Techniques for Speeding Up CFR

(some of these apply to other algorithms also)

Tuomas Sandholm



Focus of this lecture

* Theoretically sound techniques that are
e game-independent

* ..although game-specific techniques also exist

— Johanson et al. IJCAI-11 faster traversal; applies at
least to poker

— Farina & Sandholm 2021 sequence form LP
sparsification; applies well at least to poker



TECHNIQUE FAMILY 1:
“PREDICTIVITY AKA. OPTIMISM”

ALREADY COVERED IN AN EARLIER LECTURE



TECHNIQUE 2: “ALTERNATION”



Alternation

In CFR, perform update for P1, then update for P2, and so on,
instead of interleaving them

Simultaneous iterates: Alternating iterates:

fort=1,..,T: fort=1,..,T:
xt « request strategy from P1's RM « y' « request strategy from P2's RM
y' « request strategy from P2’s RM  « Pass utility Ay* to P1's RM
* Pass utility Ay to P1's RM « x' « request strategy from P1's RM
* Pass utility —ATx* to P2's RM * Pass utility —A"xf to P2's RM

Motivation: updates each agent based on the newest strategy of
the opponent

Converges faster in practice

Still provable O(v/T) cumulative regret [Burch et al. JAIR-19]

Wibisono-Tao-Piliouras (2022) showed that alternating mirror
descent has TA{1/3} regret in zero-sum games, and Katona-Wang-
Wibisono (2025) improved this to TA{1/5}

Farina et al. (2023) gave a lower bound of (roughly) TA{1/2} for
alternating RM+



https://arxiv.org/pdf/2206.04160
https://arxiv.org/pdf/2405.03472
https://arxiv.org/pdf/2305.14709

TECHNIQUE FAMILY 3: “RE-WEIGHTING”

[BROWN & SANDHOLM AAAI-19 DISTINGUISHED PAPER HONORABLE MENTION]

THIS WAS THE FASTEST ALGORITHM FOR 0-SUM GAMES (NORMAL- AND EXTENSIVE-
FORM) AT THE TIME



Motivation: limitations of CFR+

i.e., the previously fastest algorithm in practice

Regret=0

Reward =0 Reward =1 Reward =-1,000,000



Motivation: limitations of CFR+

* On first iteration, pick
all actions with equal
probability
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Motivation: limitations of CFR+

On first iteration, pick
all actions with equal
probability

Expected reward is §
-333,333 Reward =0

Update regret as
Action EV — Achieved EV

CFR+ floors regret at zero

Regret = 333,334

Reward =1

Reward =-1,000,000



Motivation: limitations of CFR+

 On second iteration,
pick actions
proportional to their
regret

Regret = 333,334

Reward =0 Reward =1 Reward =-1,000,000



Motivation: limitations of CFR+

 On second iteration,
pick actions
proportional to their
regret

Regret = 333,334

 Expected reward = 0.5 ...c0

Reward =1 Reward =-1,000,000



Motivation: limitations of CFR+

 On second iteration,
pick actions
proportional to their
regret

Regret = 333’334'V

 Expected reward = 0.5 ...c0

Reward =1 Reward =-1,000,000

* Update regret



Motivation: limitations of CFR+

Regret = 333’334'V
Reward =0 Reward =1 Reward =-1,000,000

Problem:
Takes CFR+ 471,407 iterations to learn to pick the middle action with 100% probability!

Solution:
Discount early “bad” iterations’ regrets and average strategy by weighing iteration t by t

— We coin this Linear CFR
— Takes only 970 iterations to learn to pick the middle action

. 2
— Worst-case convergence bound increases by only a factorﬁ



Weighted Averaging Schemes for CFR+

* Works for any sequence of nondecreasing weights:

Theorem 1. Suppose 1’ iterations of RM+ are played
in a two-player zero-sum game. Then the weighted aver-
age strategy profile, where iteration t is weighed propor-
tional to wg > 0 and w; < wj; forall i < j, is a

A|Z|\/|A|vVT-Nash equilibrium.

ZT

\_'_I

Bound is never lower than with uniform weights.



Discounted CFR

Linear CFR: Weigh iteration t by t (in regrets and in averaging)
CFR+: Floor regrets at zero (and weigh iteration t by t in averaging)

Can we combine both into Linear CFR+?
— Theory: Yes!
— Practice: No! Does very poorly

But less-aggressive combinations do well:
Discounted CFR (DCFR)

— On each iteration, multiply positive regrets by

(04

t“+ﬁl
: : . . t
— On each iteration, multiply negative regrets by Bl

— Weight contributions toward average strategy by (ﬁ)y

— Worst-case convergence bound only a small constant worse than CFR
— Fora = 1.5, =0,y = 2, consistently outperforms CFR+ in practice



Experiment on heads-up no-limit Texas hold’em endgames used by Libratus
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p > 0 facilitates regret-based pruning (to
be discussed next in this lecture) because
regrets can get negative, so we also show
results for 5 =1/2.
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Empirically we observed that CFR+ converges faster
when assigning iteration ¢ a weight of #2 rather than a weight
of ¢ when calculating the average strategy. We therefore use
this weight for CFR+ and its variants throughout this paper
when calculating the average strategy.



Further improvements in this paper

* |n Discounted CFR, can discount contributions to the
average strategy in different ways

— CFR+ does this in a specific way: linear

— We show that many other ways are theoretically valid:
any nondecreasing weight sequence where
final weight/sum of weights -> 0 works
e Eg.,t*foranyx>0
* Many choices in the valid space are empirically faster

e Monte Carlo Linear CFR

— CFR+ and Discounted CFR do poorly with sampling, but
Linear CFR does very well



Conclusions on this paper

e Superior performance is achieved by discounting early
CFR iterations

* Discounted CFR (DCFR) matches or exceeds CFR+ in all
domains tested and was the state-of-the-art
equilibrium-finding algorithm in large imperfect-
information games

* Linear CFR (LCFR) does even better in games with
extremely suboptimal action, but is inferior to DCFR
otherwise

— Also works well with sampling, unlike CFR+ and DCFR



Hyperparameter Schedules

[“Faster Game Solving via Hyperparameter Schedules”,
N. Zhang, S. McAleer & T. Sandholm, 2024]

* Discounted CFR (DCFR)

a

— On each iteration, multiply positive regrets by ——

6

— On each iteration, multiply negative regrets by v

— Weight contributions toward average strategy by (;tl)y

— Foranyt,a =15, =0,y = 2, thatis, uses a fixed
weighting scheme using a constant Hyperparameter
Schedule (HS)



Hyperparameter Schedule-Powered DCFR

* HS-DCFR
. 0 . M M tHsa
— On each iteration, multiply positive regrets by THSq 11
tHSﬁ

— On each iteration, multiply negative regrets bym
+

. _— t
— Weight contributions toward average strategy by (E)HSV

3 2
— HS,:a = 1+;t, HSBIB = _1_Et
5 5

* Performs experimentally better than just setting weights of first 1/3
of iterations to 0

— n s, say, the total number of iterations that will be run



Hyperparameter Schedule-powered DCFR
 HS-DCFR(30) & HS-DCFR(15)
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— In our experiments, we set n to 1000



Exploitability

Exploitability

HS-Powered Algorithms
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Orders of magnitude speed improvements over prior state-of-the-art
algorithms on both extensive-form and normal-form games!

State of the art



TECHNIQUE FAMILY 4:
“DYNAMIC PRUNING TECHNIQUES”

|

Why not permanent pruning like a-pruning in perfect-information games?



Early idea: “Partial Pruning”

[Lanctot et al. ICML-09]

* |f on some path, the opponent’s reach (i.e.,
probability of playing there) is O,
then that path can be pruned because it will
not affect the regrets

* This is a no-brainer to use, but one can prune
more ...



Next idea: “Interval Regret-Based Pruning (Interval RBP)”
[Brown & Sandholm NeurlPS-15]

While partial pruning allows one to prune paths that an opponent reaches with zero probability,
Interval RBP allows one to also prune paths that the agent reaches with zero probability

Such pruning is necessarily temporary. Consider an action a €A(l) such that o'(/, a) = 0, and assume

that it is known action a will not be played with positive probability until some far-future iteration t’

(in RM, this would be the case if RY(l, a) << 0)

— To determine t’, the condition on when regret might turn positive can be projected conservatively or

checked dynamically

Since action a is played with zero probability on iteration t, the strategy played and reward received

following action a (that is, in D(I, a)) will not contribute to the regret for any information set

preceding action a on iteration t. In fact, what happens in D(l, a) has no bearing on the rest of the

game tree until iteration t’. So one can procrastinate in deciding what happened beyond action a

on iterations t, ..., t’- 1

Upon reaching iteration t’, rather than individually making up the t’- t iterations over D(l, a), one
can do a single iteration, playing against the average of the opponents’ strategies in those iterations
that were missed, and declare that we played that strategy on all the missed iterations

Moreover, since player i never plays action a with positive probability between iterations t and t’,
every other player can apply partial pruning on that part of the game tree for those iterations, i.e.,
skip it completely

This, in turn, means that player i has free rein to play whatever she wants in D(l, a) without
affecting the regrets of the other players. In light of that, and of the fact that player i gets to decide
what is played in D(l, a) after knowing what the other players have played, player i might as well
play a strategy that ensures zero regret for all information sets I’€ D(l, a) in the iterations t...t". A
CBR to the average of the opponent strategies on iterations t...t" would qualify as such a zero-regret
strategy

— Definition. A counterfactual best response (CBR) is a strategy similar to a best response, except that it
maximizes counterfactual value even at information sets that it does not reach due to its earlier actions



Next idea: “Total Regret-Based Pruning (Total RBP)”
[Brown & Sandholm ICML-17]

* When pruning ends and regret must be updated in the pruned branch:

— Interval RBP calculates a CBR to the average opponent strategy over the
skipped iterations t...t7, and updates regret in the pruned branch as if that
CBR strategy were played in those iterations

— Total RBP calculates a CBR in the pruned branch against the opponent’s
average strategy over all iterations 1...t" played so far, and sets regret as
if that CBR strategy were played in all those iterations

* Instead of CBR, an approximate CBR can be used. The paper shows how
approximate it can be to still get the theoretical convergence guarantee

— In practice CFR converges much faster than the theoretical bound, so the potential function
(used in the convergence proof) is typically far lower than the theoretical bound. Thus, while
choosing a near-CBR rather than an exact CBR may allow for slightly longer pruning according
to the theory, it may actually result in worse performance. Clever heuristics for deciding on a

near-CBR may lead to even better performance in practice

e Again, to determine t’, the condition on when regret might turn
positive can be projected conservatively or checked dynamically
(formula is in the paper)



Total RBP Has a Space Advantage

Storing regrets:
— Pruned subtrees need not be stored because their regrets are computed
from scratch at iteration t’

* Theorem. For any information set / and action a €A(l) that is not part of a best response
to a Nash equilibrium, there is an iteration T, ,such that forall T> T, ,, action a in
information set / (and its descendants) could be pruned forever

— The algorithm won’t know whether T has met the condition, so every once in a while a (near)
best response computation in D(l, a) needs to be done, but that doesn’t require storing regrets

Storing average strategies: Fortunately, if action a in information set / is
pruned for long enough, the stored cumulative strategy in D(l, a) can be
discarded at the cost of a small increase in the distance of the final
average strategy from a Nash equilibrium (by saying we never play a in /)

Corollary. In a zero-sum game (with some threshold on the average
strategy C/sqrt(T) for C > 0), after a finite number of iterations, CFR with
Total RBP requires only

O( | #infosets not pruned by above theorem| |A|) space

— Can be useful, e.g., if the abstraction is grown dynamically



Total RBP Is Faster than CFR

e Same number of iterations

* |terations are faster

— Intuitively, as both players converge to a Nash
equilibrium, actions that are not a CBR will eventually
do worse than actions that are, so those suboptimal
actions will accumulate increasing amounts of
negative regret. This allows those action to be pruned
for increasingly long periods

— Theorem. In a zero-sum game, if both players choose
strategies according to CFR with Total RBP, conducting
T iterations traverses only O(|S| T+ |H| In(T)) nodes
t t

Game paths that are part of some All game paths (i.e., infosets)
CBR to some equilibrium
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The number is the Cin the criterion of setting an action to 0 probability
when its average probability is less than C/sqrt(7). Same idea can be
used also for other regret-based algorithms and even for other
algorithms such as EGT [Brown, Kroer & Sandholm AAAI-17]
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Figure 1: Convergence and space required for CFR and CFR+ with Total RBP.

Detail about CFR+: Since Interval RBP can only prune negative-regret actions, Interval RBP modifies the definition of CFR+ so that regret can be
negative, but immediately jumps up to zero as soon as regret increases. Total RBP does not require this modification. Both forms of RBP modify the
behavior of CFR+ because without pruning, CFR+ would put positive probability on an action as soon as its regret increases, while RBP waits until
pruning is over. CFR+’s linear weighting of the average strategy is only guaranteed to converge to a Nash equilibrium if pruning does not occur.

While pruning does well empirically with CFR+, the convergence is noisy. This noise can be reduced by using the lowest-exploitability average
strategy profile found so far. We did that in this experiment
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Figure 2: Convergence for CFR and CFR+ with only partial pruning, with Interval RBP, and with
Total RBP. “CFR - No Prune” is CFR without any pruning.



TECHNIQUE FAMILY 5:
“WARM STARTING”



Warm starting CFR from any strategies
[Brown & Sandholm AAAI-16]

Just starting CFR from given strategies naively doesn’t help (and often
hurts) compared to starting CFR from uniform strategies

— Thus it was believed that CFR can’t be warm started, but we showed it can

The input strategies can come from any source: hand crafted, a
different algorithm, CFR run on a coarser abstraction, etc.

Enables simultaneous abstraction and equilibrium finding
— See also earlier paper on that [Brown & Sandholm [JCAI-15]

Idea: Pretend that the input strategies came from CFR by not just
setting the average strategies but also setting the number of iterations
so far T and the regrets appropriately

— The paper shows the constraints that need to be satisfied to make the CFR
proof go through, and suggests practically well-performing choices within
those constraints



Exploitability
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Exploitability
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