
15-503 Cryptography HW2 Selected Solutions
20 Mar 2006 Ryan Williams

1. (a) Let L ∈ NP. By definition, there is a predicate R(x, y) computable in O(poly(|x|, |y|))
time and k ≥ 1 such that

(∀x)[x ∈ L ⇐⇒ (∀x)(∃y : |y| ≤ |x|k)R(x, y)].

Thus an interactive proof system for L is given by the following protocol.
On instance x,
Prover: Send a proof y of x.
Verifier: Accept if and only if R(x, y).
Clearly this runs in polynomial time; a prover that send y will always succeed, and a
prover that does not send y will always fail. Hence L ∈ IP.

(b) Let L ∈ IP, and let V be a corresponding prover and verifier for L. Let x be an input
string. The key observation is that the history Hx of the conversation between the best
possible prover and V (the messages between them) is a string of length poly(|x|).
Let a possible conversation history of messages be m1, . . . , mp(|x|) for some polynomial
p where odd-numbered ones are messages from the prover, and even-numbered ones are
messages from the verifier. Each such history causes V to either accept or reject.
First, represent all possible conversations by the prover and verifier as a complete tree
of p(|x|) depth, where each inner node has 2poly(|x|) children. (Call this the conversation
tree.) Each edge from a parent to a child corresponds to a possible message mi. Odd-
numbered levels of the tree represent points where messages are sent from prover to
verifier, and even-numbered levels represent messages from verifier to prover. (Note this
tree is of size 2poly(|x|).) Thus a path from the root to a leaf represents one possible
conversation history. A leaf is labelled either accept or reject, depending on what the
conversation history causes the verifier to do. Since the prover is unbounded, odd-
numbered messages are chosen to maximize the acceptance probability of the verifier,
given the previous messages. The even-numbered ones are dependent on the private
random string of V and the previous messages. Denote the probability of message mk

by P (k).
For a node v, let’s define P (v) to be the probability that the best possible prover makes
V accept, if the protocol is executed starting from node v. (More precisely, it’s the
maximum probability over all provers that V accepts, when the past conversation history
is given by the edges on the path from the root to v.) For accept nodes, P (v) = 1, and
for reject nodes, P (v) = 0. For inner nodes, we can determine P (v) in a bottom-up
fashion:

• If the level of v is odd, P (v) is the maximum P (v′), for all children v′ of v.
• If the level of v is even, let pv′ be the probability that the verifier chooses the message

given by edge (v, v′) to send, when the conversation history is the path from the root
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of the tree to v. Then P (v) is
∑

v′(pv′ ·P (v′)), where the sum is over all children v′

of v.

Let r be the root of the conversation tree. Our goal is to compute the probability P (r).
Knowing this immediately determines if the interactive proof system accepts or not.
We argue that P (r) can be determined in polynomial space. The key idea is to use
depth-first search to compute the P (v)’s. We define a procedure ComputeP(v,i) that
returns P (v) for v on level i:

ComputeP(v,i):
If i = p(|x|), return the accept/reject behavior of V on the conversation history

given by the path from r to v.
Set Ci := 0.
For all children v′ of v,

Set D := ComputeP(v′, i + 1).
If i is even, set Ci := Ci + (pv′ ·D).
If i is odd, if (D > Cv) then set Cv := D.

End for.

Finally, we claim that ComputeP(r, 1) can be evaluated in polynomial space. Clearly,
each update to a Ci can be done in polynomial time, given the proper D. We only need
extra workspace to store D, the current path from a node v to the root, the strings on
that path’s edges, and each counter C1, . . . , Ci created along this path. But each Ci is
of at most polynomial size, since each pv′ and P (v) take a polynomial number of bits to
describe.

2. (a) The protocol for Vk is:
Repeat |x|k times:

If (Pk ↔ V )(x) accepts, then return accept.
End repeat.
Return reject.
That is, Vk simulates V for a polynomial number of times.
Clearly, if Pr[(Pk ↔ V )(x) accepts] = 1, then the probability that the above protocol
accepts is 1. (Thus a prover Pk that just repeats the behavior of P will always convince
the verifier.) For all provers Pk, if Pr[(Pk ↔ V )(x) accepts] ≤ 1/2, then the proba-
bility that the above protocol accepts is at most 1/2|x|k , as each run of the protocol is
independent. Hence the above prover Pk and verifier Vk have the desired properties.

(b) Let d > 1 be a constant to set later. The protocol for Vk is:
C := 0.
Repeat d|x|k times:

If (Pk ↔ V )(x) accepts, then increment C.
End repeat.
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Return accept iff C > d|x|k/2.
That is, Vk simulates V and takes the majority of outcomes. We consider two cases.

• If Pr[(Pk ↔ V )(x) accepts] > 2/3, then the probability that the above protocol
accepts is the probability that the sum of d|x|k independent random variables X1 +
· · · + X24|x|k exceeds d|x|k/2, where Pr[Xi = 1] = 2/3, Pr[Xi = 0] = 1/3. This
probability is

1− Pr[X1 + · · ·+ Xd|x|k ≤ µ− d|x|k
6

],

where µ = E[X1 + · · ·+ X10|x|k ] = 2/3 · (d|x|k) = 2
3d|x|k. By a Chernoff bound, this

is
1− Pr[X1 + · · ·+ Xd|x|k ≤ (1− 1/2)µ] ≥ 1− e−

(1/2)2µ
2 = 1− e−

d|x|k
16 .

Setting d ≥ 16 ensures that this probability is sufficiently high.
• If Pr[(Pk ↔ V )(x) accepts] < 1/3, then the above setup changes with Pr[Xi = 1] =

1/3, Pr[Xi = 0] = 2/3, µ = (1/3) · |x|k. The probability of acceptance is

Pr[X1 + · · ·+ Xd|x|k > µ +
d|x|k

6
],

which by Chernoff bounds is

Pr[X1 + · · ·+ Xd|x|k > (1 + 1/2)µ] ≤ e−
(1/2)2µ

3 = e−
d|x|k
24 .

Setting d ≥ 24 ensures a sufficiently low probability of acceptance.

3. We denote the kth integer in the continued fraction expansion of a number n by a(n, k),
starting with k = 0.

(a) First, a(e, 0) = 2.
When k = 3`− 1 for some integer `, then a(e, k) = 1.
Otherwise, a(e, k) = 2k for k > 0.

(b) a(φ, k) = 1, for all k.

(c) a(tan(1), k) = 1 if k is even, and a(tan(1), k) = k if k is odd.

(d) (Extra Credit)

1/(1 + 1/(2 + 1/(3 + 1/(4 + · · · )))) = I1(2)/I0(2) ≈ 0.697774,

where In(k) is the modified Bessel function of the first kind.

References: Mathworld
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html,
and Sloan’s Encyclopedia of Integer Sequences
http://www.research.att.com/∼njas/sequences/A052119 .

4. We follow the approach of Lecture 7.
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(a) Consider the continued fraction expansion

0.141592 = 0 + 1/(7 + 1/(15 + 1/(84 + 1/(6 + · · · ))).

The sequence of approximations to 0.141592 reads:

1
7
,

15
106

,
16
113

,
1369
9598

, . . . .

From there, the numerator and denominators (in lowest possible terms) are only in-
creasing. But 113 is a three-digit prime, and thus a candidate for p such that 1/p =
0.00 · · · 141592 · · · .

(b) By way of Maple, we obtain

1/113 = · · · · · · 8 141592 9 · · · ,

which occurs somewhere north of the 70th digit in the decimal expansion.

5. This was basically a freebie.

6. Omitted (for now).
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