
Depth-limited subgame solving,
and

Pluribus, the state of the art for
multi-player no-limit Texas hold’em

Tuomas Sandholm

CS 15-888

Depth-limited subgame solving
[Brown, Sandholm & Amos, NeurIPS-18; Brown & Sandholm, Science 2019]

Perfect-information games
and single-agent search

too large

Perfect-information games
and single-agent search

Value substituted at leaf node is estimate
of both players playing perfectly thereafter

If estimate is perfect, limited-lookahead
search plays an equilibrium strategy

But state values are not well defined in imperfect-information games!

Depth-limited solving

Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

𝑃 = 0.2𝑃 = 0.4

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏
Pap

er

0 0 0

𝑃 = 0.4

𝑃
=
0
.4

𝑃 = 0.2

𝑃 = 0.4

𝑃 = 0.4

𝑃
=
0
.4

𝑃 = 0.2 𝑃 = 0.4

𝑃
=
0
.4

𝑃 = 0.2

Depth-limited solving

Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏
Pap

er

0 0 0

𝑃 = 0.1𝑃 = 0.1𝑃 = 0.8 𝑃 = 0.1𝑃 = 0.1𝑃 = 0.8

Depth-limited solving

Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

P
ap

e
r

0 -1 2

𝑷𝟐

P
ap

e
r

𝑷𝟐

P
ap

e
r

Pap
er

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏
Pap

er

-1 0 2

How to tackle this issue?

0 0 0

𝑃 = 0.1𝑃 = 0.1𝑃 = 0.8

Depth-limited solving

• At leaf nodes, allow player one final action choosing among multiple policies for the remaining game
• Step 1: Solve subgame with current set of 𝑃2 leaf-node policies
• Step 2: Calculate a 𝑃2 best response
• Step 3: Add 𝑃2 best response to set of leaf-node policies
• Repeat

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

Rock-Paper-Scissors+

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

𝜋
2 1

0

𝑷𝟐 𝑷𝟐

Pap
er

0 0

𝜋
2 1

𝜋
2 1

Depth-limited solving

• At leaf nodes, allow other player(s) one final action choosing among multiple policies for the remaining game
• Step 1: Solve subgame with current set of 𝑷𝟐 leaf-node policies
• Step 2: Calculate a 𝑃2 best response
• Step 3: Add 𝑃2 best response to set of leaf-node policies
• Repeat

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

Rock-Paper-Scissors+

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

𝜋
2 1

0

𝑷𝟐 𝑷𝟐

Pap
er

0 0

𝜋
2 1

𝜋
2 1

𝑷 =
𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑

Depth-limited solving

• At leaf nodes, allow other player(s) one final action choosing among multiple policies for the remaining game
• Step 1: Solve subgame with current set of 𝑃2 leaf-node policies
• Step 2: Calculate a 𝑷𝟐 best response
• Step 3: Add 𝑃2 best response to set of leaf-node policies
• Repeat

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

Rock-Paper-Scissors+

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

𝜋
2 1

0

𝑷𝟐 𝑷𝟐

Pap
er

0 0

𝜋
2 1

𝜋
2 1

𝑷 =
𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑

Depth-limited solving

• At leaf nodes, allow other player(s) one final action choosing among multiple policies for the remaining game
• Step 1: Solve subgame with current set of 𝑃2 leaf-node policies
• Step 2: Calculate a 𝑷𝟐 best response
• Step 3: Add 𝑃2 best response to set of leaf-node policies
• Repeat

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

Rock-Paper-Scissors+

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

𝜋
2 1

0

𝑷𝟐 𝑷𝟐

Pap
er

0 0

𝜋
2 1

𝜋
2 1

𝑷 =
𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑
𝑷 =

𝟏

𝟑

Depth-limited solving

• At leaf nodes, allow other player(s) one final action choosing among multiple policies for the remaining game
• Step 1: Solve subgame with current set of 𝑃2 leaf-node policies
• Step 2: Calculate a 𝑃2 best response
• Step 3: Add 𝑷𝟐 best response to set of leaf-node policies
• Repeat

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

Rock-Paper-Scissors+

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

𝜋
2 1

0

𝑷𝟐 𝑷𝟐

Pap
er

0 0

𝜋
2 1

𝜋
2 1

0 1 -2

Depth-limited solving

• At leaf nodes, allow other player(s) one final action choosing among multiple policies for the remaining game
• Step 1: Solve subgame with current set of 𝑷𝟐 leaf-node policies
• Step 2: Calculate a 𝑃2 best response
• Step 3: Add 𝑃2 best response to set of leaf-node policies
• Repeat

𝑷𝟏

𝑷𝟐

Pap
er

0 -1 2

𝑷𝟐

Pap
er

𝑷𝟐

Pap
er

Pap
er

Rock-Paper-Scissors+

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

𝑷𝟐

𝜋
2 1

0

𝑷𝟐 𝑷𝟐

Pap
er

0 0

𝜋
2 1

𝜋
2 1

𝑷 = 𝟎. 𝟒 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟓

0 1 -2

Theorem. Converges to Nash equilibrium in 2-player 0-sum games.
In practice, reaches very low exploitability in a small number of iterations.
Can be used with the safe, recursive subgame solving.

Also other ways to generate
continuation strategies
for the opponent.

Safe depth-limited solving starting later
than the root

• In imperfect-information games, “subgames” are not independent
• However, techniques from Libratus’s endgame solving can be applied, but now

the endgames are midgames that end in continuation strategy choices
– Have a blueprint strategy for the whole game

• E.g., via abstraction+equilibrium computation, Deep CFR [Brown, Lerer, Gross &
Sandholm, ICML-19c], or manual

– When determining our strategy for an endgame, give opponent the choice of
model: blueprint or endgame model
[Burch et al., AAAI-14; Jackson, AAAI-14; Moravcik et al., AAAI-16; Brown & Sandholm, NIPS-
17; Moravcik et al., Science 2017; Brown & Sandholm, Science 2018]
• Want to solve for our endgame strategy such that opponent isn’t better off choosing

endgame model for any private type she may have => Theorem: safe
• Allow opponent to get back in the endgame the gifts she has given so far

=> Theorem: safe [Brown & Sandholm NIPS-17 Best Paper; Science 2018]

• Can apply this recursively
– Can include the action that the opponent made
– Can use finer abstraction when endgame starts closer to end of the game
– Theorem: Safe [Brown & Sandholm, NIPS-17 Best Paper; Science 2018]

Head-to-head performance
in 2-player no-limit Texas hold’em

[Brown, Sandholm & Amos, NeurIPS-18e]

• Baby Tartanian8
[2016 champion]

– 2 million core hours

– 18 TB of memory

• Slumbot
[2018 champion]

– 250,000 core hours

– 2 TB of memory

• Modicum

– 700 core hours

– 16 GB of memory

– Plays in real time with
a 4-core CPU in 20
seconds per hand

Baby Tartanian8 Slumbot

Modicum (no real-time reasoning) −𝟓𝟕 ± 𝟏𝟑 −𝟏𝟏 ± 𝟖

Modicum (just one continuation strategy) −𝟏𝟎 ± 𝟖 −𝟏 ± 𝟏𝟓

Modicum (just a few continuation strategies) 𝟔 ± 𝟓 𝟏𝟏 ± 𝟗

Unit: milli-big-blinds / game

Key takeaways from this segment

• Planning is important in imperfect-information games, but different

• In real-time planning, you must consider how the opponent can
adapt to changes in your strategy
– Except in perfect-information games and single-agent setting

• States don’t have well-defined values in imperfect-info games

• Our depth-limited solving algorithm:
– Is sound
– Enabled 2nd-best AI for heads-up no-limit Texas hold’em poker to be

developed on a 4-core CPU with 16 GB of RAM

MULTI-PLAYER GAMES

Multi-player games

• All prior superhuman AI game-playing milestones have been in
2-player games:
– Checkers: Chinook 1994
– Othello: Logistello 1997
– Chess: Deep Blue 1997
– 2-player limit Texas hold’em: Polaris 2008
– Go: AlphaGo 2016
– 2-player no-limit Texas hold’em: Libratus 2017
– Starcraft II: AlphaStar 2019 and DOTA 2: OpenAI Five 2019 (if they

are superhuman)

• Our research led to techniques that enabled us to develop a
superhuman AI for multi-player no-limit Texas hold’em …

Multi-player poker

• Recognized AI, game theory,
and OR milestone that has
been open for decades

• Most popular variant in the
world: 6-player no-limit Texas
hold’em

• We developed a superhuman
AI, Pluribus, for this game
[Brown & Sandholm, Science
2019]
– Science Breakthrough of the

Year runner-up, 2019

2-player 0-sum vs. multi-player games

• All prior superhuman AI game milestones have been in 2-player 0-sum games
• Multi-player games have additional issues (even in normal form):

– Playing a Nash equilibrium is not safe

– Finding even an approximate Nash equilibrium is hard
• In theory [Daskalakis et al. 2009; Chen et al. 2009; Rubinstein 2018]
• In practice, fastest complete algorithm only scales to 3-5 players and 3-5 strategies per player

[Berg & Sandholm, AAAI-17]

• Pluribus finds superhuman strategies with a novel set of algorithms
– No guarantee that the solution is a Nash equilibrium (beyond 2-player 0-sum games)

How does Pluribus work?

• Developed and runs on a single server, no GPUs

• Doesn’t use any data

• Doesn’t adapt to the opponent

• Offline blueprint computation and real-time
depth-limited search

Pluribus

Computing
strategy for

depth-limited
subgame

Rules of the game

Blueprint strategy profile
Blueprint

computation
(offline)

Abstraction generation
• Information abstraction algorithm [Brown, Ganzfried & Sandholm, AAMAS-15]
• Action abstraction

Coarse abstraction
of the game

Finer abstraction
of the game

Action

Pluribus

Computing
strategy for

depth-limited
subgame

Rules of the game

Blueprint strategy profile
Blueprint

computation
(offline)

Abstraction generation
• Information abstraction algorithm [Brown, Ganzfried & Sandholm, AAMAS-15]
• Action abstraction

Coarse abstraction
of the game

Finer abstraction
of the game

Action

Pluribus’s new form of depth-limited
search for imperfect-information games

• All players (not just opponents) pick from k
continuation strategies at leaves

• Search starts before current situation (beginning
of current betting round)
– Mitigates exploitability of unsafe search while keeping

its advantages

– Our player’s strategy is kept fixed for the moves
already taken

– As in Libratus, opponents’ actual actions are added to
subgame model before the subgame is solved
=> no need to reverse map actions

Pluribus

Computing
strategy for

depth-limited
subgame

Rules of the game

Blueprint strategy profile
Blueprint

computation
(offline)

Abstraction generation
• Information abstraction algorithm [Brown, Ganzfried & Sandholm, AAMAS-15]
• Action abstraction

Coarse abstraction
of the game

Finer abstraction
of the game

Action

Pluribus

Computing
strategy for

depth-limited
subgame

Rules of the game

Blueprint strategy profile
Blueprint

computation
(offline)

Abstraction generation
• Information abstraction algorithm [Brown, Ganzfried & Sandholm, AAMAS-15]
• Action abstraction

Coarse abstraction
of the game

Finer abstraction
of the game

Action

Pluribus’s new equilibrium-finding algorithm

• Used for blueprint computation and for solving depth-limited
subgames

• Significant improvement over MCCFR [Lanctot et al., NeurIPS-09]
• Uses fastest sampling-based equilibrium-finding algorithm for

zero-sum games: linear CFR [Brown & Sandholm, AAAI-19
Distinguished Paper Honorable Mention]
– Pluribus uses linear weighting for both regrets and for averaging the

strategies
– => “Linear MCCFR”

• New form of dynamic pruning in early part of the run
– Not in last two steps of the game

• Saving memory: sequences allocated in RAM only if encountered

At play time, Pluribus:

• Runs on a regular computer using

– 2 CPUs

– Less than 128 GB RAM

– No GPUs

• Plays twice as fast as human pros (20 sec / hand)

Performance against top human pros

• AIVAT [Burch et al., AAAI-18] was used in the evaluation for variance reduction

• Experiment 1: 1 human pro, 5 copies of Pluribus
– Independent copies of Pluribus; didn’t know even seat of others
– Each of Chris Ferguson and Darren Elias played 5,000 hands (also, monetary

incentive to play as well as they can)
– Pluribus beat each opponent with statistical significance
– In a later identical experiment, Pluribus also beat Linus Loeliger

• Experiment 2: 5 human pros, 1 Pluribus
– 10,000 hands
– For each 6-player session, 5 humans were selected based on availability from 13

human pros
• Each had won over $1M playing poker, many had won over $10M
• Linus Loeliger, Jimmy Chou, Seth Davies, Michael Gagliano, Anthony Gregg, Dong Kim, Jason

Les, Daniel McAulay, Nick Petrangelo, Sean Ruane, Trevor Savage, Jake Toole

– $50,000 divided among human pros to incentivize them to play as well as they can
– Pluribus won with statistical significance (p=0.028)

Improvement of Pluribus with training time
• 64-core server, 512 GB RAM, no GPUs
• ~$150 at cloud prices

	Default Section
	Slide 1: Depth-limited subgame solving, and Pluribus, the state of the art for multi-player no-limit Texas hold’em
	Slide 2: Depth-limited subgame solving
	Slide 3: Perfect-information games and single-agent search
	Slide 4: Perfect-information games and single-agent search
	Slide 5: Depth-limited solving
	Slide 6: Depth-limited solving
	Slide 7: Depth-limited solving
	Slide 8: Depth-limited solving
	Slide 9: Depth-limited solving
	Slide 10: Depth-limited solving
	Slide 11: Depth-limited solving
	Slide 12: Depth-limited solving
	Slide 13: Depth-limited solving
	Slide 14: Safe depth-limited solving starting later than the root
	Slide 15: Head-to-head performance in 2-player no-limit Texas hold’em [Brown, Sandholm & Amos, NeurIPS-18e]
	Slide 16: Key takeaways from this segment
	Slide 17: Multi-player GAMES
	Slide 18: Multi-player games
	Slide 19: Multi-player poker
	Slide 20: 2-player 0-sum vs. multi-player games
	Slide 22: How does Pluribus work?
	Slide 23: Pluribus
	Slide 24: Pluribus
	Slide 25: Pluribus’s new form of depth-limited search for imperfect-information games
	Slide 26: Pluribus
	Slide 27: Pluribus
	Slide 28: Pluribus’s new equilibrium-finding algorithm
	Slide 30: At play time, Pluribus:
	Slide 31: Performance against top human pros
	Slide 32: Improvement of Pluribus with training time

