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The ML module system structures programs into separable components:
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• Structures that define them.

• Hierarchical dependencies, sub-structures.

• Functional dependencies, functors.
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Queue Signature

signature QUEUE = sig

type t

val emp : t

val ins : bool * t ⇀ t

val rem : t ⇀ bool * t

end



Queue Implementation I

structure Q0 : QUEUE = struct

type t = bool list

val emp = nil

fun ins (x, q) = ret (x :: q)

fun rem q =

bind val rev q ← rev q in

case rev q of

| nil ⇒ throw

| x :: xs ⇒
bind val rev xs ← rev xs in

ret (f, rev xs)

end



Queue Implementation II

structure Q1 : QUEUE = struct

type t = bool list * bool list

val emp = (nil, nil)

fun ins (x, (fs, rs)) = ret (fs, x :: rs)

fun rem (fs, rs) =

case fs of

| nil ⇒
bind val rev rs ← rev rs in

(case rev rs of

| nil ⇒ throw

| x::rs’ ⇒ ret (x, rs’, nil))

| x::fs’ ⇒ ret (x, fs’, rs)

end



Coherence Specifications

Coherence is specified by equational sharing specifications.

functor Layer

(structure Lower : LAYER and Packet : PACKET

sharing Lower.Packet.T = Packet.T)

Supports composition from pre-existing components!

• Avoids anticipation of all possible combination patterns.

• Encourages off-the-shelf re-use.

But what do sharing specifications mean?
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The Phase Distinction

Moggi introduced the phase distinction:

• Static, or compile-time.

• Dynamic, or run-time.

Sharing specifications are static constraints!

• Enforced during type checking (compile time).

• Governs static components, not dynamic (no code comparison).



Types for Program Modules

MacQueen proposed using dependent types for modularity:

• Basic type and value declarations.

• A universe of “small” types.

• Dependent sums: x :σ1 × σ2.

Lower : PROTOCOL × type T

• Dependent functions: x :σ1 → σ2.

Lower : PROTOCOL → Upper : PROTOCOL sharing Lower.T=Upper.T

But what are sharing specifications?
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Types for Program Modules

A skeletal module system (“modularity framework”):

• Dependent sums and functions (above).

• Lax modality for effects (monads).

• Modal account of the phase distinction.

A programming language is an instance of this framework!

• Choice of core type structure.

• Choice of monadic effects.
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Modal Formulation of Phases

Modules are, intrinsically, mixed phase entities.

• Static part, the types (but see later).

• Dynamic part, the types and the code.

Isolate the static part using an open lock, bst.

• A proof-irrelevant proposition: “at most true”.

• Static equivalence, Γ,bst ` M ≡ N : σ, disregards dynamic components.

The lock induces open and closed modalities, #st(σ) and  st(σ).

• Static part: #st(σ) ∼= bst → σ.

• Dynamic part:  st(#st(σ)) ∼= 1.



Static Extent

The modal formulation accounts for static sharing:

formation
Γ ` σ sig

Γ,bst ` V : σ

Γ ` {σ | bst ↪→ V } sig

introduction
Γ ` U : σ

Γ,bst ` U ≡ V : σ

Γ ` U : {σ | bst ↪→ V }

elimination
Γ ` U : {σ | bst ↪→ V }

Γ ` U : σ Γ,bst ` U ≡ V : σ



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Relational Parametricity

Reynolds introduced parametricity to explain data abstraction.

• Implementors provide the type and its implementation.

• Clients are polymorphic in the abstract type.

Parametricity theorem: well-typed programs respect relational intepretations of
abstract types.

Two implementations are co-correct when they correspond. By parametricity no client
can distinguish them.

In the case of queues define

R(~x , 〈~y , ~z〉) iff ~x = (~y + rev(~z))

and check that the operations preserve the correspondence.
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Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.
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Reynolds Had It Easy

Reynolds worked with System F in which

• There are no dependencies: types are separate from terms a priori.

• Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

• The phase distinction must be considered explicitly.

• Proof-irrelevant relations must be generalized to proof-relevant families of types
to account for the universe.
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The interpretation is usefully structured as another module system!

• Representation independence proofs are structures.

• Static/dynamic distinction carries over.

A new phase distinction arises:

• Syntax, #syn(A) ∼= bsyn → A.

• Semantics,  syn(A), its closed complement: #syn( syn(A)) ∼= 1.

Types in this larger setting exhibit both distinctions independently!
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Intepretation of Types

Types are interpreted a la Reynolds:

||Ty || ∼=
∑

τ :TypeEl(τ)→ Prop syn∨st

That is,

• A syntactic type, τ , and

• A semantic and dynamic proof-irrelevant predicate on its elements.

The elements of a type are those that satisfy the type’s interpretation:

||El ||(A,A∗) = {M : El(A) | A∗(M) }
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Interpretation of Types

Booleans (observables) are interpreted discretely:

||Bool || = 〈bool , λb : El(bool). syn∨st(b ≡ true ∨ b ≡ false)〉

Boolean constants validate the requirement:

||true|| = 〈true, η syn∨st(inl(?))〉
||false|| = 〈false, η syn∨st(inr(?))〉



Interpretation of Signatures

Signatures are interpreted as proof-relevant semantic families:

||Sig || =
∑

σ:SigVal(σ)→ U syn

Access to their elements requires proof:

||Val || = λ〈σ, σ∗〉 ∈ ||Sig ||.
∑

m:Val(σ)σ
∗(m)

Types as signatures are interpreted as proof-irrelevant predicates:

||Type : Sig || = 〈Type, λτ : Val(Type).El(τ)→ Prop syn∨st
.
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Thank You!

Questions?



Correspondence Structure

A simulation over Q01 = [bsyn/l ↪→ Q0,bsyn/r ↪→ Q1] consists of the following data:

t : {Val(type) | bsyn ↪→ Q01.t}
emp : {Val(〈|t|〉) | bsyn ↪→ Q01.emp}
ins : {Val(〈|bool ∗ t ⇀ t|〉) | bsyn ↪→ Q01.ins}
rem : {Val(〈|t ⇀ bool ∗ t|〉) | bsyn ↪→ Q01.rem}

invariant : {U α
 st
| bsyn ↪→  st#synVal(Q01.t)}

invariant ∼=
∑

q:#synVal(〈|Q01.t|〉) syn({~x , ~y , ~z :  st(bits) | ~x = (~y + rev(~z)) ∧ . . . })

. . . = q = [bsyn/l ↪→ d~xe | bsyn/r ↪→ (d~ye, d~ze)]


