
 

An Interactive Visual Query Environment  
for Exploring Data

Mark Derthick, John Kolojejchick, Steven F. Roth 
 

Carnegie Mellon University  
Robotics Institute, School of Computer Science 

5000 Forbes Avenue, Pittsburgh, PA 15213, USA 
E-mail: {mad+, jake+, roth+}@cs.cmu.edu 

ABSTRACT 
Direct manipulation of visualizations is a powerful 
technique for performing exploratory data operations 
such as navigation, aggregation, and filtering.  Its 
immediacy facilitates rapid, incremental, and reversible 
forays into the data.  However it does not provide for 
reuse or modification of exploration sessions.  This paper 
describes a visual query language, VQE, that adds these 
capabilities to a direct manipulation exploration 
environment called Visage.  Queries and visualizations 
are dynamically linked: operations on either one 
immediately update the other, in contrast to the 
feedforward sequence of database query followed by 
visualization of results common in traditional systems. 

These features are supported by the architectural concept 
of threads, which represent a sequence of navigation 
steps on particular objects.  Because they are tied to 
particular data objects, they can be directly manipulated.  
Because they represent operations, they can be 
generalized into queries. We expect this technique to 
apply to direct manipulation interfaces to any object-
oriented system that represents both objects and the 
relationships among them. 

NOTE: Color versions of the figures are at, e.g., 
http://www.cs.cmu.edu/~sage/UIST97/figure1.gif 

1. THE MULTIPLE OBJECT PROBLEM 
We are concerned with data visualization systems that 
produce “business graphics” consisting of charts, maps, 
network diagrams, as well as more sophisticated and 
special purpose graphics showing abstract data.  It is 
often natural to provide the user with an object-oriented 
data model to accompany these visualizations.  For 
instance in .Figure 1, each point on the map represents a  
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single house.  Each house has attributes like 
neighborhood, latitude, and number_of_rooms. 

Many data exploration tasks involve the relationship 
among multiple objects.  For instance, the database 
schema shown in Figure 2(top) has separate objects for 
houses, schools, companies, people, and sales.  The 
schema also includes the attributes for each object type, 
and the relationships among objects.  For example, 
companies have a name, total_sales, and an 
incorporation_date.  They can be the builders of houses.  
Persons can fill any of four roles in a sale: seller_agent, 
buyer_agent, buyer, or seller.  

Figure 1: All houses, color coded by neighborhood 
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Databases containing multiple objects like these increase 
the complexity of information exploration processes. In 
particular, there are three areas of complexity that we 
have identified and attempted to address in the 
Visage/VQE environment. 

1. Browsing to locate information. First, it is difficult 
for people to locate information when it is distributed 
across multiple objects.  For example, locating the 
current owners of a set of houses requires knowing 
that there is no simple attribute of houses that tells 
this.  Rather, one must find the most recent sale object 
associated with each house and then  retrieve the 
buyer related to the sale. In other words, users must 
be aware of the database schema in order to use the 
correct terms for objects, relationships, and attributes 
to find relevant information.  We’ve provided help for 
this problem in VQE with a graphical representation 
of the schema that can be directed manpulated (as 
illustrated in Figure 2, top). 

2. Visualization. Creating visualizations that present the 
relationships among attributes from multiple objects 
is also complex. For example, Figure 2 (bottom) is a 
chart of the lot_size of houses versus the selling_price 
of the corresponding sales of those houses.  A single 
point encodes attributes of two objects: a house and 
sale.  No previous interactive visualization system 
directly supports the construction of visualizations 
that are derived from multiple objects.  Typically, a 

relational database query must be constructed using a 
separate interface that joins multiple tables into one 
containing attributes from both houses and sales.  The 
selling_price/lot_size chart can then be generated by 
mapping graphical  points to records  in this new 
table.  Once the new table is constructed, it is not 
obvious how to coordinate visualizations of it with 
those of related tables from which it was derived (e.g. 
to enable coordinated brushing of points representing 
houses on a map with points on a chart representing 
the join of houses and sales as in Figures 1 and 2). We 
discuss this problem in detail in Section 1.1. 

3. Expressing Queries. These databases require users to 
retrieve information based on the attributes of 
multiple objects and/or the relationships among 
objects.  For example, one might need to find the 
sales of a given house, or to find all the houses with 
big lots that sold for a low price.  Furthermore, it is 
useful for queries to be either extensional or 
intentional,  to provide different means by which 
users can express their requests for objects to be 
retrieved. 
a) Extensional Expressions. Often, it is easier to 

indicate sets of objects via direct manipulation 
than to create an expression defining the set. The 
bounding box in Figure 1 selects some houses near 
the border between Squirrel Hill and Point Breeze.  
This is an extensional operation because the set of 
points is selected without conveying the 
underlying intent of the set.  Consequently, if the 
border were later changed and the neighborhood 
attribute of the affected houses were updated, no 
mechanism could infer the change in the selected 
set.  In general, extensional queries can’t be 
reused on different data. 

b) Intentional Expressions. An analogous 
intentional query would, for instance, select “all 
houses within 100 yards of a house with a 
different value for neighborhood attribute.”  
Intentional queries have a declarative 
representation distinct from what they evaluate to 
on the current data, and so can be reused. 

Our approach to supporting these processes for multi-
object databases is to combine VQE, our visual query 
environment, with Visage, our direct manipulation data 
exploration environment.  In support of the points above: 
• VQE includes a schema browser similar to Figure 2 

(top), as well as providing a graphical representation 
of the query which more easily allows users to find 
the attributes they need. 

• Visage has been integrated with the SAGE system 
[10,11] for automated design of visualizations that 
integrate many attributes.  SAGE is a visualization 
server to Visage, which renders SAGE graphic 

 
Figure 2: Top: the database schema.  Bottom: chart comparing 
attributes from two different object types.  All <house, sale> pairs 
related by the sold_in relationship generate a point on the chart. 



designs so that they are subject to all direct 
manipulation operations.   

• Visage provides direct manipulation operations that 
allow users to make extensional queries, while VQE 
allows the creation of intentional queries.  
Furthermore, the integration of VQE with SAGE 
enables the visualization of attributes derived from 
multiple data objects. 

In the following 2 sections we describe Visage and VQE 
in greater detail. 

1.1 Visage 
Visage is an information centric [10,11] user interface 
environment for data exploration and for creating 
interfaces to data-intensive applications. Data objects are 
represented as first class interface objects that can be 
manipulated using a common set of basic operations, 
such as drill-down and roll-up, drag-and-drop, copy, and 
dynamic scaling.  These operations are universally 
applicable across the environment, whether graphical 
objects appear in a hierarchical table, a map, a slide 
show, a query, or other application user interface. 
Furthermore, graphical objects can be dragged across 
application UI boundaries.  Integrating the visualization 
system directly with an underlying database, rather than 
just deriving visualizations from otherwise isolated 
tables, is key to coordinating visualization applications 
with the other components of an exploratory data analysis 
environment.  

Visage includes ubiquitous extensional query operations. 
A user can navigate from the visual representation of any 
database object to other related objects. For instance, 
from a graphical object representing a real estate sales 
agent, one can navigate to all the houses listed by that 
agent. It is also possible to aggregate database objects 
into a new object, which will have attributes derived from 
its elements. For instance, we could aggregate the houses 
listed by John and look up their average size or 
recompose this set into sub-aggregates based on 
neighborhood or number of rooms (i.e. all Shadyside 
houses listed by John with 8 rooms). 

We can brush [3] graphical objects in a visualization to 
change their color, and have graphical objects in all 
visualizations representing the same data object also be 
colored.  This kind of coordination enables the user to see 
correlations among more variables than can be encoded 
in a single visualization. 

We can filter objects based on any numerical attribute 
with a Dynamic Query slider [1].  Graphical objects 
representing a data object whose attribute value falls 
outside the range selected by the slider are made 
invisible. 

The three direct manipulation operations, brushing, 
filtering, and drag and drop, are normally implemented 
under the assumption that there is a many-to-one 
mapping between graphical objects and data objects.  If 
graphical objects in multiple visualizations refer to the 
same data objects, these operations will affect all the 
visualizations in the same way, in which case they are 
said to be coordinated.  Becker and Cleveland [3] 
originally conceived this architectural approach to 
coordination, and it represented a significant advance 
over earlier visualizations using ad hoc data structures.  
However their elegantly simple notion breaks down in the 
face of a database with multiple object types. 

In previous data exploration systems using relational 
databases, the database contains a table of houses and a 
table of sales.  Figure 1 was generated entirely from the 
house table, so its graphical objects are mapped to 
records in that table.  To graph selling_price versus 
lot_size in Figure 2, we must form a relational join 
between the two tables, generating a third table whose 
attributes include both selling_price and lot_size.  
Graphical objects in the chart map to records in the new 
table.  Therefore the two visualizations cannot be 
coordinated under Becker’s architecture.  Further, records 
in a relational database table have no structure beyond its 
set of attributes.  They contain no memory of what tables 
they were generated from.  So even with a more 
complicated coordination architecture, there is just not 
enough information in table records to do coordination 
based on object identity. 

Visage solves this problem within the information-centric 
paradigm by mapping graphical objects to graph 
structures of objects, which are called threads.  Because 
threads remember the objects from which they are 
constructed, coordination across visualizations with 
related but distinct thread structures is possible (see 
section 4). Threads provide an architectural solution to 
the multiple-object problem, but not a UI solution.  There 
is still the need for queries to specify how threads are 
constructed, as well as other dataset definition operations.  

1.2 VQE 
VQE is a visual query environment within Visage for 
representing operations explicitly. It enables an analyst to 
construct complex intentional queries during data 
exploration and reuse them later.  VQE queries can 
express navigation across relationships, aggregation, and 
filtering by range selection or by arithmetic or equality 
relations between attributes. 

In traditional relational database query languages, queries 
are applied to tables in databases, generating new tables.  
As we have seen, the problem with this is that tables are 
at the wrong level of granularity.  In order to link 



visualizations from multiple queries, visual objects 
should represent meaningful objects such as houses, 
rather than records from arbitrary tables.  Therefore in 
VQE queries are applied to threads in databases, 
generating new threads.  Since VQE is based on threads, 
queries are fully integrated with the rest of Visage: not 
only can query results be dragged to other visualizations, 
but objects from visualizations can be dragged into 
queries (i.e. be the input to query expressions). User 
directed changes to queries and visualizations are 
immediately reflected in each other. 

In summary: 
• Queries can be created by drag and drop operations 

from visualizations, and visualizations can be created 
from queries. 

• Queries are expressed using direct manipulation of a 
visual language. 

• All visualizations created during an exploration 
session remain coordinated as the query is modified. 

• Objects of one type can be filtered based on 
attributes of objects of another type. 

• Visualizations can combine attributes from multiple 
object types. 

• An exploration session consisting of queries and 
visualizations can be saved independently of any 
data, and reused on a different data set. 

• Queries can express aggregation, equality and 
inequality constraints among attribute values, 
arithmetic expressions, navigation, and filtering.  
(Only the latter three are described in this paper.) 

• A related tool allows browsing and editing the 
database schema. 

 
2. EXAMPLE 
Visualization and querying, both extensional and 
intentional, are illustrated on a fictitious database that 
might have been collected by a group of real-estate agents 
describing clients and sales information for three 
neighborhoods for 1989.  The database schema is shown 
in Figure 2.  The agent has a client who would prefer to 
live in Point Breeze, but is willing to consider Squirrel 
Hill since the average price of houses there is lower.  The 
agent plans to explore whether the mere fact of the 
neighborhood label has an effect on price.  Pittsburgh is 
famous for the character of its neighborhoods, and 
boundaries between them are labeled on street signs.  
However there are no major barriers separating these 
neighborhoods, and the character of the houses does not 
change abruptly.  If houses just over the border in 
Squirrel Hill are less expensive, the client may be better 
off buying there. 

2.1 Intentional Object Sets 
The agent would like to see a map like Figure 1 that also 
encodes price.  Unfortunately, price is not an attribute of 

houses, so a query is required.  In Figure 1, the user has 
selected some houses that straddle the border with a 
bounding box.  He copy-drags this set to VQE in order to 
begin query construction (Figure 3).  The set of houses is 
visualized as a dynamic aggregate.  It is an aggregate 
because operations on it apply to each of its 27 elements; 
it is dynamic because it represents an intentional set.  As 
the user changes the query, the set of houses that satisfy 
it (its extension) changes.  Even if the query doesn’t 
change, it may be applied to a different set of houses 
simply by dragging objects into or out of dynamic 
aggregates.  

2.2 Intentional Navigation 
The agent first wants to link the houses with their sales, 
so has brought up a menu of relationships that houses 
participate in.  He will select the sold_in relationship and 
drag its arrowhead to a screen location where a second 
dynamic aggregate will be placed (see Figure 4, top).  We 
call this operation parallel navigation, because we are 
navigating across the sold_in relationship for each 
element of the aggregate.  The new dynamic aggregate 
will be the aggregate of all the sales of these houses.  
Parallel navigation corresponds to a join in a relational 
query, or a path expression in an object-oriented query.  
If objects are added to or removed from a dynamic 
aggregate, the intentional navigation representation 
allows other linked dynamic aggregates to update, 
maintaining query consistency. 

2.3 Creating Visualizations 
Now that the houses and sales have been linked, the agent 
can specify how to encode attributes from both types of 
objects within the same visualization.  He constructs a 
SageBrush sketch  (Figure 4, middle) for a map just like 
Figure 1, except that it will encode selling price by the 
size of the points.  Figure 4 (bottom) shows the result.  
Each visual object on the map now represents a <house, 
sale> thread, but coordination still happens via the thread 
objects. 

 
Figure 3: The selected houses have been dragged to the 
QueryEnvironment frame (VQE), where they become a dynamic 
aggregate.  The arrows to the right constitute a menu for parallel 
navigation. 



The new map does little to confirm the neighborhood 
label hypothesis: the variance in point size overwhelms 
any systematic difference, which if anything favors 
Squirrel Hill with the expensive houses. 

2.4 Defining New Attributes 
A second question is whether the client will be able to 
qualify for a higher mortgage in one neighborhood than 
another.  Although this information can’t be predicted 

with certainty, an indicator is the ratio of selling_price to 
buyer salary for other sales in the two neighborhoods.  
This ratio is not defined for any of the object types in the 
database, and so the only recourse in previous 
visualization systems would be another session with the 
database to generate another table.  VQE provides a 
spreadsheet-like interface for this purpose. First the agent 
performs another parallel navigation from sale across the 
buyer relationship to person, in order to access the salary 
attribute. Figure 5 illustrates the definition of 
StretchRatio as selling_price/sum(buyer→salary).  That 
is, for each sale a new attribute value is computed by 
navigating to all the buyers in the sale, adding up their 
salaries, and dividing into the selling price.  The new 
attribute is a permanent addition to the database schema, 
and may be used in queries that don’t involve a person 
dynamic aggregate. 

Figure 6 shows a new map where size encodes 
StretchRatio rather than selling_price.  As a memory aid, 
the agent has edited the title of the visualizations to 
“SellingPrice” and “StretchRatio.”  The variance has 
been reduced, and a systematic tendency to buy a more 
expensive house for a given salary level is apparent.  The 
client’s original preference for Point Breeze is well 
supported.  There is no indication that she will pay more 
for the same quality house, and she may be able to 
borrow more and therefore afford a nicer house. 

2.5 Extensional Query Update 
Having found an interesting relationship between Squirrel 
Hill and Point Breeze, the agent wonders whether it 
applies to Squirrel Hill and Shadyside.  The exploration 
sequence can be reused simply by dragging more objects 
into the visualization.  Using another bounding box on the 
map of Figure 1, the agent picks out houses near the 
border between Squirrel Hill and Shadyside, and copy 
drags them to one of the maps inside VQE.  Recall that 
points on the original map represented houses, while 
those on the second map represent <house, sale> threads, 
and those on the third represent <house, sale, person> 
threads.  When the drop occurs, Visage consults the 
thread representation to perform the appropriate 
navigation operations necessary to convert from one 
thread structure to another (see section 4).  In this way, 
the appropriate objects are added to the two 

Figure 4: Middle: A SageBrush sketch calling for a map with 
points inside it.  Attributes from the dynamic aggregates have 
been mapped to graphical properties of the point.  Bottom:  The 
resulting visualization. 

Figure 5: Defining the new attribute to be called StretchRatio. 



visualizations and the three dynamic aggregates (Figure 
7). 

VQE queries have both intentional and extensional 
aspects.  The graph structure and slider settings form the 
intention, which is dynamically applied to any objects 
extensionally dragged in or out of any dynamic aggregate 
or visualization. 

2.6 Saving the Query 
Just as easily as new objects were added to the query, the 
old objects can be removed, leaving a bare query that can 
be named and saved for reuse in a later session.  We 
intend to extend the SageBook [5] interface to enable 
searching for queries based on characteristics of the 
visualizations or the query. 

2.7 Different Input to the Query 
Later, the agent has been exploring pricing strategies.  Is 
it better to ask a high price and be willing to negotiate 
more, or to offer the lowest price up front?  In Figure 8, 
the agent has defined two new attributes: 
Days_on_Market = date_sold - date_on_market is 
displayed on the x-axis; %_Price_Drop = 100*(1 - 

selling_price/asking_price) is displayed on the y-axis.  
Interestingly, there is little correlation.  Some houses 
even sell for more than the asking price, including one 
outlier that increases almost 60%!  This last is probably a 
data entry error. 

Out of curiosity, he wonders whether %_Price_Drop  has 
any impact on the StretchRatio location dependence 
found earlier.  He finds and restores the earlier 
exploration session, and copy drags all the points from 
the chart onto the sale dynamic aggregate (Figure 9).  
VQE navigates to the appropriate houses and buyers, and 
populates the two maps.  Note that the navigation is now 
being done in a different direction, because we are 
starting with sales rather than houses.  This is possible 
because the query is a declarative specification of 
constraints among objects, rather than a procedure as 
might be captured by a programming-by-demonstration 
macro facility. 

2.8 Brushing and Filtering 
Figure 9 also shows several further exploration 
operations.  First, the agent has brushed the highest price 
drops in the chart with black paint, causing the 

 
Figure 6: The new visualization (lower right) shows the StretchRatio of the border houses. 



corresponding houses  to be painted black on the maps.  
He has also dropped dynamic query sliders on several of 
the attributes.  These sliders include histograms showing 
the distribution of values for the attribute.  The 
rectangular outlines show the currently selected range for 
each slider.  Only the range of the lot_size slider has been 
restricted, to filter out houses with small lots.  The 
histograms are updated to show the distribution of 
filtered values in black, while the original distribution 
remains in gray. 

3. USEFULNESS OF THREADS 
Direct manipulation interfaces are easy to learn and use at 
least in part because they map interface objects onto the 
user’s intuitive object-oriented domain model.  For 
applications where relationships among multiple objects 
are important, previous architectures for direct 
manipulation do not apply. We are unaware of any 
previous use of composite first class objects like threads, 
which enable the interface to transparently respect object 
identity while manipulating attributes of distinct but 
related objects. 

Even within the object-oriented database community, 

there is no mention of first class objects that refer to 
structures of domain-level objects.  Object-oriented 
databases include path expressions [13] for describing 
navigation operations, but they depend on a host 
programming language to extract attributes of related 
objects.  OQL query semantics are defined in terms of 
extensional patterns [2], which are like threads, but are 
merely theoretical pedagogical concepts. 

Not providing threads as first class objects is most likely 
for efficiency reasons.  Since tuples of objects can be 
reconstructed at will, what is the point of maintaining 
them in persistent store rather than ephemerally in the 
host language’s variable bindings or other data 
structures? 

We argue that the overhead is justified by the increased 
architectural modularity afforded the interface.  As GUI’s 
become ever more complex, there is a trend to make them 
application-independent utilities.  Visage takes advantage 
of this separation in order to present multiple applications 
to the user as one, with transparent coordination and 
communication between them, and consistent behavior 
across them.  This separation requires that all data be 

 
Figure 7: Adding houses on the border between Squirrel Hill and Shadyside. 



stored in a consistent form in a shared database, however.  
Anything required by the interface must be in this 
persistent store. 

4. IMPLEMENTATION 
Visage is implemented on top of the Saga GUI toolkit 
from Maya Design Group, which runs on Macintosh, 
IBM PC, and Unix/X.  VQE is implemented on top of 
Visage, using Saga’s scripting language.  Below are brief 
descriptions of algorithms for extending direct 
manipulation operations to deal with threads. 

Brushing.   When a graphical object is brushed, a message 
is sent to all visualizations to color corresponding objects 
with the current brushing color. This is just as in any 
brushing algorithm.  The hitch is that in VQE we want 
brushing to be coordinated across visualizations 
generated from multiple queries, which may have 
different thread structures.  So we send a separate 
message for each object of the thread.  A visualization 
colors a thread if any of its objects match the argument of 
the message. 

For instance, when the high-drop sales are brushed in 
Figure 8, and the visualizations in Figure 9 are given the 
message, they both find graphical objects to color, 
because their threads contain sale objects.  On the other 
hand, the map in Figure 1 does not color any of its 
graphical objects, which mention only houses.  In 
contrast, if the user had painted objects in the 
SellingPrice visualization in Figure 9, messages would 
have been sent to color houses, and more messages would 
have been sent to color sales.  Therefore objects in Figure 
1 (as well as in Figures 8 and 9) would have been colored. 

Dynamic Query.  Each query graph maintains a list of 
threads that constitute the current dataset to which the 
query is applied.  For each thread it remembers how 
many DQ sliders are currently filtering out the thread.  
Each DQ slider is associated with a node in the query 
graph and an attribute.  Its job is to tell the query when it 
filters out or reinstates a thread. 

When it receives the message, the query increments or 
decrements the counter associated with the thread.  If the 
count decreases to zero or increases from zero, the 
visibility of all objects representing the thread must be 
changed and the histograms of all sliders must be 
updated.  So far, the algorithm is identical to DQ 
algorithms for ordinary objects.  Again we deal with the 
difference between threads and ordinary objects by 
issuing a separate visibility message for each thread 
object. 

Updating histograms is more complicated than in the non-
thread case, because they record the frequency of objects 
rather than threads.  An object is considered to be filtered 
out iff all threads containing it are filtered out.  Therefore 
each query node must maintain a count of the number of 
threads filtered out for each object.  When this number 
crosses a threshold, the histogram is updated just as in the 
ordinary case [14]. 

Drag and Drop. Rather than storing the graph structure on 
every thread, it is stored as a separate template, and all 
threads with the same structure point to the same 
template.  The template records the object type of each 
node, and the relationships between pairs of nodes. Every 
Sage visualization is designed to display threads with a 
particular template.  When dropping a graphical object 
into a visualization, Visage tries to coerce the 
corresponding thread into a thread with that 
visualization’s template.  (Visage treats ordinary objects 
as unary threads, so conversion among threads covers the 
general case.)  Thread conversion consists of two steps.  
First, the template of the source thread must be mapped 
to that of the destination thread.  All possible one-to-one 
mappings from subsets of the source nodes to subsets of 
the destination nodes are considered.   Second, a 
destination thread is created and its nodes are bound to 
data objects.  For each possible mapping, the data objects 
bound to the mapped nodes in the source thread are 
copied to the destination thread.  Other nodes on the 
destination thread, if any, are initially empty.  By depth-
first search, the empty nodes are populated with any data 
object of the correct type.  If at any point there are two 
thread nodes connected by a relationship that doesn’t 
hold among the objects bound to those nodes, the search 
backtracks.  (For efficiency, candidate data objects can be 
generated by navigation along the relationships, rather 

 
Figure 8: Percentage drop from asking_price to selling_price is 
plotted against the number of days on the market.  Sales with a 
large drop in price have been brushed with black paint. 



than by the object type.)  All complete destination threads 
are added to the destination visualization. 

5. RELATED WORK 
5.1 GQL 
GQL [9] is a fully visual conceptual level Graphical 
Query Language with the expressiveness of SQL. VQE’s 
visual representation of the query graph is adapted from 
GQL, with some interface modifications such as using 
containment to show attributes rather than links. The 
problem with GQL as it stands is that it is not integrated 
with a visualization system for displaying query results. 
Each query generates a static table, so the paradigm is 
batch processing rather than the incremental query and 
direct manipulation exploration of VQE. There are many 
other conceptual level query interfaces from the database 
community, but all are less elegant than GQL, and none 

visualize results in an interesting or incremental way (see 
for instance many of the papers in [6]). 

5.2 Exbase 
Exbase [7] is similar to this work in terms of motivation, 
in that it seeks to provide an intermediary between a 
database and a visualization system. However the 
emphasis is on explicitly representing the history of user 
interaction with the database and visualizations.  Lee and 
Grinstein distinguish remote database accesses from local 
processing, so there are objects for database views, which 
are the result of queries, and derived views, for example 
as the result of manipulating sliders. Similarly, they 
maintain a derivation history of visualization views. 

We have not yet addressed the question of maintaining 
histories, having chosen to focus on intuitive query 

 
Figure 9: Reusing the analysis on sales from Figure 8.  Brushing is coordinated.  Dynamic Query sliders have been added. 



languages and integration of querying and visualization - 
topics that Exbase, which uses SQL as a query language, 
has not yet addressed. 

5.4 Butterfly 
Butterfly [8] is a citation searching and browsing 
application.  Searching is done by selecting databases and 
attribute/value pairs.  Browsing is done by following 
reference and citer links. Butterfly is able to hide the 
complex database queries from the user, largely because 
the class of queries can be anticipated. To complete the 
analogy with VQE, Butterfly would be able to modify 
queries by operations on query results. For instance, 
additional keywords associated with a citation might be 
dragged into the query. 

5.5 IMACS 
IMACS [4] has very similar goals to Visage/VQE.  It 
supports analysts’ iterative exploration and visualization 
of data, including query reuse.  It’s foundation is the 
knowledge representation system CLASSIC, which is 
much more sophisticated than the object-oriented 
database we use.  The primary advantage of this is that 
subsumption relations among queries can be inferred, 
allowing them to be automatically organized into the 
knowledge base.  On the other hand, in later work the 
same group reverted to a simpler knowledge 
representation system to decrease the overhead and allow 
exploration of larger data sets [12]. 

IMACS visualizations do not support direct manipulation 
interaction, and it uses a textual query language.  Queries 
are somewhat more expressive than VQE’s. 

6. SUMMARY 
VQE combines a GQL-style intentional visual query 
language with direct-manipulation data exploration 
capabilities as found in systems like Visage, IVEE, and 
the Influence Explorer. Since queries and visualizations 
share an object oriented database, visualizations can 
combine attributes of multiple objects, and visualizations 
resulting from a sequence of queries are coordinated. 
Integration of extensional and intentional exploration 
allows use of direct manipulation where possible but still 
retains the ability to capture and reuse query sequences as 
declarative structures.  VQE frames containing a 
sequence of nodes and links and associated visualizations 
can be saved and/or cleared of data to be reused with new 
datasets. 

These capabilities are supported by the concept of 
threads, which we believe will be generally useful as 
interfaces become more application-independent, and 
support inter-application communication via shared 
object-oriented databases. 
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