15-503 Cryptography HW2 Selected Solutions
20 Mar 2006 Ryan Williams

1.

(a)

Let L € NP. By definition, there is a predicate R(x,y) computable in O(poly(|z|,|y|))
time and k£ > 1 such that

(Vo) € L <= (V2)3y: |yl < |2[*)R(z,y)].

Thus an interactive proof system for L is given by the following protocol.
On instance x,

Prover: Send a proof y of z.

Verifier: Accept if and only if R(x,y).

Clearly this runs in polynomial time; a prover that send y will always succeed, and a
prover that does not send y will always fail. Hence L € IP.

Let L € IP, and let V' be a corresponding prover and verifier for L. Let x be an input
string. The key observation is that the history H, of the conversation between the best
possible prover and V' (the messages between them) is a string of length poly(|z|).

Let a possible conversation history of messages be my, ..., my(,) for some polynomial
p where odd-numbered ones are messages from the prover, and even-numbered ones are
messages from the verifier. Each such history causes V' to either accept or reject.

First, represent all possible conversations by the prover and verifier as a complete tree
of p(|z|) depth, where each inner node has 2P°(#) children. (Call this the conversation
tree.) Each edge from a parent to a child corresponds to a possible message m;. Odd-
numbered levels of the tree represent points where messages are sent from prover to
verifier, and even-numbered levels represent messages from verifier to prover. (Note this
tree is of size 2p01y(|“|).) Thus a path from the root to a leaf represents one possible
conversation history. A leaf is labelled either accept or reject, depending on what the
conversation history causes the verifier to do. Since the prover is unbounded, odd-
numbered messages are chosen to maximize the acceptance probability of the verifier,
given the previous messages. The even-numbered ones are dependent on the private
random string of V' and the previous messages. Denote the probability of message my,
by P(k).

For a node v, let’s define P(v) to be the probability that the best possible prover makes
V' accept, if the protocol is executed starting from node v. (More precisely, it’s the
maximum probability over all provers that V' accepts, when the past conversation history
is given by the edges on the path from the root to v.) For accept nodes, P(v) = 1, and
for reject nodes, P(v) = 0. For inner nodes, we can determine P(v) in a bottom-up
fashion:

e If the level of v is odd, P(v) is the mazimum P(v’), for all children v’ of v.

o If the level of v is even, let p,s be the probability that the verifier chooses the message
given by edge (v, v’) to send, when the conversation history is the path from the root

of the tree to v. Then P(v) is Y_,,(py - P(v")), where the sum is over all children v’
of v.

Let r be the root of the conversation tree. Our goal is to compute the probability P(r).
Knowing this immediately determines if the interactive proof system accepts or not.

We argue that P(r) can be determined in polynomial space. The key idea is to use
depth-first search to compute the P(v)’s. We define a procedure ComputeP(v,i) that
returns P(v) for v on level i:

ComputeP (v,i):
If i = p(|z]), return the accept/reject behavior of V' on the conversation history
given by the path from r to v.
Set Cz = 0.
For all children v’ of v,
Set D := ComputeP(v',i + 1).
If i is even, set C; := C; + (py - D).
If i is odd, if (D > C,) then set C,, := D.
End for.

Finally, we claim that ComputeP(r,1) can be evaluated in polynomial space. Clearly,
each update to a C; can be done in polynomial time, given the proper D. We only need
extra workspace to store D, the current path from a node v to the root, the strings on
that path’s edges, and each counter C1,...,C; created along this path. But each Cj is
of at most polynomial size, since each p,» and P(v) take a polynomial number of bits to
describe.

The protocol for Vj is:
Repeat |z|* times:

If (P, < V)(x) accepts, then return accept.
End repeat.
Return reject.
That is, Vj, simulates V for a polynomial number of times.
Clearly, if Pr[(P; < V)(x) accepts] = 1, then the probability that the above protocol
accepts is 1. (Thus a prover Py that just repeats the behavior of P will always convince
the verifier.) For all provers Py, if Pr[(P;, < V)(x) accepts] < 1/2, then the proba-
bility that the above protocol accepts is at most 1/ 2|x‘k, as each run of the protocol is
independent. Hence the above prover Py and verifier V), have the desired properties.
Let d > 1 be a constant to set later. The protocol for Vj is:
C:=0.
Repeat d|z|* times:

If (P, < V)(x) accepts, then increment C.
End repeat.

3. We denote the kth integer in the continued fraction expansion of a number n by a(n, k),

Return accept iff C' > d|z|*/2.
That is, Vj, simulates V and takes the majority of outcomes. We consider two cases.

o If Pr[(P; < V)(x) accepts| > 2/3, then the probability that the above protocol

accepts is the probability that the sum of d|x|* independent random variables X +

-+ Xoypue exceeds d|z|F/2, where Pr(X; = 1] = 2/3, Pr[X; = 0] = 1/3. This

probability is

dlz|*
L

where pp = E[X; + - + Xygpx] = 2/3- (d|z|F) = %d|:p|k By a Chernoff bound, this

is

1—PI‘[X1—|—-"—|—Xd|z‘k S[L—

1/2)2p _dja®

L= Pr[X1 4o+ Xy < (1= 1/2p] > 1—e™ 2" =1 —e 1o,

Setting d > 16 ensures that this probability is sufficiently high.

o If Pr[(P; < V)(x) accepts] < 1/3, then the above setup changes with Pr[X; = 1]
1/3, Pr[X; = 0] = 2/3, u = (1/3) - |z|*. The probability of acceptance is

d|z|*
Pr[Xy+ -+ Xy > i+ '6’]
which by Chernoff bounds is
_ (/2% _dla/®
PriXy 4+ Xy > (1+1/2)p] e 5 =e 2.

Setting d > 24 ensures a sufficiently low probability of acceptance.

starting with k = 0.

(a)

First, a(e,0) = 2.
When k = 3¢ — 1 for some integer ¢, then a(e, k) = 1.
Otherwise, a(e, k) = 2k for k > 0.

a(p, k) =1, for all k.
a(tan(l), k) = 1 if k is even, and a(tan(1), k) = k if k is odd.
(Extra Credit)

1/(1+1/(2+1/B+1/(4+) = [(2)/1o(2) ~ 0.697774,

where I,,(k) is the modified Bessel function of the first kind.

References: Mathworld
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html,
and Sloan’s Encyclopedia of Integer Sequences
http://www.research.att.com/~njas/sequences/A052119 .

4. We follow the approach of Lecture 7.

(a) Consider the continued fraction expansion
0.141592 = 0+ 1/(7 + 1/(15+1/(84 + 1/(6 +---))).

The sequence of approximations to 0.141592 reads:

115 16 1369
771067 11379598

From there, the numerator and denominators (in lowest possible terms) are only in-
creasing. But 113 is a three-digit prime, and thus a candidate for p such that 1/p =
0.00---141592- - -.

(b) By way of Maple, we obtain
1/113="------ 8141592 9. .-,
which occurs somewhere north of the 70th digit in the decimal expansion.

5. This was basically a freebie.

6. Omitted (for now).

