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• Efficiency: code as instructions for a computer.

This has given rise to two theories of computation.

• Logical: compositionality (human effort).

• Combinatorial: efficiency (machine effort).

Oddly, these are largely disparate communities.
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“On the fact that the Atlantic Ocean has two sides.” [EWD]

• American theory ≈ combinatorial theory.

• Euro-theory ≈ semantics and logic.

Both have had a big influence on practice:

• Efficient algorithms for a broad range of problems.

• Language design and verification tools.

Yet these two “theories” operate largely in isolation.



American Theory

Algorithm analysis is based on machine models:

• Turing machine (TM) or Random Access Machine (RAM).

• Low-level: no abstraction, no composition.

• Allegedly, close to the hardware.

Machine models provide natural complexity measures:

• Time = number of instructions.

• Space = tape or memory usage.

Asymptotics smoothes over differences among models.



Euro Theory

Euro theory is based on language models:

• Church’s (typed and untyped) λ-calculus.

• High-level: abstraction, composition are fundamental.

• Platform-independent.

Language models support composition via variables:

• If φ true ⊢ ψ true, then if φ true, then ψ true.

• If x : σ ⊢ N : τ , then if M : σ, then [M/x ]N : τ .

The λ-calculus is an elegant theory of composition.



Thesis

Traditional imperative methods of programming are obsolete.

• Tedious to program, a nightmare to maintain.

• Largely incompatible with parallelism.

Functional methods are destined to dominate.

• Support verification and composition.

• Naturally accommodate parallelism.

The way forward is to synthesize Euro- and American theory.



Cost Semantics

To elevate the level of discourse we require a cost semantics.

• Define the abstract cost of execution of a language.

• Defines the parallel and sequential complexity.

Algorithm analysis is conducted at the level of the code we write.

• Cost semantics assigns a measure to each execution.

• Analyze asymptotic complexity in terms of this measure.



Cost Semantics

The abstract cost is validated by a bounded implementation.

• Transform abstract cost into concrete cost on a machine.

• Account for platform characteristics such as number of
processors, cache hierarchy, and interconnect.

An end-to-end asymptotics with a clear separation of concerns.

• High-level, composable development and reasoning.

• Low-level implementation on hardware platforms.
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• Dynamic, fully accurate record of data dependencies.
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Cost Semantics for Time

Associate a cost graph to the evaluation of a program.

• Dynamic, fully accurate record of data dependencies.

• Not a static analysis or an approximation.

Example: function application.

e1 ⇓
g1 λx .e e2 ⇓

g2 v2 [v2/x ]e ⇓g v

e1(e2) ⇓
(g1⊗g2)⊕1⊕g v
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Cost Graphs

Series-parallel cost graphs:

• 1: one unit of computation.

• g1 ⊕ g2: g2 depends on result of g1.

• g1 ⊗ g2: g1 and g2 are independent.

Application cost (g1 ⊗ g2)⊕ 1⊕ g specifies that

• Function and argument are evaluated in parallel.

• Function call costs one unit.

• Function execution depends on the function and argument.



Cost Graphs

11

10

5 8 9

743

62

1



Work and Span

The work w(g) of a cost graph g is the size of g .

• w(1) = 1, w(g1 ⊗ g2) = w(g1 ⊕ g2) = w(g1) + w(g2).

• Measures the sequential time complexity.

The span d(g) of a cost graph g is the critical path length of g .

• d(1) = 1, d(g1 ⊗ g2) = max(d(g1), d(g2)),
d(g1 ⊕ g2) = d(g1) + d(g2).

• Measures the parallel time complexity.



Mergesort

fun merge xs ys =

case (xs, ys) of

([], ys) ⇒ ys

| (xs,[]) ⇒ xs

| (x::xs’, y::ys’) ⇒

case x<y of

true ⇒ x :: merge xs’ ys

| false ⇒ y :: merge xs ys’

fun sort [] = []

| sort [x] = [x]

| sort xs =

let val (ys, zs) = split xs

in merge (sort ys, sort zs) end



Mergesort

The work (sequential time) is optimal, O(n log n) for n items.

The span (parallel time) is sensitive to the data structure:

• For lists, O(n), because splitting is slow.

• For trees, O(log3 n), using rebalancing.



Bounded Implementation for Time

Brent’s Principle: A computation with work w and span d can be
implemented on a p-processor PRAM in time O(max(w/p, d)).

• Work in chunks of p as much as possible.

• Number of processors is chosen at run-time.

• Proof is constructive: exhibits a scheduler.

No need for pseudo-code!



IO Efficiency

Aggarwal and Vitter introduced the IO Model:

• Distinguish primary from secondary memory.

• Cache size M = k × B words.

• Evaluate algorithm efficiency in terms of M and B .

Main result: k-way merge sort is optimal for the IO model:

O(n/B logM/B(n/B))



IO Efficiency

A&V’s results can be matched in a purely functional model.

• No manual memory management.

• Natural functional programming.

Key idea: temporal locality implies spatial locality.

• Allocation order determines proximity.

• Reloading of migrated objects preserves proximity.

• Control stack specially managed to avoid cache contention.
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Cost Semantics for IO

Cost semantics makes storage explicit:

σ @ e ⇓n σ′ @ v

Store σ has three components:

• Unbounded main memory with blocks of size B .

• Read cache of size M = k × B .

• Linearly ordered allocation cache of size M.

Figure of merit: traffic between main memory and cache expressed
in terms of M and B .
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Bounded Implementation for IO

Thm (Blelloch & H) An evaluation of cost n may be implemented
on a stack machine with cache of size 4×M + B with cache
complexity k × n for some small constant k .

• Sleator, et al.: LRU eviction policy is 2-competitive with ICM.

• Appel: cost of copying GC is asymptotically free.

• B&H: Stack management induces small constant overhead.
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fun merge nil ys = ys

| merge xs nil = xs

| merge (xs as x::xs’) (ys as y::ys’) =

case compare x y of

LESS ⇒ !a::merge xs’ ys

| GTEQ ⇒ !b::merge xs ys’



Merge, Revisited

A data structure is compact iff it may be traversed in time O(n/B).

Thm: For compact inputs xs and ys the call merge xs ys has
cache complexity O(n/B).

• Recurs down lists allocating only stack n frames: O(n/B).

• Returns allocating n list cells: O(n/B).

Copying operations !a and !b ensure compactness (locality).
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Summary

Cost semantics supports analysis of complexity of high-level code.

• No need for “pseudo-code”.

• Avoid reasoning about compilation.

Costs can be chosen to reflect different notions of complexity:

• Sequential and parallel time [B & Greiner 96].

• Space usage of scheduling [Spoonhower, B, Gibbons, & H 09].

• Memory hierarchy effects [B& H 13, 15].


