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Functional dependencies, functors.



Queue Signature

signature QUEUE = sig
type t
val emp : t
val ins : bool * t — t
val rem : t — bool * t
end



structure Qo : QUEUE = struct
type t = bool list
val emp = nil
fun ins (x, q) = ret (x :: q)
fun rem q =
bind val rev_q < rev q in
case rev_q of
| nil = throw
| x :: xs =
bind val rev.xs < rev xs in
ret (f, rev_xs)
end

Queue Implementation |



Queue Implementation Il

structure Q; : QUEUE = struct
type t = bool list * bool list
val emp = (nil, nil)
fun ins (x, (fs, rs)) = ret (fs, x :: rs)
fun rem (fs, rs) =
case fs of
| nil =
bind val rev.rs < rev rs in
(case rev_rs of
| nil = throw
| x::rs’ = ret (x, rs’, nil))
| x::fs’ = ret (x, fs’, rs)
end
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functor Layer
(structure Lower : LAYER and Packet : PACKET
sharing Lower.Packet.T = Packet.T)

Supports composition from pre-existing components!
® Avoids anticipation of all possible combination patterns.

® Encourages off-the-shelf re-use.
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Coherence is specified by equational sharing specifications.

functor Layer
(structure Lower : LAYER and Packet : PACKET
sharing Lower.Packet.T = Packet.T)

Supports composition from pre-existing components!
® Avoids anticipation of all possible combination patterns.

® Encourages off-the-shelf re-use.

But what do sharing specifications mean?



The Phase Distinction

Moggi introduced the phase distinction:
® Static, or compile-time.

® Dynamic, or run-time.

Sharing specifications are static constraints!
® Enforced during type checking (compile time).

e Governs static components, not dynamic (no code comparison).
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Types for Program Modules

A skeletal module system (“modularity framework™):
® Dependent sums and functions (above).
® |Lax modality for effects (monads).

® Modal account of the phase distinction.

A programming language is an instance of this framework!
® Choice of core type structure.

® Choice of monadic effects.



Modal Formulation of Phases

Modules are, intrinsically, mixed phase entities.
e Static part, the types (but see later).
® Dynamic part, the types and the code.

Isolate the static part using an open lock, =f;.
® A proof-irrelevant proposition: “at most true”.

e Static equivalence, I' ey, = M = N : o, disregards dynamic components.

The lock induces open and closed modalities, Ost(0) and @<t(o).
e Static part: Ogt(0) = ol — 0.
® Dynamic part: @st(Ost(0)) = 1.



Static Extent

The modal formulation accounts for static sharing:

FORMATION INTRODUCTION
I+ o sig rN-uv:o
ey Vo Medy.FU=V:0o
M {o |y — V} sig FEU:{o|dy — V}
ELIMINATION

NrEU:{o|dy — V}
NrN-u:o My FU=V:0o
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Interlude

Other forms of phase distinction are also possible, and useful:
e Compilation: abstraction vs visibility.
® Verification: specification vs structure.

® Resource usage: cost vs behavior.

Questions?
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Relational Parametricity

Reynolds introduced parametricity to explain data abstraction.
® |Implementors provide the type and its implementation.

® (Clients are polymorphic in the abstract type.

Parametricity theorem: well-typed programs respect relational intepretations of
abstract types.

Two implementations are co-correct when they correspond. By parametricity no client
can distinguish them.

In the case of queues define
R(x,{y,2)) iff X=(y+ rev(2))

and check that the operations preserve the correspondence.
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Queue Implementation Il

structure Q; : QUEUE = struct
type t = bool list * bool list
val emp = (nil, nil)
fun ins (x, (fs, rs)) = ret (fs, x :: rs)
fun rem (fs, rs) =
case fs of
| nil =
bind val rev.rs < rev rs in
(case rev_rs of
| nil = throw
| x::rs’ = ret (x, rs’, nil))
| x::fs’ = ret (x, fs’, rs)
end
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Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.
® First, choose R; C 1. X 7R.

e Extend to R, C [r./t]T X [tr/t]T by the action of type constructors.

Importantly,
® eRyool € iff eithere=#t =€ ore = #f =¢'.
® eR. ., € iff e1 Ry, €] implies e(e1) R-, €'(e]).
That is,

® QObservable outcomes are identical.

® Functions preserve the correspondence.
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Reynolds Had It Easy

Reynolds worked with System F in which
® There are no dependencies: types are separate from terms a priori.

® Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!
® The phase distinction must be considered explicitly.

® Proof-irrelevant relations must be generalized to proof-relevant families of types
to account for the universe.
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Logical Relations as Types

The interpretation is usefully structured as another module system!
® Representation independence proofs are structures.

e Static/dynamic distinction carries over.

A new phase distinction arises:
® Syntax, Osyn(A) = sityn — A.
® Semantics, @syn(A), its closed complement: Ogyn(@syn(A)) = 1.

Types in this larger setting exhibit both distinctions independently!
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Intepretation of Types

Types are interpreted a la Reynolds:
HT}/H = ZT:TypeEI(T) - Prop.syn\/st

That is,
® A syntactic type, 7, and

® A semantic and dynamic proof-irrelevant predicate on its elements.

The elements of a type are those that satisfy the type’s interpretation:

|ET[(A, A™) = { M - EI(A) | A"(M)}



Interpretation of Types

Booleans (observables) are interpreted discretely:

||Bool|| = (bool, Ab : El(bool).@synvst(b = true V b = false))

Boolean constants validate the requirement:

‘ | true‘ | = <true7 77.5yn\/s1:(inl(*))>
’ ‘ fa/se‘ | = <false7 Tl.syn\/st(inr(*))>



Interpretation of Signatures

Signatures are interpreted as proof-relevant semantic families:
1581l = >_5.5ig Val(o) — U,
Access to their elements requires proof:
[Vall| = Xa,0™) € ||Sigl]- 2 mvaie)o” (M)
Types as signatures are interpreted as proof-irrelevant predicates:

|| Type : Sig|| = (Type, AT : Val(Type).EI(T) — Propg, ...
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The Bigger Picture

All this is part of Sterling's program of Synthetic Tait Computability.
® Proof-relevant logical relations.
® Sheaf-theoretic formulation in terms of glueing.

® Elegant proof of normalization for Cartesian cubical type theory.

See his forthcoming dissertation expected later this year!



Thank Youl

Questions?



Correspondence Structure

A simulation over Qo; = [sfy,/; < Qo, Wy /e < Q1] consists of the following data:

t : {Val(type) | sy, — Qo1.t}
emp : {Val((t)) | iy, — Qo1.emp}
ins : {Val({bool * t — t))) | sy, <> Qo1.ins}
rem : {Val((t — bool * t))) | sy < Qo1.rem}

invariant : {%g., | #yn — @stOsynVal(Qo1-t)}
invariant = 370 \oi(Qy,.t)) @y ({X, ¥, 22 @ (bits) | X = (¥ + rev(Z)) A... })
L..=4q= [‘\syn/l — [)_{‘ ’ “syn/r — (Dfl? ’Vﬂ)]



