
Logical Relations as Types
Proof-Relevant Parametricity for Program Modules

Robert Harper
Carnegie Mellon University

(Joint work with Jon Sterling)

April 2021



Acknowledgments

Please see http://arxiv.org/abs/2010.08599 for full development, including
citations and comparisons to related work. This work is to accepted to appear in J.
ACM.

This work was supported in part by AFOSR under grants MURI FA9550-15-1-0053 and
FA9550-19-1-0216, Tristan Nguyen, program manager. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the AFOSR.

http://arxiv.org/abs/2010.08599


Types for Modularity

The ML module system structures programs into separable components:

• Signatures, or interfaces declaring types and values.

• Structures that define them.

• Hierarchical dependencies, sub-structures.

• Functional dependencies, functors.



Types for Modularity

The ML module system structures programs into separable components:

• Signatures, or interfaces declaring types and values.

• Structures that define them.

• Hierarchical dependencies, sub-structures.

• Functional dependencies, functors.



Types for Modularity

The ML module system structures programs into separable components:

• Signatures, or interfaces declaring types and values.

• Structures that define them.

• Hierarchical dependencies, sub-structures.

• Functional dependencies, functors.



Types for Modularity

The ML module system structures programs into separable components:

• Signatures, or interfaces declaring types and values.

• Structures that define them.

• Hierarchical dependencies, sub-structures.

• Functional dependencies, functors.



Queue Signature

signature QUEUE = sig

type t

val emp : t

val ins : bool * t ⇀ t

val rem : t ⇀ bool * t

end



Queue Implementation I

structure Q0 : QUEUE = struct

type t = bool list

val emp = nil

fun ins (x, q) = ret (x :: q)

fun rem q =

bind val rev q ← rev q in

case rev q of

| nil ⇒ throw

| x :: xs ⇒
bind val rev xs ← rev xs in

ret (f, rev xs)

end



Queue Implementation II

structure Q1 : QUEUE = struct

type t = bool list * bool list

val emp = (nil, nil)

fun ins (x, (fs, rs)) = ret (fs, x :: rs)

fun rem (fs, rs) =

case fs of

| nil ⇒
bind val rev rs ← rev rs in

(case rev rs of

| nil ⇒ throw

| x::rs’ ⇒ ret (x, rs’, nil))

| x::fs’ ⇒ ret (x, fs’, rs)

end



Coherence Specifications

Coherence is specified by equational sharing specifications.

functor Layer

(structure Lower : LAYER and Packet : PACKET

sharing Lower.Packet.T = Packet.T)

Supports composition from pre-existing components!

• Avoids anticipation of all possible combination patterns.

• Encourages off-the-shelf re-use.

But what do sharing specifications mean?



Coherence Specifications

Coherence is specified by equational sharing specifications.

functor Layer

(structure Lower : LAYER and Packet : PACKET

sharing Lower.Packet.T = Packet.T)

Supports composition from pre-existing components!

• Avoids anticipation of all possible combination patterns.

• Encourages off-the-shelf re-use.

But what do sharing specifications mean?



The Phase Distinction

Moggi introduced the phase distinction:

• Static, or compile-time.

• Dynamic, or run-time.

Sharing specifications are static constraints!

• Enforced during type checking (compile time).

• Governs static components, not dynamic (no code comparison).



Types for Program Modules

MacQueen proposed using dependent types for modularity:

• Basic type and value declarations.

• A universe of “small” types.

• Dependent sums: x :σ1 × σ2.

Lower : PROTOCOL × type T

• Dependent functions: x :σ1 → σ2.

Lower : PROTOCOL → Upper : PROTOCOL sharing Lower.T=Upper.T

But what are sharing specifications?



Types for Program Modules

MacQueen proposed using dependent types for modularity:

• Basic type and value declarations.

• A universe of “small” types.

• Dependent sums: x :σ1 × σ2.

Lower : PROTOCOL × type T

• Dependent functions: x :σ1 → σ2.

Lower : PROTOCOL → Upper : PROTOCOL sharing Lower.T=Upper.T

But what are sharing specifications?



Types for Program Modules

MacQueen proposed using dependent types for modularity:

• Basic type and value declarations.

• A universe of “small” types.

• Dependent sums: x :σ1 × σ2.

Lower : PROTOCOL × type T

• Dependent functions: x :σ1 → σ2.

Lower : PROTOCOL → Upper : PROTOCOL sharing Lower.T=Upper.T

But what are sharing specifications?



Types for Program Modules

MacQueen proposed using dependent types for modularity:

• Basic type and value declarations.

• A universe of “small” types.

• Dependent sums: x :σ1 × σ2.

Lower : PROTOCOL × type T

• Dependent functions: x :σ1 → σ2.

Lower : PROTOCOL → Upper : PROTOCOL sharing Lower.T=Upper.T

But what are sharing specifications?



Types for Program Modules

MacQueen proposed using dependent types for modularity:

• Basic type and value declarations.

• A universe of “small” types.

• Dependent sums: x :σ1 × σ2.

Lower : PROTOCOL × type T

• Dependent functions: x :σ1 → σ2.

Lower : PROTOCOL → Upper : PROTOCOL sharing Lower.T=Upper.T

But what are sharing specifications?



Types for Program Modules

A skeletal module system (“modularity framework”):

• Dependent sums and functions (above).

• Lax modality for effects (monads).

• Modal account of the phase distinction.

A programming language is an instance of this framework!

• Choice of core type structure.

• Choice of monadic effects.



Types for Program Modules

A skeletal module system (“modularity framework”):

• Dependent sums and functions (above).

• Lax modality for effects (monads).

• Modal account of the phase distinction.

A programming language is an instance of this framework!

• Choice of core type structure.

• Choice of monadic effects.



Types for Program Modules

A skeletal module system (“modularity framework”):

• Dependent sums and functions (above).

• Lax modality for effects (monads).

• Modal account of the phase distinction.

A programming language is an instance of this framework!

• Choice of core type structure.

• Choice of monadic effects.



Types for Program Modules

A skeletal module system (“modularity framework”):

• Dependent sums and functions (above).

• Lax modality for effects (monads).

• Modal account of the phase distinction.

A programming language is an instance of this framework!

• Choice of core type structure.

• Choice of monadic effects.



Types for Program Modules

A skeletal module system (“modularity framework”):

• Dependent sums and functions (above).

• Lax modality for effects (monads).

• Modal account of the phase distinction.

A programming language is an instance of this framework!

• Choice of core type structure.

• Choice of monadic effects.



Types for Program Modules

A skeletal module system (“modularity framework”):

• Dependent sums and functions (above).

• Lax modality for effects (monads).

• Modal account of the phase distinction.

A programming language is an instance of this framework!

• Choice of core type structure.

• Choice of monadic effects.



Modal Formulation of Phases

Modules are, intrinsically, mixed phase entities.

• Static part, the types (but see later).

• Dynamic part, the types and the code.

Isolate the static part using an open lock, bst.

• A proof-irrelevant proposition: “at most true”.

• Static equivalence, Γ,bst ` M ≡ N : σ, disregards dynamic components.

The lock induces open and closed modalities, #st(σ) and  st(σ).

• Static part: #st(σ) ∼= bst → σ.

• Dynamic part:  st(#st(σ)) ∼= 1.



Static Extent

The modal formulation accounts for static sharing:

formation
Γ ` σ sig

Γ,bst ` V : σ

Γ ` {σ | bst ↪→ V } sig

introduction
Γ ` U : σ

Γ,bst ` U ≡ V : σ

Γ ` U : {σ | bst ↪→ V }

elimination
Γ ` U : {σ | bst ↪→ V }

Γ ` U : σ Γ,bst ` U ≡ V : σ



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Interlude

Other forms of phase distinction are also possible, and useful:

• Compilation: abstraction vs visibility.

• Verification: specification vs structure.

• Resource usage: cost vs behavior.

Questions?



Relational Parametricity

Reynolds introduced parametricity to explain data abstraction.

• Implementors provide the type and its implementation.

• Clients are polymorphic in the abstract type.

Parametricity theorem: well-typed programs respect relational intepretations of
abstract types.

Two implementations are co-correct when they correspond. By parametricity no client
can distinguish them.

In the case of queues define

R(~x , 〈~y , ~z〉) iff ~x = (~y + rev(~z))

and check that the operations preserve the correspondence.



Relational Parametricity

Reynolds introduced parametricity to explain data abstraction.

• Implementors provide the type and its implementation.

• Clients are polymorphic in the abstract type.

Parametricity theorem: well-typed programs respect relational intepretations of
abstract types.

Two implementations are co-correct when they correspond. By parametricity no client
can distinguish them.

In the case of queues define

R(~x , 〈~y , ~z〉) iff ~x = (~y + rev(~z))

and check that the operations preserve the correspondence.



Relational Parametricity

Reynolds introduced parametricity to explain data abstraction.

• Implementors provide the type and its implementation.

• Clients are polymorphic in the abstract type.

Parametricity theorem: well-typed programs respect relational intepretations of
abstract types.

Two implementations are co-correct when they correspond. By parametricity no client
can distinguish them.

In the case of queues define

R(~x , 〈~y , ~z〉) iff ~x = (~y + rev(~z))

and check that the operations preserve the correspondence.



Queue Signature

signature QUEUE = sig

type t

val emp : t

val ins : bool * t ⇀ t

val rem : t ⇀ bool * t

end



Queue Implementation I

structure Q0 : QUEUE = struct

type t = bool list

val emp = nil

fun ins (x, q) = ret (x :: q)

fun rem q =

bind val rev q ← rev q in

case rev q of

| nil ⇒ throw

| x :: xs ⇒
bind val rev xs ← rev xs in

ret (f, rev xs)

end



Queue Implementation II

structure Q1 : QUEUE = struct

type t = bool list * bool list

val emp = (nil, nil)

fun ins (x, (fs, rs)) = ret (fs, x :: rs)

fun rem (fs, rs) =

case fs of

| nil ⇒
bind val rev rs ← rev rs in

(case rev rs of

| nil ⇒ throw

| x::rs’ ⇒ ret (x, rs’, nil))

| x::fs’ ⇒ ret (x, fs’, rs)

end



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Relational Interpretation

The key to Reynolds’ method is to interpret types as heterogenous binary relations.

• First, choose Rt ⊆ τL × τR.

• Extend to Rτ ⊆ [τL/t]τ × [τR/t]τ by the action of type constructors.

Importantly,

• e Rbool e
′ iff either e ≡ #t ≡ e ′ or e ≡ #f ≡ e ′.

• e Rτ1→τ2 e
′ iff e1 Rτ1 e

′
1 implies e(e1)Rτ2 e

′(e ′1).

That is,

• Observable outcomes are identical.

• Functions preserve the correspondence.



Reynolds Had It Easy

Reynolds worked with System F in which

• There are no dependencies: types are separate from terms a priori.

• Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

• The phase distinction must be considered explicitly.

• Proof-irrelevant relations must be generalized to proof-relevant families of types
to account for the universe.



Reynolds Had It Easy

Reynolds worked with System F in which

• There are no dependencies: types are separate from terms a priori.

• Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

• The phase distinction must be considered explicitly.

• Proof-irrelevant relations must be generalized to proof-relevant families of types
to account for the universe.



Reynolds Had It Easy

Reynolds worked with System F in which

• There are no dependencies: types are separate from terms a priori.

• Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

• The phase distinction must be considered explicitly.

• Proof-irrelevant relations must be generalized to proof-relevant families of types
to account for the universe.



Reynolds Had It Easy

Reynolds worked with System F in which

• There are no dependencies: types are separate from terms a priori.

• Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

• The phase distinction must be considered explicitly.

• Proof-irrelevant relations must be generalized to proof-relevant families of types
to account for the universe.



Reynolds Had It Easy

Reynolds worked with System F in which

• There are no dependencies: types are separate from terms a priori.

• Types are never computed as outputs, only taken as inputs.

But these ingredients are necessary for a module system!

• The phase distinction must be considered explicitly.

• Proof-irrelevant relations must be generalized to proof-relevant families of types
to account for the universe.



Logical Relations as Types

The interpretation is usefully structured as another module system!

• Representation independence proofs are structures.

• Static/dynamic distinction carries over.

A new phase distinction arises:

• Syntax, #syn(A) ∼= bsyn → A.

• Semantics,  syn(A), its closed complement: #syn( syn(A)) ∼= 1.

Types in this larger setting exhibit both distinctions independently!



Logical Relations as Types

The interpretation is usefully structured as another module system!

• Representation independence proofs are structures.

• Static/dynamic distinction carries over.

A new phase distinction arises:

• Syntax, #syn(A) ∼= bsyn → A.

• Semantics,  syn(A), its closed complement: #syn( syn(A)) ∼= 1.

Types in this larger setting exhibit both distinctions independently!



Logical Relations as Types

The interpretation is usefully structured as another module system!

• Representation independence proofs are structures.

• Static/dynamic distinction carries over.

A new phase distinction arises:

• Syntax, #syn(A) ∼= bsyn → A.

• Semantics,  syn(A), its closed complement: #syn( syn(A)) ∼= 1.

Types in this larger setting exhibit both distinctions independently!



Logical Relations as Types

The interpretation is usefully structured as another module system!

• Representation independence proofs are structures.

• Static/dynamic distinction carries over.

A new phase distinction arises:

• Syntax, #syn(A) ∼= bsyn → A.

• Semantics,  syn(A), its closed complement: #syn( syn(A)) ∼= 1.

Types in this larger setting exhibit both distinctions independently!



Logical Relations as Types

The interpretation is usefully structured as another module system!

• Representation independence proofs are structures.

• Static/dynamic distinction carries over.

A new phase distinction arises:

• Syntax, #syn(A) ∼= bsyn → A.

• Semantics,  syn(A), its closed complement: #syn( syn(A)) ∼= 1.

Types in this larger setting exhibit both distinctions independently!



Logical Relations as Types

The interpretation is usefully structured as another module system!

• Representation independence proofs are structures.

• Static/dynamic distinction carries over.

A new phase distinction arises:

• Syntax, #syn(A) ∼= bsyn → A.

• Semantics,  syn(A), its closed complement: #syn( syn(A)) ∼= 1.

Types in this larger setting exhibit both distinctions independently!



Intepretation of Types

Types are interpreted a la Reynolds:

||Ty || ∼=
∑

τ :TypeEl(τ)→ Prop syn∨st

That is,

• A syntactic type, τ , and

• A semantic and dynamic proof-irrelevant predicate on its elements.

The elements of a type are those that satisfy the type’s interpretation:

||El ||(A,A∗) = {M : El(A) | A∗(M) }



Intepretation of Types

Types are interpreted a la Reynolds:

||Ty || ∼=
∑

τ :TypeEl(τ)→ Prop syn∨st

That is,

• A syntactic type, τ , and

• A semantic and dynamic proof-irrelevant predicate on its elements.

The elements of a type are those that satisfy the type’s interpretation:

||El ||(A,A∗) = {M : El(A) | A∗(M) }



Intepretation of Types

Types are interpreted a la Reynolds:

||Ty || ∼=
∑

τ :TypeEl(τ)→ Prop syn∨st

That is,

• A syntactic type, τ , and

• A semantic and dynamic proof-irrelevant predicate on its elements.

The elements of a type are those that satisfy the type’s interpretation:

||El ||(A,A∗) = {M : El(A) | A∗(M) }



Intepretation of Types

Types are interpreted a la Reynolds:

||Ty || ∼=
∑

τ :TypeEl(τ)→ Prop syn∨st

That is,

• A syntactic type, τ , and

• A semantic and dynamic proof-irrelevant predicate on its elements.

The elements of a type are those that satisfy the type’s interpretation:

||El ||(A,A∗) = {M : El(A) | A∗(M) }



Interpretation of Types

Booleans (observables) are interpreted discretely:

||Bool || = 〈bool , λb : El(bool). syn∨st(b ≡ true ∨ b ≡ false)〉

Boolean constants validate the requirement:

||true|| = 〈true, η syn∨st(inl(?))〉
||false|| = 〈false, η syn∨st(inr(?))〉



Interpretation of Signatures

Signatures are interpreted as proof-relevant semantic families:

||Sig || =
∑

σ:SigVal(σ)→ U syn

Access to their elements requires proof:

||Val || = λ〈σ, σ∗〉 ∈ ||Sig ||.
∑

m:Val(σ)σ
∗(m)

Types as signatures are interpreted as proof-irrelevant predicates:

||Type : Sig || = 〈Type, λτ : Val(Type).El(τ)→ Prop syn∨st
.



The Bigger Picture

All this is part of Sterling’s program of Synthetic Tait Computability.

• Proof-relevant logical relations.

• Sheaf-theoretic formulation in terms of glueing.

• Elegant proof of normalization for Cartesian cubical type theory.

See his forthcoming dissertation expected later this year!



The Bigger Picture

All this is part of Sterling’s program of Synthetic Tait Computability.

• Proof-relevant logical relations.

• Sheaf-theoretic formulation in terms of glueing.

• Elegant proof of normalization for Cartesian cubical type theory.

See his forthcoming dissertation expected later this year!



The Bigger Picture

All this is part of Sterling’s program of Synthetic Tait Computability.

• Proof-relevant logical relations.

• Sheaf-theoretic formulation in terms of glueing.

• Elegant proof of normalization for Cartesian cubical type theory.

See his forthcoming dissertation expected later this year!



The Bigger Picture

All this is part of Sterling’s program of Synthetic Tait Computability.

• Proof-relevant logical relations.

• Sheaf-theoretic formulation in terms of glueing.

• Elegant proof of normalization for Cartesian cubical type theory.

See his forthcoming dissertation expected later this year!



Thank You!

Questions?



Correspondence Structure

A simulation over Q01 = [bsyn/l ↪→ Q0,bsyn/r ↪→ Q1] consists of the following data:

t : {Val(type) | bsyn ↪→ Q01.t}
emp : {Val(〈|t|〉) | bsyn ↪→ Q01.emp}
ins : {Val(〈|bool ∗ t ⇀ t|〉) | bsyn ↪→ Q01.ins}
rem : {Val(〈|t ⇀ bool ∗ t|〉) | bsyn ↪→ Q01.rem}

invariant : {U α
 st
| bsyn ↪→  st#synVal(Q01.t)}

invariant ∼=
∑

q:#synVal(〈|Q01.t|〉) syn({~x , ~y , ~z :  st(bits) | ~x = (~y + rev(~z)) ∧ . . . })

. . . = q = [bsyn/l ↪→ d~xe | bsyn/r ↪→ (d~ye, d~ze)]


