15-888 Computational Game Solving (Fall 2024) Released on: Sep. 12, 2024

Homework 1

Student: [*** Your Andrew ID here ***] Due on: Sep. 30, 2024, beginning of class

Instructions Please submit your homework on Gradescope. The Gradescope entry code can be found on
Piazza. On Gradescope, please submit a single pdf file containing both your written solutions and your
code (stub.py) attached to the end (for example, using a verbatim environment). You can (but are not
required to) typeset your written solutions in the .tex file provided in the homework .zip.

1 A Regret-Based Proof of the Minmax Theorem (20 points)

Let X CR™ and Y C R™ be convex and compact sets, and A € R"*™. The minmax theorem asserts that

maxminz' Ay = minmaxx ' Ay.
TEX yeY yeY xzeX
In this problem you will show that the fact that (external) regret minimization algorithms for X" exist is a
powerful enough statement to imply the minmax theorem.
One direction (called weak duality) of the proof is easy and very general. Specifically, show the following.

Problem 1.1 (5 points). Show that
maxminz' Ay < minmaxz ' Ay. (1)
TEX ye)y yeY xzeX

Solution. [*** Your solution here ***] O

To show the reverse inequality, we will interpret the bilinear saddle point minyecy maxgzex x| Ay as a repeated
game. At each time ¢, we will let a regret minimizer R pick actions & € X', whereas we will always assume
that y* €) is chosen by the environment to best respond to x?, that is,

y' € argmin(z) " Ay.
yey

The utility function observed by Ry at each time ¢ is set to
bz’ Ayt = (Ay') Tz,

By definition of regret minimizer, we will assume that Ry guarantees sublinear regret in the worst case.
Let 7 € X and y” €) be the average strategies output up to time 7, that is,

1 X 1 X

=T ._ t =T . t

Tt = E T Yy o= E Y.
t=1 t=1

Problem 1.2 (5 points). Argue that at all ¢,

T T
1 1
: T : t\ T t\ T t
maxminx' Ay > — min x') Ay > — x') ' Ay'. 2
IR YR I SIS YEE »
% Hint: Substitute &1 for x. Then, use the information you have on yt.
Solution. [*** Your solution here *** O

Problem 1.3 (5 points). Let R% be the regret accumulated by Ry up to time 7. Using (2), argue that
at all times T

. . R%
maxminz ' Ay > minmaxz' Ay — —=. (3)
reX yey yeY xeX T
% Hint: use the definition of regret RE.
Solution. [*** Your solution here *** O

Problem 1.4 (5 points). Use (3) and (1) and to conclude that

maxminz' Ay = minmaxx ' Ay,
TEX yeY yeY xzeX

Solution. [*** Your solution here ***| O

2 (Coarse-)correlated equilibria and dominated actions (30 points)

Recall the following definitions from lecture.

e An n-player finite normal-form game is defined by n finite strategy sets Aj,..., A, and n utility
functions u; : A — R, one per player, where A := A; X --- X A,, is the set of pure strategy profiles.

o A coarse-correlated equilibrium (CCE) is a distribution 7 € A(A) such that, for every player i and every
action a} € A;, we have
GIEW [ui(ai,a_;) —ui(a;,a_;)] <0.

o A correlated equilibrium (CE) is a distribution m € A(A) such that, for every player ¢ and every function
¢: A; — A;, we have

E [ui(d(ai), a—i) = uilai,a—i)] <0.
o An action a; € A; strictly dominates another action a) € A; if u;(a;,a—;) > w;(al, a_;) for every possible
opponent action profile a_;. In this case we call a} strictly dominated. If a; strictly dominates every
other action, then we call it strictly dominant.

Problem 2.1 (5 points). Prove that, if an action a; € A; is strictly dominant, then Player ¢ plays a;
with probability 1 in every CCE.

Solution. [*** Your solution here *** O

Problem 2.2 (10 points). Prove that, if an action a; € A; is strictly dominated and the game is
two-player zero-sum, then Player ¢ plays a; with probability 0 in every CCE.

% Hint: For any mixed strategy x1 € A(A1), define the best-response value as v*(x1) := ming,c, u1(x1,a2). What can
you say about v*(z1) if z1 plays a dominated action with positive probability?

Solution. [*** Your solution here *** O

Problem 2.3 (5 points). Prove that, if an action a; € A; is strictly dominated, then Player ¢ plays a;
with probability 0 in every CE.

Solution. [*** Your solution here *** O

Problem 2.4 (10 points). Find an explicit example of a normal-form game, and a CCE = of that normal-
form game, in which Player 1 plays a strictly dominated action with strictly positive probability.

% Hint: By the previous three parts:
1. P1 cannot have a strictly dominant action (and thus P1 must have at least three actions),
2. your game cannot be a two-player zero-sum game, and
3. your CCE cannot also be a CE.

Solution. [*** Your solution here ***] O

3 Linear programming for solving extensive-form zero-sum games, and
application to low randomization in poker (50 points)

In many games, the optimal Nash equilibrium requires that all players randomize their moves. As an
example, consider rock-paper-scissors: any deterministic strategy (for example, always playing rock) is heavily
suboptimal. In this problem, you will quantify how much value is lost by insisting on playing deterministic
strategies in three games: rock-paper-superscissors and two well-known poker variants—Kuhn poker [Kuhn,
1950] and Leduc poker [Southey et al., 2005]. A description of each game is given in the zip of this homework.
The description is specified in Section 3.1. The zip of the homework also contains a stub Python file to help
you set up your implementation.

3.1 Format of the game files
Each game is encoded as a json file with the following structure.

e At the root, we have a dictionary with three keys: decision_problem_pll, decision_problem_pl2,
and utility_pl1. The first two keys contain a description of the tree-form sequential decision problems
faced by the two players, while the third is a description of the bilinear utility function for Player 1 as a
function of the sequence-form strategies of each player. Since both games are zero-sum, the utility for
Player 2 is the opposite of the utility of Player 1.

e The tree of decision points and observation points for each decision problem is stored as a list of nodes.
Each node has the following fields

id is a string that represents the identifier of the node. The identifier is unique among the nodes for
the same player.

type is a string with value either decision (for decision points) or observation (for observation
points).

actions (only for decision points). This is a set of strings, representing the actions available at the
decision node.

signals (only for observation points). This is a set of strings, representing the signals that can be
observed at the observation node.

parent_edge identifies the parent edge of the node. If the node is the root of the tree, then it is null.
Else, it is a pair (parent_node_id, action_or_signal), where the first member is the id of the
parent node, and action_or_signal is the action or signal that connects the node to its parent.

parent_sequence (only for decision points). Identifies the parent sequence p; of the decision point,
defined as the last sequence (that is, decision point-action pair) encountered on the path from the
root of the decision process to j.

Remark 1. The list of nodes of the tree-form sequential decision process is given in top-down
traversal order. The bottom-up traversal order can be obtained by reading the list of nodes
backwards.

o The bilinear utility function for Player 1 is given through the payoff matrix A such that the (expected)
utility of Player 1 can be written as

ul(xv y) = IL’TAy’

where and y are sequence-form strategies for Players 1 and 2 respectively. We represent A in the
file as a list of all non-zero matrix entries, storing for each the row index, column index, and value.
Specifically, each entry is an object with the fields

sequence_pll isa pair (decision_pt_id_pll, action_pll) which represents the sequence of Player 1
(row of the entry in the matrix).

sequence_pl2 isa pair (decision_pt_id_pl2, action_pl2) which represents the sequence of Player 2
(column of the entry in the matrix).

value is the non-zero float value of the matrix entry.

Example: Rock-paper-superscissors In the case of rock-paper-superscissors the decision problem faced by
each of the players has only one decision points with three actions: playing rock, paper, or superscissors. So,
each tree-form sequential decision process only has a single node, which is a decision node. The payoff matrix
of the game is

p
r 0 -1 1
Pl 1 0 =2
s\—-1 2 0

So, the game file in this case has content:

{
"decision_problem_pli": [
{"id": "di_pl1", "type": "decision", "actiomns": ["r", "p", "s"],
"parent_edge": null, "parent_sequence": null}
1,
"decision_problem_pl2": [
{"id": "di_pl2", "type": "decision", "actioms": ["r", "p", "s"],
"parent_edge": null, "parent_sequence": null}
1,
"utility_pli": [
{"sequence_pli": ["d1_pl1", "r"], "sequence_pl2": ["d1_pl2", "p"], "value": -1},
{"sequence_pl1": ["d1_pli", "r"], "sequence_pl2": ["d1l_pl2", "s"], "value": 1},
{"sequence_pl1": ["d1_pli", "p"], "sequence_pl2": ["d1l_pl2", "r"], "value": 1},
{"sequence_pl1": ["d1_pli", "p"], "sequence_pl2": ["d1_pl2", "s"], "value": -2},
{"sequence_pl1": ["d1_pli", "s"], "sequence_pl2": ["dl_pl2", "r"], "value": -1},
{"sequence_pl1": ["d1_pli", "s"], "sequence_pl2": ["dl_pl2", "p"], "value": 2}
]
}

3.2 Computing the value of the game (15 points)

As a warmup, you will implement the linear program formulation of Nash equilibrium strategies seen in
Lecture 10 using the commercial solver Gurobi (https://www.gurobi.com/). Gurobi is a powerful commercial
solver for linear and non-linear optimization problems. You can download the solver and request a free license
for academic use from their website.

Installing gurobipy Installation instructions for Gurobi’s python bindings are available on the Gurobi
website, here.!

Linear programming formulation of Nash equilibrium strategies For your convenience, here are again the
linear programs—for Player 1 and Player 2, respectively—that you need to implement:

max f, v max f v
T Fle> . Ay —FTo >
P st. QDA'z—-F,v>0 P, - st. Q—-Ay—-F/v>0 @)
@Fz=f @ Fay = fo
® x>0, v free, ® y >0, v free,

where {x € RI®1l : Fiz = fi, 2 > 0} and {y € R>2I : Foy = f,,4 > 0} are the sequence-form polytopes of
the two players, and A is the payoff matrix for Player 1. Conveniently, the objective values of P; and P, will

Thttps://www.gurobi.com/documentation/9.1/quickstart_linux/cs_python.html#section:Python

https://www.gurobi.com/
https://www.gurobi.com/documentation/9.1/quickstart_linux/cs_python.html#section:Python

be the exact expected utility that each player can secure by playing against a perfectly rational opponent.
Since all games are zero sum, the objective values of P; and Py will sum to 0 (if they don’t, you must have a
bug somewhere).

Problem 3.1 (15 points). Implement the linear program for computing Nash equilibrium strategies for
both Player 1 and Player 2.

For each of the three games (rock-paper-superscissors, Kuhn poker, and Leduc poker), and for each
of the two player, report Gurobi’s output.

% Hint: make sure to take a look at the “Gurobi tips and tricks” at the end of this document. It includes some tips as to
how to debug common issues.

% Hint: start from rock-paper-superscissors, and only then move to the more complex games.

% Hint: since all games are zero-sum, the objective values of P; and P2 must sum to 0.

% Hint: the objective value for P; should be 0 for rock-paper-superscissors, —0.0555 for Kuhn poker, and —0.0856 for
Leduc poker.

Solution. [*** Your solution here. You should include six Gurobi outputs (3 games, 2 players per game).
Feel free to use the verbatim environment in Latex to simply dump the output. Make sure to specify
what game and what player each Gurobi output refers to. Don’t forget to include your code at the end of
your homework. For example, your output in the case of rock-paper-superscissors for Player 1 should look
roughly like this ***]

Gurobi Optimizer version 9.1.1 build v9.1.1rcO (linux64)

Thread count: 8 physical cores, 16 logical processors, using up to 16 threads
Optimize a model with 4 rows, 4 columns and 12 nonzeros

Model fingerprint: 0x5264c0a3

Coefficient statistics:

Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [1e+00, 1e+00]

Presolve removed 1 rows and O columns
Presolve time: 0.01s
Presolved: 3 rows, 4 columns, 11 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 1.0000000e+00 1.000000e+00 0.000000e+00 Os
2 -0.0000000e+00 0.000000e+00 0.000000e+00 Os

Solved in 2 iterations and 0.01 seconds
Optimal objective -0.000000000e+00

3.3 Computing optimal deterministic strategies (15 points)

In this subsection we study how much worse each player is if they (but not the opponent) are restricted to
playing deterministic strategies only. To model this, we will add a constraint saying that all entries of the
sequence-form strategy vectors « and y in (4) can only take values in {0,1}. The resulting integer linear

programs—which we call P; and P,—are given next.

max sz'v max flT'u
P, st. DATz—Fjv>0 P, - st. -Ay—-F{v>0 (5)
@Fiz = fi @ Fay = fo
@ x € {0,1}>11, v free, @y € {0,111 v free.

Problem 3.2 (15 points). Implement the integer linear programs given in (5) for computing optimal
deterministic strategies for both Player 1 and Player 2.

For each of the three games (rock-paper-superscissors, Kuhn poker, and Leduc poker), and for each
of the two player, report Gurobi’s output.

% Hint: make sure to take a look at the “Gurobi tips and tricks” at the end of this document. It includes some tips as to
how to debug common issues.

% Hint: start from rock-paper-superscissors, and only then move to the more complex games.

% Hint: here there are no guarantees that the value of P; and the value of P2 sum to 0 anymore! In fact, that will be
false in all games.

Solution. [*** Your solution here. You should include six Gurobi outputs (3 games, 2 players per game).
Feel free to use the verbatim environment in Latex to simply dump the output. Make sure to specify
what game and what player each Gurobi output refers to. Don’t forget to include your code at the end of

your homework. For example, your output in the case of Kuhn poker for Player 1 should look roughly like
this ***]

Gurobi Optimizer version 9.1.1 build v9.1.1rcO (linux64)

Thread count: 8 physical cores, 16 logical processors, using up to 16 threads
Optimize a model with 18 rows, 18 columns and 57 nonzeros

Model fingerprint: 0x57532587

Variable types: 6 continuous, 12 integer (12 binary)

Coefficient statistics:

Matrix range [2e-01, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Found heuristic solution: objective -0.3333335
Presolve removed 11 rows and 10 columns

Presolve time: 0.00s

Presolved: 7 rows, 8 columns, 22 nonzeros

Found heuristic solution: objective -0.3333333
Variable types: O continuous, 8 integer (5 binary)

Root relaxation: objective -5.555556e-02, 9 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -0.05556 0 3 -0.33333 -0.05556 83.3% - Os
H 0 0 -0.1666667 -0.05556 66.7% - Os
0 0 -0.05556 0 3 -0.16667 -0.05556 66.7% - Os

Explored 1 nodes (9 simplex iterations) in 0.00 seconds
Thread count was 16 (of 16 available processors)

Solution count 3: -0.166667 -0.333333 -0.333333
No other solutions better than -0.166667

Optimal solution found (tolerance 1.00e-04)
Best objective -1.666666666667e-01, best bound -1.666666666667e-01, gap 0.0000%

3.4 Controlling the amount of determinism (20 points)

In Problem 3.1 no determinism constraint was present. At the other extreme, in Problem 3.2 we insisted that
at all decision points a deterministic strategy be followed. In this last subsection we will explore intermediate
cases: for each value of k, we will study how much value each player can secure if they are constrained to
play deterministically in at least k decision points. When k = 0, we will recover the objective values seen in
Problem 3.1. When £ is equal to the number of decision points of the player in the game, we will recover the
objective values seen in Problem 3.2.

Integer programming model An optimal strategy for Player 1 subject to the constraint that at least k
decision points must prescribe a deterministic strategy can be obtained as the solution to the integer linear
program P; (k) given in (6). Understanding the details is not important for this problem, though we included
a description of the meaning of each constraint just in case you are curious.
max f, v
st. DATz—-FJv>0

@Fiz=fi

®) z[ja] > z[ja] Viedi:ipj =9, a€A,

731(]€): @ZE[]G]ZCELPJ}—FZ[]CL]—:[Vj€j1:pj7é®7 GGAj (6)

® Y zlja] <1 Vjien

acA;

® > > zlja] >k

JjE€EJ1 a€A;

M x>0, ze€{0,1}*1 v free,

o z € {0,1}/*' is a binary vector that decides, for each strategy ja € ¥, of Player 1, whether to pick
action a at j with probability 1. Since the strategy vector x is expressed in sequence-form, picking
action a with probability 1 at j is expressed through constraints (3) and (4).

« Constraint (5) asserts that no more than one action at each decision point can be forced to be played
with probability 1.

« Constraint (6) asserts that in at least k decision point, exactly one of the actions will be forced to be
played with probability 1.

The integer linear program Py (k) for Player 2 is analogous.

Problem 3.3 (15 points). Implement the integer linear programs P; (k) and Ps(k), described above, for
computing optimal strategies with a given lower bound on the amount of determinism.

the two player 4, plot the objective value of P;(k) as a function of k € {0,...,|J;|} (number of decision
points of Player 7).

For each of the three games (rock-paper-superscissors, Kuhn poker, and Leduc poker), and for each of

% Hint: make sure to take a look at the “Gurobi tips and tricks” at the end of this document. It includes some tips as to
how to debug common issues.

% Hint: Gurobi can be pretty verbose by default. For this problem, if you would like to silence Gurobi you can use
m.setParam("OutputFlag", 0)

% Hint: For Leduc poker, if Gurobi is taking too long to optimize when k is large, you can lower the solution precision
by calling m.setParam("MIPGap", 0.01) before m.optimize(). Expect a runtime of up to one-five hours for Leduc poker,
depending on how powerful the machine you are using is.

Solution. [*** Your solution here. You should include six plots (3 games, 2 players per game). Make sure
to specify what game and what player each plot refers to. Don’t forget to include your code at the end of
your homework. **¥] O

Problem 3.4 (5 points). Comment on the results you obtained in this problem: do highly-deterministic
strategies for the three small games exist? Are the results what you expected? If yes, what did he
results confirm? If not, how do you think you can reconcile your previous intuition with the experimental
findings?

A

Solution. [*** Your solution here ***] O

Appendix: Gurobi tips and tricks

Basic notation Let m denote the Gurobi model object. Then, here is a quick cookbook.

Add a continuous free variable:
m.addVar (-GRB.INFINITY, GRB.INFINITY, vtype=GRB.CONTINUOUS, name="human_var_name_here")

Add a continuous nonnegative variable:
m.addVar (0.0, GRB.INFINITY, vtype=GRB.CONTINUOUS, name="human_var_name_here")

Add a binary variable:
m.addVar (0.0, 1.0, vtype=GRB.BINARY, name="human_var_name_here")

Add an equality constraint:
m.addConstr(lhs == rhs)

Add an inequality (>) constraint:
m.addConstr(lhs >= rhs)

Set a maximization objective:
m.setObjective(obj, sense=GRB.MAXIMIZE)

Accessing the solution After calling m.optimize (), you can obtain the objective value by calling
m.getAttr (GRB.Attr.0bjVal)

If you want to inspect the solution, given a variable object v (the object returned by m.addVar), you can
access the value of v in the current solution by calling

v.getAttr (GRB.Attr.X)

Troubleshooting First of all, if you are having a problem with Gurobi, the first thing you should try to
do is to ask Gurobi to dump the model that it thinks you are asking to solve to a file in a human readable
format. Reading the model file will be so much easier if you gave names to the variables in your model, using
the ‘name’ optional argument of addVar.

To have Gurobi dump the model, you can use something like this:

m.write("/tmp/model.1lp")

Of course, you can specify a different path. However, it is important that you keep the ‘.1p’ extension: there
are multiple format that Gurobi can output, and it uses the file extension to guess which format you want.
Beyond the general rule of thumb above, make sure of the following:

e Start from rock-paper-superscissors. There, the /tmp/model.1lp file for Player 1 for Problem 3.1 should
look something like this (probably with different variable names):

\ Model game_value_plil
\ LP format - for model browsing. Use MPS format to capture full model detail.
Maximize

v[dil_pl2]
Subject To

RO: x[(°d1_pl1’, ’p’)] - x[(’di_pl1’, _’s’)] - v[dl_pl2] >= 0

R1: - x[(°d1_pl1’, ’r’)] + 2 x[(°d1_pl1’, ’s’)] - v[di_pl2] >= 0

R2: x[(°di_pl1’, °r’)] - 2 x[(°d1_pl1’, ’p’)] - vldi_pl2] >= 0

R3: x[(°d1_pl1’, ’r’)] + x[(°d1_pl1’,_’p’)] + x[(°d1i_pl1’, ’s’)] =1
Bounds

v[dl_pl2] free
End

Note: Gurobi omits listing nonnegative variables in the Bounds section.

 Did you remember to specify that you want a mazimization problem? (Gurobi’s default is minimization)
If Gurobi says that the model is unbounded, chances are you forgot.

e Check that the number of variables and constraints is what you expect. Are the sense of the constraints
(equality, <, >) what you wanted?

References

H. W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. W. Tucker, editors, Contributions to
the Theory of Games, volume 1 of Annals of Mathematics Studies, 24, pages 97-103. Princeton University
Press, Princeton, New Jersey, 1950.

Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings, and Chris
Rayner. Bayes’ bluff: opponent modelling in poker. In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, pages 550558, 2005.

10

	A Regret-Based Proof of the Minmax Theorem (20 points)
	(Coarse-)correlated equilibria and dominated actions (30 points)
	Linear programming for solving extensive-form zero-sum games, and application to low randomization in poker (50 points)
	Format of the game files
	Computing the value of the game (15 points)
	Computing optimal deterministic strategies (15 points)
	Controlling the amount of determinism (20 points)

	Appendix: Gurobi tips and tricks

