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ABSTRACT
A key trend in (electronic) commerce is a demand for higher
levels of expressiveness in the mechanisms that mediate in-
teractions. Recent results indicate the increase in expressive-
ness tends to lead to increased efficiency. Online advertise-
ment (ad) auctions account for tens of billions of dollars in
revenue annually and are some of the fastest growing mech-
anisms on the Internet. However, the most frequent variant
of these mechanisms does not allow bidders (agents) to offer
a separate bid for each ad position, and is thus inexpressive
on a fundamental level. In this paper we attempt to charac-
terize the cost of this inexpressiveness. We adapt a theoret-
ical framework to show that the commonly used generalized
second price (GSP) mechanism is arbitrarily inefficient for
some distributions over agent preferences. We then describe
a search technique that computes an upper bound on the
expected efficiency of the GSP mechanism for a given dis-
tribution over agent preferences. We report the results of
running our search technique on synthetic preference distri-
butions. Our results demonstrate that the cost of inexpres-
siveness is most severe when agents have diverse preferences
and relatively low profit margins. Our results also show that
designating one or more positions as “premium” and solicit-
ing an extra bid for these positions eliminates almost all of
the inefficiency.

1. INTRODUCTION
A recent trend in the world, especially in electronic com-

merce, is a demand for higher levels of expressiveness in the
mechanisms that mediate interactions such as the allocation
of resources, matching of peers, or elicitation of privacy and
security preferences. This trend has already manifested it-
self in combinatorial auctions, multi-attribute auctions, and
generalizations thereof, which are used to trade tens of bil-
lions of dollars worth of items annually [9, 19]. It is also
reflected in the richness of preference expression offered by
businesses as diverse as matchmaking sites, sites like Ama-
zon and Netflix, and services like Google’s AdSense. In Web
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2.0 parlance, this demand for increasingly diverse offerings
is called the Long Tail [2].

Online advertisement (ad) auctions account for tens of
billions of dollars in revenue annually and are some of the
fastest growing mechanisms on the Internet. The most fre-
quent variant of these auctions, the generalized second price
(GSP) mechanism used by Google, Yahoo! and MSN, solic-
its a single bid from each advertiser (or agent) for a keyword
and assigns them to positions according to their bids (with
the first position going to the highest bidder, the second po-
sition to the second highest, etc.). However, since agents
cannot offer a separate bid price for each ad position, the
GSP mechanism is inexpressive on a fundamental level. In
this paper we attempt to characterize the cost of this inex-
pressiveness, and to explore the conditions under which it is
most severe.

Intuitively, one would think that more expressiveness would
lead to higher efficiency (sum of the agents’ utilities) of
the mechanism’s outcome (e.g., due to better matching of
supply and demand). Efficiency improvements have indeed
been reported from combinatorial and multi-attribute auc-
tions (e.g., [18, 19, 20]). However, until recently we lacked a
general way of characterizing the expressiveness of different
mechanisms, the impact that it has on the agents’ strategies,
and thereby ultimately the outcome. Our initial work devel-
oped a theory that ties the expressiveness of mechanisms to
their efficiency in a domain-independent manner [4]. In that
work we derived an upper bound on the expected efficiency
of a mechanism that strictly increases with any increase in
expressiveness.

We begin this paper with a brief discussion of work related
to increasing expressiveness in ad auctions and an overview
of the theoretical framework we developed for studying the
expressiveness of mechanisms. We then describe how this
framework can be adapted to analyze the GSP mechanism.
Using this adaptation we show theoretically that for some
preference distributions the GSP mechanism is arbitrarily
inefficient.

Next, we describe a search technique for computing (or
approximating) our upper bound on the expected efficiency
of the GSP mechanism for a known distribution over agent
preferences. In the worst case our search algorithm takes
time that is exponential in the number of agents and types,
but it provides an anytime upper bound that is continually
tightened.

We conclude with a series of experiments using our search
technique on synthetic preference distributions, which illus-
trate the conditions under which the cost of inexpressiveness



in the GSP mechanism is most severe. While we must be
careful not to read too much into experiments on synthetic
data, they suggest that this mechanism is most inefficient
when some agents have a strong preference for top posi-
tions (e.g., due to branding concerns), while others prefer
middle positions due to higher conversion rates (e.g., when
customers coming from middle ranking positions are more
likely to result in revenue). We find that the inefficiency is
magnified when agents have relatively small profit margins
or when the number of agents increases. We also show that
in most of the synthetically generated instances the cost of
inexpressiveness can be eliminated or significantly reduced
by allowing agents to submit a single extra “premium” bid
for the top ranking position.

2. RELATED WORK
One of the first applications to benefit from increased ex-

pressiveness was strategic sourcing. Sandholm [19] described
how building more expressive mechanisms—that generalize
both combinatorial auctions and multi-attribute auctions—
for supply chains has saved billions of dollars through in-
creased efficiency.

Some work showing similar efficiency benefits due to added
expressiveness has also begun to appear in the context of
ad auctions (aka sponsored search). Even-Dar et al. [10]
demonstrated efficiency improvements for sponsored search
auctions that allow agents to bid for ads on keywords asso-
ciated with specific contexts (e.g., the geographical location
of the searcher). Boutillier et al. [7] and Parkes and Sand-
holm [14] demonstrated efficiency improvements for more
expressive ad auctions, such as those that allow bids on com-
binations of keywords or across advertising channels. This
work suggests that increasing expressiveness can improve the
efficiency of ad auctions on a macro scale. In this paper we
examine the impact of increased expressiveness on a micro
scale.

There has also been some recent work that serves as a
counter point to our work and the work described above. A
working paper by Paul Milgrom [12] describes how, in some
cases, the inexpressiveness in the GSP mechanism serves
to eliminate some inefficient equilibria. Our work, on the
other hand, implies that in some cases the inexpressiveness
eliminates the efficient equilibria as well. Another paper by
Abrams et al. [1] shows that the GSP mechanism does have
an efficient ex post equilibrium. However, our work in this
paper and our recent theoretical results [4] suggest that this
efficiency result relies on an assumption that agents have no
private information.

Work on expressiveness in general dates back to Mount
and Reiter [13] and Hurwicz [11] who asked the question:
how many real-valued dimensions must a mechanism’s mes-
sage space have in order to accomplish some design goal?
However, to get around Cantor’s theorem that implies the
equivalence of low and high dimensional expression spaces,
they had to rely on certain technical assumptions that pre-
cluded a general mapping between R

n and R
m.

Another thread of related work tries to characterize the
equilibrium in inexpressive mechanisms in specific settings
(e.g., [16]). The challenge here is that determining equilib-
rium behavior is usually prohibitively difficult even for the
simplest non-trivial mechanisms. Furthermore, when a par-
ticular equilibrium is found to have certain properties, one
often cannot rule out the possibility of additional equilibria

that do not share those properties.
There has been some research related to expressiveness

issues in dominant-strategy mechanisms. Blumrosen and
Feldman [6] showed a tradeoff between the efficiency of the
best possible mechanism and the number of discrete actions
available to the designer. Similarly, Ronen [15] described
methods for achieving near efficiency with limited bidding
languages. The restriction to studying dominant-strategy
mechanisms imposes severe limitations on which questions
about expressiveness arise. In particular, uncertainty about
others’ private information becomes an issue only when con-
sidering mechanisms that do not have dominant strategies.

3. PRELIMINARIES
The setting we study is a single instance of an auction

for a set of k advertising positions that are ranked from 1
to k (rank 1 is the highest rank). In the model there are
n agents. Each agent i has some private information (not
known by the mechanism or any other agent) denoted by a
type, ti, (e.g., a vector of valuations, one for each of the k
positions) from the space of the agent’s possible types, Ti.

Settings where each agent has a utility function, ui(ti, O),
that depends only on its own type and the outcome (match-
ing of advertisers to positions), O ∈ O chosen by the mecha-
nism are called private values settings. We also discuss more
general interdependent values settings, where ui = ui(t

n, O),
i.e., an agent’s utility depends on the others’ private signals
(for example, if one advertiser’s value for a position depends
on market estimates of the other advertisers). In both set-
tings, agents report expressions to the mechanism, denoted
θi, based only on their own types. In the GSP mechanism
agents report a single real value indicating their bid. A map-
ping from types to expressions is called a pure strategy.

Definition 1 (pure strategy). A pure strategy for
an agent i is a mapping, hi : Ti → Θi, that is, it selects an
expression for each of i’s types. A pure strategy profile is
a list of pure strategies, one strategy per agent, i.e., hI ≡
ˆ

h1, h2, . . . , h|I|

˜

. For shorthand, we often refer to hI as a
mapping from types of the agents in I to an expression for
each agent, hI(tI) =

ˆ

θ1, θ2, . . . , θ|I|
˜

.

Based on these expressions the mechanism computes the
value of an outcome function, f(θn), which chooses an out-
come or assignment from advertisers to positions. In the
GSP mechanism the outcome function maps advertisers to
positions based on the order of their bids (the highest bid-
der is assigned the first position, the second highest bidder
is assigned the second, and so on). The mechanism may also
compute the value of a payment function, π(θn), which de-
termines how much each agent must pay or get paid. In the
GSP mechanism agents must pay the bid of the advertiser
assigned the position directly below them. In this paper we
ignore the mechanism’s payment function.1

For analysis purposes, we assume that the expression of
each agent in the mechanism’s most efficient Nash equilib-
rium (i.e., the equilibrium with the greatest sum of agent
utilities) can be described by a function that takes as input
its type, mi(ti). We do not restrict these equilibrium re-
ports to be deterministic pure strategies: we allow mi to be
1Since the efficiency bound that we study does not directly
depend on equilibrium behavior this is without loss of gen-
erality, as long as agents do not care about each others’
payments.



a mixed strategy, i.e., a random variable specifying a proba-
bility distribution over possible reports (in the GSP mech-
anism this would amount to randomly choosing a bid from
some distribution).

For convenience, we will let W (tn, o) denote the total so-
cial welfare of outcome o when agents have private types
(or private signals) tn, W (tn, o) =

P

i ui(t
n, o). Using this

formalism we can describe the expected efficiency, E(f, π),
of the mechanism for a particular type distribution under
its most efficient equilibrium (expectation is taken over the
types of the agents, and their randomized equilibrium ex-
pressions),

E [E(f, π)] =

Z

tn

P (tn)

Z

θn

P (m(tn) = θ
n) W (tn

, f(θn)).

3.1 Our prior work on characterizing mecha-
nism expressiveness

In this section we will discuss the relevant parts of the
framework we developed in our prior work for characterizing
the expressiveness of mechanisms in general [4].

If we consider mechanisms that allow expressions from
the set of multi-dimensional real numbers, such as the GSP
mechanism and the Vickery-Clarke-Groves (VCG) mecha-
nism (the VCG allows agents to submit real valued bids on
each different position individually), one seemingly natural
way of characterizing their expressiveness is the dimension-
ality of the expressions they allow (e.g., this is one difference
between the GSP mechanism and the fully expressive VCG
for ad auctions). However, the following result illustrates
that this notion does not adequately differentiate between
expressive and inexpressive mechanisms.

Proposition 1. For any mechanism that allows multi-
dimensional real-valued expressions, (i.e., Θi ⊆ R

d), there
exists an equivalent mechanism that only allows the expres-
sion of one real value (i.e., Θi = R). (This follows im-
mediately from Cantor (1890): being able to losslessly map
between the spaces R

d and R.)

Thus, it is not the number of real-valued questions that a
mechanism can ask that truly characterizes expressiveness,
it is how the answers are used!

In order to properly differentiate between expressive and
inexpressive mechanisms, we proposed to measure the extent
to which an agent can impact the outcome that is chosen.

We define an impact vector to capture the impact of a
particular expression by an agent under the different possi-
ble types of the other agents. (Given a mechanism let the
subscript −i refer to to all the agents other than agent i.)

Definition 2 (impact vector). An impact vector for
agent i is a function, gi : T−i → O. To represent the func-
tion as a vector of outcomes, we order the joint types in T−i

from 1 to |T−i|; then gi can be represented as
ˆ

o1, o2, . . . , o|T−i|

˜

.

We say that agent i can express an impact vector if there
is some pure strategy profile of the other agents such that
one of i’s expressions causes each of the outcomes in the
impact vector to occur.

Definition 3 (express). Agent i can express an im-
pact vector, gi, if ∃h−i, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i).

We say that agent i can distinguish among a set of impact
vectors if it can express each of them against the same pure

strategy profile of the other agents by changing only its own
expression.

Definition 4 (distinguish). Agent i can distinguish
between a set of impact vectors, Gi, if

∃h−i, ∀gi ∈ Gi, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i),

when this is the case, we write Di(Gi) = ⊤.

Figure 1 illustrates how an agent can distinguish between
two different impact vectors against a pure strategy profile
of the other agents.

θ
(x)
−i

C D

θ
(y)
−i

A B

θ
(2)
i

θ
(1)
i

θ
(x)
−i

θ
(y)
−i

i

−i −i

Figure 1: By choosing between two expressions, θ
(1)
i

and θ
(2)
i , agent i can distinguish between the im-

pact vectors [A, B] and [C, D] (enclosed in rectangles).
The other agents are playing the pure strategy profile
h

θ
(x)
−i , θ

(y)
−i

i

.

Intuitively, more expressive mechanisms allow agents to
distinguish among larger sets of impact vectors. In this pa-
per we will consider a notion of expressiveness, which we call
outcome shattering, that captures this intuition. Outcome
shattering is based on a notion called shattering, which we
adapted from the field of computational learning theory [21,
5].

Our adaptation captures an agent’s ability to distinguish
among each of the |O′||T−i| impact vectors that include out-
comes from a given set O′.

Definition 5 (outcome shattering). A mechanism
allows agent i to shatter a set of outcomes, O′ ⊆ O, if

Di(G
O′

i ), where GO′

i =
˘

gi

˛

˛gi =
ˆ

o1, o2, . . . , o|T−i|

˜

, oj ∈ O′
¯

.

We also use a slightly weaker adaptation of shattering
for analyzing the more restricted setting where agents have
private values. It captures an agent’s ability to cause each of

the
`

|O′|+1
2

´

unordered pairs of outcomes (with replacement)
to be chosen for every pair of types of the other agents, but
without being able to control the order of the outcomes (i.e.,
which outcome happens for which type). We call this semi-
shattering.

Definition 6 (outcome semi-shattering). A mech-
anism allows agent i to semi-shatter a set of outcomes, O′,

if i can distinguish among a set of impact vectors, GO′

i , such
that

∀{{x, y}|x, y ∈ T−i ∧ x 6= y}, ∀o1, o2 ∈ O′
, ∃gi ∈ G

O′

i ,

[gi (x) = o1 ∧ gi (y) = o2] ∨ [gi (x) = o2 ∧ gi (y) = o1] .



The following example illustrates the impact an agent
must be able to have in order to semi-shatter four differ-
ent outcomes.

Example 1. If agent i can distinguish among the follow-
ing set of impact vectors, Gi, then it can semi-shatter a set
of outcomes, {A, B, C, D}, over a set of two different joint

types of the other agents, t
(1)
−i and t

(2)
−i (note that the order

of the pairs that are included does not matter, for example
AB could be replaced with BA):

Gi =

8

>

>

<

>

>

:

[A, A],
[A, B], [B, B],
[A, C], [B, C], [C, C],
[A, D], [B, D], [C, D], [D, D]

9

>

>

=

>

>

;

Finally, in our prior work we presented an upper bound
on the expected efficiency of a mechanism’s most efficient
equilibrium. We also showed that the upper bound for an
optimally designed mechanism is tied directly to its expres-
siveness.

We derived the bound by making the optimistic assump-
tion that the agents play strategies which, taken together,
attempt to maximize social welfare. This allows us to avoid
the difficulty involved in calculating equilibrium strategies.
It also implies that we can restrict our analysis to pure
strategies because a pure strategy always exists that achieves
at least as much expected efficiency as any mixed strategy.

Proposition 2. The following quantity, E [E(f)]+, is an
upper bound on the expected efficiency of the most efficient
equilibrium in any mechanism with outcome function f ,

E [E(f)]+ = max
ĥ(·)

Z

tn

P (tn) W
“

t
n
, f(ĥ(tn))

”

. (1)

The maximum is taken over ĥ(·), a pure strategy profile that
maps every joint type to an expression for each agent.2

We showed that the bound in Equation 1 strictly increases
as the set of outcomes an agent can shatter increases. We
also showed that the bound can be arbitrarily inefficient
whenever an agent cannot shatter the mechanism’s entire
outcome space.

4. EXPRESSIVENESS IN AD AUCTIONS
In order to study the expressiveness properties of the GSP

mechanism’s outcome function we first derive a mathemat-
ical representation of the function. Let R(i, o) be the rank
of the position given to the i’th agent in the matching of
advertisers to positions denoted by outcome o. For analy-
sis purposes we will assume, without loss of generality, that
each agent i’s bid, θi, is restricted to be a real value be-
tween 0 and 1 (this is not a limiting assumption based on
the same reasoning employed in Proposition 1). Under these
assumptions the following is functionally equivalent to the
GSP mechanism’s outcome function,

f(θn) = arg max
o∈O

n
X

i=1

“

θi × 10−R(i,o)
”

(2)

2Recall that an agent’s strategy can only depend on its own
private type, even if its utility depends on the private signals
of others.

This function chooses the outcome that maximizes a weighted
sum of the bids. Each bid in the sum is weighted by 10 raised
to the negative power of the corresponding agent’s rank un-
der the chosen outcome. Thus, agents with higher bids will
contribute significantly more to the overall sum when they
are placed in the first position.

We will now show that the outcome function of the GSP
mechanism is inexpressive according to the notion of out-
come semi-shattering that we introduced in the previous
section.

Theorem 1. Consider a set of outcomes, {A, B, C, D},
under which agent i is assigned different positions. In the
GSP mechanism agent i cannot semi-shatter both pairs of
outcomes {A, B} and {C, D} if agents other than i have
more than one joint type and,

R(i, A) < R(i, C) < R(i, D) < R(i, B)

Proof. We will assume for contradiction that agent i can
semi-shatter both pairs of outcomes, {A, B} and {C, D}.
First we introduce the following lemma.

Lemma 1. Agent i can (semi-)shatter an outcome space
O′ when the agents other than i have more than one joint
type only if there exists at least one pair of expressions by the

other agents, θ
(1)
−i and θ

(2)
−i , which allows i to (semi-)shatter

O′.

This lemma implies that there must be at least one pair of

bids by the agents other than i, θ
(1)
−i and θ

(2)
−i , such that agent

i can cause all four outcomes to happen by changing its own
bid alone (although we are dealing with semi-shattering so
the order in which they happen does not matter).

Let the weighted sum of the bids of the agents other than
i for the first (second) profile under outcome A be a1 (a2),
under outcome B be b1 (b2), and so on. Also, let the weights
on agent i’s bid under outcomes A through D in the the GSP
outcome function (Equation 2) be αA through αD. (Note
that the predicate of our theorem implies that αA > αC >
αD > αB .)

Let us assume (without loss of generality) that b1 − a1 <

b2−a2 and that A will happen against θ
(1)
−i and B will happen

against θ
(2)
−i (if the inequality does not hold, we can reverse

the labels on the θ−i’s). In order to cause A to happen
against the first opponent profile and B against the second
the following inequalities must hold (we assume that ties
are broken consistently so that an agent cannot use them to
semi-shatter),

A happens against 1

8

>

<

>

:

αAθi + a1 > αBθi + b1

αAθi + a1 > αCθi + c1

αAθi + a1 > αDθi + d1

B happens against 2

8

>

<

>

:

αBθi + b2 > αAθi + a2

αBθi + b2 > αCθi + c2

αBθi + b2 > αDθi + d2

By simplifying the above equations we derive the following
set of constraints.

c1 − a1

αA − αC
< θi <

b2 − d2

αD − αB

d1 − a1

αA − αD
< θi <

b2 − c2

αC − αB



In order to semi-shatter C and D with C happening against
the first set of bids by the other agents and D against the
second we have the following inequalities generated in the
same fashion,

b2 − d2

αD − αB
< θi <

c1 − a1

αA − αC

In order to semi-shatter over C and D in the opposite di-
rection (with D first and C second) the constraints would
change to the following,

b2 − c2

αC − αB
< θi <

d1 − a1

αA − αD

Now we can see that our assumption that agent i could semi-
shatter both sets of outcomes when the other agents have
more than a single type leads to a contradiction.

This result, in conjunction with our earlier results, implies
that under some preference distributions the GSP mecha-
nism is arbitrarily inefficient.

Corollary 1. For any setting there exists a distribution
over agent preferences such that the upper bound on expected
efficiency (Equation 1) for the GSP mechanism’s outcome
function is arbitrarily less than fully efficient.

Proof. This follows directly from the result above and
Theorem 2 in our earlier work [4], which states that the
bound in Equation 1 for any mechanism that does not al-
low agents to shatter (in an interdependent values setting) or
semi-shatter (in a private values settings) the entire outcome
space is arbitrarily inefficient for some preference distribu-
tions.

5. COMPUTING THE EFFICIENCY BOUND
FOR AD AUCTIONS

The results in the previous section prove that there ex-
ist distributions over agent preferences for which the GSP
mechanism is arbitrarily inefficient. However, in order to
measure the inefficiency in practice we must be able to com-
pute (or approximate) the value of the efficiency bound for a
particular distribution over agent preferences. In this section
we describe a technique for doing just that. Our algorithm
takes as input a distribution over agent preferences with a
finite number of types (this distribution could be learned
from data or approximated by a domain expert) and pro-
vides a continually tightening approximation of the upper
bound on the mechanism’s most efficient equilibrium.

5.1 Mathematical programming formulation
First we will describe the problem using a mathematical

programming formulation. The program includes a binary
decision variable, zt

o, for each outcome and each joint type
of the agents. A value of 1 for zt

o denotes that outcome o

will be chosen by the mechanism when the agents have the
joint type t, a value of 0 indicates that the outcome will not
be chosen under t. The program also includes continuous
variables representing the agents’ bids under each of their
types, θ

ti
i (as in the previous section, we limit these bids

to be between 0 and 1 without loss of generality). The fol-
lowing objective function is used to maximize the expected

efficiency of the mechanism.

max
zt

o,θ
ti
i

X

t∈Tn

P (t)
X

o∈O

z
o
t W (t, o) (3)

The first set of constraints enforces that exactly one outcome
is chosen for each joint type. There are |T n| such constraints.

s.t. (∀t ∈ T
n)

X

o∈O

z
t
o = 1 (4)

The next set of constraints ensures that for each zt
o variable

that is set to 1, the agents’ bids under type t do indeed
cause the outcome function of the GSP mechanism to choose
outcome o. This set includes one constraint for each joint
type and each pair of distinct outcomes. Thus there are
|T n| × (|O|2 − |O|) such inequality constraints.3 We use M
to denote a sufficiently large number such that the sum of
all the agents’ bids cannot exceed it and R(i, o) to denote
the rank of agent i’s position under outcome o.
`

∀t ∈ T
n
,∀o ∈ O, ∀o

′ 6= o ∈ O
´

X

i

“

θ
ti
i 10−R(i,o)

”

>
X

i

“

θ
ti
i 10−R(i,o′)

”

− (1−z
t
o)M (5)

Finally, we have constraints on the decision variables.

(∀t ∈ T
n
,∀o ∈ O) z

t
o ∈ {0, 1}, (∀i,∀ti ∈ Ti) 0 ≤ θ

ti
i ≤ 1 (6)

An ad auction with k positions and n agents with two
types each has n!

(n−k)!
distinct outcomes and 2n joint types.

The mathematical program described above involves |O| ×
|T n| binary decision variables, making it prohibitively large
for general purpose integer program solvers, such as CPLEX,
for mechanisms with more than 3 agents. However, these
solvers do not explicitly take advantage of certain aspects
of the problem structure, for example the fact that only one
outcome can be chosen for each joint type. To address this
problem we have developed our own search technique, which
has so far been successfully used to find provable inefficiency
in synthetic instances with up to five agents (although in this
paper we report only results with up to four agents due to
time constraints).

5.2 Our A* search technique
The skeleton of our technique is an A* search algorithm

with each level of the search tree corresponding to a differ-
ent joint type for all of the agents (for more details about
the A* algorithm see Chapter 4 of Russel and Norvig [17]).
Each branch in the tree corresponds to the assignment of an
outcome to the joint type associated with its source node.
The tree has a maximum depth of |T n| nodes and a branch-
ing factor of |O|. Figure 2 illustrates the search tree for a
small example.

At any node j a partial assignment of outcomes to joint
types can be constructed by traversing the edges from j to
the root. We will denote the set of all joint types in the
partial assignment at node j as T n

j . For each type tn
j ∈ T n

j

we will denote the outcome it is assigned under the partial
assignment at node j as otj

. In addition, for each joint type
tn we will denote the outcome that maximizes social welfare
as o∗t (i.e., o∗t = arg maxo W (tn, o)).

3In practice we ensure that these inequality constraints are
strict by adding a small ǫ term to one side.
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1

Figure 2: This diagram illustrates part of the search
tree for a distribution with 3 types, [tn

1 , tn
2 , tn

3 ], and 4
outcomes [A, B, C,D]. Circles represent internal nodes
in the tree and squares represent leaf nodes. The
dashed nodes are not expanded in this diagram but
they would be considered by the search algorithm. The
expanded path corresponds to the outcome assignment
[A, C, C] to types tn

1 , tn
2 , and tn

3 respectively.

Our A* search orders the nodes on its open queue accord-
ing to an admissible (or optimistic) heuristic. The heuristic
approximates the expected efficiency of the best assignment
originating from a particular node based on the assumption
that any unassigned types will be assigned optimally. The
priority of a node j, f̃(j), is given by the expected welfare
of its current partial assignment plus the expected welfare
of the optimal assignment for any unassigned types.

f̃(j) =
X

tj∈Tn
j

P (tj)W (tj, otj
) +

X

t/∈Tn
j

P (t)W (t, o∗t ) (7)

The f̃(j) approximation is guaranteed to be greater than
or equal to the true optimal value of any feasible assignment
that descends from node j. It may overestimate this value
if the optimal assignment is not achievable due to inexpres-
siveness, but it has the benefit of serving as a valid upper
bound on the expected efficiency achievable by the mecha-
nism. The A* algorithm is designed such that any feasible
node it visits has a lower f̃ value than any previously visited
node. Thus, the f̃ value of the current node is a continually
tightening upper bound on the mechanism’s expected effi-
ciency, and it can be provided at any time during the search.
In our experiments we were occasionally forced to terminate
the search early in order to evaluate a greater number of
preference distributions. In these cases we reported the f̃
value of the last feasible node that was visited as our upper
bound.

Whenever a node is popped off the front of the open queue,
its feasibility is checked by solving a linear feasibility prob-
lem (LFP). If the node is not feasible its children are not
placed on the open queue. The LFP involves a set of con-
straints similar to those described in Equation 5, however
the assignment of outcomes to types is fixed and there are
no binary decision variables. Specifically, at any node j we
verify that there exist expressions for the agents conditioned

on their types, θ
ti
i , which satisfy the following constraints.

`

∀tj ∈ T
n
j ,∀o

′ 6= o ∈ O
´

X

i

“

θ
ti
i 10

−R(i,otj
)
”

>
X

i

“

θ
ti
i 10−R(i,o′)

”

(8)

6. EMPIRICAL ANALYSIS
In this section we discuss the results of experiments using

our A* search technique to compute or approximate the up-
per bound on expected efficiency for various synthetic pref-
erence distributions. Our experiments consist of collections
of runs, each involving randomly generated types with dif-
ferent parameter settings. The parameters are chosen to
investigate circumstances under which the inexpressiveness
of the GSP mechanism is costly (i.e., when the upper bound
is low) and when it is not. Each instance in one of our ex-
periments represents a single auction for a single keyword
with either three or four agents.4

6.1 Experimental setup
In our experiments we assume that each agent draws one

of two different types. For each instance we randomly gen-
erate types for each agent according to a process described
below. We report the average and standard deviation of the
efficiency bound for runs of 50 instances each. On occasion
our algorithm is unable to find the optimal solution for an
instance before a hard-coded timeout of 20 minutes (this oc-
curred around 25% of the time on the four agent instances).

In these cases we report the lowest f̃ value discovered prior
to termination, which also serves as a valid upper bound on
the mechanism’s expected efficiency.

6.1.1 Random type generation
When we generate types for our experiments we assume

that agents only care about the position of their own ad and
that an agent’s valuation for being assigned a particular po-
sition is the expected value of having its ad displayed in that
position. We will let “clk” denote the event that the ad was
clicked, and “cnv” denote that the click resulted in a conver-
sion (e.g., a sale at a commerce site, or a user registration
at a service oriented site). Let Ci denote the amortized cost
per click of running agent i’s web site, and Vi(cnv) be the ex-
pected value of a conversion to agent i. The expected value
to agent i of having an ad in position ranked R, E[Vi(R)],
is then given by the following equation.

E[Vi(R)] = P (clk|R, i) [P (cnv|clk, R, i)Vi(cnv) − Ci] (9)

In order to keep our synthetic data as simple as possi-
ble and to isolate factors which contribute to inefficiency
in the GSP mechanism, we assume that all agents in the
same instance are relatively similar. Many of the values
involved in generating an agent’s valuations for each posi-
tion are fixed throughout our experiments. For example,
we assume that the marginal cost of a click, Ci = C = $1
for all agents. Unless otherwise specified, we assume that
Vi(cnv) = V (cnv) = $50 for all agents. We also assume that
click-through rates conditional on the rank of an ad’s posi-
tion are the same for all agents. The specific rates are given

4We do not include results on instances with two agents
because the GSP mechanism is not inefficient when there
are only two outcomes.



Parameter Value
P (clk|R = 1) 10%
P (clk|R = 2) 7.74%
P (clk|R = 3) 6.66%
P (clk|R = 4) 5.74%
P (cnv|clk) 10%

pB 50%

Parameter Value
C(clk) $1

Brand µ ∼ Uniform[.8, 1]
Brand σ 25% of µ
Value µ ∼ Uniform[.4, .6]
Value σ 25% of µ
Vi(cnv) $30 to $150

Table 1: Default parameter settings for each param-
eter in our type generation model. Unless other-
wise specified, the values of the parameters are those
shown in this table.

in Table 1, along with the default values for all parameters.
The click-through rates were taken from an Atlas Institute
Digital Marketing pamphlet [8], and are the same as those
used by Even-Dar et al. in their experiments [10].

Rather than generating arbitrary values of P (cnv|clk, R, i),
we assume that the probability of a particular position achiev-
ing a conversion, P (R|cnv, i), is normally distributed. The
mean, µ, of this distribution is randomly chosen for each
type from an interval between 0 and 1. (When working with
this distribution, we also normalize the value of R to be be-
tween 0 and 1, so that, for example, the third position out of
four has rank 0.25). Values of µ close to 1 indicate that the
agent’s conversion rate is higher in high ranked positions,
and values close to 0 indicate that the rate is higher in low
ranked positions. The distribution’s standard deviation is
assumed to be 25% of the mean.

We transform P (R|cnv, i) into P (cnv|clk, R, i) using Bayes’
rule (and the observation that the cnv event implies the clk
event). We also assume that P (cnv|clk, i) = P (cnv|clk) =
10% for all agents.

P (cnv|clk, R, i) ∝ P (R|cnv, i)P (cnv|clk, i) (10)

Based on recent work examining different advertising at-
titudes on the Internet, we generate two different types for
each advertiser in each instance, a brand type and a value
type [3]. The advertisers take on the brand type with prob-
ability pB and the value type with probability 1 − pb. The
value of µ for the brand type is drawn uniformly between
[0.8, 1]. The value of µ for the value type is drawn uniformly
between [0.4, 0.6], unless otherwise specified. Figure 3 illus-
trates prototypical brand and value preferences over differ-
ent positions based on their rank.

6.1.2 Premium GSP mechanism
We focus most of our attention on the traditional GSP

mechanism, where advertisers are charged per click. How-
ever, we also report results for a slightly more expressive
ad mechanism, which we call a premium generalized second
price (PGSP) mechanism.

The PGSP mechanism solicits an additional bid from each
agent that determines whether or not it will receive a “pre-
mium”ad position (in our experiments the only premium po-
sition is the top one, however this could easily be adjusted).
The premium positions are assigned as if a traditional GSP
mechanism was run on the premium bids (the top premium
position goes to the agent with the highest premium bid,
etc. . . ). The standard positions are then assigned among
the remaining agents according the traditional GSP mecha-

Figure 3: Examples of valuations from a brand type
and value type. The brand type shown has µ = 1 and
the value type has µ = 0.5. Valuations are shown in
expectation, not per-click.

nism run on their standard bids.

6.2 Experimental results
Our first set of runs investigates the impact of the ex-

pected value of a conversion on the cost of inexpressiveness
in the GSP mechanism. We vary the expected value of a con-
version, V (cnv), between $30 and $150 (or 30 to 150 times
the cost per click of running the site). The average values
and standard deviations of the upper bound on efficiency are
shown in Figure 4 for instances with three and four agents.
The values are reported in terms of the percentage of the
optimal efficiency achievable for each instance.

Figure 4: The value of our upper bound on expected
efficiency for the GSP mechanism. Results are av-
eraged over 50 runs for different settings of the ex-
pected value of a conversion (all other parameters are
assigned their default values).

The results demonstrate that when conversions generate
relatively low profits the cost of inexpressiveness in the GSP
mechanism can be more than 30%. However, as the profit
margin of the agents increases, the cost of inexpressiveness
decreases to around 10%. The instances with three and
four agents exhibit relatively similar values for the efficiency
bound at each value of V (cnv) when all other parameters
are held at their default values. (The slightly higher values



of the bound for the four agent instances can be partially
explained by the fact that around 25% of these instances
were terminated early due to our 20 minute timeout).

Our second set of experiments examines how the cost of
inexpressiveness is affected by the position that generates
the most value for agents with the value type (the brand
type remains unchanged throughout the experiments). In
each run the the mean of P (R|cnv, i) for the value type
is drawn uniformly from an interval of size 0.2 (i.e., µ ∼
Uniform[a, a+0.2]). The results are shown in Figure 5. The
x-axis indicates the mid-point of the interval used in each
run, which is also the the expected value of µ for the value
type.

Figure 5: The value of our upper bound on expected
efficiency for the GSP mechanism. The results are
averaged over 50 runs for different settings of the
value type’s most preferred rank. Larger values of
E[µ] correspond to runs in which higher ranking po-
sitions are more valuable for the value type and vice-
versa.

The results demonstrate that the cost of inexpressiveness
in the GSP mechanism is highest when the most profitable
positions for the value type are the middle ranking positions.
The inexpressiveness is less costly when the value type be-
comes more like the brand type (i.e., as E[µ] increases) or
when the value type is significantly different than the brand
type (i.e., low values of E[µ]). We also see that for most
value type preferences, the cost of inexpressiveness tends to
be more severe when the GSP mechanism is run with four
agents than when it is run with three.

Our final set of experiments tests the impact of the added
expressiveness in the PGSP mechanism, which solicits a sin-
gle extra bid from each agent for the top position. For these
results we calculate the upper bound of the PGSP mecha-
nism on the same instances as those used to generate the
results in Figure 4. The results for the PGSP mechanism
are shown in Figure 6.

These results demonstrate that by adding slightly more
expressiveness, the cost of inexpressiveness can be completely
eliminated in the three agent instances and significantly re-
duced in the four agent instances. For example, the effi-
ciency bound value for low profit four agent instances im-
proves from 71% in the GSP to 91% in the PGSP.

7. CONCLUSIONS AND FUTURE WORK

Figure 6: The value of our upper bound on expected
efficiency for the premium GSP mechanism. Results
are averaged over 50 runs for different settings of the
expected value of a conversion.

A recent trend in the world, especially in electronic com-
merce, is a demand for higher levels of expressiveness in
mechanisms. Online ad auctions account for tens of billions
of dollars in revenue annually and are some of the fastest
growing mechanisms on the Internet. The most frequent
variant of these auctions, the generalized second price (GSP)
mechanism used by Google, Yahoo! and MSN, solicits a sin-
gle bid from each advertiser (or agent) for a specific keyword
and orders the ranking of their ads based on their bids (with
the first position going to the highest bidder, the second po-
sition to the second highest, etc.). However, since agents
cannot offer a separate bid price for each ad position, the
GSP mechanism is inexpressive on a fundamental level. We
characterized the cost of this inexpressiveness, and explored
the conditions under which it is most severe.

We began with a brief discussion of work related to in-
creasing expressiveness in ad auctions and an overview of
the theoretical framework we developed in our previous work
for studying the expressiveness of mechanisms. We then
described how our framework could be adapted to analyze
the GSP mechanism. Using this adaptation we were able to
show theoretically that for some preference distributions the
GSP mechanism is arbitrarily inefficient.

Next, we described a search technique for computing (or
approximating) an upper bound on the expected efficiency
of the GSP mechanism for a known distribution over agent
preferences.

We used our search algorithm to perform a series of ex-
periments on synthetic preference distributions. While we
must be careful not to read too much into experiments on
synthetic data, we were able to illustrate the conditions un-
der which the cost of inexpressiveness in the GSP mecha-
nism is most severe. Our experiments showed that the cost
of inexpressiveness in the GSP mechanism is greatest when
some agents have a strong preference for top ranking po-
sitions (e.g., due to branding concerns), while others prefer
middle ranking positions due to higher conversion rates. Ad-
ditionally, we found that the cost is magnified when agents
have relatively small profit margins or when the number of
agents increases. We also showed that in most of the syn-
thetically generated instances the cost of inexpressiveness
can be significantly reduced by allowing agents to submit a



single extra “premium” bid for the top ranking position.
There are many opportunities to extend the work de-

scribed in this paper. One future direction involves inves-
tigating the counter intuitive findings that increasing the
number of agents in the mechanism leads to greater ineffi-
ciency (typically in economic systems the opposite is true).
With more computing resources we can extend our current
experiments to include instances with five agents. In addi-
tion, we believe that we may be able to improve the speed
of our A* search technique, allowing it to handle instances
with six or more agents.

Another obvious future direction involves applying our
methodology to actual, rather than synthetic, preference
data. We believe that this can be accomplished by learn-
ing conversion rate distributions conditioned on the rank of
an ad’s position, P (cnv|R), from real conversion data. The
other parameters in our type generation model can be ap-
proximated or varied to get a sense of whether or not the
inexpressiveness of the GSP mechanism has a high cost in
practice.
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