Theoretical Cryptography Manuel Blum and Steven Rudich
HW3 Due: 4/19/06

Rules: As usual, please cite all sources that you may use. Articles not of your authorship will
not be graded.

Ryan’s Factorization Homework. This homework will familiarize you with some simple
randomized factoring methods, culminating in an algorithm that runs in O(NY* - poly(log N))
steps. Note this is a quadratic speedup over the obvious algorithm that tries all possible factors.
Each problem builds upon the previous one, so it’s probably best to do them in order. Start
Early!

For simplicity, let N = pq where p and ¢ are prime in the following problems.

1. Take a Wild Guess. The first method requires roughly +/ N GCD computations in the worst
case, so in that sense it is no better than trial division. But (we hope) it is still interesting
to think about.

(a) Prove that a random r € Z}, has probability at least 1 — (p+q—1)/N of being relatively
prime to N.

(b) Let e be the base of the natural logarithm.
Prove that for all integers x > 1, (1 — 1/z)*"! > 1/e > (1 — 1/2)".
(Note: of course it suffices to prove the inequality for all real x > 1, if that’s easier.)
(c) Prove that there is a fixed constant ¢ > 0 such that the following algorithm factors N
in O(poly(log N) - N/(p + q)) time, with probability at least c:
Repeat until a factor is found:
Choose 7 € Z% uniformly at random.
If GCD(r,N) # 1 then return r as a non-trivial factor of N.

2. Applying the Birthday Paradox. The second method is still not asymptotically better
than trial division, but it will bring us a little closer to a method that is better.

(a) The birthday paradox says that if you have 23 “randomly chosen” people in a room, then
the probability that two in the room have the same birthday is actually quite high, at
least 1/2. (This assumes that each person has a birthday selected uniformly at random
over all 365 days in the year.)

Prove that there is a constant ¢ > 0 such that, for r1,...,7 s chosen from Z;} uniformly
at random, the probability that there exists ¢ # j such that r; = r; is at least c.

(b) Let x1,...,251/4 be uniformly randomly chosen integers from [1, N].
Prove: The probability that there exists i # j such that |z; — ;| has p as a factor is at
least some universal constant c.
Hint: Use modular arithmetic.

(c) Propose another simple randomized algorithm for factoring N that runs in roughly
N'/2 steps, and say intuitively why it works. (Your algorithm and analysis should rely
crucially on 2b.)

3. Saving Some Time. Our final algorithm will run in roughly N'/4 steps. To achieve it, we
need to take an unexpected turn.

(a) Let G = (V, E) be a directed graph whose nodes have outdegree at most 1. Let s be
a node in G. You have two node-pointers p; and po; both pointers initially point to
node s. The only access to G available is that you are allowed to move one of the two
pointers to the successor of that pointer’s current node (if the successor exists— if there
is no successor then such a move would return an error).

Under this kind of graph access, give an algorithm to determine if s has a path to a node
in a cycle. That is, you want to detect the following pattern:

e

Your algorithm should run in linear time (O(|V|+|E|)) with constant additional workspace.
That is, all that one really keeps track of are the node-pointers, with perhaps O(1) ad-
ditional information.

(b) Suppose you are given access to a function f : Zj{, — ZE that was chosen uniformly at
random over all such functions (i.e. a random oracle).
Prove that, if we choose z1 € Zﬁ at random, and set zj, = f(xp_;) for k =2,..., N4,
then there is a non-zero constant probability (over the choice of f and x1) that i # j
exist such that z; = x; mod p.

(¢) Suppose p is given. Let f, x1, and xx’s be chosen as in the previous problem. Give an
O(NV/4 - poly(log N)) time algorithm that finds x; and z; such that ¢ # j and z; = z;
mod p, with probability at least some ¢ > 0.

Hint: Define a graph G where each vertex is a congruence class modulo p. (So, the
vertices are {0,...,p—1}.) Put directed edges (u, f(u)) in G. Pick a random vertex (x;
mod p) in G...

(d) You may assume access to a random oracle in this problem. Propose an algorithm that
factors N in O(N'/ . poly(log N)) steps, with probability at least some ¢ > 0.
(Note in this case, p is NOT given!)
For extra credit, prove the correctness of your algorithm.

