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Church and Turing

In 1929-1932 Church developed the λ-calculus as a
formal system for mathematical logic.

In 1935 he argued that any function on the natural
numbers that can be effectively computed, can be
computed with his calculus.

In 1935, independently, Turing developed what is now
called the Turing Machine.

In 1936 he too argued that any function on the natural
numbers can be computed with his machine.
He also showed the two models are equivalent.

The equivalence was a powerful indication of the “universality” of
the models, and lead to what is now called the: “Church-Turing
Thesis” (or “Church’s law”)
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Church-Turing
Thesis

(λx .e1)e2 ⇒β e1[e2/x ]

=
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The “Church-Turing Thesis” is by itself is one of the most
important ideas on computer science,
but the impact of Church and Turing’s models goes far beyond
the thesis itself.

Oddly, however, the impact of each has been in almost completely
separate communities.

Turing Machine ⇔ Algorithms and Complexity
λ-Calculus ⇔ Programming Languages

The impact and separation is not accidental.
“Two sources of beauty in programs: Efficiency and Structure”
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Turing Machine ⇔ Algorithms and Complexity

Well suited for measuring resources (efficiency).

Ideas or fields developed from the Turing machine:

Axiomatic complexity theory

P vs. NP, polynomial hierarchy, P-space, ...

RAM model and asymptotic analysis of algorithms

Cryptography (based on hardness of computation)

Learning theory (learning power of Turing machines)

Algorithmic game theory

Hardness of approximation
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λ-Calculus ⇔ Programming Language Theory

Well suited for composition and abstraction (structure).

Ideas or fields developed from the λ-calculus:

Call-by-value, lexical scoping, recursion

lambda, higher-order-functions (just now in C++ and Java)

denotational semantics

type theory (the theory of abstraction)

implicit-memory management

polymorphism

proof-checkers: LCF, NuPRL, Coq, Isabelle

Languages: Lisp, FP, ML, Haskell, Scala (Java, Python, C++)
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The single most important change in Java 8 [Lambda Expressions]
enables faster, clearer coding and opens the door to functional
programming [Dr. Dobbs 2014]

Books on Amazon from past 10 years, with λ-calculus in title:
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Opportunities

Complexity and Algorithms
Turing Machine

Lambda Calculus
Programming Languages

80 Years

Cost Models*
Verification

Higher-order functions
Probabilistic Algorithms

50 Years

Opportunities

Education*

1935 2015 2065
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Problem with Cost Models

Has worked in the past for algorithm design because you can
program an algorithm and then“compile” to the RAM in your
head.

But: With new features programming languages are diverging
from the machine-based cost models.

parallelism, laziness, higher-order-functions, exceptions,
memory management, built in aggregate types, ...

Claim: Analyzing costs directly on the RAM or any
machine-models will fail in the long run. Wrong level of
abstraction.
What is the option?
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The λ-Calculus

Syntax: e = x | λx .e | e(e)

Computation: repeat single rule called β-reduction:

λx .[...x ...x ...](e2)⇒ [...e2...e2...]

Finished: when no expressions of the form e(e)

Example: λx .x(x) (λx .x(x))⇒ λx .x(x) (λx .x(x))

What about: recursion, conditionals, booleans, lists, trees, ...

Simple and efficient encondings.
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Example of “Sugared” λ-Calculus

mergeSort(A) =
if (|A| ≤ 1) then A
else let (L,R) = split(A)

in merge(mergeSort(L), mergeSort(R)) end

But what is the cost? Sequential and Parallel.
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The λ-calculus does not define in which order to reduce.

Problem: does not make a good cost model because number of
steps depends on the reduction order. And some orders are not
efficient to evaluate (a single reduction could be expensive).

Virtue: it is inherently parallel. Church invented a parallel model!!!

Key Idea:

1 Fix an order that is parallel, and cheap to evaluate.

2 Base a cost model on it.

3 Bound the cost when mapped to standard models.
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Accounting for costs

Once we have an order, then we can:

1 count number of reductions (work)

2 count number of parallel steps (depth or span)

Bounded implementation

If w work and d depth in λ-calculus, then O(w logw) time on
RAM, and O((w logw)/p + d) time¡ on PRAM with p processors.

Example:

mergeSort(A) =
if (|A| ≤ 1) then A
else let (L,R) = split(A)

in merge(mergeSort(L), mergeSort(R)) end

Does O(n log n) work and has O(log2 n) span.
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Education

Based on this approach we (and others) developed two new
introductory undergraduate classes:

15-150: Functional Programming
15-210: Parallel and Sequential Data Structures and Algorithms

Over 300 students/year each.

Teach parallelism from the start.

Costs are calculated in terms of work and span.

Algorithms are purely functional.
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Conclusions

Next 50 years need to integrate Complexity/Algorithms and
Programming Language Theory.

Cost models based on languages, not machines. Particularly
needed for parallelism.

Other opportunities: Verification, type-theory and complexity,
probabilistic programming, programs-as-data, cryptography
and PL, game-theory and PL.
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