

Logical Relations as Types Proof-Relevant Parametricity for Program Modules

Robert Harper
Carnegie Mellon University

(Joint work with Jon Sterling)

April 2021

Acknowledgments

Please see <http://arxiv.org/abs/2010.08599> for full development, including citations and comparisons to related work. This work is accepted to appear in *J. ACM*.

This work was supported in part by AFOSR under grants MURI FA9550-15-1-0053 and FA9550-19-1-0216, Tristan Nguyen, program manager. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the AFOSR.

Types for Modularity

The ML module system structures programs into separable components:

- **Signatures**, or interfaces declaring **types** and **values**.

Types for Modularity

The ML module system structures programs into separable components:

- **Signatures**, or interfaces declaring **types** and **values**.
- **Structures** that define them.

Types for Modularity

The ML module system structures programs into separable components:

- **Signatures**, or interfaces declaring **types** and **values**.
- **Structures** that define them.
- **Hierarchical** dependencies, **sub-structures**.

Types for Modularity

The ML module system structures programs into separable components:

- **Signatures**, or interfaces declaring **types** and **values**.
- **Structures** that define them.
- **Hierarchical** dependencies, **sub-structures**.
- **Functional** dependencies, **functors**.

Queue Signature

```
signature QUEUE = sig
  type t
  val emp : t
  val ins : bool * t → t
  val rem : t → bool * t
end
```

Queue Implementation I

```
structure Q0 : QUEUE = struct
  type t = bool list
  val emp = nil
  fun ins (x, q) = ret (x :: q)
  fun rem q =
    bind val rev_q ← rev q in
    case rev_q of
    | nil ⇒ throw
    | x :: xs ⇒
      bind val rev_xs ← rev xs in
      ret (f, rev_xs)
end
```

Queue Implementation II

```
structure Q1 : QUEUE = struct
  type t = bool list * bool list
  val emp = (nil, nil)
  fun ins (x, (fs, rs)) = ret (fs, x :: rs)
  fun rem (fs, rs) =
    case fs of
      | nil =>
        bind val rev_rs ← rev rs in
        (case rev_rs of
          | nil => throw
          | x::rs' => ret (x, rs', nil))
      | x::fs' => ret (x, fs', rs)
  end
```

Coherence Specifications

Coherence is specified by equational **sharing** specifications.

```
functor Layer
  (structure Lower : LAYER and Packet : PACKET
    sharing Lower.Packet.T = Packet.T)
```

Supports composition from **pre-existing** components!

- **Avoids** anticipation of all possible combination patterns.
- **Encourages** off-the-shelf re-use.

Coherence Specifications

Coherence is specified by equational **sharing** specifications.

```
functor Layer
  (structure Lower : LAYER and Packet : PACKET
    sharing Lower.Packet.T = Packet.T)
```

Supports composition from **pre-existing** components!

- **Avoids** anticipation of all possible combination patterns.
- **Encourages** off-the-shelf re-use.

But what do sharing specifications **mean**?

The Phase Distinction

Moggi introduced the **phase** distinction:

- **Static**, or compile-time.
- **Dynamic**, or run-time.

Sharing specifications are **static** constraints!

- **Enforced** during type checking (compile time).
- **Governs** static components, not dynamic (no code comparison).

Types for Program Modules

MacQueen proposed using **dependent types** for modularity:

- Basic **type** and **value** declarations.

Types for Program Modules

MacQueen proposed using **dependent types** for modularity:

- Basic **type** and **value** declarations.
- A **universe** of “small” types.

Types for Program Modules

MacQueen proposed using **dependent types** for modularity:

- Basic **type** and **value** declarations.
- A **universe** of “small” types.
- Dependent sums: $x:\sigma_1 \times \sigma_2$.

Lower : PROTOCOL \times type T

Types for Program Modules

MacQueen proposed using **dependent types** for modularity:

- Basic **type** and **value** declarations.
- A **universe** of “small” types.
- Dependent sums: $x:\sigma_1 \times \sigma_2$.

Lower : PROTOCOL \times type T

- Dependent functions: $x:\sigma_1 \rightarrow \sigma_2$.

Lower : PROTOCOL \rightarrow Upper : PROTOCOL sharing Lower.T=Upper.T

Types for Program Modules

MacQueen proposed using **dependent types** for modularity:

- Basic **type** and **value** declarations.
- A **universe** of “small” types.
- Dependent sums: $x:\sigma_1 \times \sigma_2$.

Lower : PROTOCOL \times type T

- Dependent functions: $x:\sigma_1 \rightarrow \sigma_2$.

Lower : PROTOCOL \rightarrow Upper : PROTOCOL sharing Lower.T=Upper.T

But what are sharing specifications?

Types for Program Modules

A **skeletal** module system (“modularity framework”):

- Dependent sums and functions (above).

Types for Program Modules

A **skeletal** module system (“modularity framework”):

- Dependent sums and functions (above).
- **Lax** modality for effects (monads).

Types for Program Modules

A **skeletal** module system (“modularity framework”):

- Dependent sums and functions (above).
- **Lax** modality for effects (monads).
- **Modal** account of the phase distinction.

Types for Program Modules

A **skeletal** module system (“modularity framework”):

- Dependent sums and functions (above).
- **Lax** modality for effects (monads).
- **Modal** account of the phase distinction.

A programming language is an **instance** of this framework!

Types for Program Modules

A **skeletal** module system (“modularity framework”):

- Dependent sums and functions (above).
- **Lax** modality for effects (monads).
- **Modal** account of the phase distinction.

A programming language is an **instance** of this framework!

- Choice of core type structure.

Types for Program Modules

A **skeletal** module system (“modularity framework”):

- Dependent sums and functions (above).
- **Lax** modality for effects (monads).
- **Modal** account of the phase distinction.

A programming language is an **instance** of this framework!

- Choice of core type structure.
- Choice of monadic effects.

Modal Formulation of Phases

Modules are, intrinsically, **mixed phase** entities.

- Static part, the types (but see later).
- Dynamic part, the types and the code.

Isolate the static part using an **open lock**, \blacksquare_{st} .

- A **proof-irrelevant** proposition: “at most true”.
- *Static equivalence*, $\Gamma, \blacksquare_{\text{st}} \vdash M \equiv N : \sigma$, disregards dynamic components.

The lock induces **open** and **closed** modalities, $\bigcirc_{\text{st}}(\sigma)$ and $\bullet_{\text{st}}(\sigma)$.

- Static part: $\bigcirc_{\text{st}}(\sigma) \cong \blacksquare_{\text{st}} \rightarrow \sigma$.
- Dynamic part: $\bullet_{\text{st}}(\bigcirc_{\text{st}}(\sigma)) \cong \mathbf{1}$.

Static Extent

The modal formulation accounts for static sharing:

FORMATION

$$\frac{\Gamma \vdash \sigma \ sig \quad \Gamma, \blacksquare_{\text{st}} \vdash V : \sigma}{\Gamma \vdash \{\sigma \mid \blacksquare_{\text{st}} \hookrightarrow V\} \ sig}$$

INTRODUCTION

$$\frac{\Gamma \vdash U : \sigma \quad \Gamma, \blacksquare_{\text{st}} \vdash U \equiv V : \sigma}{\Gamma \vdash U : \{\sigma \mid \blacksquare_{\text{st}} \hookrightarrow V\}}$$

ELIMINATION

$$\frac{\Gamma \vdash U : \{\sigma \mid \blacksquare_{\text{st}} \hookrightarrow V\}}{\Gamma \vdash U : \sigma \quad \Gamma, \blacksquare_{\text{st}} \vdash U \equiv V : \sigma}$$

Other forms of phase distinction are also possible, and useful:

- Compilation: abstraction vs visibility.

Other forms of phase distinction are also possible, and useful:

- Compilation: abstraction vs visibility.
- Verification: specification vs structure.

Other forms of phase distinction are also possible, and useful:

- Compilation: abstraction vs visibility.
- Verification: specification vs structure.
- Resource usage: cost vs behavior.

Other forms of phase distinction are also possible, and useful:

- Compilation: abstraction vs visibility.
- Verification: specification vs structure.
- Resource usage: cost vs behavior.

Questions?

Relational Parametricity

Reynolds introduced parametricity to explain **data abstraction**.

- Implementors **provide** the type and its implementation.

Relational Parametricity

Reynolds introduced parametricity to explain **data abstraction**.

- Implementors **provide** the type and its implementation.
- Clients are **polymorphic** in the abstract type.

Relational Parametricity

Reynolds introduced parametricity to explain **data abstraction**.

- Implementors **provide** the type and its implementation.
- Clients are **polymorphic** in the abstract type.

Parametricity theorem: well-typed programs respect relational interpretations of abstract types.

Two implementations are **co-correct** when they **correspond**. By parametricity no client can distinguish them.

In the case of queues define

$$R(\vec{x}, \langle \vec{y}, \vec{z} \rangle) \quad \text{iff} \quad \vec{x} = (\vec{y} + \text{rev}(\vec{z}))$$

and check that the operations preserve the correspondence.

Queue Signature

```
signature QUEUE = sig
  type t
  val emp : t
  val ins : bool * t → t
  val rem : t → bool * t
end
```

Queue Implementation I

```
structure Q0 : QUEUE = struct
  type t = bool list
  val emp = nil
  fun ins (x, q) = ret (x :: q)
  fun rem q =
    bind val rev_q ← rev q in
    case rev_q of
    | nil ⇒ throw
    | x :: xs ⇒
      bind val rev_xs ← rev xs in
      ret (f, rev_xs)
end
```

Queue Implementation II

```
structure Q1 : QUEUE = struct
  type t = bool list * bool list
  val emp = (nil, nil)
  fun ins (x, (fs, rs)) = ret (fs, x :: rs)
  fun rem (fs, rs) =
    case fs of
      | nil =>
        bind val rev_rs ← rev rs in
        (case rev_rs of
          | nil => throw
          | x::rs' => ret (x, rs', nil))
      | x::fs' => ret (x, fs', rs)
  end
```

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.
- Extend to $R_\tau \subseteq [\tau_L/t]\tau \times [\tau_R/t]\tau$ by the action of type constructors.

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.
- Extend to $R_\tau \subseteq [\tau_L/t]\tau \times [\tau_R/t]\tau$ by the action of type constructors.

Importantly,

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.
- Extend to $R_\tau \subseteq [\tau_L/t]\tau \times [\tau_R/t]\tau$ by the action of type constructors.

Importantly,

- $e R_{\text{bool}} e'$ iff either $e \equiv \#t \equiv e'$ or $e \equiv \#f \equiv e'$.

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.
- Extend to $R_\tau \subseteq [\tau_L/t]\tau \times [\tau_R/t]\tau$ by the action of type constructors.

Importantly,

- $e R_{\text{bool}} e'$ iff either $e \equiv \#t \equiv e'$ or $e \equiv \#f \equiv e'$.
- $e R_{\tau_1 \rightarrow \tau_2} e'$ iff $e_1 R_{\tau_1} e'_1$ implies $e(e_1) R_{\tau_2} e'(e'_1)$.

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.
- Extend to $R_\tau \subseteq [\tau_L/t]\tau \times [\tau_R/t]\tau$ by the action of type constructors.

Importantly,

- $e R_{\text{bool}} e'$ iff either $e \equiv \#t \equiv e'$ or $e \equiv \#f \equiv e'$.
- $e R_{\tau_1 \rightarrow \tau_2} e'$ iff $e_1 R_{\tau_1} e'_1$ implies $e(e_1) R_{\tau_2} e'(e'_1)$.

That is,

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.
- Extend to $R_\tau \subseteq [\tau_L/t]\tau \times [\tau_R/t]\tau$ by the action of type constructors.

Importantly,

- $e R_{\text{bool}} e'$ iff either $e \equiv \#t \equiv e'$ or $e \equiv \#f \equiv e'$.
- $e R_{\tau_1 \rightarrow \tau_2} e'$ iff $e_1 R_{\tau_1} e'_1$ implies $e(e_1) R_{\tau_2} e'(e'_1)$.

That is,

- Observable outcomes are identical.

Relational Interpretation

The key to Reynolds' method is to interpret types as **heterogenous** binary relations.

- First, choose $R_t \subseteq \tau_L \times \tau_R$.
- Extend to $R_\tau \subseteq [\tau_L/t]\tau \times [\tau_R/t]\tau$ by the action of type constructors.

Importantly,

- $e R_{\text{bool}} e'$ iff either $e \equiv \#t \equiv e'$ or $e \equiv \#f \equiv e'$.
- $e R_{\tau_1 \rightarrow \tau_2} e'$ iff $e_1 R_{\tau_1} e'_1$ implies $e(e_1) R_{\tau_2} e'(e'_1)$.

That is,

- Observable outcomes are identical.
- Functions preserve the correspondence.

Reynolds Had It Easy

Reynolds worked with System F in which

- There are no dependencies: types are separate from terms *a priori*.

Reynolds Had It Easy

Reynolds worked with System F in which

- There are no dependencies: types are separate from terms *a priori*.
- Types are never computed as outputs, only taken as inputs.

Reynolds Had It Easy

Reynolds worked with System F in which

- There are no dependencies: types are separate from terms *a priori*.
- Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

Reynolds Had It Easy

Reynolds worked with System F in which

- There are no dependencies: types are separate from terms *a priori*.
- Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

- The **phase distinction** must be considered explicitly.

Reynolds Had It Easy

Reynolds worked with System F in which

- There are no dependencies: types are separate from terms *a priori*.
- Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

- The **phase distinction** must be considered explicitly.
- **Proof-irrelevant** relations must be generalized to **proof-relevant** families of types to account for the universe.

Logical Relations as Types

The interpretation is usefully structured as another module system!

- Representation independence proofs are structures.

Logical Relations as Types

The interpretation is usefully structured as another module system!

- Representation independence proofs are structures.
- Static/dynamic distinction carries over.

Logical Relations as Types

The interpretation is usefully structured as another module system!

- Representation independence proofs are structures.
- Static/dynamic distinction carries over.

A new phase distinction arises:

Logical Relations as Types

The interpretation is usefully structured as another module system!

- Representation independence proofs are structures.
- Static/dynamic distinction carries over.

A new phase distinction arises:

- **Syntax**, $\circ_{\text{syn}}(A) \cong \blacksquare_{\text{syn}} \rightarrow A$.

Logical Relations as Types

The interpretation is usefully structured as another module system!

- Representation independence proofs are structures.
- Static/dynamic distinction carries over.

A new phase distinction arises:

- **Syntax**, $\circ_{\text{syn}}(A) \cong \blacksquare_{\text{syn}} \rightarrow A$.
- **Semantics**, $\bullet_{\text{syn}}(A)$, its closed complement: $\circ_{\text{syn}}(\bullet_{\text{syn}}(A)) \cong \mathbf{1}$.

Logical Relations as Types

The interpretation is usefully structured as another module system!

- Representation independence proofs are structures.
- Static/dynamic distinction carries over.

A new phase distinction arises:

- **Syntax**, $\circ_{\text{syn}}(A) \cong \blacksquare_{\text{syn}} \rightarrow A$.
- **Semantics**, $\bullet_{\text{syn}}(A)$, its closed complement: $\circ_{\text{syn}}(\bullet_{\text{syn}}(A)) \cong \mathbf{1}$.

Types in this larger setting exhibit **both** distinctions independently!

Intepretation of Types

Types are interpreted a la Reynolds:

$$||Ty|| \cong \sum_{\tau:\text{Type}} \text{El}(\tau) \rightarrow \text{Prop}_{\bullet_{\text{syn} \vee \text{st}}}$$

That is,

Intepretation of Types

Types are interpreted a la Reynolds:

$$|| Ty || \cong \sum_{\tau: \text{Type}} \text{El}(\tau) \rightarrow \text{Prop}_{\bullet_{\text{syn} \vee \text{st}}}$$

That is,

- A **syntactic** type, τ , and

Intepretation of Types

Types are interpreted a la Reynolds:

$$|| Ty || \cong \sum_{\tau: \text{Type}} \text{El}(\tau) \rightarrow \text{Prop}_{\bullet_{\text{syn} \vee \text{st}}}$$

That is,

- A **syntactic** type, τ , and
- A **semantic and dynamic** proof-irrelevant predicate on its elements.

Intepretation of Types

Types are interpreted a la Reynolds:

$$||Ty|| \cong \sum_{\tau:\text{Type}} EI(\tau) \rightarrow \text{Prop}_{\bullet_{\text{syn} \vee \text{st}}}$$

That is,

- A **syntactic** type, τ , and
- A **semantic and dynamic** proof-irrelevant predicate on its elements.

The elements of a type are those that satisfy the type's interpretation:

$$||EI|| (A, A^*) = \{ M : EI(A) \mid A^*(M) \}$$

Interpretation of Types

Booleans (observables) are interpreted discretely:

$$||Bool|| = \langle \text{bool}, \lambda b : El(\text{bool}). \bullet_{\text{syn} \vee \text{st}} (b \equiv \text{true} \vee b \equiv \text{false}) \rangle$$

Boolean constants validate the requirement:

$$||\text{true}|| = \langle \text{true}, \eta_{\bullet_{\text{syn} \vee \text{st}}} (\text{inl}(\star)) \rangle$$

$$||\text{false}|| = \langle \text{false}, \eta_{\bullet_{\text{syn} \vee \text{st}}} (\text{inr}(\star)) \rangle$$

Interpretation of Signatures

Signatures are interpreted as **proof-relevant** semantic families:

$$||\text{Sig}|| = \sum_{\sigma:\text{Sig}} \text{Val}(\sigma) \rightarrow U_{\bullet_{\text{syn}}}$$

Access to their elements requires **proof**:

$$||\text{Val}|| = \lambda \langle \sigma, \sigma^* \rangle \in ||\text{Sig}|| \cdot \sum_{m:\text{Val}(\sigma)} \sigma^*(m)$$

Types as signatures are interpreted as **proof-irrelevant** predicates:

$$||\text{Type} : \text{Sig}|| = \langle \text{Type}, \lambda \tau : \text{Val}(\text{Type}). \text{El}(\tau) \rightarrow \text{Prop}_{\bullet_{\text{syn} \vee \text{st}}} \rangle$$

The Bigger Picture

All this is part of Sterling's program of **Synthetic Tait Computability**.

- **Proof-relevant** logical relations.

The Bigger Picture

All this is part of Sterling's program of **Synthetic Tait Computability**.

- **Proof-relevant** logical relations.
- Sheaf-theoretic formulation in terms of **glueing**.

The Bigger Picture

All this is part of Sterling's program of **Synthetic Tait Computability**.

- **Proof-relevant** logical relations.
- Sheaf-theoretic formulation in terms of **glueing**.
- Elegant proof of normalization for **Cartesian cubical type theory**.

The Bigger Picture

All this is part of Sterling's program of **Synthetic Tait Computability**.

- **Proof-relevant** logical relations.
- Sheaf-theoretic formulation in terms of **glueing**.
- Elegant proof of normalization for **Cartesian cubical type theory**.

See his forthcoming dissertation expected later this year!

Thank You!

Questions?

Correspondence Structure

A simulation over $Q_{01} = [\blacksquare_{\text{syn/l}} \hookrightarrow Q_0, \blacksquare_{\text{syn/r}} \hookrightarrow Q_1]$ consists of the following data:

$$\begin{aligned} t &: \{\text{Val(type)} \mid \blacksquare_{\text{syn}} \hookrightarrow Q_{01}.\text{t}\} \\ \text{emp} &: \{\text{Val}(\langle t \rangle) \mid \blacksquare_{\text{syn}} \hookrightarrow Q_{01}.\text{emp}\} \\ \text{ins} &: \{\text{Val}(\langle \text{bool} * t \rightharpoonup t \rangle) \mid \blacksquare_{\text{syn}} \hookrightarrow Q_{01}.\text{ins}\} \\ \text{rem} &: \{\text{Val}(\langle t \rightharpoonup \text{bool} * t \rangle) \mid \blacksquare_{\text{syn}} \hookrightarrow Q_{01}.\text{rem}\} \end{aligned}$$

$$\text{invariant} : \{\mathcal{U}_{\bullet_{\text{st}}}^{\alpha} \mid \blacksquare_{\text{syn}} \hookrightarrow \bullet_{\text{st}} \circ_{\text{syn}} \text{Val}(Q_{01}.\text{t})\}$$

$$\text{invariant} \cong \sum_{q: \circ_{\text{syn}} \text{Val}(\langle Q_{01}.\text{t} \rangle)} \bullet_{\text{syn}}(\{\vec{x}, \vec{y}, \vec{z} : \bullet_{\text{st}}(\text{bits}) \mid \vec{x} = (\vec{y} + \text{rev}(\vec{z})) \wedge \dots\})$$

$$\dots = q = [\blacksquare_{\text{syn/l}} \hookrightarrow \lceil \vec{x} \rceil \mid \blacksquare_{\text{syn/r}} \hookrightarrow (\lceil \vec{y} \rceil, \lceil \vec{z} \rceil)]$$