for 𝑡 = 1,… , 𝑇:

• 𝒚𝑡 ← request strategy from P2’s RM

• Pass utility 𝑨𝒚𝑡 to P1’s RM

• 𝒙𝑡 ← request strategy from P1’s RM

• Pass utility −𝑨⊤𝒙𝑡 to P2’s RM

Simultaneous iterates: Alternating iterates:

https://arxiv.org/pdf/2206.04160
https://arxiv.org/pdf/2405.03472
https://arxiv.org/pdf/2305.14709


TECHNIQUE FAMILY 3: “RE-WEIGHTING”

[BROWN & SANDHOLM AAAI-19 DISTINGUISHED PAPER HONORABLE MENTION]

THIS WAS THE FASTEST ALGORITHM FOR 0-SUM GAMES (NORMAL- AND EXTENSIVE-
FORM) AT THE TIME



Motivation: limitations of CFR+

P1

Reward = 0 Reward = 1 Reward = -1,000,000

Regret = 0

i.e., the previously fastest algorithm in practice
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Motivation: limitations of CFR+

• On first iteration, pick 
all actions with equal 
probability

• Expected reward is 
-333,333

• Update regret as 
Action EV – Achieved EV

P1

Reward = 0 Reward = 1 Reward = -1,000,000

Regret = 333,334



Motivation: limitations of CFR+

• On first iteration, pick 
all actions with equal 
probability

• Expected reward is 
-333,333

• Update regret as 
Action EV – Achieved EV

• CFR+ floors regret at zero

P1

Reward = 0 Reward = 1 Reward = -1,000,000

Regret = 333,334



Motivation: limitations of CFR+

• On second iteration, 
pick actions 
proportional to their 
regret
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Motivation: limitations of CFR+

• On second iteration, 
pick actions 
proportional to their 
regret

• Expected reward ≈ 0.5

P1

Reward = 0 Reward = 1 Reward = -1,000,000

𝑃 ≈
1

2

𝑃 = 0

𝑃 ≈
1

2

Regret = 333,334



Motivation: limitations of CFR+

• On second iteration, 
pick actions 
proportional to their 
regret

• Expected reward ≈ 0.5

• Update regret

P1

Reward = 0 Reward = 1 Reward = -1,000,000

Regret = 333,334.5



Motivation: limitations of CFR+

• Problem: 
Takes CFR+ 471,407 iterations to learn to pick the middle action with 100% probability!

• Solution: 
Discount early “bad” iterations’ regrets and average strategy by weighing iteration 𝑡 by 𝑡

– We coin this Linear CFR

– Takes only 970 iterations to learn to pick the middle action 

– Worst-case convergence bound increases by only a factor 
2

3
…

P1

Reward = 0 Reward = 1 Reward = -1,000,000

Regret = 333,334.5



Weighted Averaging Schemes for CFR+

• Works for any sequence of nondecreasing weights:

Bound is never lower than with uniform weights.



Discounted CFR

• Linear CFR: Weigh iteration 𝑡 by 𝑡 (in regrets and in averaging)
• CFR+: Floor regrets at zero (and weigh iteration 𝑡 by 𝑡 in averaging)
• Can we combine both into Linear CFR+?

– Theory: Yes!
– Practice: No! Does very poorly

• But less-aggressive combinations do well: 
Discounted CFR (DCFR)

– On each iteration, multiply positive regrets by 
𝑡𝛼

𝑡𝛼+1

– On each iteration, multiply negative regrets by 
𝑡𝛽

𝑡𝛽+1

– Weight contributions toward average strategy by (
𝑡

𝑡+1
)
𝛾

– Worst-case convergence bound only a small constant worse than CFR
– For 𝛼 = 1.5, 𝛽 = 0, 𝛾 = 2, consistently outperforms CFR+ in practice



Experiment on heads-up no-limit Texas hold’em endgames used by Libratus

𝛽 > 0 facilitates regret-based pruning (to 
be discussed next in this lecture) because 
regrets can get negative, so we also show 
results for 𝛽 =1/2.



Further improvements in this paper

• In Discounted CFR, can discount contributions to the 
average strategy in different ways
– CFR+ does this in a specific way: linear
– We show that many other ways are theoretically valid: 

any nondecreasing weight sequence where 
final weight/sum of weights -> 0 works

• E.g., tx for any x > 0
• Many choices in the valid space are empirically faster

• Monte Carlo Linear CFR
– CFR+ and Discounted CFR do poorly with sampling, but 

Linear CFR does very well

• …



Conclusions on this paper

• Superior performance is achieved by discounting early 
CFR iterations

• Discounted CFR (DCFR) matches or exceeds CFR+ in all 
domains tested and was the state-of-the-art 
equilibrium-finding algorithm in large imperfect-
information games

• Linear CFR (LCFR) does even better in games with 
extremely suboptimal action, but is inferior to DCFR 
otherwise
– Also works well with sampling, unlike CFR+ and DCFR



Hyperparameter Schedules
[“Faster Game Solving via Hyperparameter Schedules”, 

N. Zhang, S. McAleer & T. Sandholm, 2024]

• Discounted CFR (DCFR)

– On each iteration, multiply positive regrets by 
𝑡𝛼

𝑡𝛼+1

– On each iteration, multiply negative regrets by 
𝑡𝛽

𝑡𝛽+1

– Weight contributions toward average strategy by (
𝑡

𝑡+1
)
𝛾

– For any 𝑡, 𝛼 = 1.5, 𝛽 = 0, 𝛾 = 2, that is, uses a fixed 
weighting scheme using a constant Hyperparameter 
Schedule (HS)



Hyperparameter Schedule-Powered DCFR

• HS-DCFR

– On each iteration, multiply positive regrets by 
𝑡HS𝛼

𝑡HS𝛼+1

– On each iteration, multiply negative regrets by 
𝑡
HS𝛽

𝑡
HS𝛽+1

– Weight contributions toward average strategy by (
𝑡

𝑡+1
)HS𝛾

– HS𝛼: 𝛼 = 1 +
3

𝑛
𝑡, HS𝛽: 𝛽 = −1 −

2

𝑛
𝑡

– HS𝛾30: 𝛾30 = 30 −
5

𝑛
𝑡, HS𝛾15: 𝛾15 = 15 −

5

𝑛
𝑡

• Performs experimentally better than just setting weights of first 1/3 
of iterations to 0

– 𝑛 is, say, the total number of iterations that will be run



Hyperparameter Schedule-powered DCFR

• HS-DCFR(30) & HS-DCFR(15)

– HS𝛼: 𝛼 = 1 +
3

𝑛
𝑡

– HS𝛽: 𝛽 = −1 −
2

𝑛
𝑡

– HS𝛾30: 𝛾30 = 30 −
5

𝑛
𝑡

– HS𝛾15: 𝛾15 = 15 −
5

𝑛
𝑡

– In our experiments, we set 𝑛 to 1000



Orders of magnitude speed improvements over prior state-of-the-art 
algorithms on both extensive-form and normal-form games! 

State of the art

HS-Powered Algorithms



TECHNIQUE FAMILY 4: 
“DYNAMIC PRUNING TECHNIQUES”

Why not permanent pruning like αβ-pruning in perfect-information games?



Early idea: “Partial Pruning”
[Lanctot et al. ICML-09]

• If on some path, the opponent’s reach (i.e., 
probability of playing there) is 0, 
then that path can be pruned because it will 
not affect the regrets

• This is a no-brainer to use, but one can prune 
more …



Next idea: “Interval Regret-Based Pruning (Interval RBP)”
[Brown & Sandholm NeurIPS-15]

• While partial pruning allows one to prune paths that an opponent reaches with zero probability, 
Interval RBP allows one to also prune paths that the agent reaches with zero probability

• Such pruning is necessarily temporary. Consider an action a ∈ A(I) such that σt(I, a) = 0, and assume 
that it is known action a will not be played with positive probability until some far-future iteration t’ 
(in RM, this would be the case if Rt(I, a) << 0)

– To determine t’, the condition on when regret might turn positive can be projected conservatively or 
checked dynamically

• Since action a is played with zero probability on iteration t, the strategy played and reward received 
following action a (that is, in D(I, a)) will not contribute to the regret for any information set 
preceding action a on iteration t. In fact, what happens in D(I, a) has no bearing on the rest of the 
game tree until iteration t’. So one can procrastinate in deciding what happened beyond action a
on iterations t, ..., t’− 1

• Upon reaching iteration t’, rather than individually making up the t’− t iterations over D(I, a), one 
can do a single iteration, playing against the average of the opponents’ strategies in those iterations 
that were missed, and declare that we played that strategy on all the missed iterations

• Moreover, since player i never plays action a with positive probability between iterations t and t’, 
every other player can apply partial pruning on that part of the game tree for those iterations, i.e., 
skip it completely

• This, in turn, means that player i has free rein to play whatever she wants in D(I, a) without 
affecting the regrets of the other players. In light of that, and of the fact that player i gets to decide 
what is played in D(I, a) after knowing what the other players have played, player i might as well 
play a strategy that ensures zero regret for all information sets I’∈ D(I, a) in the iterations t…t’. A 
CBR to the average of the opponent strategies on iterations t…t’ would qualify as such a zero-regret 
strategy

– Definition. A counterfactual best response (CBR) is a strategy similar to a best response, except that it 
maximizes counterfactual value even at information sets that it does not reach due to its earlier actions



Next idea: “Total Regret-Based Pruning (Total RBP)”
[Brown & Sandholm ICML-17]

• When pruning ends and regret must be updated in the pruned branch:
– Interval RBP calculates a CBR to the average opponent strategy over the 

skipped iterations t...t’, and updates regret in the pruned branch as if that 
CBR strategy were played in those iterations

– Total RBP calculates a CBR in the pruned branch against the opponent’s 
average strategy over all iterations 1...t’ played so far, and sets regret as 
if that CBR strategy were played in all those iterations

• Instead of CBR, an approximate CBR can be used. The paper shows how 
approximate it can be to still get the theoretical convergence guarantee

– In practice CFR converges much faster than the theoretical bound, so the potential function 
(used in the convergence proof) is typically far lower than the theoretical bound. Thus, while 
choosing a near-CBR rather than an exact CBR may allow for slightly longer pruning according 
to the theory, it may actually result in worse performance. Clever heuristics for deciding on a 
near-CBR may lead to even better performance in practice

• Again, to determine t’, the condition on when regret might turn 
positive can be projected conservatively or checked dynamically 
(formula is in the paper)



Total RBP Has a Space Advantage

• Storing regrets:
– Pruned subtrees need not be stored because their regrets are computed 

from scratch at iteration t’
• Theorem. For any information set I and action a ∈ A(I) that is not part of a best response 

to a Nash equilibrium, there is an iteration TI,a such that for all T ≥ TI,a, action a in 
information set I (and its descendants) could be pruned forever

– The algorithm won’t know whether T has met the condition, so every once in a while a (near) 
best response computation in D(I, a) needs to be done, but that doesn’t require storing regrets

• Storing average strategies: Fortunately, if action a in information set I is 
pruned for long enough, the stored cumulative strategy in D(I, a) can be 
discarded at the cost of a small increase in the distance of the final 
average strategy from a Nash equilibrium (by saying we never play a in I)

• Corollary. In a zero-sum game (with some threshold on the average 
strategy C/sqrt(T) for C > 0), after a finite number of iterations, CFR with 
Total RBP requires only 

O(|#infosets not pruned by above theorem||A|) space

– Can be useful, e.g., if the abstraction is grown dynamically



Total RBP Is Faster than CFR

• Same number of iterations

• Iterations are faster
– Intuitively, as both players converge to a Nash 

equilibrium, actions that are not a CBR will eventually 
do worse than actions that are, so those suboptimal 
actions will accumulate increasing amounts of 
negative regret. This allows those action to be pruned 
for increasingly long periods

– Theorem. In a zero-sum game, if both players choose 
strategies according to CFR with Total RBP, conducting 
T iterations traverses only O(|S|T + |H| ln(T)) nodes

Game paths that are part of some 
CBR to some equilibrium

All game paths (i.e., infosets)



The number is the C in the criterion of setting an action to 0 probability
when its average probability is less than C/sqrt(T). Same idea can be 
used also for other regret-based algorithms and even for other 
algorithms such as EGT [Brown, Kroer & Sandholm AAAI-17]

Detail about CFR+: Since Interval RBP can only prune negative-regret actions, Interval RBP modifies the definition of CFR+ so that regret can be 
negative, but immediately jumps up to zero as soon as regret increases. Total RBP does not require this modification. Both forms of RBP modify the 
behavior of CFR+ because without pruning, CFR+ would put positive probability on an action as soon as its regret increases, while RBP waits until 
pruning is over. CFR+’s linear weighting of the average strategy is only guaranteed to converge to a Nash equilibrium if pruning does not occur. 
While pruning does well empirically with CFR+, the convergence is noisy. This noise can be reduced by using the lowest-exploitability average 
strategy profile found so far. We did that in this experiment





TECHNIQUE FAMILY 5: 
“WARM STARTING”



Warm starting CFR from any strategies
[Brown & Sandholm AAAI-16]

• Just starting CFR from given strategies naively doesn’t help (and often 
hurts) compared to starting CFR from uniform strategies
– Thus it was believed that CFR can’t be warm started, but we showed it can

• The input strategies can come from any source: hand crafted, a 
different algorithm, CFR run on a coarser abstraction, etc.

• Enables simultaneous abstraction and equilibrium finding
– See also earlier paper on that [Brown & Sandholm IJCAI-15]

• Idea: Pretend that the input strategies came from CFR by not just 
setting the average strategies but also setting the number of iterations 
so far T and the regrets appropriately
– The paper shows the constraints that need to be satisfied to make the CFR 

proof go through, and suggests practically well-performing choices within 
those constraints



Experiment on Flop Texas hold’em



Another experiment on Flop Texas hold’em


