Proceedings of the ACM Symposium on User | nterface Software and Technology (UIST '97), ACM Press, October 1997, pp 189-198.

An Interactive Visual Query Environment
for Exploring Data

Mark Derthick, John Kolojejchick, Seven F. Roth

Carnegie Méellon University
Robotics Institute, School of Computer Science
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: { mad+, jake+, roth+} @cs.cmu.edu

ABSTRACT

Direct manipulation of visuadizations is a powerful
technique for performing exploratory data operations
such as navigation, aggregation, and filtering. Its
immediacy facilitates rapid, incremental, and reversible
forays into the data. However it does not provide for
reuse or modification of exploration sessions. This paper
describes a visual query language, VQE, that adds these
capabilities to a direct manipulation exploration
environment called Visage. Queries and visualizations
are dynamicaly linked: operations on either one
immediately update the other, in contrast to the
feedforward sequence of database query followed by
visualization of results common in traditional systems.

These features are supported by the architectural concept
of threads, which represent a sequence of navigation
steps on particular objects. Because they are tied to
particular data objects, they can be directly manipulated.
Because they represent operations, they can be
generalized into queries. We expect this technique to
apply to direct manipulation interfaces to any object-
oriented system that represents both objects and the
relationships among them.

NOTE: Color versions of the figures are at, eg.,
http://mww.cs.cmu.edu/~sage/UI ST97/figurel.gif

1. THE MULTIPLE OBJECT PROBLEM

We are concerned with data visualization systems that
produce “business graphics’ consisting of charts, maps,
network diagrams, as well as more sophisticated and
specia purpose graphics showing abstract data. It is
often natural to provide the user with an object-oriented
data model to accompany these visualizations. For
instance in .Figure 1, each point on the map represents a

Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST '97), ACM Press, October 1997, to appear.
Copyright 1997 ACM.

Q @ O
FOINT BREEZE SGUIRREL HILL SHADYSIDE
MEIGHEORHOOD

ot lad
Figure 1: All houses, color coded by neighborhood

single house. Each house has attributes like
neighborhood, latitude, and number_of rooms.

Many data exploration tasks involve the relationship
among multiple objects. For instance, the database
schema shown in Figure 2(top) has separate objects for
houses, schools, companies, people, and sales. The
schema also includes the attributes for each object type,
and the relationships among objects. For example,
companies have a name, tota sades, and an
incorporation_date. They can be the builders of houses.
Persons can fill any of four roles in a sale: seller_agent,
buyer agent, buyer, or seller.

COMPANY HOUSE SCHOOL
Name Neighborhood Neighborhood
Total_Sales Address Qddregs d
i R t t
Incorporation_Dat Builder ZonedechooI Lé’,’%ﬁudi s
Longitude Latitude
Latitude Level
(Sold_|
Employer
PERSON SA
Name Seller_Agent | elling_Price
Salary Date_soig
Birthdate Buyer_Agent Date_on_Market
SSN Seller | Asking_Price
Buyer Agency_Estimate

500 °
400
300
200

100

0

1
20

Figure 2: Top: the database schema. Bottom: chart comparing
attributes from two different object types. All <house, sale> pairs

related by the sold_in relationship generate a point on the chart.

Databases containing multiple objects like these increase
the complexity of information exploration processes. In
particular, there are three areas of complexity that we
have identified and attempted to address in the
Visage/V QE environment.

1. Browsing to locate information. First, it is difficult
for people to locate information when it is distributed
across multiple objects. For example, locating the
current owners of a set of houses requires knowing
that there is no simple attribute of houses that tells
this. Rather, one must find the most recent sale object
associated with each house and then retrieve the
buyer related to the sale. In other words, users must
be aware of the database schema in order to use the
correct terms for objects, relationships, and attributes
to find relevant information. We've provided help for
this problem in VQE with a graphical representation
of the schema that can be directed manpulated (as
illustrated in Figure 2, top).

2. Visualization. Creating visualizations that present the
relationships among attributes from multiple objects
is also complex. For example, Figure 2 (bottom) is a
chart of the lot_size of houses versus the selling_price
of the corresponding sales of those houses. A single
point encodes attributes of two objects: a house and
sde. No previous interactive visualization system
directly supports the construction of visualizations
that are derived from multiple objects. Typicaly, a

relational database query must be constructed using a
separate interface that joins multiple tables into one
containing attributes from both houses and sales. The
selling_price/lot_size chart can then be generated by
mapping graphical points to records in this new
table. Once the new table is constructed, it is not
obvious how to coordinate visualizations of it with
those of related tables from which it was derived (e.g.
to enable coordinated brushing of points representing
houses on a map with points on a chart representing
the join of houses and salesasin Figures 1 and 2). We
discuss this problem in detail in Section 1.1.

Expressing Queries. These databases require usersto
retrieve information based on the attributes of
multiple objects and/or the relationships among
objects. For example, one might need to find the
sales of a given house, or to find all the houses with
big lots that sold for a low price. Furthermore, it is
useful for queries to be either extensional or
intentional, to provide different means by which
users can express their requests for objects to be
retrieved.

a) Extensional Expressions. Often, it is easier to
indicate sets of objects via direct manipulation
than to create an expression defining the set. The
bounding box in Figure 1 selects some houses near
the border between Squirrel Hill and Point Breeze.
Thisis an extensional operation because the set of
points is selected without conveying the
underlying intent of the set. Consequently, if the
border were later changed and the neighborhood
attribute of the affected houses were updated, no
mechanism could infer the change in the selected
set. In general, extensional queries can't be
reused on different data.

b) Intentional Expressions. An anaogous
intentional query would, for instance, select “all
houses within 100 yards of a house with a
different value for neighborhood attribute.”
Intentional queries have a declarative
representation distinct from what they evaluate to
on the current data, and so can be reused.

Our approach to supporting these processes for multi-
object databases is to combine VQE, our visua query
environment, with Visage, our direct manipulation data
exploration environment. In support of the points above:

VQE includes a schema browser similar to Figure 2
(top), as well as providing a graphical representation
of the query which more easily allows users to find
the attributes they need.

Visage has been integrated with the SAGE system
[10,11] for automated design of visualizations that
integrate many attributes. SAGE is a visualization
server to Visage, which renders SAGE graphic

designs so that they are subject to al direct
manipulation operations.

» Visage provides direct manipulation operations that
allow users to make extensional queries, while VQE
alows the creation of intentiona queries.
Furthermore, the integration of VQE with SAGE
enables the visualization of attributes derived from
multiple data objects.

In the following 2 sections we describe Visage and VQE

in greater detail.

1.1 Visage

Visage is an information centric [10,11] user interface
environment for data exploration and for creating
interfaces to data-intensive applications. Data objects are
represented as first class interface objects that can be
manipulated using a common set of basic operations,
such as drill-down and roll-up, drag-and-drop, copy, and
dynamic scaling. These operations are universally
applicable across the environment, whether graphical
objects appear in a hierarchical table, a map, a dslide
show, a query, or other application user interface.
Furthermore, graphical objects can be dragged across
application Ul boundaries. Integrating the visualization
system directly with an underlying database, rather than
just deriving visualizations from otherwise isolated
tables, is key to coordinating visualization applications
with the other components of an exploratory data analysis
environment.

Visage includes ubiquitous extensional query operations.
A user can navigate from the visual representation of any
database object to other related objects. For instance,
from a graphical object representing a real estate sales
agent, one can navigate to all the houses listed by that
agent. It is also possible to aggregate database objects
into a new object, which will have attributes derived from
its elements. For instance, we could aggregate the houses
listed by John and look up their average size or
recompose this set into sub-aggregates based on
neighborhood or number of rooms (i.e. all Shadyside
houses listed by John with 8 rooms).

We can brush [3] graphical objects in a visualization to
change their color, and have graphical objects in al
visualizations representing the same data object also be
colored. Thiskind of coordination enables the user to see
correlations among more variables than can be encoded
inasingle visualization.

We can filter objects based on any numerical attribute
with a Dynamic Query dider [1]. Graphical objects
representing a data object whose attribute value falls
outside the range selected by the dider are made
invisible.

The three direct manipulation operations, brushing,
filtering, and drag and drop, are normally implemented
under the assumption that there is a many-to-one
mapping between graphical objects and data objects. If
graphical objects in multiple visuaizations refer to the
same data objects, these operations will affect all the
visualizations in the same way, in which case they are
said to be coordinated. Becker and Cleveland [3]
originally conceived this architectural approach to
coordination, and it represented a significant advance
over earlier visualizations using ad hoc data structures.
However their elegantly simple notion breaks down in the
face of a database with multiple object types.

In previous data exploration systems using relational
databases, the database contains a table of houses and a
table of sales. Figure 1 was generated entirely from the
house table, so its graphical objects are mapped to
records in that table. To graph selling price versus
lot_size in Figure 2, we must form a relationa join
between the two tables, generating a third table whose
attributes include both selling_price and lot_size.
Graphical objects in the chart map to records in the new
table. Therefore the two visudizations cannot be
coordinated under Becker’s architecture. Further, records
in arelational database table have no structure beyond its
set of attributes. They contain no memory of what tables
they were generated from. So even with a more
complicated coordination architecture, there is just not
enough information in table records to do coordination
based on object identity.

Visage solves this problem within the information-centric
paradigm by mapping graphical objects to graph
structures of objects, which are called threads. Because
threads remember the objects from which they are
constructed, coordination across visualizations with
related but distinct thread structures is possible (see
section 4). Threads provide an architectural solution to
the multiple-object problem, but not a Ul solution. There
is still the need for queries to specify how threads are
constructed, as well as other dataset definition operations.

1.2 VQE

VQE is a visual query environment within Visage for
representing operations explicitly. It enables an analyst to
construct complex intentional queries during data
exploration and reuse them later. VQE queries can
express navigation across relationships, aggregation, and
filtering by range selection or by arithmetic or equality
relations between attributes.

In traditional relational database query languages, queries
are applied to tables in databases, generating new tables.
As we have seen, the problem with this is that tables are
at the wrong level of granularity. In order to link

visualizations from multiple queries, visua objects
should represent meaningful objects such as houses,
rather than records from arbitrary tables. Therefore in
VQE queries are applied to threads in databases,
generating new threads. Since VQE is based on threads,
gueries are fully integrated with the rest of Visage: not
only can query results be dragged to other visualizations,
but objects from visualizations can be dragged into
queries (i.e. be the input to query expressions). User
directed changes to queries and visudizations are
immediately reflected in each other.

In summary:

* Queries can be created by drag and drop operations
from visualizations, and visualizations can be created
from queries.

» Queries are expressed using direct manipulation of a
visua language.

e All visualizations created during an exploration
session remain coordinated as the query is modified.

 Objects of one type can be filtered based on
attributes of objects of another type.

» Visuaizations can combine attributes from multiple
object types.

 An exploration session consisting of queries and
visualizations can be saved independently of any
data, and reused on a different data set.

* Queries can express aggregation, equdity and
inequality constraints among attribute values,
arithmetic expressions, navigation, and filtering.
(Only the latter three are described in this paper.)

A related tool alows browsing and editing the
database schema.

2. EXAMPLE

Visudlization and querying, both extensiona and
intentional, are illustrated on a fictitious database that
might have been collected by a group of real-estate agents
describing clients and sales information for three
neighborhoods for 1989. The database schema is shown
in Figure 2. The agent has a client who would prefer to
live in Point Breeze, but is willing to consider Squirrel
Hill since the average price of houses thereislower. The
agent plans to explore whether the mere fact of the
neighborhood label has an effect on price. Pittsburgh is
famous for the character of its neighborhoods, and
boundaries between them are labeled on street signs.
However there are no major barriers separating these
neighborhoods, and the character of the houses does not
change abruptly. If houses just over the border in
Squirrel Hill are less expensive, the client may be better
off buying there.

2.1 Intentional Object Sets
The agent would like to see a map like Figure 1 that also
encodes price. Unfortunately, price is not an attribute of

. Query Environment

. DynamicAggregate
7 [HOUSE s 1 %
EDDRESS ZONED_SCH
LATITUDE
LOMGITUDE >
LOT_SIZE SOLD_IN g

MEIGHEORHOOD
MUR_ROOMS

<nonex I §>
BUILDER

pojojojojojo

Figure 3: The selected houses have been dragged to the
QueryEnvironment frame (VQE), where they become a dynamic
aggregate. The arrows to the right constitute a menu for parallel
navigation.

houses, so a query is required. In Figure 1, the user has
selected some houses that straddle the border with a
bounding box. He copy-drags this set to VQE in order to
begin query construction (Figure 3). The set of houses is
visualized as a dynamic aggregate. It is an aggregate
because operations on it apply to each of its 27 elements;
it is dynamic because it represents an intentional set. As
the user changes the query, the set of houses that satisfy
it (its extension) changes. Even if the query doesn't
change, it may be applied to a different set of houses
simply by dragging objects into or out of dynamic
aggregates.

2.2 Intentional Navigation

The agent first wants to link the houses with their sales,
so has brought up a menu of relationships that houses
participate in. He will select the sold _in relationship and
drag its arrowhead to a screen location where a second
dynamic aggregate will be placed (see Figure 4, top). We
cal this operation parallel navigation, because we are
navigating across the sold_in relationship for each
element of the aggregate. The new dynamic aggregate
will be the aggregate of all the sales of these houses.
Parallel navigation corresponds to a join in a relational
guery, or a path expression in an object-oriented query.
If objects are added to or removed from a dynamic
aggregate, the intentional navigation representation
allows other linked dynamic aggregates to update,
maintaining query consistency.

2.3 Creating Visualizations

Now that the houses and sales have been linked, the agent
can specify how to encode attributes from both types of
objects within the same visualization. He constructs a
SageBrush sketch (Figure 4, middle) for a map just like
Figure 1, except that it will encode selling price by the
size of the points. Figure 4 (bottom) shows the result.
Each visual object on the map now represents a <house,
sale> thread, but coordination still happens via the thread
objects.

Query Environment

=hnohex

DynamicAggregate DynamicAggregate
[e7 [HOUSE s 1 E7 [FALEs 2
= ~ADDRESS —=| AGENCY_ESTIMATE
= LATITUDE ™ =| ASKING_PRICE
=) LOMNGITUDE ¥ =| DATE_ON_MARKET
= LOT_SIZE S0OLD_IN > = DATE_SOLD
=| MNEIGHEORHOOD [I =| SELLING_PRICE wf§
=) MUM_ROOMS = <none=

Create Picture
Mark || Text | | H-Bar| [¥-Bar || Line || Gauge .

b

HECIE]

z
=

LATITUDE a=nn NEIGHEORHOOD

+ w§ SELLING_PRICE
LOMGITUDE in

Sage Picture
—/
dc.
a
® © 9O
@ o] e
2
& °
@ @
@
o] [}
POINT BEREEZE SQUIRREL HILL
NEIGHEORHOOD
.o o @
0 100 200 300 400
PRICE {x 1043}
4 &

Figure 4: Middle: A SageBrush sketch calling for a map with
points inside it. Attributes from the dynamic aggregates have
been mapped to graphical properties of the point. Bottom: The
resulting visualization.

The new map does little to confirm the neighborhood
label hypothesis. the variance in point size overwhelms
any systematic difference, which if anything favors
Squirrel Hill with the expensive houses.

2.4 Defining New Attributes

A second question is whether the client will be able to
qualify for a higher mortgage in one neighborhood than
another. Although this information can't be predicted

DynamicAggregate DynamicAggregate
7 [EALEs z 7 PERSON s 4
| AGEMCY_ESTIMATE = BIRTHDATE
= ASKING_PRICE = MNAME
—| DATE_ON_MARKET = SALARY
SOLD_IN = DATE_SOLD BUYER) = B
= SEL ET TR = <none:

ALARY
*

Figure 5: Defining the new attribute to be called StretchRatio.

with certainty, an indicator is the ratio of selling_price to
buyer salary for other sales in the two neighborhoods.
This ratio is not defined for any of the object typesin the
database, and so the only recourse in previous
visualization systems would be another session with the
database to generate another table. VQE provides a
spreadsheet-like interface for this purpose. First the agent
performs another parallel navigation from sale across the
buyer relationship to person, in order to access the salary
attribute. Figure 5 illustrates the definition of
StretchRatio as selling_price/sum(buyer - salary). That
is, for each sale a new attribute value is computed by
navigating to al the buyers in the sale, adding up their
salaries, and dividing into the selling price. The new
attribute is a permanent addition to the database schema,
and may be used in queries that don’t involve a person
dynamic aggregate.

Figure 6 shows a new map where size encodes
StretchRatio rather than selling_price. As a memory aid,
the agent has edited the title of the visuaizations to
“SellingPrice” and “StretchRatio.” The variance has
been reduced, and a systematic tendency to buy a more
expensive house for a given salary level is apparent. The
client's original preference for Point Breeze is well
supported. There is no indication that she will pay more
for the same quality house, and she may be able to
borrow more and therefore afford a nicer house.

2.5 Extensional Query Update

Having found an interesting relationship between Squirrel
Hill and Point Breeze, the agent wonders whether it
applies to Squirrel Hill and Shadyside. The exploration
seguence can be reused simply by dragging more objects
into the visualization. Using another bounding box on the
map of Figure 1, the agent picks out houses near the
border between Squirrel Hill and Shadyside, and copy
drags them to one of the maps inside VQE. Recall that
points on the origina map represented houses, while
those on the second map represent <house, sale> threads,
and those on the third represent <house, sale, person>
threads. When the drop occurs, Visage consults the
thread representation to perform the appropriate
navigation operations necessary to convert from one
thread structure to another (see section 4). In this way,
the appropriate objects are added to the two

. Query Environment
-
DynamicAggregate DynamicAggregate DynamicAggregate
g7 |HOUSE = 1 27 [FaLEs 4 4 [PERSON s 3
= ADDRESS —=][AGEMCY_ESTIMATE = EIRTHDATE
= LATITUDE —| ASKING_PRICE = NAME
— LONGITUDE —=| DATE_OMN_MARKET = SALARY
= LOT_SIZE SOLD_IM = DATE_SOLD BUYER = SEN
=| MNEIGHBORHOOD = SELLING_PRICE = <nones>
= NUM_ROOMS = StretchRatio
= =hnones = <hanes
BellingPrice StretchRatio
® . O
__/ __/O_/-
@
d . O
° @ © @
® o @ o O
[@
5] ‘]
@ ® . @
@ @
9] L o] @
FOINT BREEZE SQUIRREL HILL FOINT BREEZE SQUIRREL HILL
NEIGHEORHOOD NEIGHBORHOOD
e & @
. e @
i 100 200 300 400 18 L0 25 s
PRICE x 1043) RaTIO
L (| | ¥
L

Figure 6: The new visualization (lower right) shows the StretchRatio of the border houses.

visualizations and the three dynamic aggregates (Figure
7).

VQE queries have both intentional and extensiona
aspects. The graph structure and slider settings form the
intention, which is dynamically applied to any objects
extensionally dragged in or out of any dynamic aggregate
or visualization.

2.6 Saving the Query

Just as easily as new objects were added to the query, the
old objects can be removed, leaving a bare query that can
be named and saved for reuse in a later session. We
intend to extend the SageBook [5] interface to enable
searching for queries based on characteristics of the
visualizations or the query.

2.7 Different Input to the Query

Later, the agent has been exploring pricing strategies. Is
it better to ask a high price and be willing to negotiate
more, or to offer the lowest price up front? In Figure 8,
the agent has defined two new atributes:
Days on Market = date sold - date on market is
displayed on the x-axis; % Price Drop = 100*(1 -

selling_price/asking_price) is displayed on the y-axis.
Interestingly, there is little correlation. Some houses
even sell for more than the asking price, including one
outlier that increases almost 60%! Thislast is probably a
data entry error.

Out of curiosity, he wonders whether % _Price_Drop has
any impact on the StretchRatio location dependence
found earlier. He finds and restores the earlier
exploration session, and copy drags al the points from
the chart onto the sale dynamic aggregate (Figure 9).
VQE navigates to the appropriate houses and buyers, and
populates the two maps. Note that the navigation is now
being done in a different direction, because we are
starting with sales rather than houses. This is possible
because the query is a declarative specification of
constraints among objects, rather than a procedure as
might be captured by a programming-by-demonstration
macro facility.

2.8 Brushing and Filtering

Figure 9 aso shows severa further exploration
operations. First, the agent has brushed the highest price
drops in the chart with black paint, causing the

. Query Environment

o] L] Q
FOINT BREEZE SQUIRREL HILL SHADYSIDE]
MNEIGHEORHOOD

. e @ @
5 100 200 300 400
PRICE {x 1043}

¢

DynamicAggregate DynamicAggregate DynamicAggregate
fi8 HOUSE s 1 5 [BalEs 2 58 [FERSON s 3
= ADDRESS =| AGEMCY_ESTIMATE = BIRTHDATE
= LATITUDE —| ASKING_PRICE = MNAME
= LONGITUDE | [=] DATE_ON_MARKET = SALARY
— LOT_SIZE SOLO_IN = DATE_S0LD BUYER = 55N
—=| MNEIGHEORHOOD = SELLIMG_PRICE = <nones
= MUM_ROOMS = StretchRatio
=] “<none= — <hnones=
SellingPrice StretchRatio
° 8" e@0 — D
oo
o @ @ (-]
Q’ . -] O oo @
° @
@ e @ @

o] @ o
POINT BREEZE SOUIRREL HILL SHADVSIDE]

MEIGHBORHOOD

e
£

[]
15

[]
20

RATIO

]
25

¢

Figure 7: Adding houses on the border between Squirrel Hill and Shadyside.

corresponding houses to be painted black on the maps.
He has also dropped dynamic query dliders on severa of
the attributes. These sliders include histograms showing
the distribution of values for the attribute. The
rectangular outlines show the currently selected range for
each dider. Only the range of the lot_size slider has been
restricted, to filter out houses with small lots. The
histograms are updated to show the distribution of
filtered values in black, while the original distribution
remainsin gray.

3. USEFULNESS OF THREADS

Direct manipulation interfaces are easy to learn and use at
least in part because they map interface objects onto the
user's intuitive object-oriented domain model. For
applications where relationships among multiple objects
are important, previous architectures for direct
manipulation do not apply. We are unaware of any
previous use of composite first class objects like threads,
which enable the interface to transparently respect object
identity while manipulating attributes of distinct but
related objects.

Even within the object-oriented database community,

there is no mention of first class objects that refer to
structures of domain-level objects. Object-oriented
databases include path expressions [13] for describing
navigation operations, but they depend on a host
programming language to extract attributes of related
objects. OQL query semantics are defined in terms of
extensional patterns [2], which are like threads, but are
merely theoretical pedagogical concepts.

Not providing threads as first class objects is most likely
for efficiency reasons. Since tuples of objects can be
reconstructed at will, what is the point of maintaining
them in persistent store rather than ephemeraly in the
host language's variable bindings or other data
structures?

We argue that the overhead is justified by the increased
architectural modularity afforded the interface. AsGUI’s
become ever more complex, there isatrend to make them
application-independent utilities. Visage takes advantage
of this separation in order to present multiple applications
to the user as one, with transparent coordination and
communication between them, and consistent behavior
across them. This separation requires that all data be

% Price Drop
40 4

-204

—40 4

-60 4 . : £ .
0 100 200 300 400
Days on Market

Figure 8: Percentage drop from asking_price to selling_price is
plotted against the number of days on the market. Sales with a
large drop in price have been brushed with black paint.

stored in a consistent form in a shared database, however.
Anything required by the interface must be in this
persistent store.

4. IMPLEMENTATION

Visage is implemented on top of the Saga GUI toolkit
from Maya Design Group, which runs on Macintosh,
IBM PC, and Unix/X. VQE is implemented on top of
Visage, using Saga's scripting language. Below are brief
descriptions of agorithms for extending direct
mani pulation operations to deal with threads.

Brushing. When a graphical object is brushed, a message
is sent to all visualizations to color corresponding objects
with the current brushing color. This is just as in any
brushing algorithm. The hitch is that in VQE we want
brushing to be coordinated across visualizations
generated from multiple queries, which may have
different thread structures. So we send a separate
message for each object of the thread. A visualization
colors athread if any of its objects match the argument of

the message.

For instance, when the high-drop sales are brushed in
Figure 8, and the visualizations in Figure 9 are given the
message, they both find graphical objects to color,
because their threads contain sale objects. On the other
hand, the map in Figure 1 does not color any of its
graphical objects, which mention only houses. In
contrast, if the user had painted objects in the
SellingPrice visualization in Figure 9, messages would
have been sent to color houses, and more messages would
have been sent to color sales. Therefore objectsin Figure
1 (aswell asin Figures 8 and 9) would have been colored.

Dynamic Query. Each query graph maintains a list of
threads that congtitute the current dataset to which the
query is applied. For each thread it remembers how
many DQ dliders are currently filtering out the thread.
Each DQ dlider is associated with a node in the query
graph and an attribute. Itsjob isto tell the query when it
filters out or reinstates athread.

When it receives the message, the query increments or
decrements the counter associated with the thread. If the
count decreases to zero or increases from zero, the
visibility of all objects representing the thread must be
changed and the histograms of al diders must be
updated. So far, the algorithm is identical to DQ
algorithms for ordinary objects. Again we deal with the
difference between threads and ordinary objects by
issuing a separate visibility message for each thread
object.

Updating histograms is more complicated than in the non-
thread case, because they record the frequency of objects
rather than threads. An object is considered to be filtered
out iff al threads containing it are filtered out. Therefore
each query node must maintain a count of the number of
threads filtered out for each object. When this number
crosses a threshold, the histogram is updated just asin the
ordinary case[14].

Drag and Drop. Rather than storing the graph structure on
every thread, it is stored as a separate template, and all
threads with the same structure point to the same
template. The template records the object type of each
node, and the relationships between pairs of nodes. Every
Sage visualization is designed to display threads with a
particular template. When dropping a graphical object
into a visudlization, Visage tries to coerce the
corresponding thread into a thread with that
visualization's template. (Visage treats ordinary objects
as unary threads, so conversion among threads covers the
general case.) Thread conversion consists of two steps.
First, the template of the source thread must be mapped
to that of the destination thread. All possible one-to-one
mappings from subsets of the source nodes to subsets of
the destination nodes are considered. Second, a
destination thread is created and its nodes are bound to
data objects. For each possible mapping, the data objects
bound to the mapped nodes in the source thread are
copied to the destination thread. Other nodes on the
destination thread, if any, are initially empty. By depth-
first search, the empty nodes are populated with any data
object of the correct type. If at any point there are two
thread nodes connected by a relationship that doesn’t
hold among the objects bound to those nodes, the search
backtracks. (For efficiency, candidate data objects can be
generated by navigation along the relationships, rather

StretchRatio Map
| T I - -
DynamicAggregate DynamicAggregate DynamicAggregate
[a07 80 [HOUSE s 1 [307 280 [SALE s z [103/ [333 [FERSON s 3
= ADDRESS =[AGENCY_ESTIMATE = EIRTHDATE
=| LATITUDE =| ASKING_PRICE E
= LOMGITUDE | [=[DATE_ON_MARKET || un-07 g -68
=| LOT_SIZE SOLD_IN = DATE_SOLD BUYER > = MAME
e | R
=| NEIGHEORHOOD =| SELLING_PRICE 71003 300827
= NUM_ROOMS = StretchRatio =| SSM
= <nones= = <nohes =| <none=
SellingPrice StretchRatio
o O
L 03 e} o o O@ []
_ Wwﬁ%{\
ool e O
2¢" &, L
. @
. o9 - @ .
L
@ °
o] o o] o
FOINT BREEZE SQUIRREL HILL SHADYSIDE FOINT BREEZE SQUIRREL HILL SHADYSIDE
MEIGHBORHOOD MEIGHBORHOOD
e« & & & O
. e o @ 10 15 20 25 30
0 100 200 300 400 SO0 600 BATIC)
PRICE (= 1043}
¢
* ¥
¥

Figure 9: Reusing the analysis on sales from Figure 8. Brushing is coordinated. Dynamic Query sliders have been added.

than by the object type.) All complete destination threads
are added to the destination visualization.

5. RELATED WORK

5.1 GQL

GQL [9] is a fully visual conceptua level Graphical
Query Language with the expressiveness of SQL. VQE's
visual representation of the query graph is adapted from
GQL, with some interface modifications such as using
containment to show eattributes rather than links. The
problem with GQL asit stands is that it is not integrated
with a visualization system for displaying query results.
Each query generates a static table, so the paradigm is
batch processing rather than the incremental query and
direct manipulation exploration of VQE. There are many
other conceptual level query interfaces from the database
community, but all are less elegant than GQL, and none

visualize results in an interesting or incremental way (see
for instance many of the papersin [6]).

5.2 Exbase

Exbase [7] is similar to this work in terms of motivation,
in that it seeks to provide an intermediary between a
database and a visudization system. However the
emphasis is on explicitly representing the history of user
interaction with the database and visuaizations. Lee and
Grinstein distinguish remote database accesses from local
processing, so there are objects for database views, which
are the result of queries, and derived views, for example
as the result of manipulating diders. Similarly, they
maintain a derivation history of visualization views.

We have not yet addressed the question of maintaining
histories, having chosen to focus on intuitive query

languages and integration of querying and visualization -
topics that Exbase, which uses SQL as a query language,
has not yet addressed.

5.4 Butterfly

Butterfly [8] is a citation searching and browsing
application. Searching is done by selecting databases and
attribute/value pairs. Browsing is done by following
reference and citer links. Butterfly is able to hide the
complex database queries from the user, largely because
the class of queries can be anticipated. To complete the
analogy with VQE, Butterfly would be able to modify
queries by operations on query results. For instance,
additional keywords associated with a citation might be
dragged into the query.

5.5 IMACS

IMACS [4] has very similar goals to Visage/VQE. It
supports analysts' iterative exploration and visualization
of data, including query reuse. It's foundation is the
knowledge representation system CLASSIC, which is
much more sophisticated than the object-oriented
database we use. The primary advantage of this is that
subsumption relations among queries can be inferred,
allowing them to be automatically organized into the
knowledge base. On the other hand, in later work the
same group reverted to a simpler knowledge
representation system to decrease the overhead and allow
exploration of larger data sets[12].

IMACS visualizations do not support direct manipulation
interaction, and it uses atextual query language. Queries
are somewhat more expressive than VQE's.

6. SUMMARY

VQE combines a GQL-style intentional visual query
language with direct-manipulation data exploration
capabilities as found in systems like Visage, IVEE, and
the Influence Explorer. Since queries and visualizations
share an object oriented database, visualizations can
combine attributes of multiple objects, and visualizations
resulting from a sequence of queries are coordinated.
Integration of extensional and intentional exploration
allows use of direct manipulation where possible but still
retains the ability to capture and reuse query sequences as
declarative structures. VQE frames containing a
sequence of nodes and links and associated visualizations
can be saved and/or cleared of data to be reused with new
datasets.

These capabilities are supported by the concept of
threads, which we believe will be generaly useful as
interfaces become more application-independent, and
support inter-application communication via shared
object-oriented databases.

REFERENCES

[1] C. Ahlberg, C. Williamson, and B. Shneiderman.
Dynamic queries for information exploration: An
implementation and evaluation. In Proceedings of
the Conference on Human Factors in Computing
Systems (SGCHI ‘92), pages 619-626. ACM Press,
1992.

[2] A. Alashqur, Stanley Su, and H. Lam: OQL: A Query
Language for Manipulation Object-oriented
Databases. In Proceedings of the 15th International
Conference on Very Large Data Bases, 1989, pages
433-442.

[3] R. A. Becker and W. S. Cleveland. Brushing
scatterplots. Technometrics, 29(2), 1987.

[4] R. J. Brachman, P. G. Selfridge, L. G. Terveen, B.
Altman, A. Borgida, F. Halper, T. Kirk, A. Lazar, D.
L. McGuinness, and L. A. Resnick. Integrated
support for data archaeology. International Journal
of Intelligent and Cooperative Information Systems,
2(2):159-185, 1993.

[5] M. C. Chuah, S. F. Roth, J. Kolojegjchick, J. Mattis,
and O. Juarez. Sagebook: Searching data-graphics by
content. In Proceedings of the Conference on Human
Factors in Computing Systems (SIGCHI '95), pages
338-345. ACM/SIGCHI, 1995.

[6] R. Cooper, editor. Proceedings of 1st International
Workshop on Interfaces to Database Systems.
Springer-Verlag, 1993.

[7]1 J. P. Lee and G. G Grinstein. Describing visual
interactions to the database: closing the loop between
user and data. In Proceedings of Visual Data
Exploration and Analysis |11 (SPIE *96), 1996.

[8] J. D. Mackinlay, R. Rao, and S. K. Card. An organic
user interface for searching citation links. In
Proceedings of the Conference on Human Factorsin
Computing Systems (S GCHI ‘95). ACM Press,
1995.

[9] A. Papantonakis and P. J. H. King. Syntax and
semantics of GQL, a graphical query language.
Journal of Visual Languages and Computing, 6:3-25,
1995.

[10] S. F. Roth, M. C. Chuah, S. Kerpedjiev, J. A.
Kolojgjchick, and P. Lucas. Towards an information
visualization workspace: Combining multiple means
of expression. Human-Computer Interaction, in
press, 1997.

[11] S. F. Roth, P. Lucas, J. A. Senn, C. C. Gomberg, M.
B. Burks, P. J. Stroffolino, J. A. Kolojgchick, and C.
Dunmire. Visage: A user interface environment for
exploring information. In Proceedings of
Information Visualization, pages 3-12. IEEE, 1996.

[12] P. G. Selfridge, D. Srivastava, and L. O. Wilson.
Idea: Interactive data exploration and analysis. In
Proceedings of SGMOD 1996, 1996.

[13] Z.-H. Tang, G. Gardarin, and V. Smahi. Optimizing
path expressions using havigational algebraic
operators. In Proceedings of Database and Expert
Systems Applications, DEXA '96, pages 574-583,
1996.

[14] L. Tweedie, R. Spence, H. Dawkes, and H. Su.
Externalising abstract mathematical models. In
Proceedings of the Conference on Human Factorsin
Computing Systems (SIGCHI '96), pages 406-412.
ACM/SIGCHI, 1996.

