

1. (a) Let $L \in \text{NP}$. By definition, there is a predicate $R(x, y)$ computable in $O(\text{poly}(|x|, |y|))$ time and $k \geq 1$ such that

$$(\forall x)[x \in L \iff (\forall x)(\exists y : |y| \leq |x|^k)R(x, y)].$$

Thus an interactive proof system for L is given by the following protocol.

On instance x ,

Prover: Send a proof y of x .

Verifier: Accept if and only if $R(x, y)$.

Clearly this runs in polynomial time; a prover that sends y will always succeed, and a prover that does not send y will always fail. Hence $L \in \text{IP}$.

(b) Let $L \in \text{IP}$, and let V be a corresponding prover and verifier for L . Let x be an input string. The key observation is that the history H_x of the conversation between the best possible prover and V (the messages between them) is a string of length $\text{poly}(|x|)$.

Let a possible conversation history of messages be $m_1, \dots, m_{p(|x|)}$ for some polynomial p where odd-numbered ones are messages from the prover, and even-numbered ones are messages from the verifier. Each such history causes V to either accept or reject.

First, represent all possible conversations by the prover and verifier as a complete tree of $p(|x|)$ depth, where each inner node has $2^{\text{poly}(|x|)}$ children. (Call this the *conversation tree*.) Each edge from a parent to a child corresponds to a possible message m_i . Odd-numbered levels of the tree represent points where messages are sent from prover to verifier, and even-numbered levels represent messages from verifier to prover. (Note this tree is of size $2^{\text{poly}(|x|)}$.) Thus a path from the root to a leaf represents one possible conversation history. A leaf is labelled either *accept* or *reject*, depending on what the conversation history causes the verifier to do. Since the prover is unbounded, odd-numbered messages are chosen to maximize the acceptance probability of the verifier, given the previous messages. The even-numbered ones are dependent on the private random string of V and the previous messages. Denote the probability of message m_k by $P(k)$.

For a node v , let's define $P(v)$ to be the probability that the *best possible prover* makes V accept, if the protocol is executed starting from node v . (More precisely, it's the maximum probability over all provers that V accepts, when the past conversation history is given by the edges on the path from the root to v .) For accept nodes, $P(v) = 1$, and for reject nodes, $P(v) = 0$. For inner nodes, we can determine $P(v)$ in a bottom-up fashion:

- If the level of v is odd, $P(v)$ is the *maximum* $P(v')$, for all children v' of v .
- If the level of v is even, let $p_{v'}$ be the probability that the verifier chooses the message given by edge (v, v') to send, when the conversation history is the path from the root

of the tree to v . Then $P(v)$ is $\sum_{v'} (p_{v'} \cdot P(v'))$, where the sum is over all children v' of v .

Let r be the root of the conversation tree. Our goal is to compute the probability $P(r)$. Knowing this immediately determines if the interactive proof system accepts or not.

We argue that $P(r)$ can be determined in polynomial space. The key idea is to use depth-first search to compute the $P(v)$'s. We define a procedure $\text{ComputeP}(v,i)$ that returns $P(v)$ for v on level i :

$\text{ComputeP}(v,i)$:

If $i = p(|x|)$, return the accept/reject behavior of V on the conversation history given by the path from r to v .

Set $C_i := 0$.

For all children v' of v ,

Set $D := \text{ComputeP}(v', i + 1)$.

If i is even, set $C_i := C_i + (p_{v'} \cdot D)$.

If i is odd, if $(D > C_v)$ then set $C_v := D$.

End for.

Finally, we claim that $\text{ComputeP}(r, 1)$ can be evaluated in polynomial space. Clearly, each update to a C_i can be done in polynomial time, given the proper D . We only need extra workspace to store D , the current path from a node v to the root, the strings on that path's edges, and each counter C_1, \dots, C_i created along this path. But each C_i is of at most polynomial size, since each $p_{v'}$ and $P(v)$ take a polynomial number of bits to describe.

2. (a) The protocol for V_k is:

Repeat $|x|^k$ times:

If $(P_k \leftrightarrow V)(x)$ accepts, then return *accept*.

End repeat.

Return *reject*.

That is, V_k simulates V for a polynomial number of times.

Clearly, if $\Pr[(P_k \leftrightarrow V)(x) \text{ accepts}] = 1$, then the probability that the above protocol accepts is 1. (Thus a prover P_k that just repeats the behavior of P will always convince the verifier.) For all provers P_k , if $\Pr[(P_k \leftrightarrow V)(x) \text{ accepts}] \leq 1/2$, then the probability that the above protocol accepts is at most $1/2^{|x|^k}$, as each run of the protocol is independent. Hence the above prover P_k and verifier V_k have the desired properties.

(b) Let $d > 1$ be a constant to set later. The protocol for V_k is:

$C := 0$.

Repeat $d|x|^k$ times:

If $(P_k \leftrightarrow V)(x)$ accepts, then increment C .

End repeat.

Return *accept* iff $C > d|x|^k/2$.

That is, V_k simulates V and takes the majority of outcomes. We consider two cases.

- If $\Pr[(P_k \leftrightarrow V)(x) \text{ accepts}] > 2/3$, then the probability that the above protocol accepts is the probability that the sum of $d|x|^k$ independent random variables $X_1 + \dots + X_{24|x|^k}$ exceeds $d|x|^k/2$, where $\Pr[X_i = 1] = 2/3$, $\Pr[X_i = 0] = 1/3$. This probability is

$$1 - \Pr[X_1 + \dots + X_{d|x|^k} \leq \mu - \frac{d|x|^k}{6}],$$

where $\mu = E[X_1 + \dots + X_{10|x|^k}] = 2/3 \cdot (d|x|^k) = \frac{2}{3}d|x|^k$. By a Chernoff bound, this is

$$1 - \Pr[X_1 + \dots + X_{d|x|^k} \leq (1 - 1/2)\mu] \geq 1 - e^{-\frac{(1/2)^2\mu}{2}} = 1 - e^{-\frac{d|x|^k}{16}}.$$

Setting $d \geq 16$ ensures that this probability is sufficiently high.

- If $\Pr[(P_k \leftrightarrow V)(x) \text{ accepts}] < 1/3$, then the above setup changes with $\Pr[X_i = 1] = 1/3$, $\Pr[X_i = 0] = 2/3$, $\mu = (1/3) \cdot |x|^k$. The probability of acceptance is

$$\Pr[X_1 + \dots + X_{d|x|^k} > \mu + \frac{d|x|^k}{6}],$$

which by Chernoff bounds is

$$\Pr[X_1 + \dots + X_{d|x|^k} > (1 + 1/2)\mu] \leq e^{-\frac{(1/3)^2\mu}{3}} = e^{-\frac{d|x|^k}{24}}.$$

Setting $d \geq 24$ ensures a sufficiently low probability of acceptance.

3. We denote the k th integer in the continued fraction expansion of a number n by $a(n, k)$, starting with $k = 0$.

(a) First, $a(e, 0) = 2$.

When $k = 3\ell - 1$ for some integer ℓ , then $a(e, k) = 1$.

Otherwise, $a(e, k) = 2k$ for $k > 0$.

(b) $a(\phi, k) = 1$, for all k .

(c) $a(\tan(1), k) = 1$ if k is even, and $a(\tan(1), k) = k$ if k is odd.

(d) **(Extra Credit)**

$$1/(1 + 1/(2 + 1/(3 + 1/(4 + \dots))) = I_1(2)/I_0(2) \approx 0.697774,$$

where $I_n(k)$ is the modified Bessel function of the first kind.

References: Mathworld

<http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html>,

and Sloan's Encyclopedia of Integer Sequences

<http://www.research.att.com/~njas/sequences/A052119> .

4. We follow the approach of Lecture 7.

(a) Consider the continued fraction expansion

$$0.141592 = 0 + 1/(7 + 1/(15 + 1/(84 + 1/(6 + \dots))).$$

The sequence of approximations to 0.141592 reads:

$$\frac{1}{7}, \frac{15}{106}, \frac{16}{113}, \frac{1369}{9598}, \dots$$

From there, the numerator and denominators (in lowest possible terms) are only increasing. But 113 is a three-digit prime, and thus a candidate for p such that $1/p = 0.00 \dots 141592 \dots$.

(b) By way of Maple, we obtain

$$1/113 = \dots \dots 8 \ 141592 \ 9 \dots,$$

which occurs somewhere north of the 70th digit in the decimal expansion.

5. This was basically a freebie.

6. Omitted (for now).