Proceedings of the |EEE Symposium on Information Visualization (InfoVis'99), San Francisco, CA, October, 1999, pp. 84-91.

Efficient Multi-Object Dynamic Query Histograms

Mark Derthick, James Harrison, Andrew Moore, Steven F. Roth
Carnegie Mellon University Robotics Institute
{mad+, jaharrist, awm+, roth+}@cs.cmu.edu

Abstract

Dynamic Queries offer continuous feedback during range
queries, and have been shown to be effective and
satisfying. Recent work has extended them to datasets of
100,000 objects and, separately, to queries involving
relations among multiple objects. The latter work enables
filtering houses by properties of their owners, for instance.
Our primary concern is providing feedback from
histograms during Dynamic Query. The height of each
histogram bar shows the count of selected objects whose
attribute value falls into a given range. Unfortunately,
previous efficient algorithms for single object queries
overcount in the case of multiple objects if, for instance, a
house has multiple owners. This paper presents an
efficient algorithm that with high probability closely
approximates the true counts.

1. Previous Dynamic Query work

1.1. Single Object Interface

Figure 1 shows a Dynamic Query (DQ) interface as
implemented in VQE, a Visuad Query Environment for
exploring data from a database [1]. VQE is built on top of
Visage [2], an interactive data visualization system
developed by Carnegie Mellon and Maya Design Group.
The subset of the database being explored at any given
time by a VQE query is called the active subset. The top
row in the upper box of Figure 1 indicates that the query is
being applied to an active subset of 195 people, and that 72
of these people satisfy the constraints imposed by the
dliders on the remaining two rows. Namely, they have a
birthdate between 8/1935 and 8/1968 and a salary between
$15760 and $66,729. The rectangular dliders are
superimposed on histograms where the dark bars show the
distribution of the attribute values for the 72 selected
people. The dark bars partialy cover the light bars, which
show the distribution for all 195 people. When the user
drags either end of the sliders to change a query’s selection
range, the counts, histograms, and visibility of the pointsin
the chart are updated in real time. In Figure 1, the attributes
shown on the axes in the chart are the same ones being
filtered, so data only appearsin asmall rectangular area.

| ﬁﬁ [PERSON 1|
BIRTHOATE

BIRTHDATE 8/1835 - 8/1968
SALARY

SALARY S157T60 - 566728

N

Figure 1 Restrictions on salary and birthdate have filtered the
active subset of 195 people down to 72 visible in the chart.

1.2. Efficient Algorithms

We will only describe algorithms for updating the
histograms. The counts in the top row of the upper box in
Figure 1 can be implemented as a zero dimensional
histogram. The chart can beimplemented as a 2D histogram
where the pixel at xy is turned on if the count for that
histogram bucket is greater than zero. For the following

algorithms let
a number of dliders
p dider widthin pixels
r number of objectsin active subset

The sliders' edges can be positioned at any of the p pixe
positions. Even though the histogram bars as displayed are
several pixels wide, the histograms are computed with p
buckets internally. Several of these buckets are then added
when computing the bar heights for display.

After every mouse move drags a slider edge, the screen
should update within 0.1s in order to feel like continuous
feedback [3]. Several schemes have been presented to
avoid scanning the entire active subset in raw form after
each mouse move, by preprocessing to create index data
structures. Preprocessing can occur after any of four event
types. The higher level the event, the more time is available
without annoying the user. The first two numbers come
from forma experiments [3], the third from informal
observation [4], and the last from the observation that data
warehouses are typically updated daily and that it would be
reasonabl e to run an indexing program overnight.

mouse move 0.1s
mouse down 1ls
active subset selection 10 s
datawarehouse update 10,000 s

Previous Dynamic Query indexing algorithms have been
restricted to records from a single relational database table,
which we call “single object queries.” In orderto explain the
reasons for our design decisions and where previous
algorithms break down, we first describe in detail a previous
mouse-down indexing algorithm and kd-tree based active
subset selection algorithms. While necessary for an
understanding of the tradeoffs among these indexing
schemes, the reader can skip to section 1.3 without major
loss of continuity.

TBSAlgorithm

Tanin, Beigel, and Shneiderman [4] present a mouse-down
indexing algorithm that we will call TBS. As soon as the
user depresses the mouse button to begin dragging slider
A, the active subset can be filtered to remove objects based
on sliders B, C, etc. Further there are only alimited number
of possible updates to allow for, since the mouse can only
move to the few hundred pixels of slider A. For every
bucket of slider A, B, C, etc an index structure is created for
quickly calculating the number of selected objects in the
bucket. The index structure for bucket B is an array of
length p, where Bj is the number of objects whose B
attribute falls into bucket i, whose A attribute falls into one
of buckets 1-j, and whose B, C, etc attribute falls into the
selected range for that attribute (see Figure 2). Then when
the mouse moves, the count is updated to B; = B; ig - B et »
where right (left) isthe pixel index of the right (left) edge of
slider A. This gives the number of objects whose A
attribute is greater than the left cutoff but less than the right
cutoff. Thissubtraction must be done for each bucket of
each slider, so the complexity of updating the histogramsis
just O(ap). Since this is independent of r, moving the
mouse is very fast. The bottleneck is creating the index
structures.

Computing the index structures requires looking at each
attribute of each object, which takes O(ar) time. If itsB, C,

B i
B
nﬂ‘-.;‘.:’:e:ﬂ

C

Figure 2 Calculation of TBS index structures upon mouse-down
on slider A. B;jis the number of objects in the intersection of the 4
labeled intervals.

etc attributes fall within the selected ranges, then the
appropriate B; is incremented. This produces non-
cumulative B; The final, cumulative, B; are computed by
looping through each i and j for each dlider B, C, etc, taking
O(ap?). The total time for computing index structures is
therefore O(ar+ap?).

TBSwith kd-trees

As future work, Tanin, Beigel, and Shneiderman [4] suggest
that a kd-tree can be built at active subset selection time so
that sequential scan is not necessary in order to build the
structures above. A Kkd-tree is a binary tree whose root
representsall r objects. Each node of the tree dividesiits set
of objects approximately in half by thresholding on some
attribute. 1t always chooses the attribute with the maximum
range of values over the node’ s objects, relativeto its range
for the entire active subset. If the range falls within asingle
histogram bucket on all attributes, it is a leaf node. Each
node maintains a count of the number of data objects it
owns, and the max and min value of each attribute over
these objects. The number of leaf nodes is limited both by
the number of objects and the cross product of all the
histogram buckets, so the space complexity is O(a min(r,
p%). Thetimeto build thetreeisO(ar log r) [9].

When building the index structures on mouse-down, the
tree is traversed top-down. Nodes whose attribute ranges
are digoint from the ranges of one of the sliders B, C, etc
can be pruned without looking at their children. The counts
of nodes whose ranges fall within a single A bucket and a
single B bucket are added to the (not yet cumulétive) B;
without looking at their children.

For portions of the tree in the selected set, every leaf
node must be visited for exactly one of the histograms— the
onefor the attribute its parent thresholds on. At each node,
the range of each attribute must be compared with the slider
ranges. So the worst-case performance is O(ar), the same
as for sequential scanning. But if some of the sliders B, C,
etc are restricting the selected set, the time will be reduced

proportionally. It will also be reduced if multiple objects fall
into the same leaf node due to small p® or skewed data.

kd-treeswithout TBS

For reasons explained in Section 2.2, the TBS algorithm is
not practical for multi-object queries. However, kd-trees
can still be used to compute histograms directly. In this
case, nothing is done at mouse-down time. At mouse
move time, the tree is traversed top-down as before. The
bucket count for B;isthe count in the intersection of B; with
Asecteds Bsecteds @0 Cogented (SE€ Figure 2). This still takes
time O(ar).

For an additional factor of a in space ad build time,
every histogram bucket can store its own kd-tree. Then its
bucket count is found with an independent range counting-
guery on an a-1 dimensional kd-tree. A range counting-
query on an a dimensional kd-tree takes O(r"?) [6]. Each
tree will have, on average, r/p objects. Performing range
counting-queries for every bucket therefore takes
O(ap(r/p)*"@y = O(ap@ r¥@D) Subjectively there
seems no reason to provide histograms wider than a few
hundred pixels, whereas it is desirable to increase r
indefinitely. Thus this is a theoretical improvement. In
practice it produced a significant speed up, which increased
with the number of sliders and the number of objects. For 3
sliders and 1,000,000 objects the difference was a factor of
10.

It probably is not practical to use this trick with TBS,
because its index structures are two dimensional compared
with the histograms’ single dimension. Thereforeit requires
an additional a” factor in space and time to construct By-
specific kd-trees rather than just an additional factor of a.

Detailed studies of kd-trees for Dynamic Query found
them of little help except for skewed data distributions [7].
They did not consider histogramspecific kd-trees,
however. Further, real data often is skewed.

1.3. Multiple Object Interface

Figure 3 shows an active subset that involves the
relationship between two types of objects: people and the
houses they own. This sort of query is accomplished with
joins in database systems. The two boxes containing
counts and histograms are called nodes of the query. In
general, queries can involve any number of nodes. The
chart showing salary of the owner vs appraised value of the
house shows composite objects that have attributes of
both houses and people. By restricting the slider on the
owner's salary, all composite objects containing owners
outside the selected range are turned off. Thusthe chart is
empty to the left of $44,741. If all the composite objects
containing a given house are turned off, the house is no
longer counted among the selected set of houses or
included in the dark bars. As can be seen in the upper right
box, 69 of the 100 houses have some owner who earns more
than $44,741 and remain selected. It ispossible that some of

Figure 3 DQ sliders on people are filtering the houses they own.
Points in the chart represent composite objects combining the
attributes of people and houses, as indicated by the linked ovals.
Only composites whose person component's salary is greater
than $44,741 are visible. Only the 69 houses included in at least
one visible composite object are represented by the dark bars on
the house appraisal histogram.

the 69 selected houses also have an owner who earns less
than $44,731. From the light gray bars in the Appraisal

histogram it can be seen that the deselected 31 houses had
appraisals near the low end of the range. By sweeping the
owner salary slider to the right, the user would see that the
remaining selected houses' appraisals would lie increasingly
at the high end of therange. Inthisway DQ histograms can
show correlations among multiple attributes through
interaction, complementing that way the chart shows the
correlation between two attributes statically.

The fact that the boxes count base level objects like
people and houses grounds the displayed information in
the terms the user is familiar with. The composite objects
shown in the chart allow additional expressiveness by
combining properties of multiple base level objects. They
also allow coordination across multiple visualizations that
involve different combinations of base level types. For
instance if Figure 3 also contained a map showing people
and their work locations, brushing a person/house plot
point in the chart would also highlight the same person's
work location on the map. This behavior is built into the
Visage architecture. Applications built on top of Visage use
a shared database and construct composite objects as
needed. Cross-application brushing and drag-and-drop is
falls out automatically any time their composite objects
share base level components.

2. Multiple Object Counting Problem

2.1. Overview

Internally DQ must use the composite objects to build its
index structures in order to constrain histograms based on
sliders from multiple query nodes. Then the counts must be
translated back to the base types on a node-by-node basis
by removing duplicates. For instance if a house is owned
by two people with salaries of $10,000 and $20,000, it must
contribute a count of 1 to house histograms if the person-
salary slider range includes either (or both) of these
guantities. If histogram Bdisplays an attribute of houses,
such as appraisal, and if the person-salary slider A isat full
width, the TBS subtraction agorithm will incorrectly
compute By, - By = 2. Each index structure count is
supposed to measure the cardinality of the set of houses
that fall into a range of appraisal and person-salary. Inthe
single object case, every object falls into exactly one B; so
the sets are digjoint, and cardinalities of subsets can be
added or subtracted. In the multiple object case, the
subsets must be combined using set-union before the
cardinality of the result set is computed.

Although we described the problem as it occurs in the
TBSindex structures, it applies equally at al the other times.
Even at mouse-move time each composite object must be
added to the appropriate histogram bucket, but simply
incrementing a counter fails because the base object may
have already been encountered in a previous composite
object.

First we describe how to avoid the overcounting problem
by using a bit vector representation of the sets rather than
counts of their cardinalities. This approach is infeasible
because it requires O(r) storage at each By rather than the
O(log r) required for simple counts. We then show how to
use a randomized set cardinality representation that uses
only O(log r) storage and with high probability gives an
accurate estimate.

As an aside, Query Previews encountered a similar
overcounting problem due to overlapping attribute values
in their geographical domain [8]. For instance data from
“North Africa’ and “Libya” overlaps at every grid point in
Libya. They describe a deterministic solution that relies on
the fact that the areas of overlap are contiguous, so it does
not apply here.

loannidis [9] suggests an approach that gives exact
counts in the case of multi-object queries, but it requires
traversing pointers among the related objects at mouse-
move time, and takes O(ar) time. Our first implementation
was along these lines, and was much slower than using kd-
trees.

2.2. Bit Vector Set Representation

In abit vector representation of a set, each possible element
isassigned abit position. Thebitissetif and onlyif the set
contains the element. Set union can be accomplished by

bitwise OR of the bhit vector representations. The
cardinality is found by counting the number of bits set,
which is called the weight of the bit vector. In the TBS
index structure, each B; becomes a bit vector with bits set
for all objects whose B attribute fallsinto bucketi, whose A
attribute falls into one of buckets 1-j, and whose B, C, etc
attributes fall into the selected ranges. When the mouse
moves, the count is updated to B; = weight(BITOR, - e to right
B;). Notice that the complexity is now O(ap?), due to the
cumulative BITOR over the index structure instead of a
subtraction. The bitwise difference between B; ;g and Bj e
may undercount because a base object might show up to
the left of the slider and within the slider range. Bitwise
difference would remove it due to the first occurrence, even
though it should be counted due to the second.

In the kd-tree for attribute B, each node maintains a bit
vector with bits set for the B component of all composite
objectsthat it owns. At mouse-movetime B; is computed by
accumulating the bitwise OR of the bit vectors asthetreeis
traversed in the same manner as for the single object case.
Since the complexity of traversing the kd-tree remains the
same in the multiple object case, while the TBS algorithm
slows down by afactor of p, it may no longer be awin even
though it takes advantage of the factor of 10 increase in
time available at mousedown for scanning the active
subset. For this reason we compute the histograms from
the kd-tree directly.

Frequently the relationship between query nodes will be
functional. For instance in a query about people and their
state of residence, every person will have a unique state.
Thus there will be a1 to 1 relationship between people and
the composite objects. In cases like these we can save a
constant factor of space and time by using the numerical
cardinalities in computing histograms for the people query
node. Bit vectors must still be used to compute histograms
for the states.

2.3. Randomized Bit Vector
Representation

The bit vector representation described above is
information preserving — it can be translated back to an
explicit list of set elements because each potential element is
assigned a unique bit position. The size of the hit vectors
can be reduced by mapping multiple potential elements onto
the same bit position. Information is lost, but if all we care
about is cardinality, we can ill estimate how many
elements contributed to a given bit vector. The more bits
that are set, the more elements there probably were. Using
only O(log r) bits in the hit vectors, there will clearly be
many collisions. If the assignment of elements to bits is
equi-probable, the bit vector will quickly saturate and
estimates for large cardinalities will be terrible. Flajolet and
Martin [10] show that by assigning elements to bits with
exponentially decreasing probability, the bit vector avoids
saturation. Estimates with errors that are within a given

percentage of the actual are possible. By averaging the
estimates from multiple random bit vector assignments, this
percentage error can be brought arbitrarily low. WithV =64
bit vectors, the error is less than 5% with high probability,
independent of r [10].

Each bit vector should be of length| = ceiling(logr). To
assign each object a hit, first choose a uniformly distributed
random number, x, between 0 and 2 - 1. Then compute the
bit position of the first 1 in the binary representation of x.
This gives a random number exponentially distributed from
1tol, and isthe bit position assigned to the object. Then
randomly choose one of the V hit vectors in which to set
the bit [10]. The array of V bit vectors for akd-tree node or
a TBS B is accumulated by setting the bits for all the
objectsthat belong to it in each component bit vector.

After each mouse move, when the bitwise ORed bit
vector is accumulated for each histogram bucket, estimate
the cardinality asfollows: for each of the V hit vectors, find
the bit position of the first O bit. Let R be the average of
these bit positions over the V bit vectors. Then the
edimate is 1.54703 - V - 2*. The constant corrects for the
bias toward undercounting inherent in the algorithm [10].

We can reduce the space further by windowing [10].
The low-order bits of the bit vectors only contribute small
amounts to the estimates, and can be dispensed with. Errors
that contribute less than a pixel to the height of the bars are
not even detectable. If the histogram height is h pixds, we
can get away with storing O(log h) bits per vector rather
than O(logr).

3. Experimental Evaluation

3.1. Estimation Accuracy

Figure 4 shows the visual impact of the estimation algorithm
compared with the exact counts. There is no noticeable
difference. Figure 5 shows the distribution of errors. Most
bars heights are within 5% of the correct value, which
corresponds to about 1.5 pixels. We subjectively conclude
that 64 bit vectors offers a good compromise between
efficiency and accuracy.

3.2. kd-tree Speed

We used the VQE interface to display a varying number of
attributes, histogram widths, and composite objects. We
used synthetic data in which each attribute is independent

— + -— +
[anafraon FaousE 1 [rrrafrrre Jaouse 1
| Ao il I Aol
'rﬂ.ppcais.al §20000 - 5195233 [Appeaisal 520000 - 5198233

|V -

Figure 4 The left histograms shows the exact counts for a
normally distributed sample of 7500 objects. The right histogram
shows estimated counts for the same objects. Overall, it
estimates 7775 objects. The shape of the distribution is almost
identical.

Estirnation Error Distribution

-18% -10% B s 0% 5% 10% 16%

Figure 5 For each of the 128 histogram buckets used to
compute the bars in Figure 4 (right), its error percentage was
calculated. This figure shows that over 40 of the bars had a
0% error, and almost all the errors were within +/-5%.

and uniformly distributed, which gives the worst case
performance for kd-trees. The number of attributes varied
from 1 to 5, and the histogram widths were either 128 or 256
pixels. We posed single node queries, which don't require
the hit-vector estimation algorithm and are thus directly
comparable to earlier experiments. We also posed 2 node
queries. For the 2 node queries, the composite objects were
randomly chosen pairs from a set of 75,000 “houses’ and
100,000 “owners.” In each case we measured the real time
to build the kd-trees, and the real time to update al the
histograms after a mouse move. Measurements were on a
450MHz Pentium Il computer with 384Mb of RAM. The
worst case for computing histograms from kd-treesis when
each slider slightly restricts its range, so that there are few
cutoffs due to either disjoint node hyperrectangles or
totally containing node hyperrectangles. So we first set
each slider to select 90% of its range. Then one of the
sliders was stepped in 10% increments from 90% coverage
down to 10% coverage. 90 such steps were made and the
average elapsed time was computed.

Figure 6 (top left) shows the tree build times for the
single node queries with p=128. The times for p=256 are
nearly indistinguishable, because the number of nodes in
the tree doesn't depend on p (except whenaisvery small, 1
or 2 in this case). We expect O(ar log r) time, but the data
looks very close to linear inr and reasonably close to linear
in a. The absolute times are within our 10 second goal up
to, e.g., 3 dliders and 200,000 objects, but rise to severa
times worse for more sliders and objects.

Figure 6 (bottom left) shows the query times for the same
parameters. For 1 and 2 attributes, the tree size is limited by
p® rather than the number of objects, so the query time is
constant. For 3 attributes, the time grows slowly and is fast
enough for interactive feedback with up to amillion objects.
With 4 attributes the time climbs from tolerable at 50,000 and
100,000 objects to intolerable above 200,000. With higher
CPU performance and more memory, we would eventually
reach the flatter part of the curve and beat the algorithms
that are linear in both a and r. But for now, the TBS
algorithm fares better for 4 or more attributes.

In comparing our kd-tree agorithm to TBS, we are
comparing the step that causes the bottleneck in each case.
For us it is mousemove, while for TBS it is mouse-down.

1 Hede; 128 bucksts 2 Hedas: 128 Buchsin

el —+— § Shiders
4 Blders
3 Slidiirs
B +- (o e e R RSP R P e CO R LT —— 7} Sliders
- ™ Siidar
i 5 —=— | Glide
& .
L £a
=]
-] 5
o ! a
+
.\'.- 4 o Yy e ias :-l:l o o i m m genm m f m m m m m PSS e .
* ¥ -
e | 4
& PRk __g— e .
] +T
E P._.‘-—_. e & |:| i i
u Al 1000, oy u B LRRLLE
ebjects sEfecty
£ 0D 5
i 500 1
- inn s L L1 11 [P T P Y |
z £
i 111} E TN === ==l e e L s g e s e eatl)
1 = |
3 =
o (=]
omn o0
100 44 100 1'... e —
e —_—
1] 500,00 1,000,000 1] 00 000
chjecty obfuats

1.000,000

Figure 6 Times to build the kd-trees (top row) as a function of the number of objects, for 1 to 5 attributes. The bottom row shows the
corresponding times for histogram construction. The left column is for single node queries, while the right shows two node queries. The
single node queries are faster, because they don't require the bit-vector estimation algorithm. The right column does not show data for
as large a number of objects because two node queries require much more memory, and the computer began to thrash.

Since 10x more time is available at mouse-down, kd-trees
have to be 10x faster in order to be preferred.

Increasing the histogram width to 256 pixels moved each
curve up by a constant amount (not shown). Thisisdueto
the large overhead incurred in passing data among Visage,
its Java API, and the C code that the kd-trees are
implemented in, as well as rendering time in Visage. This
overhead is about 20ms per attribute with 128 bucket
histograms, and 30ms per attribute with 256 bucket
histograms, for both 1 node and 2 node queries. So by the
time we have 5 attributes, the goal update time is aready
used up in overhead before we even look at the data. On
top of this constant difference between the 128 bucket and
256 bucket cases, the increase we expect from the
complexity formula O(ap”*?r**) is not noticeable.

Figure 6 (top right) shows the tree build times for 2 node
queries. As expected, they require a constant factor (about
2x) more time than 1 node queries due to the larger memory
requirements. The bit vectors add 98 bytes to each tree
node, which translates into 6x more memory for 5 attributes.
Due to the increased space requirements, we were not able
to collect data for the full range of parameter values shown
for the 1 node case.

Figure 6 (bottom right) shows the query times for 2 node
queries. If we subtract the constant overhead, it appears
that there is a constant factor penalty (about 1.7x) over the
1 node case, as expected. This is due to the increased
complexity of 64 ORs rather than 1 PLUS. However kd-trees

are relatively better here, because the aternative is the
loannidis approach. kd-trees are surely awin with up to 4
attributes. Even with 5 and 6 attributes they are
considerably better than our implementation of the
loannidis approach.

The complexity analysis and the experiments reported
above are for the worst case data distributions. We have
anecdotal evidence that the average case is considerably
better than this. It suggests that kd-tree algorithms are
better than the linear algorithms for a larger number of
sliders. We used data from the 1990 Census of Population
and Housing for the New England and Mountain states
[11]. This data contains 22 attributes about 481K census
blocks. We selected the 5 attributes listed in Table 1 for
examination in VQE. These were picked because they
seemed intuitively interesting and independent of one
another.

The resulting kd-tree contained only 161K leaf nodes, a
third of the number of objects, because the datais far from
uniformly distributed and independent. Many of the
histograms had only 1 or 2 bars whose height was
noticeably above zero. For instance, a few census blocks
had a land area in the hundreds of thousands, while 90% of
the areas were less than 100. Thus well over 90% of the
distribution was shown in a single histogram bar. Moving
the sliders was extremely fast, but also not very interesting.
We set the ranges of each slider to minimally enclose the
bulk of the distribution, as indicated in Table 1 (middle

Attribute Active Subset Slider Range
Latitude all values varies

Land Area <100 <90

Housing Units <25 <20

Average # Rooms all values <9

% Owner Occupied <45 <12

Table 1 Census data attributes and range restrictions.

column). We made this a new active subset, now
containing 238K objects with interesting distributions
across all 5 attributes. The resulting kd-tree has 228K |eaf
nodes, nearly as many as there are objects.

Figure 7 shows the time required to move the latitude
dlider over 80% of its range, while the other dliders
restricted their range as shown in Table 1 (right column).
The growth is approximately linear, and much better than
that found for independent uniformly distributed data. In
fact, the curve for census data is amost indistinguishable
from that with random data for 1000 objects. That is, the
constant overhead per slider due to message passing and
rendering overwhelms any time actually spent in the kd-
tree! If this behavior is typical of other real datasets, it
makes kd-trees at least competitive with linear approaches
for single object queries. It should therefore dominate for
multi-object queries.

4. FutureWork

4.1. Attributes of Dynamic Aggregates

It is often useful as well to see attributes of dynamic
aggregates as their definition changes. For instance we
might want to see the average price of houses owned by
people in different age brackets, and observe how these
averages change as the boundaries between age bracketsis
varied. If we were interested in the count of houses owned
by peoplein different age brackets this could be done using
the kd-tree algorithm. Every time we move the mouse to
adjust the boundaries we compute new histograms. In the
single object case we can store summary attributes at each
tree node in order to compute “histograms’ of sums,
averages, minimums, and maximums for any attribute. Inthe
multiple object case we can still compute minimums and
maximums this way, since including duplicate objects does
not change the result. For sums and averages we would
use “bit vectors’ where the stochastically encoded value for
an object is the attribute value rather than the constant 1
used for counting.

4.2. Efficient Query Previews

For these DQ agorithms to execute within the time limits
given in Section 1.1, the data must reside in main memory.
In order to explore datasets of terabytes that reside on
network servers, subsets must be downloaded to the local
machine. Query Previews [12] is an interface similar to DQ
histograms to choose range restrictions on a number of

! Hode; 128 buckats; 200K abjects
400 4

*

— 3004
[
E
g)
= 200 4 W | —— Random Data|
- = Census Data |
g
1400 1 T
-
a4 ¥ i § =
o 1 2 3 4 5 L}

W Attributes

Figure 7 Census data scales much better than random data as the
number of attributes increases.

attributes that result in a subset of appropriate size. At data
warehouse update time an array of dimensionality a is built
with an element for every possible combination of attribute
values. This is closely related to the Datacube structure
used for materializing database queries [13]. Here, the
attributes must be quantized to a small number (e.g. Q =20)
levels and then a large array containing counts for all Q°
combinations of attribute values is stored instead of the
data. This has the problem of enormous memory for large Q
or a, and in some cases, counts for individual bars in the
histogram might need to be built from millions of table
entries.

Instead we can take advantage of AD-trees [14], a new
data structure that alow constant-time counting
(independent of number of records) for datasets with
nomina values. They have the same functionality as
datacubes and Query Previews except that they avoid
storing redundant information and use the algebra of
contingency tables to save memory. In some cases (e.g. a
birth-outcomes data warehouse) they reduced the amount
of memory needed to store a 100-dimensional datacube from
10® down to 10° bytes. Recent work on Lazy AD-Trees [15]
preliminarily provides much bigger savings, and may allow
constant time querying for up to about 10 attributes each
with as many as 30 values. Unfortunately querying
involves a subtraction step, so in their present form AD-
trees can not be used with bit vectors for multi-object
previews.

5. Conclusion

We have presented an overview of precomputed index
structures for efficient dynamic query histograms, and
described three new theoretical contributions. We verified
these ideas experimentally, and compared the performance
to previous systems.

First, we showed how to modify existing algorithms to
work with multi-object queries. The modification uses an
algorithm due to Flgolet and Martin for counting the
number of unique values in a database. Exponentially
distributed hashed bit vectors are used to approximately
represent sets of unique objects.

Second, we presented a theoretical complexity analysis
of kd-trees for computing histograms, concluding that the
asymptotic behavior is no better than sequential scanning.

Third, we proposed building separate kd-trees for each
histogram bucket, and showed that the asymptotic behavior
scales better than sequential scanning as the number of
objects increases, but worse as the number of attributes
increases.

Using single object queries, experiments show that
having a kd-tree for each histogram bucket indeed
generates histograms much faster than using a single tree.
On random data, experiments also verified the relationship
between kd-trees and sequential scanning. With a few
hundred thousand objects, they are faster than sequential
scanning for up to three attributes. The improvement in
theoretical complexity will translate into an advantage for
more attributes as the computing capacity to explore larger
datasets becomes available. Thereis evidence that kd-trees
arefaster onreal data at least up to 5 attributes.

For multi-object queries, the kd-tree algorithm incurs a
constant factor penalty in both space and time to store and
process the array of bit vectors, rather than single integers.
The overhead of the tree structure itself partially masks this
effect. We observed only a 2x slowdown in tree
construction and a 1.7x slowdown in histogram calculation.
With 5 attributes, the tree took about 6x as much space as
in the single object case. These penalties seem quite
acceptable.

The subtraction step of the TBS algorithm does not work
with the bit-vector representation as used in multi-object
queries, and working around this problem probably makes
the algorithm slower than direct computation of histograms
at mouse-movetime.

The pointer chasing approach for multi-object queries
produces exact counts rather than estimates, and does not
incur the space penalty of bit vectors. Its histogram
building time scales linearly in both the number of attributes
and the number of composite objects. Based on our
previous experience with this approach, we believe the
algorithm presented in this paper performs much better for
the range of parameters examined here.

Acknowledgments

Thiswork was supported by DARPA contract DAA-
1593K0005. We greatly appreciate Stephan Kerpedjiev's
helpful comments on an earlier draft. Christos Faloutsos led
usto the literature on approximate counting algorithms.

Refer ences

[1] ™. Derthick, J. A. Kolojgchick, and S. Roth, “An
Interactive Visual Query Environment for Exploring
Data,” presented at Proceedings of the ACM
Symposium on User Interfface Software and
Technology (UIST), Banff, Canada, 1997, p. 189-198.

(2

(3

[4]

(5]

(6]

[7]

(8]

(9

[10]

[11]

[12]

[13]

[14]

[15]

S. F. Roth, M. C. Chuah, S. Kerpedjiiev, J A.
Kolojgchick, and P. Lucas, “Towards an Information
Visualization Workspace: Combining Multiple Means
of Expression,” Human-Computer Interaction Journal,
vol. 12, pp. 131-185, 1997.

C. Ahlberg, C. Williamson, and B. Shneiderman,
“Dynamic Queries for Information Exploration: An
Implementation and Evaluation,” presented at Human
Factors in Computing Systems (CHI), Monterey, CA,
1992, p. 619-626.

E. Tanin, R. Beigdl, and B. Shneiderman, “Design and
Evaluation of Incremental Data Structures and
Algorithms for Dynamic Query Interfaces,” presented
at Proceedings of the IEEE Information Visualization
Conference (InfoVis), Phoenix, AZ, 1997, p. 81-86.

J. L. Bentley, “Multidimensional binary search treesin
database applications,” IEEE Transactions on
Software Engineering, val. 4, pp. 333-340, 1979.

D. T. Lee and C. K. Wong, “Quintary Trees. A File
Structure for Multidimensional Database Systems,”
ACM Transactions an Database Systems, vol. 5, pp.
339-353, 1980.

V. Jain and B. Shneiderman, “Data Structures for
Dynamic Queries: An Analyticad and Experimental
Evaluation,” University of Maryland, College Park, MD,
Technical Report CAR-TR-685, September 1993,

R. Beigel and E. Tanin, “The Geometry of Browsing,”
presented at Latin American theoretical informatics
(LATIN), 1998, p. 331-340.

Y. loannidis, “Dynamic information visualization,”
S GMOD record, vol. 25, pp. 16-20, 1996.

P. Flgjolet and G. N. Martin, “Probabilistic Counting,”
presented at Foundations of Computer Science, 1983, p.
76-82.

United States Bureau of the Census, “Census of
population and housing,” , 1990.

K. Doan, C. Plaisant, and B. Shneiderman, “Query
Previews in Networked Information Systems,”
presented at Research and technology advances in
digital libraries, Washington; DC, 1996, p. 120-129.

V. Harinarayan, A. Rgaraman, and J. D. Ullman,
“Implementing Data Cubes Efficiently,” presented at
Proceedings of the Symposium on Principles of
Database Systems (PODS), 1996, p. 205-216.

A. W. Moore and M. S. Lee, “Cached Sufficient
Statistics for Efficient Machine Learning with Large
Datasets,” Journal of Artificial Intelligence Research,
val. 8, 1998.

P. Komarek and A. W. Moore, “Lazily Cached
Sufficient Statistics: New data structures and theory,”
In preparation, 1999,

