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Abstract

In this dissertation I study the properties of singleton kinds and singleton types.

These are extremely precise classi�ers for types and values, respectively: the kind of all

types equal to [a given type], and the type of all values equal to [a given value]. Single-

tons are interesting because they provide a very general and modular form of de�nition,

allow �ne-grained control of type computations, and allow many equational constraints

to be expressed within the type system. This is useful, for example, when modeling

the type sharing and type de�nition constraints appearing in module signatures in the

Standard ML language; singletons are used for this purpose in the TILT compiler for

Standard ML.

However, the decidability of typechecking in the presence of singletons is not obvious.

In order to typecheck a term, one must be able to determine whether two type construc-

tors are provably equivalent. But in the presence of singleton kinds, the equivalence of

type constructors depends both on the typing context in which they are compared and

on the kind at which they are compared.

In this dissertation I present MIL0, a lambda calculus with singletons that is based

upon the representation used by the TILT compiler. I prove important properties

of this language, including type soundness and decidability of typechecking. The main

technical result is decidability of equivalence for well-formed type constructors. Inspired

by Coquand's result for type theory, I prove decidability of constructor equivalence for

MIL0 by exhibiting a novel | though slightly ineÆcient | type-directed comparison

algorithm. The correctness of this algorithm is proved using an interesting variant of

Kripke-style logical relations: unary relations are indexed by a single possible world

(in our case, a typing context), but binary relations are indexed by two worlds. Using

this result I can then show the correctness of a natural, practical algorithm used by the

TILT compiler.
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Chapter 1

Introduction

1.1 De�nitions and Constraints in Interfaces

Many programming languages allow some form of de�nitions to appear in program unit interfaces.

In the C language, for example, header �les frequently contain de�nitions of type abbreviations.

For example,

typedef struct f
int x;

int y;

g point t;

de�nes the type name point t to stand for the type of a record containing two integers named x

and y respectively. Such type de�nitions in C are e�ectively macros; the main advantage of using

typedef rather than the C preprocessor's #define is that the the tortuous syntax of C variable dec-

larations (particularly for function pointers) makes simple textual substitution insuÆcient [KR88].

The Standard ML language [MTHM97] also permits type de�nitions to appear in module in-

terfaces. The speci�cation

structure S : sig

type point t = fx : int, y : intg
end

says that S is a module containing just one element: a type named point t. The interface further

speci�es that this type S.point t is again the type of a record with two integer components named

x and y. Type abbreviations in SML are qualitatively di�erent from typedef, however. This SML

code is a true speci�cation, and as such must be a speci�cation of something ; if code is compiled

in the presence of this interface then at some later point (e.g., link time) a module satisfying this

speci�cation must be supplied. Furthermore, the de�nition in this signature acts as a form of

constraint: any module satisfying this speci�cation must contain a type point t with an equal

de�nition. Supplying a di�erent type leads to a static error, and this is not the behavior of a simple

type macro.

The type-theoretic approach to studying programming languages has proved extremely fruitful.

By isolating primitive concepts (organized around types), languages can be understood and com-

pared more easily. Such an atomistic approach can lead to the improved design and implementation

of programming languages.
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Thus the question arises: what primitive language concept corresponds to type de�nitions

in module interfaces? Several studies have e�ectively taken the entire SML system of modules

and interfaces as primitive [HL94, Ler94, Ler95]. However, this is a rather heavyweight notion. In

considering a formal calculus with such modules, either the modules are ordinary values and module

interfaces just a form of type, or else these are held separate from the rest of the language. In the

former case typechecking becomes undecidable [HL94, Lil97]. In the latter case there is a certain

redundancy resulting from having structures (collections of types and values) and parameterized

modules (functions from modules to modules) separate from ordinary records of values and ordinary

functions.

An alternative approach is to focus on the type speci�cation itself, adding to the primitive

speci�cations such as \a type" or \a parameterized type of one argument" speci�cations of the

form \a type equal to [some given type]". This leads to the notion of singleton kinds. If types or

kinds (kinds are the types of types) intuitively correspond to sets, then singleton kinds are sets

containing one element; membership in such a set is therefore a very strong statement. Analogously,

one can form singleton types, expressing membership in the \collection of values equal to [some given

value]".

The goal of this dissertation is to study the addition of singleton types and kinds to a well-

understood type system, with particular emphasis on the important properties of type soundness

and decidability of typechecking.

The remainder of this chapter explains more carefully the concepts of singleton types and kinds,

and shows several examples besides type de�nitions where singleton kinds and types appear useful

in theory and practice. I conclude with a high-level overview of the dissertation.

1.2 The TIL and TILT Compilers

1.2.1 TIL

TIL [TMC+96, Tar96, Mor95] was a prototype compiler for the core subset of the Standard ML

language [MTHM97]. It was structured as a series of translations between explicitly-typed inter-

mediate languages, and indeed the very name TIL refers to the Typed Intermediate Languages

used by the compiler. Each pass of the compiler (e.g., common subexpression elimination or clo-

sure conversion) transformed both the program and its type while preserving well-typedness. This

framework has several advantages:

� A wide variety of common compiler implementation errors can be detected during compila-

tion by running a typechecker on the compiler's program representation after each transfor-

mation. The location of the type error yields very precise information about which compiler

phase introduced the error and which part of the input program triggered the bug. Al-

though the fact that the compiler preserves well-typedness in no way guarantees that it is

also meaning-preserving, a very large class of compiler bugs exhibit themselves by creating

type errors [Nec98].

� By maintaining full typing information, the compiler is able to support type-based optimiza-

tions and eÆcient data representations; TIL used a type-passing interpretation of polymor-

phism in which types were passed and analyzed at run-time [HL94, Mor95].

� Typing information can be used to annotate binaries with an easily veri�able certi�cate

(proof) of safety, the absence of certain run-time errors [MWCG97, Nec97].
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The results from TIL | in particular the quality of the generated code | were very encourag-

ing [TMC+96]. However, the implementation was ineÆcient and could only compile small, complete

programs written without use of modules; very few interesting programs meet these criteria. To

further test the ideas behind TIL, the members of the CMU Fox Project decided to completely

re-engineer the compiler to produce TILT (TIL Two). The aim was to produce a more practical

compiler based on typed intermediate languages which could handle separate compilation, the com-

plete SML language, and large inputs. The biggest research challenge in scaling up the compiler to

the full language was adding support for modules.

1.2.2 Standard ML Modules

Modules in SML are \second-class" entities | there are no conditional module expressions, nor

may modules be assigned to mutable variables or be passed to or returned from ordinary functions.

The basic form of an SML module is a structure, which is a package of types, values, and sub-

modules. Structure signatures, the interfaces of structures, consist of a corresponding collection of

type, value, and module speci�cations. Value speci�cations give the type of a value component, and

module speci�cations give the signature of a module component. Type speci�cations may either be

opaque (specifying only the kind of the component) or transparent (exposing the type's de�nition).

For example, consider the following structure speci�cation:

structure Set : sig

type item = int

type set

type setpair = set * set

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set

end

This states that Set has three type components: the type Set.item known to be equal to int, the

type Set.set about which nothing is known, and the type Set.setpair which is the type of pairs

of Set.set's. Set also contains �ve value components; from the names, presumably Set.empty

will be a representation of the empty set, set.union computes the union of a pair of sets, and so

on.

There are two important points to note about this example. First, equivalences such as the one

between Set.item and int are open-scope de�nitions available to \the rest of the program", which

may not be written yet when this module is compiled. Such de�nitions cannot be eliminated by a

simple local substitution and forgotten. Second, in a type-passing implementation like TILT types

are computed and stored by the run-time code. Although it is possible to get rid of type de�nitions

in signatures by replacing all references to these components with their de�nitions [Sha98] this is

not necessarily a good idea in a type-passing implementation; such substitutions could substantially

increase the number of type computations performed at run-time.

An alternative method of expressing information about type components in signatures is by type

sharing speci�cations; these specify that two particular type components have the same de�nition.

Figure 1.1 (adapted from [MT91, p. 65]) shows two equivalent de�nitions for the signature for

the front end of a compiler. The �rst de�nition states that the front end has two sub-structures: a

11



signature FRONTEND =

sig

structure Lexer : sig

type token

val lex : string -> token list

end

structure Parser : sig

type token

type ast

val parse : token list -> ast

end

sharing type Lexer.token = Parser.token

end

signature FRONTEND =

sig

structure Lexer : sig

type token

val lex : string -> token list

end

structure Parser : sig

type token = Lexer.token

type ast

val parse : token list -> ast

end

end

Figure 1.1: Constraints via Type Sharing or Type De�nitions

lexer implementation (which takes a string of characters and splits it up into a list of tokens, which

presumably would be things like identi�ers or language keywords) and a parser implementation

(which takes a list of tokens and translates these into an abstract syntax tree, making the program

structure apparent). The Lexer and Parser sub-structures each have their own notion of tokens;

only the �nal line of this signature speci�es that these two notions are compatible. As a consequence,

it is allowable to compose the two functions Lexer.lex and Parser.parse together.

Such sharing type constraints do not add expressiveness to the language because they can

always be viewed as syntactic sugar for the de�nitions of type components [HS00]. The second

de�nition in Figure 1.1 de�nes an equal signature using a type de�nition.

Modules may be given less-speci�c signatures using subsumption | the signature of a module

may be weakened to a \larger" signature in the sub-signature ordering. The important part of this

ordering is that omitting constraints on types makes structure sharing less precise1. For example,

a structure satisfying the signature

1In SML, the subsignature relation also lets structure components be forgotten or reordered; this coercion is

de�nable and hence does not add essential expressiveness [HS00].
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structure Set : sig

type item = int

type set = int list

type setpair = (int list) * (int list)

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set

end

(which exposes the implementation of sets as lists of integers) would also satisfy the previous

speci�cation, while an implementation satisfying either of these speci�cations would further satisfy

the less-demanding speci�cation

structure Set : sig

type item

type set

type setpair

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set

end.

The Standard ML module system also permits formation of parameterized modules called func-

tors; functors are simply a form of function mapping modules to modules. In the oÆcial SML

module system there is no way to express the interface of a functor; such an interface would

specify the signature of the result in terms of the functor argument. However certain compilers

like SML/NJ [MT94, CM94] extend the SML language with higher-order functors and functor

signatures. The sub-signature relation is then extended to functor signatures in the usual way:

contravariantly in the domain and covariantly in the codomain. In any case, an SML compiler

must have an internal notion of functor signature in order to do typechecking in the presence of

functor applications.

1.2.3 Phase-Splitting in TILT

The primary intermediate language of the TIL compiler was based on F!, the higher-order poly-

morphic lambda calculus [Gir72]. One goal of the TILT redesign was to minimize changes to

the internal languages, in the hope that this would minimize the work needed to port the TIL

optimization and code generation phases.

F! contains the type and kind structures alluded to above, but no module system. However,

modules and signatures can still be faithfully represented using ideas of Harper, Mitchell, and

Moggi [HMM90, Sha98]. Their key insight was that every module can be uniformly transformed

away via a process called phase-splitting into two pieces: a type part and a value part. For example
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structures, which are aggregates of both types and values, become two collections: one of types and

one of values. The more interesting observation is that that functors can be split in the same way.

Functors map types and values in one structure to types and values in another structure. However,

types in the result can only depend on types (not values!) in the argument. This means that

a functors can be split into its behavior on types (which can be expressed as a function mapping

records of types to records of types) and its behavior on values (expressed as a polymorphic function

in F!).

Signatures then split in a parallel fashion. Structure signatures, for example, split into a kind

describing collection of types and a type describing a collection of values. For example, the structure

struct

type t = int

val n = 3

val succ = fn (n:int) => n+1

end

splits into two parts: a collection of types (in this case, a one-element collection)

ft = intg

and a collection of two values

fn = 3, succ = fn (n:int) => n+1g.

The signature

sig

type t

val n : int

val succ : int -> int

end

correspondingly splits into two parts: the kind of a single-element collection of types

ft :: TYPEg

and the type of a collection of two values

fn : int, succ : int -> intg.

F! suÆces for these and many other examples. However, a diÆculty arises in the speci�cation

for sets:

structure Set : sig

type item = int

type set

type setpair = set * set

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set

end
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This should split into a speci�cation for a collection Set types of three types and a collection

Set values of �ve values, but what kind should Set types have? It is clear translating the above

SML code into the speci�cations

Set types :: fitem :: TYPE, set :: TYPE, setpair :: TYPEg
Set values : fempty : Set types.set, ...g

(where I have elided the types for the remaining components of Set values) loses important in-

formation about the de�nitions of item and setpair. If Set types.item is no longer recorded as

equal to int, then code may suddenly fail to typecheck.

One possibility is to substitute away all such type de�nitions. Because of the subsignature rela-

tion this is not so trivial an operation as it might appear, but there is no essential diÆculty [Sha98].

However, in the TILT compiler types correspond to run-time values, and the e�ect of such a sub-

stitution is to duplicate run-time computations. Our goal was to avoid such duplication.

1.3 Dependent and Singleton Kinds

The choice made in TILT was to extend the kind structure with dependent and singleton kinds.

The singleton kind S(A :: K) is the kind of \all type constructors of kind K which are equal to

A. That is, the de�ning property is that the type constructor A has kind S(B :: K) if and only if

A and B are equal type constructors of kind K. Since the type constructors form a small lambda

calculus, I consider equality of types to be based on the usual ��-equivalence of lambda terms2.

Note that in the presence of singletons assumptions about the kinds of type variables can a�ect the

provable equalities, and the equational theory of types a�ects what types can be shown to have

which kinds.

The kinds in TILT were further extended with dependencies. First, in kinds of collections of

types, the kind of each component may depend upon the contents of earlier components. With this

extension, it becomes easy to phase-split the Set speci�cation:

Set types :: fitem :: S(int :: TYPE), set :: TYPE, setpair :: S(set*set :: TYPE)g
Set values : fempty : Set types.set, ...g

Singleton kinds are used here to expose the de�nitions of item and setpair. Further, the de�nition

of setpair involves a dependency: its kind depends on the contents of the set component.

Similarly, in the kinds of functions mapping type constructors to type constructors, the kind of

the result is allowed to depend on the argument given to the function. This is used to express the

dependencies of types returned from a functor on the functor's argument.

The �nal extension in the TILT kind structure is a subkinding relation, a preorder K1 � K2

which holds when K1 is a more-precise (less general) kind than K2. This relationship is induced

by the relation S(A :: K) � K; that is, all \types of kind K equivalent to A" are also \types of

kind K". Subkinding is used to model the SML sub-signature relation.

1.4 Dependent and Singleton Types

The extensions to the kind level can be applied at the level of types as well. This leads to singleton

types of the form S(e : �), the type of \all values of type � equal to e", as well as dependent
2The simpler �-equivalence might suÆce in practice, but having both � and � leads to a more expressive and more

interesting language. It is also not clear that using this stronger equivalence relation would substantially simplify the

metatheoretic results I study in this thesis. (See the proofs for decidability of term equivalence.)
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sig

structure BinaryTree : sig

structure Key : sig

type t

val lesseq : t * t -> bool

end

type value

type tree

val insert : Key.t * value * tree -> tree

. . . other binary tree operations . . .

end

structure PriorityQueue : sig

structure Key : sig

type t

val lesseq : t * t -> bool

end

type value

type pqueue

val insert : Key.t * value * pqueue -> pqueue

. . . other priority queue operations . . .

end

sharing BinaryTree.Key = PriorityQueue.Key

end

Figure 1.2: Structure Sharing

function and record types, and subtyping

The designer of a system of singleton types must choose a reasonable notion of equality; in the

presence of side-e�ecting program terms this is not obvious. Ideally equality would be observable

equivalence: two expressions would be equal if and only if they are indistinguishable in any program

context. However, for any interesting term language this relation is not decidable. (For example,

checking contextual equivalence with a non-terminating expression in this language is equivalent to

the halting problem.) Because typechecking in the presence of singleton types requires determining

equivalence of terms, this would immediately lead to a system where there is no algorithm to check

the well-formedness of programs.

I choose to study a simple equivalence: a congruence based on projection rules for pairs, ex-

tended by singleton types. To avoid problems with side e�ects, I restrict singleton types to contain

only values, and I extend the congruence with the principle that a value v1 has type S(v2 : �) if

and only if v1 and v2 are equivalent and of type � . (In the presence of recursion there is a non-

terminating expression of type � for any well-formed � . Hence there is a non-terminating expression

e of type S(3 : int). But since 3 and e are clearly not observably equivalent, they should not be

provably equal; hence the restriction to values.)

What use are such singletons? Consider the SML code in Figure 1.2. The interface shown here
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sig

structure T : sig

val n : int

end

structure U : sig

val m : int

end

sharing T = U

end

Figure 1.3: Pointless Structure Sharing

speci�es two sub-modules BinaryTree and PriorityQueue that implement abstract data types

for binary trees and priority queues respectively. Each sub-module has its own notion of how

keys are represented (the type Key.t) and ordered (the relation Key.lesseq). In current versions

of Standard ML, sharing constraints are simply an abbreviation for sharing type constraints

between the opaque type components common to both structures. Since there is only one such

component, the constraint is exactly equal to the constraint

sharing type BinaryTree.Key.t = PriorityQueue.Key.t .

This then allows the same key value to be used in a binary tree and in a priority queue. (Note

however, that the values stored in binary trees and the values stored in priority queues need not

be of the same type; there is no constraint requiring BinaryTree.value to be the same type

as PriorityQueue.value.) This constraint can be modeled as before with singleton kinds by

specifying

PriorityQueue.Key.t :: S(BinaryTree.Key.t :: TYPE).

In the original 1990 de�nition of Standard ML [MTH90], however, the sharing constraint in

Figure 1.2 actually requires the structures BinaryTree.Key and PriorityQueue.Key be the same

structure. As a consequence, not only must the representation type for keys be equal, but the two

lesseq orderings will be equal. In SML '90 then, whether a given module satis�es this interface or

not (a question of typechecking) depends on the values of the Key substructures.

To model the spirit of this sharing constraint, I can use singleton types. Let t stand for the type

PriorityQueue.Key.t. Then I can model the constraint by using singleton kinds as previously

mentioned and further requiring

BinaryTree.Key.lesseq : S(PriorityQueue.Key.lesseq : t � t -> bool).

This does not require that the two Key structures be exactly the same structure, but does require

that corresponding components of the two structures are equal. Because one cannot do assignment

directly to components of a structure, however, there is no run-time behavior that can distin-

guish two componentwise-equal structures; this leads to a more permissive type system while not

permitting any changes in run-time behavior.

Not all instances of SML '90 structure sharing can be modeled with singleton types. For

example, the signature in Figure 1.3 requires that the T and U substructures be di�erent views of

the same underlying structure. It makes no sense to model this with a dependent record type such

as
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fT : fn : intg, U : S(T : fm : intg)g

because this would be ill-formed; T does not have type fm : intg. However, since the sharing con-
straint in Figure 1.3 does not actually place any restriction on the values of the n and m components,

the practical utility of such a speci�cation seems extremely minimal.

1.5 Other Uses for Singletons

1.5.1 Closed-Scope De�nitions

In many �-calculi \let-bindings" or \closed-scope de�nitions" are treated as syntactic sugar. For

example,

let x:int = 3 in (x+1)

would be encoded as the function application

(�x:int: x+1)(3).

However, this sort of transformation is not always legal. In F!, for example, one cannot generally

equate

let t::TYPE = int*int in e

where e is some expression with

(�t::TYPE: e)(int*int)

because in the former case we know that t = int*int while typechecking e, while in the latter case

e must be typecheckable knowing only that t is some type.

The alternative de�nition

[int*int=t]e

(that is, the result of replacing t with int*int everywhere in e) will preserve meaning and well-

typedness, but involves arbitrary duplication of types.

Some authors have therefore considered let-bindings (and generally, the notion of variables-with-

de�nitions) appears as a primitive. For example, the pure type system of Severi and Poll [SP94]

adds a new let-binding primitive written x=a:A in b, and the de�nitions of variables are maintained

during typechecking.

In a language with singleton kinds, however, let-bindings of types become de�nable via functions:

let t::TYPE = int*int in e

becomes

(�t::S(int*int :: TYPE): e)(int*int).

This time the typechecker knows while typechecking e that t = int*int because this is apparent

from the kind of t.

1.5.2 TILT Program Transformations

The encoding of let in the previous section is primarily a theoretic curiosity. However, similar

transformations do come up in practice; there are several places in the TILT compiler where it

could be bene�cial to take types computed within a function body and turn these into new type

arguments to be passed into the function at run-time. This comes up in loop invariant removal, in

uncurrying, and in closure conversion [MMH96]. An example will make this clearer; consider the

following code, written in an approximation of the compiler's internal representation:
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let

function F(�::TYPE, y:�) = G(���, (y,y))

in

... F(int, 3) ... F(int, 4) ... F(int, 5) ...

end

This code presupposes a polymorphic function G taking a type and an argument of this type. The

polymorphic function F also takes a type � and a value y of this type; it creates the pair (y,y)

and its type ���, and then passes these to G. Elsewhere in the code, F is called several times.

Now on each call, F constructs the type ��� in order to be passed this G. In a type-passing

implementation like TILT, this corresponds to actual instructions executed at run-time. Since F is

repeatedly being given the same type argument int, it would be preferable to compute int�int
just once; this could be performed by having the caller pass int�int as a new function argument.

Such a transformation leads to the following code:

let

function F(�::TYPE, �::TYPE, y:�) = G(�, (y,y))

type t = int�int
in

... F(int, t, 3) ... F(int, t, 4) ... F(int, t, 5) ...

end

Operationally, this new code is correct. Unfortunately, it no longer typechecks; in a standard

typed lambda calculus there is no way to perform this particular transformation while preserving

well-typedness.

The problem with the above code is that according to the speci�cation of the arguments, F

could be called with any two types. Therefore, there is no reason why the pair (x,x) should have

type �. The intent is that every call to F should pass a type � and the type ���, but if this is not
a constraint being checked by the type system it is unsafe to assume this will always be true.

The TILT compiler is based on the principle of type-preserving transformations; we forbid

transformations leading to ill-typed programs. What is needed is a way to constrain the new

type variable so that the compiler knows it will be given the type ���. Equally importantly, the

compiler should be able to check that every application of F obeys this constraint.

Singleton kinds provide exactly the mechanism required to transform type expressions into

function arguments while preserving well-typedness. The code becomes

let

function F(�::TYPE, �::S(��� :: TYPE), y:�) = G(�, (y,y))

type t = int�int
in

... F(int, t, 3) ... F(int, t, 4) ... F(int, t, 5) ...

end

This typechecks because we have introduced the appropriate constraint into the type system; the

body of the function F will typecheck if we can show that the type constructor � is equivalent to the

type of (y; y), namely ���. But �::S(��� :: TYPE) implies that � � ��� :: TYPE, as required.

Note that an apparently simpler solution to this problem would be to compile F in curried

fashion:
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let

function F(�::TYPE) =

let

type � = ���
function F'(x:�) = G(�, (y,y))

in

F'

end

Fint = F(int)

in

... Fint(3) ... Fint(4) ... Fint(5) ...

end

Here F now just takes a single argument, a type �. It computes ��� and returns a function which

expects an argument x of type �. The caller can apply F to int once (computing int�int once)

and then apply the resulting function repeatedly. This does typecheck without singletons, and

might seem to solve the problem. However, this transformation introduces higher-order functions,

which are implemented via a transformation called closure conversion. The closure-conversion

transformation involves taking every function and turning its free variables into arguments; in

particular, � will become an argument of the function F', and we have exactly the same typechecking

problem as we started out with [MMH96].

1.5.3 Cross-Module Inlining

While language features such as abstraction, modularity, polymorphism and higher-order functions

have important software engineering bene�ts, they often impose a run-time cost. Using abstract

types or polymorphism can mean that data layouts are not known until run-time. Uses of modu-

larity and higher-order functions can substantially increase the number of function calls, which can

be particularly costly on modern processors.

If pieces of a program are compiled and optimized completely separately (\true" separate com-

pilation) it is hard to avoid the costs of abstraction. At the other end of the spectrum, a compiler

can do whole-program optimization and generate substantially better code. Unfortunately, the

analysis required is usually unusably slow for large inputs and requires source code for the entire

program (including libraries). However, in many cases it suÆces to do incremental compilation,

in which each �le is compiled after all of its imports. This allows the compiler to use information

gathered while compiling the imports in order to do a better job of compiling the current �le. The

compiler writer must then decide what information the compiler should collect and store and how

to represent it.

For separate compilation in a statically typed framework, a minimal requirement is that the

compiler must know the type of all external references. This leads to such mechanisms as header

�les in C, where the interface of a compilation unit gives the types of its exported components. This

also leaves open the possibility of checking that a compilation unit matches the claimed interface.

An elegant and systematic method of handling incremental compilation is to use the same

mechanism | where the interface of each unit contains typing information for all exports | but

to have the compiler generate the interface directly from the code. This combines cleanly with

separate compilation; the programmer can write interfaces for some pieces of the program and have

the compiler generate the remainder.

Of course the compiler can determine more information than just simple types when given the
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source code. A very important optimization for incremental compilation is cross-module inlining.

This transformation replaces references to imported values, types, and functions with their actual

implementations. In order to achieve this, the interface must express this information, namely

to include the implementations of abstract types, values of variables, de�nitions of functions, and

so on. Thus interfaces change from specifying that \x is an integer constant" to \x is an integer

constant equal to 3" and from \succ is a function mapping 
oats to 
oats" to \succ is equal

to the function which maps a 
oat f into f+1:0". In order to maintain the elegance of interfaces

containing only type information, this optimization requires a more expressive type system in which

such information can be expressed.

Inlining is the process of replacing a reference to a value with the value itself. In my system of

singleton types, if v : S(v0 : �) then the compiler may replace any use of v (in a context expecting

a value of type �) with v0. Singletons can be directly applied to traditional cross-module inlining.

Suppose we want to be able to take a de�nition such as the following (for the successor function

on integers)

succ = �x:int:x+1

and allow other modules to replace succ by this function (if it seems locally bene�cial). This can

be achieved by specializing the type of succ in the interface; instead of saying

succ : int*int

it can instead say

succ : S(�x:int:x+1 : int*int):

Conversely if the compiler sees that an import such as succ has a singleton type, it is justi�ed in

replacing this reference with the actual de�nition.

The restriction that well-formed singletons can contain only values suÆces for most inlining

purposes because the most important case is inlining of function de�nitions, and functions are

values. It is possible that a less conservative approximation might be useful so that we can inline,

for example, polymorphic instantiations and partial applications of curried functions. This should

be possible by replacing this restriction to values with a restriction to a set of \valuable terms",

terms whose evaluation is guaranteed to terminate without side-e�ects or reference to mutable

storage [HS00].

Values in singletons need not be closed, but they must be well-formed and hence cannot refer

to items not exported in the interface. In practice, this may require extending interfaces with extra

components.

Note that the approach to inlining using singletons is subtly di�erent from C++ inline func-

tions in header �les, or of the lambda-splitting of Blume and Appel [BA97]. There the functions

to be inlined are essentially de�nitions prepended to the program unit being compiled. Whenever

the compiler decides not to inline uses of these functions, it must compile a new local version of the

code to call. In contrast, singleton types and kinds used for inlining purposes are speci�cations of

an imported piece of code, which may be referred to if inlining does not appear useful. (Of course,

since the compiler has the de�nition it could also choose to create a local copy of the code to call,

as yet another alternative to inlining the function's code.)

A more interesting problem is the case where the compiler wants to inline an import which

may not have been written yet. This can only occur, of course, if the compiler has some reason to

believe it can correctly \predict" what the import's eventual implementation will be. An example

of this arises in TILT due to Standard ML datatypes.
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The datatype mechanism is one of the most successful features of Standard ML. Datatypes

combine notions of enumerations, tagged unions, and recursive types into a common framework. A

single datatype de�nition such as

datatype tree = Leaf of int | Node of tree*tree

automatically generates

� An abstract type tree.

� The functions Leaf of type int->tree and Node of type tree*tree -> tree for creating

new trees;

� Support for discrimination and decomposition for values of type tree via pattern-matching;

� A structural equality for trees.

This can be easily modeled as a structure containing one (abstract) type component and several

value components. Similarly, a datatype speci�cation signature would correspond to the signature

of the appropriate structure [HS00, HS97].

The disadvantage of this elegant encoding is eÆciency. Datatype constructors and pattern-

matching are used heavily in SML code; making every such use into a function call is unacceptably

ineÆcient. Similarly, although datatypes are oÆcially abstract and must be typechecked as such

in the source code, it is often possible to determine from a datatype's description the underlying

implementation type for this datatype3. Taking advantage of this knowledge would enable more

eÆcient code generation.

Blume [Blu97] suggests that this problem can be overcome by aggressive cross-module inlining.

As the functions corresponding to datatype constructors and pattern-matching are generally small

pieces of code, they will automatically be exported by the de�ning compilation unit and inlined into

client compilation units. This approach seems logical and should work quite well | but only where

it applies. A de�ciency is that it does not help when doing separate compilation or compiling SML

functors (parameterized modules) which take datatypes as arguments. In these cases no datatype

implementation has been speci�ed yet, so there is nothing to inline.

However, if the compiler can predict which types and code will be later supplied as the functor

argument, then we are justi�ed in inlining these types and code into the functor body and ignoring

the actual argument when it is later applied. There is no typechecking problem involved in this

transformation, but for correctness purposes it might be convenient to have a way of formalizing

this prediction and a way of checking that the prediction was correct. Singleton types and kinds

provide a natural way to record such a prediction: the functor's arguments can be annotated with

singleton types and kinds for the datatype components, and inlining can then proceed as discussed

above.

Note that because specializing the functor argument to require a particular datatype implemen-

tation gives the functor a strictly less-general type, functor applications which were previously valid

may no longer typecheck. This is actually an advantage because a typechecking failure occurs when

the predicted code does not match the actual implementation; since both parts are automatically

generated by the compiler, a typechecking failure here must mean that the compiler is in error.

There is nothing original about inlining datatypes, separately compiled or not. Any reason-

able ML compiler must do this for eÆciency. However, this often occurs in an ad-hoc fashion.

With singleton types and kinds a compiler can systematically maintain the datatypes-as-structures

encoding throughout the entire compiler, without any loss of eÆciency.

3In general this may require a non-trivial equational theory for recursive types, however [CHC+98].
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1.6 Dissertation Summary

In Chapter 2, I introduce the MIL0 calculus, a formalization of the key features of the TILT

intermediate representation. This language is an predicative variant of the familiar lambda-calculus

F!, extended with pairs, recursion, and singleton types and kinds. I show that the addition of

singletons leads to a calculus with very interesting equational properties; most notably, whether

two type constructors are provably equivalent depends strongly on both the typing context and on

the kind at which the type constructors are compared.

Chapter 3 contains proofs for many standard properties of the MIL0 calculus, such as preserva-

tion of well-typedness under substitutions and the admissibility of useful typing rules. In particular,

although the de�nition of MIL0 includes only a very restricted form of singleton kind, general sin-

gleton kinds are de�nable.

Chapter 4 gives algorithms for deciding the kind and constructor-level judgments (e.g., given

a well-formed context and a type constructor A, determine whether there is a kind K such that

A is well-formed with kind K). This includes an algorithm for constructor equivalence inspired by

Coquand's approach to ��-equivalence for a type theory with � types and one universe [Coq91].

Coquand worked with an algorithm which directly decides equivalence, rather than de�ning a

con
uent and strongly-normalizing reduction relation. In contrast to Coquand's system, MIL0
type constructors cannot be compared by shape alone; equivalence depends on both the typing

context and the classi�er. Where Coquand maintains a set of bound variables, my algorithm

maintains a full typing context. Similarly, he uses shapes of the items being compared to guide the

algorithm where my algorithm uses the classifying kind. (For example, where Coquand would check

whether either constructor is a lambda-abstraction, this algorithm checks whether the constructors

are being compared at a function kind.) I show the algorithms are sound with respect to the

language de�nition.

In Chapter 5 I prove the completeness and termination of the algorithms in the previous chap-

ter. This reduces to proving the completeness and termination of the constructor equivalence

algorithm. Unfortunately I cannot analyze the correctness of this algorithm directly; asymmetries

in the formulation preclude a direct proof of such simple properties as symmetry and transitivity.

(Both are immediately evident in Coquand's case.) Instead, I analyze a related but less eÆcient

algorithm which restores symmetry and transitivity by maintaining redundant information. The

proof that this revised algorithm is complete and terminating for all well-formed inputs was inspired

by Coquand's use of Kripke logical relations, but the details di�er substantially. My proof uses a

novel form of Kripke logical relation employing two worlds, rather than one. The correctness of

the revised algorithm can then be used to show the correctness of the original, simpler constructor

equivalence algorithm. This yields the implementation used by the TILT compiler.

I then repeat the development for types and terms. Chapter 6 gives algorithms for deciding

the type and term-level judgments; I show these algorithms are also sound with respect to the

corresponding judgments in the MIL0 de�nition. The proof of Chapter 7 for the completeness and

termination of the term and type algorithms proceeds essentially along the same lines as the proofs

in Chapter 5. The simpler notion of equivalence for term-level functions makes some parts of these

proofs easier, but others are complicated by the fact that type equivalence is less trivial than kind

equivalence.

Chapter 8 shows the MIL0 type system to be sound with respect to its operational semantics.

The proof is very straightforward, but depends critically on using the soundness and completeness

of the constructor equivalence algorithm to show consistency properties of constructor equivalence.
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In Chapter 9 I show how to extend these proofs when the MIL language is extended with

intensional polymorphism (i.e., with run-time constructor analysis constructs) [HM95, Mor95].

This involves surprisingly little change to the previous development.

Finally, Chapter 10 surveys the related literature and concludes with a collection of conjectures

and possibilities for future work.
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Chapter 2

The MIL0 calculus

2.1 Overview

The TILT compiler uses as its main internal representation of programs a typed language called

the \Mid-level Intermediate Language", or MIL. This is a relatively high-level language; it includes

�rst-class functions, assignment, and exception handling, with no explicit reference to memory

layout or allocation/deallocation. However, it contains no notion of a module system.

More formally MIL is a variant of F!, the higher-order polymorphic lambda calculus [Gir72].

The language has four levels:

� The terms or expressions of the language. These include constants, recursive functions,

applications, pairs, records, assignments, exceptions, etc.

� The types, which classify terms. A term is well-formed if and only if it has a type.

� The type constructors, or simply constructors.1 This level contains items corresponding to

certain types (these constructors might be considered \the names of types" or \types as

data") as well as functions and pairs, forming a small �-calculus in itself.

� The kinds, which serve as types for the language of constructors.

The distinction between types and the corresponding type constructors is made because MIL

is a predicative language. In an impredicative language, polymorphic types involve quanti�cation

over all types, including the polymorphic types themselves. Although one can make sense of this

circularity [Gir72], it substantially complicates the metatheory of the language and hence has been

avoided here.

In this chapter, I formally de�ne MIL0, a simpli�ed calculus which captures most of the essential

features of the full MIL. The primary di�erences are:

� The term language has been substantially pared down to contain only recursive functions,

pairs, and polymorphism. Assignment and exceptions have been omitted, so that the only

remaining side-e�ect is nontermination. In the full MIL, functions can take any �xed number

of constructor and term arguments, and polymorphic recursion is allowed. (When compiling

a source language like SML which does not allow polymorphic recursion [Myc84], however,

the utility of this last feature is limited.) For simplicity, MIL0 separates term abstractions

and polymorphic abstractions, and disallows polymorphic recursion.

1This terminology con
icts with the common usage of \constructor" in ML to refer to the term constructors

de�ned by datatypes. However, context will always make clear which sense of constructor is meant.
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� MIL function types have been similarly split into universally-quanti�ed types for polymorphic

expressions and ordinary (dependent) function types for term-level functions. MIL contains

several varieties of function type (the types of potentially open functions, closed functions, or

closures, each of which may be partial or total). Only potentially open, partial functions are

modeled here.

� Constructor functions in MIL are multiargument, while MIL0 constructor functions must be

curried to get the same e�ect.

� For clarity, all constructor analysis constructs used by TILT (e.g., typecase or typerec [HM95])

have been omitted from MIL0. Such features are essentially orthogonal to my main topic,

the e�ects of adding singletons to the calculus. However, the methods of this dissertation

can be applied even in the presence of constructor analysis. In chapter 9 I sketch the (minor)

changes to the development required.

� The MIL as actually implemented uses a relatively strong equivalence for recursive type

constructors. (Speci�cally, two recursive type constructors are considered equivalent if their

unrollings are equivalent [CHC+98].) This extension is omitted from MIL0.

For the most part, extending the theory of this chapter to handle the full MIL should not present

any fundamental diÆculty. The proofs do become more technically involved (for example, when

going from pairs to n-ary labeled records) but the essential arguments do not change. Note that

since this is an explicitly-typed framework, adding polymorphic recursion creates no challenges.

The one case where the methods do not extend is when considering an interesting equational

theory for recursive types. (I see no way to create an obviously symmetric and transitive algorithm

in the presence of recursive types.) There is an obvious extension of my algorithms that appears

to work in practice; the FLINT compiler uses a very similar algorithm.

This is not simply an issue of adding singletons; in the literature there appears to be little

study of algorithms for equating recursive types when there are interesting equations beyond those

induced by recursive types. (The only instance I have found is the work of Palsberg and Zhao on

type isomorphisms in the presence of recursive types [PZ00].) For example, no one has looked at

the decidability of typechecking for F! (where there is �-equivalence at the type level) extended

with recursive types.

As an alternative to extending the theory to the full MIL, the language itself could be simpli�ed.

An alternative MIL could use use a much simpler equational theory for recursive types, at the cost of

requiring explicit type coercions (i.e., isorecursive types rather than equirecursive types [CHC+98]).

There are no problems in extending the theory of MIL0 in this fashion.

This chapter contains a de�nition of MIL0 split into two parts: compile-time and run-time

aspects. x2.2 contains the context-free syntax of the language and the context-sensitive rules

for determining whether phrases in the language are well-formed, and x2.3 contains a number of

admissible rules which follow from this de�nition. Then x2.4 explains the meanings of complete

programs by de�ning a notion of evaluation.

2.2 Syntax and Static Semantics of MIL0

The abstract syntax of MIL0 is shown in Figure 2.1. As usual, I work modulo renaming of bound

variables (i.e., modulo �-equivalence). The meaning of each construct is explained in tandem with

the static semantics.
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Typing Contexts �;� ::= � Empty context

j �; �::K

j �; x:�

Kinds K;L ::= T Kind of names of types

j S(A) Singleton kind

j ��::K 0:K 00 Dependent function kind

j ��::K 0:K 00 Dependent pair kind

Base Constructors b ::= Int j Boxed
oat j : : : Names of base types

Constructor Constants c ::= b

j � Pair-type constructor

j * Function-type constructor

Type Constructors A;B ::= c

j �; �; : : : Variables

j ��::K 0:A Function

j AA0 Application

j hA0; A00i Pair of constructors

j �iA Projection

Types �; � ::= Ty(A) Inclusion of type constructors

j S(v : �) Singleton type

j 8�::K:� Polymorphic type

j (x:� 0)*� 00 Dependent function type

j (x:� 0)�� 00 Dependent pair type

Values v; w ::= n Integer constants

j x; f; : : : Variables

j fun f(x:� 0):� 00 is e Recursive function

j �(�::K):�:e Polymorphic abstraction

j �iv Projection

j hv1; v2i Pair

Terms e; d ::= v

j v v0 Application

j v A Polymorphic instantiation

j let x:� 0=e0 in e : � end Local variable de�nition

Figure 2.1: Syntax of the MIL0 Calculus
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� ` ok Well-formed context

` �1 � �2 Context equivalence

� ` K Well-formed kind

� ` K1 � K2 Subkinding

� ` K1 � K2 Kind equivalence

� ` A :: K Well-formed constructor

� ` A1 � A2 :: K Constructor equivalence

� ` � Well-formed type

� ` �1 � �2 Subtyping

� ` �1 � �2 Type equivalence

� ` e : � Well-formed term

� ` e1 � e2 : � Term equivalence

Figure 2.2: Judgment Forms in the Static Semantics

The static semantics (type system) for MIL0 is given as a collection of inductively-de�ned

judgments. Figure 2.2 lists all the di�erent judgment forms. The purpose of this section is to

explain and motivate the choice of judgments.

The de�nition of the static semantics requires a few preliminary comments. First, the notation

FV(phrase) refers to the set of free variables in phrase . This is de�ned Figure 2.3 by induction on

syntax.

Secondly, the static semantics uses the notion of capture-avoiding substitution: I use the

metavariable 
 to stand for an arbitrary mapping from constructor variables to arbitrary con-

structors and from term variables to term values. The notation 
(phrase) is used to represent the

result of applying 
 to all free variables in the phrase phrase . The substitution which sends � to A

and leaves all other variables unchanged is written [A=�], and [v=x] is de�ne analogously. If 
 is a

substitution, then 
[�7!A] stands for the mapping which sends � to A and behaves like 
 for all

other variables; the notation 
[x7!v] is de�ned analogously.

2.2.1 Typing Contexts

A typing context � (or simply context when this is unambiguous) represents assumptions for the

types of free term variables and for the kinds of free constructor variables. It is represented as a �nite

sequence of variable/classi�er associations. Typing contexts in MIL0 are intrinsically sequences

because of dependencies introduced by singletons: both types and kinds can refer to constructor

variables appearing earlier in the context, while types can additionally refer to term variables

appearing earlier in the context.

The context validity judgment determines when a context is well-formed: every type or term

appearing in the context must be well-formed with respect to the preceding segment of the context.

� ` ok
(2.1)
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FV(T) := ;
FV(S(A)) := FV(A)

FV(��::K 0:K 00) := FV(K 0) [ (FV(K 00) n f�g)
FV(��::K 0:K 00) := FV(K 0) [ (FV(K 00) n f�g)

FV(A) := ;
FV(�) := f�g
FV(��::K:A) := FV(K) [ (FV(A) n f�g)
FV(AA0) := FV(A) [ FV(A0)

FV(hA0; A00i) := FV(A0) [ FV(A00)

FV(�iA) := FV(A)

FV(Ty(A)) := FV(A)

FV(S(v : �)) := FV(v) [ FV(�)

FV(8�::K:�) := FV(K) [ (FV(�) n f�g)
FV((x:� 0)*� 00) := FV(� 0) [ (FV(� 00) n fxg)
FV((x:� 0)�� 00) := FV(� 0) [ (FV(� 00) n fxg)

FV(n) := ;
FV(x) := fxg
FV(fun f(x:� 0):� 00 is e) := FV(� 0) [ (FV(� 00) n fxg) [ (FV(e) n fx; fg)
FV(�(�::K):�:e) := FV(K) [ (FV(�) n f�g) [ (FV(e) n f�g)
FV(�iv) := FV(v)

FV(hv0; v00i) := FV(v0) [ FV(v00)

FV(v v0) := FV(v) [ FV(v0)

FV(v A) := FV(v) [ FV(A)

FV(let x:� 0=e0 in e : � end) := FV(� 0) [ FV(e0) [ (FV(e) n fxg) [ FV(�)

Figure 2.3: Free Variable Sets
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� ` K

�; �::K ` ok
(� 62 dom(�)) (2.2)

� ` �

�; x:� ` ok
(x 62 dom(�)) (2.3)

The side-condition in Rules 2.2 and 2.3 ensures that variables are not bound in a context more

than once. It follows that well-formed typing contexts can also be viewed as �nite functions: �(�)

represents the kind associated with � in �, while �(x) represents the type associated with x in �.

Similarly, the notation dom(�) is used to represent the set of all constructor and term variables

bound by �. The free variables of a context, FV(�), can then be de�ned inductively as follows:

FV(�) := ;
FV(�; �::K) := FV(�) [ (FV(K) n dom(�))
FV(�; x:�) := FV(�) [ (FV(�) n dom(�))

Because contexts are �nite sequences, there is an obvious de�nition for appending any two contexts.

The result of appending �1 and �2 is written �1;�2.

A similar set of inference rules gives a notion of de�nitional equivalence for two contexts.

` � � �
(2.4)

` �1 � �2 �1 ` K1 � K2

` �1; �::K1 � �2; �::K2

(� 62 dom(�1)) (2.5)

` �1 � �2 �1 ` �1 � �2

` �1; x:�1 � �2; x:�2
(x 62 dom(�1)) (2.6)

It is obvious that any two equivalent contexts bind the same variables in the same order. I show

later that if two contexts are equivalent then they are both well-formed and they are interchangeable

in any declarative judgment.

2.2.2 Kinds

The kind validity judgment speci�es when a kind is well-formed with respect to a given typing

context. The kind T is the kind of all \ordinary" type constructors; that is, the kind of type

constructors corresponding to some type.

� ` ok

� ` T
(2.7)

The premise of Rule 2.7 ensures that in any proof of � ` K there is strict subderivation proving

� ` ok. A similar property holds for all of the judgments de�ned in this chapter; I show this in

x3.1.
Well-formed MIL0 singleton kinds are restricted: they may only contain constructors of kind

T. The kind annotation is therefore omitted from the syntax, as it would always be T.

� ` A :: T

� ` S(A)
(2.8)
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However, general singleton kinds S(A :: K) as described in the introduction are de�nable (see

x2.3).

The rules for � and � kinds (dependent function kinds and dependent pair kinds) are essentially

standard.
�; �::K 0 ` K 00

� ` ��::K 0:K 00
(2.9)

�; �::K 0 ` K 00

� ` ��::K 0:K 00
(2.10)

��::K 0:K 00 is the kind of all functions which map an argument � of kind K 0 to a result of kind

K 00, where K 00 may depend on �. Similarly, ��::K 0:K 00 is the kind of all pairs of constructors whose

�rst component � has kind K 0 and whose second component has kind K 00, where K 00 may refer to

�. Both ��::K 0:K 00 and ��::K 0:K 00 bind the constructor variable � in K 00. I use the usual notation

K 0�K 00 for ��::K 0:K 00 and K 0!K 00 for ��::K 0:K 00 in those cases where � does not appear free in

K 00.

Frequently one might see an additional premise � ` K 0 in these two rules, but as MIL0 is de�ned

this is already implied by the existing premise.

The subkinding judgment � ` K1 � K2 de�nes a preorder on kinds, which may be intuitively

understood to say that K1 is more precise (exposes more information about a type constructor)

than K2. It will follow that any constructor of kind K1 will be acceptable in a context requiring a

constructor of kind K2.

Intuitively, since S(A) represents \the kind of all constructors of kind T equivalent to A", any

constructor of this kind should be acceptable where a constructor of kind T is expected. Thus the

key subkinding rule is:
� ` A :: T

� ` S(A) � T
(2.11)

The premise of this rule ensures that S(A) is well-formed.

Subkinding between two singleton kinds coincides with equivalence

� ` A1 � A2 :: T

� ` S(A1) � S(A2)
(2.12)

because a constructor of kind T equivalent to A1 can be equivalent to A2 if and only if A1 and A2

are equivalent to each other.

The following rule is required for subkinding to be re
exive.

� ` ok

� ` T � T
(2.13)

The remaining subkinding rules lift the relation to � and � kinds, following the usual co-

and contravariance properties. (The �rst premise in each of the following two rules ensures that

� ` K1 � K2 implies � ` K1 and � ` K2.)

� ` ��::K 0
1:K

00
1

� ` K 0
2 � K 0

1 �; �::K 0
2 ` K

00
1 � K 00

2

� ` ��::K 0
1:K

00
1 � ��::K 0

2:K
00
2

(2.14)
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� ` ��::K 0
2:K

00
2

� ` K 0
1 � K 0

2 �; �::K 0
1 ` K

00
1 � K 00

2

� ` ��::K 0
1:K

00
1 � ��::K 0

2:K
00
2

(2.15)

Kind equivalence, denoted � ` K1 � K2, is essentially a symmetrized version of subkinding.

I show later that � ` K1 � K2 if and only if � ` K1 � K2 and � ` K2 � K1, and a reasonable

alternative presentation of the system would make this the de�nition of kind equivalence.

� ` ok

� ` T � T
(2.16)

� ` A1 � A2 :: T

� ` S(A1) � S(A2)
(2.17)

� ` ��::K 0
2:K

00
2

� ` K 0
1 � K 0

2 �; �::K 0
1 ` K

00
1 � K 00

2

� ` ��::K 0
1:K

00
1 � ��::K 0

2:K
00
2

(2.18)

� ` ��::K 0
2:K

00
2

� ` K 0
1 � K 0

2 �; �::K 0
1 ` K

00
1 � K 00

2

� ` ��::K 0
1:K

00
1 � ��::K 0

2:K
00
2

(2.19)

2.2.3 Type Constructors

The constructors include names for base types, all with kind T

� ` ok

� ` b :: T
b 2 fInt;Boxed
oat;Char; : : :g (2.20)

and constants for creating product types and function types:

� ` ok

� ` � :: T!(T!T)
(2.21)

� ` ok

� ` * :: T!(T!T)
(2.22)

Applications of these constants to two arguments will be written in the usual in�x manner, A1�A2

and A1*A2.

As constructors form a �-calculus, there are variables, functions mapping constructors to con-

structors, and applications of such functions.

� ` ok

� ` � :: �(�)
(� 2 dom(�)) (2.23)

�; �::K 0 ` A :: K 00

� ` ��::K 0:A :: ��::K 0:K 00
(2.24)
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� ` A :: K 0!K 00 � ` A0 :: K 0

� ` AA0 :: K 00
(2.25)

Since the constructors form a dependently-typed �-calculus, the formulation of Rule 2.25 (which

permits only applications of functions with non-dependent types) may appear surprisingly restric-

tive. However, a consequence of having singleton kinds is that this rule implies the more traditional

formulation allowing dependencies, which becomes admissible (see x2.3).
Similarly one can form pairs of constructors, and perform projections from such pairs.

� ` A0 :: K 0 � ` A00 :: K 00

� ` hA0; A00i :: K 0�K 00
(2.26)

� ` A :: ��::K 0:K 00

� ` �1A :: K 0
(2.27)

� ` A :: ��::K 0:K 00

� ` �2A :: [�1A=�]K
00

(2.28)

Next, there is an obvious introduction rule for singletons.

� ` A :: T

� ` A :: S(A)
(2.29)

The following two rules are somewhat unusual; they can be considered as re
exive instances of

extensionality (see Rules 2.41 and 2.42 below).

� ` �1A :: K 0 � ` �2A :: K 00

� ` A :: K 0�K 00
(2.30)

�; �::K 0 ` A� :: K 00

� ` A :: ��::L0:L00 � ` K 0 � L0

� ` A :: ��::K 0:K 00
(2.31)

Intuitively, Rules 2.30 and 2.31 say that \a constructor has every kind that its eta-expansion

does". In most dependently-typed calculi such rules would be admissible and not part of the

system's de�nition. However, here they allow constructors to be given strictly more precise kinds.

(They also ensure that kinds are preserved under �-reduction.) For example, assume that �::T�T.
In the absence of Rule 2.30, the most precise kind for � which can be shown is:

�::T�T ` � :: T�T

However, using Rule 2.30 one can conclude

�::T�T ` � :: S(�1�)�S(�2�):

This says that � has \the kind of pairs whose �rst component is equal to the �rst component of �

and whose second component is equal to the second component of �". This is a much more precise

and informative kind than T�T. In fact, by extensionality the only pair with this kind is � itself,

so that this kind can be considered an encoding of S(� :: T�T). These rules are therefore critical
for encoding singletons of arbitrary constructors (in x2.3).
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I believe that last two premises in Rule 2.31 could be replaced by the much simpler side-

condition � 62 FV(A), but I then become unable to show the existence of principal kinds in x4.2.
The formulation here makes explicit that Rule 2.31 yields more-precise � kinds for constructors only

by making the codomain more precise, rather than by weakening the domain kind. For the purposes

of principal types this could be expressed more directly with the single premise � ` A :: ��::K 0:L00,

but the two-premise form here is more convenient in Chapter 3.

Rules analogous to 2.30 and 2.31 have frequently appeared in literature studying Standard ML

modules, including the non-standard structure-typing rule of Harper, Mitchell, andMoggi [HMM90],

the VALUE rules of Harper and Lillibridge's translucent sums [HL94], the strengthening operation

of Leroy's manifest type system [Ler94], the \self" rule of Leroy's applicative functors [Ler95], and

the REFL rule of Aspinall [Asp00].

Subkinding is used by the subsumption rule:

� ` A :: K1 � ` K1 � K2

� ` A :: K2

(2.32)

Constructor equivalence de�nes a notion of equality (interchangeability) for type constructors.

The judgment � ` A1 � A2 :: K expresses the fact that A1 and A2 are equivalent constructors

of kind K under context �. Whether � ` A1 � A2 :: K is provable depends not only on A1 and

A2, but also on the kinds of their free variables (given by �) and the kind K at which the two

constructors are being compared. Equivalence is highly context-sensitive.

Equivalence is �rst de�ned to be a re
exive, symmetric, and transitive relation:

� ` A :: K

� ` A � A :: K
(2.33)

� ` A2 � A1 :: K

� ` A1 � A2 :: K
(2.34)

� ` A1 � A2 :: K � ` A2 � A3 :: K

� ` A1 � A3 :: K
(2.35)

Next, the relation is speci�ed to be a congruence: replacing subparts of a constructor with

equivalent parts yields an equivalent constructor.

� ` K 0
1 � K 0

2 �; �::K 0
1 ` A1 � A2 :: K

00

� ` ��::K 0
1:A1 � ��::K 0

2:A2 :: ��::K
0
1:K

00
(2.36)

� ` A1 � A2 :: K
0!K 00 � ` A0

1 � A0
2 :: K

0

� ` A1A
0
1 � A2A

0
2 :: K

00
(2.37)

� ` A1 � A2 :: ��::K
0:K 00

� ` �1A1 � �1A2 :: K
0

(2.38)

� ` A1 � A2 :: ��::K
0:K 00

� ` �2A1 � �2A2 :: [�1A1=�]K
00

(2.39)
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� ` A0
1 � A0

2 :: K
0

� ` A00
1 � A00

2 :: K
00

� ` hA0
1; A

00
1i � hA0

2; A
00
2i :: K

0�K 00
(2.40)

There are two extensionality rules: if two functions or two pairs cannot be distinguished by

their uses then they are considered equivalent. In particular, two pairs are equivalent if they have

equivalent �rst and second components

� ` �1A1 � �1A2 :: K
0

� ` �2A1 � �2A2 :: K
00

� ` A1 � A2 :: K
0�K 00

(2.41)

and two functions are equivalent if they return equivalent results for all arguments:

�; �::K 0 ` A1 � � A2 � :: K 00

� ` A1 :: ��::L
0
1:L

00
1 � ` K 0 � L0

1

� ` A2 :: ��::L
0
2:L

00
2 � ` K 0 � L0

2

� ` A1 � A2 :: ��::K
0:K 00

(2.42)

The last four premises in Rule 2.42 ensure that both A1 and A2 actually have kind ��::K 0:K 00. If

Rule 2.31 were simpli�ed as discussed above then this rule could be simpli�ed in analogous fashion

with the side condition � 62 (FV(A1) [ FV(A2)).

As in the well-formedness rules, there is a subsumption rule:

� ` A1 � A2 :: K1 � ` K1 � K2

� ` A1 � A2 :: K2

(2.43)

Interestingly, an easy inductive argument shows that the rules given so far merely de�ne con-

structor equivalence to be syntactic identity (up to renaming of bound variables). All the rules

except for Rule 2.33 would then appear redundant. Adding one more rule makes this equivalence

non-trivial, and justi�es the presence of each of the above rules:

� ` A :: S(B)

� ` A � B :: S(B)
(2.44)

This completes the de�nition of constructor equivalence. It may be initially surprising that

there are no equivalence rules for reducing function applications or projections from pairs (i.e., �-

like rules). It turns out that these are admissible in the presence of singleton kinds and Rule 2.44.

The details are in x2.3 and x3.3, but I sketch one example here. It is clear that

` hInt;Boxed
oati :: S(Int)�S(Boxed
oat)

Therefore by Rule 2.27 it follows

` �1hInt;Boxed
oati :: S(Int)

and by Rule 2.44 and subsumption we have

` �1hInt;Boxed
oati � Int :: T
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This same argument can be generalized to projections from arbitrary pairs, and in an analogous

fashion to applications of �-abstractions.

Given the �-rules, then, the extensionality rules 2.42 and 2.41 imply that the usual �-rules are

admissible as well. It is well-known that �-reduction is not con
uent in the presence of terminal

(unit) types. As singletons are a generalized form of unit, the same behavior appears here as well.

For example:

� : T!S(Int) ` � � (��::T:Int) :: T!T

holds, as does

� : S(Int)!T ` � � (��::S(Int):(� Int)) :: S(Int)!T

All the constructors in these judgments are normal with respect to ��-reduction; compare the

right-hand constructor in the last judgment with ��::S(Int):(� �), the �-expansion of �.

A more obvious consequence of having singletons | and their original motivation | is that

they can be used to express de�nitions for variables. For example, in the following two judgments

the context e�ectively de�nes � to be Int.

� : S(Int) ` � � Int :: T

� : S(Int) ` h�; Inti � hInt; �i :: T�T

But the system is not restricted merely to giving de�nitions to variables. In the provable judgment

� : T�S(Int) ` �2� � Int :: T

the context partially de�nes �; it is known to be a pair and its second component is (equivalent

to) Int, but this does not give a de�nition for � as a whole. Alternatively, this could be thought of

as giving �2� the de�nition Int without giving one to �1�.

Similarly, in the provable judgments

� : ��::T:S(�) ` �1� � �2� :: T

� : ��::T:S(�) ` � � h�1�; �1�i :: T�T:

the assumption governing � requires that it be a pair whose �rst component � has kind T and

whose second component is equal to the �rst; that is, a pair with two equal components of kind

T. This gives a de�nition to �2�, namely �1�, without further specifying the contents of these two

equal components.

Now because of subkinding and subsumption, constructors do not have unique kinds. The

equational system presented here has the relatively unusual property (for a system expected to be

decidable) that equivalence of two constructors depends on the kind at which they are compared.

Two constructors may be equivalent at one kind but not at another; for example, one cannot prove

` ��::T:� � ��::T:Int::T!T:

This is fortunate, as the identity function for constructors of kind T and the function constantly

returning Int do have distinct behaviors and ought not be equivalent in a consistent equational

theory. However, by subsumption these two functions both have kind S(Int)!T and the judgment

` ��::T:� � ��::T:Int :: S(Int)!T
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is provable. The proof uses extensionality and the fact that the two functions provably agree when

restricted to an argument of kind S(Int), i.e., when applied to the argument Int.

The classifying kind at which constructors are compared may depend on the context of their

occurrence. For example, it follows from the previous equation and Rule 2.37 that

� : (S(Int)!T)!T ` � (��::T:�) � � (��::T:Int) :: T

is provable. The kind of � guarantees that it will only apply its argument to the constructor Int,

so it cannot matter whether � is given ��::T:� or ��::T:Int.

In contrast, the following judgment is not provable:

� : (T!T)!T ` � (��::T:�) � � (��::T:Int) :: T

because the context makes a weaker assumption about �.

2.2.4 Types

The constructors of kind T correspond to types; there is an explicit inclusion Ty(�) mapping each
such constructor to the corresponding type.

� ` A :: T

� ` Ty(A)
(2.45)

I will use int as an abbreviation for the type Ty(Int), boxed
oat to abbreviate Ty(Boxed
oat),

and similarly for the other primitive constructors.

As discussed in the introduction, singleton types are restricted to contain only syntactic values.

The representation of labeled singletons via encodings, as is done for kinds in x2.3 below, does not
work for terms due to the lack of extensionality principles. Because for inlining purposes I need

singletons at non-base type, labeled singletons types are made primitive:

� ` v : �

� ` S(v : �)
(� not a singleton) (2.46)

Rule 2.46 prohibits the type label in a singleton from being yet another singleton type. So, for

example,

S((�x:int:3) : int*S(3 : int))

is well-formed, but the following type is not:

S((�x:int:3) : S((�x:int:3) : int*S(3 : int))):

The property of a type not being a singleton is preserved under the important operations of substi-

tution and head-normalization. Also, because of predicativity it is clear from the rules below that

singleton types are equivalent only to other singleton types; see Theorem 6.2.2. This restriction

could be formalized syntactically by de�ning a grammatical class of non-singleton types, but in this

case I have opted for syntactic simplicity.

This restriction is reasonable because a well-formed type S(v1 : S(v2 : �)) contains no more

information than is already contained in S(v1 : �) or S(v2 : �). At �rst it might appear that a

typing assumption x:S(v1 : S(v2 : �)) would be equivalent to assuming that v1 and v2 are equivalent.

However, in order to make such an assumption it must be possible to show that S(v1 : S(v2 : �)) is
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well-formed, and in particular that without the new assumption one has v1 : S(v2 : �), i.e., that v1
and v2 are equivalent at type � . Thus nested singletons impart no useful information.

Allowing directly nested singletons would have the further consequence that the constant 3

would naturally have the types S(3 : int) and S(3 : S(3 : int)) and S(3 : S(3 : S(3 : int))), and so on.

By the \obvious" subtyping rules these would form an in�nite strictly decreasing chain of subtypes,

even though none of these types are really more informative than any of the others. (These types

all classify exactly the same set of values, namely the set f3g.) Furthermore there would be no

lower bound to this sequence of types: the system would fail to have principal (most speci�c) types

for all terms.

Aspinall [Asp95] addresses this problem by de�ning all the types in such a chain to be equivalent:

S(v : �) � S(v : S(v : �)). By disallowing directly nested singletons, I avoid a need for this rule.

This has the advantage of allowing a much simpler inversion principle for equivalence of singleton

types: if two singleton types are equivalent then their type labels are equivalent. (This principle is

clearly false in Aspinall's system. It also fails for the encoding of labeled singleton kinds, but the

proofs use inversion only for the kinds of the oÆcial MIL0 language.)

Because of singleton types, the types classifying functions and binary products are extended to

dependent forms:
�; x:� 0 ` � 00

� ` (x:� 0)*� 00
(2.47)

�; x:� 0 ` � 00

� ` (x:� 0)�� 00
(2.48)

Such types are written � 0*� 00 and � 0�� 00 when there is no actual dependency.

Finally, MIL0 contains the types for polymorphic terms, functions whose argument is a con-

structor.
�; �::K ` �

� ` 8�::K:�
(2.49)

Note that in this predicative system there are no type constructors corresponding to singleton

types, truly dependent function or pair types, or to polymorphic types.

Type equivalence is, like constructor equivalence, re
exive, symmetric, transitive, and a congru-

ence.

� ` �

� ` � � �
(2.50)

� ` � 0 � �

� ` � � � 0
(2.51)

� ` � � � 0 � ` � 0 � � 00

� ` � � � 00
(2.52)

� ` A1 � A2 :: T

� ` Ty(A1) � Ty(A2)
(2.53)

� ` v1 � v2 : �1 � ` �1 � �2

� ` S(v1 : �1) � S(v2 : �2)
(�1; �2 not a singleton) (2.54)
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� ` � 01 � � 02 �; x:� 01 ` � 001 � � 002

� ` (x:� 01)*� 001 � (x:� 02)*� 002
(2.55)

� ` � 01 � � 02 �; x:� 01 ` � 001 � � 002

� ` (x:� 01)��
00
1 � (x:� 02)��

00
2

(2.56)

� ` K1 � K2 �; �::K1 ` �1 � �2

� ` 8�::K1:�1 � 8�::K2:�2
(2.57)

Finally certain constructors correspond to (non-dependent) pair types and (non-dependent,

non-polymorphic) function types.

� ` A1 :: T � ` A2 :: T

� ` Ty(A1�A2) � Ty(A1)�Ty(A2)
(2.58)

� ` A1 :: T � ` A2 :: T

� ` Ty(A1*A2) � Ty(A1)*Ty(A2)
(2.59)

These rules are necessary for polymorphism to be useful in this predicative type system. For

example, consider the polymorphic identity function

id : 8�::T:Ty(�)*Ty(�):

To apply this function to a pair of integers requires polymorphic instantiation (i.e., an application

of id to a constructor argument). The only reasonable argument here is Int�Int, so we have

id (Int�Int) : Ty(Int�Int)*Ty(Int�Int):

But by the typing rules below, a pair of integers does not have type Ty(Int�Int) but instead has

type Ty(Int)�Ty(Int), i.e., the type of a pair whose elements are of type Ty(Int). Rule 2.58 is then
necessary to permit an application like (id (Int�Int)) h3; 4i to typecheck.

Subtyping is re
exive and transitive, and is a strictly weaker relation than equivalence.

� ` � � � 0

� ` � � � 0
(2.60)

� ` � � � 0 � ` � 0 � � 00

� ` � � � 00
(2.61)

One can obtain a supertype of a singleton type by either dropping the singleton (as at the kind

level), or by weakening the type label.

� ` v : �

� ` S(v : �) � �
(� not a singleton) (2.62)

� ` S(v1 : �1)
� ` v1 � v2 : �2 � ` �1 � �2

� ` S(v1 : �1) � S(v2 : �2)
(�1; �2 not a singleton) (2.63)
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Subtyping is lifted to functions, pairs, and polymorphic types in the usual co- and contravariant

manner.

� ` (x:� 01)��
00
1

� ` � 02 � � 01 �; x:� 02 ` � 001 � � 002

� ` (x:� 01)*� 001 � (x:� 02)*� 002
(2.64)

� ` (x:� 02)��
00
2

� ` � 01 � � 02 �; x:�1 ` � 001 � � 002

� ` (x:� 01)��
00
1 � (x:� 02)��

00
2

(2.65)

� ` 8�::K1:�1
� ` K2 � K1 �; �::K2 ` �1 � �2

� ` 8�::K1:�1 � 8�::K2:�2
(2.66)

Because the system is predicative, there is no diÆculty arising from the contravariant subkinding

for the domains of universally quanti�ed types as can sometimes arise when polymorphism and

subtyping are combined [Pie91].

2.2.5 Terms

The well-formedness rules for the term language are mostly standard. The language has been

restricted to a \named" form where intermediate quantities are bound to variables [FSDF93]. Note

that projections from values are considered to be values: for the system to be useful it is necessary

that projections from variables be values so that they may appear in singletons, and we wish terms

to remain well-formed under substitutions of values for variables.

� ` ok

� ` n : int
(2.67)

� ` ok

� ` x : �(x)
(2.68)

Function values are potentially recursive. Within the body e of the function fun f(x:�):� 0 is e

the variable x refers to the function argument and f refers to the function itself; the result type � 0

may also depend on x.

�; f :(x:� 0)*� 00; x:� 0 ` e : � 00

� ` fun f(x:� 0):� 00 is e : (x:� 0)*� 00
(2.69)

When the function fun f(x:� 0):� 00 is e is non-recursive (i.e., f 62 FV(e)) then it can be written as

�(x:� 0):� 00:e, or even �x:� 0:e when the return-type is obvious or irrelevant.

Type abstractions are also annotated with a return-type. This accurately models the full MIL

(where the notions of type and term abstractions are merged) and simpli�es the correctness proof

for my typechecking algorithm.

�; �::K ` e : �

� ` �(�::K):�:e : 8�::K:�
(2.70)
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� ` v1 : �1 � ` v2 : �2

� ` hv1; v2i : �1��2
(2.71)

� ` v : (x:� 0)�� 00

� ` �1v : �
0

(2.72)

� ` v : (x:� 0)�� 00

� ` �2v : [�1v=x]�
00

(2.73)

� ` v : � 0*� 00 � ` v0 : � 0

� ` v v0 : � 00
(2.74)

� ` v : 8�::K:� � ` A :: K

� ` v A : [A=�]�
(2.75)

Every let-expression be annotated with two types: the type of the locally-de�ned variable, and

the type of the entire let-expression.

� ` e0 : � 0 �; x:� 0 ` e : � � ` �

� ` (let x:� 0=e0 in e : � end) : �
(2.76)

The former annotation is used to simplify the typechecking algorithm; it would be preferable

if this were not needed. The latter type is used to ensure easy calculation of principal types for

let-expressions. In the TILT compiler, let is used only in speci�c positions (i.e., the body of a

function or the arms of a conditional expression) which for other reasons are already annotated

with their types, so the presence of the body annotation in the MIL0 is reasonable.

Values are given singleton types via the following singleton introduction rule.

� ` v : �

� ` v : S(v : �)
(� not a singleton) (2.77)

Finally, subtyping is used by the subsumption rule.

� ` e : �1 � ` �1 � �2

� ` e : �2
(2.78)

The following de�nition of term equivalence is the strongest equivalence relation (relating fewest

terms) that seems useful for the purposes described in the introductory chapter.

� ` e : �

� ` e � e : �
(2.79)

� ` e0 � e : �

� ` e � e0 : �
(2.80)

� ` e � e0 : � � ` e0 � e00 : �

� ` e � e00 : �
(2.81)

Again, equivalence is a congruence:
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� ` � 01 � � 02 �; x:� 01 ` �
00
1 � � 002 �; f :(x:� 01)*� 001 ; x:�

0 ` e1 � e2 : �
00
1

� ` fun f(x:� 01):�
00
1 is e1 � fun f(x:� 02):�

00
2 is e2 : (x:�

0
1)*� 001

(2.82)

� ` K1 � K2 �; �::K1 ` �1 � �2 �; �::K1 ` e1 � e2 : �1

� ` �(�::K1):�1:e1 � �(�::K2):�2:e2 : 8�::K1:�1
(2.83)

� ` v01 � v02 : �
0 � ` v001 � v002 : �

00

� ` hv01; v
00
1 i � hv02; v

00
2 i : �

0�� 00
(2.84)

� ` v1 � v2 : (x:�
0)�� 00

� ` �1v1 � �1v2 : �
0

(2.85)

� ` v1 � v2 : (x:�
0)�� 00

� ` �2v1 � �2v2 : [�1v1=x]�
00

(2.86)

� ` v1 � v2 : �
0*� 00 � ` v0 � v02 : �

0

� ` v1 v
0
1 � v2 v

0
2 : �

00
(2.87)

� ` v1 � v2 : 8�::K:� � ` A1 � A2 :: K

� ` v1A1 � v2A2 : [A1=�]�1
(2.88)

� ` � 01 � � 02 � ` e01 � e02 : �
0
1

� ` �1 � �2 �; x:� 01 ` e1 � e2 : �1

� ` (let x:� 01=e
0
1 in e1 : �1 end) � (let x:� 02=e

0
2 in e2 : �2 end) : �1

(2.89)

As at the constructor level, there is a singleton elimination rule for equivalence.

� ` v1 : S(v2 : �)

� ` v1 � v2 : S(v2 : �)
(2.90)

Finally there is a subsumption rule.

� ` e1 � e2 : �1 � ` �1 � �2

� ` e1 � e2 : �2
(2.91)

2.3 Admissible Rules

This section lists a number of interesting or useful rules which become admissible in the presence

of singletons. The proofs of admissibility are deferred until x3.3.

In MIL0, the kind S(A) is well-formed if and only if A is of the base kind T. This initially

seems restrictive, especially when compared with singleton types which can contain values of any

(non-singleton) type. One might expect to �nd singleton kinds of the form S(A :: K) representing

the kind of all constructors equivalent to A when compared at kind K, for example to encode

de�nitions of constructor-level functions. However, these labeled singletons are de�nable in MIL0;

Figure 2.4 de�nes these by induction on the size of the kind label.

For example, if � has kind T!T, then S(� :: T!T) is de�ned to be ��::T:S(� �). This can

be interpreted as \the kind of all functions which, when applied, yield the same answer as � does",

or \the kind of all functions which agree pointwise with �". By extensionality, any such function
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S(A :: T) := S(A)

S(A :: S(A0)) := S(A)

S(A :: ��::K1:K2) := ��::K1:(S(A� :: K2))

S(A :: ��::K1:K2) := (S(�1A :: K1))�(S(�2A :: [�1A=�]K2))

Figure 2.4: Encodings of Labeled Singleton Kinds

is provably equivalent to �, and indeed the non-standard kinding rules mentioned in x2.1 are vital
in proving that � has this kind.

Since kinds only matter up to equivalence, the de�nitions in Figure 2.4 are not unique. One

could, for example, de�ne S(A :: S(A0)) to be S(A0), or de�ne S(A :: ��::K1:K2) to be ��::S(�1A ::

K1):S(�2A :: K2).

The following rules are admissible, showing that the de�ned singleton kinds do behave appro-

priately.

� ` A :: K

� ` S(A :: K)
(2.92)

� ` A :: K

� ` A :: S(A :: K)
(2.93)

� ` A :: K

� ` S(A :: K) � K
(2.94)

� ` A1 � A2 :: K1 � ` K1 � K2

� ` S(A1 :: K1) � S(A2 :: K2)
(2.95)

� ` A1 � A2 :: K

� ` A1 � A2 :: S(A1 :: K)
(2.96)

� ` A2 :: K � ` A1 :: S(A2 :: K)

� ` A1 � A2 :: S(A2 :: K)
(2.97)

Note that � ` S(A :: K) need not imply � ` A :: K. (For example, according to Figure 2.4 we

have S(Boxed
oat :: S(Int)) = S(Boxed
oat), and therefore ` S(Boxed
oat :: S(Int)) even though

Boxed
oat cannot be shown to have kind S(Int). This explains the premise � ` A2 :: K in Rule 2.97.

Next, we have versions of existing rules allowing dependencies where the primitive rules require

non-dependent types or kinds. (For example, compare Rules 2.25 and 2.98, or Rules 2.26 and 2.100.)

� ` A :: ��::K 0:K 00 � ` A0 :: K 0

� ` AA0 :: [A0=�]K 00
(2.98)

� ` A1 � A2 :: ��::K
0:K 00 � ` A0

1 � A0
2 :: K

0

� ` A1A
0
1 � A2A

0
2 :: [A

0
1=�]K

00
(2.99)
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� ` ��::K 0:K 00

� ` A0 :: K 0 � ` A00 :: [A0=�]K 00

� ` hA0; A00i :: ��::K 0:K 00
(2.100)

� ` ��::K 0:K 00

� ` A0
1 � A0

2 :: K
0

� ` A00
1 � A00

2 :: [A
0
1=�]K

00

� ` hA0
1; A

00
1i � hA0

2; A
00
2i :: ��::K

0:K 00
(2.101)

� ` ��::K 0:K 00

� ` �1A1 � �1A2 :: K
0

� ` �2A1 � �2A2 :: [�1A1=�]K
00

� ` A1 � A2 :: ��::K
0:K 00

(2.102)

� ` v : (x:� 0)*� 00 � ` v0 : � 0

� ` v v0 : [v0=x]� 00
(2.103)

� ` v1 � v2 : (x:�
0)*� 00 � ` v01 � v02 : �

0

� ` v1 v
0
1 � v2 v

0
2 : [v

0
1=x]�

00
(2.104)

� ` (x:� 0)�� 00

� ` v0 : � 0 � ` v00 : [v0=x]� 00

� ` hv0; v00i :: (x:� 0)�� 00
(2.105)

� ` (x:� 0)�� 00

� ` v01 � v02 : �

� ` v001 � v002 : [v
0
1=�]�

00

� ` hv01; v
00
1 i � hv02; v

00
2 i : (x:�

0)�� 00
(2.106)

Next, a remarkable observation of Aspinall [Asp95] is that the �-rule for function applications

can be admissible in the presence of singletons. In MIL0, which contains pairs, the projection rules

become admissible as well.

�; �::K 0 ` A :: K 00 � ` A0 :: K 0

� ` (��::K 0:A)A0 � [A0=�]A :: [A0=�]K 00
(2.107)

� ` A1 :: K1 � ` A2 :: K2

� ` �1hA1; A2i � A1 :: K1

(2.108)

� ` A1 :: K1 � ` A2 :: K2

� ` �2hA1; A2i � A2 :: K2

(2.109)

�-equivalence for functions is admissible at the constructor level, but not at the term level; this

is a consequence of term applications being non-values. (It is easy to prove that �v-equivalence

for terms is not admissible. The de�ning rules of term equivalence only equate values to values

or non-values to non-values; in contrast, �-equivalence can equate applications with values.) The

projection rules for term-level pairs remain, however.
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� ` v1 : �1 � ` v2 : �2

� ` �1hv1; v2i � v1 : �1
(2.110)

� ` v1 : �1 � ` v2 : �2

� ` �2hv1; v2i � v2 : �2
(2.111)

It is occasionally convenient to have \parallel" versions of these equivalences:

�; �::K 0 ` A1 � A2 :: K
00 � ` A0

1 � A0
2 :: K

0

� ` (��::K 0:A1)A
0
1 � [A0

2=�]A2 :: [A
0
1=�]K

00
(2.112)

� ` A1 � A0
1 :: K1 � ` A2 :: K2

� ` �1hA1; A2i � A0
1 :: K1

(2.113)

� ` A1 :: K1 � ` A2 � A0
2 :: K2

� ` �2hA1; A2i � A0
2 :: K2

(2.114)

� ` v1 � v01 : �1 � ` v2 : �2

� ` �1hv1; v2i � v01 : �1
(2.115)

� ` v1 : �1 � ` v2 � v02 : �2

� ` �2hv1; v2i � v02 : �2
(2.116)

In the presence of both �-equivalence and extensionality, �-rules for functions and pairs become

admissible as well.

� ` A :: ��::K 0:K 00

� ` A � ��::K 0:(A�) :: ��::K 0:K 00
(2.117)

� ` A :: ��::K 0:K 00

� ` A � h�1A; �2Ai :: ��::K
0:K 00

(2.118)

Finally, I give variants of the introduction and elimination rules for singleton kinds and types:

� ` A � B :: T

� ` A :: S(B)
(2.119)

� ` A � B :: T

� ` A � B :: S(A)
(2.120)

� ` A :: S(B)

� ` A � B :: T
(2.121)

� ` v � w : �

� ` v : S(w : �)
(2.122)

� ` v1 � v2 : �

� ` v1 � v2 : S(v1 : �)
(� not a singleton) (2.123)

� ` v1 : S(v2 : �)

� ` v1 � v2 : �
(2.124)
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2.4 Dynamic Semantics

I give the operational meaning of a program in terms of a small-step contextual semantics: the

dynamic semantics de�nes the possible execution steps e1 ; e2 for programs (closed terms), and

evaluation of a program corresponds to taking an execution step until no more steps apply repeat-

edly.

The evaluation strategy used by MIL0 for both constructors and terms is left-to-right call-by-

value. Furthermore, constructors are evaluated as well as ordinary terms. (For MIL0 as presented

this is not actually necessary; this choice was made in preparation for adding constructor analysis

constructs such as typecase to the language; type and kind annotations on terms, however, never

require evaluation.) This requires a notion of fully-evaluated constructors and terms, denoted A

and v respectively
A ::= cA1 � � � An (n � 0)

j hA1; A2i
j ��::K 0:A

v ::= n

j fun f(x:� 0):� 00 is e

j �(�::K):�:e

j hv1; v2i

Since evaluation concerns only closed terms and types, variables and projections are need not be

included here.

The operational semantics uses Felleisen's evaluation context formulation [Fel88] of Plotkin's

structured operational semantics (SOS) [Plo81]. This involves the de�nition of a collection of

primitive \instructions" (denoted I) and their one-step reducts (denoted R). The relation between

instructions and reducts, written I ; R is shown in Figure 2.5.

Evaluation is extended to one-step reduction for arbitrary terms and constructors though the

use of constructor-level and term-level evaluation contexts, denoted by U and C respectively. These

are a restricted form of constructor or term containing a single \hole" �:

U ::= � C ::= �
j U A j C e

j AU j v C
j �1U j �1C
j �2U j �2C
j hU ; Ai j CA

j hA;Ui j v U
j let x:� 0=C in e : � end

The notations U [A], C[A] and C[e] denote the result of replacing the hole in the evaluation context

with the speci�ed constructor or term. (Since the hole never occurs within the scope of bound

variables in the evaluation context, there is no possibility of variable capture.) The evaluation

contexts represent a \stack" or \continuation" for the expression being currently evaluated; the

speci�c choice of evaluations contexts enforces the call-by-value nature of the language.

Then the full one-step reduction relation is de�ned as follows:

A; A0 () A = U [I] and I ; R and A0 = U [R]
e; e0 () e = C[I] and I ; R and e0 = C[R]
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(��::K 0:B)A ; [A=�]B

�1hA1; A2i ; A1

�2hA1; A2i ; A2

(fun f(x:� 0):� 00 is e) v ; [fun f(x:� 0):� 00 is e=f ][v=x]e

(�(�::K):�:e)A ; [A=�]e

�1hv1; v2i ; v1
�2hv1; v2i ; v2
let x:� 0=v in e : � end ; [v=x]e

Figure 2.5: Reductions of Instructions

For example, consider the term

�
(�(�::T):Ty(�)*Ty(�):fun f(x:Ty(�)):Ty(�) is x) ((��::T:�) Int)

�
3:

For the remainder of this example I elide the return-type annotations, yielding

�
(�(�::T):fun f(x:Ty(�)) is x) ((��::T:�) Int)

�
3:

This program evaluates to 3 because

((�(�::T):fun f(x:Ty(�)) is x) ((��::T:�) Int)) 3

= (((�(�::T):fun f(x:Ty(�)) is x) �) 3)[((��::T:�) Int]

; (((�(�::T):fun f(x:Ty(�)) is x) �) 3)[Int]

= (((�(�::T):fun f(x:Ty(�)) is x) Int) 3)

= (� 3)[(�(�::T):fun f(x:Ty(�)) is x) Int]

; (� 3)[fun f(x:Ty(Int)) is x]

= ((fun f(x:Ty(Int)) is x) 3

= �[(fun f(x:Ty(Int)) is x) 3]

; �[3]

= 3

The proofs of important properties of evaluation, including type soundness (that \well-typed

programs don't go wrong"), are delayed until Chapter 8. The soundness proof is completely straight-

forward and standard except for one key point: one must know that constructor and type equiv-

alence are suÆciently consistent. For example, the term-level application 3 (4) makes no sense

dynamically. However, if int � int*int were provable then one could prove the application well-

typed:

3 : int
int � int*int

int � int*int

3 : int*int
4 : int

3 (4) : int
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It is not immediately obvious that int � int*int is not provable, perhaps using transitivity and

introducing and eliminating constructor de�nitions. The consistency of equivalence will follow

directly from the correctness of the decision algorithm for equivalence, which immediately rejects

such all type equations.
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Chapter 3

Declarative Properties

In this chapter I study several basic properties of the MIL0 calculus. The most important of these

are validity and functionality. From these I derive the de�nability of general singleton kinds, the

admissibility of the rules given in x2.3, and a strengthening property for constructor variables.

3.1 Preliminaries

Figure 3.1 de�nes typing-context-free judgment forms J . Given a context � one can construct a

MIL0 judgment � ` J . The substitution 
J is de�ned by applying the substitution to the kinds,

constructors, types and terms making up J , while the free variable computation FV(J ) is similarly

de�ned as the union of the free variables of the phrases comprising J .

Proposition 3.1.1 (Subderivations)

1. Every proof of � ` J contains a subderivation � ` ok.

2. Every proof of �1; �::K;�2 ` J contains a strict subderivation �1 ` K.

3. Every proof of �1; x:�;�2 ` J contains a strict subderivation �1 ` � .

Proof: By induction on derivations.

Proposition 3.1.2

If � ` J then FV(J ) � dom(�).

Proof: By induction on derivations.

Proposition 3.1.3 (Re
exivity)

1. If � ` ok then ` � � �.

2. If � ` K then � ` K � K.

3. If � ` K then � ` K � K.

4. If � ` A :: K then � ` A � A :: K.

5. If � ` � then � ` � � � .

6. If � ` � then � ` � � � .

7. If � ` e : � then � ` e � e : � .
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J ::= ok

j �1 � �2
j K

j K1 � K2

j K1 � K2

j A :: K

j A1 � A2 :: K

j �

j �1 � �2
j �1 � �2
j e : �

j e1 � e2 : �

Figure 3.1: Context-Free Judgment Forms

Proof: By induction on derivations.

De�nition 3.1.4

The relation �1 � �2 on contexts is de�ned to hold if neither �1 nor �2 binds types or kinds to the

same variable twice, and if the contexts viewed as partial functions give the same result for every

constructor or term variable in dom(�1).

Thus if �1 � �2 then dom(�1) � dom(�2) and �1 appears as a (not necessarily consecutive)

subsequence of �2. I will also write �2 � �1 to mean �1 � �2.

Proposition 3.1.5 (Weakening)

1. If �1 ` J and �1 � �2 and �2 ` ok, then �2 ` J .

2. If �1; �::K2;�2 ` J and �1 ` K1 � K2 and �1 ` K1 then �1; �::K1;�2 ` J .

3. If �1; �:�2;�2 ` J and �1 ` �1 � �2 and �1 ` �1 then �1; �:�1;�2 ` J .

Later I show that the assumption �1 ` K1 is already implied by �1 ` K1 � K2, and similarly that

�1 ` �1 is implied by �1 ` �1 � �2.

De�nition 3.1.6 (Sizes of Kinds)

The size of a kind or a type is a strictly positive integer; it is de�ned inductively on the structure

of kinds:
size(T) = 1

size(S(A)) = 2

size(��::K 0:K 00) = size(K 0) + size(K 00) + 2

size(��::K 0:K 00) = size(K 0) + size(K 00) + 2

The size of a kind depends only on its \shape" and is thus invariant under substitutions. The key

properties of this measure are that size(S(A)) > size(T) and that the size of a � or � is strictly

greater than the sizes of (all substitution instances of) its constituent kinds.

Proposition 3.1.7 (Antisymmetry of Subkinding)

� ` K1 � K2 and � ` K2 � K1 if and only if � ` K1 � K2.
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Proof:

) By induction on size(K1) + size(K2), and cases on the possible last steps in the proofs of

� ` K1 � K2 and � ` K2 � K1.

{ Case: K1 = K2 = T. Trivial, since by Proposition 3.1.1 we have � ` ok.

{ Case: K1 = S(A1) and K2 = S(A2). By inversion of � ` K1 � K2 we have

� ` A1 � A2 :: T, so � ` S(A1) � S(A2).

{ Case:

� ` ��::K 0
1:K

00
1

� ` K 0
2 � K 0

1

�; �::K 0
2 ` K 00

1 � K 00
2

� ` ��::K 0
1:K

00
1 � ��::K 0

2:K
00
2

and

� ` ��::K 0
2:K

00
2

� ` K 0
1 � K 0

2

�; �::K 0
1 ` K 00

2 � K 00
1

� ` ��::K 0
2:K

00
2 � ��::K 0

1:K
00
1

1. By the inductive hypothesis, � ` K 0
1 � K 0

2.

2. By Proposition 3.1.1, there is a strict subderivation � ` K 0
1.

3. By Proposition 3.1.5, �; �::K 0
1 ` K 00

1 � K 00
2 .

4. By the inductive hypothesis, �; �::K 0
1 ` K 00

1 � K 00
2 .

5. Thus � ` ��::K 0
1:K

00
1 � ��::K 0

2:K
00
2 .

{ The case for �-kinds is analogous.

( By induction on the proof of � ` K1 � K2, using Proposition 3.1.5.

The subtyping relation is similarly antisymmetric, but the proof is more complex in the presence

of the transitivity rule (Rule 2.61). I return to this point in x7.3.

Proposition 3.1.8 (Symmetry and Transitivity of Kind Equivalence)

1. If � ` K1 � K2 then � ` K2 � K1

2. If � ` K1 � K2 and � ` K2 � K3 then � ` K1 � K3.

Proof: By induction on derivations.

Proposition 3.1.9 (Transitivity of Subkinding)

If � ` K1 � K2 and � ` K2 � K3 then � ` K1 � K3.

Proof: By induction on derivations.

De�nition 3.1.10

The judgment � ` 
 : � holds if and only if the following conditions all hold:

1. � ` ok

2. 8� 2 dom(�): � ` 
(�(�))

3. 8� 2 dom(�): � ` 
� :: 
(�(�))

4. 8x 2 dom(�): � ` 
(�(x))

5. 8x 2 dom(�): � ` 
x : 
(�(x))
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Proposition 3.1.11 (Substitution)

1. If � ` J and � ` 
 : � then � ` 
(J ).

2. If �1; �::K;�2 ` ok and �1 ` A :: K then �1; [A=�]�2 ` ok.

3. If �1; x:�;�2 ` ok and �1 ` v : � then �1; [v=x]�2 ` ok.

4. If �1; �::K;�2 ` J and �1 ` A :: K then �1; [A=�]�2 ` [A=�]J .

5. If �1; x:�;�2 ` J and �1 ` v : � then �1; [v=x]�2 ` [v=x]J .

Proof:

1. By induction on the proof of � ` J .

2{5. By simultaneous induction on the context in the �rst assumption and by part 1.

3.2 Validity and Functionality

I next show two important features of the calculus. Validity is the property that any phrase

appearing within a judgment is well-formed (e.g., if � ` A1 � A2 :: K then � ` ok and � ` K

and � ` A1 :: K and � ` A2 :: K). Functionality states that applying equivalent substitutions to

related phrases yields related phrases.

The rules have been structured to assume validity for premises and guarantee and preserve

validity for conclusions. A simple proof, however, is hindered by the presence of dependencies in

types and kinds. The direct approach by induction on derivations fails because of cases such as

Rule 2.39:
� ` A1 � A2 :: ��::K

0:K 00

� ` �2A1 � �2A2 :: [�1A1=�]K
00
:

Here we need � ` �2A2 :: [�1A1=�]K
00 but from the inductive hypothesis we get only � ` �2A2 ::

[�1A2=�]K
00. The desired result would follow, however, if we knew that � ` [�1A2=�]K

00 � [�1A1=�]K
00.

Since � ` �1A2 � �1A1 :: K
0, the subkinding judgment required follows from functionality.

This suggests one should �rst prove functionality. The most general form of functionality also

cannot be easily proved directly, but the proof does go through for the restricted case of equivalent

substitutions being applied to a single phrase. This suÆces to show validity, and together these

allow a simple proof of general functionality.

De�nition 3.2.1

The judgment � ` 
1 � 
2 : � holds if and only if the following conditions all hold:

1. � ` 
1 : � and � ` 
2 : �

2. 8� 2 dom(�): � ` 
1(�(�)) � 
2(�(�))

3. 8� 2 dom(�): � ` 
1� � 
2� :: 
1(�(�))

4. 8x 2 dom(�): � ` 
1(�(x)) � 
2(�(x))

5. 8x 2 dom(�): � ` 
1x � 
2x : 
1(�(x))
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Lemma 3.2.2 (Substitution Extension)

1. If � ` 
1 � 
2 : �, � 62 dom(�), � ` 
1K, � ` 
2K, and � ` 
1K � 
2K, then

�; �::
1K ` 
1[�7!�] � 
2[�7!�] : (�; �::K) and

�; �::
2K ` 
1[�7!�] � 
2[�7!�] : (�; �::K).

2. If � ` 
1 � 
2 : �, x 62 dom(�), and � ` 
1� , � ` 
2� , and � ` 
1� � 
2� then

�; x:
1� ` 
1[�7!�] � 
2[�7!�] : (�; x:�) and �; x:
2� ` 
1[� 7!�] � 
2[�7!�] : (�; x:�).

Proof: By the de�nition � ` 
1 � 
2 : �, Proposition 3.1.5, and the subsumption rules.

Proposition 3.2.3 (Simple Functionality)

1. If � ` K and � ` 
1 � 
2 : � then � ` 
1K � 
2K.

2. If � ` A :: K and � ` 
1 � 
2 : � then � ` 
1A � 
2A :: 
1K.

3. If � ` � and � ` 
1 � 
2 : � then � ` 
1� � 
2� .

4. If � ` e : � and � ` 
1 � 
2 : � then � ` 
1e � 
2e : 
1� .

Proof: [By induction on the proof of the �rst premise]

1. � Case: Rule 2.7
� ` ok

� ` T

Since � ` ok we have � ` T � T.

� Case: Rule 2.8
� ` A :: T

� ` S(A)

(a) By the inductive hypothesis, � ` 
1A � 
2A :: T.

(b) By Rule 2.17 then, � ` S(
1A) � S(
2A).

� Case: Rule 2.9
�; �::K 0 ` K 00

� ` ��::K 0:K 00

(a) Without loss of generality, � 62 dom(�).

(b) By Proposition 3.1.1, there are strict subderivations �; �::K 0 ` ok and � ` K 0.

(c) By inversion and Proposition 3.1.2, � 62 FV(K 0).

(d) By the inductive hypothesis, � ` 
1K
0 � 
2K

0

(e) and by Proposition 3.1.11, � ` 
1K
0 and � ` 
2K

0.

(f) Using Lemma 3.2.2, we have �; �::
1K
0 ` 
1[�7!�] � 
2[�7!�] : (�; �::K 0).

(g) By the inductive hypothesis then, we have

�; �::
1K
0 ` (
1[�7!�])K 00 � (
2[�7!�])K 00

(h) By substitution, � ` 
1(��::K
0:K 00)

(i) Therefore � ` 
1(��::K
0:K 00) � 
2(��::K

0:K 00).

� Case: Rule 2.10
�; �::K 0 ` K 00

� ` ��::K 0:K 00

Analogous to the previous case.
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2. � Case: Rule 2.20
� ` ok

� ` b :: T

Then � ` b � b :: T because � ` ok.

� Case: Rule 2.21
� ` ok

� ` � :: T!T!T

Then � ` � � � :: T!T!T because � ` ok.

� Case: Rule 2.22
� ` ok

� ` ! :: T!T!T

Then � ` ! � ! :: T!T!T because � ` ok.

� Case: Rule 2.23
� ` ok

� ` � :: �(�)

Follows directly from the requirements for 
1 and 
2.

� Case: Rule 2.24
�; �::K 0 ` A :: K 00

� ` ��::K 0:A :: ��::K 0:K 00

(a) Without loss of generality, � 62 dom(�).

(b) As in the case for Rule 2.9, we have � ` 
1K
0 � 
2K

0

(c) and �; �::
1K
0 ` 
1[�7!�] � 
2[�7!�] : �; �::K 0.

(d) Thus by the inductive hypothesis,

�; �::
1K
0 ` (
1[�7!�])A � (
2[�7!�])A :: (
1[�7!�])K 00.

(e) By Rule 2.36 we have � ` 
1(��::K
0:A) � 
2(��::K

0:A) :: 
1(��::K
0:K 00).

� Case: Rule 2.25
� ` A :: K 0!K 00 � ` A0 :: K 0

� ` AA0 :: K 00

(a) By the inductive hypothesis, � ` 
1A � 
2A :: (
1K
0)!(
1K

00)

(b) and � ` 
1A
0 � 
2A

0 :: 
1K
0.

(c) Thus by Rule 2.37, � ` 
1(AA0) � 
2(AA0) :: 
1K
00.

� Case: Rule 2.26
� ` A0 :: K 0 � ` A00 :: K 00

� ` hA0; A00i :: K 0�K 00

(a) By the inductive hypothesis, � ` 
1A
0 � 
2A

0 :: 
1K
0

(b) and � ` 
1A
00 � 
2A

00 :: 
1K
00.

(c) Thus � ` h
1A
0; 
1A

00i � h
2A
0; 
2A

00i :: 
1K
0�
1K

00 by Rule 2.40.

� Case: Rule 2.27
� ` A :: ��::K 0:K 00

� ` �1A :: K 0

(a) By the inductive hypothesis, � ` 
1A � 
2A :: 
1(��::K
0:K 00).
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(b) By Rule 2.38, � ` 
1(�1A) � 
2(�1A) :: 
1K
0.

� Case: Rule 2.28
� ` A :: ��::K 0:K 00

� ` �2A :: [�1A=�]K
00

(a) By the inductive hypothesis, � ` 
1A � 
2A :: 
1(��::K
0:K 00).

(b) By Rule 2.39, � ` �2(
1A) � �2(
2A) :: [�1(
1A)=�](
1[� 7!�])K 00.

(c) That is, � ` �2(
1A) � �2(
2A) :: 
1([�1A=�]K
00).

� Case: Rule 2.29
� ` A :: T

� ` A :: S(A)

(a) By the inductive hypothesis, � ` 
1A � 
2A :: T.

(b) By substitution, � ` 
1A :: T.

(c) Thus � ` 
1A :: S(
1A),

(d) but � ` S(
1A) � S(
2A)

(e) so � ` 
1A :: S(
2A).

(f) By Rule 2.44, � ` 
1A � 
2A :: S(
2A)

(g) and by subsumption and symmetry, � ` 
2A � 
1A :: T.

(h) Thus � ` S(
2A) � S(
1A)

(i) and so � ` 
1A � 
2A :: S(
1A).

� Case: Rule 2.30
� ` �1A :: K 0 � ` �2A :: K 00

� ` A :: K 0�K 00

(a) By the inductive hypothesis, � ` �1(
1A) � �1(
2A) :: 
1K
0

(b) and � ` �2(
1A) � �2(
2A) :: 
1K
00.

(c) By Rule 2.41, � ` 
1A � 
2A :: (
1K
0)�(
1K

00).

� Case: Rule 2.31
�; �::K 0 ` A� :: K 00

� ` A :: ��::L0:L00 � ` K 0 � L0

� ` A :: ��::K 0:K 00

(a) Without loss of generality, � 62 dom(�) and � 62 FV(A).

(b) As in the case for Rule 2.9, � ` 
1K
0 � 
2K

0

(c) and �; �::
1K
0 ` 
1[�7!�] � 
2[�7!�] : �; �::K 0.

(d) Thus by the inductive hypothesis,

�; �::
1K
0 ` (
1[�7!�])(A�) � (
2[�7!�])(A�) :: (
1[�7!�])K 00.

(e) That is, �; �::
1K
0 ` (
1A)� � (
2A)� :: 
1[�7!�]K 00.

(f) By Proposition 3.1.11, we have � ` 
1A :: 
1(��::L
0:L00) and

� ` 
2A :: 
2(��::L
0:L00).

(g) Similarly we have � ` 
1K
0 � 
1L

0 and � ` 
2K
0 � 
2L

0.

(h) so by Proposition 3.1.8, we have � ` 
1K
0 � 
2L

0.

(i) Therefore by Rule 2.42, � ` 
1A � 
2A :: 
1(��::K
0:K 00).
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� Case: Rule 2.32
� ` A :: K1 � ` K1 � K2

� ` A :: K2

(a) By the inductive hypothesis, � ` 
1A � 
2A :: 
1K1.

(b) By Proposition 3.1.11, � ` 
1K1 � 
1K2.

(c) By Rule 2.43, � ` 
1A � 
2A :: 
1K2.

3. � Case: Rule 2.45
� ` A :: T

� ` Ty(A)

(a) By the inductive hypothesis, � ` 
1A � 
2A :: T.

(b) Thus � ` Ty(
1A) � Ty(
2A).

� Rule 2.46
� ` v : � � not a singleton

� ` S(v : �)

(a) By the inductive hypothesis, � ` 
1v � 
2v : 
1�

(b) and � ` 
1� � 
2� .

(c) Since neither 
1� nor 
2� can be a singleton (because � isn't), we have

� ` S(
1v : 
1�) � S(
2v : 
2�).

� Case: Rule 2.47
�; x:� 0 ` � 00

� ` (x:� 0)*� 00

Same argument as for Rule 2.9.

� Case: Rule 2.48
�; x:� 0 ` � 00

� ` (x:� 0)�� 00

Same argument as for Rule 2.10.

� Case: Rule 2.49
�; �::K ` �

� ` 8�::K:�

Similar argument to that for Rule 2.9.

4. � Case: Rules 2.67{2.78. Essentially the same proofs as for the corresponding

constructor forms.

Proposition 3.2.4 (Validity)

1. If � ` K1 � K2 then � ` K1 and � ` K2.

2. If � ` K1 � K2 then � ` K1 and � ` K2.

3. If � ` A :: K then � ` K.

4. If � ` A1 � A2 :: K then � ` A1 :: K, � ` A2 :: K, and � ` K.

5. If � ` �1 � �2 then � ` �1 and � ` �2.
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6. If � ` �1 � �2 then � ` �1 and � ` �2.

7. If � ` e : � then � ` � .

8. If � ` e1 � e2 : � then � ` e1 : � , � ` e2 : � , and � ` � .

Proof: There are only two interesting cases.

� Case: Rule 2.39.
� ` A1 � A2 :: ��::K

0:K 00

� ` �2A1 � �2A2 :: [�1A1=�]K
00

1. By the inductive hypothesis, � ` A1 :: ��::K
0:K 00,

2. � ` A2 :: ��::K
0:K 00,

3. and � ` ��::K 0:K 00.

4. By inversion, �; �::K 0 ` K 00.

5. Then � ` �2A1 :: [�1A1=�]K
00 by Rule 2.28.

6. By Proposition 3.1.11, we have � ` [�1A1=�]K
00.

7. Since � ` �1A2 :: K
0 and � ` �1A1 :: K

0 and � ` �1A2 � �1A1 :: K
0,

8. we have � ` [�1A2=�] � [�1A1=�] : �; �::K
0.

9. By Propositions 3.2.3 and 3.1.7 we have � ` [�1A2=�]K
00 � [�1A1=�]K

00.

10. Thus by subsumption and � ` �2A2 :: [�1A2=�]K
00

11. we have � ` �2A2 :: [�1A1=�]K
00.

� Case: Rule 2.86. The proof is analogous.

Corollary 3.2.5 (Full Functionality)

1. If � ` A1 � A2 :: K and � ` 
1 � 
2 : � then � ` 
1A1 � 
2A2 :: 
1K.

2. If � ` K1 � K2 and � ` 
1 � 
2 : � then � ` 
1K1 � 
2K2.

3. If � ` K1 � K2 and � ` 
1 � 
2 : � then � ` 
1K1 � 
2K2.

4. If � ` �1 � �2 and � ` 
1 � 
2 : � then � ` 
1�1 � 
2�2.

5. If � ` �1 � �2 and � ` 
1 � 
2 : � then � ` 
1�1 � 
2�2.

6. If � ` e1 � e2 : � and � ` 
1 � 
2 : � then � ` 
1e1 � 
2e2 : 
1� .

Proof:

1. Assume � ` A1 � A2 :: K and � ` 
1 � 
2 : �. By substitution, � ` 
1A1 � 
1A2 :: 
1K.

By validity (Proposition 3.2.4) we have � ` A2 :: K, and so by Proposition 3.2.3,

� ` 
1A2 � 
2A2 :: 
1K. By transitivity, � ` 
1A1 � 
2A2 :: 
1K.

2{6. The remaining cases are similar.
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Lemma 3.2.6

1. If �0; �::K;�00 ` ok and �0 ` A1 � A2 :: K then �0; [A1=�]�
00 ` [A1=�] � [A2=�] : (�

0; �::K;�00)

and �0; [A2=�]�
00 ` [A1=�] � [A2=�] : (�

0; �::K;�00).

2. If �0; x:�;�00 ` ok and �0 ` v1 � v2 : � then �0; [v1=x]�
00 ` [v1=x] � [A2=�] : (�

0; x:�;�00) and

�0; [v2=x]�
00 ` [v1=x] � [v2=x] : (�

0; x:�;�00).

Proof: By induction on the proof of typing context well-formedness and Proposition 3.2.3.

Corollary 3.2.7

1. If �0; �::L;�00 ` K1 � K2 and �0 ` B1 � B2 :: L then �0; [B1=�]�
00 ` [B1=�]K1 � [B2=�]K2.

2. If �0; �::L;�00 ` K1 � K2 and �0 ` B1 � B2 :: L then �0; [B1=�]�
00 ` [B1=�]K1 � [B2=�]K2.

3. If �0; �::L;�00 ` �1 � �2 and �0 ` B1 � B2 :: L then �0; [B1=�]�
00 ` [B1=�]�1 � [B2=�]�2.

4. If �0; �::L;�00 ` �1 � �2 and �0 ` B1 � B2 :: L then �0; [B1=�]�
00 ` [B1=�]�1 � [B2=�]�2.

5. If �0; �::L;�00 ` v1 � v2 : � and �0 ` B1 � B2 :: L then �0; [B1=�]�
00 ` [B1=�]v1 � [B2=�]v2 :

[B1=�]� .

6. If �0; y:�;�00 ` �1 � �2 and �0 ` w1 � w2 : � then �0; [w1=y]�
00 ` [w1=y]�1 � [w2=y]�2.

7. If �0; y:�;�00 ` �1 � �2 and �0 ` w1 � w2 : � then �0; [w1=y]�
00 ` [w1=y]�1 � [w2=y]�2.

8. If �0; y:�;�00 ` v1 � v2 : � and �0 ` w1 � w2 : � then �0; [w1=y]�
00 ` [w1=y]v1 � [w2=y]v2 :

[w1=y]� .

The proof of Proposition 3.2.3 depends heavily on the exact formulation of the rules de�ning

MIL0. In particular, although dependent kinds and types force the rules to be asymmetric, they

are all \asymmetric in the same way". For example, if Rule 2.39 were written instead as

� ` A1 � A2 :: ��::K
0:K 00

� ` �2A1 � �2A2 :: [�1A2=�]K
00

(where the substitution involves �1A2 instead of �1A1) then the above case for Rule 2.39 would not

go through. A more robust but more technically involved method would be to prove validity and

general functionality simultaneously. This requires a logical relations argument because inductively

one needs to know, for example, that not only are � and � kinds functional in their free variables,

but also that their codomains are functional with respect to the domain variable. Stone and

Harper [SH99] use this method for proving validity and functionality for the kind and constructors

levels.

Alternatively, functionality could be built into the system. Harper and Pfenning [HP99] take

the approach of making functionality into an axiom. However, it appears that the same proof

method used here would show their axiom admissible [Har00]. Martin-L�of goes further and makes

functionality the de�ning property of what it means to be a valid judgment-in-context [ML84].

Corollary 3.2.8 (Weakening 2)

1. If �1; �::K2;�2 ` J and �1 ` K1 � K2 then �1; �::K1;�2 ` J .

2. If �1; x:�2;�2 ` J and �1 ` �1 � �2 then �1; x:�1;�2 ` J .

3. If � ` J and ` � � �0 then �0 ` J .
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3.3 Proofs of Admissibility

I now have enough technical machinery to prove the admissibility of Rules 2.92{2.124.

Proposition 3.3.1

Rules 2.119 and 2.122 are admissible.

Proof: I show the proof for Rule 2.119 only; the other proof is analogous.

1. Assume � ` A1 � A2 :: T.

2. By validity � ` A1 :: T,

3. so � ` A1 :: S(A1) by Rule 2.29.

4. But � ` S(A1) � S(A2),

5. so by subsumption we have � ` A1 :: S(A2).

Lemma 3.3.2


(S(A :: K)) = S(
A :: 
K).

Proof: By induction on the size of K, and by cases on the form of K.

Proposition 3.3.3

1. Rule 2.96 is admissible. That is, if � ` A1 � A2 :: K then � ` A1 � A2 :: S(A2 :: K).

2. Rules 2.92 and 2.93 are admissible.

That is, if � ` A :: K then � ` S(A :: K) and � ` A :: S(A :: K).

3. Rule 2.97 is admissible.

That is, if � ` A1 :: S(A2 :: K) and � ` A2 :: K then � ` A1 � A2 :: S(A2 :: K).

4. Rule 2.94 is admissible. That is, if � ` A :: K then � ` S(A :: K) � K.

5. Rules 2.98 and 2.99 are admissible.

That is, if � ` A :: ��::K 0:K 00 and � ` A0 :: K 0 then � ` AA0 :: [A0=�]K 00. Similarly, if

� ` A1 � A2 :: ��::K
0:K 00 and � ` A0

1 � A0
2 :: K

0 then � ` A1A
0
1 � A2A

0
2 :: [A

0
1=�]K

00.

6. Rule 2.102 is admissible.

That is, if � ` ��::K 0:K 00, � ` �1A1 � �1A2 :: K 0, and � ` �2A1 � �2A2 :: [�1A1=�]K
00

then � ` A1 � A2 :: ��::K
0:K 00.

7. Rule 2.95 is admissible.

That is, if � ` A1 � A2 :: K1 and � ` K1 � K2 then � ` S(A1 :: K1) � S(A2 :: K2).

Proof: By simultaneous induction on the size of kinds. (The size of K for parts 1{4, the size of

K 0 for part 5 and part 6, and the size of K1 for part 7.)

1. � Case K = T and S(A2 :: K) = S(A2).

(a) � ` A1 :: S(A2) by Rule 2.119.

(b) Then � ` A1 � A2 :: S(A2) by Rule 2.44

� Case K = S(B) and S(A2 :: K) = S(A2).

(a) � ` B :: T by validity and inversion, so � ` S(B) � T.

59



(b) Then � ` A1 � A2 :: T by subsumption,

(c) and � ` A1 :: S(A2).

(d) Thus � ` A1 � A2 :: S(A2) by Rule 2.44.

� Case K = ��::K 0:K 00 and S(A2 :: K) = ��::K 0:S(A2 � :: K 00).

(a) Inductively by part 5, �; �::K 0 ` A1 � � A2 � :: K 00.

(b) By the inductive hypothesis, �; �::K 0 ` A1 � � A2 � :: S(A2 � :: K 00).

(c) By validity (Proposition 3.2.4) we have � ` A1 :: ��::K
0:K 00 and

� ` A2 :: ��::K
0:K 00.

(d) Therefore by Rule 2.42, � ` A1 � A2 :: ��::K
0:S(A2 � :: K 00).

� K = ��::K 0:K 00 and S(A2 :: K) = (S(�1A2 :: K
0))�(S(�2A2 :: [�1A2=�]K

00)).

(a) Then � ` �1A1 � �1A2 :: K
0

(b) and � ` �2A1 � �2A2 :: [�1A1=�]K
00.

(c) By functionality and subsumption, � ` �2A1 � �2A2 :: [�1A2=�]K
00.

(d) By the inductive hypothesis, � ` �1A1 � �1A2 :: S(�1A2 :: K
0)

(e) and � ` �2A1 � �2A2 :: S(�2A2 :: [�1A2=�]K
00). (Note that

size([�1A2=�]K
00) = size(K 00) < size(K).)

(f) Therefore by Rule 2.41 we have

� ` A1 � A2 :: (S(�1A2 :: K
0))�(S(�2A2 :: [�1A2=�]K

00)).

2. (a) Assume � ` A :: K.

(b) By Rule 2.33, � ` A � A :: K.

(c) By the previous part, � ` A � A :: S(A :: K).

(d) By validity, � ` S(A :: K) and � ` A :: S(A :: K).

3. � Case K = T and S(A2 :: K) = S(A2). By Rule 2.44, � ` A1 � A2 :: S(A2).

� Case K = S(B) and S(A2 :: K) = S(A2). By Rule 2.44, � ` A1 � A2 :: S(A2).

� Case K = ��::K 0:K 00 and S(A2 :: K) = ��::K 0:S(A2 � :: K 00).

(a) Inductively by part 5 we have �; �::K 0 ` A1 � :: S(A2 � :: K 00).

(b) and �; �::K 0 ` A2 � :: K 00.

(c) By the inductive hypothesis, �; �::K 0 ` A1 � � A2 � :: S(A2 � :: K 00).

(d) Therefore by Rule 2.42 we have � ` A1 � A2 :: ��::K
0:S(A2 � :: K 00).

� K = ��::K 0:K2 and S(A2 :: K) = (S(�1A2 :: K
0))�(S(�2A2 :: [�1A2=�]K

00)).

(a) Then � ` �1A1 :: S(�1A2 :: K
0) and

(b) � ` �2A1 :: S(�2A2 :: [�1A1=�]K
00).

(c) � ` �1A2 :: K
0 and � ` �2A2 :: [�1A2=�]K

0,

(d) so by the inductive hypothesis, � ` �1A1 � �1A2 :: S(�1A2 :: K
0) and

(e) � ` �2A1 � �2A2 :: S(�2A2 :: [�1A1=�]K
00).

(f) By Rule 2.41 we have � ` A1 � A2 :: (S(�1A2 :: K
0))�(S(�2A2 :: [�1A2=�]K

00)).

4. � Case K = T and S(A :: K) = S(A). By Rule 2.11 we have � ` S(A :: T) � T.

� Case K = S(B) and S(A :: K) = S(A).

(a) Then � ` A � B :: T so

(b) � ` S(A) � S(B).
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� Case K = ��::K1:K2 and S(A :: K) = ��::K1:S(A� :: K2).

(a) Then � ` K1 and �; �::K1 ` A� :: K2.

(b) By the inductive hypothesis, �; �::K1 ` S(A� :: K2) � K2.

(c) Therefore, � ` ��::K1:S(A� :: K2) � ��::K1:K2.

� Case K = ��::K 0:K 00 and S(A :: K) = (S(�1A :: K 0))�(S(�2A :: [�1A=�]K
00)).

(a) Then � ` �1A :: K 0

(b) so by the inductive hypothesis, � ` S(�1A :: K 0) � K 0.

(c) Furthermore, � ` �2A :: [�1A=�]K
00.

(d) By the inductive hypothesis, � ` S(�2A :: [�1A=�]K
00) � [�1A=�]K

00.

(e) Also, by Proposition 3.1.1 and weakening, �; �::S(�1A :: K 0) ` K 00 � K 00.

(f) By part 3 we have �; �::S(�1A :: K 0) ` � � �1A :: S(�1A :: K 0)

(g) so by functionality we have �; �::S(�1A :: K 0) ` [�1A=�]K
00 � K 00.

(h) Therefore, � ` (S(�1A :: K 0))�(S(�2A :: [�1A=�]K
00)) � ��::K 0:K 00.

5. (a) Assume � ` A :: ��::K 0:K 00 and � ` A0 :: K 0.

(b) Then by part 4, � ` S(A0 :: K 0) � K 0.

(c) By validity and re
exivity we have �; �::K 0 ` K 00 � K 00.

(d) By weakening, �; �::S(A0 :: K 0) ` K 00 � K 00.

(e) Since by part 3 we have �; �::S(A0 :: K 0) ` � � A0 :: S(A0 :: K 0),

(f) by functionality it follows that �; �::S(A0 :: K 0) ` K 00 � [A0=�]K 00.

(g) Thus � ` ��::K 0:K 00 � S(A0 :: K 0)!([A0=�]K 00).

(h) By subsumption � ` A :: S(A0 :: K 0)!([A0=�]K 00),

(i) so by Rule 2.25 we have � ` AA0 :: [A0=�]K 00.

The proof for Rule 2.99 is exactly analogous.

6. (a) Assume � ` ��::K 0:K 00, � ` �1A1 � �1A2 :: K
0, and � ` �2A1 � �2A2 :: [�1A1=�]K

00.

(b) Then by symmetry and part 1, � ` �1A1 � �1A2 :: S(�1A1 :: K
0),

(c) so � ` A :: S(�1A1 :: K
0)�[A1=�]K

00.

(d) Now � ` S(�1A1 :: K
0) � K 0.

(e) Since �; �::K 0 ` K 00 by inversion,

(f) by weakening and re
exivity we have �; �::S(�1A1 :: K
0) ` K 00 � K 00.

(g) By functionality, �; �::S(�1A1 :: K
0) ` [�1A1=�]K

00 � K 00.

(h) Thus � ` S(�1A1 :: K
0)�[�1A1=�]K

00 � ��::K 0:K 00.

(i) By subsumption, � ` A1 � A2 :: ��::K
0:K 00.

7. � Case K1 = T or S(A1) and K2 = T or S(A2).

(a) S(A1 :: K1) = S(A1),

(b) S(A2 :: K2) = S(A2),

(c) and the desired conclusion follows by Rule 2.12.

� Case K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

(a) S(Ai :: Ki) = ��::K 0
i
:S(Ai � :: K 00

i
).
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(b) By inversion � ` K 0
2 � K 0

1 and �; �::K 0
2 ` K

00
1 � K 00

2 .

(c) Now �; �::K 0
2 ` A1 � � A2 � :: K 00

1 .

(d) By the inductive hypothesis, �; �::K 0
2 ` S(A1 � :: K 00

1 ) � S(A2 � :: K 00
2 ).

(e) The conclusion follows by Rule 2.14.

� Case K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

(a) S(A1 :: K1) = ��::S(�1A1 :: K
0
1):S(�2A1 :: [�1A1=�]K

00
1 )

(b) and S(A2 :: K2) = ��::S(�1A2 :: K
0
2):S(�2A2 :: [�1A2=�]K

00
2 ).

(c) Now � ` �1A1 � �1A2 :: K
0
1

(d) and � ` �2A1 � �2A2 :: [�1A1=�]K
00
1 .

(e) By the inductive hypothesis, � ` S(�1A1 :: K
0
1) � S(�1A2 :: K

0
2).

(f) Since � ` [�1A1=�]K
00
1 � [�1A2=�]K

00
2 ,

(g) the inductive hypothesis applies, yielding

� ` S(�2A1 :: [�1A1=�]K
00
1 ) � S(�2A2 :: [�1A2=�]K

00
2 ). (Here it is important that

the induction is on the size of K1 and not by induction on the proof � ` K1 � K2.)

(h) The desired result follows by weakening and Rule 2.15.

Proposition 3.3.4

The remaining rules from x2.3 are all admissible

Proof: By cases.

� Case: Rule 2.100.
� ` ��::K 0:K 00

� ` A0 :: K 0 � ` A00 :: [A0=�]K 00

� ` hA0; A00i :: ��::K 0:K 00

1. Assume � ` ��::K 0:K 00, � ` A0 :: K 0, and � ` A00 :: [A0=�]K 00.

2. Then � ` A0 :: S(A0 :: K 0),

3. so � ` hA0; A00i :: S(A0 :: K 0)�[A0=�]K 00.

4. Now � ` S(A0 :: K 0) � K 0.

5. Since �; �::K 0 ` K 00 by inversion,

6. by weakening and re
exivity we have �; �::S(A0 :: K 0) ` K 00 � K 00.

7. By functionality, �; �::S(A0 :: K 0) ` [A0=�]K 00 � K 00.

8. Thus � ` S(A0 :: K 0)�[A0=�]K 00 � ��::K 0:K 00.

9. By subsumption, � ` hA0; A00i :: ��::K 0:K 00.

� Case: Rule 2.101. Analogous to the proof for Rule 2.100.

� Case: Rules 2.103 and 2.104. Analogous to the proof for Rule 2.98.

� Case: Rules 2.105 and 2.106. Analogous to the proof for Rule 2.100.

� Case: Rule 2.107
�; �::K 0 ` A :: K 00 � ` A0 :: K 0

� ` (��::K 0:A)A0 � [A0=�]A :: [A0=�]K 00
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1. Assume �; �::K2 ` A :: K and � ` A2 :: K2.

2. Then �; �::K2 ` A :: S(A :: K),

3. so � ` ��::K2:A :: ��::K2:S(A :: K).

4. By Rule 2.98 we have � ` (��::K2:A)A2 :: S([A2=�]A :: [A2=�]K).

5. By substitution, � ` [A2=�]A :: [A2=�]K.

6. Thus � ` (��::K2:A)A2 � [A2=�]A :: [A2=�]K by Rule 2.97.

� Case: Rule 2.108
� ` A1 :: K1 � ` A2 :: K2

� ` �1hA1; A2i � A1 :: K1

1. Assume � ` A1 :: K1 and � ` A2 :: K2.

2. Then � ` A1 :: S(A1 :: K1),

3. so � ` hA1; A2i :: S(A1 :: K1)�K2.

4. Thus � ` �1hA1; A2i :: S(A1 :: K1)

5. and � ` �1hA1; A2i � A1 :: K1.

� Case: Rules 2.109{2.111. Analogous proof to Rule 2.108.

� Case: Rule 2.112. By Rule 2.107 and functionality.

� Case: Rules 2.113{2.116. By Rules 2.108{2.111 and subsumption.

� Case: Rules 2.117{2.118. By the �-rules and extensionality.

� Case: Rules 2.120{2.121. By validity and subsumption.

� Case: Rules 2.123{2.124. By validity and subsumption.

3.4 Kind Strengthening

One can drop those constructor variables in the context which are not referred to (directly or

indirectly) in a judgment. This follows from the fact that every kind classi�es some constructor:

Proposition 3.4.1 (Inhabitation of Kinds)

If � ` K then there exists a constructor A such that � ` A :: K.

Proof: By induction on the size of K, and cases on the form of K.

� Case: K = T. Pick A = Int.

� Case: K = S(A). Then � ` A :: S(A).

� Case: K = ��::K 0:K 00. Then �; �::K 0 ` K 00 by inversion, so by the inductive hypothesis

there exists A00 such that �; �::K 0 ` A00 :: K 00. Choose A = ��::K 0:A00.

� Case: K = ��::K 0:K 00. Then � ` K 0 and �; �::K 0 ` K 00 by inversion. By the inductive

hypothesis we may choose � ` A0 :: K 0. By substitution, � ` [A0=�]K 00, so inductively we

may choose � ` A00 :: [A0=�]K 00. (It is important here that induction proceeds by the size of

the kind, and that size is invariant under substitutions.) By the admissible Rule 2.100,

� ` hA0; A00i :: ��::K 0:K 00.
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Corollary 3.4.2 (Kind Strengthening)

If �1; �::L;�2 ` J and � 62 FV(�2) [ FV(J ) then �1;�2 ` J .

Proof:

1. There exists a strict subderivation �1; �::L;�2 ` ok, which itself contains a subderivation

�1 ` L.

2. By Proposition 3.4.1 there exists �1 ` B :: L.

3. By Proposition 3.1.11 we have �1; [B=�]�2 ` [B=�]J

4. But since � is not free in �2 or J , this judgment is exactly �1;�2 ` J .

This proof strategy is not applicable for dropping unused term variables in the context; in

general one does not expect every type to be inhabited by values. Therefore the corresponding

proof of strengthening for term variables is delayed until x7.4.
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Chapter 4

Algorithms for Kind and Constructor

Judgments

4.1 Introduction

In this chapter I present algorithms for checking instances of the kind and constructor-level judg-

ments. For each such algorithm, proving correctness requires showing that three properties hold.

� Soundness: if the algorithm veri�es the judgment then the corresponding MIL0 judgment is

provable.

� Completeness: if a MIL0 judgment is provable then the algorithm will verify the judgment.

� Termination: the algorithm always either veri�es or rejects a judgment. (That is, the

judgment is decidable.)

In this chapter I show soundness for all of the algorithms, but most completeness and termina-

tion results are postponed until the next chapter.

4.2 Principal Kinds

Checking the validity of type constructors is simpli�ed by the existence of principal kinds. A

principal kind of a constructor (with respect to a given typing context) is a most-speci�c kind of

� . bi * S(bi)
� . � * S(� :: �(�))

� . � * S(� :: T!T!T)

�. ! * S(!:: T!T!T)

� . ��::K 0:A * ��::K 0:K 00 if �; � : K 0 . A * K 00

� . AA0 * [A0=�]K 00 if � . A * ��::K 0:K 00

� . hA0; A00i * K 0�K 00 if � . A0 * K 0 and � . A00 * K 00.

� . �1A * K 0 if � . A * ��::K 0:K 00

� . �2A * [�1A=�]K
00 if � . A * ��::K 0:K 00

Figure 4.1: Algorithm for Principal Kind Synthesis
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that constructor. Formally, K is principal for A in � if and only if � ` A :: K and whenever

� ` A :: L we have � ` K � L. When they exist, principal kinds are unique up to provable

equivalence.

I show that every well-kinded constructor has a principal kind by giving a correct algorithm for

explicitly calculating it; see Figure 4.1. This algorithm, like all of the algorithms I will present, is

organized as a collection of \algorithmic" inference rules. The rules have been carefully designed

so that a derivation � . A * K corresponds exactly to a run of the principal kind computation

algorithm which takes � and A as inputs and produces the principal kind K as the result. To this

end, the inference rules are deterministic: given � and A, there is at most one kind K such that

� . A * K. Furthermore, there is at most one rule which could possibly be used to produce such

a K | there is exactly one inference rule for each syntactic form that A might have. Thus given

� and A, a \proof search" for K such that � . A * K corresponds to a direct calculation of the

principal kind.

For example, in the empty typing context the principal kind of ��::T:��::T:h�; �i is computed
as follows:

.��::T:��::T:h�; �i * ��::T:��::T:S(�)�S(�)
because �::T . ��::T:h�; �i * ��::T:S(�)�S(�)

because �::T; �::T . h�; �i * S(�)�S(�)
because �::T; �::T . � * S(�) and �::T; �::T . � * S(�)

The principal type synthesis algorithm is correct, as shown by the following theorem; note that

K is independent of L and hence is principal.

Theorem 4.2.1 (Principal Kinds)

If � ` A :: L then there exists K such that � . A * K and � ` A :: K and � ` K � S(A :: L), so

that � ` K � L.

Proof: By induction on the proof of the assumption and cases on the last rule used.

� Case: Rule 2.20.
� ` ok

� ` b :: T

1. � . b * S(b) and � ` b :: S(b).

2. S(b :: T) = S(b).

3. � ` b � b :: T, so � ` S(b) � S(b).

� Case: Rule 2.23.
� ` ok

� ` � :: �(�)

1. � . � * S(� :: �(�)).

2. By Rules 2.92 and 2.93, � ` S(� :: �(�)) and � ` � :: S(� :: �(�)).

3. By re
exivity, � ` S(� :: �(�)) � S(� :: �(�)).

� Case: Rule 2.24.
�; �::K 0 ` A :: L00

� ` ��::K 0:A :: ��::K 0:L00
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1. By the inductive hypothesis �; �::K 0 . A * K 00,

2. �; �::K 0 ` A :: K 00,

3. and �; �::K 0 ` K 00 � S(A :: L00).

4. Then � . ��::K 0:A * ��::K 0:K 00

5. and � ` (��::K 0:A) :: (��::K 0:K 00).

6. Now �; �::K 0 ` (��::K 0:A)� � A :: L00 by weakening and Rule 2.107,

7. so �; �::K 0 ` S(A :: L00) � S((��::K 0:A)� :: L00) by Rule 2.95.

8. Since S(��::K 0:A :: ��::K 0:L00) = ��::K 0:S((��::K 0:A)� :: L00)

9. and � ` K 0 � K 0,

10. we have � ` ��::K 0:K 00 � S(��::K 0:A :: ��::K 0:L00).

� Case: Rule 2.25.
� ` A :: L0!L00 � ` A0 :: L0

� ` AA0 :: L00

1. By the inductive hypothesis � . A * K

2. � ` A :: K

3. and � ` K � S(A :: L0!L00).

4. Now S(A :: L0!L00) = ��::L0:S(A� :: L00) where � 62 FV(A) [ FV(L00).

5. By inversion of subkinding, K = ��::K 0:K 00,

6. � ` L0 � K 0,

7. and �; �::L0 ` K 00 � S(A� :: L00).

8. Then � . AA0 * [A0=�]K 00.

9. By subsumption, � ` A0 :: K 0, so

10. � ` AA0 :: [A0=�]K 00.

11. Finally, by Lemma 3.3.2 and Proposition 3.1.11 applied to line 7 we have

� ` [A0=�]K 00 � S(AA0 :: L00).

� Case: Rule 2.27
� ` A :: ��::L0:L00

� ` �1A :: L0

1. By the inductive hypothesis, � . A * K,

2. � ` A :: K,

3. and � ` K � S(A :: ��::L0:L00).

4. Now S(A :: ��::L0:L00) = S(�1A :: L0)�S(�2A :: [�1A=�]L
00).

5. By inversion of subkinding, K = ��::K 0:K 00,

6. and � ` K 0 � S(�1A :: L0).

7. Finally, � . �1A * K 0

8. and � ` �1A :: K 0.
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� Case: Rule 2.28
� ` A :: ��::L0:L00

� ` �2A :: [�1A=�]L
00

1. By the inductive hypothesis, � . A * K,

2. � ` A :: K,

3. and � ` K � S(A :: ��::L0:L00).

4. Now S(A :: ��::L0:L00) = S(�1A :: L0)�S(�2A :: [�1A=�]L
00).

5. By inversion of subkinding, K = ��::K 0:K 00,

6. � ` K 0 � S(�1A :: L0),

7. and �; �::K 0 ` K 00 � S(�2A :: [�1A=�]L
00).

8. Then � ` �1A :: K 0.

9. so by Proposition 3.1.11 applied to line 7, � ` [�1A=�]K
00 � S(�2A :: [�1A=�]L

00).

10. Finally, � . �2A * [�1A=�]K
00

11. and � ` �2A :: [�1A=�]K
00.

� Case: Rule 2.26
� ` A0 :: L0 � ` A00 :: L00

� ` hA0; A00i :: L0�L00

1. By the inductive hypothesis, � . A0 * K 0,

2. � ` A0 :: K 0,

3. � ` K 0 � S(A0 :: L0),

4. � . A00 * K 00,

5. � ` A00 :: K 00,

6. and � ` K 00 � S(A00 :: L00).

7. Then � . hA0; A00i * K 0�K 00,

8. and � ` hA0; A00i :: K 0�K 00.

9. Now S(hA0; A00i :: L0�L00) = S(�1hA
0; A00i :: L0)�S(�2hA

0; A00i :: L00).

10. By Rule 2.95, � ` S(A0 :: L0) � S(�1hA
0; A00i :: L0)

11. and � ` S(A00 :: L00) � S(�2hA
0; A00i :: L00).

12. Therefore, � ` K 0�K 00 � S(hA0; A00i :: L0�L00).

� Case: Rule 2.29
� ` A :: T

� ` A :: S(A)

By the inductive hypothesis, noting that S(A :: S(A)) = S(A).

� Case: Rule 2.31
�; �::K 0 ` A� :: K 00

� ` A :: ��::L0:L00 � ` K 0 � L0

� ` A :: ��::K 0:K 00
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1. By the inductive hypothesis, � . A * K,

2. � ` A :: K,

3. and � ` K � S(A :: ��::L0
1:L

00
1).

4. Now S(A :: ��::L0
1:L

00
1) = ��::L0:S(A� :: L00

1)

5. so by inversion K = ��::K 0:K 00

6. and � ` L0
1 � K 0.

7. Since � ` L0 � L0
1, we have � ` L0 � L0

1 and hence � ` L0 � K 0.

8. Also by the inductive hypothesis, �; �::L0 . A� * K 00
2 ,

9. �; �::L0 ` A� :: K 00
2 ,

10. and �; �::L0 ` K 00
2 � S(A� :: L00).

11. But since the principal kind synthesis algorithm is deterministic and clearly obeys

weakening, we have K 00
2 = [�=�]K 00 = K 00.

12. Now S(A :: ��::L0:L00) = ��::L0:S(A� :: L00).

13. Therefore � ` ��::K 0:K 00 � S(A :: ��::L0:L00).

� Case: Rule 2.30.
� ` �1A :: L0 � ` �2A :: L00

� ` A :: L0�L00

1. There is a subderivation � ` A :: K1 for some kind K1 (see Proposition 4.4.1 below).

2. By the inductive hypothesis, � . �1A * K 0,

3. � ` �1A :: K 0,

4. and � ` K 0 � S(�1A :: L0).

5. Also, � . �2A * K 00,

6. � ` �2A :: K 00,

7. and � ` K 00 � S(�2A :: [�1A=�]L
00).

8. Principal kind synthesis never returns a dependent � type, so for kind synthesis for

�1A and �2A to have succeeded it must be that � . A * K 0�K 00.

9. By the inductive hypothesis, � ` A :: K 0�K 00.

10. Since S(A :: ��::L0:L00) = S(�1A :: L0)�S(�2A :: [�1A=�]L
00),

11. � ` K 0�K 00 � S(A :: ��::L0:L00).

12. so by the inductive hypothesis � ` A :: K.

� Rule 2.32
� ` A :: L2 � ` L2 � L

� ` A :: L

The desired result follows from the inductive hypothesis and by Rule 2.95 to get

� ` S(A :: L2) � S(A :: L).
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Kind validity

� .T

� . S(A) if � . A� T

� .��::K 0:K 00 if � . K 0 and �; �::K 0 . K 00.

� . ��::K 0:K 00 if � . K 0 and �; �::K 0 . K 00.

Subkinding

� .T � T always

� . S(A) � T always

� . S(A1) � S(A2) if � . A1 , A2 :: T.

� .��::K 0
1:K

00
1 � ��::K 0

2:K
00
2 if � . K 0

2 � K 0
1 and �; �::K 0

2 . K
00
1 � K 00

2 .

� . ��::K 0
1:K

00
1 � ��::K 0

2:K
00
2 if � . K 0

1 � K 0
2 and �; �::K 0

1 . K
00
1 � K 00

2 .

Kind equivalence

� .T, T always

� . S(A1), S(A2) if � . A1 , A2 :: T

� .��::K1:L1 , ��::K2:L2 if � . K1 , K2 and �; �::K1 . L1 , L2

� . ��::K1:L1 , ��::K2:L2 if � . K1 , K2 and �; �::K1 . L1 , L2

Figure 4.2: Algorithms for Kinds

4.3 Algorithms for Kind and Constructor Judgments

Figure 4.2 gives algorithms for determining kind validity, subkinding, and kind equivalence. Each

is speci�ed as a deterministic set of inference rules. The symbol . is used instead of ` to distinguish

these as algorithmic judgments.

The kind validity judgment

� . K

models the declarative kind validity judgment � ` K. Viewed as an algorithm this takes a well-

formed context � and a kind K and determines whether there is a proof of � ` K. For any

conclusion, at most one rule could apply; there is one rule for each syntactic form that K might

have.

The subkinding judgment

� . K1 � K2

models the declarative subkinding judgment � ` K1 � K2. As an algorithm, given kinds satisfying

� ` K1 and � ` K2 it determines whether there is a proof � ` K1 � K2.

Similarly, the kind equivalence judgment

� . K1 , K2

models declarative equivalence; given two kinds satisfying � ` K1 and � ` K2 it determines whether

there is a proof � ` K1 � K2.

Figure 4.3 shows the algorithms for determining the well-formedness of constructors. The kind

synthesis judgment

� . A� K
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Kind synthesis

� . Int� S(Int)

� . � � S(� :: T!T!T)

� . ! � S(!:: T!T!T)

� . �� S(� :: �(�)) if � 2 dom(�).

� . ��::K 0:A� ��::K 0:K 00 if � . K 0 and �; �::K 0 . A� K 00.

� . AA0
� [A0=�]K 00 if � . A� ��::K 0:K 00 and � . A� K 0.

� . hA0; A00i� K 0�K 00 if � . A0
� K 0 and � . A00

� K 00.

� . �1A� K 0 if � . A� ��::K 0:K 00

� . �2A� [�1A=�]K
00 if � . A� ��::K 0:K 00

Kind checking

� . A� K if � . A� L and � . L � K.

Figure 4.3: Algorithms for Constructor Validity

combines constructor validity checking with principal kind synthesis. As an algorithm, given a

well-formed context � and a constructor A it returns a principal kind K of A if A is well-formed

(i.e., if it can be given any kind at all) and fails otherwise.

Because all well-formed constructors have principal kinds, it is easy to de�ne a kind checking

judgment

� . A� K:

which directly models the constructor validity checking. Given a context and kind satisfying � ` K

and constructor A, this algorithm determines whether � ` A :: K holds.

The judgments involved in constructor equivalence are shown in Figure 4.4. Following Co-

quand [Coq91] equivalence is determined in a direct fashion rather than by independently normal-

izing the two constructors and comparing normal forms (but see x5.5).
My algorithm is more involved than Coquand's because of the context and kind-dependence

of equivalence. The algorithmic constructor equivalence rules are divided into a kind-directed

part and a structure-directed part, while Coquand needs only structural comparison. Weak head

normalization is extended to include looking for de�nitions in the context. I have also extended

the algorithm in a natural fashion to handle � kinds, pairing, and projection.

The algorithm uses the notion of an elimination context ; this is a series of applications to and

projections from \�", which is called the context's hole. If E is such a context, then E [A] represents
the constructor resulting by replacing the hole in E with A. If a constructor is either of the form

E [�] or of the form E [c] then this will be called a path and denoted by p. (Recall that c ranges over

constant type constructors.)

E ::= �
j E A
j �1E
j �2E

The kind extraction relation is written

� . p " K:
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Kind Extraction

� . b " T
� .� " T!(T! T)

�. *" T!(T! T)

� . � " �(�)
� . �1p " K

0 if � . p " ��::K 0:K 00

� . �2p " [�1p=�]K
00 if � . p " ��::K 0:K 00

� . pA " [A=�]K 00 if � . p " ��::K 0:K 00

Weak head reduction

� . E [(��::K:A)A0]; E [[A0=�]A]

� . E [�1hA1; A2i]; E [A1]

� . E [�2hA1; A2i]; E [A2]

� . E [�]; B if � . E [�] " S(B)

Weak head normalization

� . A + B if � . A; A0 and � . A0 + B

� . B + B otherwise

Algorithmic constructor equivalence

� . A1 , A2 :: T if � . A1 + p1, � . A2 + p2, and � . p1 $ p2 " T
� . A1 , A2 :: S(B) always

� . A1 , A2 :: ��::K
0:K 00 if �; �::K 0 . A1 �, A2 � :: K 00

� . A1 , A2 :: ��::K
0:K 00 if � . �1A1 , �1A2 :: K

0

and � . �2A1 , �2A2 :: [�1A1=�]K
00

Algorithmic path equivalence

� . b$ b " T
� .� $ � " T!(T! T)

�. *$*" T!(T! T)

� . �$ � " �(�)
� . p1A1 $ p2A2 " [A1=�]K

00 if � . p1 $ p2 " ��::K
0:K 00 and � . A1 , A2 :: K

0

� . �1p1 $ �1p2 " K
0 if � . p1 $ p2 " ��::K

0:K 00

� . �2p1 $ �2p2 " [�1p1=�]K
00 if � . p1 $ p2 " ��::K

0:K 00

Figure 4.4: Kind and Constructor Equivalence Algorithms
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Given a well-formed context � and p which is well-formed in this context, kind extraction attempts

to determine a kind for a path by taking the kind of the head variable or constant and doing

appropriate substitutions and projections. A path is said to have a de�nition if its extracted kind

is a singleton kind S(B); in this case B is said to be the de�nition of the path.

The extracted kind is not always the most precise kind. For example, �::T . � " T but the

principal kind of � in this context would be S(�). Intuitively the extracted kind is the most precise

kind which can be assigned without the singleton introduction rule, or Rules 2.30 and 2.31 which

can be viewed as extending singleton introduction to higher kinds. This suÆces to make S(p :: K)

principal for p if K is its extracted kind.

The weak head reduction relation

� . A; B

takes � and A and returns the result of applying one step of head �-reduction if A has such a redex.

If the head of A is a path with a de�nition reduction then the de�nition is returned. Otherwise,

there is no weak head reduct.

The weak head normalization relation

� . A + B

takes � and A and repeatedly applies weak head reduction to A until a weak head normal form is

found. Weak head reduction and weak head normalization are deterministic, since the head �-redex

is always unique if one exists, and a path can have at most one pre�x with a de�nition.

The algorithmic constructor equivalence relation

� . A1 , A2 :: K

models the declarative judgment � ` A1 � A2 :: K on well-formed constructors. As an algorithm

this is de�ned by induction/recursion on the kind at which the two constructors are being compared.

At � and � kinds the algorithm uses extensionality to reduce the problem to comparisons of

constructors at kinds whose size is strictly smaller. When comparing two constructors at a singleton

kind the algorithm can immediately report success because we only care about inputs where � `
A1 :: K and � ` A2 :: K; if K = S(B) then A1 � B � A2 automatically. Finally, if we are

comparing two constructors of kind T then the algorithm must do some real work. This consists of

head-normalizing the two constructors, which (if the process terminates) yields two paths without

de�nitions. Then the paths are compared component-wise.

This component-wise comparison is speci�ed by the algorithmic path equivalence relation

� . p1 $ p2 " K:

Given two well-formed head-normal paths � ` p1 :: K1 and � ` p2 :: K2, this should succeed

yielding K if and only if � ` p1 � p2 :: K and K is the extracted kind of p1 with respect to

�. The only question that arises when writing down these rules is in the case for comparing two

applications. If the two function parts are recursively found to be equal, the two arguments must

then be compared. Since the two arguments need not be in normal form, they must be compared

using the , judgment; in this case we must decide at which kind the two arguments should be

compared.

The right answer is the domain kind of the extracted kind of the function parts, which (by

Lemma 4.4.2) below is the same as the domain kind of the principal kind of the function parts.

Assume we want to compare p1A1 and p2A2 using the typing context �, and that the principal
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kind of p1 (and p2, since they have been veri�ed equivalent) is ��::K 0:K 00. Then this is the least

kind at which the two paths are provably equal, and hence by contravariance the domain kind is

greatest. By comparing A1 and A2 at kind K 0, then, we have the best chance of proving them

equal. (Two constructors equivalent at a subtype will be equivalent at a supertype, but not vice

versa.) Thus to �nd as many equivalences as possible K 0 is intuitively the correct kind for the

algorithm to compare function arguments. Since the extracted kind agrees with the principal kind

in negative positions, and it suÆces to look at the domain of the extracted function kind rather

than computing the full principal kind.

As an example, let � = �::(S(Int)!T)!T. Then:

� . � (��::T:�), � (��::T:Int) :: T

because � . � (��::T:�) + � (��::T:�)

and � . � (��::T:Int) + � (��::T:Int)

and � . � (��::T:�)$ � (��::T:Int) " T
because � . � $ � " (S(Int)!T)!T

and � . (��::T:�), (��::T:Int) :: S(Int)!T

because �; �::S(Int) . (��::T:�)�, (��::T:Int)� :: T

because �; �::S(Int) . (��::T:�)� + Int

and �; �::S(Int) . (��::T:Int)� + Int

and �; �::S(Int) . Int$ Int " T:

4.4 Soundness of the Algorithmic Judgments

In order to show soundness of the constructor equivalence algorithm I �rst show that given a well-

formed path, kind extraction succeeds and returns a valid kind for this path using induction on

the well-formedness proof for the path. (Compare the statement of Theorem 4.2.1 above and of

Lemma 4.4.2 below.)

Proposition 4.4.1

If � ` E [A] :: L then there is a subderivation of the form � ` A :: K.

Proof: By induction on the kinding derivation. If E = � then the result follows trivially; otherwise,
the result follows by the inductive hypothesis.

Lemma 4.4.2

If � ` p :: K then there exists L such that � . p " L, � ` p :: L, and � ` S(p :: L) � K.

Proof: By induction on the proof of the hypothesis.

� Case: Rule 2.20. p = b.

1. Then � . b " T and S(b :: T) = S(b).

2. By Rule 2.20, � ` b :: T

3. and by Rule 2.11, � ` S(b) � T.

� Case: Rules 2.21 and 2.22. Similar to previous case, using admissible rule 2.94.

� Case: Rule 2.23. p = �.

74



1. Then � . � " �(�).

2. By Rule 2.23 � ` � :: �(�),

3. and by Rule 2.94, � ` S(� :: �(�)) � �(�).

� Case: Rule 2.25.
� ` p :: K 0!K 00 � ` A0 :: K 0

� ` pA0 :: K 00

1. By the inductive hypothesis, � . p " ��::L0:L00,

2. � ` p :: ��::L0:L00, and

3. � ` S(p :: ��::L0:L00) � K 0!K 00.

4. Then � . pA0 " [A0=�]L00.

5. Since S(p :: ��::L0:L00) = ��::L0:S(p� :: L00),

6. we have by inversion of Rule 2.14 that � ` K 0 � L0 and �; �::K 0 ` S(p� :: L00) � K 00

where � 62 FV(K 00) and � 62 dom(�).

7. By subsumption, � ` A0 :: L0

8. and hence � ` pA0 :: [A0=�]L00 by Rule 2.98.

9. Finally, by substitution we have � ` S(pA0 :: [A0=�]L00) � K 00.

� Case: Rule 2.27.
� ` p :: ��::K 0:K 00

� ` �1p :: K 0

1. By the inductive hypothesis, � . p " L,

2. � ` p :: L, and

3. � ` S(p :: L) � ��::K 0:K 0.

4. By inversion S(p :: L) must be a � kind, and so L0 = ��::L0:L00 for some L0 and L00.

5. Then � . �1p " L
0,

6. and by Rule 2.27, � ` �1p :: L
0.

7. Since S(p :: ��::L0:L00) = S(�1p :: L
0)�S(�2p :: [�1p=�]L

00),

8. by inversion of rule 2.15 we have � ` S(�1p :: L
0) � K 0.

� Case: Rule 2.28.
� ` p :: ��::K 0:K 00

� ` �2p :: [�1p=�]K 0

1. As in the previous case, � . p " ��::L0:L00,

2. � ` p :: ��::L0:L00, and

3. � ` S(p :: ��::L0:L00) � ��::K 0:K 00.

4. Then � . �2p " [�1p=�]L
00,

5. and � ` �2p :: [�1p=�]L
00 by Rule 2.28.

6. Since S(p :: ��::L0:L00) = S(�1p :: L
0)�S(�2p :: [�1p=�]L

00),

7. by inversion of Rule 2.15 �; �::S(�1p :: L
0) ` S(�2p :: [�1p=�]L

00) � K 00.

8. Then � ` �1p :: S(�1p
0 :: L0)
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9. so by Proposition 3.1.11 we have � ` S(�2p :: [�1p=�]L
00) � [�1p=�]K

00.

� Case: Rule 2.29
� ` p :: T

� ` p :: S(p)

1. By the inductive hypothesis, � . p " L,

2. � ` p :: L,

3. and � ` S(p :: L) � T.

4. Thus L is either T or a singleton, and S(p :: L) = S(p).

5. and by re
exivity, � ` S(p) � S(p).

� Case: Rule 2.30.
� ` �1p :: K

0 � ` �2p :: K
00

� ` p :: K 0�K 00

1. By Proposition 4.4.1 and the inductive hypothesis, � . p " ��::L0:L00,

2. � ` p :: ��::L0:L00,

3. � . �1p " L
0,

4. � ` �1p :: L
0,

5. � ` S(�1p :: L
0) � K 0,

6. � . �2p " [�1p=�]L
00,

7. � ` �2p :: [�1p=�]L
00,

8. and � ` S(�2p :: [�1p=�]L
00) � K 00.

9. Thus � ` S(p :: ��::L0:L00) � K 0�K 00

� Case: Rule 2.31.
�; �::K 0 ` p� :: K 00

� ` p :: ��::L0:L00 � ` K 0 � L0

� ` p :: ��::K 0:K 00

1. By the inductive hypothesis, � . p " ��::L0:L00,

2. � ` p :: ��::L0:L00,

3. and � ` (��::L0:S(p� :: L00)) � ��::K 0:K 00
1 .

4. By inversion, � ` K 0 � L0.

5. By the inductive hypothesis, and determinacy and weakening of the kind extraction

algorithm, �; �::K 0 . p� " L00

6. and �; �::K 0 ` S(p� :: L00) � K 00.

7. Therefore, � ` ��::L0:S(p� :: L00) � ��::K 0:K 00.

� Case: Rule 2.32.
� ` p :: K1 � ` K1 � K2

� ` p :: K2

1. By the inductive hypothesis, � . p " L,

2. � ` p :: L,
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3. and � ` S(p :: L) � K1.

4. By transitivity, � ` S(p :: L) � K2.

Corollary 4.4.3

If � ` E [p] :: K and � . p " S(A) then � ` E [p] � E [A] :: K.

Proof:

1. By Lemma 4.4.2, � . E [p] " L,

2. � ` E [p] :: L,

3. and � ` S(E [p] :: L) � K.

4. By the determinacy of kind extraction, this can be reconciled with � . p " S(A) only if E = �
and L = S(A).

5. Thus � ` p � A :: T.

6. and S(E [p] :: L) = S(p).

7. By inversion of subkinding, either K = T or K = S(A0) with � ` p � A0 :: T.

8. In either case, � ` p � A :: K.

9. That is, � ` E [p] � E [A] :: K as desired.

Proposition 4.4.4

If � ` ��::K 0:A :: L then �; �::K 0 ` A :: K 00 for some kind K 00.

Proof: By induction on derivations. For proofs ending with Rule 2.24 the desired result is given

directly; for Rules 2.31 and 2.32, the result follows directly by the inductive hypothesis.

Proposition 4.4.5

If � ` E [(��::L:A)A0] :: K then � ` E [(��::L:A)A0] � E [[A0=�]A] :: K

Proof: By induction on the given derivation.

� Case:
� ` ��::L0:A :: ��::K 0:K 00 � ` A0 :: K 0

� ` (��::L0:A)A0 :: [A0=�]K 00

where E = �.

1. Using Proposition 4.4.4 and the correctness of principal kind synthesis we have

�; �::L0 . A * L00,

2. �; �::L0 ` A :: L00,

3. � . ��::L0:A * ��::L0:L00,

4. � ` ��::L0:A :: ��::L0:L00,

5. and � ` ��::L0:L00 � ��::K 0:K 00.
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6. By inversion, � ` K 0 � L0

7. and �; �::K 0 ` L00 � K 00.

8. By subsumption, � ` A0 :: L0.

9. Thus � ` (��::L:A)A0 � [A0=�]A :: [A0=�]L00 by Rule 2.107.

10. By substitution � ` [A0=�]L00 � [A0=�]K 00.

11. Therefore by subsumption we have � ` (��::L:A)A0 � [A0=�]A :: [A0=�]K 00

� All other cases follow by structural rules and re
exivity of declarative equivalence.

Proposition 4.4.6

1. If � ` E [�1hA
0; A00i] :: K then � ` E [�1hA

0; A00i] � E [A0] :: K.

2. If � ` E [�2hA
0; A00i] :: K then � ` E [�2hA

0; A00i] � E [A00] :: K.

3. If � ` hA0; A00i :: ��::K 0:K 00 then � ` A0 :: K 0 and � ` A00 :: [A0=�]K 00.

Proof:

1. � Case:
� ` hA0; A00i :: ��::K 0:K 00

� ` �1hA
0; A00i :: K 0

where E = �.

(a) Inductively by Part 3, � ` A0 :: K 0

(b) and � ` A00 :: [A0=�]K 00.

(c) The desired result follows by Rule 2.108.

� The remaining cases follow by structural rules and re
exivity.

2. � Case:
� ` hA0; A00i :: ��::K 0:K 00

� ` �2hA
0; A00i :: [�1hA

0; A00i=�]K 00

where E = �.

(a) Inductively by Part 3, � ` A0 :: K 0

(b) and � ` A00 :: [A0=�]K 00.

(c) By Rule 2.109, � ` �2hA
0; A00i � A00 :: [A0=�]K 00.

(d) As in Part 1, � ` E [�1hA
0; A00i] � E [A0] :: K.

(e) By validity and inversion, �; �::K 0 ` K 00

(f) so by functionality, � ` [�1hA
0; A00i=�]K 00 � [A0=�]K 00.

(g) Thus by subsumption we have � ` �2hA
0; A00i :: [�1hA

0; A00i=�]K 00.

� The remaining cases follow by structural rules and re
exivity.

3. � Case:
� ` A1 :: K

0 � ` A2 :: K
00

� ` hA1; A2i :: K
0�K 00

Obvious.
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� Case:
� ` ��::K 0:K 00

� ` �1hA
0; A00i :: K 0

� ` �2hA
0; A00i :: [�1hA

0; A00i=�]K 00

� ` hA0; A00i :: ��::K 0:K 00

(a) Inductively by part 1, � ` �1hA
0; A00i � A0 :: K 0.

(b) Inductively by part 2, � ` �2hA
0; A00i � A00 :: [�1hA

0; A00i=�]K 00.

(c) By inversion and functionality, � ` [�1hA
0; A00i=�]K 00 � [A0=�]K 00.

(d) Thus by validity, subsumption and Proposition 3.1.1, � ` A0 :: K 0

(e) and � ` A00 :: [A0=�]K 00.

� Case:
� ` hA0; A00i :: K1

� ` K1 � ��::K 0:K 00

� ` hA0; A00i :: ��::K 0:K 00

(a) By inversion, K1 = ��::K 0
1:K

00
1 ,

(b) � ` K 0
1 � K 0,

(c) and �; �::K 0
1 ` K 00

1 � K 00.

(d) By the inductive hypothesis, � ` A0 :: K 0
1

(e) and � ` A00 :: [A0=�]K 00
1 .

(f) By substitution, � ` [A0=�]K 00
1 � [A0=�]K 00.

(g) Then the desired results follow by subsumption.

Corollary 4.4.7

If � ` A :: K and � . A + B then � ` A � B :: K.

Proof: By transitivity and re
exivity of declarative equivalence, it suÆces to show that if � `
A :: K and � . A; B then � ` A � B :: K. But all possibilities for the reduction step are covered

by Corollary 4.4.3, Proposition 4.4.5, and Proposition 4.4.6.

Proposition 4.4.8

If � ` E [AA0] :: L then there exists a kind K 0!K 00 such that � ` A :: K 0!K 00 and � ` A0 :: K 0.

Proof: By induction on typing derivations. If E = � and the proof concludes with a use of the

application rule 2.25 then the result follows by inversion; in all other cases, the result follows by

the inductive hypothesis.

Theorem 4.4.9 (Soundness)

1. If � ` A1 :: K, � ` A2 :: K, and � . A1 , A2 :: K then � ` A1 � A2 :: K.

2. If � ` p1 :: K1, � ` p2 :: K2, and � . p1 $ p2 " K then � ` p1 � p2 :: K.

3. If � ` K1, � ` K2, and � . K1 � K2 then � ` K1 � K2.

4. If � ` K1, � ` K2, and � . K1 , K2 then � ` K1 � K2.

5. If � ` ok and � . K then � ` K.
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6. If � ` ok and � . A� K then � ` A :: K and � . A * K.

7. If � ` K and � . A� K then � ` A :: K.

Proof: By (simultaneous) induction on proofs of the algorithmic judgments (i.e., by induction on

the execution of the algorithms).
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Chapter 5

Completeness and Decidability for

Constructors and Kinds

5.1 Introduction

Correctness of the algorithms for constructor and kind judgment can easily be seen to reduce

to correctness of the algorithm for constructor equivalence. Since the algorithms of the previous

chapter are sound, it suÆces to prove completeness of the constructor equivalence algorithm (i.e.,

if � ` A1 � A2 :: K then � . A1 , A2 :: K) and that this algorithm will terminate with an answer

for all well-formed inputs.

It is instructive to see why the direct approach of proving completeness by induction on the

derivation of � ` A1 � A2 :: K fails. We immediately run into trouble with such rules as Rule 2.37:

� ` A � A0 :: K 0!K 00 � ` A1 � A0
1 :: K

0

� ` A1A
0
1 � A2A

0
2 :: K

00

Here we would have by the induction hypothesis that �.A, A0 :: K 0!K 00 and �.A1 , A0
1 :: K

0.

However, there appears to be no way to show directly that these imply � . A1A
0
1 , A2A

0
2 :: K

00

because the algorithm proceeds via head-normalization rather than comparing the applications

component-wise.

Similarly, in Rule 2.44
� ` A :: S(B)

� ` A � B :: S(B)
:

there is no way to apply the induction hypothesis and hence no way to show the conclusion.

Coquand [Coq91] proves the completeness of an equivalence algorithm for a lambda calculus with

� types using a form of Kripke logical relations. The key idea is to prove completeness by de�ning

a relation (here called logical equivalence) which not only implies algorithmic equivalence, but also

satis�es stronger properties. For example, if two functions are logically related then their application

to logically-related arguments yields logically-related applications. By proving inductively that

declarative equivalence implies logical equivalence, we have strengthened the induction hypothesis

enough to allow cases such as Rule 2.37 and 2.44 to go through.

I have substantially extended this approach to handle singleton kinds, as well as pairs and

subkinding. However, one essential obstacle remains: declarative equivalence is transitive and

symmetric, which requires showing that logical equivalence is transitive and symmetric. Since
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logical equivalence is de�ned in terms of the equivalence algorithm, this requires showing that

algorithmic equivalence is both symmetric and transitive. Surprisingly, this is not at all obvious.

The diÆculty is that the presentation of the algorithm is inherently asymmetric. Because of

dependencies in the kinds, at various points one must make a choice between one of two provably

equal kinds. For example, verifying

� . A1 , A2 :: ��::K
0:K 00

requires checking that

� . �1A1 , �1A2 :: K
0

and either

� . �2A1 , �2A2 :: [�1A1=�]K
00

or

� . �2A1 , �2A2 :: [�1A2=�]K
00:

(Similar alternatives also appear in the de�nitions of path equivalence and kind equivalence as

well.) Although the kinds [�1A1=�]K
00 and [�1A2=�]K

00 will be provably equivalent, each choice

leads to di�erent de�nitions in the context and may cause head-normalization to take an entirely

di�erent path. If the algorithm is correct then it should end up with the same answer in either

case, but I am unable to give a direct proof that this is true.

The algorithm could be forced to be more symmetric by adding conditions, e.g., by specifying

that

� . A1 , A2 :: ��::K
0:K 00

requires

� . �1A1 , �1A2 :: K
0

and

� . �2A1 , �2A2 :: [�1A1=�]K
00

and

� . �2A1 , �2A2 :: [�1A2=�]K
00;

but the problem of showing transitivity remains.

In x5.2 I give a revised form for the constructor and kind equivalence algorithms, designed

speci�cally to make both transitivity and symmetry obvious. This leads to a nonstandard form of

Kripke-style logical relation, described in x5.3; using this I show the revised equivalence algorithms

are terminating and complete with respect to MIL0 equivalence. Finally, since the revised algorithm

requires redundant bookkeeping, I show in x5.4 that the correctness of the revised algorithm implies

the completeness and termination of the equivalence algorithm presented in the previous chapter,

which forms the basis of the TILT implementation. It follows that all kind and constructor-level

judgments are decidable.

5.2 A Symmetric and Transitive Algorithm

5.2.1 De�nition

The way to build transitivity into constructor and kind equivalence is to maintain two provably

equal typing contexts and two (provably equal) classifying kinds. Then the form of algorithmic

82



constructor equivalence becomes

�1 . A1 :: K1 , �2 . A2 :: K2:

Although the expectation is that the algorithm will only be applied when �1 ` A1 :: K1 and

�2 ` A2 :: K2, this is not a comparison of judgments but merely suggestive notation for a 6-place

relation. The algorithm takes these 6 inputs and returns success or failure (or fails to terminate).

The advantage of this formulation is that arbitrary choices disappear. For example, the com-

parison

�1 . A1 :: ��::K
0
1:K

00
2 , �2 . A2 :: ��::K

0
2:K

00
2

between two pairs of constructors checks

�1 . �1A1 :: K
0
1 , �2 . �1A2 :: K

0
2

and

�1 . �2A1 :: [�1A1=�]K
00
1 , �2 . �2A2 :: [�1A2=�]K

00
2 :

Both of the possible substitutions are used, in a symmetric fashion.

Similarly the algorithmic path equivalence relation takes the form

�1 . p1 " K1 $ �2 . p2 " K2;

and algorithmic kind equivalence becomes

�1 . K1 , �2 . K2:

The full de�nitions of the revised algorithm are shown in Figure 5.1. (The kind extraction,

weak head reduction, and weak head normalization judgments are unchanged.) It is simple to show

that these de�nitions have the required behavior:

Lemma 5.2.1 (Algorithmic Symmetry and Transitivity)

1. If �1 . A1 :: K1 , �2 . A2 :: K2 then �2 . A2 :: K2 , �1 . A1 :: K1.

2. If �1 . A1 :: K1 , �2 . A2 :: K2 and �2 . A2 :: K2 , �3 . A3 :: K3 then

�1 . A1 :: K1 , �3 . A3 :: K3.

3. If �1 . p1 " K1 $ �2 . p2 " K2 then �2 . p2 " K2 $ �1 . p1 " K1.

4. If �1 . p1 " K1 $ �2 . p2 " K2 and �2 . p2 " K2 $ �3 . p3 " K3 then

�1 . p1 " K1 $ �3 . p3 " K3.

5. If �1 . K1 , �2 . K2 then �2 . K2 , �1 . K1.

6. If �1 . K1 , �2 . K2 and �2 . K2 , �3 . K3 then �1 . K1 , �3 . K3.

Proof: By induction on derivations of the algorithmic judgments (i.e., by induction on the exe-

cution of the algorithms).

I have made two changes to the constructor equivalence algorithm beyond those necessary to

maintain symmetry and transitivity.

� When comparing two constructors with singleton kinds, the algorithm compares the two

constructors at kind T rather than short-circuiting with immediate success.
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� When comparing two constructors with � kinds, the algorithm also compares the domain

kinds of the two � kinds.

Intuitively these additions are redundant, but they are useful when proving the existence of normal

forms of constructors (see x5.5). If this algorithm is sound, complete, and terminating, then it will

remain so when these redundant extensions are omitted. However, the converse is less obvious;

a priori these extra tests might cause the algorithm to become nonterminating on some inputs.

Hence proving the correctness of the algorithm as shown in Figure 5.1 is a stronger result.

5.2.2 Soundness

As before, path equivalence computes extracted kinds of paths, but here it extracts the kinds of

both paths:

Lemma 5.2.2

If �1 . A1 " K1 $ �2 . A2 " K2 then �1 . A1 " K1 and �2 . A2 " K2.

Then proof of soundness for the revised algorithms is very similar to the proof for the original

algorithmic equivalence:

Theorem 5.2.3 (Soundness)

1. If ` �1 � �2, �1 ` K1 � K2, �1 ` A1 :: K1, �2 ` A2 :: K2, and �1 . A1 :: K1 , �2 . A2 :: K2

then �1 ` A1 � A2 :: K1.

2. If ` �1 � �2, �1 ` p1 :: L1, �2 ` p2 :: L2, and �1 . p1 " K1 $ �2 . p2 " K2 then

�1 ` K1 � K2 and �1 ` p1 � p2 :: K1.

3. If ` �1 � �2, �1 ` K1, �2 ` K2, and �1 . K1 , �2 . K2 then �1 ` K1 � K2.

Proof: Parts 1 and 2 follow by simultaneous induction on the algorithmic judgments and by

cases on the last step in the algorithmic derivation. I omit the proof of part 3, which follows from

part 1 and induction.

1. � Case: �1 . A1 :: T, �2 . A2 :: T because �1 . A1 + p1, �2 . A2 + p2, and

�1 . p1 " T$ �2 . p2 " T.

(a) By Corollary 4.4.7, �1 ` A1 � p1 :: T

(b) and �2 ` A2 � p2 :: T.

(c) By Corollary 3.2.8 �1 ` A2 � p2 :: T.

(d) By Validity, �1 ` p1 :: T

(e) and �2 ` p2 :: T.

(f) By the inductive hypothesis, �1 ` p1 � p2 :: T.

(g) By symmetry and transitivity of equivalence therefore, �1 ` A1 � A2 :: T.

� Case: �1 . A1 :: S(B1), �2 . A2 :: S(B2) because �1 . A1 + p1, �2 . A2 + p2, and

�1 . p1 " T$ �2 . p2 " T.

(a) As in the previous case, �1 ` A1 � A2 :: T.

(b) Then �1 ` A1 � A2 :: S(A1)

(c) but �1 ` A1 � B1 :: T by inversion of kind equivalence,

(d) so �1 ` A1 � A2 :: S(B1) by subsumption.

84



Algorithmic constructor equivalence

�1 . A1 :: T, �2 . A2 :: T if �1 . A1 + p1 and �2 . A2 + p2
and �1 . p1 " T$ �2 . p2 " T

�1 . A1 :: S(B1), �2 . A2 :: S(B2) if �1 . A1 + p1 and �2 . A2 + p2
and �1 . p1 " T$ �2 . p2 " T

�1 . A1 :: ��::K
0
1:K

00
1 , �2 . A2 :: ��::K

0
2:K

00
2 if �1; �::K

0
1 . A1 � :: K 00

1 , �2; �::K
0
2 . A2 � :: K 00

2

and �1 . K
0
1 , �2 . K

0
2

�1 . A1 :: ��::K
0
1:K

00
2 , �2 . A2 :: ��::K

0
2:K

00
2 if �1 . �1A1 :: K

0
1 , �2 . �1A2 :: K

0
2, and

�1 . �2A1 :: [�1A1=�]K
00
1 , �2 . �2A2 :: [�1A2=�]K

00
2

Algorithmic path equivalence

�1 . b " T$ �2 . b " T always

�1 . � " T!T!T$ �2 . � " T!T!T always

�1. ! " T!T!T$ �2. ! " T!T!T always

�1 . � " �1(�)$ �2 . � " �2(�) always

�1 ` p1A1 " [A1=�]K
00
1 $ if �1 . p1 " ��::K

0
1:K

00
1 $ �2 . p2 " ��::K

0
2:K

00
2 ,

�2 ` p2A2 " [A2=�]K
00
2 and �1 . A1 :: K

0
1 , �2 . A2 :: K

0
2.

�1 . �1p1 " K
0
1 $ �2 . �1p2 " K

0
2 if �1 . p1 " ��::K

0
1:K

00
1 $ �2 . p2 " ��::K

0
2:K

00
2 .

�1 ` �2p1 " [�1p1=�]K
00
1 $ if �1 . p1 " ��::K

0
1:K

00
1 $ �2 . p2 " ��::K

0
2:K

00
2

�2 ` �2p2 " [�1p2=�]K
00
2

Algorithmic kind equivalence

�1 .T, �2 .T always

�1 . S(A1), �2 . S(A2) if �1 . A1 :: T, �2 . A2 :: T

�1 .��::K
0
1:K

00
1 , �2 . ��::K

0
2:K

00
2 if �1 . K1 , �2 . K2 and �1; �::K

0
1 . K

00
1 , �2; �::K

0
2 . K

00
2

�1 . ��::K
0
1:K

00
1 , �2 . ��::K

0
2:K

00
2 if �1 . K

0
1 , �2 . K

0
2 and �1; �::K

0
1 . K

00
1 , �2; �::K

0
2 . K

00
2

Figure 5.1: Revised Equivalence Algorithm
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� Case: �1 . A1 :: ��::K
0
1:K

00
1 , �2 . A2 :: ��::K

0
2:K

00
2 because

�1; �::K
0
1 . A1 � :: K 00

1 , �2; �::K
0
2 . A2 � :: K 00

2 and �1 . K
0
1 , �2 . K

0
2.

(a) Since ` �1; �::K
0
1 � �2; �::K

0
2,

(b) �1; �::K
0
1 ` A1 � :: K 00

1 ,

(c) �2; �::K
0
2 ` A2 � :: K 00

2 ,

(d) and �1; �::K
0
1 ` K

00
1 � K 00

2 ,

(e) the inductive hypothesis applies, yielding �1; �::K
0
1 ` A1 � � A2 � :: K 00

1 .

(f) Thus by Rule 2.42, �1 ` A1 � A2 :: ��::K
0
1:K

00
1 .

� �1 . A1 :: ��::K
0
1:K

00
1 , �2 . A2 :: ��::K

00
2 :K

00
2 because

�1 . �1A1 :: K
0
1 , �2 . �1A2 :: K

0
2, and

�1 . �2A1 :: [�1A1=�]K
00
1 , �2 . �2A2 :: [�1A2=�]K

00
2 .

(a) Since �1 ` �1A1 :: K
0
1

(b) �2 ` �1A2 :: K
0
2,

(c) and by inversion �1 ` K 0
1 � K 0

2,

(d) by the inductive hypothesis we have �1 ` �1A1 � �1A2 :: K
0
1.

(e) By functionality, �1 ` [�1A1=�]K
00
1 � [�1A2=�]K

00
2 .

(f) Then �1 ` �2A1 :: [�1A1=�]K
00
1

(g) and �2 ` �2A2 :: [�1A2=�]K
00
2 .

(h) By the inductive hypothesis, �1 ` �2A1 � �2A2 :: [�1A1=�]K
00
1 .

(i) By Corollary 3.2.8 and Rule 2.41, �1 ` A1 � A2 :: ��::K
0
1:K

00
1 .

2. � Case: �1 . bi " T$ �2 . bi " T.

By Proposition 3.1.1, �1 ` ok. Thus by Rule 2.33, �1 ` bi � bi :: T.

� Case: �1 . � " �1(�)$ �2 . � " �2(�).

By Validity and Rule 2.33, �1 ` � � � :: �1(�).

� Case: �1 . p1A1 " [A1=�]L
00
1 $ �2 . p2A2 " [A2=�]L

00
2 because

�1 . p1 " ��::L
0
1:L

00
1 $ �2 . p2 " ��::L

0
2:L

00
2 and �1 . A1 :: L

0
1 , �2 . A2 :: L

0
2.

(a) By Proposition 4.4.8, �1 ` p1 :: K
0
1!K 00

1 ,

(b) �1 ` A1 :: K
0
1,

(c) �2 ` p2 :: K
0
2!K 00

2 ,

(d) and �2 ` A2 :: K
0
2.

(e) By the inductive hypothesis, �1 ` ��::L0
1:L

00
1 � ��::L0

2:L
00
2.

(f) and �1 ` p1 � p2 :: ��::L
0
1:L

00
1 .

(g) By Lemma 4.4.2, �1 ` S(p1 :: ��::L
0
1:L

00
1) � K 0

1!K 00
1

(h) and �2 ` S(p2 :: ��::L
0
2:L

00
2) � K 0

2!K 00
2 .

(i) Thus �1 ` K 0
1 � L0

1

(j) and �2 ` K
0
2 � L0

2.

(k) By subsumption then, �1 ` A1 :: L
0
1

(l) and �2 ` A2 :: L
0
2.

(m) The induction hypothesis applies, and so �1 ` A1 � A2 :: L
0
1.

(n) Thus �1 ` p1A1 � p2A2 :: [A1=�]L
00
1

(o) and by functionality �1 ` [A1=�]L
00
1 � [A2=�]L

00
2 .
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� Case: �1 . �1p1 " K1 $ �2 . �1p2 " K2 because

�1 . p1 " ��::K1:L1 $ �2 . p2 " ��::K2:L2

(a) By Proposition 4.4.1 the inductive hypothesis applies,

(b) so �1 ` ��::K1:L1 � ��::K2:L2

(c) and �1 ` p1 � p2 :: ��::K1:L1.

(d) Thus �1 ` �1p1 � �1p2 :: K1

(e) and by inversion, �1 ` K1 � K2.

� Case: �1 . �2p1 " [�1p1=�]L1 $ �2 . �2p2 " [�1p2=�]L2 because

�1 . p1 " ��::K1:L1 $ �2 . p2 " ��::K2:L2.

(a) By Proposition 4.4.1 the inductive hypothesis applies,

(b) so �1 ` ��::K1:L1 � ��::K2:L2

(c) and �1 ` p1 � p2 :: ��::K1:L1.

(d) Thus �1 ` �2p1 � �2p2 :: [�1p1=�]L1.

(e) �1 ` �1p1 � �1p2 :: K1

(f) So by functionality, �1 ` [�1p1=�]L1 � [�1p2=�]L2

5.3 Completeness of the Revised Algorithms

To show the completeness and termination for the algorithm I use a modi�ed Kripke-style logical

relations argument. The strategy for proving completeness of the algorithm is

1. De�ne the logical relations;

2. Show that logically-related constructors are related by the algorithm;

3. Show that provably-equivalent constructors are logically related.

From completeness it follows that the algorithm terminates for all well-formed inputs.

I use � to denote a Kripke world. Worlds are contexts containing no duplicate bound variables;

the partial order � on worlds is simply the weakening ordering given in De�nition 3.1.4. The logical

relations I use are shown in Figures 5.2, 5.3, and 5.4.

The logical kind validity relation (�;K)valid is indexed by the world � and is well-de�ned by

induction on the size of kinds. Similarly, the logical constructor validity relation (�;A;K)valid is

indexed by a � and de�ned by induction on the size of K, which must itself be logically valid.

In addition to validity relations, I have logically-de�ned binary equivalence relations between

(logically valid) types and terms. The unusual part of these relations is that rather than being

a binary relation indexed by a world, they are relations between two kinds or constructors which

have been determined to be logically valid under two possibly di�erent worlds. Thus the form of

the equivalence of kinds is (�1;K1) is (�2;K2) and the form of the equivalence on constructors is

(�1;A1;K1) is (�2;A2;K2). With this modi�cation, the logical relations are otherwise de�ned in a

reasonably familiar manner. At the base and singleton kinds I impose the algorithmic equivalence

as the de�nition of the logical relation. At higher kinds I use a Kripke-style logical relations

interpretation of � and �: functions are related if in all pairs of future worlds related arguments

yield related results, and pairs are related if their �rst and second components are related.
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� (�;K)valid i�

1. { K = T

{ Or, K = S(A) and (�;A;T)valid

{ Or, K = ��::K 0:K 00 and (�;K 0)valid and 8�0 � �;�00 � � if

(�0;A1;K
0) is (�00;A2;K

0) then (�0; [A1=�]K
00) is (�00; [A2=�]K

00)

{ Or, K = ��::K 0:K 00 and (�;K 0)valid and 8�0 � �;�00 � � if

(�0;A1;K
0) is (�00;A2;K

0) then (�0; [A1=�]K
00) is (�00; [A2=�]K

00)

� (�1;K1) is (�2;K2) i�

1. (�1;K1)valid and (�2;K2)valid.

2. And,

{ K1 = T and K2 = T

{ Or, K1 = S(A1) and K2 = S(A2) and (�1;A1;T) is (�2;A2;T)

{ Or, K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 and (�1;K

0
1) is (�2;K

0
2) and

8�0
1 � �1;�

0
2 � �2 if (�

0
1;A1;K

0
1) is (�0

2;A2;K
0
2) then

(�0
1; [A1=�]K

00
1 ) is (�0

2; [A2=�]K
00
2 )

{ Or, K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 and (�1;K

0
1) is (�2;K

0
2) and

8�0
1 � �1;�

0
2 � �2 if (�

0
1;A1;K

0
1) is (�0

2;A2;K
0
2) then

(�0
1; [A1=�]K

00
1 ) is (�0

2; [A2=�]K
00
2 )

� (�1;K1 � L1) is (�2;K2 � L2) i�

1. 8�0
1 � �1;�

0
2 � �2 if (�

0
1;A1;K1) is (�0

2;A2;K2) then (�0
1;A1;L1) is (�0

2;A2;L2).

Figure 5.2: Logical Relations for Kinds

With these de�nitions in hand I construct derived relations. The relation (�1;K1 � L1) is

(�2;K2 � L2) is de�ned to satisfy the following \subsumption-like" behavior:

(�1;A1;K1) is (�2;A2;K2)

(�1;K1 � L1) is (�2;K2 � L2)

(�1;A1;L1) is (�2;A2;L2)

Finally, validity and equivalence relations for substitutions are de�ned pointwise.

The �rst property to be checked is that the logical relations are monotone (preserved when

passing to future worlds), which corresponds to the weakening property for the algorithmic relations.

Lemma 5.3.1 (Algorithmic Weakening)

1. If � . A; B and �0 � � then �0 . A; B

2. If � . A + p and �0 � � then �0 . A + p.

3. If � . A " K and �0 � � then �0 . A " K.

4. If �1 . A1 :: K1 , �2 . A2 :: K2, �
0
1 � �1, and �02 � �2, then �01 . A1 :: K1 , �02 . A2 :: K2.

5. If �1 . A1 " K1 $ �2 . A2 " K2, �
0
1 � �1, and �02 � �2, then �01 . A1 " K1 $ �02 . A2 " K2.
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� (�;A;K)valid i�

1. (�;K)valid

2. And,

{ K = T and � . A :: T, � . A :: T.

{ Or, K = S(B) and (�;A;T) is (�;B;T).

{ Or, K = ��::K 0:K 00, and 8�0 � �;�00 � � if (�0;B1;K
0) is (�00;B2;K

0) then

(�0;AB1; [B1=�]K
00) is (�00;AB2; [B2=�]K

00).

{ Or, K = ��::K 0:K 00, (�;�1A;K
0)valid and (�;�2A; [�1A=�]K

00)valid

� (�1;A1;K1) is (�2;A2;K2) i�

1. (�1;K1) is (�2;K2)

2. And, (�1;A1;K1)valid and (�2;A2;K2)valid

3. And,

{ K1 = K2 = T and �1 . A1 :: T, �2 . A2 :: T.

{ Or, K1 = S(B1), K2 = S(B2), and (�1;A1;T) is (�2;A2;T)

{ Or, K1 = ��::K 0
1:K

00
1 , K2 = ��::K 0

2:K
00
2 , and 8�

0
1 � �1;�

0
2 � �2 if

(�0
1;B1;K

0
1) is (�0

2;B2;K
0
2) then

(�0
1;A1B1; [B1=�]K

00
1 ) is (�0

2;A2B2; [B2=�]K
00
2 ).

{ Or, K1 = ��::K 0
1:K

00
1 , K2 = ��::K 0

2:K
00
2 , (�1;�1A1;K

0
1) is (�2;�1A2;K

0
2) and

(�1;�2A1; [�1A1=�]K
00
1 ) is (�2;�2A2; [�1A2=�]K

00
2 )

Figure 5.3: Logical Relations for Constructors

� (�; 
; �)valid i�

1. 8� 2 dom(�): (�; 
�; 
(�(�)))valid.

� (�1; 
1; �1) is (�2; 
2; �2) i�

1. (�1; 
1; �1)valid and (�2; 
2; �2)valid

2. And, 8� 2 dom(�1) = dom(�2): (�1; 
1�; 
1(�1(�))) is (�2; 
2�; 
2(�2(�))).

Figure 5.4: Logical Relations for Substitutions
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6. If �1 . K1 , �2 . K2, �
0
1 � �1, and �02 � �2, then �01 . K1 , �02 . K2.

Proof: By induction on algorithmic derivations.

Lemma 5.3.2 (Monotonicity)

1. If (�1;K1)valid and �0
1 � �1 then (�0

1;K1)valid.

2. If (�1;K1) is (�2;K2), �
0
1 � �1, and �0

2 � �2 then (�0
1;K1) is (�0

2;K2).

3. If (�1;K1 � L1) is (�2;K2 � L2), �
0
1 � �1, and �0

2 � �2 then

(�0
1;K1 � L1) is (�0

2;K2 � L2).

4. If (�1;A1;K1)valid and �0
1 � �1 then (�0

1;A1;K1)valid.

5. If (�1;A1;K1) is (�2;A2;K2), �
0
1 � �1, and �0

2 � �2 then (�0
1;A1;K1) is (�0

2;A2;K2).

6. If (�; 
; �)valid and �0 � � then (�0; 
; �)valid.

7. If (�1; 
1; �1) is (�2; 
2; �2), �
0
1 � �1, and �0

2 � �2 then (�0
1; 
1; �1) is (�0

2; 
2; �2)

Proof:

1{5. By induction on the size of kinds.

6{7. By the previous parts.

The logical relations obey re
exivity, symmetry, and transitivity properties. The logical rela-

tions were carefully de�ned so that the following property holds:

Lemma 5.3.3 (Re
exivity)

1. (�;K)valid if and only if (�;K) is (�;K).

2. (�;A;K)valid if and only if (�;A;K) is (�;A;K).

3. (�; 
; �)valid if and only if (�; 
; �) is (�; 
; �).

Proof: The \if" direction is immediate from the de�nitions of the logical relations, so we only

show the \only if" direction.

1. By induction on the size of K. Assume (�;K)valid.

� Case: K = T. Follows by de�nition of (�;T) is (�;T).

� Case: K = S(B).

(a) (�;B;T)valid.

(b) � . B :: T, � . B :: T.

(c) Then (�;B;T)valid

(d) and (�;B;T) is (�;B;T).

(e) Therefore (�;S(B)) is (�;S(B)).

� Case: K = ��::K 0:K 00.

(a) By (�;��::K 0:K 00)valid we have (�;K 0)valid.

(b) By the inductive hypothesis, (�;K 0) is (�;K 0).

(c) Let (�0;�00) � (�;�)

(d) and assume (�0;A1;K
0) is (�00;A2;K

0).
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(e) By (�;��::K 0:K 00)valid we have (�0; [A1=�]K
00) is (�00; [A2=�]K

00).

(f) Therefore (�;��::K 0:K 00) is (�;��::K 0:K 00).

� Case: K = ��::K 0:K 00.

Same proof as for � case.

2. By induction on the size of A. Assume (�;A;K)valid. Then (�;K)valid so that by

part 1, (�;K) is (�;K).

� Case: K = T.

(a) (�;A;T)valid implies � . A :: T, � . A :: T.

(b) Therefore, (�;A;T) is (�;A;T).

� Case: K = S(B).

(a) (�;A;S(B))valid implies � . A :: T, � . B :: T.

(b) By Lemma 5.2.1, � . A :: T, � . A :: T,

(c) so (�;A;T)valid

(d) and (�;A;T) is (�;A;T).

(e) Therefore (�;A;S(B)) is (�;A;S(B)).

� Case: K = ��::K 0:K 00.

(a) Let �0;�00 � � and assume (�0;B1;K
0) is (�00;B2;K

0).

(b) Then (�0;AB1; [B1=�]K
00) is (�00;AB2; [B2=�]K

00).

(c) Therefore (�;A; ��::K 0:K 00) is (�;A; ��::K 0:K 00).

� Case: K = ��::K 0:K 00.

(a) Then (�;�1A;K
0)valid

(b) and (�;�2A; [�1A=�]K
00)valid.

(c) By the inductive hypothesis, (�;�1A;K
0) is (�;�1A;K

0)

(d) and (�;�2A; [�1A=�]K
00) is (�;�2A; [�1A=�]K

00).

(e) Therefore (�;A; ��::K 0:K 00) is (�;A; ��::K 0:K 00).

3. (a) Assume (�; 
; �)valid.

(b) Let x 2 dom(�) be given.

(c) Then (�; 
x; 
(�x))valid.

(d) By part 2, (�; 
x; 
(�x)) is (�; 
x; 
(�x)).

(e) Therefore (�; 
; �) is (�; 
; �).

I next give a technical lemma which relates logical equivalence of kinds to logical subkinding.

An easy corollary of this lemma is the following rule:

(�1;A1;K1) is (�2;A2;K2)

(�1;K1) is (�2;K2)

is is

(�1;L1) is (�2;L2)

(�1;A1;L1) is (�2;A2;L2)
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Lemma 5.3.4

If (�1;L1) is (�2;L2), (�1;K1) is (�1;L1), and (�2;K2) is (�2;L2) then

(�1;K1 � L1) is (�2;K2 � L2).

Proof: By induction on the sizes of kinds.

Assume (�1;L1) is (�2;L2), (�1;K1) is (�1;L1), and (�2;K2) is (�2;L2).

Let (�0
1;�

0
2) � (�1;�2) and assume (�0

1;A1;K1) is (�0
2;A2;K2). Then (�0

1;K1) is (�0
2;K2).

� Case K1 = K2 = L1 = L2 = T. (�0
1;A1;T) is (�0

2;A2;T) by assumption.

� Case K1 = S(B1), K2 = S(B2), L1 = S(C1), and L2 = S(C2).

1. By weakening, �0
1 . B1 :: T, �0

1 . C1 :: T

2. and �0
2 . B2 :: T, �0

2 . C2 :: T

3. and �0
1 . C1 :: T, �0

2 . C2 :: T.

4. Similarly, �0
1 . A1 :: T, �0

1 . B1 :: T,

5. �0
2 . A2 :: T, �0

2 . B2 :: T, and

6. and �0
1 . A1 :: T, �0

2 . A2 :: T.

7. Thus by transitivity, �0
1 . A1 :: T, �0

1 . C1 :: T

8. and �0
2 . A2 :: T, �0

2 . C2 :: T.

9. Therefore (�0
1;A1;S(C1))valid,

10. (�0
2;A2;S(C2))valid,

11. and (�0
1;A1;S(C1)) is (�0

2;A2;S(C2)).

� Case: K1 = ��::K 0
1:K

00
1 , K2 = ��::K 0

2:K
00
2 , L1 = ��::L0

1:L
00
1, and L2 = ��::L0

2:L
00
2 .

1. Let (�00
1 ;�

00
2) � (�0

1;�
0
2) and assume (�00

1;B1;L
0
1) is (�00

2 ;B2;L
0
2).

2. By monotonicity, (�00
1 ;K

0
1) is (�00

2 ;K
0
2),

3. (�00
1 ;L

0
1) is (�00

2 ;L
0
2),

4. (�00
1 ;K

0
1) is (�00

1;L
0
1), and

5. (�00
2 ;K

0
2) is (�00

2;L
0
2).

6. By re
exivity and the inductive hypothesis, (�00
1;L

0
1 � K 0

1) is (�00
2;L

0
2 � K 0

2),

(�00
1 ;L

0
1 � K 0

1) is (�00
1 ;L

0
1 � L0

1), and (�00
2;L

0
2 � K 0

2) is (�00
2 ;L

0
2 � L0

2).

7. Thus (�00
1;B1;K

0
1) is (�00

2 ;B2;K
0
2).

8. Since (�00
1;B1;L

0
1) is (�00

1 ;B1;L
0
1) and (�00

2;B2;L
0
2) is (�00

2 ;B2;L
0
2),

9. we have (�00
1;B1;K

0
1) is (�00

1;B1;L
0
1),

10. and (�00
2 ;B2;K

0
2) is (�00

2;B2;L
0
2).

11. So, (�00
1;A1 B1; [B1=�]K

00
1 ) is (�00

2;A2B2; [B2=�]K
00
2 ),

12. (�00
1 ; [B1=�]K

00
1 ) is (�00

1; [B1=�]L
00
1),

13. (�00
1 ; [B1=�]L

00
1) is (�00

2 ; [B2=�]L
00
2),

14. and (�00
2 ; [B2=�]K

00
2 ) is (�00

2; [B2=�]L
00
2).

15. By the inductive hypothesis,

(�00
1 ; [B1=�]K

00
1 � [B1=�]L

00
1) is (�00

2 ; [B2=�]K
00
2 � [B2=�]L

00
2).
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16. Thus (�00
1;A1B1; [B1=�]L

00
1) is (�00

2;A2B2; [B2=�]L
00
2).

17. Similar arguments show that (�0
1;A1; ��::L

0
1:L

00
1)valid and (�0

2;A2; ��::L
0
2:L

00
2)valid.

18. Therefore (�0
1;A1; ��::L

0
1:L

00
1) is (�0

2;A2; ��::L
0
2:L

00
2).

� Case: K1 = ��::K 0
1:K

00
1 , K2 = ��::K 0

2:K
00
2 , L1 = ��::L0

1:L
00
1 , and L2 = ��::L0

2:L
00
2 .

1. (�0
1;�1A1;K

0
1) is (�0

2;�1A2;K
0
2).

2. Also, (�0
1;K

0
1) is (�0

2;K
0
2),

3. (�0
1;L

0
1) is (�0

2;L
0
2),

4. (�0
1;K

0
1) is (�0

1;L
0
1),

5. and (�0
2;K

0
2) is (�0

2;L
0
2).

6. By the inductive hypothesis, (�0
1;K

0
1 � L0

1) is (�0
2;K

0
2 � L0

2),

7. so (�0
1;�1A1;L

0
1) is (�0

2;�1A2;L
0
2).

8. By similar considerations, (�0
1; [�1A1=�]K

00
1 ) is (�0

1; [�1A1=�]L
00
1),

9. (�0
2; [�2A2=�]K

00
2 ) is (�0

2; [�1A2=�]L
00
1),

10. and (�0
1; [�1A1=�]L

00
1) is (�0

2; [�1A2=�]L
00
2).

11. By the inductive hypothesis,

(�0
1; [�1A1=�]K

00
1 � [�1A1=�]L

00
1) is (�0

2; [�1A2=�]K
00
2 � [�1A2=�]L

00
2).

12. Since (�0
1;�2A1; [�1A1=�]K

00
1 ) is (�0

2;�2A2; [�1A2=�]K
00
2 ),

13. we have (�0
1;�2A1; [�1A1=�]L

00
1) is (�0

2;�2A2; [�1A2=�]L
00
2).

14. Therefore (�0
1;A1; ��::L

0
1:L

00
1) is (�0

2;A2; ��::L
0
2:L

00
2).

Symmetry is straightforward and exactly analogous to the symmetry properties of the algorith-

mic relations.

Lemma 5.3.5 (Symmetry)

1. If (�1;K1) is (�2;K2) then (�2;K2) is (�1;K1)

2. If (�1;A1;K1) is (�2;A2;K2) then (�2;A2;K2) is (�1;A1;K1).

3. If (�1; 
1; �1) is (�2; 
2; �2) then (�2; 
2; �2) is (�1; 
1; �1).

Proof: Parts 1 and 2 are proved simultaneously by induction on the size of kinds. Part 3 then

follows directly.

1. Assume (�1;K1) is (�2;K2). Then (�1;K1)valid and (�2;K2)valid.

� Case: K1 = K2 = T. Trivial.

� Case: K1 = S(A1), K2 = S(A2).

(a) (�1;A1;T) is (�2;A2;T).

(b) Inductively by part 2, (�2;A2;T) is (�1;A1;T).

(c) Therefore (�2;S(A2)) is (�1;S(A1)).

� Case: K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

(a) (�1;K
0
1) is (�2;K

0
2) by (�1;K1) is (�2;K2).
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(b) Inductively, (�2;K
0
2) is (�1;K

0
1).

(c) Let �0
1 � �1 and �0

2 � �2 and assume (�0
2;A2;K

0
2) is (�0

1;A1;K
0
1).

(d) Inductively by part 2, (�0
1;A1;K

0
1) is (�0

2;A2;K
0
2).

(e) By (�1;K1) is (�2;K2) again, (�
0
1; [A1=�]K

00
1 ) is (�0

2; [A2=�]K
00
2 )

(f) By the inductive hypothesis again, (�0
2; [A2=�]K

00
2 ) is (�0

1; [A1=�]K
00
1 ).

(g) Therefore, (�2; ��::K
0
2:K

00
2 ) is (�1; ��::K

0
1:K

00
1 ).

� Case: K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 . Same proof as for � types.

2. Assume (�1;A1;K1) is (�2;A2;K2). Then (�1;K1) is (�2;K2), (�1;A1;K1)valid, and

(�2;A2;K2)valid.

By part 1, (�2;K2) is (�1;K1).

� Case K1 = K2 = T.

(a) �1 . A1 :: K1 , �2 . A2 :: K2

(b) By Lemma 5.2.1, �2 . A2 :: K2 , �1 . A1 :: K1.

(c) Therefore (�2;A2;T) is (�1;A1;T).

� Case K1 = S(B1) and K2 = S(B2).

(a) (�1;A1;T) is (�2;A2;T).

(b) By the inductive hypothesis, (�2;A2;T) is (�1;A1;T).

(c) Therefore (�2;A2;S(B1)) is (�1;A1;S(B2)).

� Case K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

(a) Let �0
2 � �2 and �0

1 � �1 and assume (�0
2;B2;K

0
2) is (�0

1;B1;K
0
1).

(b) By the inductive hypothesis, (�0
1;B1;K

0
1) is (�0

2;B2;K
0
2).

(c) Thus (�0
1;A1B1; [B1=�]K

00
1 ) is (�0

2;A2B2; [B2=�]K
00
2 ).

(d) By the inductive hypothesis, (�0
2;A2B2; [B2=�]K

00
2 ) is (�0

1;A1B1; [B1=�]K
00
1 ).

(e) Therefore (�2;A2; ��::K
0
2:K

00
2 ) is (�1;A1; ��::K

0
1:K

00
1 ).

� Case K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

(a) Then (�1;�1A1;K
0
1) is (�2;�1A2;K

0
2)

(b) and (�1;�2A1; [�1A1=�]K
00
1 ) is (�2;�2A2; [�1A2=�]K

00
2 ).

(c) By the inductive hypothesis, (�2;�1A2;K
0
2) is (�1;�1A1;K

0
1)

(d) and (�2;�2A2; [�1A2=�]K
00
2 ) is (�1;�2A1; [�1A1=�]K

00
1 ).

(e) Therefore (�2;A2; ��::K
0
2:K

00
2 ) is (�1;A1; ��::K

0
1:K

00
1 ).

In contrast, the logical relation cannot be easily shown to obey the same transitivity property

as the algorithmic relations; it does hold at the base kind but does not lift to function kinds. I

therefore prove a slightly weaker property, which is nevertheless what we need for the remainder

of the proof. The key di�erence is that the transitivity property for the algorithm involves three

contexts/worlds whereas the following lemma only involves two.

Lemma 5.3.6 (Transitivity)

1. If (�1;K1) is (�1;L1) and (�1;L1) is (�2;K2) then (�1;K1) is (�2;K2).
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2. If (�1;A1;K1) is (�1;B1;L1) and (�1;B1;L1) is (�2;A2;K2) then

(�1;A1;K1) is (�2;A2;K2).

Proof:

1. Assume (�1;K1) is (�1;L1) and (�1;L1) is (�2;K2). First, (�1;K1)valid and

(�2;K2)valid.

� Case: K1 = L1 = K2 = T.

(�1;T) is (�2;T) always.

� Case: K1 = S(A1), L1 = S(B1), and K2 = S(A2).

(a) Then �1 . A1 :: T, �1 . B1 :: T

(b) and �1 . B1 :: T, �2 . A2 :: T.

(c) By Lemma 5.2.1, �1 . A1 :: T, �2 . A2 :: T.

(d) Therefore (�1;S(A1)) is (�2;S(A2)).

� Case: K1 = ��::K 0
1:K

00
1 , L1 = ��::L0

1:L
00
1, and K2 = ��::K 0

2:K
00
2 .

(a) (�1;K
0
1) is (�1;L

0
1) and (�1;L

0
1) is (�2;K

0
2).

(b) By induction, (�1;K
0
1) is (�2;K

0
2).

(c) Let (�0
1;�

0
2) � (�1;�2)

(d) and assume (�0
1;A1;K

0
1) is (�0

2;A2;K
0
2).

(e) By Lemma 5.3.3, (�1;K
0
1) is (�1;K

0
1).

(f) By monotonicity and Lemma 5.3.4, (�0
1;K

0
1 � K 0

1) is (�0
1;K

0
1 � L0

1).

(g) Since (�0
1;A1;K

0
1) is (�0

1;A1;K
0
1),

(h) we have (�0
1;A1;K

0
1) is (�0

1;A1;L
0
1).

(i) Thus (�0
1; [A1=�]K

00
1 ) is (�0

1; [A1=�]L
00
1).

(j) Similarly, (�0
1;K

0
1 � L0

1) is (�0
2;K

0
2 � K 0

2).

(k) Then (�0
1;A1;L

0
1) is (�0

2;A2;K
0
2).

(l) So, (�0
1; [A1=�]L

00
1) is (�0

2; [A2=�]K
00
2 ).

(m) By induction, (�0
1; [A1=�]K

00
1 ) is (�0

2; [A2=�]K
00
2 ).

(n) Therefore (�1; ��::K
0
1:K

00
1 ) is (�2; ��::K

0
2:K

00
2 ).

� Case: K1 = ��::K 0
1:K

00
1 , L1 = ��::L0

1:L
00
1, and K2 = ��::K 0

2:K
00
2 .

Same proof as for � types.

2. Assume (�1;A1;K1) is (�1;B1;L1) and (�1;B1;L1) is (�2;A2;K2). Then

(�1;A1;K1)valid, (�2;A2;K2)valid, (�1;K1) is (�1;L1), and (�1;L1) is (�2;K2). By

part 1, (�1;K1) is (�2;K2).

� Case: K1 = L1 = K2 = T.

(a) �1 . A1 :: T, �1 . B1 :: T

(b) and �1 . B1 :: T, �2 . A1 :: T.

(c) By Lemma 5.2.1, �1 . A1 :: T, �2 . A2 :: T.

(d) Therefore (�1;A1;T) is (�2;A2;T).

� Case: K1 = S(A0
1), L1 = S(B0

1), and K2 = S(A0
2).
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(a) (�1;A1;T) is (�1;B1;T)

(b) and (�1;B1;T) is (�2;A2;T).

(c) By the inductive hypothesis, (�1;A1;T) is (�2;A2;T).

(d) Therefore (�1;A1;S(A
0
1)) is (�2;A2;S(A

0
2)).

� Case: K1 = ��::K 0
1:K

00
1 , L1 = ��::L0

1:L
00
1, and K2 = ��::K 0

2:K
00
2 .

(a) Let (�0
1;�

0
2) � (�1;�2)

(b) and assume (�0
1;A

0
1;K

0
1) is (�0

2;A
0
2;K

0
2).

(c) Then by monotonicity (�0
1;K

0
1) is (�0

1;L
0
1) and (�0

1;L
0
1) is (�0

2;K
0
2).

(d) By Lemma 5.3.4, (�0
1;K

0
1 � K 0

1) is (�0
1;K

0
1 � L0

1).

(e) By Lemma 5.3.3, (�0
1;A

0
1;K

0
1) is (�0

1;A
0
1;K

0
1),

(f) so (�0
1;A

0
1;K

0
1) is (�0

1;A
0
1;L

0
1).

(g) Thus (�0
1;A1A

0
1; [A

0
1=�]K

00
1 ) is (�0

1;B1A
0
1; [A

0
1=�]L

00
1).

(h) Similarly, (�0
1;K

0
1 � L0

1) is (�0
2;K

0
2 � K 0

2),

(i) so (�0
1;A

0
1;L

0
1) is (�0

2;A
0
2;K

0
2).

(j) Thus, (�0
1;B1A

0
1; [A

0
1=�]L

00
1) is (�0

2;A2A
0
2; [A

0
2=�]K

00
2 ).

(k) By the inductive hypothesis, (�0
1;A1A

0
1; [A

0
1=�]K

00
1 ) is (�0

2;A2A
0
2; [A

0
2=�]K

00
2 ).

(l) Therefore, (�1;A1; ��::K
0
1:K

00
1 ) is (�2;A2; ��::K

0
2:K

00
2 ).

� Case: K1 = ��::K 0
1:K

00
1 , L1 = ��::L0

1:L
00
1, and K2 = ��::K 0

2:K
00
2 .

(a) (�1;�1A1;K
0
1) is (�1;�1B1;L

0
1)

(b) and (�1;�1B1;L
0
1) is (�2;�1A2;K

0
2).

(c) By the inductive hypothesis, (�1;�1A1;K
0
1) is (�2;�1A2;K

0
2).

(d) Similarly, (�1;�2A1; [�1A1=�]K
00
1 ) is (�1;�2B1; [�1B1=�]L

00
1)

(e) and (�1;�2B1; [�1B1=�]L
00
1) is (�2;�2A2; [�1A2=�]K

00
2 ).

(f) By the inductive hypothesis, (�1;�2A1; [�1A1=�]K
00
1 ) is (�2;�2A2; [�1A2=�]K

00
2 ).

(g) Therefore, (�1;A1; ��::K
0
1:K

00
1 ) is (�2;A2; ��::K

0
2:K

00
2 ).

Because of this restricted formulation, I cannot use symmetry and transitivity to derive prop-

erties such as \if (�1;K1) is (�2;K2) then (�1;K1) is (�1;K1)". An important purpose of

the validity predicates is to make sure that this property does in fact hold (by building it into the

de�nition of the equivalence logical relations).

De�nition 5.3.7

The judgment � . A1 ' A2 holds if and only if A1 and A2 have a common weak head reduct under

typing context �; that is, if and only if there exists B such that � . A1 ;
� B and � . A2 ;

� B.

Note that this de�nition does not require that either constructor have a weak head normal form,

though if either constructor has one then they share the same one. The following lemma then shows

that logical term equivalence and validity are preserved under weak head expansion and reduction.

Lemma 5.3.8 (Weak Head Closure)

1. If � . A; B then � . E [A]; E [B]

2. If � . A1 ' A2 then � . E [A1] ' E [A2].
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3. If (�;A;K)valid and � . A0 ' A, then (�;A0;K)valid.

4. If (�1;A1;K1) is (�2;A2;K2), �1 . A
0
1 ' A1, and �2 . A

0
2 ' A2 then

(�1;A
0
1;K1) is (�2;A

0
2;K2).

Proof:

1. Obvious by de�nition of � . A; B.

2. By repeated application of part 1.

3. Proved simultaneously with the following part by induction on the size of K. Assume

(�;A;K)valid and � . A0 ' A. Note that (�;K)valid.

� Case: K = T.

(a) � . A :: T, � . A :: T.

(b) By the de�nition of the algorithm and determinacy of weak head reduction,

� . A0 :: T, � . A0 :: T.

(c) Therefore (�;A0;T)valid.

� Case: K = S(B)

(a) Then � . A :: T, � . B :: T

(b) so by the de�nition of the algorithm and determinacy of weak head reduction

� . A0 :: T, � . B :: T

(c) which yields (�;A0;S(B))valid

� Case: K = ��::K 0:K 00.

(a) Let �0;�00 � � and assume that (�0;B1;K
0) is (�00;B2;K

0).

(b) Then (�0;AB1; [B1=�]K
00) is (�00;AB2; [B2=�]K

00),

(c) By part 2 and an obvious context weakening property, �0 . AB1 ' A0B1

(d) and �00 . AB2 ' A0B2.

(e) By the inductive hypothesis, (�0;A0B1; [B1=�]K
00) is (�00;A0B2; [B2=�]K

00).

(f) Therefore, (�;A0; ��::K 0:K 00)valid.

� Case: K = ��::K 0:K 00.

(a) Then (�;�1A;K
0)valid

(b) and by part 2, � . �1A
0 ' �1A.

(c) By the inductive hypothesis, (�1;�1A
0
1;K

0
1)valid.

(d) By re
exivity (�1;�1A
0
1;K

0
1) is (�1;�1A

0
1;K

0
1).

(e) and inductively by part 4, (�;�1A;K
0) is (�;�1A

0;K 0).

(f) Similarly, (�1;�2A; [�1A=�]K
00)valid,

(g) and � . �2A
0 ' �2A,

(h) so by the inductive hypothesis again, (�;�2A
0; [�1A=�]K

00)valid.

(i) But (�; [�1A=�]K
00) is (�; [�1A

0=�]K 00),

(j) so by re
exivity and Lemma 5.3.4,

(�; [�1A=�]K
00 � [�1A

0=�]K 00) is (�; [�1A=�]K
00 � [�1A

0=�]K 00).

(k) so (�;�2A
0; [�1A

0=�]K 00)valid.

(l) Therefore, (�;A0; ��::K 0:K 00)valid.
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4. Assume (�1;A1;K1) is (�2;A2;K2), �1 . A
0
1 ' A1, and �2 . A

0
2 ' A2. First, note that

(�1;A1;K1)valid, (�2;A2;K2)valid, and (�1;K1) is (�2;K2). By the argument in

part 3, (�1;A
0
1;K1)valid and (�2;A

0
2;K2)valid.

� Case: K1 = K2 = T.

(a) �1 . A1 :: T, �2 . A2 :: T.

(b) By the de�nition of the algorithm, �1 . A
0
1 :: T, �2 . A

0
2 :: T.

(c) Therefore (�1;A
0
1;T) is (�2;A

0
2;T).

� Case: K1 = S(B1) and K2 = S(B2).

(a) Then �1 . A1 :: T, �2 . A2 :: T

(b) so �1 . A
0
1 :: T, �2 . A

0
2 :: T

(c) which yields (�1;A
0
1;S(B1)) is (�2;A

0
2;S(B2)).

� Case: K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

(a) Let �0
1 � �1 and �0

2 � �2 and assume that (�0
1;B1;K

0
1) is (�0

2;B2;K
0
2).

(b) Then (�0
1;A1B1; [B1=�]K

00
1 ) is (�0

2;A2B2; [B2=�]K
00
2 ),

(c) By part 2 and an obvious weakening property, �0
1 . A1B1 ' A0

1B1

(d) and �0
2 . A2B2 ' A0

2B2.

(e) By the inductive hypothesis (�0
1;A

0
1B1; [B1=�]K

00
1 ) is (�0

2;A
0
2B2; [B2=�]K

00
2 ).

(f) Therefore, (�1;A
0
1; ��::K

0
1:K

00
1 ) is (�2;A

0
2; ��::K

0
2:K

00
2 ).

� Case: K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

(a) Then (�1;�1A1;K
0
1) is (�2;�1A2;K

0
2),

(b) (�1;�1A1;K
0
1) is (�1;�1A1;K

0
1),

(c) (�2;�1A2;K
0
2) is (�2;�1A2;K

0
2),

(d) and by part 2, �1 . �1A
0
1 ' �1A1,

(e) and �2 . �1A
0
2 ' �1A2.

(f) By the inductive hypothesis, (�1;�1A
0
1;K

0
1) is (�2;�1A

0
2;K

0
2),

(g) (�1;�1A1;K
0
1) is (�1;�1A

0
1;K

0
1),

(h) and (�2;�1A2;K
0
2) is (�2;�1A

0
2;K

0
2).

(i) Similarly, (�1;�2A1; [�1A1=�]K
00
1 ) is (�2;�2A2; [�1A2=�]K

00
2 ),

(j) �1 . �2A
0
1 ' �2A1,

(k) and �2 . �2A
0
2 ' �2A2.

(l) By the inductive hypothesis again,

(�1;�2A
0
1; [�1A1=�]K

00
1 ) is (�2;�2A

0
2; [�1A2=�]K

00
2 ).

(m) But (�1;K1) is (�1;K1) and (�2;K2) is (�2;K2),

(n) so (�1; [�1A1=�]K
00
1 ) is (�1; [�1A

0
1=�]K

00
1 ),

(o) (�2; [�1A2=�]K
00
2 ) is (�2; [�1A

0
2=�]K

00
2 ),

(p) and (�1; [�1A
0
1=�]K

00
1 ) is (�2; [�1A

0
2=�]K

00
2 ).

(q) By Lemma 5.3.4,

(�1; [�1A1=�]K
00
1 � [�1A

0
1=�]K

00
1 ) is (�2; [�1A1=�]K

00
2 � [�1A

0
1=�]K

00
2 ).

(r) so (�1;�2A
0
1; [�1A

0
1=�]K

00
1 ) is (�2;�2A

0
2; [�1A

0
2=�]K

00
2 ).

(s) Therefore, (�1;A
0
1; ��::K

0
1:K

00
1 ) is (�2;A

0
2; ��::K

0
2:K

00
2 ).
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Following all this preliminary work, I can now show that equivalence under the logical relations

implies equivalence under the algorithm. This requires a strengthened induction hypothesis: that

under suitable conditions variables (and more generally paths) are logically valid/equivalent.

Lemma 5.3.9

1. If (�1;K1) is (�2;K2) then �1 . K1 , �2 . K2.

2. If (�1;A1;K1) is (�2;A2;K2) then �1 . A1 :: K1 , �2 . A2 :: K2.

3. If (�;K)valid, � . p " K $ � . p " K, then (�; p;K)valid.

4. If (�1;K1) is (�2;K2) and �1 . p1 " K1 $ �2 . p2 " K2 then (�1; p1;K1) is (�2; p2;K2).

Proof: By simultaneous induction on the size of the kinds involved.

For part 4, note that in all cases �1 . p1 " K1 $ �1 . p1 " K1 and �2 . p2 " K2 $ �2 . p2 " K2 by

symmetry and transitivity of the algorithm, (�1;K1)valid, and (�2;K2)valid. Hence by part 3,

(�1; p1;K1)valid and (�2; p2;K2)valid.

� Case: K = K1 = K2 = T.

1. �1 .T, �2 .T by the de�nition of the algorithm.

2. (a) Assume (�1;A1;T) is (�2;A2;T).

(b) By the de�nition of this relation, �1 . A1 :: T, �2 . A2 :: T.

3. (a) Assume (�;T)valid and

(b) � . p " T$ � . p " T.

(c) By Lemma 5.2.2, � . p " T.

(d) Then � . p + p because p is a path without a de�nition.

(e) so � . p :: T, � . p :: T.

(f) Therefore (�; p;T)valid.

4. (a) Assume �1 . p1 " T$ �2 . p2 " T

(b) and (�1;T) is (�2;T).

(c) By Lemma 5.2.2, �1 . p1 " T and �2 . p2 " T.

(d) Thus �1 . p1 + p1 and �2 . p2 + p2.

(e) so �1 . p1 :: T, �2 . p2 :: T.

(f) Therefore (�1; p1;T) is (�2; p2;T).

� Case: K = S(B), K1 = S(B1), and K2 = S(B2).

1. (a) Assume (�1;K1) is (�2;K2).

(b) Then by de�nition (�1;B1;T) is (�2;B2;T),

(c) so �1 . B1 :: T, �2 . B2 :: T.

(d) Therefore, �1 . S(B1), �2 . S(B2).

2. (a) Then (�1;A1;T) is (�2;A2;T).

(b) Thus �1 . A1 :: T, �2 . A2 :: T.

(c) By the de�nition of the algorithm then, �1 . A1 :: S(B1), �2 . A2 :: S(B2)
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3. (a) Assume (�;S(B))valid,

(b) and � . p " S(B)$ � . p " S(B).

(c) By Lemma 5.2.2, � . p " S(B).

(d) Then � . p; B so � . p ' B.

(e) By (�;S(B))valid, � . B :: T, � . B :: T.

(f) By the de�nition of the algorithm, � . p :: T, � . B :: T.

(g) Therefore (�; p;S(B))valid.

4. (a) Assume (�1;S(B1)) is (�2;S(B2)),

(b) and �1 . p1 " S(B1)$ �2 . p2 " S(B1).

(c) By de�nition of the logical relations, �1 . B1 :: T, �2 . B2 :: T.

(d) By Lemma 5.2.2, �1 . p1 " S(B1) and �2 . p2 " S(B2).

(e) That is, �1 . p1 ; B1 and �2 . p2 ; B1.

(f) Hence �1 . p1 :: T, �2 . p2 :: T.

(g) Therefore (�1; p1;S(B1)) is (�2; p2;S(B1)).

� Case: K = ��::K 0:K 00, K1 = ��::K 0
1:K

00
1 , and K2 = ��::K 0

2:K
00
2 .

1. (a) Assume (�1; ��::K
0
1:K

00
1 ) is (�2; ��::K

0
2:K

00
2 ).

(b) Then (�1;K
0
1) is (�2;K

0
2).

(c) By the inductive hypothesis we have �1 . K
0
1 , �2 . K

0
2.

(d) Now �1; �::K
0
1 . � " K

0
1 $ �2; �::K

0
2 . � " K

0
2.

(e) Inductively by part 4, (�1; �::K
0
1;�;K

0
1) is (�2; �::K

0
2;�;K

0
2).

(f) Thus (�1; �::K
0
1;K

00
1 ) is (�2; �::K

0
2;K

00
2 )

(g) By the inductive hypothesis, �1; �::K
0
1 . K

00
1 , �2; �::K

0
2 . K

00
2 .

(h) Therefore �1 .��::K
0
1:K

00
1 , �2 . ��::K

0
2:K

00
2 .

2. (a) Assume (�1;A1; ��::K
0
1:K

00
1 ) is (�2;A2; ��::K

0
2:K

00
2 ).

(b) Then (�1; ��::K
0
1:K

00
1 ) is (�2; ��::K

0
2:K

00
2 )

(c) so as above, inductively by part 4 we have (�1; �::K
0
1;�;K

0
1) is (�2; �::K

0
2;�;K

0
2).

(d) Then (�1; �::K
0
1;A1 �;K

00
1 ) is (�2; �::K

0
2;A2 �;K

00
2 ).

(e) By the inductive hypothesis again, �1; �::K
0
1 . A1 � :: K 00

1 , �2; �::K
0
2 . A2 � :: K 00

2 .

(f) Therefore �1 . A1 :: ��::K
0
1:K

00
1 , �2 . A2 :: ��::K

0
1:K

00
1 .

3. (a) Assume (�;K)valid

(b) and � . p " K $ � . p " K.

(c) Let �0;�00 � �

(d) and assume (�0;B0;K 0) is (�00;B00;K 0).

(e) Inductively by part 2, �0 . B0 :: K 0 , �00 . B00 :: K 0.

(f) Thus using Weakening, �0 . pB0 " [B0=�]K 00 $ �00 . pB00 " [B00=�]K 00.

(g) By (�;K)valid, (�0; [B0=�]K 00) is (�00; [B00=�]K 00).

(h) Inductively by part 4, (�0; pB0; [B0=�]K 00) is (�00; pB00; [B00=�]K 00).

(i) Therefore (�; p; ��::K 0:K 00)valid.

4. (a) Assume (�1; ��::K
0
1:K

00
1 ) is (�2; ��::K

0
2:K

00
2 ),

(b) and �1 . p1 " ��::K
0
1:K

00
1 $ �2 . p2 " ��::K

0
2:K

00
2 .
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(c) Let �0
1 � �1 and �0

2 � �2 and assume that (�0
1;B1;K

0
1) is (�0

2;B2;K
0
2).

(d) Then (�0
1; [B1=�]K

00
1 ) is (�0

2; [B2=�]K
00
2 ).

(e) Inductively by part 2, �0
1 . B1 :: K

0
1 , �0

2 . B2 :: K
0
2,

(f) and by Weakening, �0
1 . p1 " ��::K

0
1:K

00
1 $ �0

2 . p2 " ��::K
0
2:K

00
2 ,

(g) so we have �0
1 . p1B1 " [B1=�]K

00
1 $ �0

2 . p2B2 " [B2=�]K
00
2 .

(h) By the inductive hypothesis, (�0
1; p1B1; [B1=�]K

00
1 ) is (�0

2; p2B2; [B2=�]K
00
2 ).

(i) Therefore (�1; p1; ��::K
0
1:K

00
1 ) is (�2; p2; ��::K

0
2:K

00
2 ).

� Case: K = ��::K 0:K 00, K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 .

1. The corresponding argument for the � case also applies here.

2. (a) Assume (�1;A1; ��::K
0
1:K

00
1 ) is (�2;A2; ��::K

0
2:K

00
2 ).

(b) Then (�1;�1A1;K
0
1) is (�2;�1A2;K

0
2).

(c) and (�1;�2A1; [�1A1=�]K
00
1 ) is (�2;�2A2; [�1A2=�]K

00
2 ).

(d) By the inductive hypothesis, �1 . �1A1 :: K
0
1 , �2 . �1A2 :: K

0
2

(e) and �1 . �2A1 :: [�1A1=�]K
00
1 , �2 . �2A2 :: [�1A2=�]K

00
2 .

(f) Therefore �1 . A1 :: ��::K
0
1:K

00
1 , �2 . A2 :: ��::K

0
2:K

00
2 .

3. (a) Assume (�;K)valid,

(b) and � . p " K $ � . p " K.

(c) By de�nition of the algorithm, � . �1p " K
0 $ � . �1p " K

0

(d) and � . �2p " [�1p=�]K
00 $ � . �2p " [�1p=�]K

00.

(e) By the induction hypothesis, (�;�1p;K
0)valid.

(f) By Lemma 5.3.3, (�;�1p;K
0) is (�;�1p;K

0).

(g) By (�;K)valid, (�; [�1p=�]K
00) is (�; [�1p=�]K

00).

(h) Thus (�; [�1p=�]K
00)valid.

(i) By the induction hypothesis again, (�;�2p; [�1p=�]K
00)valid.

(j) Therefore, (�; p; ��::K 0:K 00)valid.

4. (a) Assume (�1; ��::K
0
1:K

00
1 ) is (�2; ��::K

0
2:K

00
2 ),

(b) and �1 . p1 " ��::K
0
1:K

00
1 $ �2 . p2 " ��::K

0
2:K

00
2 .

(c) Then �1 . �1p1 " K
0
1 $ �2 . �1p2 " K

0
2

(d) and �1 . �2p1 " [�1p1=�]K
00
1 $ �2 . �2p2 " [�1p2=�]K

00
2 .

(e) The inductive hypothesis applies, yielding (�1;�1p1;K
0
1) is (�2;�1p2;K

0
2)

(f) and (�1;�2p1; [�1p1=�]K
00
1 ) is (�2;�2p2; [�1p2=�]K

00
2 ).

(g) Therefore (�1; p1; ��::K
0
1:K

00
1 ) is (�2; p2; ��::K

0
2:K

00
2 ).

Finally we come to the Fundamental Theorem of Logical Relations, which relates provable equiv-

alence of two constructors to the logical relations. The statement of the theorem is strengthened

to allow related substitutions, in order for the induction to go through.

Theorem 5.3.10 (Fundamental Theorem)

1. If � ` K and (�1; 
1; �) is (�2; 
2; �) then (�1; 
1K) is (�2; 
2K).
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2. If � ` K1 � K2 and (�1; 
1; �) is (�2; 
2; �) then

(�1; 
1K1 � 
1K2) is (�2; 
2K1 � 
2K2), (�1; 
1K1) is (�2; 
2K1), and

(�1; 
1K2) is (�2; 
2K2).

3. If � ` K1 � K2 and (�1; 
1; �) is (�2; 
2; �) then (�1; 
1K1) is (�2; 
2K2),

(�1; 
1K1) is (�2; 
2K1), and (�1; 
1K2) is (�2; 
2K2).

4. If � ` A :: K and (�1; 
1; �) is (�2; 
2; �) then (�1; 
1A; 
1K) is (�2; 
2A; 
2K).

5. If � ` A1 � A2 :: K and (�1; 
1; �) is (�2; 
2; �) then (�1; 
1A1; 
1K) is (�2; 
2A1; 
2K),

(�1; 
1A1; 
1K) is (�2; 
2A2; 
2K), and (�1; 
1A2; 
1K) is (�2; 
2A2; 
2K).

Proof: By simultaneous induction on the hypothesized derivation.

Note that in all cases, (�1; 
1; �) is (�1; 
1; �) and (�2; 
2; �) is (�2; 
2; �).

Kind Well-formedness Rules: � ` K.

� Case: Rule 2.7.

1. 
1T = 
2T = T.

2. (�1;T) is (�2;T).

� Case: Rule 2.8.

1. By the inductive hypothesis, (�1; 
1A;T) is (�2; 
2A;T).

2. Therefore (�1;S(
1A)) is (�2;S(
2A)).

� Case: Rule 2.9.

1. By Proposition 3.1.1, there is a strict subderivation �; �::K 0 ` ok

2. and by inversion a strict subderivation � ` K 0.

3. By the inductive hypothesis, (�1; 
1K
0) is (�2; 
2K

0).

4. Let �0
1 � �1 and �0

2 � �2 and assume that (�0
1;A1; 
1K

0) is (�0
2;A2; 
2K

0).

5. Then by monotonicity (�0
1; 
1[�7!A1]; �; �::K

0) is (�0
2; 
2[�7!A2]; �; �::K

0).

6. By the inductive hypothesis, (�0
1; (
1[�7!A1])K

00) is (�0
2; (
2[�7!A2])K

00).

7. That is, (�0
1; [A1=�]((
1[�7!�])K 00)) is (�0

2; [A2=�]((
2[� 7!�])K 00)).

8. Therefore, (�1; 
1(��::K
0:K 00)) is (�2; 
2(��::K

0:K 00)).

� Case: Rule 2.10. Just like previous case.

Subkinding Rules: � ` K1 � K2. In all cases, the proofs that (�1; 
1K1) is (�2; 
2K1) and

(�1; 
1K2) is (�2; 
2K2) follow essentially as in the proofs for the well-formedness rules.

Let �0
1 � �1 and �0

2 � �2 and assume (�0
1;B1; 
1K1) is (�0

2;B2; 
2K1).

� Case: Rule 2.11. K1 = S(A) and K2 = T. By monotonicity and the de�nitions of the logical

relations.

� Case: Rule 2.12. K1 = S(A1) and K2 = S(A2), with � ` A1 � A2 :: T.

1. By the inductive hypothesis we have (�0
1; 
1A2;T) is (�0

2; 
2A2;T),
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2. (�0
1; 
1A1;T) is (�0

1; 
1A2;T),

3. and (�0
2; 
2A1;T) is (�0

2; 
2A2;T).

4. Thus (�0
1;S(
1A2)) is (�0

2;S(
2A2)),

5. (�0
1;S(
1A1)) is (�0

1;S(
1A2)),

6. and (�0
2;S(
2A1)) is (�0

2;S(
2A2)).

7. so by Lemma 5.3.4, (�0
1;S(
1A1) � S(
1A2)) is (�0

2;S(
2A1) � S(
2A2)).

8. Therefore (�0
1;B1;S(
1A2)) is (�0

2;B2;S(
2A2)).

� Case: Rule 2.13. K1 = K2 = T.

Trivial, since 
1T = 
2T = T and (�1;T) is (�2;T).

� Case: Rule 2.14. K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 with � ` K 0

2 � K 0
1 and

�; �::K 0
2 ` K 00

1 � K 00
2 .

1. Let �00
1 � �0

1 and �00
2 � �0

2 and assume (�00
1;B

0
1; 
1K

0
2) is (�00

2 ;B
0
2; 
2K

0
2).

2. By the inductive hypothesis, (�0
1; 
1K

0
2 � 
1K

0
1) is (�0

2; 
2K
0
2 � 
2K

0
1).

3. so (�00
1;B

0
1; 
1K

0
1) is (�00

2 ;B
0
2; 
2K

0
1)

4. and (�00
1 ;B1B

0
1; (
1[�7!B0

1])K
00
1 ) is (�00

2 ;B2B
0
2; (
2[�7!B0

2])K
00
1 ).

5. By monotonicity, (�00
1 ; 
1[�7!B0

1]; �; �::K
0
2) is (�00

2; 
2[�7!B0
2]; �; �::K

0
2).

6. By the inductive hypothesis again,

(�00
1 ; (
1[�7!B0

1])K
00
1 � (
1[�7!B0

1])K
00
2 ) is (�00

2 ; (
2[� 7!B0
2])K

00
1 � (
2[�7!B0

2])K
00
2 ),

7. so (�00
1;B1B

0
1; (
1[�7!B0

1])K
00
2 ) is (�00

2 ;B2B
0
2; (
2[� 7!B0

2])K
00
2 ).

8. Thus (�0
1;B1; 
1(��::K

0
2:K

00
2 )) is (�0

2;B2; 
2(��::K
0
2:K

00
2 )).

� Case: Rule 2.15. K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 with � ` K 0

1 � K 0
2 and

�; �::K 0
1 ` K 00

1 � K 00
2 .

1. By the de�nitions of the logical relations, (�0
1;�1B1; 
1K

0
1) is (�0

2;�1B2; 
2K
0
1).

2. By the inductive hypothesis, (�0
1; 
1K

0
1 � 
1K

0
2) is (�0

2; 
2K
0
1 � 
2K

0
2).

3. Thus (�0
1;�1B1; 
1K

0
2) is (�0

2;�1B2; 
2K
0
2).

4. Now (�0
1; 
1[�7!�1B1]; �; �::K

0
1) is (�0

2; 
2[� 7!�1B2]; �; �::K
0
1)

5. so by the inductive hypothesis, (�0
1; (
1[� 7!�1B1])K

00
1 � (
1[�7!�1B1])K

00
2 ) is

(�0
2; (
2[�7!�1B2])K

00
1 � (
2[�7!�1B2])K

00
2 ).

6. Since (�0
1;�2B1; (
1[�7!�1B1])K

00
1 ) is (�0

2;�2B2; (
2[�7!�1B2])K
00
1 ),

7. (�0
1;�2B1; (
1[�7!�1B1])K

00
2 ) is (�0

2;�2B2; (
2[�7!�1B2])K
00
2 ).

8. Therefore, (�0
1;B1; 
1(��::K

0
2:K

00
2 )) is (�0

2;B2; 
2(��::K
0
2:K

00
2 )).

Kind Equivalence Rules: � ` K1 � K2.

It suÆces to prove that if � ` K1 � K2 and (�1; 
1; �) is (�2; 
2; �) then

(�1; 
1K1) is (�2; 
2K2), because we can apply this to get (�2; 
2K1) is (�2; 
2K2), so

(�1; 
1K1) is (�2; 
2K1) follows by symmetry and transitivity. A similar argument yields

(�1; 
1K2) is (�2; 
2K2).

In all cases, the proofs that (�1; 
1K1) is (�2; 
2K1) and (�1; 
1K2) is (�2; 
2K2) follow

essentially as in the proofs for the well-formedness rules.
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� Case: Rule 2.16. K1 = K2 = T. (�1;T) is (�2;T) by the de�nition of the logical relation.

� Case: Rule 2.17. K1 = S(A1) and K2 = S(A2) with � ` A1 � A2 :: T.

1. By the inductive hypothesis, (�1; 
1A1;T) is (�2; 
2A2;T).

2. Therefore, (�1;S(
1A1)) is (�2;S(
2A2)).

� Case: Rule 2.18. K1 = ��::K 0
1:K

00
1 and K2 = ��::K 0

2:K
00
2 with � ` K 0

2 � K 0
1 and

�; �::K 0
2 ` K 00

1 � K 00
2 .

1. By the inductive hypothesis, (�1; 
1K
0
1) is (�2; 
2K

0
2).

2. Let �0
1 � �1 and �0

2 � �2

3. and assume (�0
1;A1; 
1K

0
1) is (�0

2;A2; 
2K
0
2).

4. By the inductive hypothesis, (�0
1; 
1K

0
1) is (�0

2; 
2K
0
2)

5. and (�0
2; 
2K

0
1) is (�0

2; 
2K
0
2).

6. By symmetry, (�0
2; 
2K

0
2) is (�0

2; 
2K
0
1),

7. and by re
exivity (�0
1; 
1K

0
1) is (�0

1; 
1K
0
1).

8. By Lemma 5.3.4, (�0
1; 
1K

0
1 � 
1K

0
1) is (�0

2; 
2K
0
2 � 
2K

0
1),

9. so (�0
1;A1; 
1K

0
1) is (�0

2;A2; 
2K
0
1).

10. By monotonicity, then, (�0
1; 
1[�7!A1]; �; �::K

0
1) is (�0

2; 
2[�7!A2]; �; �::K
0
1).

11. By the inductive hypothesis again, (�0
1; (
1[�7!A1])K

00
1 ) is (�0

2; (
2[�7!A2])K
00
2 ).

12. Therefore (�1; 
1(��::K
0
1:K

00
1 )) is (�2; 
2(��::K

0
2:K

00
2 )).

� Case: Rule 2.19. Same proof as for previous case.

Constructor Validity Rules: � ` A :: K.

� Case: Rule 2.20.

1. (�1;T) is (�2;T)

2. �1 . bi " T$ �2 . bi " T.

3. Thus by Lemma 5.3.9 we have (�1; bi;T) is (�2; bi;T).

� Case: Rule 2.21. Analogous to the previous case.

� Case: Rule 2.22. Analogous to the previous case.

� Case: Rule 2.23.

By the assumptions for 
1 and 
2, we have (�1; 
1�; 
1(�(�))) is (�2; 
2�; 
2(�(�))).

� Case: Rule 2.24.

1. By Proposition 3.1.1 there is a strict subderivation � ` K 0.

2. By the inductive hypothesis, (�1; 
1K
0) is (�2; 
2K

0).

3. Let �0
1 � �1 and �0

2 � �2 and assume (�0
1;B1; 
1K

0) is (�0
2;B2; 
2K

0).

4. Using monotonicity, (�0
1; 
1[� 7!B1]; �; �::K

0) is (�0
2; 
2[�7!B2]; �; �::K

0).

5. By the inductive hypothesis,

(�0
1; (
1[�7!B1])A; (
1[�7!B1])K

00) is (�0
2; (
2[� 7!B2])A; (
2[�7!B2])K

00).
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6. Now �1 . (
1[�7!B1])A ' (
1(��::K
0:A))B1

7. and �2 . (
2[�7!B2])A ' (
2(��::K
0:A))B2.

8. By Lemma 5.3.8,

(�0
1; (
1(��::K

0:A))B1; (
1[�7!B1])K
00) is (�0

2; (
2(��::K
0:A))B2; (
2[� 7!B2])K

00).

9. Similar arguments analogous to lines 3{8 (and re
exivity) show that

(�1; 
1(��::K
0:A); 
1(��::K

0:K 00))valid

10. and (�2; 
2(��::K
0:A); 
2(��::K

0:K 00))valid.

11. Therefore (�1; 
1(��::K
0:A); 
1(��::K

0:K 00)) is (�2; 
2(��::K
0:A); 
2(��::K

0:K 00)).

� Case: Rule 2.25

1. By the inductive hypothesis (�1; 
1A; 
1(K
0!K 00)) is (�2; 
2A; 
2(K

0!K 00))

2. and (�1; 
1A
0; 
1K

0) is (�2; 
2A
0; 
2K

0).

3. Therefore, (�1; 
1(AA0); 
1(K
00)) is (�2; 
2(AA0); 
2(K

00)).

� Case: Rule 2.26.

1. By the inductive hypothesis and re
exivity, (�1; 
1A1; 
1K
0)valid

2. and (�1; 
1A2; 
1K
00)valid.

3. Now �1 . 
1A1 ' �1h
1A1; 
1A2i

4. and �1 . 
1A2 ' �2h
1A1; 
1A2i.

5. By Lemma 5.3.8 we have (�1;�1h
1A1; 
1A2i; 
1K
0)valid,

6. (�1;�2h
1A1; 
1A2i; 
1K
00)valid

7. Therefore, (�1; h
1A1; 
1A2i; 
1(K
0�K 00))valid

8. A very similar argument shows that (�2; h
2A1; 
2A2i; 
2(K
0�K 00))valid

9. and an analogous argument shows that

(�1; h
1A1; 
1A2i; 
1(K
0�K 00)) is (�2; h
2A1; 
2A2i; 
2(K

0�K 00)).

� Case: Rule 2.27.

1. By the inductive hypothesis, (�1; 
1A; 
1(��::K
0:K 00)) is (�2; 
2A; 
2(��::K

0:K 00)).

2. Therefore (�1;�1
1A; 
1K
0) is (�2;�1
2A; 
2K

0).

� Case: Rule 2.28.

1. By the inductive hypothesis, (�1; 
1A; 
1(��::K
0:K 00)) is (�2; 
2A; 
2(��::K

0:K 00)).

2. Therefore (�1;�2
1A; 
1([�1A=�]K
00)) is (�2;�2
2A; 
2([�1A=�]K

00)).

� Case: Rule 2.29

1. By the inductive hypothesis, (�1; 
1A;T) is (�2; 
2A;T).

2. As in the case for Rule 2.8, (�1;S(
1A)) is (�2;S(
2A)).

3. Thus (�1; 
1A;S(
1A))valid,
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4. (�2; 
2A;S(
2A))valid,

5. and (�1; 
1A;S(
1A)) is (�2; 
2A;S(
2A)).

� Case: Rule 2.30.

1. By the inductive hypothesis, (�1;�1(
1A); 
1K
0) is (�2;�1(
2A); 
2K

0),

2. and (�1;�2(
1A); 
1K
00) is (�2;�2(
2A); 
2K

00).

3. Thus (�1; 
1A; 
1(K
0�K 00))valid,

4. (�2; 
2A; 
2(K
0�K 00))valid,

5. and therefore (�1; 
1A; 
1(K
0�K 00)) is (�2; 
2A; 
2(K

0�K 00)),

� Case: Rule 2.31

1. (�1; 
1(��::K
0:K 00)) is (�2; 
2(��::K

0:K 00)) as in the case for Rule 2.9.

2. Let �0
1 � �1 and �0

2 � �2

3. and assume (�0
1;B1; 
1K

0) is (�0
2;B2; 
2K

0).

4. By monotonicity, (�0
1; 
1[�7!B1]; �; �::K

0) is (�0
2; 
2[�7!B2]; �; �::K

0).

5. By the inductive hypothesis,

(�0
1; (
1[�7!B1])(A�); (
1 [�7!B1])K

00) is (�0
2; (
2[� 7!B2])(A�); (
2[�7!B2])K

00).

6. That is, (�0
1; (
1A)B1; (
1[�7!B1])K

00) is (�0
2; (
2A)B2; (
2[� 7!B2])K

00).

7. and (�1; 
1A; 
1(��::K
0:K 00)) is (�2; 
2A; 
2(��::K

0:K 00)).

� Case: Rule 2.32

1. By the inductive hypothesis, (�1; 
1A; 
1K1) is (�1; 
2A; 
2K1)

2. and (�1; 
1K1 � 
1K2) is (�2; 
2K1 � 
2K2).

3. Therefore, (�1; 
1A; 
1K2) is (�1; 
2A; 
2K2)

Constructor Equivalence Rules: � ` A1 � A2 :: K.

It suÆces to prove that if � ` A1 � A2 :: K and (�1; 
1; �) is (�2; 
2; �) then

(�1; 
1A1; 
1K) is (�2; 
2A2; 
2K), because it follows that (�2; 
2A1; 
2K) is (�2; 
2A2; 
2K),

so (�1; 
1A1; 
1K) is (�2; 
2A2; 
2K) by symmetry and transitivity. A similar argument yields

(�1; 
1A2; 
1K) is (�2; 
2A2; 
2K).

� Case: Rule 2.33. By the inductive hypothesis.

� Case: Rule 2.34.

By the inductive hypothesis and Lemma 5.3.5.

� Case: Rule 2.35.

1. By the inductive hypothesis, (�1; 
1A1; 
1K) is (�1; 
1A2; 
1K)

2. and (�1; 
1A2; 
1K) is (�2; 
2A3; 
2K).

3. By Lemma 5.3.6, (�1; 
1A1; 
1K) is (�2; 
2A3; 
2K).

� Case: Rule 2.36.

Analogous to the proof for rule 2.24.
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� Case: Rule 2.37.

Analogous to the proof for Rule 2.25.

� Case: Rule 2.38.

Analogous to the proof for Rule 2.27.

� Case: Rule 2.39.

Analogous to proof for Rule 2.28.

� Case: Rule 2.40.

Analogous to proof for Rule 2.26.

� Case: Rule 2.41.

Analogous to the proof for Rule 2.30.

� Case: Rule 2.42.

Analogous to the proof of Rule 2.31.

� Case: Rule 2.43.

By the inductive hypothesis and the de�nition of the logical relations.

� Case: Rule 2.44. By the inductive hypothesis.

A straightforward proof by induction on well-formed contexts shows that the identity substitu-

tion is related to itself:

Lemma 5.3.11

If � ` ok then for all � 2 dom(�) we have (�;�; �(�)) is (�;�; �(�)). That is,

(�; id; �) is (�; id; �) where id is the identity function.

Proof: By induction on the proof of � ` ok.

� Case: Empty context. Vacuous.

� Case: �; �::K.

1. By Proposition 3.1.1, � ` K, and � ` ok.

2. Also, � 62 dom(�).

3. By the inductive hypothesis, (�;�; �(�)) is (�;�; �(�)) for all � 2 dom(�).

4. By monotonicity, (�; �::K;�; ((�; �::K)(�))) is (�; �::K;�; ((�; �::K)(�))) for all

� 2 dom(�).

5. By Theorem 5.3.10, (�;K) is (�;K)

6. and by monotonicity (�; �::K;K) is (�; �::K;K)

7. Now �; �::K . � " K $ �; �::K . � " K,

8. so by Lemma 5.3.9, (�; �::K;�;K) is (�; �::K;�;K).

This yields the completeness result for the equivalence algorithms:
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Corollary 5.3.12 (Completeness)

1. If � ` K1 � K2 then (�;K1) is (�;K2).

2. If � ` A1 � A2 :: K then (�;A1;K) is (�;A2;K).

3. If � ` K1 � K2 then � . K1 , � . K2.

4. If � ` A1 � A2 :: K then � . A1 :: K , � . A2 :: K.

Proof:

1,2 By Lemma 5.3.11, we can apply Theorem 5.3.10 with 
1 and 
2 being identity substitutions.

3,4 Follows directly from parts 1 and 2 and Lemma 5.3.9.

Intuitively, the algorithmic constructor equivalence relation can be viewed as simultaneously

and independently normalizing the two constructors and comparing the results as it goes along (see

x5.5). Thus termination for both terms individually implies their simultaneous comparison will also
terminate. This can be proved by induction on the algorithmic judgments (i.e., by induction on

the steps of the algorithm).

Lemma 5.3.13

1. If �1 . A1 " K1 $ �1 . A1 " K1 and �2 . A2 " K2 $ �2 . A2 " K2 then

�1 . A1 " K1 $ �2 . A2 " K2 is decidable.

2. If �1 . A1 :: K1 , �1 . A1 :: K1 and �2 . A2 :: K2 , �2 . A2 :: K2 then

�1 . A1 :: K1 , �2 . A2 :: K2 is decidable.

3. If �1 . K1 , �1 . K1 and �2 . K2 , �2 . K2 then �1 . K1 , �2 . K2 is decidable.

Proof: By induction on algorithmic derivations.

Then completeness yields the following corollary.

Corollary 5.3.14 (Algorithmic Decidability)

1. If � ` A1 :: K and � ` A2 :: K then � . A1 :: K , � . A2 :: K is decidable.

2. If � ` K1 and � ` K2 then � . K1 , � . K2 is decidable.

Proof: By re
exivity, Corollary 5.3.12, and by Lemma 5.3.13.

I conclude this section with an application of completeness.

Proposition 5.3.15 (Consistency)

Assume c1 and c2 are distinct type constructor constants. Then the judgment

� ` E1[c1] � E2[c2] :: K

is not provable.

Proof: The MIL0 constructor constants have either kind T or T!(T!T), so any path with a

constant at its head cannot have its extracted kind be a singleton kind, and hence must be head-

normal. Also, two paths with distinct constants at their heads will not be equivalent according to the

algorithmic weak constructor equivalence. Therefore the paths will be algorithmically inequivalent

at kind K, which by completeness implies inequivalence in the declarative system.

In proving soundness of the TILT compiler's intermediate language, these sorts of consistency

properties are essential. The argument that, for example, every closed value of type int is an integer

constant would fail if the type int were provably equivalent to a function type, a product type, or

another base type.
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5.4 Completeness and Termination

Finally, I transfer the soundness and completeness results of the previous section back to the

original algorithm for constructor equivalence. I use a \size" metric for derivations in the six-

place equivalence system. This metric measures the size of the derivation ignoring head reduction,

head normalization, and kind equivalence steps; that is, the metric is the number of term or path

equivalence rules used directly in the derivation. Since every provable algorithmic judgment has at

most one derivation, I can refer unambiguously to the size of a judgment.

The important properties of this metric are summarized in the following two lemmas.

Lemma 5.4.1

1. If �1 . A1 :: K1 , �2 . A2 :: K2 and �1 . A1 :: K1 , �3 . A3 :: K3 then the two derivations

have equal sizes.

2. If �1 . A1 " K1 $ �2 . A2 " K2 and �1 . A1 " K1 $ �3 . A3 " K3 then the two derivations

have equal sizes.

Proof: [By induction on the hypothesized derivations]

� Assume �1 . A1 :: T, �2 . A2 :: T and �1 . A1 :: T, �3 . A3 :: T. Then �1 . A1 + p1,

�2 . A2 + p2, �3 . A3 + p3, �1 . p1 " T$ �2 . p2 " T, and �1 . p1 " T$ �3 . p3 " T. By the

inductive hypothesis, these last two algorithmic judgments have equal sizes, so the original

equivalences have equal sizes (greater by one).

� Assume �1 . A1 :: S(B1), �2 . A2 :: S(B2) and �1 . A1 :: S(B1), �3 . A3 :: S(B3). Then

the derivations both have a size of one.

� Assume �1 . A1 :: ��::A
0
1:A

00
1 , �2 . A2 :: ��::A

0
2:A

00
2 and

�1 . A1 :: ��::A
0
1:A

00
1 , �3 . A3 :: ��::A

0
3:A

00
3. Then

�1; �::K
0
1 . A1 � :: K 00

1 , �2; �::K
0
2 . A2 � :: K 00

2 and

�1; �::K
0
1 . A1 � :: K 00

1 , �3; �::K
0
2 . A3 � :: K 00

3 . By the inductive hypothesis these

derivations have equal sizes and hence the original equivalence judgments have equal sizes

(greater by one).

� Assume �1 . A1 :: ��::A
0
1:A

00
1 , �2 . A2 :: ��::A

0
2:A

00
2 and

�1 . A1 :: ��::A
0
1:A

00
1 , �3 . A3 :: ��::A

0
3:A

00
3. Then �1 . �1A1 :: K

0
1 , �2 . �1A2 :: K

0
2,

�1 . �1A1 :: K
0
1 , �3 . �1A3 :: K

0
3, �1 . �2A1 :: [�1A1=�]K

00
1 , �2 . �1A2 :: [�1A2=�]K

00
2 , and

�1 . �2A1 :: [�1A1=�]K
00
1 , �3 . �1A3 :: [�1A3=�]K

00
3 . Using the inductive hypothesis twice,

the judgments have equal sizes.

� Assume �1 . bi " T$ �2 . bi " T and �1 . bi " T$ �3 . bi " T. Both derivations have size

one.

� Assume �1 . � " �1(�)$ �2 . � " �2(�) and �1 . � " �1(�)$ �3 . � " �3(�). Both
derivations have size one.

� The remaining three cases follow directly by the inductive hypothesis.

Lemma 5.4.2

1. If �1 . A1 :: K1 , �2 . A2 :: K2 then the derivation �2 . A2 :: K2 , �1 . A1 :: K1 has the

same size.
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2. If �1 .A1 " K1 $ �2 .A2 " K2 then the derivation �2 .A2 " K2 $ �1 .A1 " K1 has the same

size.

Proof: The two derivations are mirror-images of each other, and hence use the same number of

rules of each kind.

I can then show the completeness of the four-place algorithm with respect to the six-place

algorithm.

Lemma 5.4.3

1. If ` �1 � �2, �1 ` K1 � K2, �1 ` A1 :: K1, �2 ` A2 :: K2, and �1 . A1 :: K1 , �2 . A2 :: K2

then �1 . A1 , A2 :: K1.

2. If ` �1 � �2, �1 ` K1 � K2, �1 ` A1 :: K1, �2 ` A2 :: K2, and �1 . A1 " K1 $ �2 . A2 " K2

then �1 . A1 $ A2 " K1.

Proof: [By induction on the size of the hypothesized algorithmic derivation.]

Assume ` �1 � �2, �1 ` K1 � K2, �1 ` A1 :: K1, and �2 ` A2 :: K2.

� Case: �1 . A1 :: T, �2 . A2 :: T because �1 . A1 + p1, �2 . A2 + p2, and

�1 . p1 " T$ �2 . p2 " T.

Now by the completeness of the six-place algorithm we have �1 . A1 :: T, �1 . A2 :: T,

where �1 . A2 + p02 and �1 . p1 " T$ �1 . p
0
2 " T.

By Lemma 5.4.1, the sizes of the two proofs of algorithmic path equivalence have equal

sizes. Since this size is less than the size of the original algorithmic judgment (by one), we

may apply the inductive hypothesis to the second derivation to get �1 . p1 $ p02 " T.
Therefore, �1 . A1 , A2 :: T.

� The remaining cases are all either trivial or follow easily from the inductive hypothesis.

Theorem 5.4.4 (Completeness for Constructors and Kinds)

1. If � ` A1 � A2 :: K then � . A1 , A2 :: K.

2. If � ` K then � . K.

3. If � ` K1 � K2 then � . K1 � K2.

4. If � ` K1 � K2 then � . K1 , K2.

5. If � ` A :: K then � . A� L and � . A * L.

6. If � ` A :: K then � . A� K.

Proof:

1. Assume � ` A1 � A2 :: K. By the completeness of the six-place algorithm,

� . A1 :: K , � . A2 :: K. Then � . A1 , A2 :: K by Lemma 5.4.3.

2{6. By part 1 and induction on derivations

Lemma 5.4.5

If � . p1 $ p2 " K1, � ` p1 :: K1, and � ` p2 :: L then � . p2 " K2 for some kind K2, and

� ` K1 � K2.

110



Lemma 5.4.6

1. If � . p1 $ p1 " K1, � ` p1 :: K1, and � ` p2 :: L then it is decidable whether

� . p1 $ p2 " K1 is provable.

2. If � . A1 , A1 :: K, � ` A1 :: K and � ` A2 :: K then it is decidable whether

� . A1 , A2 :: K is provable.

3. If � . K1 , K1, � ` K1 and � ` K2 then it is decidable whether � . K1 , K2 is provable.

Proof:

1{2. By induction on algorithmic derivations.

The sequence of constructor and path comparisons is driven by � and either p1 or A1 and

K. In particular, this is independent of A2 or p2. Thus the only possible problem would be

for head normalization to fail to terminate, which can be seen to be impossible by

completeness of the revised algorithm.

3. By induction on kinds, using part 2.

Theorem 5.4.7 (Decidability for Constructors and Kinds)

1. If � ` A1 :: K and � ` A2 :: K then � . A1 , A2 :: K is decidable.

2. If � ` K1 and � ` K2 then � . K1 , K2 is decidable.

3. If � ` K1 and � ` K2 then � . K1 � K2 is decidable.

4. If � ` K1, � ` K2 then � . K1 , K2 is decidable.

5. If � ` ok then � . K is decidable.

6. If � ` ok then it is decidable whether � . A� K holds for some K.

7. If � ` K then � . A� K is decidable.

Proof:

1{2. Follows from re
exivity of constructor and kind equivalence, Completeness, and

Lemma 5.4.6.

3{7. By Parts 1 and 2 and by induction on the sizes of constructors and kinds.

5.5 Normalization

The revised equivalence algorithms in Figure 5.1 are e�ectively doing the work of normalizing

the two constructors or two kinds being compared. However, because the algorithm interleaves

this process with comparisons, the normalized constructors and kinds need not be explicitly con-

structed. This is a bene�cial for implementations, but it is still interesting and useful to consider

the normalization process in isolation. The corresponding algorithms are shown in Figure 5.5.

Lemma 5.5.1 (Determinacy of Normalization)

1. If � . A :: K =) B1 and � . A :: K =) B2 then B1 = B2.

2. If � . p �! p01 " K1 and � . p �! p02 " K2 then p01 = p02 and K1 = K2.
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Constructor Normalization

� . A :: T =) A00 if � . A + A0 and � . A0 �! A00 " T
� . A :: S(B) =) A00 if � . A + A0 and � . A0 �! A00 " T
� . A :: ��::K 0:K 00 =) ��::L0:B if � . K 0 =) L0 and �; �::K 0 . (A�) :: K 00 =) B

� . A :: ��::K 0:K 00 =) hB0; B00i if � . �1A :: K 0 =) B0 and � . �2A :: [�1A=�]K
00 =) B00.

Path Normalization

� . b �! b " T
� . � �! � " T!T!T

�. * �! * " T!T!T

� . � �! � " �(�)
� . pA �! p0A0 " [A=�]K 00 if � . p �! p0 " ��::K 0:K 00 and � . A :: K 0 =) A0

� . �1p �! �1p
0 " K 0 if � . p �! p0 " ��::K 0:K 00

� . �2p �! �2p
0 " [�1p=�]K

0 if � . p �! p0 " ��::K 0:K 00

Kind Normalization

� .T =) T

� . S(A) =) S(A0) if � . A :: T =) A0

� .��::K 0:K 00 =) ��::L:L00 if � . K 0 =) L0 and �; �::K 0 . K 00 =) L00

� . ��::K 0:K 00 =) ��::L:L00 if � . K 0 =) L0 and �; �::K 0 . K 00 =) L00

Figure 5.5: Constructor and Kind Normalization

3. If � . K =) L1 and � . K =) L2 then L1 = L2.

Proof: By induction on algorithmic derivations.

Lemma 5.5.2 (Soundness of Normalization)

1. If � ` A :: K and � . A :: K =) B then � ` A � B :: K.

2. If � ` p :: K and � . p �! p0 " L then � ` p � p0 :: L.

3. If � ` K and � . K =) L then � ` K � L.

Proof: By induction on algorithmic derivations.

Theorem 5.5.3

Assume ` �1 � �2 and �1 ` K1 � K2.

1. �1 . A1 :: K1 , �2 . A2 :: K2 if and only if �1 . A1 :: K1 =) B and �2 . A2 :: K2 =) B for

some B.

2. �1 . p1 " K1 $ �2 . p2 " K2 if and only if �1 . p1 �! p0 " K1 and �1 . p1 �! p0 " K2 for

some p0, K1, and K2.

3. �1 . K1 , �2 . K2 if and only if �1 . K1 =) L and �2 . K2 =) L for some L.

Proof:

) By induction on algorithmic derivations.
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( By soundness of normalization, transitivity and symmetry, and completeness of the revised

equivalence algorithm.

Corollary 5.5.4 (Normalization of Constructors and Kinds)

1. If ` �1 � �2, �1 ` A1 :: K and �2 ` A2 :: K then �1 ` A1 � A2 :: K if and only if

�1 . A1 :: K =) B and �2 . A2 :: K =) B.

2. If ` �1 � �2, �1 ` K1 and �1 ` K2 then �1 ` K1 � K2 if and only if �1 . K1 =) L and

�2 . K2 =) L.
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Chapter 6

Algorithms for Type and Term

Judgments

6.1 Introduction

I now turn to the term and type levels of MIL0; the development parallels that for constructors and

kinds. In this chapter I consider algorithms corresponding to the term and type judgments, proving

soundness, and partial completeness and termination results depending on term equivalence. Term

equivalence is then studied in detail in the following chapter.

6.2 Type Head-Normalization

The kind-equivalence and subkinding relations are very simple and structural, and inversion imme-

diately yields various useful properties such as \if two � kinds are equivalent then their domain kinds

are equivalent and their codomain kinds are equivalent". It is clear from inspection of type equiv-

alence that a universally-quanti�ed type can only be equivalent to another universally-quanti�ed

type (and that in this case the domain kinds are equivalent as are the codomain types), and similar

properties hold for singleton types. However, the fact that there is no chain of equivalences

Ty(A1)�Ty(A2) � Ty(A1�A2) � Ty(B1*B2) � Ty(B1)*Ty(B2)

equating a function type with a product type (or a chain equating a product type and Ty(Int),

etc.) is a consequence of the consistency properties of constructor equivalence, which were proved

in the previous chapter.

It is convenient to extend the head-normalization algorithm for constructors to the head-

normalization of types; this algorithm is shown in Figure 6.1. The head-normalization algorithm

attempts to turn any type of the form Ty(A) into an equivalent function type or product type, and

leaves all other types unchanged. Viewed as an algorithm the judgment � . � + � takes inputs �

and � with � ` � and produces the type �. It depends upon a typing context because it uses the

constructor head-normalization, which is context-dependent.

Lemma 6.2.1 (Type Head-Normalization)

If � ` � then there exists a unique � such that � . � + �. Furthermore, � ` � � �.

Proof: By induction on the derivation of type well-formedness, using the soundness of weak

head-reduction for constructors.
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Type head normalization

� . Ty(A) + Ty(A1)�Ty(A2) if � . A + A1�A2

� . Ty(A) + Ty(A1)*Ty(A2) if � . A + A1*A2

� . � + � otherwise

Figure 6.1: Head Normalization Algorithm for Types

Use of head-normalization allows a suÆciently strong induction hypothesis to prove useful in-

version properties for type equivalence and for subtyping.

Theorem 6.2.2 (Inversion of Type Equivalence)

Assume � ` �1 � �2.

1. � . �1 + (x:� 01)*� 001 if and only if � . �2 + (x:� 02)*� 002 . Furthermore, in this case � ` � 01 � � 02
and �; x:� 01 ` � 001 � � 002 .

2. � . �1 + (x:� 01)��
00
1 if and only if � . �2 + (x:� 02)��

00
2 . Furthermore, in this case � ` � 01 � � 02

and �; x:� 01 ` � 001 � � 002 .

3. � . �1 + Ty(b) if and only if � . �2 + Ty(b).

4. �1 = 8�::K 0
1:�

00
1 if and only if �2 = 8�::K 0

2:�
00
2 . Furthermore, in this case � ` K 0

1 � K 0
2 and

�; �::K 0
1 ` � 001 � � 002 .

5. �1 = S(v1 : �
0
1) if and only if �2 = S(v2 : �

0
2). Furthermore, in this case � ` v1 � v2 : �

0
1 and

� ` � 01 � � 02.

Proof: By induction on the proof of � ` �1 � �2.

Theorem 6.2.3 (Subtyping Inversion)

Assume � ` �1 � �2.

1. If � . �1 + (x:� 01)*� 001 then � . �2 + (x:� 02)*� 002 . Furthermore, in this case � ` � 02 � � 01 and

�; x:� 02 ` � 001 � � 002 .

2. If � . �2 + (x:� 02)*� 002 then �1 is a singleton type or else � . �1 + (x:� 01)*� 001 and � ` � 02 � � 01
and �; x:� 02 ` � 001 � � 002 .

3. If � . �1 + (x:� 01)��
00
1 then � . �2 + (x:� 02)��

00
2 . Furthermore, in this case � ` � 01 � � 02 and

�; x:� 01 ` � 001 � � 002 .

4. If � . �2 + (x:� 02)��
00
2 then �1 is a singleton type or else � . �1 + (x:� 01)��

00
1 and � ` � 01 � � 02

and �; x:� 02 ` � 001 � � 002 .

5. If � . �1 + Ty(b) then � . �2 + Ty(b).

6. If � . �2 + Ty(b) then �1 is a singleton type or else � . �2 + Ty(b).

7. If �1 = 8�::K 0
1:�

00
1 then �2 = 8�::K 0

2:�
00
2 and � ` K 0

2 � K 0
1 and �; �::K 0

2 ` �
00
1 � � 002 .

8. If �2 = 8�::K 0
2:�

00
2 then �1 is a singleton type or else �1 = 8�::K 0

1:�
00
1 and � ` K 0

2 � K 0
1 and

�; �::K 0
2 ` � 001 � � 002 .

9. If �1 = S(v1 : �1) then either �2 = S(v2 : �2), � ` �1 � �2, and � ` v1 � v2 : �1, or else �2 is

not a singleton and � ` �1 � �2.

10. If �2 = S(v2 : �2) then �1 = S(v1 : �1), � ` �1 � �2, and � ` v1 � v2 : �1.

Proof: By induction on the proof of � ` �1 � �2.
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Singleton stripping

(S(v : �))$ := �

�$ := � if � is not a singleton

Principal type synthesis

� . n * S(n : int)

� . x * S(x : �(x)$)

� . fun f(x:� 0):� 00 is e *
S((fun f(x:� 0):� 00 is e) : (x:� 0)*� 00)

� . �(�::K):�:e * S(�(�::K):�:e : 8�::K:� )
� . hv1; v2i * S(hv1; v2i : �1��2) if � . v1 * �1 and � . v2 * �2.

� . �1v * S(�1v : �
0$) if � . v * � and � . �$ + (x:� 0)�� 00.

� . �2v * S(�2v : ([�1v=x]�
00)

$
) if � . v * � and � . �$ + (x:� 0)�� 00.

� . v v0 * [v0=x]� 00 if � . v * � and � . �$ + (x:� 0)*� 00

� . v A * [A=�]� 00 if � . v * � and �$ = 8�::K:� 00

� . let x:� 0=e0 in e : � end * �

Figure 6.2: Principal Type Synthesis Algorithm

6.3 Principal Types

Just as every well-formed constructor has a most-speci�c kind, every well-formed term has a most-

speci�c type (up to equivalence). The algorithmic judgment �.e * � determines the principal type

� of the term e under context �. This algorithm uses the auxiliary notion of a stripped type; for

any type � , the stripped type �$ is the type label of � if � is a singleton type, and is � otherwise.

Note that because nested singletons are disallowed, �$ can never be a singleton type.

Lemma 6.3.1 (Singleton Stripping)

1. If � ` � then � ` � � �$.

2. If � ` �1 � �2 then � ` �1
$ � �2

$.

3. If � ` �1 � �2 then � ` �1
$ � �2

$.

4. If � ` �1 � �2 then either �2 is a singleton type or � ` �1
$ � �2.

5. If � ` � then �$ is the minimal non-singleton supertype of � .

6. If � ` v : � then � ` S(v : �$) � � .

Proof: Part 1 follows by re
exivity or by Theorem 6.2.3 and Rule 2.62, depending on whether �

is a singleton type or not. Parts 2{3 are shown by induction on derivations. Part 4 is a restatement

of part 3. Finally, parts 5 and 6 follow by case analysis on the form of � .

Theorem 6.3.2 (Principal Types)

1. If � ` v : � then � . v * � and � ` v : � and � ` � � S(v : �$), so that � ` � � �.

2. If � ` e : � then � . e * � and � ` e : � and � ` � � �.

Proof: By simultaneous induction on the proof of the �rst premise, and cases on the last typing

rule used.
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1. � Case: Rule 2.67.
� ` ok

� ` n : int

Then � . n * S(n : int) and � ` n : S(n : int). By re
exivity, � ` S(n : int) � S(n : int).

� Case: Rule 2.68.
� ` ok

� ` x : �(x)

(a) � . x * S(x : �(x)$).

(b) Since � ` �(x), by Lemma 6.3.1 we have � ` �(x) � �(x)$

(c) and hence � ` x : �(x)$.

(d) By Rule 2.77, � ` x : S(x : �(x)$).

(e) Finally by re
exivity, � ` S(x : �(x)$) � S(x : �(x)$).

� Case: Rule 2.69.
�; f :(x:� 0)*� 00; x:� 0 ` e : � 00

� ` fun f(x:�):� 0 is e : (x:�)*� 0

(a) First, � . fun f(x:�):� 0 is e * S(fun f(x:�):� 0 is e : (x:�)*� 0).

(b) By Rule 2.77, � ` fun f(x:�):� 0 is e : S(fun f(x:�):� 0 is e : (x:�)*� 0).

(c) Finally, by re
exivity we have

� ` S(fun f(x:�):� 0 is e : (x:�)*� 0) � S(fun f(x:�):� 0 is e : (x:�)*� 0).

� Case: Rule 2.70.
�; �::K 0 ` e : �00

� ` �(�::K 0):�00:e : 8�::K 0:�00

(a) � . �(�::K 0):�00:e * S(�(�::K 0):�00:e : 8�::K 0:�00).

(b) By Rule 2.77, � ` �(�::K 0):�00:e : S(�(�::K 0):�00:e : 8�::K 0:�00).

(c) Finally, � ` 8�::K 0:�00 � 8�::K 0:�00 by re
exivity,

(d) so � ` S(�(�::K 0):�00:e : 8�::K 0:�00) � S(�(�::K 0):�00:e : 8�::K 0:�00).

� Case: Rule 2.71.
� ` v1 : �1 � ` v2 : �2

� ` hv1; v2i : �1��2

(a) By the inductive hypothesis � . v1 * �1 and � ` v1 : �1 and � ` �1 � S(v1 : �1
$),

(b) and � . v2 * �2 and � ` v2 : �2 and � ` �2 � S(v2 : �2
$).

(c) Thus � . hv1; v2i * S(hv1; v2i : �1��2).

(d) Also, � ` hv1; v2i : �1��2,

(e) so by Rule 2.77, � ` hv1; v2i : S(hv1; v2i : �1��2).

(f) Finally, � ` �1��2 � S(v1 : �1
$)�S(v2 : �2

$)

(g) and � ` S(v1 : �1
$)�S(v2 : �2

$) � �1��2,

(h) so � ` S(hv1; v2i : �1��2) � S(hv1; v2i : �1��2).

� Case: Rule 2.72.
� ` v : (x:�0)��00

� ` �1v : �
0

118



(a) By the inductive hypothesis, � . v * � and � ` v : � and � ` � � S(v : (x:�0)��00).

(b) By Lemma 6.3.1, � ` �$ � (x:�0)��00

(c) and hence by Theorem 6.2.3 � . �$ + (x:� 0)�� 00 with � ` � 0 � �0.

(d) Thus � . �1v * S(�1v : �
0$).

(e) By Lemmas 6.3.1 and 6.2.1 and subsumption, � ` �1v : �
0$,

(f) so by Rule 2.77 we have � ` �1v : S(�1v : �
0$).

(g) Finally, � ` � 0
$ � �0

$ by Lemma 6.3.1,

(h) so � ` S(�1v : �
0$) � S(�1v : �

0$).

� Case: Rule 2.73. Analogous to previous case.

� Case: Rule 2.77.
� ` v : �

� ` v : S(v : �)
(� not a singleton)

(a) By the inductive hypothesis, � . v * � and � ` v : � and � ` � � S(v : �$).

(b) It suÆces to observe that S(v : (S(v : �$))
$
) = S(v : �$).

� Case: Rule 2.78.
� ` e : �1 � ` �1 � �2

� ` e : �2

(a) By the inductive hypothesis, � . v * � and � ` v : � and � ` � � S(v : �1
$).

(b) By Lemma 6.3.1, � ` �1
$ � �2

$,

(c) so by transitivity, � ` � � S(v : �2
$).

2. � Case: e is a value. Follows by Part 1, Lemma 6.3.1, and transitivity.

� Case: Rule 2.74.
� ` v : �0*�00 � ` v0 : �0

� ` v v0 : �00

(a) By the inductive hypothesis, � . v * � and � ` v : � and � ` � � �0*�00.

(b) Similarly, � . v0 * �1 and � ` v0 : �1 and � ` �1 � �0.

(c) By Lemma 6.3.1, � ` �$ � �0*�00.

(d) By Theorem 6.2.3, � . �$ + (x:� 0)*� 00 with � ` �0 � � 0 and �; x:�0 ` � 00 � �00.

(e) Thus � . v v0 * [v0=x]� 00.

(f) By Lemmas 6.3.1 and 6.2.1, � ` v : (x:� 0)*� 00.

(g) Also by transitivity, � ` �1 � � 0.

(h) Hence � ` v v0 : [v0=x]� 00.

(i) Finally, by substitution we have � ` [v0=x]� 00 � [v0=x]�00.

� Case: Rule 2.75
� ` v : 8�::K 0:�00 � ` A :: K 0

� ` v A : [A=�]�00

(a) By the inductive hypothesis, � . v * � and � ` v : � and � ` � � 8�::K 0:�00.

(b) By Lemma 6.3.1 � ` �$ � 8�::K 0:�00,

(c) so by Theorem 6.2.3 �$ = 8�::L0:� 00 with � ` K 0 � L0 and �; �::K 0 ` � 00 � �00.

(d) Thus � . v A * [A=�]� 00.
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(e) Then � ` v : 8�::L0:� 00 and � ` A :: L0,

(f) so � ` v A : [A=�]� 00.

(g) Finally, by substitution we have � ` [A=�]� 00 � [A=�]�00.

� Case: Rule 2.76.
� ` e0 : �0 �; x:�0 ` e : � � ` �

� ` (let x:�0=e0 in e : � end) : �

(a) It is immediate that � . (let x:�0=e0 in e : � end) * �,

(b) and � ` (let x:�0=e0 in e : � end) : � by assumption.

(c) Finally, � ` � � � by re
exivity.

� Case: Rule 2.78. As in Part 1.

6.4 Algorithms

The term equivalence again makes use of term-level elimination contexts, again denoted by E . In
contrast to the elimination contexts for type constructors, applications are not included; the only

paths (E [v] where v is a constant or variable) of interest are those which are values:

E ::= �
j �1E
j �2E

6.5 Soundness

Proposition 6.5.1 (Inversion of Term Validity)

1. If � ` v v0 : � then � ` v : (x:� 0)*� 00 and � ` v0 : � 0 with � ` [v0=x]� 00 � � .

2. If � ` v A : � then � ` v : 8�::K 0:� 00 and � ` A :: K 0 with � ` [A=�]� 00 � � .

3. If � ` �1v : � then � ` v : �1��2 and � ` �1 � � .

4. If � ` �2v : � then � ` v : �1��2 and � ` �2 � � .

Proof: By inversion v must be well-formed, so (the stripped, head-normal version of) its principal

type satis�es the desired properties.

Proposition 6.5.2

If � ` hv1; v2i : � then � . �$ + (x:� 0)�� 00 and � ` v1 : � and � ` v2 : [v1=x]�
00.

Proof: By induction on typing derivations, and cases on the last rule used.

� Case: Rule 2.71.
� ` v1 : �

0 � ` v2 : �
00

� ` hv1; v2i : �
0�� 00

Trivial.
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Type validity

� . Ty(A) if � . A� T

� . S(v : �) if � . � and � . v � � .

� . (x:� 0)*� 00 if � . � 0 and �; x:� 0 . � 00.

� . (x:� 0)�� 00 if � . � 0 and �; x:� 0 . � 00.

� . 8�::K:� if � . K and �; �::K . � .

Algorithmic subtyping

� . �1 � �2 if � . �1 + �1, � . �2 + �2, and � . �1 v �2

Weak algorithmic subtyping

� . Ty(A1) v Ty(A2) if � . A1 , A2 :: T.

� . S(v1 : �1) v S(v2 : �2) if � . �1 � �2 and � . v1 , v2.

� . S(v1 : �1) v �2 if �2 not a singleton and � . �1 � �2.

� . (x:� 01)*� 001 v (x:� 02)*� 002 if � . � 02 � � 01 and �; x:� 02 . �
00
1 � � 002

� . (x:� 01)��
00
1 v (x:� 02)��

00
2 if � . � 01 � � 02 and �; x:� 01 . �

00
1 � � 002

� . 8�::K1:�1 v 8�::K2:�2 if � . K2 � K1 and �; �::K2 . �1 � �2.

Algorithmic type equivalence

� . �1 , �2 if � . �1 + �1, � . �2 + �2, and � . �1 $ �2.

Weak algorithmic type equivalence

� . Ty(A1)$ Ty(A2) if � . A1 , A2 :: T

� . S(v1 : �1)$ S(v2 : �2) if � . �1 , �2 and �1 . v1 , v2
� . (x:� 01)*� 001 $ (x:�2)*� 002 if �1 . �

0
1 , � 02 and �1; x:�

0
1 . �

00
1 , � 002

� . (x:� 01)��
00
1 $ (x:�2)��

00
2 if �1 . �

0
1 , � 02 and �1; x:�

0
1 . �

00
1 , � 002

� . 8�::K1:�1 $ 8�::K2:�2 if � . K1 , K2 and �1; x::K1 . �1 , �2

Figure 6.3: Algorithms for Types
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Type synthesis

� . n� S(n : int)

� . x� S(x : �(x)$)

� . fun f(x:� 0):� 00 is e� if � . � 0, �; x:� 0 . � 00,

S((fun f(x:� 0):� 00 is e) : (x:� 0)*� 00) and �; f :(x:� 0)*� 00; x:� 0 . e� � 00

� . �(�::K):�:e� S(�(�::K):�:e : 8�::K:� ) if � . K and �; �::K . � and �; �::K . e� � .

� . hv1; v2i� S(hv1; v2i : �1��2) if � . v1 � �1 and � . v2 � �2.

� . �1v � � 0 if � . v � � and �$ = (x:� 0)�� 00.

� . �2v � [�1v=x]�
00 if � . v � � and �$ = (x:� 0)�� 00.

� . v v0 � [v0=x]� 00 if � . v � � , �$ = (x:� 0)*� 00, and � . v0 � � 0.

� . v A� [A=�]� if � . v � � , �$ = 8�::K:� , and � . A� K.

� . let x:� 0=e0 in e : � end� � if � . � 0, � . e0 � � 0, � . � , and �; x:� 0 . e� � .

Typechecking

� . e� � if � . e� � and � . � � � .

Figure 6.4: Algorithms for Term Validity

� Case: Rule 2.77.
� ` hv1; v2i : �

� ` hv1; v2i : S(v : �)
(� not a singleton)

By the inductive hypothesis.

� Case: Rule 2.78
� ` hv1; v2i : �1 � ` �1 � �2

� ` hv1; v2i : �2

1. By the inductive hypothesis, � . �1
$ + (x:� 01)��

00
1

2. and � ` v1 : �
0
1 and � ` v2 : [v1=�]�

00
1 .

3. Then by Lemma 6.3.1, � ` �1
$ � �2

$,

4. so by Theorem 6.2.3 we have � . �2
$ + (x:� 02)��

00
2

5. and � ` � 01 � � 02 and �; x:� 01 ` � 001 � � 002 .

6. Thus by substitution and subsumption, � ` v1 : �
0
2 and � ` v2 : [v1=x]�

00
2 .

Lemma 6.5.3

If � ` v1 : � and � ` v2 : � and � ` v1 � v2 : �
$ then � ` v1 � v2 : � .

Proof:

� Case: � = S(w : �).

1. Then �$ = � and � ` v1 � v2 : �.

2. By Rule 2.120, � ` v1 � v2 : S(v1 : �).
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Type extraction

� . n " int

� . x " �(x)
� . �1p " �1 if � . p " (y:�1)��2
� . �2p " [�1p=y]�2 if � . p " (y:�1)��2

Term weak head reduction

� . E [�1hv1; v2i]; E [v1]
� . E [�2hv1; v2i]; E [v2]
� . E [p]; E [v] if � . p " S(v : �)

Term weak head normalization

� . e + d if � . e; e0 and � . e0 + d

� . e + e otherwise

Algorithmic term equivalence

� . e1 , e2 if � . e1 + d1, � . e2 + d2, and � . d1 $ d2

Algorithmic weak term equivalence

� . n$ n always

� . x$ x always

� . fun f(x:� 01):�
00
1 is e1 $ if � . � 01 , � 02 and �; x:� 01 . �

00
1 , � 002

fun f(x:� 02):�
00
2 is e2 and �; f :(x:� 01)*� 001 ; x:�

0
1 . e1 , e2.

� . �(�::K1):�1:e1 $ �(�::K2):�2:e2 if �.K1 , K2 and �; �::K1.�1 , �2 and �; �::K1.e1 ,
e2.

� . hv01; v
00
1 i $ hv02; v

00
2 i if � . v01 , v02 and � . v001 , v002 .

� . �iv1 $ �iv2 if � . v1 $ v2
� . v1 v

0
1 $ v2 v

0
2 if � . v1 , v2 and � . v01 , v02.

� . v1A1 $ v2A2 if � . v1 , v2, � . v1 + w1, � . w1 * �, �$ = 8�::L0:�00,

and � . A1 , A2 :: L
0.

� . (let x:� 01=e
0
1 in e1 : �1 end)$ if � . � 01 , � 02, � . e

0
1 , e02,

(let x:� 02=e
0
2 in e2 : �2 end) �; x:� 01 . e1 , e2, and � . �1 , �2.

Figure 6.5: Algorithms for Term Equivalence
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3. But � ` v1 : S(w : �), so � ` v1 � w : �

4. and hence � ` S(v1 : �) � S(w : �).

5. By subsumption then, � ` v1 � v2 : S(w : �).

6. That is, � ` v1 � v2 : � .

� Case: �$ = � . Trivial.

Lemma 6.5.4 (Term Weak Head-Normalization)

If � ` e : � then there exists at most one e0 such that � . e + e0. Furthermore, � ` e0 : � and

� ` e � e0 : � .

Lemma 6.5.5 (Soundness for Path Weak Equivalence)

If � ` p1 : �1 and � ` p2 : �2 and � . p1 $ p2 then � . p1 * �1, � . p2 * �2, � ` �1 � �2, and

� ` p1 � p2 : �1.

Proof: By induction on � . p1 $ p2, and cases on the last step.

� Case: � . n$ n. Direct.

� Case: � . x$ x. Direct.

� Case: � . �1p
0
1 $ �1p

0
2 because � . p

0
1 $ p02.

1. By inversion, p01 and p02 are well-formed.

2. By the inductive hypothesis, � . p01 * �1, � . p
0
2 * �2, � ` �1 � �2, and � ` p01 � p02 : �1.

3. Since �1p
0
1 and �1p

0
2 are well-formed, �1 = S(p01 : (x:�

0
1)��

00
1 ) and

�2 = S(p02 : (x:�
0
2)��

00
2 ),

4. and � . �1p
0
1 * S(�1p

0
1 : �

0
1) and � . �1p

0
2 * S(�1p

0
2 : �

0
2).

5. By Theorem 6.2.2, � ` �01 � �02.

6. By subsumption and Rule 2.85, � ` �1p
0
1 � �1p

0
2 : �

0
1.

7. Hence � ` �1p
0
1 � �1p

0
2 : S(�1p

0
1 : �

0
1) and � ` S(�1p

0
1 : �

0
1) � S(�1p

0
2 : �

0
2).

� Case: � . �2p
0
1 $ �2p

0
2 because � . p

0
1 $ p02. Analogous to previous case.

Theorem 6.5.6 (Soundness of Equivalence)

1. If � ` e1 : � and � ` e2 : � and � . e1 , e2 then � ` e1 � e2 : � .

2. If � ` e1 : � , � ` e2 : � , � . e1 $ e2, and e1 and e2 are head-normal then � ` e1 � e2 : � .

3. If � ` �1 and � ` �2 and � . �1 , �2 then � ` �1 � �2.

4. If � ` �1 and � ` �2 and � . �1 $ �2 then � ` �1 � �2.
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Proof: By simultaneous induction on algorithmic judgments (i.e., on the execution of the

algorithms).

1. By the inductive hypothesis and Lemma 6.5.4.

2. � Case: � . n$ n. Follows by re
exivity.

� Case: � . x$ x. Follows by re
exivity.

� Case: � . fun f(x:�01):�
00
1 is e1 $ fun f(x:�02):�

00
2 is e2.

(a) Then by inversion � ` �01, � ` �02, �; x:�
0
1 ` �

00
1 , �; x:�

0
2 ` �002 , �; x:�

0
1 ` e1 : �

00
1 , and

�; x:�02 ` e2 : �
00
2 .

(b) By inversion of the algorithm, � . �01 , �02 and �; x:�01 . �
00
1 , �002 .

(c) By the inductive hypothesis, � ` �01 � �02.

(d) Thus �; x:�01 ` �
00
2 and so by the inductive hypothesis �; x:�01 ` �

00
1 � �002 .

(e) This yields �; x:�01 ` e2 : �
00
1 , so by the inductive hypothesis �; x:�01 ` e1 � e2 : �

00
1 .

(f) Thus � ` fun f(x:�01):�
00
1 is e1 � fun f(x:�02):�

00
2 is e2 : (x:�

0
1)*�001 .

(g) Finally, by Theorem 6.3.2 and Lemma 6.2.1 we have � ` (x:�01)*�001 � �$ and so

� ` fun f(x:�01):�
00
1 is e1 � fun f(x:�02):�

00
2 is e2 : �

$.

(h) By Lemma 6.5.3, we have � ` fun f(x:�01):�
00
1 is e1 � fun f(x:�02):�

00
2 is e2 : � .

� Case: � . �(�::K1):�1:e1 $ �(�::K2):�2:e2 because � . K1 , K2 and �; �::K1 . �1 , �2
and �; �::K1 . e1 , e2.

(a) By inversion of typing, � ` K1 and �; �::K1 ` �1 and �; �::K1 ` e1 : �1.

(b) Similarly, � ` K2 and �; �::K2 ` �2 and �; �::K2 ` e2 : �2.

(c) By the inductive hypothesis, � ` K1 � K2.

(d) Then �; �::K1 ` �2, so by the inductive hypothesis �; �::K1 ` �1 � �2.

(e) Then �; �::K1 ` e2 : �1, so by the inductive hypothesis �; �::K1 ` e1 � e2 : �1.

(f) Thus, � ` �(�::K1):�1:e1 � �(�::K2):�2:e2 : 8�::K1:�1.

(g) By Theorem 6.3.2 and Lemma 6.3.1, � ` 8�::K1:�1 � �$.

(h) By subsumption, � ` �(�::K1):�1:e1 � �(�::K2):�2:e2 : �
$.

(i) Therefore by Lemma 6.5.3, � ` �(�::K1):�1:e1 � �(�::K2):�2:e2 : � .

� Case: � . hv01; v
00
1 i $ hv02; v

00
2 i because � . v

0
1 , v02 and � . v001 , v002 .

(a) By Proposition 6.5.2, � . �$ + (x:� 0)�� 00,

(b) and � ` v01 : �
0 and � ` v02 : �

0

(c) and � ` v001 : [v
0
1=x]�

00 and � ` v002 : [v
0
2=x]�

00.

(d) By the inductive hypothesis, � ` v01 � v02 : �
0.

(e) Thus by functionality and subsumption and � ` v002 : [v
0
1=x]�

00.

(f) By the inductive hypothesis, � ` v001 � v002 : [v
0
1=x]�

00.

(g) By Rule 2.106, � ` hv01; v
00
1 i � hv02; v

00
2 i : (x:�

0)�� 00.

(h) By Lemma 6.2.1 and subsumption, � ` hv01; v
00
1 i � hv02; v

00
2 i : �

$.

(i) Therefore by Lemma 6.5.3, � ` hv01; v
00
1 i � hv02; v

00
2 i : � .

� Case: � . �1v1 $ �1v2 because � . v1 $ v2. Since �1v1 and �1v2 are head-normal and

well-formed they must be paths; the result follows by Lemma 6.5.5.

� Case: � . �2v1 $ �2v2 because � . v1 $ v2. Since �2v1 and �2v2 are head-normal and

well-formed they must be paths; the result follows by Lemma 6.5.5.
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� Case: � . v1 v
0
1 $ v2 v

0
2 because � . v1 , v2 and � . v01 , v02.

(a) Then � . v1 + w1 and � . v2 + w2 and � . w1 $ w2

(b) By Proposition 6.5.1, � ` v1 : (x:�
0
1)*� 001 and � ` v01 : �

0
1 and � ` [v01=x]�

00
1 � � .

(c) Similarly, � ` v2 : (x:�
0
2)*� 002 and � ` v02 : �

0
2 and � ` [v02=x]�

00
2 � � .

(d) By Lemma 6.5.4, w1 and w2 have these function types. Thus w1 and w2 are not

type abstractions, pairs, or (because they are head-normal) projections from pairs.

The only remaining possibilities are that either w1 and w2 are both paths, or else

they are both term abstractions.

{ SUBCASE: w1 = p1 and w2 = p2. By Lemma 6.5.5, there exist �1 and �2 such

that � . w1 * �1 and � . w2 * �2 and � ` �1 � �2 and � ` w1 � w2 : �1.

{ SUBCASE: w1 = fun f(x:�01):�
00
1 is e1 and w2 = fun f(x:�02):�

00
2 is e2.

� Put �1 = S(w1 : (x:�
0
1)*�001 ) and �2 = S(w2 : (x:�

0
2)*�002).

� Then � . w1 * �1 and � . w2 * �2.

� By declarative and algorithmic inversion and the inductive hypothesis,

� ` �01 � �02 and �; x:�01 ` �001 � �002 .

� By the inductive hypothesis, � ` w1 � w2 : �1
$,

� so � ` �1 � �2 and � ` w1 � w2 : �1.

{ Since � ` w1 : (x:�
0
1)*� 001 , by Theorem 6.3.2 we have � ` �1 � (x:� 01)*� 001 .

{ Thus in either of the two cases above, �1
$ is of the form (x:�01)*�001 .

{ By Theorem 6.2.3, � ` � 01 � �01 and �; x:� 01 ` �
00
1 � � 001 .

{ Thus � ` v01 : �
0
1.

{ Similarly, �2
$ = (x:�02)*�002 and � ` v02 : �

0
2.

{ By subsumption, � ` v02 : �
0
1.

{ By the inductive hypothesis, � ` v01 � v02 : �
0
1.

{ Thus � ` w1 v
0
1 � w2 v

0
2 : [v

0
1=x]�

00
1 .

{ By substitution, � ` [v01=x]�
00
1 � [v01=x]�

00
1 ,

{ so � ` [v01=x]�
00
1 � � and � ` w1 v

0
1 � w2 v

0
2 : � .

{ Then � ` v1 v
0
1 � w1 v

0
1 : � and � ` v2 v

0
2 � w2 v

0
2 : � .

{ So by symmetry and transitivity, � ` v1 v
0
1 � v2 v

0
2 : � .

� Case: � . v1A1 $ v2A2 because � . v1 , v2, � . v1 + w1, � . w1 * �, �$ = 8�::L0:�00,

and � . A1 , A2 :: L
0.

Analogous to the previous case; this time the head normal forms of v1 and v2 must

either be paths or type abstractions. The return-type annotations on type abstractions

are vital here (as they are for term abstractions in proof of the previous case) so that

the induction hypothesis can be applied; they supply a common type for comparing the

functions' bodies.

� Case: � . let x:� 01=e
0
1 in e1 : �1 end $ let x:� 02=e

0
2 in e2 : �2 end because � . � 01 , � 02 and

� . e01 , e02 and �; x:� 01 . �1 , �2 and �; x:� 01 . e1 , e2.

Essentially analogous to the proof for equivalence of two term-level functions.

3. By the inductive hypothesis and Lemma 6.2.1.

4. � Case: � . Ty(A1)$ Ty(A2) because � . A1 , A2 :: T.

(a) By inversion of typing, � ` A1 :: T and � ` A2 :: T,
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(b) By soundness of constructor equivalence then, � ` A1 � A2 :: T.

(c) By Rule 2.53, � ` Ty(A1) � Ty(A2).

� Case: � . S(v1 : �1)$ S(v2 : �2) because � . �1 , �2 and �1 . v1 , v2.

(a) By inversion of typing and the inductive hypothesis, � ` �1 � �2.

(b) Thus � ` v1 : �1 and � ` v2 : �1.

(c) By the inductive hypothesis, � ` v1 � v2 : �1.

(d) By Rule 2.54, � ` S(v1 : �1) � S(v2 : �2).

� Case: � . (x:� 01)*� 001 $ (x:�2)*� 002 because �1 . �
0
1 , � 02 and �1; x:�

0
1 . �

00
1 , � 002 .

By inversion of typing and the inductive hypothesis.

� � . (x:� 01)��
00
1 $ (x:�2)��

00
2 because �1 . �

0
1 , � 02 and �1; x:�

0
1 . �

00
1 , � 002 .

By inversion of typing and the inductive hypothesis.

� � . 8�::K1:�1 $ 8�::K2:�2 because � . K1 , K2 and �1; x::K1 . �1 , �2.

By inversion of typing, soundness of kind equivalence, and the inductive hypothesis.

The soundness proofs for the remaining algorithmic judgments are then straightforward.

Theorem 6.5.7 (Soundness of Subtyping)

1. If � ` �1 and � ` �2 and � . �1 � �2 then � ` �1 � �2.

2. If � ` �1 and � ` �2 and � . �1 v �2 then � ` �1 � �2.

Proof: By induction on algorithmic derivations.

Theorem 6.5.8 (Soundness of Typechecking)

1. If � ` ok and � . � then � ` � .

2. If � ` ok and � . e� � then � ` e : � and � . e * � .

3. If � ` � and � . e� � then � ` e : � .

Proof: By induction on algorithmic derivations.
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Chapter 7

Completeness and Decidability for

Types and Terms

7.1 Type and Term Equivalence

The approach for studying type and term equivalence is very similar to that for constructor and

kind equivalence. Figures 7.1 and 7.2 show a symmetrized version of the type and term equivalence

algorithms. By construction the algorithm is symmetric and transitive:

Lemma 7.1.1 (Algorithmic PER Properties)

1. If �1 . v1 , �2 . v2 then �2 . v2 , �1 . v1.

2. If �1 . v1 , �2 . v2 and �2 . v2 , �3 . v3 then �1 . v1 , �3 . v3.

3. If �1 . v1 $ �2 . v2 then �2 . v2 $ �1 . v1.

4. If �1 . v1 $ �2 . v2 and �2 . v2 $ �3 . v3 then �1 . v1 $ �3 . v3.

5. If �1 . �1 , �2 . �2 then �2 . �2 , �1 . �1.

6. If �1 . �1 , �2 . �2 and �2 . �2 , �3 . �3 then �1 . �1 , �3 . �3.

The proof of completeness for term equivalence is essentially the same as the completeness

proof for constructor equivalence. Although the algorithm is not type-directed, the fact that it

must maintain two contexts requires the more complex two-world form of logical relation: see

Figures 7.3, 7.4, and 7.5. The main di�erences from the constructor- and kind-level relations are:

1. Since type equivalence is not purely structural (e.g., Ty(Int�Int) � Ty(Int)�Ty(Int)) the

logical relations are de�ned using head normalization of types.

2. The term-level logical relations are de�ned only for values, not all expressions.

3. The � cases of the term-level relations have been simpli�ed, since applications are not values.

4. These logical relations also require that ` �1 � �2 as well as declarative well-formedness

or equivalences, as appropriate. This allows the invocation of the correctness results for the

constructor algorithms.

It is not immediately obvious that these logical relations are well-de�ned, because they are not

de�ned simply by induction on types.
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Algorithmic type equivalence

�1 . �1 , �2 . �2 if �1 . �1 + �1, �2 . �2 + �2, and �1 . �1 $ �2 . �2.

Weak algorithmic type equivalence

�1 . Ty(A1)$ �2 . Ty(A2) if �1 . A1 :: T1 , �2 . A2 :: T2

�1 . S(v1 : �1)$ �2 . S(v2 : �2) if �1 . �1 , �2 . �2 and �1 . v1 , �2 . v2
�1 . (x:�1)*�1 $ �2 . (x:�2)*�2 if �1 . �1 , �2 . �2 and �1; x:�1 . �1 , �2; x:�2 . �2
�1 . (x:�1)��1 $ �2 . (x:�2)��2 if �1 . �1 , �2 . �2 and �1; x:�1 . �1 , �2; x:�2 . �2
�1 . 8�::K1:�1 $ �2 . 8�::K2:�2 if �1 . K1 , �2 . K2 and �1; �::K1 . �1 , �2; �::K2 . �2

Figure 7.1: Revised Type Equivalence Algorithm

Algorithmic term equivalence

�1 . e1 , �2 . e2 if �1 . e1 + d1, �2 . e2 + d2, and �1 . d1 $ �2 . d2

Algorithmic weak term equivalence

�1 . n$ �2 . n always

�1 . x$ �2 . x always

�1 . fun f(x:� 01):�
00
1 is e1 $ if �1 . �

0
1 , �2 . �

0
2 and �; x:� 01 . �

00
1 , �2; x:�

0
2 . �

00
2 and

�2 . fun f(x:�
0
2):�

00
2 is e2 �; f :(x:� 01)*� 001 ; x:�

0
1 . e1 , �2; f :(x:�

0
2)*� 002 ; x:�

0
2 . e2.

�1 . �x:�
0
1:e1 $ �2 . �x:�

0
2:e2 if �1 . �

0
1 , �2 . �

0
2 and �1; x:�

0
1 . e1 , �2; x:�

0
2 . e2.

�1 . �(�::K1):�1:e1 $ �2 . �(�::K2):�2:e2 if �1 .K1 , �2 .K2 and �1; �::K1 . �1 , �2; �::K2 . �2
and �1; �::K1 . e1 , �2; �::K2 . e2.

�1 . hv
0
1; v

00
1 i $ �2 . hv

0
2; v

00
2 i if �1 . v

0
1 , �2 . v

0
2 and �1 . v

00
1 , �2 . v

00
2 .

�1 . �iv1 $ �2 . �iv2 if �1 . v1 $ �2 . v2
�1 . v1 v

0
1 $ �2 . v2 v

0
2 if �1 . v1 , �2 . v2 and �1 . v

0
1 , �2 . v

0
2.

�1 . v1A1 $ �2 . v2A2 if �1 . v1 , �2 . v2, �i . vi + wi, �i . wi * �i, �i
$ =

8�::L0
i
:�00
i
, and �1 . A1 :: L

0
1 , �2 . A2 :: L

0
2.

�1 ` (let x:� 01=e
0
1 in e1 : �1 end)$ if �1 . �

0
1 , �2 . �

0
2, �1 . e

0
1 , �2 . e

0
2,

�2 ` (let x:� 02=e
0
2 in e2 : �2 end) �1; x:�

0
1 . e1 , �1; x:�

0
2 . e2, and �1 . �1 , �2 . �2.

Figure 7.2: Revised Term Equivalence Algorithm
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� (�; �) valid i�

1. � ` �

2. and

{ � = Ty(A) and � . � + �

{ Or, � = S(v : �) and (�; v;�) valid

{ Or, � . � + (x:� 0)*� 00, and (�; � 0) valid, and for all �0 � � and �00 � � if

(�0; v0; � 0) is (�00;w0; � 0) then (�0; [v0=x]� 00) is (�00; [w0=x]� 00).

{ Or � . � + (x:� 0)�� 00, and (�; � 0) valid, and for all �0 � � and �00 � � if

(�0; v0; � 0) is (�00;w0; � 0) then (�0; [v0=x]� 00) is (�00; [w0=x]� 00).

{ Or � = 8�::K:� 00, and for all �0 � � and �00 � � if ` �0 � �00 and

�0 ` A1 � A2 :: K then (�0; [A1=�]�
00) is (�00; [A2=�]�

00).

� (�1; �1) is (�2; �2) i�

1. ` �1 � �2 and �1 ` �1 � �2

2. (�1; �1) valid and (�2; �2) valid.

3. { �i = Ty(Ai) and �i . �i + �i

{ Or, �i = S(vi : �i) and (�1; v1;�1) is (�2; v2;�2)

{ Or, �i . �i + (x:� 0
i
)*� 00

i
, and (�1; �

0
1) is (�2; �

0
2), and for all �0

1 � �1 and �0
2 � �2

if (�0
1; v

0
1; �

0) is (�0
2; v

0
2; �

0) then (�0
1; [v

0
1=x]�

00
1 ) is (�0

2; [v
0
2=x]�

00
2 ).

{ Or, �i . �i + (x:� 0
i
)�� 00

i
, and (�1; �

0
1) is (�2; �

0
2), and for all �0

1 � �1 and �0
2 � �2

if (�0
1; v

0
1; �

0) is (�0
2; v

0
2; �

0) then (�0
1; [v

0
1=x]�

00
1 ) is (�0

2; [v
0
2=x]�

00
2 ).

{ Or �i = 8�::Ki:�
00
i
, and for all �0

1 � �1 and �0
2 � �2 if ` �0

1 � �0
2 and

�0
1 ` A1 � A2 :: K1 then (�0

1; [A1=�]�
00
1 ) is (�0

2; [A2=�]�
00
2 ).

Figure 7.3: Logical Relations for Types
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� (�; v; �) valid i�

1. (�; �) valid

2. � ` v : �

3. � . v , � . v

4. { � = Ty(A) and � . � + �

{ Or, � = S(w : � 0) and (�; v; � 0) is (�;w; � 0)

{ Or, � . � + (x:� 0)*� 00

{ Or, � . � + (x:� 0)�� 00, (�;�1v; �
0) valid, and (�;�2v; [�1v=x]�

00) valid.

{ Or, � = 8�::K:� 0.

� (�1; v1; �1) is (�2; v2; �2) i�

1. (�1; �1) is (�2; �2)

2. (�1; v1; �1) valid and (�1; v2; �1) valid

3. �1 ` v1 � v2 : �1

4. �1 . v1 , �2 . v2

5. { �i = Ty(Ai) and �i . �i + �i

{ Or, �i = S(wi : �i) and (�1; v1;�1) is (�2; v2;�2)

{ Or, �i . �i + (x:� 0
i
)*� 00

i
,

{ Or, �i . �i + (x:� 0
i
)�� 00

i
, (�1;�1v1; �

0
1) is (�2;�1v2; �

0
2), and

(�1;�2v1; [�1v1=x]�
00
1 ) is (�2;�2v2; [�1v2=x]�

00
2 ).

{ Or, �i = 8�::Ki:�
0
i
.

Figure 7.4: Logical Relations for Values
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� (�1; �1 � �1) is (�2; �2 � �2) i�

1. 8�0
1 � �1 and �0

2 � �2, if (�
0
1; v1; �1) is (�0

2; v2; �2) then (�0
1; v1;�1) is (�0

2; v2;�2)

� (�; 
; �) valid i�

1. � ` ok

2. 8� 2 dom(�): � ` 
� :: 
(�(�))

3. 8x 2 dom(�): (�; 
x; 
(�(x))) valid

� (�1; 
1; �1) is (�2; 
2; �2) i�

1. ` �1 � �2

2. dom(�1) = dom(�2)

3. (�1; 
1; �1) valid and (�2; 
2; �2) valid

4. 8� 2 dom(�): �1 ` 
1� � 
2� :: 
(�1(�))

5. 8x 2 dom(�): (�1; 
1x; 
1(�1(x))) is (�2; 
2x; 
2(�2(x)))

Figure 7.5: Derived Logical Relations

size(�;8�::K:�) = (1; 0) + size(�; �::K; �)

size(�;S(v : �)) = (1; 0) + size(�; �)

size(�; (x:� 0)*� 00) = (0; 1) + size(�; � 0) + size(�; x:� 0; � 00)

size(�; (x:� 0)�� 00) = (0; 1) + size(�; � 0) + size(�; x:� 0; � 00)

size(�;Ty(A)) = (0;Number of of �'s and *'s in B where � . A :: T =) B)

Figure 7.6: Size Metric for Types
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I therefore de�ne the size of a type � relative to a context � to be pair of integers, (If �

is apparent from context, I will just refer to the size of � .) The formal de�nition is given in

Figure 7.6; the de�nition here uses componentwise addition:

(m1;m2) + (n1; n2) = (m1 + n1;m2 + n2):

The �rst component of the size is the number of 8's and S's in the type. The second component is

the number of � and*'s in the type after all the constructors within Ty(�)'s have been normalized.

These sizes are ordered lexicographically:

(m1;m2) � (n1; n2) () (m1 < n1) _ ((m1 = n1) ^ (m2 � n2)):

The relevant properties of sizes are summarized in the following lemma:

Lemma 7.1.2 (Sizes of Types)

1. If � ` �1 � �2 then size(�; �1) = size(�; �2).

2. If � ` �1 and � . �1 + �2 then �1 and �2 have equal sizes.

3. If � ` S(v : �) then the size of S(v : �) is strictly greater than the size of � .

4. If � ` (x:� 0)*� 00 then the size of (x:� 0)*� 00 is strictly greater than both the size of � 0 and the

size of [v=x]� 00 for any value satisfying � ` v : � 0.

5. If � ` (x:� 0)�� 00 then the size of (x:� 0)�� 00 is strictly greater than both the size of � 0 and the

size of [v=x]� 00 for any value satisfying � ` v : � 0.

6. If � ` 8�::K:� then the size of 8�::K:� is strictly greater than the size of [A=�]� for any

constructor satisfying � ` A : K.

Proof:

1. By induction on equivalence derivations and the properties of constructor normalization.

2. By part 1 and Lemma 6.2.1.

3{6. By de�nition of sizes.

Lemma 7.1.3 (Logical Re
exivity)

1. If (�; �) valid then (�; �) is (�; �).

2. If (�; v; �) valid then (�; v; �) is (�; v; �).

3. If (�; 
; �) valid then (�; 
; �) is (�; 
; �).

Proof: By induction on the size of types

1. In all cases, ` � � � and and � ` � � � by declarative re
exivity.

� Case: � = Ty(A) and � . � + � . Trivially (�;Ty(A)) is (�;Ty(A)).

� Case: � = S(v : �). By the inductive hypothesis (�; v;�) valid implies

(�; v;�) is (�; v;�). Thus (�;S(v : �)) is (�;S(v : �)).

� Case: � . � + (x:� 0)*� 00. Then (�; � 0) valid. By the inductive hypothesis,

(�; � 0) is (�; � 0). Let �0
1 � � and �0

2 � � and assume (�0
1; v

0
1; �

0) is (�0
2; v

0
2; �

0).

Then (�0
1; [v

0
1=x]�

00) is (�0
2; [v

0
2=x]�

00). Thus (�; �) is (�; �).
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� Case: � . � + (x:� 0)�� 00. Same proof as in previous case.

� Case: � = 8�::K:� 00. Assume �0
1 � �1, �

0
2 � �2, ` �0

1 � �0
2, and �0

1 ` A1 � A2 :: K1.

Then (�0
1; [A1=�]�

00) is (�0
2; [A2=�]�

00). Thus (�;8�::K:� 00) is (�;8�::K:� 00).

2. In all cases, (�; �) is (�; �) by the argument of the previous part, � ` v � v : � by

Rule 2.79, and � . v , � . v by assumption.

� Case: � = Ty(A) and � . � + � . Trivial.

� Case: � = S(w : � 0). Then (�; v; � 0) is (�;w; � 0) so (�; v; � 0) valid. By the inductive

hypothesis (�; v; � 0) is (�; v; � 0). Therefore (�; v;S(w : � 0)) is (�; v;S(w : � 0)).

� Case: � . � + (x:� 0)*� 00. Trivial.

� Case: � . � + (x:� 0)�� 00. Then (�;�1v; �
0) valid, so by the inductive hypothesis we have

(�;�1v; �
0) is (�;�1v; �

0) and (�;�2v; [�1v=x]�
00) is (�;�2v; [�1v=x]�

00). Thus

(�; v; �) is (�; v; �).

� Case: �i = 8�::Ki:�
0
i
. Trivial.

3. By declarative re
exivity we have ` � � �. By re
exivity of constructor equivalence, for all

� 2 dom(�) we have � ` 
� � 
� :: 
(�(�)). By part 2, for all x 2 dom(�) we have

(�; 
x; 
(�(x))) is (�; 
x; 
(�(x))). Thus (�; 
; �) is (�; 
; �).

Lemma 7.1.4 (Logical Symmetry)

1. If (�1; �1) is (�2; �2) then (�2; �2) is (�1; �1).

2. If (�1; �1 � �1) is (�2; �2 � �2) then (�2; �2 � �2) is (�1; �1 � �1).

3. If (�1; v1; �1) is (�2; v2; �2) then (�2; v2; �2) is (�1; v1; �1).

4. If (�1; 
1; �1) is (�2; 
2; �2) then (�2; 
2; �2) is (�1; 
1; �1).

Proof: By induction on the size of types, using context replacement, declarative symmetry, and

algorithmic symmetry.

The following two lemmas must be proved simultaneously by induction on the size of types. I

have separated their statements for clarity.

Lemma 7.1.5

1. If (�; v; �) valid and (�; �) is (�;�) then (�; v;�) valid.

2. If (�1; v1; �1) is (�2; v2; �2), (�1; �1) is (�1;�1), and (�2; �2) is (�2;�2) then

(�1; v1;�1) is (�2; v2;�2).

Proof: In all cases, by subsumption we have � ` v : �.

1. � Case: � = Ty(A) and � . � + � . Then � = Ty(B) and � . � + �.

� Case: � = S(w : � 0). Then � = S(w0 : �0) where (�;w; � 0) is (�;w0;�0). Since

(�; v; � 0) is (�;w; � 0), inductively by Logical Transitivity we have

(�; v; � 0) is (�;w0;�0).

� Case: � . � + (x:� 0)*� 00. Then � . � + (x:�0)*�00.
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� Case: � . � + (x:� 0)�� 00. Then � . � + (x:�0)��00. Now (�;�1v; �
0) valid and

(�; � 0) is (�;�0), so by the inductive hypothesis we have (�;�1v;�
0) valid. By

re
exivity and the inductive hypothesis, (�;�1v; �
0) is (�;�1v;�

0), so

(�; [�1v=x]�
00) is (�; [�1v=x]�

00). Since (�;�2v; [�1v=x]�
00) valid, by the inductive

hypothesis we have (�;�2v; [�1v=x]�
00) valid.

� Case: � = 8�::K:� 0. Then � = 8�::L:�0.

2. By subsumption, in all cases �1 ` v1 � v2 : �1. By the argument in part 1, (�1; v1;�1) valid

and (�2; v2;�2) valid. Recall that that (�1; �1) is (�2; �2).

� Case: �i = Ty(Ai) and �i . �i + �i. Then �i = Ty(Bi) and �i . �i + �i.

� Case: �i = S(vi : �
0
i
). Then �i = S(wi : �

0
i
), (�1; v1; �

0
1) is (�2; v2; �

0
2),

(�1; v1; �
0
1) is (�1;w1;�

0
1), and (�2; v2; �

0
2) is (�2;w2;�

0
2). Thus (�1; �

0
1) is (�1;�

0
1)

and (�2; �
0
2) is (�2;�

0
2). By the inductive hypothesis, (�1; v1;�

0
1) is (�2; v2;�

0
2).

� Case: �i . �i + (x:� 0
i
)*� 00

i
. Then �i . �i + (x:�0

i
)*�00

i
.

� Case: �i . �i + (x:� 0
i
)�� 00

i
. Then �i . �i + (x:�0

i
)��00

i
. Now (�1; �

0
1) is (�1;�

0
1),

(�2; �
0
2) is (�2;�

0
2), and (�1;�1v1; �

0
1) is (�2;�1v2; �

0
2). By the inductive hypothesis,

(�1;�1v1;�
0
1) is (�2;�1v2;�

0
2). Also by Re
exivity we have

(�1;�1v1; �
0
1) is (�1;�1v1; �

0
1) and (�1; �

0
1) is (�1; �

0
1), so by the inductive hypothesis

we have (�1;�1v1; �
0
1) is (�1;�1v1;�

0
1). Similarly, (�2;�1v2; �

0
2) is (�2;�1v2;�

0
2). Thus

(�1;�2v1; [�1v1=x]�
00
1 ) is (�2;�2v2; [�1v2=x]�

00
2 ), (�1; [�1v1=x]�

00
1 ) is (�1; [�1v1=x]�

00
1 ),

and (�2; [�1v2=x]�
00
2 ) is (�2; [�1v2=x]�

00
2 ), so by the inductive hypothesis we have

(�1;�2v1; [�1v1=x]�
00
1 ) is (�2;�2v2; [�1v2=x]�

00
2 ).

� Case: �i = 8�::Ki:�
0
i
. Then �i = 8�::Li:�

0
i
.

Lemma 7.1.6 (Logical Transitivity)

1. If (�1; �1) is (�2; �2) and (�2; �2) is (�2;�2) then (�1; �1) is (�2;�2).

2. If (�1; v1; �1) is (�2; v2; �2) and (�2; v2; �2) is (�2;w2;�2) then (�1; v1; �1) is (�2;w2;�2).

Proof: By induction on the size of types.

1. By context replacement and declarative transitivity, �1 ` �1 � �2.

� Case: �i = Ty(Ai), �2 = Ty(B2), �i . �i + �i, and �2 . �2 + �2. Trivial.

� Case: �i = S(vi : �
0
i
) and �2 = S(w2 : �

0
2). (�1; v1; �

0
1) is (�2; v2; �

0
2) and

(�2; v2; �
0
2) is (�2;w2;�

0
2). By the inductive hypothesis, (�1; v1; �

0
1) is (�2;w2;�

0
2).

� Case: �i . �i + (x:� 0
i
)*� 00

i
and �2 . �2 + (x:�02)*�002 . Then (�1; �

0
1) is (�2; �

0
2) and

(�2; �
0
2) is (�2;�

0
2), so by the inductive hypothesis we have (�1; �

0
1) is (�2;�

0
2). Let

�0
1 � �1 and �0

2 � �2 and assume that (�0
1; v

0
1; �

0
1) is (�0

2; v
0
2;�

0
2). By re
exivity and

inductively by Lemma 7.1.5, (�0
1; v

0
1; �

0
1) is (�0

2; v
0
2; �

0
2), so

(�0
1; [v

0
1=x]�

00
1 ) is (�0

2; [v
0
2=x]�

00
2 ). Now by re
exivity, (�0

2; v
0
2;�

0
2) is (�0

2; v
0
2;�

0
2), so by

re
exivity and inductively by Lemma 7.1.5, (�0
2; v

0
2; �

0
2) is (�0

2; v
0
2;�

0
2). Thus

(�0
2; [v

0
2=x]�

00
2 ) is (�0

2; [v
0
2=x]�

00
2 ). By the inductive hypothesis,

(�0
1; [v

0
1=x]�

00
1 ) is (�0

2; [v
0
2=x]�

00
2 ).

� Case: �i . �i + (x:� 0
i
)�� 00

i
and �2 . �2 + (x:�02)��

00
2 . Same as previous case.
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� Case: �i = 8�::Ki:�
0
i
and �2 = 8�::L2:�

0
2. Assume �

0
1 � �1 and �0

2 � �2, ` �0
1 � �0

2,

and �0
1 ` A1 � A2 :: K1. Since �

0
1 ` K1 � K2 by Theorem 6.2.2, we have

(�0
1; [A1=�]�

0
1) is (�0

2; [A2=�]�
0
2). Also ` �0

2 � �0
2, �

0
2 ` K2 � L2, and by context

replacement, declarative re
exivity, and subsumption we have �0
2 ` A2 � A2 :: K2, so

(�0
2; [A2=�]�

0
2) is (�0

2; [A2=�]�
0
2). By the inductive hypothesis,

(�0
1; [A1=�]�

0
1) is (�0

2; [A2=�]�
0
2).

2. Inductively using context replacement, declarative and algorithmic transitivity, and part 1.

De�nition 7.1.7

The judgment � . v1 ' v2 holds if and only if v1 and v2 have a common weak head reduct under

typing context �; that is, if and only if there exists w such that � . v1 ;
� w and � . v2 ;

� w.

Lemma 7.1.8 (Weak Head Closure)

1. If �1 . v1 , �2 . v2, �1 . v1 ' w1, and �2 . v2 ' w2, then �1 . w1 , �2 . w2.

2. If (�; v; �) valid, � . v ' w, and � ` w : � then (�;w; �) valid.

3. If (�1; v1; �1) is (�2; v2; �2), �1 . v1 ' w1, �2 . v2 ' w2, and �1 ` w1 � w2 : �1 then

(�1;w1; �1) is (�2;w2; �2).

Proof:

1. By de�nition of the algorithm.

2{3. By simultaneous induction on the sizes of types.

Lemma 7.1.9

1. If � . p " � , � . p$ � . p, and � ` p : � , then (�; p; �) valid.

2. If �1 . p1 " �1, �2 . p2 " �2, �1 . p1 $ �2 . p2, �1 ` p1 � p2 : �1, and (�1; �1) is (�2; �2)

then (�1; p1; �1) is (�2; p2; �2).

Proof: By induction on algorithmic derivations and weak head closure.

Corollary 7.1.10

If (�1; (�1(x))) is (�2; (�2(x))) then (�1;x; (�1(x))) is (�2;x; (�2(x))).

Proof: By part 2 of Lemma 7.1.9 with p1 = p2 = x, �1 = �1(x), and �2 = �2(x).

Lemma 7.1.11

1. If � ` Ty(A) then (�;Ty(A)) valid.

2. If ` �1 � �2 and �1 ` Ty(A1) � Ty(A2) then (�1;Ty(A1)) is (�2;Ty(A2)).

Proof: By induction on the size of types. Note that Ty(A) cannot head-normalize to a truly

dependent product or function type, or to a polymorphic or singleton type.

Lemma 7.1.12

If (�1; �1) is (�2; �2) then �1 . �1 , �2 . �2.
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Proof: By induction on the sizes of types.

In the following theorem, not that part 6 uses algorithm equivalence because logical equivalence

is de�ned only for values.

Theorem 7.1.13

1. If (�1; 
1; �) is (�2; 
2; �) and � ` � then (�1; 
1�) is (�2; 
2�)

2. If (�1; 
1; �) is (�2; 
2; �) and � ` �1 � �2 then (�1; 
1�1) is (�2; 
2�2)

3. If (�1; 
1; �) is (�2; 
2; �) and � ` �1 � �2 then (�1; 
1�1 � 
1�2) is (�2; 
2�1 � 
2�2)

4. If (�1; 
1; �) is (�2; 
2; �) and � ` v : � then (�1; 
1v; 
1�) is (�2; 
2v; 
2�)

5. If (�1; 
1; �) is (�2; 
2; �) and � ` v1 � v2 : � then (�1; 
1v1; 
1�1) is (�2; 
2v2; 
2�2)

6. If (�1; 
1; �) is (�2; 
2; �) and � ` e1 � e2 : � then �1 . 
1e1 , �2 . 
2e2.

Proof: By induction on derivations.

Type Well-formedness Rules: � ` � . In all cases, by Substitution we have �1 ` 
1� and

�2 ` 
2� and by Functionality we have �1 ` 
1� � 
2� .

� Case: Rule 2.45
� ` A :: T

� ` Ty(A)

By Functionality, �1 ` 
1A1 � 
2A2 :: T. By Lemma 7.1.11,

(�1;Ty(
1A1)) is (�2;Ty(
2A2)).

� Case: Rule 2.46
� ` v : � � not a singleton

� ` S(v : �)

By the inductive hypothesis, (�1; 
1v; 
1�) is (�2; 
2v; 
2�). Thus (�1;S(
1v : 
1�)) valid,

(�2;S(
2v : 
2�)) valid, and (�1;S(
1v : 
1�)) is (�2;S(
2v : 
2�)).

� Case: Rule 2.47
�; x:� 0 ` � 00

� ` (x:� 0)*� 00

Same argument as for � kinds in Theorem 5.3.10.

� Case: Rule 2.48
�; x:� 0 ` � 00

� ` (x:� 0)�� 00

Same argument as for � kinds in Theorem 5.3.10.

� Case: Rule 2.49
�; �::K ` �

� ` 8�::K:�

There is a strict subderivation, � ` K, so by substitution and functionality we have

�1 ` 
1K, �2 ` 
2K, and �1 ` 
1K � 
2K. Assume �0
1 � �1 and �00

1 � �1 and

�0
1 ` A1 � A2 :: 
1K. Then (�0

1; 
1[�7!A1]; �; �::K) is (�00
1 ; 
1[� 7!A2]; �; �::K). By the

inductive hypothesis, (�0
1; (
1[�7!A1])�) is (�00

1; (
1[�7!A2])�). That is,

(�0
1; [A1=�](
1[�7!�]�)) is (�00

1; [A2=�](
1[�7!�]�)). Thus (�0
1; 
1(8�::K:�)) valid. Similar

arguments show that (�0
2; 
2(8�::K:�)) valid and (�0

1; 
1(8�::K:�)) is (�0
2; 
2(8�::K:�)).

138



Type Equivalence: � ` �1 � �2. In all cases, by validity and substitution we have �1 ` 
1�1 and

�2 ` 
2�2 and by functionality we have �1 ` 
1�1 � 
2�2.

� Case: Rule 2.50.
� ` �

� ` � � �

By the inductive hypothesis.

� Case: Rule 2.51.
� ` � 0 � �

� ` � � � 0

By symmetry, (�2; 
2; �) is (�1; 
1; �). By the inductive hypothesis, (�2; 
2�
0) is (�1; 
1�).

By Symmetry again, (�1; 
1�) is (�2; 
2�
0).

� Case: Rule 2.52.
� ` �1 � �2 � ` �2 � �3

� ` �1 � �3

Same proof as for transitive rule for constructor equivalence in Theorem 5.3.10.

� Case: Rule 2.53.
� ` A1 � A2 :: T

� ` Ty(A1) � Ty(A2)

By functionality, �1 ` 
1A1 � 
2A2 :: T, so by Lemma 7.1.11,

(�1;Ty(
1A1)) is (�2;Ty(
2A2)).

� Case: Rule 2.58.
� ` A1 :: T � ` A2 :: T

� ` Ty(A1�A2) � Ty(A1)�Ty(A2)

First, �1 . 
1(Ty(A1�A2)) + Ty(
1A1)�Ty(
1A2) and

�2 . 
2(Ty(A1)�Ty(A2)) + Ty(
2A1)�Ty(
2A2). By functionality, �1 ` 
1A1 � 
2A1 :: T

and �1 ` 
1A2 � 
2A2 :: T. By Lemma 7.1.11, (�1;Ty(
1A1)) is (�2;Ty(
2A1)) and

(�1;Ty(
1A2)) is (�2;Ty(
2A2)).

� Case: Rule 2.59.
� ` A1 :: T � ` A2 :: T

� ` Ty(A1*A2) � Ty(A1)*Ty(A2)

Analogous to the proof for Rule 2.58.

� Case: Rule 2.54.

� ` �1 � �2 � ` v1 � v2 : �1 �1; �2 not a singleton

� ` S(v1 : �1) � S(v2 : �2)

By the inductive hypothesis, (�1; 
1v1; 
1�1) is (�2; 
2v2; 
2�1) and (�2; 
2�1) is (�2; 
2�2).

By Lemma 7.1.5, (�1; 
2v2; 
2�2) valid and (�1; 
1v1; 
1�1) is (�2; 
2v2; 
2�2).

� Case: Rule 2.55.
� ` � 01 � � 02 �; x:� 01 ` � 001 � � 002

� ` (x:� 01)*� 001 � (x:� 02)*� 002

As in the proof for � kinds.
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� Case: Rule 2.56.
� ` � 01 � � 02 �; x:�1 ` � 001 � � 002

� ` (x:� 01)��
00
1 � (x:� 02)��

00
2

As in the proof for � kinds.

� Case: Rule 2.57.
� ` K1 � K2 �; �::K1 ` �1 � �2

� ` 8�::K1:�1 � 8�::K2:�2

Analogous to the proofs for the previous two rules, also using functionality to show

�1 ` 
1K1 � 
2K2.

Subtyping: � ` �1 � �2. In all cases, by validity and substitution we have �1 ` 
1�1, �2 ` 
2�2,
�1 ` 
1�1 � 
1�2, and �2 ` 
2�1 � 
2�2. By functionality we have �1 ` 
1�1 � 
2�2.

� Case: Rule 2.60
� ` �1 � �2

� ` �1 � �2

Let �0
1 � �1 and �0

2 � �2 and assume (�0
1; v1; 
1�1) is (�0

2; v2; 
2�1). By the inductive

hypothesis, (�0
1; 
1�1) is (�0

1; 
1�2) and (�0
2; 
2�1) is (�0

2; 
2�2). By Lemma 7.1.5,

(�0
1; v1; 
1�2) is (�0

2; v2; 
2�2).

� Case: Rule 2.61
� ` �1 � �2 � ` �2 � �3

� ` �1 � �3

Obvious by inductive hypothesis that (�0
1; v1; 
1�1) is (�0

2; v2; 
2�1) implies

(�0
1; v1; 
1�2) is (�0

2; v2; 
2�2) which implies (�0
1; v1; 
1�3) is (�0

2; v2; 
2�3).

� Case: Rule 2.62.
� ` w : � � not a singleton

� ` S(w : �) � �

Let �0
1 � �1 and �0

2 � �2 and assume (�0
1; v1;S(
1w : 
1�)) is (�0

2; v2;S(
2w : 
2�)).

Then by de�nition of the logical relation, (�0
1; v1; 
1�) is (�0

2; v2; 
2�).

� Case: Rule 2.63

� ` S(w1 : �1)

� ` w1 � w2 : �2 � ` �1 � �2

� ` S(w1 : �1) � S(w2 : �2)
(�1; �2 not a singleton)

Let �0
1 � �1 and �0

2 � �2 be given, and assume

(�0
1; v1;S(
1w1 : 
1�1)) is (�0

2; v2;S(
2w1 : 
2�1)). Then (�0
1; v1; 
1�1) is (�0

1; 
1w1; 
1�1)

and (�0
2; v2; 
2�1) is (�0

2; 
2w1; 
2�1) and (�0
1; v1; 
1�1) is (�0

2; v2; 
2�1). Using the inductive

hypothesis we have (�0
1; v1; 
1�2) is (�0

1; 
1w1; 
1�2), and (�0
2; v2; 
2�2) is (�0

2; 
2w1; 
2�2),

and (�0
1; v1; 
1�2) is (�0

2; v2; 
2�2). Again by the inductive hypothesis,

(�0
1; 
1w1; 
1�2) is (�0

1; 
1w2; 
1�2) and (�0
2; 
2w1; 
2�2) is (�0

2; 
2w2; 
2�2). By transitivity,

(�0
1; v1; 
1�2) is (�0

1; 
1w2; 
1�2) and (�0
2; v2; 
2�2) is (�0

2; 
2w2; 
2�2). Therefore

(�0
1; v1;S(
1w2 : 
1�2)) is (�0

2; v2;S(
2w2 : 
2�2)).
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� Case: Rule 2.64.
� ` (x:� 01)��

00
1

� ` � 02 � � 01 �; x:� 02 ` � 001 � � 002

� ` (x:� 01)*� 001 � (x:� 02)*� 002

Same proof as for subkinding of � kinds.

� Case: Rule 2.65.
� ` (x:� 02)��

00
2

� ` � 01 � � 02 �; x:�1 ` � 001 � � 002

� ` (x:� 01)��
00
1 � (x:� 02)��

00
2

Same proof as for subkinding of � kinds.

� Case: Rule 2.66.
� ` 8�::K1:�1

� ` K2 � K1 �; �::K2 ` �1 � �2

� ` 8�::K1:�1 � 8�::K2:�2

Analogous to the proof for function types.

Term Validity: � ` e : � . In all cases, by validity and Substitution we have �1 ` 
1e : 
1�1 and

�2 ` 
2e : 
2� . By functionality we have �1 ` 
1e � 
2e : 
1� .

� Case: Rule 2.67
� ` ok

� ` n : int

Recall that int = Ty(Int). Now �i . int + int, and �i . n, �i . n, and �1 . n, �2 . n.

Since (�1; int) is (�2; int), we have (�i;n; int) valid and (�1;n; int) is (�2;n; int).

� Case: Rule 2.68
� ` ok

� ` x : �(x)

By the assumptions for 
1 and 
2.

� Case: Rule 2.69
�; f :(x:� 0)*� 00; x:� 0 ` e : � 00

� ` fun f(x:� 0):� 00 is e : (x:� 0)*� 00

There are strict subderivations � ` (x:� 0)*� 00 and by inversion, � ` � 0 and �; x:� 0 ` � 00. By

the inductive hypothesis, (�1; 
1�
0) is (�2; 
2�

0) and

(�1; 
1((x:�
0)*� 00)) is (�2; 
2((x:�

0)*� 00)). Then

(�1; f :
1((x:�
0)*� 00); x:
1�

0; 
1[f 7!f ][x 7!x]; �; f :(x:� 0)*� 00; x:� 0) is

(�2; f :
2((x:�
0)*� 00); x:
2�

0; 
2[f 7!f ][x 7!x]; �; f :(x:� 0)*� 00; x:� 0). By the inductive

hypothesis, �1; f :
1((x:�
0)*� 00); x:
1�

0 . (
1[f 7!f ][x 7!x])e,
�2; f :
2((x:�

0)*� 00); x:
2�
0 . (
2[f 7!f ][x7!x])e. Similarly, by the inductive hypothesis

(�1; x:
1�
0; (
1[�7!�])� 00) is (�2; x:
2�

0; (
2[�7!�])� 00), so

�1; x:
1�
0 . (
1[�7!�])� 00 , �2; x:
2�

0 . (
2[�7!�])� 00. Therefore

�1 . 
1(fun f(x:�
0):� 00 is e), �2 . 
2(fun f(x:�

0):� 00 is e), so

(�1; 
1(fun f(x:�
0):� 00 is e); 
1((x:�

0)*� 00)) is (�2; 
2(fun f(x:�
0):� 00 is e); 
2((x:�

0)*� 00)).
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� Case: Rule 2.70.
�; �::K ` e : �

� ` �(�::K):�:e : 8�::K:�

Analogous to previous case, using

(�1; �::
1K; 
1[�7!�]; �; �::K) is (�2; �::
2K; 
2[� 7!�]; �; �::K).

� Case: Rule 2.71.
� ` v1 : �1 � ` v2 : �2

� ` hv1; v2i : �1��2

By the inductive hypothesis, (�1; 
1v1; 
1�1) is (�2; 
2v1; 
2�1) and

(�1; 
1v2; 
1�2) is (�2; 
2v2; 
2�2). By Lemma 7.1.8, we have

(�1;�1h
1v1; 
1v2i; 
1�1) is (�2;�1h
2v1; 
2v2i; 
2�1). and
(�1;�2h
1v1; 
1v2i; 
1�2) is (�2;�2h
2v1; 
2v2i; 
2�2).

� Case: Rule 2.72.
� ` v : (x:� 0)�� 00

� ` �1v : �
0

By the inductive hypothesis, (�1; 
1v; 
1((x:�
0)�� 00)) is (�2; 
2v; 
2((x:�

0)�� 00)). Thus
(�1;�1(
1v); 
1�

0) is (�2;�1(
2v); 
2�
0).

� Case: Rule 2.73
� ` v : (x:� 0)�� 00

� ` �2v : [�1v=x]�
00

By the inductive hypothesis, (�1; 
1v; 
1((x:�
0)�� 00)) is (�2; 
2v; 
2((x:�

0)�� 00)). Thus
(�1;�2(
1v); 
1([�1v=x]�

00)) is (�2;�2(
2v); 
2([�1v=x]�
00)).

� Case: Rule 2.74.
� ` v : � 0*� 00 � ` v0 : � 0

� ` v v0 : � 00

By the inductive hypothesis and de�nition of the logical relations, �1 . 
1v , �2 . 
2v and

�1 . 
1v
0 , �2 . 
2v

0. Thus �1 . 
1(v v
0), �2 . 
2(v v

0).

� Case: Rule 2.75
� ` v : 8�::K:� � ` A :: K

� ` v A : [A=�]�

By the inductive hypothesis and the de�nition of the logical relations, �1 . 
1v , �2 . 
2v.

That is, �1 . 
1v + w1 and �2 . 
2v + w2 and �1 . w1 $ �2w2. By substitution,

�1 ` 
1v : 
1(8�::K:�), so by soundness of weak head reduction we have

�1 ` w1 : 
1(8�::K:�). Let �1 ` w1 : L1. Then �1 ` L1
$ � 
1(8�::K:�) by Lemma 6.3.1.

By Theorem 6.2.3, L1
$ = 8�::L0

1:�
00
1 with �1 ` 
1K � L0

1. Similarly, �2 . w2 * 8�::L
0
2:�

00
2

with �2 ` 
2K � L0
2. Now either both w1 and w2 are paths or they are are both

polymorphic abstractions. In either case, �1 ` 8�::L
0
1:�

00
1 � 8�::L0

2:�
00
2 . By Theorem 6.2.2,

�1 ` L0
1 � L0

2. Then �1 ` 
1A � 
2A :: 
1K by functionality, so �1 ` 
1A � 
2A :: 
1L
0
1 by

subsumption. Then �1 . 
1A :: 
1K , �2 . 
2A :: 
2K by the completeness of constructor

equivalence, and therefore �1 . 
1(v A), �2 . 
2(v A).
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� Case: Rule 2.76
� ` e0 : � 0 �; x:� 0 ` e : � � ` �

� ` (let x:� 0=e0 in e : � end) : �

By the inductive hypothesis and the de�nition of the logical relations, �1 . 
1e
0 , �2 . 
2e

0.

There is a strict subderivation � ` � 0. By the inductive hypothesis (�1; 
1�
0) is (�2; 
2�

0),

so by Lemma 7.1.12 we have �1 . 
1�
0 , �2 . 
2�

0. Similarly, �1 . 
1� , �2 . 
2� . Finally,

using Corollary 7.1.10 we have (�1; x:
1�
0; 
1[�7!�]; �; x:� 0) is (�2; x:
2�

0; 
2[�7!�]; �; x:� 0),

so by the inductive hypothesis �1; x:
1�
0 . (
1[� 7!�])e, �2; x:
2�

0 . (
2[�7!�])e.

Therefore �1 . 
1(let x:�
0=e0 in e : � end), �2 . 
2(let x:�

0=e0 in e : � end).

Term Equivalence: � ` e1 � e2 : � . All these cases are straightforward, similar to cases already

proved.

Lemma 7.1.14

1. If � ` ok then (�; id; �) valid where id is the identity function.

2. If � ` ok (�; id; �) is (�; id; �) where id is the identity function.

Proof:

1. By induction on the proof of � ` ok.

� Case: Empty context. Vacuous.

� Case: �; �::K ` ok because � ` K.

By the inductive hypothesis and monotonicity.

� Case: �; x:� ` ok because � ` � .

(a) By Proposition 3.1.1, � ` � , and � ` ok.

(b) Also, x 62 dom(�).

(c) By the inductive hypothesis, (�; y; �(y)) valid for all y 2 dom(�) and

(�;�; �(�)) valid for all � 2 dom(�).

(d) By monotonicity, (�; x:� ; y; ((�; x:�)y)) valid for all y 2 dom(�). and

(�; x:� ;�; ((�; x:�)�)) valid for all � 2 dom(�).

(e) By Theorem 7.1.13, (�; �) valid

(f) and by monotonicity (�; x:� ; �) valid

(g) Now by Corollary 7.1.10, (�; x:� ;x; �) valid.

(h) Hence (�; x:� ; id; �; x:�) valid.

2. By part 1 and re
exivity.

This yields a completeness result for the symmetrized algorithm:

Corollary 7.1.15

1. If � ` �1 � �2 then (�; �1) is (�; �2).

2. If � ` e1 � e2 : � then (�; e1; �) is (�; e2; �).

3. If � ` �1 � �2 then � . �1 , � . �2.
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4. If � ` e1 � e2 : � then � . e1 , � . e2.

Proof:

1,2 By Lemma 7.1.14, we can apply the Theorem 7.1.13 with 
1 and 
2 being identity

substitutions.

3,4 Follows directly from parts 1 and 2 and the de�nition of the logical relations.

Again, use of a size function for algorithmic equivalence (number of non head-normalization

rules used) allows the proof to be transferred to the original equivalence algorithm.

Theorem 7.1.16

1. If ` �1 � �2, �1 ` e1 : � , �2 ` e2 : � , and �1 . e1 , �2 . e2 then �1 . e1 , e2.

2. If ` �1 � �2, �1 ` e1 : � , �2 ` e2 : � , and �1 . e1 , �2 . e2 then �1 . e1 $ e2.

3. If ` �1 � �2, �1 ` �1, �2 ` �2, and �1 . �1 , �2 . �2 then �1 . �1 , �2.

4. If ` �1 � �2, �1 ` �1, �2 ` �2, and �1 . �1 $ �2 . �2 then �1 . �1 $ �2.

Corollary 7.1.17 (Completeness for Type and Term Equivalence)

1. If � ` e1 � e2 : � then � . e1 , e2.

2. If � ` �1 � �2 then � . �1 , �2.

Theorem 7.1.18

1. If � . �1 , �1 and � . �2 , �2 then it is decidable whether � . �1 , �2.

2. If � . e1 , e1 and � . e2 , e2 then it is decidable whether � . e1 , e2.

Corollary 7.1.19 (Decidability of Type and Term Equivalence)

1. If � ` �1 and � ` �2 then it is decidable whether � ` �1 � �2.

2. If � ` e1 : � and � ` e2 : � then it is decidable whether � ` e1 � e2 : � .

Proof: Follows from Theorem 7.1.18 and by soundness and completeness of the equivalence algo-

rithms.

7.2 Completeness and Decidability for Subtyping and Validity

Given completeness for term equivalence, proving completeness of the subtyping algorithm would

be straightforward if it were not for transitivity (Rule 2.61). Proving transitivity of the algorithm

requires some care because of polymorphic types, and the fact that changes to kinds in the typing

context a�ect type head-normalization.

Re
exivity, in contrast, is direct

Lemma 7.2.1

If � ` � then � . � + � and � . � v � (i.e., � . � � �).

Proof: By induction on the proof of � ` � , using correctness of the term, kind, and constructor

equivalence algorithms.

Proving transitivity requires showing that the algorithm obeys a weakening property: types in

the context can be replaced by subtypes, and kinds in the context can be replaced by subkinds.

Half of this is straightforward:

144



Lemma 7.2.2 (Algorithmic Weakening for Term Variables)

Assume �0 ` �2 � �1.

1. If �0; x:�1;�
00 ` v1 : � and �0; x:�1;�

00 ` v2 : � and �0; x:�1;�
00.v1 , v2 then �0; x:�2;�

00.v1 ,
v2.

2. If �0; x:�1;�
00 ` �1 and �0; x:�1;�

00 ` �2 and �0; x:�1;�
00 . �1 , �2 then �0; x:�2;�

00 . �1 , �2.

3. If �0; x:�1;�
00 ` �1 and �0; x:�1;�

00 ` �2 and �0; x:�1;�
00 . �1 v �2 then �0; x:�2;�

00 . �1 v �2.

4. If �0; x:�1;�
00 ` �1 and �0; x:�1;�

00 ` �2 and �0; x:�1;�
00 . �1 � �2 then �0; x:�2;�

00 . �1 � �2.

5. If �0; x:�1;�
00 ` ok and �0; x:�1;�

00 . � then �0; x:�2;�
00 . � .

6. If �0; x:�1;�
00 ` ok and �0; x:�1;�

00 . e� � then �0; x:�2;�
00 . e� � .

7. If �0; x:�1;�
00 ` � and �0; x:�1;�

00 . e� � then �0; x:�2;�
00 . e� � .

Proof:

1,2. By soundness and completeness for type/term equivalence, and Corollary 3.2.8.

3,4. By induction on algorithmic derivations and part 1. (For part 4, note that

head-normalization of types is completely una�ected by the type of x.)

5{7. By induction on algorithmic derivations and part 4.

However, modifying kinds in the context a�ects head-normalization of types, and hence it is

harder to show that algorithmic subtyping is preserved when kinds in the context are made more

speci�c.

I solve this problem with a two-step process. First I prove soundness and completeness for the

algorithm applied to the subset of types not containing the universal quanti�er. I then use this to

show the required weakening property, which then allows a proof of full transitivity. The success

of this method depends critically on the predicativity of MIL0.

First, any two related types either both contain a universal quanti�er, or neither do.

Proposition 7.2.3

1. If � ` �1 � �2 then �1 contains a 8 if and only if �2 contains a 8.

2. If � ` �1 � �2 then �1 contains a 8 if and only if �2 contains a 8.

Proof: By induction on derivations.

Lemma 7.2.4 (Pre-transitivity of Algorithmic Subtyping)

Assume �1, �2, and �3 contain no 8's, and that � ` �1, � ` �2, and � ` �3.

1. If � . �1 v �2 and � . �2 v �3 then � . �1 v �3.

2. If � . �1 � �2 and � . �2 � �3 then � . �1 � �3.

Proof: By simultaneous induction on size(�; �1) + size(�; �2) + size(�; �3).

1. � Case: � . Ty(A1) v Ty(A2) v Ty(A3). By transitivity of the constructor equivalence

algorithm.

� Case: � . S(v1 : �
0
1) v S(v3 : �

0
2) v S(v3 : �

0
3). By the inductive hypothesis, � . � 01 � � 03.

By the correctness of algorithmic term equivalence, � . v1 , v3.
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� Case: � . S(v1 : �
0
1) v S(v3 : �

0
2) v �3, where �3 is not a singleton. By the inductive

hypothesis, � . � 01 � �3.

� Case: � . S(v1 : �
0
1) v �2 v �3, where �2 and �3 are not singletons. By the inductive

hypothesis, � . � 01 � �3.

� Case: � . (x:� 01)*� 001 v (x:� 02)*� 002 v (x:� 03)*� 003 . By the inductive hypothesis,

� . � 03 � � 01. By Lemma 7.2.2, �; x:� 03 . �
00
1 � � 002 , so by the inductive hypothesis we have

�; x:� 03 . �
00
1 � � 003 .

� Case: � . (x:� 01)��
00
1 v (x:� 02)��

00
2 v (x:� 03)��

00
3 . Analogous to previous case.

2. By part 1.

Lemma 7.2.5

Assume �1 and �2 contain no 8's.

1. If �1 = Ty(A1), �2 = Ty(A2), and � ` A1 � A2 :: T then � . �1 � �2.

2. If � ` �1 � �2 then � . �1 + �1, � . �2 + �2, � . �1 v �2, and � . �2 v �1 (i.e., � . �1 � �2 and

� . �2 � �1).

3. If � ` �1 � �2 then � . �1 + �1, � . �2 + �2, and � . �1 v �2 (i.e., � . �1 � �2).

Proof:

1. By induction on the common normal form of A1 and A2.

2{3. By induction on derivations, and part 1. Note that for the case of transitivity, by

Proposition 7.2.3 the mediating term will contain no 8's and so the inductive hypothesis

applies.

Lemma 7.2.6 (Algorithmic Weakening for Constructor Variables)

Assume �0 ` K2 � K1.

1. If �0; �::K1;�
00 ` v1 : � , �

0; �::K1;�
00 ` v2 : � , and �0; �::K1;�

00 . v1 , v2 then �0; �::K2;�
00 .

v1 , v2.

2. If �0; �::K1;�
00 ` �1, �

0; �::K1;�
00 ` �2, and �

0; �::K1;�
00 .�1 , �2 then �0; �::K2;�

00 .�1 , �2.

3. If �0; �::K1;�
00 ` �1, �

0; �::K1;�
00 ` �2, and �0; �::K1;�

00 . �1 v �2 then �0; �::K2;�
00 . �1 v �2.

4. If �0; �::K1;�
00 ` �1, �

0; �::K1;�
00 ` �2, and �0; �::K1;�

00 . �1 � �2 then �0; �::K2;�
00 . �1 � �2.

5. If �0; �::K1;�
00 ` ok and �0; �::K1;�

00 . � then �0; �::K2;�
00 . � .

6. If �0; �::K1;�
00 ` ok and �0; �::K1;�

00 . e� � then �0; �::K2;�
00 . e� � .

7. If �0; �::K1;�
00 ` � and �0; �::K1;�

00 . e� � then �0; �::K2;�
00 . e� � .

Proof:

1,2. By soundness and completeness for type/term equivalence, and Corollary 3.2.8.

3. Proved simultaneously with part 4, by induction on algorithmic derivations.
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� Case: �0; �::K1;�
00 . Ty(A1) v Ty(A2). By correctness of the constructor equivalence

algorithm and Corollary 3.2.8.

� Case: �0; �::K1;�
00 . S(v1 : �

0
1) v S(v2 : �

0
2). By the inductive hypothesis

�0; �::K2;�
00 . � 01 � � 02. By correctness of term equivalence algorithm and

Corollary 3.2.8, �0; �::K2;�
00 . v1 , v2.

� Case: �0; �::K1;�
00 . S(v1 : �

0
1) v �2 where �2 is not a singleton. By the inductive

hypothesis �0; �::K2;�
00 . � 01 � �2.

� Case: �0; �::K1;�
00 . (x:� 01)*� 001 v (x:� 02)*� 002 . By the inductive hypothesis,

�0; �::K2;�
00 . � 02 � � 01 and �0; �::K2;�

00; x:� 02 . �
00
1 � � 002 .

� Case: �0; �::K1;�
00 . (x:� 01)��

00
1 v (x:� 02)��

00
2 . Analogous to previous case.

� Case: �0; �::K1;�
00 . 8�::K 0

1:�
00
1 v 8�::K 0

2:�
00
2 . By correctness of algorithm subkinding

and Corollary 3.2.8, �0; �::K2;�
00 . K 0

2 � K 0
1 and by the inductive hypothesis,

�0; �::K2;�
00; �::K 0

2 . �
00
1 � � 002 .

4. � Case: �1 and �2 contain 8.

(a) Then neither type is of the form Ty(A),

(b) so �0; �::K1;�
00 . �1 + �1, �

0; �::K1;�
00 . �2 + �2, �

0; �::K2;�
00 . �1 + �1, and

�0; �::K2;�
00 . �2 + �2.

(c) By part 3 we have �0; �::K2;�
00 . �1 v �2,

(d) so �0; �::K2;�
00 . �1 � �2.

� Case: neither �1 nor �2 contains 8.

(a) By assumption �0; �::K1;�
00 . �1 + �1, �

0; �::K1;�
00 . �2 + �2, and

�0; �::K1;�
00 . �1 v �2.

(b) By part 3, �0; �::K2;�
00 . �1 v �2.

(c) By Lemma 6.2.1, �0; �::K1;�
00 ` �1 � �1 and �0; �::K1;�

00 ` �2 � �2.

(d) By Corollary 3.2.8 and completeness of the type equivalence algorithm

�0; �::K2;�
00 . �1 + �01, �

0; �::K2;�
00 . �2 + �02, �

0; �::K2;�
00 ` �1 � �01, and

�0; �::K2;�
00 ` �2 � �02.

(e) By Corollary 3.2.8 and transitivity, �0; �::K2;�
00 ` �1 � �01 and

�0; �::K2;�
00 ` �2 � �02.

(f) By Lemma 7.2.5, �0; �::K2;�
00 . �01 � �1 and �0; �::K2;�

00 . �2 � �02.

(g) Since �0; �::K2;�
00 . �1 � �2, by Lemma 7.2.4 applied twice we have

�0; �::K2;�
00 . �01 � �02.

(h) But �01 and �02 are head-normal, so �
0; �::K2;�

00 . �01 v �02.

(i) Therefore �0; �::K2;�
00 . �1 � �2.

5{7. By induction on algorithmic derivations and part 4.

Given this weakening property, I can now show the full transitivity result for algorithmic sub-

typing. I show only one case of the proof, because all the others are exactly the same as in the

proof of Lemma 7.2.4.

Lemma 7.2.7 (Transitivity of Algorithmic Subtyping)

Assume � ` �1, � ` �2, and � ` �3.
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1. If � . �1 v �2 and � . �2 v �3 then � . �1 v �3.

2. If � . �1 � �2 and � . �2 � �3 then � . �1 � �3.

Proof: By induction on size(�; �1) + size(�; �2) + size(�; �3).

� Case: � . 8�::K 0
1:�

00
1 v 8�::K 0

2:�
00
2 v 8�::K 0

3:�
00
3 . By the transitivity of the subkinding

algorithm, � . K 0
3 � K 0

1. By Lemma 7.2.6 have we �; �::K 0
3 . �

00
1 � � 002 . By the inductive

hypothesis, �; �::K 0
3 . �

00
1 � � 003 .

At this point I have shown that the subtyping and kind equivalence algorithms are transitive

on well-formed types. At this point, completeness of the remaining type and term algorithms is

straightforward.

Theorem 7.2.8 (Completeness for Subtyping and Validity)

1. If � ` � then � . � .

2. If � ` �1 � �2 then � . �1 � �2.

3. If � ` �1 � �2 and �1 and �2 are head-normal then � . �1 v �2.

4. If � ` e : � then � . e� � and � . e * �.

5. If � ` e : � then � . e� � .

Proof: By simultaneous induction on the hypothesized derivations, using the completeness of the

type and term equivalence algorithms, and transitivity of algorithmic subtyping.

Theorem 7.2.9

1. If � ` �1 and � ` �2 then it is decidable whether � . �1 v �2

2. If � ` �1 and � ` �2 then it is decidable whether � . �1 � �2

3. If � ` ok then it is decidable whether � . � is provable.

4. If � ` ok then it is decidable whether � . e� � holds for some � .

5. If � ` � and e is given then it is decidable whether � . e� � is provable.

Proof:

1,2. By induction on size(�; �1) + size(�; �2), invoking the decidability of term equivalence and of

type head-normalization.

3{5. By simultaneous induction on the textual size of � , e, and e respectively.

Corollary 7.2.10 (Decidability of Subtyping and Validity)

1. If � ` ok then it is decidable whether � ` � is provable.

2. If � ` �1 and � ` �2 then it is decidable whether � ` �1 � �2

3. If � ` ok then it is decidable whether � ` e : � holds for some � .

4. If � ` � and e is given then it is decidable whether � ` e : � is provable.
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7.3 Antisymmetry of Subtyping

By taking advantage of the algorithmic form of subtyping | which contains no transitivity rule |

subtyping can be shown to be antisymmetric.

Lemma 7.3.1

Assume � ` �1 and � ` �2.

1. If � . �1 � �2 and � . �2 � �1 then � . �1 , �2.

2. If � . �1 v �2 and � . �2 v �1 then � . �1 $ �2.

Proof: By simultaneous induction on the size of the hypothesized derivations.

Note that by soundness, � ` �1 � �2 and � ` �2 � �1.

1. (a) By inversion, � . �1 + �1, � . �2 + �2, � . �1 v �2 and � . �2 v �1.

(b) By the inductive hypothesis, � . �1 , �2.

(c) Thus � . �1 , �2.

2. � Case: � . Ty(A1) v Ty(A2) and � . Ty(A2) v Ty(A1) because � . A1 , A2 :: T and

� . A2 , A1 :: T. Then � . Ty(A1)$ Ty(A2).

� Case: � . S(v1 : �1) v S(v2 : �2) and � . S(v2 : �2) v S(v1 : �1) because � . �1 � �2,

� . v1 , v2, � . �2 � �1, and � . v2 , v1.

By the inductive hypothesis, � . �1 , �2, so � . S(v1 : �1), S(v2 : �2).

� Case: � . (x:� 01)*� 001 v (x:� 02)*� 002 and � . (x:� 02)*� 002 v (x:� 01)*� 001 because � . � 01 � � 02
and �; x:� 02 . �

00
1 � � 002 and � . � 02 � � 01 and �; x:� 01 . �

00
2 � � 001 .

(a) By the inductive hypothesis, � . � 01 , � 02.

(b) By completeness, �; x:� 01 . �
00
1 � � 002 .

(c) By the inductive hypothesis, �; x:� 01 . �
00
1 , � 002 .

(d) Thus � . (x:� 01)*� 001 , (x:� 02)*� 002 .

� The remaining two cases are similar.

Proposition 7.3.2 (Antisymmetry of Subtyping)

If � ` �1 � �2 and � ` �2 � �1 then � ` �1 � �2.

Proof: By soundness and completeness of the subtyping algorithms and by Lemma 7.3.1.

7.4 Strengthening for Term Variables

From the correctness of the algorithmic judgments I now derive a strengthening property for term

variables. I show that all of the judgments in the de�nition of MIL0 are preserved under dropping

of apparently-unused typing hypotheses for term variables.

However, recall that in the presence of transitivity rules strengthening cannot be proved directly

by induction on derivations. For example, consider an instance of Rule 2.81:

�1; y:�;�2 ` e � e0 : � �1; y:�;�2 ` e
0 � e00 : �

�1; y:�;�2 ` e � e00 : �
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And assume that y is not used in the conclusion (formally, that y 62 (FV(�2) [ FV(e) [ FV(e00) [
FV(�))) It does not follow, however, that y 62 FV(e0); a priori, it might be that the equivalence of

e and e00 is provable only by equating both to a term involving y. Thus the inductive hypothesis

cannot be applied to the premises.

Also, the trick used for eliminating unused kind variables in x3.4 is not applicable here, because
although every kind may be inhabited by a constructor, we cannot expect in general that every

type is likewise inhabited by a value.1

However, the de�nitions of the algorithmic relations involve no transitivity rules, so here

strengthening can be proved directly:

Lemma 7.4.1

If �1; y:�;�2 . J holds and y 62 (FV(�2) [ FV(J )) then �1;�2 . J holds as well.

Proof: By induction on the derivation �1; y:�;�2 . J .

By soundness and completeness of the algorithmic relations, the strengthening property can

be transferred to the oÆcial MIL0. This is easy, but not quite immediate. For example, suppose

�1; y:�;�2 ` �1 � �2 where y 62 (dom(�2)[FV(�1)[FV(�2)). By Completeness we have �1; y:�;�2 .
�1 � �2, and by Lemma 7.4.1 we have �1;�2 . �1 � �2. However, we cannot simply conclude that

�1;�2 ` �1 � �2; the statement of soundness requires that we previously know �1;�2 ` �1 and

�1;�2 ` �2.

Lemma 7.4.2

If �1; y:�;�2 ` ok and y 62 FV(�2) then �1;�2 ` ok.

Proof: By induction on �2.

First, note that if �1; y:�;�2 ` ok then y 62 FV(�1). Then there are three cases for the form of the

proof �1; y:�;�2 ` ok:

� Case: �2 = �.
�1 ` �

�1; y:� ` ok
y 62 dom(�1)

Then by Proposition 3.1.1, �1 ` ok.

� Case: �2 = �02; �::K.

�1; y:�;�
0
2 ` K

�1; y:�;�
0
2; �::K ` ok

(� 62 dom(�1; y:�;�
0
2))

1. By Completeness, �1; y:�;�
0
2 . K.

2. By Lemma 7.4.1, �1;�
0
2 . K.

3. By Proposition 3.1.1 and the inductive hypothesis, �1;�
0
2 ` ok.

4. By Soundness, �1;�
0
2 ` K.

5. Therefore �1;�
0
2; �::K ` ok.

1Actually, since all the base types mentioned are inhabited, every type in MIL0 is inhabited by a value. Because

this property is not preserved when recursive types are added, I choose not take advantage of it.
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� Case: �2 = �02; x:� .

�1; y:�;�
0
2 ` �

�1; y:�;�
0
2; x:� ` ok

x 62 dom(�1; y:�;�
0
2)

1. By Completeness, �1; y:�;�
0
2 . � .

2. By Lemma 7.4.1, �1;�
0
2 . � .

3. By Proposition 3.1.1 and the inductive hypothesis, �1;�
0
2 ` ok.

4. By Soundness, �1;�
0
2 ` � .

5. Therefore �1;�
0
2; x:� ` ok.

Theorem 7.4.3 (Strengthening for Term Variables)

If �1; y:�;�2 ` J holds and y 62 (FV(�2) [ FV(J )) then �1;�2 ` J holds as well.

Proof: By Lemmas 7.4.1 and 7.4.2, and soundness and completeness of the algorithmic

judgments with respect to the MIL0 de�nition. I show two representative cases:

� Case: �1; y:�;�2 ` � .

1. By Completeness, �1; y:�;�2 . � .

2. By Lemma 7.4.1, �1;�2 . � .

3. By Proposition 3.1.1 and Lemma 7.4.2, �1;�2 ` ok.

4. By Soundness, �1;�2 ` � .

� Case: �1; y:�;�2 ` �1 � �2.

1. By Completeness, �1; y:�;�2 . �1 � �2.

2. By Lemma 7.4.1, �1;�2 . �1 � �2.

3. As in the previous case �1;�2 ` ok and �1;�2 ` �1 and �1;�2 ` �2.

4. By Soundness, �1;�2 ` �1 � �2.
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Chapter 8

Properties of Evaluation

8.1 Determinacy of Evaluation

It is straightforward to show that evaluation in MIL0 is deterministic.

Proposition 8.1.1

1. Given A, there is at most one U and one instruction I such that A = U [I].

2. Given e, there is at most one C and one instruction I such that e = C[I].

Proof: By induction on A and e respectively.

Corollary 8.1.2 (Determinacy of Evaluation)

If e; e1 and e; e2 then e1 = e2.

8.2 Type Soundness

Type soundness is informally the property that \well-typed programs don't go wrong". In a small-

step operational semantics, soundness can be expressed as the combination of two principles:

1. Type Preservation: If e is well-typed and e can take a step to e0, then e0 is well-typed.

2. Progress: If e is well-typed then either e is a fully-evaluated value and execution is done, or

else e can take a step to some e0.

Put together, these guarantee that, when starting with a well-formed program, execution either

terminates (yielding a fully-evaluated value) or execution goes on forever. Evaluation of well-typed

programs cannot get \stuck" | reach a situation where no execution step applies but evaluation

has not terminated. Examples of stuck programs would be 3(4) or �1(fun f(x:int):int is x).

Lemma 8.2.1

1. If � ` I :: K and I ; R then � ` R :: K.

2. If � ` I : � and I ; R then � ` R : � .

Lemma 8.2.2 (Decomposition and Replacement)

1. If ` C[e] : � then for some �, ` e : �, and ` e0 : � implies ` C[e0] : � .

2. If ` C[A] : � then for some L, ` A :: L, and ` A0 :: L implies ` C[A0] : � .
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3. If ` U [A] :: K then for some L, ` A :: L, and ` A0 :: L implies ` U [A0] :: K.

Proof: By induction on derivations.

Corollary 8.2.3 (Type Preservation)

If � ` e :: � and e; e0 then � ` e0 :: � .

Lemma 8.2.4 (Canonical Forms for Constructors)

1. If ` A :: ��::K 0:K 00 then A = hA
0
; A

00
i.

2. If ` A :: ��::K 0:K 00 then either A = ��::L:A or else A = cA1 � � � An with n � 0.

Proof: By induction on the kinding derivation.

Lemma 8.2.5 (Canonical Forms for Terms)

Assume ` v : � .

1. If . �$ + int then v = n for some integer n.

2. If . �$ + (x:� 0)�� 00 then v = hv0; v00i for some v0 and v00.

3. If . �$ + (x:� 0)*� 00 then v = fun f(x:�0):�00 is e for some �0, �00, and e.

4. If . �$ + 8�::K:� then v = �(�::L0):L00:e for some L0, L00, and e.

Proof: By induction on typing derivations, using Theorem 6.2.3 and Lemma 6.3.1.

Theorem 8.2.6 (Progress)

1. If ` A :: K then A = A or A 7!A0 for some A0.

2. If ` e : � then e = v or e7!e0 for some e0.

Proof: By simultaneous induction on typing and kinding derivations, and cases on the last

inference rule used. I show one representative case:

� Case: Rule 2.25
� ` A1 :: K

0!K 00 � ` A2 :: K
0

� ` A1A2 :: K
00

If A1 is not a constructor value, then by the inductive hypothesis A1 ; A0
1, so

A1A2 ; A0
1A2. Alternatively, if A1 is a value but A2 is not, then A2 ; A0

2 and

A1A2 ; A1A
0
2. Finally, assume A1 and A2 are both values. Then by Lemma 8.2.4,

A1 = c v01 : : : v
0
n
and so A1A2 is a value, or else A1 = ��::K:A so that A1A2 ; [A2=�]A.
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Chapter 9

Intensional Polymorphism

9.1 Introduction

As discussed earlier, the TIL and TILT compilers use the intensional type analysis framework

of Harper and Morrisett [HM95, TMC+96, Mor95]. Type constructors correspond to run-time

values, and the language includes constructs which permit primitive recursion over constructors

of kind T. I model these by adding two new constructs to the language: Typerec and typerec.

The former is a constructor which does run-time analysis of constructors, while the latter is a

term which does a similar run-time analysis. There are several applications for such constructs,

both in implementing Standard ML (by, for example, using di�erent array representations for

values of di�erent types) and elsewhere (e.g., implementing generic pretty-printing or marshaling

routines) [HM95, TMC+96, Mor95].

9.2 Language Changes

9.2.1 Grammar

Intensional type analysis adds two constructs to the language: Typerec allows primitive recursion

over constructors to compute a type constructor, while typerec allows primitive recursion over

constructors to compute a term value.

Type Constructors A;B ::= � � �
j Typerec[�:K](A;A*;Aow)

Terms e; d ::= � � �
j typerec[�:� ](A; e*; eow)

For simplicity, the type analysis constructs considered here make only the distinction between

those constructors which are (equivalent to) function type constructors, and the rest (the \other-

wise" case). That is, I have restricted Typerec to allow the de�nitions for a function F :: ��::T:K

of the form

F (�1 * �2) = G(�1)(�2)(F (�1))(F (�2))

F (�) = H(�) if � is not equivalent to a function type constructor

where G and H are arbitrary constructor-level functions of the right kind; this function F would

be de�ned in the oÆcial syntax as

��::T:Typerec[�:K](�;G;H):
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A similar restriction is made for the term-level typerec.

The most interesting aspects of constructs for intensional polymorphism are distinctions made

between di�erent constructors, primitive recursion, and the possibility of a default case. Extending

Typerec and typerec to test for speci�c base type constructors or the product type constructor

would not substantially a�ect the results of this chapter.

9.2.2 Static Semantics

The following rules must be added:

Well-Formedness

� ` A :: T �; �::T ` K

� ` A* :: ��1::T:��2::T:[�1=�]K![�2=�]K![(�1*�2)=�]K

� ` Aow :: ��::T:K

� ` Typerec[�:K](A;A*;Aow) :: [A=�]K
(9.1)

� ` A :: T �; �::T ` �

� ` e* : 8�1::T:8�2::T:[�1=�]�*[�2=�]�*[(�1*�2)=�]�

� ` eow : 8�::T:�

� ` typerec[�:� ](A; e*; eow) : [A=�]�
(9.2)

Equivalence

� ` A1 � A2 :: T �; �::T ` K1 � K2

� ` A*1 � A*2 :: ��1::T:��2::T:[�1=�]K1![�2=�]K1![(�1*�2)=�]K1

� ` Aow
1 � Aow

2 :: ��::T:K1

� ` Typerec[�:K1](A1;A
*

1 ;Aow
1 ) � Typerec[�:K2](A2;A

*

2 ;Aow
2 ) :: [A1=�]K1

(9.3)

� ` A1 :: T � ` A2 :: T �; �::T ` K

� ` A* :: ��1::T:��2::T:[�1=�]K![�2=�]K![(�1*�2)=�]K

� ` Aow :: ��::T:K

� ` Typerec[�:K](A1*A2;A
*;Aow) �

A* (A1) (A2) (Typerec[�:K](A1;A
*;Aow))(Typerec[�:K](A2;A

*;Aow)) :: [(A1*A2)=�]K

(9.4)

� ` E [c] :: T c is not * �; �::T ` K

� ` A* :: ��1::T:��2::T:[�1=�]K![�2=�]K![(�1*�2)=�]K

� ` Aow :: ��::T:K

� ` Typerec[�:K](E [c];A*;Aow) � Aow (A) :: [A=�]K
(9.5)

� ` A1 � A2 : T �; �::T ` �1 � �2
� ` e*1 � e*2 : 8�1::T:8�2::T:[�1=�]�1*[�2=�]�1*[(�1*�2)=�]�1

� ` eow1 � eow2 : 8�::T:�1

� ` typerec[�:�1](A1; e
*

1 ; eow1 ) � typerec[�:�2](A2; e
*

2 ; eow2 ) : [A1=�]�1
(9.6)
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9.2.3 Dynamic Semantics

The constructor-level and term-level evaluation contexts are each extended with one case:

U ::= � � �
j Typerec[�:K](U ;A*;Aow)

C ::= � � �
j typerec[�:� ](U ; e*; eow)

and there are four new instruction reduction steps:

Typerec[�:K](A1*A2;A
*;Aow) ; A* (A1) (A2) (Typerec[�:K](A1;A

*;Aow))

(Typerec[�:K](A2;A
*;Aow))

Typerec[�:K](A;A*;Aow) ; Aow (A), if A not of the form A1*A2

typerec[�:� ](A1*A2; e
*; eow) ; e* (A1) (A2) (typerec[�:K](A1; e

*; eow))

(typerec[�:K](A2; e
*; eow))

typerec[�:� ](A; e*; eow) ; eow (A), if A not of the form A1*A2

9.3 Declarative Properties

The proofs of Chapter 3 go through without any problems. Those proofs needing modi�cations

merely require extra cases to be added for each of the new static semantic rules; these are straight-

forward uses of the inductive hypotheses. Preserved properties include substitution, validity, and

functionality.

The reduction rule for Typerec is not admissible. However, it is interesting to note that the

system comes very close to having an admissible extensionality rule for Typerec. Suppose this

construct contained no kind annotation, as in the formulation of Harper and Morrisett [HL94].

The well-formedness rule would be little changed:

� ` A :: T �; �::T ` K
� ` A* :: ��1::T:��2::T:[�1=�]K![�2=�]K![(�1*�2)=�]K

� ` Aow :: ��::T:K

� ` Typerec(A;A*;Aow) :: [A=�]K
:

But assume now that � ` f :: T!L for some kind L, and � ` A :: T. By taking K = S(f(�) :: L)

in the above rule we can derive

� ` Typerec(A;��1::T:��2::T:� ::L:� ::L:f(�1*�2);��1::T:f(�1)) :: S(f(A) :: L);

where I have used to denote function arguments which are not used in their body. It follows,

then, that

� ` f(A) � Typerec(A;��1::T:��2::T:� ::L:� ::L:f(�1*�2);��1::T:f(�1)) :: L:

This is exactly analogous to the standard extensionality rule for sum types [Mit96]:

f(z) � (case z of inl x) f(inl x) j inrx) f(inr x)):
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9.4 Algorithms for Constructors and Kinds

To make the following algorithms readable, for any kind K I will use K� to stand for the kind

��1::T:��2::T:[�1=�]K![�2=�]K![(�1*�2)=�]K:

This is the kind of the function-type constructor arm of a Typerec whose kind annotation is [�:K].

The principal kind for a well-formed Typerec is easily computed from the kind annotation:

� . Typerec[�:K](A;A*;Aow) * S(Typerec[�:K](A;A*;Aow) :: [A=�]K);

but actually checking that a Typerec is well-formed requires more work:

� . Typerec[�:K](A;A*;Aow)� [A=�]K if �; �::T . K, � . A� T,

� . A* � K�, and � . Aow
� ��::T:K.

I extend the notion of a constructor-level path to allow Typerec's:

E ::= � � �
j Typerec[�:K](E ;A*;Aow)

Then the equivalence algorithm is extended with the following cases:

Kind extraction

� . Typerec[�:K](A;A*;Aow) " [A=�]K

Weak head reduction

� . E [Typerec[�:K](A1*A2;A
*;Aow)];

E [A* (A1) (A2) (Typerec[�:K](A1;A
*;Aow))(Typerec[�:K](A2;A

*;Aow))]

� . E [Typerec[�:K](A;A*;Aow)];

E [Aow (A)[A=�]K ] if A not of the form A1*A2

Algorithmic path equivalence

� . Typerec[�:K1](p1;A
*

1 ;Aow
1 )$

Typerec[�:K2](p2;A
*

2 ;Aow
2 ) " [p1=�]K1 if �; �::T . K1 , K2, � . p1 $ p2 " T,

� . A*1 , A*2 ::K�

and � . Aow
1 , Aow

2 :: ��::T:K.

It is straightforward to show that soundness is preserved by the above modi�cations.

9.5 Completeness and Decidability for Constructors and Kinds

The revised version of path equivalence is extended in the obvious fashion:

�1 . Typerec[�:K1](p1;A
*

1 ;Aow
1 ) " [p1=�]K1 $

�2 . Typerec[�:K2](p2;A
*

2 ;Aow
2 ) " [p2=�]K2

if �1; �::T . K1 , �2; �::T . K2;

�1 . p1 " T$ �2 . p2 " T;
�1 . A

*

1 :: K2
� , �2 . A

*

2 :: K2
�;

and

�1 . A
ow
1 :: ��::T:K1 , �2 . A

ow
2 :: ��::T:K2:
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The logical relations, however, need not change. One point to be aware of, however, is that a

path E [c] is no longer guaranteed to be head-normal, because of cases like

Typerec[�:T](Int;A*;Aow):

Thus, for example, parts 3 and 4 of Lemma 5.3.9 must be restricted to the case where either p1
and p2 and of the form Ei[�] or else of the form Ei[c] and head-normal. In all cases in which this

lemma has been invoked, one of these two cases holds. (For the same reason, Proposition 5.3.15

must be restricted to the case in which E1[c1] and E2[c2] are both head-normal.)

With the addition of new kinding and equivalence rules for Typerec, two new cases must be

added to the proof of the logical relations theorem (Theorem 5.3.10). These cases follow from the

following lemma:

Lemma 9.5.1

If �1 . A1 :: T, �2 . A2 :: T, (�1;A
*

1 ;K2
�) is (�2;A

*

2 ;K2
�), and

(�1;A
ow
1 ; ��::T:K1) is (�2;A

ow
2 ; ��::T:K2) then

(�1;Typerec[�:K1](A1;A
*

1 ;Aow
1 ); [A1=�]K1) is (�2;Typerec[�:K2](A2;A

*

2 ;Aow
2 ); [A2=�]K2).

Proof: By induction on �1 . A1 :: T, �2 . A2 :: T.

� �1 . A1 + E1[�] and �2 . A2 + E2[�], with �1 . E1[�] " T$ �2 . E2[�] " T.

1. Then Typerec[�:K1](E1[�];A
*

1 ;Aow
1 ) and Typerec[�:K1](E2[�];A

*

1 ;Aow
1 ) are

head-normal.

2. The last assumption in the statement of the lemma implies

(�1; ��::T:K1) is (�2; ��::T:K2).

3. By Lemma 5.3.9 parts 1 and 2, we have �1 . Typerec[�:K1](E1[�];A
*

1 ;Aow
1 ) "

[E1[�]=�]K1 $ �2 . Typerec[�:K2](E2[�];A
*

2 ;Aow
2 ) " [E2[�]=�]K2.

4. By the same lemma we have (�1; E1[�];T) is (�2; E2[�];T),

5. (�1; [E1[�]=�]K1) is (�2; [E2[�]=�]K2).

6. By Lemma 5.3.9 part 4, it then follows that

(�1;Typerec[�:K1](E1[�];A
*

1 ;Aow
1 ); [E1[�]=�]K1) is

(�2;Typerec[�:K2](E2[�];A
*

2 ;Aow
2 ); [E2[�]=�]K2).

7. Using Lemma 5.3.8 and Lemma 5.3.4 it follows that

(�1;Typerec[�:K1](A1;A
*

1 ;Aow
1 ); [A1=�]K1) is

(�2;Typerec[�:K2](A2;A
*

2 ;Aow
2 ); [A2=�]K2).

� Case: �1 . A1 + E1[*] and �2 . A2 + E2[*]�1 . E1[*] " T$ �2 . E2[*] " T.

1. Since �1 . E1[*] " T, it follows that �1 . A1 + A0
1*A00

1 , and similarly that

�2 . A2 + A0
2*A00

2,

2. and that �1 . A
0
1 :: T, �2 . A

0
2 :: T and �1 . A

00
1 :: T, �2 . A

00
2 :: T.

3. By the inductive hypothesis, then (�1;Typerec[�:K1](A
0
1;A

*

1 ;Aow
1 ); [A0

1=�]K1) is

(�2;Typerec[�:K2](A
0
2;A

*

2 ;Aow
2 ); [A0

2=�]K2).

4. and (�1;Typerec[�:K1](A
00
1 ;A

*

1 ;Aow
1 ); [A00

1=�]K1) is

(�2;Typerec[�:K2](A
00
2 ;A

*

2 ;Aow
2 ); [A00

2=�]K2).
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5. Therefore,

(�1;A
*

1 (A0
1)(A

00
1)(Typerec[�:K1](A

0
1;A

*

1 ;Aow
1 ))(Typerec[�:K1](A

00
1 ;A

*

1 ;Aow
1 )); [A0

1*A00
1=�]K1) is

(�2;A
*

2 (A0
2)(A

00
2)(Typerec[�:K2](A

0
2;A

*

2 ;Aow
2 ))(Typerec[�:K2](A

00
2 ;A

*

2 ;Aow
2 )); [A0

2*A00
2=�]K2).

6. By Lemma 5.3.8 and Lemma 5.3.4, (�1;Typerec[�:K1](A1;A
*

1 ;Aow
1 ); [A1=�]K1) is

(�2;Typerec[�:K2](A2;A
*

2 ;Aow
2 ); [A2=�]K2).

� �1 . A1 + E1[c] and �2 . A2 + E2[c] where c is not *. Analogous to previous case, although

there is no need to appeal to the inductive hypothesis for the \otherwise" case.

Then the remaining decidability results for the constructor and kind algorithms go through

unchanged. Finally, the normalization algorithm must be extended with a new case:

� . Typerec[�:K](p;A*;Aow) �! Typerec[�:K 0](p0;A*0;Aow 0) " [p=�]K

if �; �::T . K =) K 0; � . p :: T =) p0;

� . A* :: K� =) A*0;

and � . Aow :: ��::T:K =) Aow 0:

9.6 Algorithms for Type and Term Judgments

In analogy with the notation for kinds, for any type � I write �� to represent the type

8�1::T:8�2::T:[�1=�]�*[�2=�]�*[(�1*�2)=�]� :

This is the type of the function type-constructor case of a term-level typerec annotated with [�:� ].

Head-normalization and other properties of types are una�ected by the addition of Typerec and

typerec. A new cases must be added to the algorithm for computing principal types

� . Typerec[�:� ](A; e*; eow) * [A=�]�;

to weak term equivalence

� . Typerec[�:�1](A2; e
*

1 ; eow1 )$ Typerec[�:�2](A2; e
*

2 ; eow2 )

if �; �::T . �1 , �2; � . A1 , A2 :: T;

� . e*1 , e*2 ; and � . eow1 , eow2 ;

and to type synthesis

� . Typerec[�:� ](A; e*; eow)� [A=�]�

if �; �::T . �; � . A� T;

� . e* � ��; and � . eow � 8�::K:�:

9.7 Completeness and Decidability for Types and Terms

The symmetrized weak term equivalence algorithm gets a new case:

�1 . Typerec[�:�1](A2; e
*

1 ; eow1 )$ �2 . Typerec[�:�2](A2; e
*

2 ; eow2 )

if �1; �::T . �1 , �2; �::T . �2; �1 . A1 :: T, �2 . A2 :: T;

�1 . e
*

1 , �2 . e
*

2 ; and �1 . e
ow
1 , �2 . e

ow
2 ;
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Again, the logical relations are unchanged. The new case for the proof that declarative equiva-

lence implies algorithmic equivalence follows directly from the inductive hypothesis. The complete-

ness and decidability results then hold unchanged, as does strengthening for term variables.

9.8 Properties of Evaluation

Even if Proposition 5.3.15 is restricted to head-normal paths as suggested above, one can still prove

the Canonical Forms lemmas. Thus it is easy to see that evaluation of well-typed terms never gets

\stuck".
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Chapter 10

Conclusion

10.1 Summary of Contributions

In this dissertation I have presented the MIL0 calculus, which models the internal language used

by the TILT compiler. The language contains two variants of singletons: singletons with ��-

equivalence (instantiated as singleton kinds) and labeled singletons with a weak term equivalence

(instantiated as singleton types). The former is particularly simple and elegant, but is unusually

context-sensitive.

I have thoroughly studied the equational and proof-theoretic properties of the MIL0 calculus,

and have shown that typechecking is decidable. I have presented algorithms for implementing

typechecking; those for constructors and kinds form the basis of the typechecker implementation

in the TILT compiler [Pet00].

The equivalence algorithm for type constructors employs an apparently novel kind-directed

framework. This is extremely well-suited for cases in which equivalence is dependent upon the

classi�er. Examples of other such languages include those with terminal types (where all terms of

this type are equal), or calculi with records and width subtyping (where equivalence of two records

depends only on the equivalence of the subset of �elds mentioned in the classifying record type).

This approach can even be used in the absence of subtyping, subkinding, or singletons [HP99].

The correctness proofs for my equivalence algorithms employ an unusual variant of Kripke

logical relation, in which the relations are indexed by two kinds or types and by two worlds. This

permits a very straightforward proof of correctness for the equivalence algorithms. I have found the

logical relations approach to proving completeness to be remarkably robust under minor changes

to the equational theory; even the addition of type analysis constructs requires few changes.

Crary has used the results of Chapter 5 to show that a language with singleton kinds can be

translated into a language without, in a fashion which preserves well-typedness [Cra00]. Intuitively,

one can certainly \substitute in" all of the de�nitions induced by singletons. However, the correct-

ness of afterwards erasing all of singleton kinds is a form of strengthening property. Crary proves

this by working with the algorithmic form of constructor equivalence.

10.2 Related Work

10.2.1 Singletons and De�nitions in Type Systems

The main previous study of singleton types in the literature is due to Aspinall [Asp95, Asp97]. He

studied a calculus ��fg containing singleton types, dependent function types, and �-equivalence.
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Labeled singletons are primitive notions in this system; in the absence of �-equivalence the encoding

of x2.3 does not work. He conjectured that term equivalence in ��fg was decidable, but gave no

algorithm.

Crary has also used singleton types and singleton kinds. His thesis [Cra98] includes a system

whose kind system extends the one presented here with subtyping and power kinds. He also

conjectured that both type equivalence and typechecking were decidable.

Crary has also used an extremely simple form of singleton type (with no elimination rule or

subtyping) in order to prove parametricity results [Cra99]. As one example, he shows that any

function f of type 8�:�!� must act as a the identity because

f(S(v : �))(v) : S(v : �)

so by soundness of the type system any value returned by this application must be equal to v.

Furthermore, evaluation in his system obviously does not depend upon type arguments to functions,

so f must act as an identity1 for every argument of any type. (This argument does not apply to

MIL0 because here singleton types are not type constructors.)

There are other ways to support equational information in a type system besides singleton

types. Severi and Poll [SP94] study con
uence and normalization of �Æ-reduction for a pure type

system with de�nitions (let bindings), where Æ is the replacement of an occurrence of a variable

with its de�nition. In this system, the typing context contains both the type for each variable, and

an optional de�nition. This calculus contains no notion of partial de�nition, no subtyping, and

cannot express constraints on function arguments. This approach may be suÆcient to represent

information needed for cross-module inlining (particularly when based upon the lambda-splitting

work of Blume and Appel [BA97, Blu97]), but this cannot model sharing constraints or de�nitions

in a modular framework (where only some parts of a module have known de�nition).

Type theoretic studies of the SML module system have been studied by Harper and Lillibridge

under the name of translucent sums [HL94, Lil97] in which modules are �rst-class values, and

by Leroy under the name of manifest types [Ler94] in which modules are second-class. These

two systems are essentially similar: the calculus includes module constructs, and corresponding

signatures; as in Standard ML the type components of signatures may optionally specify de�nitions.

The key di�erence from MIL0 is that type de�nitions are speci�ed at the type level, rather than

at the kind level. Because of this, type equivalence does depend on the typing context but not

on the (unique) classifying kind. Typechecking for translucent sums is undecidable (although type

equivalence is decidable). No analogous result is known for manifest types; modules may lack

most-speci�c signatures, prohibiting standard methods for typechecking.

A very powerful construct is the I-type of Martin-L�of's extensional type theory [ML84, Hof95].

A term of type I(e1; e2) represents a proof that e1 and e2 are equivalent. This can lead to unde-

cidable typechecking very quickly, as one can use this to add arbitrary equations as assumptions

in the typing context.

The language Dylan [Sha96] contains a notion of \singleton type", but these are checked only

at run-time (essentially pointer-equality) to resolve dynamic overloading.

10.2.2 Decidability of Equivalence and Typechecking

My approach to implementing and studying constructor equivalence was inspired by work by Co-

quand for a dependently-typed lambda calculus [Coq91]. However, because his the equivalence

was not context-sensitive in any way, both our algorithm and proof are substantially di�erent from

1Up to type annotations, which as just stated do not a�ect evaluation behavior
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Coquand's. Because of issues such as the form of the validity logical relations and the particular

symmetry and transitivity properties of the 6-place algorithm, our initial attempts to use more

traditional Kripke logical relations (with a pair of contexts being a single world) were unsuccessful.

Systems in which equivalence depends upon the typing context were mentioned in x10.2.1. How-
ever, there appear to be relatively few decidability results for lambda calculi with typing-context-

sensitive or classi�er-sensitive equivalences, perhaps because standard techniques of rewriting to

normal form are diÆcult to apply. Many calculi include subtyping but not subkinding; in such

cases either only type equivalence is considered (which is independent of subtyping) or else term

equivalence is not a�ected by subtyping and hence can be computed in a context-free manner.

One exception is the work of Curien and Ghelli [CG94], who proved the decidability of term

equivalence in F� with ��-reduction and a Top type. Because their Top type is both terminal

and maximal, equivalence depends on both the typing context and the type at which terms are

compared. They eliminate context-sensitivity by inserting explicit coercions to mark uses of sub-

sumption and then give a rewriting strategy for the calculus with coercions. Their proof uses

translations between three di�erent typed �-calculi.

It would be interesting to see if the approach used for MIL0 could be applied to their source

language, avoiding the use of translations. Although adapting my equivalence algorithm seems

easy, the fact that they study an impredicative calculus would require an extension of the theory

in order to prove the completeness of this algorithm.

Compagnoni and Goguen [CG97] also use a normalization algorithm and Kripke logical rela-

tions argument for proving properties (including decidability of subtyping) for the language F!

�, a

variant of F!

<: with higher-order subtyping and the kernel Fun rule [CW85] for quanti�er subtyping.

However, adapting these methods to include subkinding and �-expansion seems nontrivial.

10.3 Open Questions and Conjectures

I conclude with an overview of several remaining issues which could be the subject of future work

in the study of singleton types and kinds.

10.3.1 Removing Type Annotations from let

The primary practical defect of the MIL0 term language appears to be the required type labels in

let-bindings | in particular, the type annotation on the bound variable. Because a local binding is

required for every sub-computation, these type annotations can substantially increase the total size

of a program. This exacts not only a penalty in the space consumed by the program's representation,

but also costs time in manipulating the representation: the typechecker must verify the correctness

of these annotations, transformations such as substitutions or optimizations must be applied to

all of the annotations, and so on. Furthermore, if one wishes to bind x to the pair h3; 4i, one
must choose whether to annotate this binding with the simple type int�int, or one of its larger but

more-precise types: S(3 : int)�S(4 : int) or S(h3; 4i : int�int) or even S(h3; 4i : S(3 : int)�S(4 : int)).
This is easy to change in the MIL0 de�nition; the mediating type of the bound variable is simply

chosen nondeterministically. In this fashion Rule 2.76 becomes

� ` e0 : � 0 �; x:� 0 ` e : � � ` �

� ` (let x=e0 in e : � end) : �
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and Rule 2.89 becomes

� ` e01 � e02 : �
0

� ` �1 � �2 �; x:� 01 ` e1 � e2 : �1

� ` (let x=e01 in e1 : �1 end) � (let x=e02 in e2 : �2 end) : �1
:

Adapting the algorithm for checking the well-formedness of a let-binding is easy: just replace

uses of the annotation with uses of the principal type of the bound expression, which is already

being calculated. As the type annotation need no longer be validated, this requires doing strictly

less work.

Unfortunately, computing equivalence of two let-bindings without this type annotation is more

diÆcult. It should look something like the following:

� . (let x=e01 in e1 : �1 end)$ if � . e01 , e02 and �; x: ??? . e1 , e2, and � . �1 , �2.

(let x=e02 in e2 : �2 end):

But what type x should be given while comparing e1 and e2? A problem arises; is entirely possible

for e01 and e02 to be well-formed and for � . e01 , e02 but for e01 and e02 to have di�erent principal

types. (For example, assume y:S(h3; 4i : int�int) and compare y with h3; 4i.) If I attempt to avoid

this asymmetry by maintaining two contexts and using both principal types, then the contexts

maintained by the algorithm no longer remain provably equivalent and properties like soundness

become more diÆcult to show.

However, any two equivalent terms in weak head-normal form have equivalent principal types.

More generally, any two well-formed terms equivalent under the weak term equivalence relation $
have provably equivalent principal types. This suggests the strategy of using the principal type of

the head-normal form of either let-bound expression:

� . (let x=e01 in e1 : �1 end)$ if � . e01 , e02, � . e
0
1 + d01, � . d

0
1 * � 0,

(let x=e02 in e2 : �2 end) �; x:� 0 . e1 , e2, and � . �1 , �2.

or using both equivalent types in the symmetric form of the algorithm.

It is not too hard to show this modi�ed algorithm is sound. The key insight is that if d0
i
is the

head-normal form for e0
i
(for i 2 f1; 2g) then

� ` (let x=e0
i
in ei : �i end) � (let x=d0

i
in ei : �i end) : �i

so that while comparing the bodies the algorithm can assume it was given d01 and d02 instead of e01
and e02, taking advantage of the equal principal types.

Unfortunately, I cannot prove this algorithm complete. Everything goes through except the

�nal step, proving that declarative equivalence implies logical equivalence. The diÆculty is that

the type � 0 computed by the algorithm need not have a counterpart in the declarative proof of

equivalence, so that the inductive hypothesis cannot be applied to � 0.

Conjecture 10.3.1

The algorithm as modi�ed as suggested here is not only sound, but complete and terminating for

the language where the type annotations are omitted from local variable bindings.
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10.3.2 Unlabeled Singleton Types

Principal types in MIL0 can be quite large. For example, the principal type of the pair hh2; 3i; h4; 5ii
is

S(hh2; 3i; h4; 5ii : S(h2; 3i : S(2 : int)�S(3 : int))�S(h4; 5i : S(4 : int)�S(5 : int))):

Despite the fact that this type classi�es exactly the same values as the simpler type

S(hh2; 3i; h4; 5ii : (int�int)�(int�int))

these two types are not provably equivalent. The former is a strict subtype of the latter, and is

hence the one which must be synthesized by the typechecking algorithms. Even if type equivalence

were strengthened to equate these two types, experience in the TILT compiler with labeled singleton

kinds has demonstrated that it is diÆcult to avoid generating singletons with redundant information

in the labels.

Furthermore, term equivalence is weak enough that it does not depend upon the classifying

type. In a sense, then, the classi�er in a singleton type is not adding useful information. An

obvious alternative is the \unlabeled singleton" S(v) brie
y considered by Aspinall. Declaratively

one might have such rules as
� ` v : �

� ` v : S(v)

and
� ` v : �

� ` S(v) � �
:

Finding a plausible typechecking algorithm for such a language has proven surprisingly diÆcult,

however. Principal type synthesis becomes trivial (the principal type for any value v is just S(v))

and useless for the purposes of type-checking. What is needed is the \most-precise type that is

not a singleton", which for values is the \second-most-precise type"2. I do not yet have a plausible

algorithm for when both projections and pairs are values3.

Leaf Petersen has studied a variant of the MIL0 kind system which allows unlabeled singleton

kinds [Pet00] to decrease the size of program representations. This has been implemented in TILT.

His approach is to treat unlabeled singletons as an abbreviation mechanism, and he shows how to

translate away all uses of unlabeled singletons.

It is possible that a similar approach may work for singleton types. There are additional

diÆculties, however. In particular, mixing labeled and unlabeled singletons can cause problems.

Assume we have a program context in which x has type int�int. Then under the natural translation

approach one would expect S(x) to be equivalent to the labeled singleton type S(x : int�int). How-

ever, upon substituting the pair h2; 3i the types become S(h2; 3i) and S(h2; 3i : int�int). However,

the labeled singleton corresponding to the former of these two types is now the more precise type

S(h2; 3i : S(2 : int)�S(3 : int)).
Thus two equivalent types become inequivalent after substitution of a value for a variable. This

means that substitution (and hence inlining) is no longer guaranteed to preserve well-formedness

of programs. This is not a good property for a compiler representation to have.

2Leaf Petersen has suggested this be called the \vice-principal type".
3There are some hints, however, that computing types of values by looking at their head-normal forms may be

possible.
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Conjecture 10.3.2

If labeled singleton types are replaced completely with unlabeled singleton types, then there is still a

reasonable algorithm for deciding well-formedness of programs.

The current TILT implementation includes only singleton kinds. I intend to implement singleton

types for cross-module inlining, based on the algorithm sketched here.

10.3.3 Recursive Types

Several authors from Amadio and Cardelli on [AC93, Bra97] have studied algorithms for deciding

type equivalence for recursive types, which are viewed as representing in�nite trees. This can be

most simply formalized with two rules: the roll-unroll rule

�; �::T ` A

� ` ��::T:A � [��::T:A=�]A :: T

and a coinductive principle. Together these rules allow such equivalences as

` (��::T:int*�) � (��::T:int*(int*�)) :: T:

For the case of simple types where type equivalence is the congruence induced by these two

rules, the standard simple algorithm combines structural comparison of the two types with un-

rolling whenever a recursive type is reached. To prevent in�nite unrolling, a trail of the previously

compared types is maintained; by coinductive nature of equivalence, any comparison previously

seen can simply be reported successful.

The requirements for the TILT compiler appear to be much simpler; we need only the one rule

� ` [��::T:A1=�]A1 � [��::T:A2=�]A2 :: T

� ` ��::T:A1 � ��::T:A2 :: T

That is, two recursive types are equal if their unrollings are equal. This is equivalent to the rule

�; �::T ` A

� ` ��::T:A � ��::T:[��::T:A=�]A :: T

called \Shao's Rule" in [CHC+98]. This is a much weaker equational theory; In contrast to the

roll-unroll rule above, it equates recursive types only to other recursive types.

There has been no study of algorithms for recursive types where there are other interesting

type equations such as �-equivalence (e.g., F! extended with recursive types). However there is a

seemingly natural extension of the simple algorithm above, which has been implemented in TILT.

1. TILT keeps a trail of the pairs of recursive types previously compared;

2. Whenever weak path equivalence is about to compare two recursive types, it adds them to

the trail, unrolls the two types, and runs the general constructor equivalence algorithm on

the two results.

3. If a loop is detected, comparison fails. (Recall that we are not requiring equivalence to be

coinductive.)

Conjecture 10.3.3

The above algorithm is sound, complete, and terminating for MIL0 extended with recursive types

and Shao's rule.
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The diÆculty in proving completeness and termination is that because of the trail I see no way

to make this algorithm obviously transitive. This is a key step in my theoretical development, and

so the approach I use in this dissertation does not appear to extend in any nice fashion.
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