Singleton Kinds and Singleton Types

Christopher Allan Stone
August 2, 2000
CMU-CS-00-153

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Robert Harper, Chair
Peter Lee
John Reynolds
Jon Riecke (Bell Laboratories, Lucent Technologies)

Copyright © 2000 Christopher Allan Stone

This research was supported in part by the US Army Research Office under Grant No. DAAH04-94-G-0289 and in
part by the Advanced Research Projects Agency CSTO under the title “The Fox Project: Advanced Languages for
Systems Software”, ARPA Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: Singleton Kinds, Singleton Types, Type Theory, Typechecking, Typed Compila-
tion, Lambda Calculus

In memory of my grandfather, Dr. Joseph F. Bradley

Contents

1 Introduction

1.1 Definitions and Constraints in Interfaces
1.2 The TIL and TILT Compilers o .
1.21 TIL . . e
1.2.2 Standard ML Modules oo
1.2.3 Phase-Splitting in TILT
1.3 Dependent and Singleton Kinds o .
1.4 Dependent and Singleton Types o
1.5 Other Uses for Singletons
1.5.1 Closed-Scope Definitions L L
1.5.2 TILT Program Transformations
1.5.3 Cross-Module Inlining
1.6 Dissertation Summary L e

2 The MIL calculus

2.1 OVErVIEW . . . o o o e e e
2.2 Syntax and Static Semantics of MILg oo o oo
2.2.1 Typing Contexts e e e e
2.22 Kinds e e
2.2.3 Type Constructors o i e
224 TyPes e e e
2.2.5 Termso e e
2.3 Admissible Rules
2.4 Dynamic Semantics L e

3 Declarative Properties

3.1 Preliminaries e
3.2 Validity and Functionality o o
3.3 Proofs of Admissibility o
3.4 Kind Strengthening
4 Algorithms for Kind and Constructor Judgments
4.1 Introduction. e e
4.2 Principal Kinds e
4.3 Algorithms for Kind and Constructor Judgments
4.4 Soundness of the Algorithmic Judgments

1

10
10
11
13
15
15
18
18
18
20
23

25
25
26
28
30
32
37
40
42
46

49
49
92
99
63

5 Completeness and Decidability for Constructors and Kinds

9.8 Properties of Evaluation

10 Conclusion

5.1 Introduction.
5.2 A Symmetric and Transitive Algorithm
5.2.1 Definition L e e
5.2.2 Soundness e e e e
5.3 Completeness of the Revised Algorithms
5.4 Completeness and Termination oL
5.5 Normalization L
6 Algorithms for Type and Term Judgments
6.1 Introduction. L
6.2 Type Head-Normalization
6.3 Principal Types e
6.4 Algorithms
6.5 Soundness L e e e
7 Completeness and Decidability for Types and Terms
7.1 Type and Term Equivalence L o
7.2 Completeness and Decidability for Subtyping and Validity
7.3 Antisymmetry of Subtyping L
7.4 Strengthening for Term Variables
8 Properties of Evaluation
8.1 Determinacy of Evaluation. o o o
8.2 Type Soundness e e e e
9 Intensional Polymorphism
9.1 Introduction. e
9.2 Language Changes
9.2.1 Grammar e e e e e e e e e
9.2.2 Static Semantics oL e
9.2.3 Dynamic Semantics L
9.3 Declarative Properties L
9.4 Algorithms for Constructors and Kinds
9.5 Completeness and Decidability for Constructors and Kinds
9.6 Algorithms for Type and Term Judgments
9.7 Completeness and Decidability for Types and Terms

10.1 Summary of Contributions L

10.2 Related Work

10.2.1 Singletons and Definitions in Type Systems
10.2.2 Decidability of Equivalence and Typechecking
10.3 Open Questions and Conjectures e
10.3.1 Removing Type Annotations from let
10.3.2 Unlabeled Singleton Types o

10.3.3 Recursive Types

81
81
82
82
84
87
109
111

115
115
115
117
120
120

129
129
144
149
149

153
153
153

155
155
155
155
156
157
157
158
158
160
160
161

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
74
7.5
7.6

Constraints via Type Sharing or Type Definitions 12
Structure Sharing 16
Pointless Structure Sharing Lo 17
Syntax of the MILy Calculus 27
Judgment Forms in the Static Semantics 28
Free Variable Sets e 29
Encodings of Labeled Singleton Kinds 43
Reductions of Instructions L L 47
Context-Free Judgment Forms oo o oo 50
Algorithm for Principal Kind Synthesis 65
Algorithms for Kinds 70
Algorithms for Constructor Validity 71
Kind and Constructor Equivalence Algorithms 72
Revised Equivalence Algorithm 85
Logical Relations for Kinds 88
Logical Relations for Constructors 89
Logical Relations for Substitutions, 89
Constructor and Kind Normalization 112
Head Normalization Algorithm for Types 116
Principal Type Synthesis Algorithm 117
Algorithms for Types. o 121
Algorithms for Term Validity 122
Algorithms for Term Equivalence 123
Revised Type Equivalence Algorithm 130
Revised Term Equivalence Algorithm 130
Logical Relations for Types 131
Logical Relations for Values 132
Derived Logical Relations 133
Size Metric for Types o L e 133

Abstract

In this dissertation I study the properties of singleton kinds and singleton types.
These are extremely precise classifiers for types and values, respectively: the kind of all
types equal to [a given type], and the type of all values equal to [a given value]. Single-
tons are interesting because they provide a very general and modular form of definition,
allow fine-grained control of type computations, and allow many equational constraints
to be expressed within the type system. This is useful, for example, when modeling
the type sharing and type definition constraints appearing in module signatures in the
Standard ML language; singletons are used for this purpose in the TILT compiler for
Standard ML.

However, the decidability of typechecking in the presence of singletons is not obvious.
In order to typecheck a term, one must be able to determine whether two type construc-
tors are provably equivalent. But in the presence of singleton kinds, the equivalence of
type constructors depends both on the typing context in which they are compared and
on the kind at which they are compared.

In this dissertation I present MILg, a lambda calculus with singletons that is based
upon the representation used by the TILT compiler. I prove important properties
of this language, including type soundness and decidability of typechecking. The main
technical result is decidability of equivalence for well-formed type constructors. Inspired
by Coquand’s result for type theory, I prove decidability of constructor equivalence for
MILy by exhibiting a novel — though slightly inefficient — type-directed comparison
algorithm. The correctness of this algorithm is proved using an interesting variant of
Kripke-style logical relations: unary relations are indexed by a single possible world
(in our case, a typing context), but binary relations are indexed by two worlds. Using
this result I can then show the correctness of a natural, practical algorithm used by the
TILT compiler.

Acknowledgments

This dissertation would not be possible without the constant support of my family, the encourage-
ment of both my former advisor Peter Lee and my current advisor Bob Harper, the help of the
members of the FOX Project at Carnegie Mellon (particularly Perry Cheng and Leaf Petersen), the
helpful comments of Frank Pfenning, John Reynolds and Rick Statman, the exciting environment
created by the members of the Principles of Programming Languages group, and the friendship of all
those folks who lived with me at The Church in the past six years (Andrej Bauer, Susan Blanset,
Fay Chang, Marko Grobelnik, Mike Harkavy, John Langford, Dunja Mladenic, Chris Paciorek,
Adrian Perrig, and Jeff Polakow).

Lars Birkedal originally suggested that a 6-place logical relation might be made to work. Bob
Harper, Karl Crary, John Reynolds, and Jon Riecke proofread versions of this work particularly
carefully. All remaining errors are, of course, attributable solely to me.

Chapter 1

Introduction

1.1 Definitions and Constraints in Interfaces

Many programming languages allow some form of definitions to appear in program unit interfaces.
In the C language, for example, header files frequently contain definitions of type abbreviations.
For example,

typedef struct {
int x;

int y;
} point_t;

defines the type name point_t to stand for the type of a record containing two integers named x
and y respectively. Such type definitions in C are effectively macros; the main advantage of using
typedef rather than the C preprocessor’s #define is that the the tortuous syntax of C variable dec-
larations (particularly for function pointers) makes simple textual substitution insufficient [KR88].

The Standard ML language [MTHM97] also permits type definitions to appear in module in-
terfaces. The specification

structure S : sig
type point_t = {x : int, y : int}
end

says that S is a module containing just one element: a type named point_t. The interface further
specifies that this type S.point_t is again the type of a record with two integer components named
x and y. Type abbreviations in SML are qualitatively different from typedef, however. This SML
code is a true specification, and as such must be a specification of something; if code is compiled
in the presence of this interface then at some later point (e.g., link time) a module satisfying this
specification must be supplied. Furthermore, the definition in this signature acts as a form of
constraint: any module satisfying this specification must contain a type point_t with an equal
definition. Supplying a different type leads to a static error, and this is not the behavior of a simple
type macro.

The type-theoretic approach to studying programming languages has proved extremely fruitful.
By isolating primitive concepts (organized around types), languages can be understood and com-
pared more easily. Such an atomistic approach can lead to the improved design and implementation
of programming languages.

Thus the question arises: what primitive language concept corresponds to type definitions
in module interfaces? Several studies have effectively taken the entire SML system of modules
and interfaces as primitive [HL94, Ler94, Ler95]. However, this is a rather heavyweight notion. In
considering a formal calculus with such modules, either the modules are ordinary values and module
interfaces just a form of type, or else these are held separate from the rest of the language. In the
former case typechecking becomes undecidable [HL94, Lil97]. In the latter case there is a certain
redundancy resulting from having structures (collections of types and values) and parameterized
modules (functions from modules to modules) separate from ordinary records of values and ordinary
functions.

An alternative approach is to focus on the type specification itself, adding to the primitive
specifications such as “a type” or “a parameterized type of one argument” specifications of the
form “a type equal to [some given type]”. This leads to the notion of singleton kinds. If types or
kinds (kinds are the types of types) intuitively correspond to sets, then singleton kinds are sets
containing one element; membership in such a set is therefore a very strong statement. Analogously,
one can form singleton types, expressing membership in the “collection of values equal to [some given
value]”.

The goal of this dissertation is to study the addition of singleton types and kinds to a well-
understood type system, with particular emphasis on the important properties of type soundness
and decidability of typechecking.

The remainder of this chapter explains more carefully the concepts of singleton types and kinds,
and shows several examples besides type definitions where singleton kinds and types appear useful
in theory and practice. I conclude with a high-level overview of the dissertation.

1.2 The TIL and TILT Compilers

1.2.1 TIL

TIL [TMC'96, Tar96, Mor95] was a prototype compiler for the core subset of the Standard ML
language [MTHMO97]. It was structured as a series of translations between explicitly-typed inter-
mediate languages, and indeed the very name TIL refers to the Typed Intermediate Languages
used by the compiler. Each pass of the compiler (e.g., common subexpression elimination or clo-
sure conversion) transformed both the program and its type while preserving well-typedness. This
framework has several advantages:

e A wide variety of common compiler implementation errors can be detected during compila-
tion by running a typechecker on the compiler’s program representation after each transfor-
mation. The location of the type error yields very precise information about which compiler
phase introduced the error and which part of the input program triggered the bug. Al-
though the fact that the compiler preserves well-typedness in no way guarantees that it is
also meaning-preserving, a very large class of compiler bugs exhibit themselves by creating
type errors [Nec98].

e By maintaining full typing information, the compiler is able to support type-based optimiza-
tions and efficient data representations; TIL used a type-passing interpretation of polymor-
phism in which types were passed and analyzed at run-time [HL94, Mor95].

e Typing information can be used to annotate binaries with an easily verifiable certificate
(proof) of safety, the absence of certain run-time errors [MWCG97, Nec97].

10

The results from TIL — in particular the quality of the generated code — were very encourag-
ing [TMC™"96]. However, the implementation was inefficient and could only compile small, complete
programs written without use of modules; very few interesting programs meet these criteria. To
further test the ideas behind TIL, the members of the CMU Fox Project decided to completely
re-engineer the compiler to produce TILT (TIL Two). The aim was to produce a more practical
compiler based on typed intermediate languages which could handle separate compilation, the com-
plete SML language, and large inputs. The biggest research challenge in scaling up the compiler to
the full language was adding support for modules.

1.2.2 Standard ML Modules

Modules in SML are “second-class” entities — there are no conditional module expressions, nor
may modules be assigned to mutable variables or be passed to or returned from ordinary functions.
The basic form of an SML module is a structure, which is a package of types, values, and sub-
modules. Structure signatures, the interfaces of structures, consist of a corresponding collection of
type, value, and module specifications. Value specifications give the type of a value component, and
module specifications give the signature of a module component. Type specifications may either be
opaque (specifying only the kind of the component) or transparent (exposing the type’s definition).
For example, consider the following structure specification:

structure Set : sig
type item = int
type set
type setpair = set * set

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set
end

This states that Set has three type components: the type Set.item known to be equal to int, the
type Set.set about which nothing is known, and the type Set.setpair which is the type of pairs
of Set.set’s. Set also contains five value components; from the names, presumably Set.empty
will be a representation of the empty set, set.union computes the union of a pair of sets, and so
on.

There are two important points to note about this example. First, equivalences such as the one
between Set.item and int are open-scope definitions available to “the rest of the program”, which
may not be written yet when this module is compiled. Such definitions cannot be eliminated by a
simple local substitution and forgotten. Second, in a type-passing implementation like TILT types
are computed and stored by the run-time code. Although it is possible to get rid of type definitions
in signatures by replacing all references to these components with their definitions [Sha98] this is
not necessarily a good idea in a type-passing implementation; such substitutions could substantially
increase the number of type computations performed at run-time.

An alternative method of expressing information about type components in signatures is by type
sharing specifications; these specify that two particular type components have the same definition.

Figure 1.1 (adapted from [MT91, p. 65]) shows two equivalent definitions for the signature for
the front end of a compiler. The first definition states that the front end has two sub-structures: a

11

signature FRONTEND =

sig
structure Lexer : sig
type token
val lex : string —> token list
end
structure Parser : sig
type token
type ast
val parse : token list -> ast
end
sharing type Lexer.token = Parser.token
end
signature FRONTEND =
sig
structure Lexer : sig
type token
val lex : string —> token list
end

structure Parser : sig
type token = Lexer.token
type ast
val parse : token list —> ast
end
end

Figure 1.1: Constraints via Type Sharing or Type Definitions

lexer implementation (which takes a string of characters and splits it up into a list of tokens, which
presumably would be things like identifiers or language keywords) and a parser implementation
(which takes a list of tokens and translates these into an abstract syntax tree, making the program
structure apparent). The Lexer and Parser sub-structures each have their own notion of tokens;
only the final line of this signature specifies that these two notions are compatible. As a consequence,
it is allowable to compose the two functions Lexer.lex and Parser.parse together

Such sharing type constraints do not add expressiveness to the language because they can
always be viewed as syntactic sugar for the definitions of type components [HS00]. The second
definition in Figure 1.1 defines an equal signature using a type definition.

Modules may be given less-specific signatures using subsumption — the signature of a module
may be weakened to a “larger” signature in the sub-signature ordering. The important part of this
ordering is that omitting constraints on types makes structure sharing less precise'. For example,
a structure satisfying the signature

In SML, the subsignature relation also lets structure components be forgotten or reordered; this coercion is
definable and hence does not add essential expressiveness [HS00].

12

structure Set : sig
type item = int
type set = int list
type setpair = (int list) * (int list)

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set
end

(which exposes the implementation of sets as lists of integers) would also satisfy the previous
specification, while an implementation satisfying either of these specifications would further satisfy
the less-demanding specification

structure Set : sig
type item
type set
type setpair

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set
end.

The Standard ML module system also permits formation of parameterized modules called func-
tors; functors are simply a form of function mapping modules to modules. In the official SML
module system there is no way to express the interface of a functor; such an interface would
specify the signature of the result in terms of the functor argument. However certain compilers
like SML/NJ [MT94, CM94| extend the SML language with higher-order functors and functor
signatures. The sub-signature relation is then extended to functor signatures in the usual way:
contravariantly in the domain and covariantly in the codomain. In any case, an SML compiler
must have an internal notion of functor signature in order to do typechecking in the presence of
functor applications.

1.2.3 Phase-Splitting in TILT

The primary intermediate language of the TIL compiler was based on F,,, the higher-order poly-
morphic lambda calculus [Gir72]. One goal of the TILT redesign was to minimize changes to
the internal languages, in the hope that this would minimize the work needed to port the TIL
optimization and code generation phases.

F,, contains the type and kind structures alluded to above, but no module system. However,
modules and signatures can still be faithfully represented using ideas of Harper, Mitchell, and
Moggi [HMM90, Sha98]. Their key insight was that every module can be uniformly transformed
away via a process called phase-splitting into two pieces: a type part and a value part. For example

13

structures, which are aggregates of both types and values, become two collections: one of types and
one of values. The more interesting observation is that that functors can be split in the same way.
Functors map types and values in one structure to types and values in another structure. However,
types in the result can only depend on types (not values!) in the argument. This means that
a functors can be split into its behavior on types (which can be expressed as a function mapping
records of types to records of types) and its behavior on values (expressed as a polymorphic function
in F,).

Signatures then split in a parallel fashion. Structure signatures, for example, split into a kind
describing collection of types and a type describing a collection of values. For example, the structure

struct

type t = int

val n =3

val succ = fn (n:int) => n+1
end

splits into two parts: a collection of types (in this case, a one-element collection)
{t = int}

and a collection of two values
{n = 3, succ = fn (n:int) => n+1}.

The signature

sig

type t

val n : int

val succ : int -> int
end

correspondingly splits into two parts: the kind of a single-element collection of types
{t :: TYPE}
and the type of a collection of two values
{n : int, succ : int -> int}.
F,, suffices for these and many other examples. However, a difficulty arises in the specification
for sets:

structure Set : sig
type item = int
type set
type setpair = set * set

val empty : set

val insert : set * item -> set

val member : set * item -> bool

val union : setpair -> set

val intersect : setpair -> set
end

14

This should split into a specification for a collection Set_types of three types and a collection
Set_values of five values, but what kind should Set_types have? It is clear translating the above
SML code into the specifications

Set_types :: {item :: TYPE, set :: TYPE, setpair :: TYPE}
Set_values : {empty : Set_types.set, ...}

(where T have elided the types for the remaining components of Set_values) loses important in-
formation about the definitions of item and setpair. If Set_types.item is no longer recorded as
equal to int, then code may suddenly fail to typecheck.

One possibility is to substitute away all such type definitions. Because of the subsignature rela-
tion this is not so trivial an operation as it might appear, but there is no essential difficulty [Sha98].
However, in the TILT compiler types correspond to run-time values, and the effect of such a sub-
stitution is to duplicate run-time computations. Our goal was to avoid such duplication.

1.3 Dependent and Singleton Kinds

The choice made in TILT was to extend the kind structure with dependent and singleton kinds.
The singleton kind S(A :: K) is the kind of “all type constructors of kind K which are equal to
A. That is, the defining property is that the type constructor A has kind S(B :: K) if and only if
A and B are equal type constructors of kind K. Since the type constructors form a small lambda
calculus, I consider equality of types to be based on the usual 7n-equivalence of lambda terms?.
Note that in the presence of singletons assumptions about the kinds of type variables can affect the
provable equalities, and the equational theory of types affects what types can be shown to have
which kinds.

The kinds in TILT were further extended with dependencies. First, in kinds of collections of
types, the kind of each component may depend upon the contents of earlier components. With this

extension, it becomes easy to phase-split the Set specification:

Set_types :: {item :: S(int :: TYPE), set :: TYPE, setpair :: S(set*set :: TYPE)}
Set_values : {empty : Set_types.set, ...}

Singleton kinds are used here to expose the definitions of item and setpair. Further, the definition
of setpair involves a dependency: its kind depends on the contents of the set component.

Similarly, in the kinds of functions mapping type constructors to type constructors, the kind of
the result is allowed to depend on the argument given to the function. This is used to express the
dependencies of types returned from a functor on the functor’s argument.

The final extension in the TILT kind structure is a subkinding relation, a preorder K; < Ko
which holds when K is a more-precise (less general) kind than Kj. This relationship is induced
by the relation S(A :: K) < K; that is, all “types of kind K equivalent to A” are also “types of
kind K”. Subkinding is used to model the SML sub-signature relation.

1.4 Dependent and Singleton Types

The extensions to the kind level can be applied at the level of types as well. This leads to singleton
types of the form S(e : 7), the type of “all values of type 7 equal to e”, as well as dependent

2The simpler 3-equivalence might suffice in practice, but having both 8 and 7 leads to a more expressive and more
interesting language. It is also not clear that using this stronger equivalence relation would substantially simplify the
metatheoretic results I study in this thesis. (See the proofs for decidability of term equivalence.)

15

sig
structure BinaryTree : sig
structure Key : sig
type t
val 1lesseq : t * t -> bool
end

type value
type tree
val insert : Key.t * value * tree -> tree
. other binary tree operations ...
end

structure PriorityQueue : sig
structure Key : sig
type t
val 1lesseq : t * t -> bool
end

type value

type pqueue
val insert : Key.t * value * pqueue -> pqueue
. other priority queue operations ...
end

sharing BinaryTree.Key = PriorityQueue.Key
end

Figure 1.2: Structure Sharing

function and record types, and subtyping

The designer of a system of singleton types must choose a reasonable notion of equality; in the
presence of side-effecting program terms this is not obvious. Ideally equality would be observable
equivalence: two expressions would be equal if and only if they are indistinguishable in any program
context. However, for any interesting term language this relation is not decidable. (For example,
checking contextual equivalence with a non-terminating expression in this language is equivalent to
the halting problem.) Because typechecking in the presence of singleton types requires determining
equivalence of terms, this would immediately lead to a system where there is no algorithm to check
the well-formedness of programs.

I choose to study a simple equivalence: a congruence based on projection rules for pairs, ex-
tended by singleton types. To avoid problems with side effects, I restrict singleton types to contain
only values, and I extend the congruence with the principle that a value v; has type S(vy : 7) if
and only if v; and ve are equivalent and of type 7. (In the presence of recursion there is a non-
terminating expression of type 7 for any well-formed 7. Hence there is a non-terminating expression
e of type S(3 : int). But since 3 and e are clearly not observably equivalent, they should not be
provably equal; hence the restriction to values.)

What use are such singletons? Consider the SML code in Figure 1.2. The interface shown here

16

sig
structure T : sig
val n : int
end
structure U : sig
val m : int
end

I
c

sharing T
end

Figure 1.3: Pointless Structure Sharing

specifies two sub-modules BinaryTree and PriorityQueue that implement abstract data types
for binary trees and priority queues respectively. Each sub-module has its own notion of how
keys are represented (the type Key.t) and ordered (the relation Key.lesseq). In current versions
of Standard ML, sharing constraints are simply an abbreviation for sharing type constraints
between the opaque type components common to both structures. Since there is only one such
component, the constraint is exactly equal to the constraint

sharing type BinaryTree.Key.t = PriorityQueue.Key.t.

This then allows the same key value to be used in a binary tree and in a priority queue. (Note
however, that the values stored in binary trees and the values stored in priority queues need not
be of the same type; there is no constraint requiring BinaryTree.value to be the same type
as PriorityQueue.value.) This constraint can be modeled as before with singleton kinds by
specifying

PriorityQueue.Key.t :: S(BinaryTree.Key.t :: TYPE).

In the original 1990 definition of Standard ML [MTH90], however, the sharing constraint in
Figure 1.2 actually requires the structures BinaryTree .Key and PriorityQueue.Key be the same
structure. As a consequence, not only must the representation type for keys be equal, but the two
lesseq orderings will be equal. In SML "90 then, whether a given module satisfies this interface or
not (a question of typechecking) depends on the values of the Key substructures.

To model the spirit of this sharing constraint, I can use singleton types. Let ¢ stand for the type
PriorityQueue.Key.t. Then I can model the constraint by using singleton kinds as previously
mentioned and further requiring

BinaryTree.Key.lesseq : S(PriorityQueue.Key.lesseq:t * ¢ -> bool).

This does not require that the two Key structures be exactly the same structure, but does require
that corresponding components of the two structures are equal. Because one cannot do assignment
directly to components of a structure, however, there is no run-time behavior that can distin-
guish two componentwise-equal structures; this leads to a more permissive type system while not
permitting any changes in run-time behavior.

Not all instances of SML 90 structure sharing can be modeled with singleton types. For
example, the signature in Figure 1.3 requires that the T and U substructures be different views of
the same underlying structure. It makes no sense to model this with a dependent record type such
as

17

{T : {n : int}, U : S(T:{m : int})}

because this would be ill-formed; T does not have type {m : int}. However, since the sharing con-
straint in Figure 1.3 does not actually place any restriction on the values of the n and m components,
the practical utility of such a specification seems extremely minimal.

1.5 Other Uses for Singletons

1.5.1 Closed-Scope Definitions

In many A-calculi “let-bindings” or “closed-scope definitions” are treated as syntactic sugar. For
example,
let x:int = 3 in (x+1)

would be encoded as the function application
(Ax:int. x+1)(3).

However, this sort of transformation is not always legal. In F,,, for example, one cannot generally
equate
let t::TYPE = int*int in e

where e is some expression with
(At::TYPE. e)(int*int)

because in the former case we know that t = int*int while typechecking e, while in the latter case
e must be typecheckable knowing only that t is some type.
The alternative definition
[int*int/t]e
(that is, the result of replacing t with int*int everywhere in e) will preserve meaning and well-
typedness, but involves arbitrary duplication of types.

Some authors have therefore considered let-bindings (and generally, the notion of variables-with-
definitions) appears as a primitive. For example, the pure type system of Severi and Poll [SP94]
adds a new let-binding primitive written x=a:A in b, and the definitions of variables are maintained
during typechecking.

In a language with singleton kinds, however, let-bindings of types become definable via functions:

let t::TYPE = int*int in e
becomes
(At::S(int*int :: TYPE). e)(int*int).

This time the typechecker knows while typechecking e that t = int*int because this is apparent
from the kind of t.

1.5.2 TILT Program Transformations

The encoding of let in the previous section is primarily a theoretic curiosity. However, similar
transformations do come up in practice; there are several places in the TILT compiler where it
could be beneficial to take types computed within a function body and turn these into new type
arguments to be passed into the function at run-time. This comes up in loop invariant removal, in
uncurrying, and in closure conversion [MMH96]. An example will make this clearer; consider the
following code, written in an approximation of the compiler’s internal representation:

18

let
function F(a::TYPE, y:a) = G(axa, (y,y))

in
. F(idnt, 3) ... F(int, 4) ... F(int, 5)

end

This code presupposes a polymorphic function G taking a type and an argument of this type. The
polymorphic function F also takes a type o and a value y of this type; it creates the pair (y,y)
and its type axa, and then passes these to G. Elsewhere in the code, F is called several times.

Now on each call, F constructs the type ax« in order to be passed this G. In a type-passing
implementation like TILT, this corresponds to actual instructions executed at run-time. Since F is
repeatedly being given the same type argument int, it would be preferable to compute intxint
just once; this could be performed by having the caller pass intxint as a new function argument.
Such a transformation leads to the following code:

let
function F(a::TYPE, [::TYPE, y:a) = G(3, (y,y))
type t = intXint
in
. F(dnt, t, 3) ... F(int, t, 4) ... F(int, t, 5)
end

Operationally, this new code is correct. Unfortunately, it no longer typechecks; in a standard
typed lambda calculus there is no way to perform this particular transformation while preserving
well-typedness.

The problem with the above code is that according to the specification of the arguments, F
could be called with any two types. Therefore, there is no reason why the pair (x,x) should have
type 8. The intent is that every call to F should pass a type a and the type axa, but if this is not
a constraint being checked by the type system it is unsafe to assume this will always be true.

The TILT compiler is based on the principle of type-preserving transformations; we forbid
transformations leading to ill-typed programs. What is needed is a way to constrain the new
type variable so that the compiler knows it will be given the type axa. Equally importantly, the
compiler should be able to check that every application of F obeys this constraint.

Singleton kinds provide exactly the mechanism required to transform type expressions into
function arguments while preserving well-typedness. The code becomes

let
function F(a::TYPE, [:S(axa:: TYPE), y:a) = G(8, (y,y))
type t = intXint
in
. F(int, t, 3) ... F(int, t, 4) ... F(int, t, 5)
end

This typechecks because we have introduced the appropriate constraint into the type system; the
body of the function F will typecheck if we can show that the type constructor g is equivalent to the
type of (y,y), namely axa. But S::S(axa :: TYPE) implies that 5 = axa :: TYPE, as required.

Note that an apparently simpler solution to this problem would be to compile F in curried
fashion:

19

let
function F(«::TYPE) =
let
type B = ax«a
function F’(x:a) = G(B, (y,y))
in
F)
end
Fint = F(int)
in
. Fint(B) Fint(4) Fint(5)
end

Here F now just takes a single argument, a type «. It computes ax« and returns a function which
expects an argument z of type «. The caller can apply F to int once (computing intxint once)
and then apply the resulting function repeatedly. This does typecheck without singletons, and
might seem to solve the problem. However, this transformation introduces higher-order functions,
which are implemented via a transformation called closure conversion. The closure-conversion
transformation involves taking every function and turning its free variables into arguments; in
particular, 8 will become an argument of the function F?, and we have exactly the same typechecking
problem as we started out with [MMH96].

1.5.3 Cross-Module Inlining

While language features such as abstraction, modularity, polymorphism and higher-order functions
have important software engineering benefits, they often impose a run-time cost. Using abstract
types or polymorphism can mean that data layouts are not known until run-time. Uses of modu-
larity and higher-order functions can substantially increase the number of function calls, which can
be particularly costly on modern processors.

If pieces of a program are compiled and optimized completely separately (“true” separate com-
pilation) it is hard to avoid the costs of abstraction. At the other end of the spectrum, a compiler
can do whole-program optimization and generate substantially better code. Unfortunately, the
analysis required is usually unusably slow for large inputs and requires source code for the entire
program (including libraries). However, in many cases it suffices to do incremental compilation,
in which each file is compiled after all of its imports. This allows the compiler to use information
gathered while compiling the imports in order to do a better job of compiling the current file. The
compiler writer must then decide what information the compiler should collect and store and how
to represent it.

For separate compilation in a statically typed framework, a minimal requirement is that the
compiler must know the type of all external references. This leads to such mechanisms as header
files in C, where the interface of a compilation unit gives the types of its exported components. This
also leaves open the possibility of checking that a compilation unit matches the claimed interface.

An elegant and systematic method of handling incremental compilation is to use the same
mechanism — where the interface of each unit contains typing information for all exports — but
to have the compiler generate the interface directly from the code. This combines cleanly with
separate compilation; the programmer can write interfaces for some pieces of the program and have
the compiler generate the remainder.

Of course the compiler can determine more information than just simple types when given the

20

source code. A very important optimization for incremental compilation is cross-module inlining.
This transformation replaces references to imported values, types, and functions with their actual
implementations. In order to achieve this, the interface must express this information, namely
to include the implementations of abstract types, values of variables, definitions of functions, and
so on. Thus interfaces change from specifying that “x is an integer constant” to “x is an integer
constant equal to 3”7 and from “succ is a function mapping floats to floats” to “succ is equal
to the function which maps a float f into f+1.0”. In order to maintain the elegance of interfaces
containing only type information, this optimization requires a more expressive type system in which
such information can be expressed.

Inlining is the process of replacing a reference to a value with the value itself. In my system of
singleton types, if v : S(v' : 7) then the compiler may replace any use of v (in a context expecting
a value of type 7) with v'. Singletons can be directly applied to traditional cross-module inlining.
Suppose we want to be able to take a definition such as the following (for the successor function
on integers)

succ = Az:int.z+1

and allow other modules to replace succ by this function (if it seems locally beneficial). This can
be achieved by specializing the type of succ in the interface; instead of saying

succ : int—int

it can instead say
succ : S(Az:int.z+1 : int—int).

Conversely if the compiler sees that an import such as succ has a singleton type, it is justified in
replacing this reference with the actual definition.

The restriction that well-formed singletons can contain only values suffices for most inlining
purposes because the most important case is inlining of function definitions, and functions are
values. It is possible that a less conservative approximation might be useful so that we can inline,
for example, polymorphic instantiations and partial applications of curried functions. This should
be possible by replacing this restriction to values with a restriction to a set of “valuable terms”,
terms whose evaluation is guaranteed to terminate without side-effects or reference to mutable
storage [HS00].

Values in singletons need not be closed, but they must be well-formed and hence cannot refer
to items not exported in the interface. In practice, this may require extending interfaces with extra
components.

Note that the approach to inlining using singletons is subtly different from C++ inline func-
tions in header files, or of the lambda-splitting of Blume and Appel [BA97]. There the functions
to be inlined are essentially definitions prepended to the program unit being compiled. Whenever
the compiler decides not to inline uses of these functions, it must compile a new local version of the
code to call. In contrast, singleton types and kinds used for inlining purposes are specifications of
an imported piece of code, which may be referred to if inlining does not appear useful. (Of course,
since the compiler has the definition it could also choose to create a local copy of the code to call,
as yet another alternative to inlining the function’s code.)

A more interesting problem is the case where the compiler wants to inline an import which
may not have been written yet. This can only occur, of course, if the compiler has some reason to
believe it can correctly “predict” what the import’s eventual implementation will be. An example
of this arises in TILT due to Standard ML datatypes.

21

The datatype mechanism is one of the most successful features of Standard ML. Datatypes
combine notions of enumerations, tagged unions, and recursive types into a common framework. A
single datatype definition such as

datatype tree = Leaf of int | Node of treextree
automatically generates

e An abstract type tree.

e The functions Leaf of type int->tree and Node of type treextree -> tree for creating
new trees;

e Support for discrimination and decomposition for values of type tree via pattern-matching;

e A structural equality for trees.

This can be easily modeled as a structure containing one (abstract) type component and several
value components. Similarly, a datatype specification signature would correspond to the signature
of the appropriate structure [HS00, HS97].

The disadvantage of this elegant encoding is efficiency. Datatype constructors and pattern-
matching are used heavily in SML code; making every such use into a function call is unacceptably
inefficient. Similarly, although datatypes are officially abstract and must be typechecked as such
in the source code, it is often possible to determine from a datatype’s description the underlying
implementation type for this datatype3. Taking advantage of this knowledge would enable more
efficient code generation.

Blume [Blu97] suggests that this problem can be overcome by aggressive cross-module inlining.
As the functions corresponding to datatype constructors and pattern-matching are generally small
pieces of code, they will automatically be exported by the defining compilation unit and inlined into
client compilation units. This approach seems logical and should work quite well — but only where
it applies. A deficiency is that it does not help when doing separate compilation or compiling SML
functors (parameterized modules) which take datatypes as arguments. In these cases no datatype
implementation has been specified yet, so there is nothing to inline.

However, if the compiler can predict which types and code will be later supplied as the functor
argument, then we are justified in inlining these types and code into the functor body and ignoring
the actual argument when it is later applied. There is no typechecking problem involved in this
transformation, but for correctness purposes it might be convenient to have a way of formalizing
this prediction and a way of checking that the prediction was correct. Singleton types and kinds
provide a natural way to record such a prediction: the functor’s arguments can be annotated with
singleton types and kinds for the datatype components, and inlining can then proceed as discussed
above.

Note that because specializing the functor argument to require a particular datatype implemen-
tation gives the functor a strictly less-general type, functor applications which were previously valid
may no longer typecheck. This is actually an advantage because a typechecking failure occurs when
the predicted code does not match the actual implementation; since both parts are automatically
generated by the compiler, a typechecking failure here must mean that the compiler is in error.

There is nothing original about inlining datatypes, separately compiled or not. Any reason-
able ML compiler must do this for efficiency. However, this often occurs in an ad-hoc fashion.
With singleton types and kinds a compiler can systematically maintain the datatypes-as-structures
encoding throughout the entire compiler, without any loss of efficiency.

3In general this may require a non-trivial equational theory for recursive types, however [CHCT98].

22

1.6 Dissertation Summary

In Chapter 2, I introduce the MILg calculus, a formalization of the key features of the TILT
intermediate representation. This language is an predicative variant of the familiar lambda-calculus
F,,, extended with pairs, recursion, and singleton types and kinds. I show that the addition of
singletons leads to a calculus with very interesting equational properties; most notably, whether
two type constructors are provably equivalent depends strongly on both the typing context and on
the kind at which the type constructors are compared.

Chapter 3 contains proofs for many standard properties of the MILj calculus, such as preserva-
tion of well-typedness under substitutions and the admissibility of useful typing rules. In particular,
although the definition of MILg includes only a very restricted form of singleton kind, general sin-
gleton kinds are definable.

Chapter 4 gives algorithms for deciding the kind and constructor-level judgments (e.g., given
a well-formed context and a type constructor A, determine whether there is a kind K such that
A is well-formed with kind K). This includes an algorithm for constructor equivalence inspired by
Coquand’s approach to fn-equivalence for a type theory with II types and one universe [Coq91].
Coquand worked with an algorithm which directly decides equivalence, rather than defining a
confluent and strongly-normalizing reduction relation. In contrast to Coquand’s system, MILg
type constructors cannot be compared by shape alone; equivalence depends on both the typing
context and the classifier. Where Coquand maintains a set of bound variables, my algorithm
maintains a full typing context. Similarly, he uses shapes of the items being compared to guide the
algorithm where my algorithm uses the classifying kind. (For example, where Coquand would check
whether either constructor is a lambda-abstraction, this algorithm checks whether the constructors
are being compared at a function kind.) I show the algorithms are sound with respect to the
language definition.

In Chapter 5 I prove the completeness and termination of the algorithms in the previous chap-
ter. This reduces to proving the completeness and termination of the constructor equivalence
algorithm. Unfortunately I cannot analyze the correctness of this algorithm directly; asymmetries
in the formulation preclude a direct proof of such simple properties as symmetry and transitivity.
(Both are immediately evident in Coquand’s case.) Instead, I analyze a related but less efficient
algorithm which restores symmetry and transitivity by maintaining redundant information. The
proof that this revised algorithm is complete and terminating for all well-formed inputs was inspired
by Coquand’s use of Kripke logical relations, but the details differ substantially. My proof uses a
novel form of Kripke logical relation employing two worlds, rather than one. The correctness of
the revised algorithm can then be used to show the correctness of the original, simpler constructor
equivalence algorithm. This yields the implementation used by the TILT compiler.

I then repeat the development for types and terms. Chapter 6 gives algorithms for deciding
the type and term-level judgments; I show these algorithms are also sound with respect to the
corresponding judgments in the MILj definition. The proof of Chapter 7 for the completeness and
termination of the term and type algorithms proceeds essentially along the same lines as the proofs
in Chapter 5. The simpler notion of equivalence for term-level functions makes some parts of these
proofs easier, but others are complicated by the fact that type equivalence is less trivial than kind
equivalence.

Chapter 8 shows the MILg type system to be sound with respect to its operational semantics.
The proof is very straightforward, but depends critically on using the soundness and completeness
of the constructor equivalence algorithm to show consistency properties of constructor equivalence.

23

In Chapter 9 I show how to extend these proofs when the MIL language is extended with
intensional polymorphism (i.e., with run-time constructor analysis constructs) [HM95, Mor95].
This involves surprisingly little change to the previous development.

Finally, Chapter 10 surveys the related literature and concludes with a collection of conjectures
and possibilities for future work.

24

Chapter 2

The MIL(calculus

2.1 Overview

The TILT compiler uses as its main internal representation of programs a typed language called
the “Mid-level Intermediate Language”, or MIL. This is a relatively high-level language; it includes
first-class functions, assignment, and exception handling, with no explicit reference to memory
layout or allocation/deallocation. However, it contains no notion of a module system.

More formally MIL is a variant of F,, the higher-order polymorphic lambda calculus [Gir72].
The language has four levels:

e The terms or expressions of the language. These include constants, recursive functions,
applications, pairs, records, assignments, exceptions, etc.

e The types, which classify terms. A term is well-formed if and only if it has a type.

e The type constructors, or simply constructors." This level contains items corresponding to

certain types (these constructors might be considered “the names of types” or “types as
data”) as well as functions and pairs, forming a small A-calculus in itself.

e The kinds, which serve as types for the language of constructors.

The distinction between types and the corresponding type constructors is made because MIL
is a predicative language. In an impredicative language, polymorphic types involve quantification
over all types, including the polymorphic types themselves. Although one can make sense of this
circularity [Gir72], it substantially complicates the metatheory of the language and hence has been
avoided here.

In this chapter, I formally define MILg, a simplified calculus which captures most of the essential
features of the full MIL. The primary differences are:

e The term language has been substantially pared down to contain only recursive functions,
pairs, and polymorphism. Assignment and exceptions have been omitted, so that the only
remaining side-effect is nontermination. In the full MIL, functions can take any fixed number
of constructor and term arguments, and polymorphic recursion is allowed. (When compiling
a source language like SML which does not allow polymorphic recursion [Myc84], however,
the utility of this last feature is limited.) For simplicity, MIL, separates term abstractions
and polymorphic abstractions, and disallows polymorphic recursion.

!This terminology conflicts with the common usage of “constructor” in ML to refer to the term constructors
defined by datatypes. However, context will always make clear which sense of constructor is meant.

25

e MIL function types have been similarly split into universally-quantified types for polymorphic
expressions and ordinary (dependent) function types for term-level functions. MIL contains
several varieties of function type (the types of potentially open functions, closed functions, or
closures, each of which may be partial or total). Only potentially open, partial functions are
modeled here.

e Constructor functions in MIL are multiargument, while MILg constructor functions must be
curried to get the same effect.

e For clarity, all constructor analysis constructs used by TILT (e.g., typecase or typerec [HM95])
have been omitted from MILjy. Such features are essentially orthogonal to my main topic,
the effects of adding singletons to the calculus. However, the methods of this dissertation
can be applied even in the presence of constructor analysis. In chapter 9 I sketch the (minor)
changes to the development required.

e The MIL as actually implemented uses a relatively strong equivalence for recursive type
constructors. (Specifically, two recursive type constructors are considered equivalent if their
unrollings are equivalent [CHC198].) This extension is omitted from MILg.

For the most part, extending the theory of this chapter to handle the full MIL should not present
any fundamental difficulty. The proofs do become more technically involved (for example, when
going from pairs to n-ary labeled records) but the essential arguments do not change. Note that
since this is an explicitly-typed framework, adding polymorphic recursion creates no challenges.

The one case where the methods do not extend is when considering an interesting equational
theory for recursive types. (I see no way to create an obviously symmetric and transitive algorithm
in the presence of recursive types.) There is an obvious extension of my algorithms that appears
to work in practice; the FLINT compiler uses a very similar algorithm.

This is not simply an issue of adding singletons; in the literature there appears to be little
study of algorithms for equating recursive types when there are interesting equations beyond those
induced by recursive types. (The only instance I have found is the work of Palsberg and Zhao on
type isomorphisms in the presence of recursive types [PZ00].) For example, no one has looked at
the decidability of typechecking for F, (where there is -equivalence at the type level) extended
with recursive types.

As an alternative to extending the theory to the full MIL, the language itself could be simplified.
An alternative MIL could use use a much simpler equational theory for recursive types, at the cost of
requiring explicit type coercions (i.e., isorecursive types rather than equirecursive types [CHC'98]).
There are no problems in extending the theory of MILg in this fashion.

This chapter contains a definition of MILgy split into two parts: compile-time and run-time
aspects. §2.2 contains the context-free syntax of the language and the context-sensitive rules
for determining whether phrases in the language are well-formed, and §2.3 contains a number of
admissible rules which follow from this definition. Then §2.4 explains the meanings of complete
programs by defining a notion of evaluation.

2.2 Syntax and Static Semantics of MIL

The abstract syntax of MILg is shown in Figure 2.1. As usual, I work modulo renaming of bound
variables (i.e., modulo a-equivalence). The meaning of each construct is explained in tandem with
the static semantics.

26

Typing Contexts

Kinds

Base Constructors

Constructor Constants

Type Constructors

Types

Values

Terms

| BVANSS

e, d::

[]
oK
| A

T

S(A)
oK' K"
Ya:K'.K"

Int | Boxedfloat | ...

b
X

—

c
a,fBy. ..
oK' A
AA

(a7, 4")
mA

Ty(A)
S(v:T)
Va: K.t
(x:r")y—1"

(") x 7"

n

z, f, ...

fun f(z:7"):7" is e

A(a:K):T.e
iV

(v1,v2)

v
v

v A

Empty context

Kind of names of types
Singleton kind
Dependent function kind
Dependent pair kind

Names of base types

Pair-type constructor
Function-type constructor

Variables

Function
Application

Pair of constructors
Projection

Inclusion of type constructors
Singleton type

Polymorphic type

Dependent function type
Dependent pair type

Integer constants
Variables

Recursive function
Polymorphic abstraction
Projection

Pair

Application
Polymorphic instantiation

let 2:7'=¢€' in e: 7 end Local variable definition

Figure 2.1: Syntax of the MILy Calculus

27

I' ok Well-formed context

FI'y =1 Context equivalence
'-K Well-formed kind
I'K; <Ky Subkinding

'K, =Koy Kind equivalence
r-A: K Well-formed constructor
' Ay = Ay :: K Constructor equivalence
FFr Well-formed type
'mn<m Subtyping

'tr=mn Type equivalence
'e:r Well-formed term
'Fer=ex: 7 Term equivalence

Figure 2.2: Judgment Forms in the Static Semantics

The static semantics (type system) for MILg is given as a collection of inductively-defined
judgments. Figure 2.2 lists all the different judgment forms. The purpose of this section is to
explain and motivate the choice of judgments.

The definition of the static semantics requires a few preliminary comments. First, the notation
FV(phrase) refers to the set of free variables in phrase. This is defined Figure 2.3 by induction on
syntax.

Secondly, the static semantics uses the notion of capture-avoiding substitution: I use the
metavariable v to stand for an arbitrary mapping from constructor variables to arbitrary con-
structors and from term variables to term values. The notation -y(phrase) is used to represent the
result of applying «y to all free variables in the phrase phrase. The substitution which sends « to A
and leaves all other variables unchanged is written [A/«], and [v/z] is define analogously. If v is a
substitution, then y[ar— A] stands for the mapping which sends « to A and behaves like v for all
other variables; the notation y[z+—v] is defined analogously.

2.2.1 Typing Contexts

A typing context I (or simply context when this is unambiguous) represents assumptions for the
types of free term variables and for the kinds of free constructor variables. It is represented as a finite
sequence of variable/classifier associations. Typing contexts in MILj are intrinsically sequences
because of dependencies introduced by singletons: both types and kinds can refer to constructor
variables appearing earlier in the context, while types can additionally refer to term variables
appearing earlier in the context.

The context validity judgment determines when a context is well-formed: every type or term
appearing in the context must be well-formed with respect to the preceding segment of the context.

ok 21)

28

FV(T) =0
FV(S(4)) =FV(4)
FV(IIa:K'.K") =FV(K')U(FV(K")\ {a})
FV(Za:K'.K") =FV(K') U (FV(K")\ {a})
FV(4) =0
FV(a) = {a}
FV(da:K.A) = FV(K) U (FV(A4) \ {a})
FV(AA') =FV(A)UFV(4)
FV((4’, A")) =FV(A)UFV(A")
FV(m;A) = FV(4)
FV(Ty(A)) =FV(4)
FV(S(v : 7)) =FV(v) UFV(7)
FV(Vo:K.7) = FV(K) U (FV(7) \ {a})
FV((z:7)—1") =FV(r) U (FV(r") \ {z})
FV((z:7)x7") = FV(r) U (FV(r") \ {z})
FV(n) =0
FV(z) = {z}
FV(fu f(z:7'):7" s €) =FV(r) U (FV(r")\ {z}) U (FV(e) \ {z, f})
FV(A(a:K):T.e) = FV(K) U (FV(7) \ {a}) U (FV(e) \ {a})
FV (m;) = FV(v)
FV({v',0")) =FV(') UFV(0")
FV(vv') = FV(v) UFV (')
FV(v A) = FV(v) UFV(A)
FV(let z:7'=€¢' ine: 7 end) := FV(7') UFV(e/) U (FV(e) \ {z}) UFV(7)

Figure 2.3: Free Variable Sets

29

'K

ToaKFok (a & dom(T")) (2.2)
LT dom(T" 2.3
Toom Fok (z ¢ dom(I')) (2.3)

The side-condition in Rules 2.2 and 2.3 ensures that variables are not bound in a context more
than once. It follows that well-formed typing contexts can also be viewed as finite functions: I'(«)
represents the kind associated with « in T, while T'(x) represents the type associated with z in T
Similarly, the notation dom(I') is used to represent the set of all constructor and term variables
bound by I'. The free variables of a context, FV(I'), can then be defined inductively as follows:

FV(e) =10

FV(I',a:K) := FV(I') U(FV(K) \ dom(I"))

FV([,z:7) :=FV(I)U(FV(r)\ dom(I))
Because contexts are finite sequences, there is an obvious definition for appending any two contexts.
The result of appending I'y and T's is written I'y, I's.

A similar set of inference rules gives a notion of definitional equivalence for two contexts.

2.4
Fe=ce ()
FI'y=T IMFKi=K
P2 L T2 (e ¢ dom(Th)) (2.5)
FIy,amKy =09, a:Ks
FI, =T k=
1=72 C1TTETR g dom(Th)) (2.6)

Flyzm =1,z

It is obvious that any two equivalent contexts bind the same variables in the same order. I show
later that if two contexts are equivalent then they are both well-formed and they are interchangeable
in any declarative judgment.

2.2.2 Kinds

The kind wvalidity judgment specifies when a kind is well-formed with respect to a given typing
context. The kind T is the kind of all “ordinary” type constructors; that is, the kind of type
constructors corresponding to some type.

I' F ok
(2.7)
r-T

The premise of Rule 2.7 ensures that in any proof of I' = K there is strict subderivation proving
I' F ok. A similar property holds for all of the judgments defined in this chapter; I show this in
83.1.

Well-formed MILg singleton kinds are restricted: they may only contain constructors of kind
T. The kind annotation is therefore omitted from the syntax, as it would always be T.

'FA:T

[+ S(A) (28)

30

However, general singleton kinds S(A :: K) as described in the introduction are definable (see
§2.3).

The rules for IT and ¥ kinds (dependent function kinds and dependent pair kinds) are essentially
standard.

Ia:K'+ K"
I'F oK' K" (29)
Ia:K'+ K"
'+ Sa:K' . K" (2.10)

IMa::K'. K" is the kind of all functions which map an argument « of kind K’ to a result of kind
K", where K" may depend on «. Similarly, Ya::K'. K" is the kind of all pairs of constructors whose
first component « has kind K’ and whose second component has kind K”, where K” may refer to
a. Both ITa:: K'. K" and Ya:: K'. K" bind the constructor variable o in K”. T use the usual notation
K'xK" for Ya:K'.K" and K'—K" for Ila:: K'.K" in those cases where a does not appear free in
K".

Frequently one might see an additional premise I' - K’ in these two rules, but as MILy is defined
this is already implied by the existing premise.

The subkinding judgment I' - K; < K, defines a preorder on kinds, which may be intuitively
understood to say that Kj is more precise (exposes more information about a type constructor)
than Ky. It will follow that any constructor of kind K; will be acceptable in a context requiring a
constructor of kind K.

Intuitively, since S(A) represents “the kind of all constructors of kind T equivalent to A”, any
constructor of this kind should be acceptable where a constructor of kind T is expected. Thus the
key subkinding rule is:

F'FA:T
(2.11)
'-s(4)<T
The premise of this rule ensures that S(A) is well-formed.
Subkinding between two singleton kinds coincides with equivalence
'+ A1 = A2 =T
(2.12)

['FS(A1) < S(Ag)

because a constructor of kind T equivalent to A; can be equivalent to Ay if and only if A; and A,
are equivalent to each other.
The following rule is required for subkinding to be reflexive.

I' F ok

- (2.13)
I'FT<T

The remaining subkinding rules lift the relation to II and ¥ kinds, following the usual co-
and contravariance properties. (The first premise in each of the following two rules ensures that
'+ Ky < Ky impliesT' - K7 and T' - K3.)

I'F oK .KY]
'k K, <Kj Ia:K)F K/ < KJ
'k Ha::K{.K{' < Ha::Ké.Ké’

(2.14)

31

'k Xa:K) Ky
'k K{ <K} I'oa:K| F K/ <K/
'k Ya:K{.K] < Sa:K). Kl

(2.15)

Kind equivalence, denoted I' = K; = Ko, is essentially a symmetrized version of subkinding.
I show later that I' H K; = Ky if and only if ' F K; < Ky and '+ Ky < K, and a reasonable
alternative presentation of the system would make this the definition of kind equivalence.

I' F ok
TrT=T (2:16)
'A;=A45,:T (2.17)
I'FS(A4;) =8S(A9) '
'k Ha:K).KY
' K{=K) oK F K/ =K/ (2.18)
['F He:K) K = Ho: Ky KY '
'+ Ya:K).KY
' K{=K)] oK F K/ =K/ (2.19)
'+ Ya:K|.K! = Sa: Ky KY '
2.2.3 Type Constructors
The constructors include names for base types, all with kind T
'k ok
Tro.T b € {Int, Boxedfloat, Char, ...} (2.20)
and constants for creating product types and function types:
I' - ok (2.21)
' x:T—(T—T) '
't ok
(2.22)

'k —:T—(T->T)
Applications of these constants to two arguments will be written in the usual infix manner, A; X Aq
and Al—\AQ.

As constructors form a A-calculus, there are variables, functions mapping constructors to con-
structors, and applications of such functions.

I'F ok

m (a € dom(T)) (2.23)

Daz:K'FA: K"
I'FXa:K'"A::a:K'.K"

(2.24)

32

'FA: K'-sK" r-A: K
'FAA :: K"

(2.25)

Since the constructors form a dependently-typed A-calculus, the formulation of Rule 2.25 (which
permits only applications of functions with non-dependent types) may appear surprisingly restric-
tive. However, a consequence of having singleton kinds is that this rule implies the more traditional
formulation allowing dependencies, which becomes admissible (see §2.3).

Similarly one can form pairs of constructors, and perform projections from such pairs.

r-A: K r-A": K"

'E (A A" K'xK" (2.26)
tA:Ya:K' K"

'mA: K’ (227)
tA:Ya:K' K" (2.28)

I'FmA i [mA/a] K" '

Next, there is an obvious introduction rule for singletons.

FFA:T (2.20)

[+ A:S(A) '

The following two rules are somewhat unusual; they can be considered as reflexive instances of
extensionality (see Rules 2.41 and 2.42 below).

I'mA: K I'FmA:: K"

'FA: K'xK" (2:30)
Ma:K'-Aa:: K"
'+ A:Ha:L'.L" r-K' =1
(2.31)

' A:a:K'.K"

Intuitively, Rules 2.30 and 2.31 say that “a constructor has every kind that its eta-expansion
does”. In most dependently-typed calculi such rules would be admissible and not part of the
system’s definition. However, here they allow constructors to be given strictly more precise kinds.
(They also ensure that kinds are preserved under n-reduction.) For example, assume that o:TxT.
In the absence of Rule 2.30, the most precise kind for o which can be shown is:

a:TxTFa:TXT
However, using Rule 2.30 one can conclude
a:TXTF a:: S(ma)xS(ma).

This says that « has “the kind of pairs whose first component is equal to the first component of «
and whose second component is equal to the second component of «”. This is a much more precise
and informative kind than TxT. In fact, by extensionality the only pair with this kind is « itself,
so that this kind can be considered an encoding of S(« :: TxT). These rules are therefore critical
for encoding singletons of arbitrary constructors (in §2.3).

33

I believe that last two premises in Rule 2.31 could be replaced by the much simpler side-
condition @ € FV(A), but I then become unable to show the existence of principal kinds in §4.2.
The formulation here makes explicit that Rule 2.31 yields more-precise II kinds for constructors only
by making the codomain more precise, rather than by weakening the domain kind. For the purposes
of principal types this could be expressed more directly with the single premise I' - A :: Illa:: K'.L",
but the two-premise form here is more convenient in Chapter 3.

Rules analogous to 2.30 and 2.31 have frequently appeared in literature studying Standard ML
modules, including the non-standard structure-typing rule of Harper, Mitchell, and Moggi [HMM90],
the VALUE rules of Harper and Lillibridge’s translucent sums [HL94], the strengthening operation
of Leroy’s manifest type system [Ler94], the “self” rule of Leroy’s applicative functors [Ler95], and
the REFL rule of Aspinall [Asp00].

Subkinding is used by the subsumption rule:

F"AZ:Kl F"Kngg
'-A: K,

(2.32)

Constructor equivalence defines a notion of equality (interchangeability) for type constructors.
The judgment I' H A; = Ay 1 K expresses the fact that A; and Ay are equivalent constructors
of kind K under context I'. Whether I' = A; = Ay :: K is provable depends not only on A; and
As, but also on the kinds of their free variables (given by I') and the kind K at which the two
constructors are being compared. Equivalence is highly context-sensitive.

Equivalence is first defined to be a reflexive, symmetric, and transitive relation:

'FA: K

(2.33)
T'FA=A: K
'FAs=A4,: K
2=l (2.34)
A=A K
T'FA =Ay K I'FA,=As3:: K
L= 2= (2.35)

A =43 K

Next, the relation is specified to be a congruence: replacing subparts of a constructor with
equivalent parts yields an equivalent constructor.

' K| =K) FanKiFA =4 K"

2.36
I'F A a:K] A = dazK) Ay o o K.K" (2.36)
A=Ay K'—K" A=A, K (2.37)
F"AlAIIEAQA%Z:K” .
'FA =Ay:: YSa:K' K" (2.38)
'FmA =mAy: K' '
'FA = Ay Ya:K' K"
L= (2.39)

'k 7r2A1 = 7r2A2 o [7T1A1/04]K”

34

A =4, K
FI—A'{EA'Z'::K"
I'F (A}, A) = (A, AY) .« K'xK"

(2.40)

There are two extensionality rules: if two functions or two pairs cannot be distinguished by
their uses then they are considered equivalent. In particular, two pairs are equivalent if they have
equivalent first and second components

'k 7T1A1 = 7r1A2 . ¢
'FmA; =mAy it K"

2.41
F"AlEAQ o K'xK" ()
and two functions are equivalent if they return equivalent results for all arguments:
Noa:K'FAia=Aya:: K"
'+ Ay Hae: L)LY '-K' =1L}
'k Ay o Mo LS. LY 'K =1L
(2.42)

I'FA =Ay::Ma:K' K"

The last four premises in Rule 2.42 ensure that both A; and Ay actually have kind o K'.K". If
Rule 2.31 were simplified as discussed above then this rule could be simplified in analogous fashion
with the side condition o ¢ (FV(A;) UFV(Ayg)).

As in the well-formedness rules, there is a subsumption rule:

F"AlEAQZ:Kl F"Kngg
F"AlEAQZ:KQ

(2.43)

Interestingly, an easy inductive argument shows that the rules given so far merely define con-
structor equivalence to be syntactic identity (up to renaming of bound variables). All the rules
except for Rule 2.33 would then appear redundant. Adding one more rule makes this equivalence
non-trivial, and justifies the presence of each of the above rules:

'+ A:8S(B)
I'-A=DB:8S(B)

(2.44)

This completes the definition of constructor equivalence. It may be initially surprising that
there are no equivalence rules for reducing function applications or projections from pairs (i.e., -
like rules). It turns out that these are admissible in the presence of singleton kinds and Rule 2.44.
The details are in §2.3 and §3.3, but I sketch one example here. It is clear that

F (Int, Boxedfloat) :: S(Int) x S(Boxedfloat)
Therefore by Rule 2.27 it follows
F 71 (Int, Boxedfloat) :: S(Int)
and by Rule 2.44 and subsumption we have

F 71 (Int, Boxedfloat) = Int :: T

35

This same argument can be generalized to projections from arbitrary pairs, and in an analogous
fashion to applications of A-abstractions.

Given the S-rules, then, the extensionality rules 2.42 and 2.41 imply that the usual n-rules are
admissible as well. It is well-known that n-reduction is not confluent in the presence of terminal
(unit) types. As singletons are a generalized form of unit, the same behavior appears here as well.
For example:

a: T—S(Int) Fa= (A3:T.Int) :: T>T

holds, as does
a: S(Int)=>T F a = (A8::S(Int).(a Int)) :: S(Int)—T

All the constructors in these judgments are normal with respect to fn-reduction; compare the
right-hand constructor in the last judgment with A3::S(Int).(« 3), the n-expansion of .

A more obvious consequence of having singletons — and their original motivation — is that
they can be used to express definitions for variables. For example, in the following two judgments
the context effectively defines a to be Int.

a:S(lnt)Fa=Int: T
a: S(Int) - (a, Int) = (Int, @) :: TXT

But the system is not restricted merely to giving definitions to variables. In the provable judgment
a:TxS(Int) Fma=Int:: T

the context partially defines «; it is known to be a pair and its second component is (equivalent
to) Int, but this does not give a definition for « as a whole. Alternatively, this could be thought of
as giving moa the definition Int without giving one to m;a.

Similarly, in the provable judgments

a:3p:T.S(B) Fma=ma:: T
a:Xp:T.S(B) Fa=(ma,ma) : TXT.

the assumption governing a requires that it be a pair whose first component 8 has kind T and
whose second component is equal to the first; that is, a pair with two equal components of kind
T. This gives a definition to me«, namely 7, without further specifying the contents of these two
equal components.

Now because of subkinding and subsumption, constructors do not have unique kinds. The
equational system presented here has the relatively unusual property (for a system expected to be
decidable) that equivalence of two constructors depends on the kind at which they are compared.
Two constructors may be equivalent at one kind but not at another; for example, one cannot prove

Flo:T.ao = da::T.Int:: T—T.

This is fortunate, as the identity function for constructors of kind T and the function constantly
returning Int do have distinct behaviors and ought not be equivalent in a consistent equational
theory. However, by subsumption these two functions both have kind S(Int)—T and the judgment

FAa:T.a = Aa:T.Int :: S(Int)—»T

36

is provable. The proof uses extensionality and the fact that the two functions provably agree when
restricted to an argument of kind S(Int), i.e., when applied to the argument Int.

The classifying kind at which constructors are compared may depend on the context of their
occurrence. For example, it follows from the previous equation and Rule 2.37 that

B:(S(Int)=»T)—>TF (Aa:T.a) = B (Aa::T.Int) :: T

is provable. The kind of 8 guarantees that it will only apply its argument to the constructor Int,
80 it cannot matter whether f is given Aa::T.« or Aa::T.Int.
In contrast, the following judgment is not provable:

B:(T-T)->TF g (Aa:T.a) = (Aa:T.Int) :: T

because the context makes a weaker assumption about f.

2.2.4 Types

The constructors of kind T correspond to types; there is an explicit inclusion Ty(-) mapping each
such constructor to the corresponding type.

'FA:T

Troa (2.45)

I will use int as an abbreviation for the type Ty(Int), boxedfloat to abbreviate Ty(Boxedfloat),
and similarly for the other primitive constructors.

As discussed in the introduction, singleton types are restricted to contain only syntactic values.
The representation of labeled singletons via encodings, as is done for kinds in §2.3 below, does not
work for terms due to the lack of extensionality principles. Because for inlining purposes I need
singletons at non-base type, labeled singletons types are made primitive:

'Fo:7

m (7' not a Singleton) (246)

Rule 2.46 prohibits the type label in a singleton from being yet another singleton type. So, for
example,

S((Az:int.3) : int—S(3 : int))

is well-formed, but the following type is not:
S((Az:int.3) : S((Az:int.3) : int—=S(3 : int))).

The property of a type not being a singleton is preserved under the important operations of substi-
tution and head-normalization. Also, because of predicativity it is clear from the rules below that
singleton types are equivalent only to other singleton types; see Theorem 6.2.2. This restriction
could be formalized syntactically by defining a grammatical class of non-singleton types, but in this
case I have opted for syntactic simplicity.

This restriction is reasonable because a well-formed type S(v; : S(vy: 7)) contains no more
information than is already contained in S(vy : 7) or S(vy : 7). At first it might appear that a
typing assumption z:S(vy : S(ve : 7)) would be equivalent to assuming that v; and v, are equivalent.
However, in order to make such an assumption it must be possible to show that S(v; : S(ve : 7)) is

37

well-formed, and in particular that without the new assumption one has vy : S(vy : 7), i.e., that vy
and ve are equivalent at type 7. Thus nested singletons impart no useful information.

Allowing directly nested singletons would have the further consequence that the constant 3
would naturally have the types S(3 : int) and S(3 : S(3 : int)) and S(3: S(3: S(3 : int))), and so on.
By the “obvious” subtyping rules these would form an infinite strictly decreasing chain of subtypes,
even though none of these types are really more informative than any of the others. (These types
all classify exactly the same set of values, namely the set {3}.) Furthermore there would be no
lower bound to this sequence of types: the system would fail to have principal (most specific) types
for all terms.

Aspinall [Asp95] addresses this problem by defining all the types in such a chain to be equivalent:
S(w:71)=S(v:S(v:7)). By disallowing directly nested singletons, I avoid a need for this rule.
This has the advantage of allowing a much simpler inversion principle for equivalence of singleton
types: if two singleton types are equivalent then their type labels are equivalent. (This principle is
clearly false in Aspinall’s system. It also fails for the encoding of labeled singleton kinds, but the
proofs use inversion only for the kinds of the official MILy language.)

Because of singleton types, the types classifying functions and binary products are extended to
dependent forms:

| R
L'E (z:7")—7" (2.47)

| R
(2.48)

I'E (z:7)xr"
Such types are written 7'—7" and 7/x 7" when there is no actual dependency.

Finally, MILy contains the types for polymorphic terms, functions whose argument is a con-

structor.

a:KFT
_ (2.49)
I'Va:K.T

Note that in this predicative system there are no type constructors corresponding to singleton
types, truly dependent function or pair types, or to polymorphic types.

Type equivalence is, like constructor equivalence, reflexive, symmetric, transitive, and a congru-
ence.

'k~

Sy p— (2.50)

=1
S (2.51)

rcr=17 r-7r=7"
Fr=1" (2:52)
'A;=A45,:T (2.53)
['F Ty(A1) = Ty(A2) '
'tv = : 'rn =

n=Rn n=n (71, 72 not a singleton) (2.54)

C'ES(v:7m) =S(va: 1)

38

PkFr=7) Ly b1l =7

2.55
L'F ()= = (wi1h)—7) ()
k7 =1 D,or] 7 =7
1=T2 177 2 (2.56)
I'E (zr)xr = (x:7mh) x71l
'K, =K Noa:KiFnn=mr
1 2 IETL=T2 (2.57)

I'FVa:Ki.11 =Va:Ko. 1o

Finally certain constructors correspond to (non-dependent) pair types and (non-dependent,
non-polymorphic) function types.

I'FA; =T I'FAy T
['F Ty(A;xAz) = Ty(Ar)x Ty(As)

(2.58)

'HFA; T I'FAy:: T
'+ Ty(Al—\AQ) = Ty(Al)—\Ty(Ag)

(2.59)

These rules are necessary for polymorphism to be useful in this predicative type system. For
example, consider the polymorphic identity function

id: VauT. Ty(a)— Ty(a).

To apply this function to a pair of integers requires polymorphic instantiation (i.e., an application
of id to a constructor argument). The only reasonable argument here is IntxInt, so we have

id (IntxInt) : Ty(IntxInt)— Ty(IntxInt).

But by the typing rules below, a pair of integers does not have type Ty(IntxInt) but instead has
type Ty(Int)x Ty(Int), i.e., the type of a pair whose elements are of type Ty(Int). Rule 2.58 is then
necessary to permit an application like (id (IntxInt)) (3,4) to typecheck.

Subtyping is reflexive and transitive, and is a strictly weaker relation than equivalence.

rFr=1
FFr <7 (2.60)
'Fr< 7 FE7 <7
(2.61)

F'Er <"

One can obtain a supertype of a singleton type by either dropping the singleton (as at the kind
level), or by weakening the type label.

'ov:7r
F'FSw:m)<r

(7 not a singleton) (2.62)

Fl—S(vltTl)
F'Fovy=vy:m 'eErn <7y
I'FS(vy 1) <S(vg:)

(71, 72 not a singleton) (2.63)

39

Subtyping is lifted to functions, pairs, and polymorphic types in the usual co- and contravariant
manner.

I'F (@) %7
k7l <7 Loy o <7l

LF (zir)—=7 < (z:15)—74 (2.64)
I'F (zrh)xry
L7 <7} Lo b7l <713
S o e (2.65)
I'Va:Ki.m
F|_K2 SKI F,Oz::KQ "7’1 STQ (266)

I'Va:Ky.m <Va:Ky.my

Because the system is predicative, there is no difficulty arising from the contravariant subkinding
for the domains of universally quantified types as can sometimes arise when polymorphism and
subtyping are combined [Pie91].

2.2.5 Terms

The well-formedness rules for the term language are mostly standard. The language has been
restricted to a “named” form where intermediate quantities are bound to variables [FSDF93]. Note
that projections from values are considered to be values: for the system to be useful it is necessary
that projections from variables be values so that they may appear in singletons, and we wish terms
to remain well-formed under substitutions of values for variables.

I' F ok
S (2.67)
'Fmn:int
I' - ok
" (2.68)
C'tkz:(x)

Function values are potentially recursive. Within the body e of the function fun f(z:7):7" is e
the variable z refers to the function argument and f refers to the function itself; the result type 7’
may also depend on .

L, fixr) =" ' e 7"

L' Ffun f(x:r):m" is e : (z:7)—7"

(2.69)

When the function fun f(z:7'):7" is e is non-recursive (i.e., f € FV(e)) then it can be written as
A(z:7"):7".e, or even \z:7".e when the return-type is obvious or irrelevant.

Type abstractions are also annotated with a return-type. This accurately models the full MIL
(where the notions of type and term abstractions are merged) and simplifies the correctness proof
for my typechecking algorithm.

a:KkFe:r
I'F Ala:K):1.e : VauK.1

(2.70)

40

F'tFvi:m I'kwy:m

2.71
L'k (v1,v2) : T1XT2 ()
CrHov: (z:r)xr"”

'Fmo:7 (2.72)
CrHov: (z:r)xr"” (2.73)

'k mou : [mo/z)r” '

o:r'—7" Lo 7
CFod 7" (2:74)
I'tov:VauK.7T I'FA: K

(2.75)

FFovA:[A)alT

Every let-expression be annotated with two types: the type of the locally-defined variable, and
the type of the entire let-expression.

e :7 Dot Fe:r Lkt

'k (let z:7'=€¢’ ine:7end): 7

(2.76)

The former annotation is used to simplify the typechecking algorithm; it would be preferable
if this were not needed. The latter type is used to ensure easy calculation of principal types for
let-expressions. In the TILT compiler, let is used only in specific positions (i.e., the body of a
function or the arms of a conditional expression) which for other reasons are already annotated
with their types, so the presence of the body annotation in the MILy is reasonable.

Values are given singleton types via the following singleton introduction rule.

F'Fov:r
FFov:S(v:T)

(7 not a singleton) (2.77)

Finally, subtyping is used by the subsumption rule.

I'kFe:n 'kEmn <my
I'Fe:m

(2.78)

The following definition of term equivalence is the strongest equivalence relation (relating fewest
terms) that seems useful for the purposes described in the introductory chapter.

'te:7
I'Fe=e:7 (2.79)
e =e:71
F'Fe=eé:r (2:80)
I'Fe=¢€:71 e =e€":71
(2.81)

F'Fe=eé€":71

Again, equivalence is a congruence:

41

FEr =7} Do b =71 L, fi(zr))—=r,z:7' Fep =ey: 7]

2.82
I F fun f(z:r]):r is e = fun f(z:75):7) is eg : (x:71]) =7/ (2.82)
FI—KlEKQ F,O{::Kll—TlETQ F,a::Kll—elzeg:ﬁ (283)
L A(aKy):m.er = Ao Ky)img.eg : Vo K.y '
Lol =7 Lo = 7"
- /2 n ! n - ! 2// (284)
F |_ (1)1,01) = (UQ,UQ) T XT
Lo =wy: (z:m)x7”
1= (@:7) : (2.85)
'k TVl =TV - T
Lo =wvy: (z:m)x7”
I'F mouy = mowg : [myvy /z]T"
Lo =vy: 77" Lo =o): 7
L= 2 (2.87)
LEovv] =wvgvly: 7"
I'Fvi =vg: Vau:K.7 'HA1 =4 K
1 2 1 2 (2.89)
'k U1 A1 = Q)QAQ : [Al/oz]n
FkEr =7} kel =¢ey:m
'tn=r o Fep=ey: 7
. 1 2 1el 2. 1 (2.89)
I'F (let z:7{=€] in ey : 7y end) = (let z:75=¢€l, inea : 9 end) : 7y
As at the constructor level, there is a singleton elimination rule for equivalence.
I'Fvy :S(we: 7
FFv=wvy:S(vg:7)
Finally there is a subsumption rule.
I'Fer=ey: 1 'Fn <t
1 21Tl 1< T (2.91)

I'Fei=ey:m

2.3 Admissible Rules

This section lists a number of interesting or useful rules which become admissible in the presence
of singletons. The proofs of admissibility are deferred until §3.3.

In MILg, the kind S(A) is well-formed if and only if A is of the base kind T. This initially
seems restrictive, especially when compared with singleton types which can contain values of any
(non-singleton) type. One might expect to find singleton kinds of the form S(A :: K) representing
the kind of all constructors equivalent to A when compared at kind K, for example to encode
definitions of constructor-level functions. However, these labeled singletons are definable in MILg;
Figure 2.4 defines these by induction on the size of the kind label.

For example, if § has kind T—T, then S(f :: T—T) is defined to be IIa::T.S(S «). This can
be interpreted as “the kind of all functions which, when applied, yield the same answer as 8 does”,
or “the kind of all functions which agree pointwise with 8”. By extensionality, any such function

42

S(A:T) = S(4)

S(A:: S(A")) = S(4)

S(A: Ha:K;.Ke) = Ha:K.(S(Aa:: Ky))

S(A:: YauK;.Ke) = (S(mA: Kp))x(S(meA :: [mA/a]K>))

Figure 2.4: Encodings of Labeled Singleton Kinds

is provably equivalent to 3, and indeed the non-standard kinding rules mentioned in §2.1 are vital
in proving that 8 has this kind.

Since kinds only matter up to equivalence, the definitions in Figure 2.4 are not unique. One
could, for example, define S(A :: S(A’)) to be S(A’), or define S(A :: Ya::K;1.K>) to be Xa::S(m A ::
Kl).S(’ITQA . KQ)

The following rules are admissible, showing that the defined singleton kinds do behave appro-
priately.

'-A: K
(2.92)
I'FS(A: K)
'-A: K
(2.93)
'FA:S(A:K)
'-A: K
(2.94)
'-S(A=K)<K
Fl—AlEAQKl FI—KléKQ (295)
[+ S(A; = K1) < S(4s :: K») '
F"AlEAQ s K
(2.96)
A =Ay:S(4 : K)
'-Ay, = K I'-A;::S(A4y t K
2 ! (4) (2.97)

'H A=Ay ::S(4y :: K)

Note that I' F S(A :: K) need not imply I' - A :: K. (For example, according to Figure 2.4 we
have S(Boxedfloat :: S(Int)) = S(Boxedfloat), and therefore - S(Boxedfloat :: S(Int)) even though
Boxedfloat cannot be shown to have kind S(Int). This explains the premise I' - As :: K in Rule 2.97.

Next, we have versions of existing rules allowing dependencies where the primitive rules require
non-dependent types or kinds. (For example, compare Rules 2.25 and 2.98, or Rules 2.26 and 2.100.)

' A:a:K'.K" A : K
FFAA :[A)a]K"

(2.98)

'FA =A4 :la:K' K" A=A, K
kA Al = Ay AL = [A] /o] K"

(2.99)

43

' Xa:K'.K"
r-A: K A" [A)a]K"
(A A"Y Yo K .K"

(2.100)

' Xa:K'.K"
'+ A'l = A'2 w K
I'E A= AT [A o] K"
I'F (A, A]) = (4}, AY) ©: BanK' K"

(2.101)

I'Ya:K'.K"
F'FmA; =mAs :: K'
'k 7r2A1 = 7r2A2 o [7T1A1/04]K”

I'FA =Ay :: YSauK' K"

(2.102)

CrHov: (z:7)—7" | TR o
CFoo W /z]r"

(2.103)

ko =wg: (x:r)—7" THv =07

2.104
I'F o o) =wvev): [v)/z]7" ()
I'E (z:7)xr"
ko 7 CEo" [)x]r"

I'E (0" o () xr”

(2.105)

L'E (z:7)xr"
FEovl =07
CEof =0 2 [v)/a]r"”

T (v, of) = Wh, o) : (x:7")x7"

(2.106)

Next, a remarkable observation of Aspinall [Asp95] is that the S-rule for function applications
can be admissible in the presence of singletons. In MILj, which contains pairs, the projection rules
become admissible as well.

Da:K'-A: K" r-A: K

2.107
I'F (MoK A)A'=[A"/a]A :: [A' /o) K" ()
F"Al 2:K1 F"AQ 2:K2 (2 108)
F|—7T1<A1,A2>EA1 ::K1 ’
'-A K '-Ay, = K
S i (2.109)

'k 7T2<A1,A2> = A2 o K2

fB-equivalence for functions is admissible at the constructor level, but not at the term level; this
is a consequence of term applications being non-values. (It is easy to prove that [,-equivalence
for terms is not admissible. The defining rules of term equivalence only equate values to values
or non-values to non-values; in contrast, f-equivalence can equate applications with values.) The
projection rules for term-level pairs remain, however.

44

F'tFvi:m I'kwy:m

2.110
I m(v,ve) =011y ()
I'-oy: I'-wsy:
nn 2 (2.111)
[F mo(vy,ve) =ve i1
It is occasionally convenient to have “parallel” versions of these equivalences:
DauK'F A=Ayt K" rFA =4 K (2.112)
['F (AazK' Ay) A} = [Ay)/a]Ay = [A] /o) K" '
A=A, K 'k A :: K.
L=l 22 (2.113)
'k 7T1<A1,A2> = All o K1
A = K L'-Ay; = A, K
Lo e R (2.114)
'k 7T2<A1,A2> = AIZ o K2
LEwv =0 'k ows:
U1 U1 T1 : V2 1 T9 (2115)
I'Fmi(o,ve) =0 :m
I'-op: I'Fouy =0
o 2= (2.116)

I'F mo(vy,v9) = vh 1 7o
In the presence of both S-equivalence and extensionality, n-rules for functions and pairs become
admissible as well.
'+ A:la:K' K"
'k A= XK' (Aa) :: Ha:K'.K"
EA:Ya:K' K"
'k A= (mA,mA) :: Ya:K' K"

(2.117)

(2.118)

Finally, I give variants of the introduction and elimination rules for singleton kinds and types:

'HrA=B:T
(2.119)
I'+A:8S(B)
'HrA=B:T
(2.120)
'-A=B:S(A)
'-A:S(B
(B) (2.121)
'HrA=B:T
FrFv=w:7T
(2.122)
FFov:S(w:T)
v =wvs:
Nz (7 not a singleton) (2.123)
C'kwvy=wvg:8(vy:7)
I'Fwvy:S(vg:
v Sz 7) (2.124)

'Fvy=wvy: 7

45

2.4 Dynamic Semantics

I give the operational meaning of a program in terms of a small-step contextual semantics: the
dynamic semantics defines the possible execution steps e; ~» ey for programs (closed terms), and
evaluation of a program corresponds to taking an execution step until no more steps apply repeat-
edly.

The evaluation strategy used by MILj for both constructors and terms is left-to-right call-by-
value. Furthermore, constructors are evaluated as well as ordinary terms. (For MILj as presented
this is not actually necessary; this choice was made in preparation for adding constructor analysis
constructs such as typecase to the language; type and kind annotations on terms, however, never
require evaluation.) This requires a notion of fully-evaluated constructors and terms, denoted A
and v respectively

c_Zl s A, (n >0)
(A1, Ag)
a KA

ZZ:

S

n
fun f(z:7"):7" is e
Ala:K):T.e
(v1,72)

Since evaluation concerns only closed terms and types, variables and projections are need not be
included here.

The operational semantics uses Felleisen’s evaluation context formulation [Fel88] of Plotkin’s
structured operational semantics (SOS) [Plo81]. This involves the definition of a collection of
primitive “instructions” (denoted I) and their one-step reducts (denoted R). The relation between
instructions and reducts, written I ~» R is shown in Figure 2.5.

Evaluation is extended to one-step reduction for arbitrary terms and constructors though the
use of constructor-level and term-level evaluation contexts, denoted by U and C respectively. These
are a restricted form of constructor or term containing a single “hole” o:

U= o Ci= o
| UA | Ce
| AU | ©C
| 7'('12/{ | 7'('10
| 7'('22/{ | 7'('20
| (U, A) | CA
| (A, U) | vU
|

let z:7'=C ine: T end

The notations U[A], C[A] and C[e] denote the result of replacing the hole in the evaluation context
with the specified constructor or term. (Since the hole never occurs within the scope of bound
variables in the evaluation context, there is no possibility of variable capture.) The evaluation
contexts represent a “stack” or “continuation” for the expression being currently evaluated; the
specific choice of evaluations contexts enforces the call-by-value nature of the language.

Then the full one-step reduction relation is defined as follows:

A~ A «— A=U[I] and [~ R and A’ = U[R]
e~¢e <= e=C[I]and I ~ R and ¢ = C[R]

46

(Aa::K'.B) A ~> [_Z/a]B

m <é17é2> ~ él

mo(Ay, A) ~ Asy

(fun f(z:7"):7" ise)v ~ [fun f(a:7'):7" is e/ f][v/z]e
(Ala:K):Te) A ~ [A]ale

71 (01, V2) ~ Ty

(U1, U2) ~ Uy

let z:7'=0ine:7end ~ [v/z]e

Figure 2.5: Reductions of Instructions

For example, consider the term
((A(a::T):Ty(a)—\Ty(a).fun F@:Ty(a)): Ty(a) is z) (ha:T.) |nt)) 3.
For the remainder of this example I elide the return-type annotations, yielding
((A(a::T).fun Fla:Ty(a)) is ©) (ha=T.) |nt)) 3.

This program evaluates to 3 because

((A(ce:T)fun f(z: Ty(e)) is) (Ae:T.) Int)) 3
= (((A(a:T).fun f(z: Ty(c)) is) ©) 3)[((Ac:: T.x) Int]
(((A(c::T).fun f(z: Ty()) is z) ©) 3)[Int]
= (((A(cz:T).fun f(z: Ty(c)) is z) Int) 3)
= (03)[(A(a:T).fun f(z:Ty(a)) is x) Int]
o 3)[fun f(z:Ty(Int)) is z]
((fun f(x: Ty(Int)) is) 3
o[(fun f(z:Ty(Int)) is z) 3]
3]

¢

¢

¢

o
3

The proofs of important properties of evaluation, including type soundness (that “well-typed
programs don’t go wrong”), are delayed until Chapter 8. The soundness proof is completely straight-
forward and standard except for one key point: one must know that constructor and type equiv-
alence are sufficiently consistent. For example, the term-level application 3 (4) makes no sense
dynamically. However, if int = int—int were provable then one could prove the application well-
typed:

int = int—int

3 : Int P ———
int < int—int .
; p cint
3 :int—int
3(4) :int

47

It is not immediately obvious that int = int—int is not provable, perhaps using transitivity and
introducing and eliminating constructor definitions. The consistency of equivalence will follow
directly from the correctness of the decision algorithm for equivalence, which immediately rejects
such all type equations.

48

Chapter 3

Declarative Properties

In this chapter I study several basic properties of the MILj calculus. The most important of these
are validity and functionality. From these I derive the definability of general singleton kinds, the
admissibility of the rules given in §2.3, and a strengthening property for constructor variables.

3.1 Preliminaries

Figure 3.1 defines typing-context-free judgment forms J. Given a context I' one can construct a
MILg judgment I' = 7. The substitution vJ is defined by applying the substitution to the kinds,
constructors, types and terms making up 7, while the free variable computation FV(7) is similarly
defined as the union of the free variables of the phrases comprising 7.

Proposition 3.1.1 (Subderivations)
1. Every proof of ' = J contains a subderivation I' - ok.
2. Bvery proof of I't, K, 'y = J contains a strict subderivation I'y - K.

3. Bvery proof of I'y,x:7, 'y = J contains a strict subderivation I'y - 7.

Proof: By induction on derivations. |

Proposition 3.1.2
If T+ J then FV(J) C dom(T).

Proof: By induction on derivations. |

Proposition 3.1.3 (Reflexivity)
1. If 'k ok then =T =T

IfT'HFK thenT'HF K =K.
IfTFK thenTHK < K.
IfTFA:K thenT'FA=A: K.
IfU'F71thenl'F7< T,
Ifl'F71thenl'F7=T7.
IfT’'Fe:Tthenl'Fe=e:T.

NS S

49

J = ok
| T =1
| K
| Ki <K
| KlEKQ
| A:K
| AlEAglK
| T
| m<n
| T = T2
| e:7
| €1 =€ . T

Figure 3.1: Context-Free Judgment Forms

Proof: By induction on derivations. |

Definition 3.1.4

The relation I'y C I's on contexts is defined to hold if neither I'y nor I'y binds types or kinds to the
same variable twice, and if the contexts viewed as partial functions give the same result for every
constructor or term variable in dom(I'y).

Thus if I'; C 'y then dom(I’y) € dom(I';) and I'; appears as a (not necessarily consecutive)
subsequence of I's. I will also write 'y D I'y to mean I'y C I's.

Proposition 3.1.5 (Weakening)
1. If T J and 'y C Ty and Ty - ok, then 'y F J.

2. If Fl,a::KQ,FQ F J and Fl F K1 S K2 and Fl F K1 then Fl,a::Kl,Fg F J
3. IfFl,Oé:TQ,FQ F j and Fl F T1 S T2 and Fl F T1 then Fl,a:Tl,FQ F J

Later I show that the assumption I'; - K is already implied by I'y - K; < Ko, and similarly that
I'y F 7 is implied by I'y - 7y < 79.

Definition 3.1.6 (Sizes of Kinds)
The size of a kind or a type is a strictly positive integer; it is defined inductively on the structure
of kinds:
size('T) =1
size(S(A)) =2
size(lla: K'.K") = size(K') + size(K") + 2
size(NaK'.K") = size(K') + size(K") + 2

The size of a kind depends only on its “shape” and is thus invariant under substitutions. The key
properties of this measure are that size(S(A)) > size(T) and that the size of a II or X is strictly
greater than the sizes of (all substitution instances of) its constituent kinds.

Proposition 3.1.7 (Antisymmetry of Subkinding)
F'FKi <Kyand'F Ky < Ky if and only if T F Ky = K.

50

Proof:

= By induction on size(K;) + size(K3), and cases on the possible last steps in the proofs of
FI—Kl SKQ andFl—KggKl.
— Case: K1 = Ko = T. Trivial, since by Proposition 3.1.1 we have I" - ok.

— Case: K1 =S(A4;) and K9 = S(A3). By inversion of I' - Ky < K, we have
'k A1 = A2 o T, so '+ S(Al) = S(AQ)

— Case:
I'F oK .KY I'F o KY.KY
I+ K< K! I+ K| < K},
I'oauK)F K < KY oK F K] <K

and
I'FIa: KK < oK) Kl I'F oK) K < Tla:K{ . K{

By the inductive hypothesis, I' F K| = KJ.

By Proposition 3.1.1, there is a strict subderivation I - KJ.
By Proposition 3.1.5, T', a:: K| = K{ < KJ.

By the inductive hypothesis, I', a:: K| - K| = K.

5. Thus I' F e K| . K| = Ha:K). K.

— The case for X-kinds is analogous.

Ll O

< By induction on the proof of I' - K; = Kj, using Proposition 3.1.5.
|

The subtyping relation is similarly antisymmetric, but the proof is more complex in the presence
of the transitivity rule (Rule 2.61). I return to this point in §7.3.

Proposition 3.1.8 (Symmetry and Transitivity of Kind Equivalence)
1. IfTF Ky =Ky thenl'- Ky = K;

2. IfFI—KlEKQ a’ndFI—KQEKg thenFl—Klng.

Proof: By induction on derivations. |

Proposition 3.1.9 (Transitivity of Subkinding)
IfFl—Kl SKQ (mdFl—KggKg thenFl—Kl SKg

Proof: By induction on derivations. |

Definition 3.1.10
The judgment A &~y : T holds if and only if the following conditions all hold:

1. AF ok

2. Va € dom(T"). A F v(T'(«))

3. Yo € dom(I'). A F ya = y(I'(«))
4. Yz € dom(T"). A+ v(T'(x))

5. Yz € dom(I"). At vz : y(['(x))

o1

Proposition 3.1.11 (Substitution)
1. IfTHEJ and A+~ :T then A+ ~(T).

IfT,a:K,To ok and Ty F A :: K then T'y,[A/a)l'y F ok.

If Ty, z:m,ToF ok and Ty v : 7 then I'y, [v/z]T's F ok.

IfTy, K, T'oF J and Ty F At K then Iy, [A/a)ly F [A/a]T .
IfTy,z:r,T9o - J and 'y F o 7 then 'y, [v/z]Ts - [v/z]T .

G Lo e

Proof:

1. By induction on the proof of I' - 7.

2-5. By simultaneous induction on the context in the first assumption and by part 1.

3.2 Validity and Functionality

I next show two important features of the calculus. Validity is the property that any phrase
appearing within a judgment is well-formed (e.g., if ' - A} = Ay :: K then ' F ok and T' - K
and ' F Ay ©: K and I' - Ay :: K). Functionality states that applying equivalent substitutions to
related phrases yields related phrases.

The rules have been structured to assume validity for premises and guarantee and preserve
validity for conclusions. A simple proof, however, is hindered by the presence of dependencies in
types and kinds. The direct approach by induction on derivations fails because of cases such as
Rule 2.39:

I'FA =Ay :: Yo K' K"
[FmA) = mAy i [A1 /a]K"

Here we need I' F m9Ag :: [m1 A1 /a]K" but from the inductive hypothesis we get only I' - w9 Ag ::
[r1Ag/a) K". The desired result would follow, however, if we knew that T' - [m A /o] K" < [m1 A1 /a]K".
Since I' b 1 Ay = m Ay :: K', the subkinding judgment required follows from functionality.

This suggests one should first prove functionality. The most general form of functionality also
cannot be easily proved directly, but the proof does go through for the restricted case of equivalent
substitutions being applied to a single phrase. This suffices to show validity, and together these
allow a simple proof of general functionality.

Definition 3.2.1
The judgment A Fv1 = v, : T holds if and only if the following conditions all hold:

. AFy T and Ay :T
). Ay (D) = 2(0(e))
A Fya=yay(T(a)

S
<C
S
Mm
[oW
@]
B
=

52

Lemma 3.2.2 (Substitution Extension)
1. IfAF~y =7: T, agdom(A), A1 K, A vyK, and A+ v K =¥ K, then
A, a1 K F yila—al = pla—al : (T, a:K) and
A, K Fyla—a] = pla—al @ (T, a:K).

2. If Ay =7 : T, z ¢ dom(A), and A+ v7, A v, and A+ yi7 = vo71 then
A,z Fypla—al = ypla—al o (D z:7m) and A, z:ye1 By [a—a] = ypla—al @ (T, z:7).
Proof: By the definition A Fy; =, : [, Proposition 3.1.5, and the subsumption rules.

Proposition 3.2.3 (Simple Functionality)
1. fTEFK and Ay = :T then A K =K.

2. fTFA:K and Ay =7v9: T then Ay A=vA:mK.
3. IfTETand AF vy =79 : T then Ab 17 = o7,
4. IfTFe:Tmand AF~y =72 : 1 then AF yie = e : 7.

Proof: [By induction on the proof of the first premise]
1. e Case: Rule 2.7

' ok
=T
Since A - ok we have A+ T = T.
e Case: Rule 2.8
'-A:T
I'-S(A)

(a) By the inductive hypothesis, Ay A =~yA:: T.
(b) By Rule 2.17 then, A F S(y1A4) = S(724).

e Case: Rule 2.9
Ia:K'+ K"

' Ha:K'.K"

) Without loss of generality, a ¢ dom(A).
) By Proposition 3.1.1, there are strict subderivations I', a:: K' - ok and I' + K.
(c) By inversion and Proposition 3.1.2, a ¢ FV(K').
(d) By the inductive hypothesis, A+ 1K' = v K’
) and by Proposition 3.1.11, AF vy K’ and A F v K'.
) Using Lemma 3.2.2, we have A, a::y K' F yi[a—a] = ypla—al : (T, a:K').
) By the inductive hypothesis then, we have
Aoy K'F (a—a]) K" = (y2[a—a)) K"
(h) By substitution, A F vy (Tla:: K'.K")
(i) Therefore A -y (Ha:K'.K") = yo(Ta: K'.K").
e Case: Rule 2.10
Ia:K'+ K"
' Ya:K'.K"

Analogous to the previous case.

93

Case: Rule 2.20

' ok
'6:T
Then AFb=1b: T because A ok.
Case: Rule 2.21
I' - ok

'x:T—T—T
Then A F x = x :: T>T—T because A F ok.

Case: Rule 2.22
'+ ok

'r— .. T—->T-—T
Then A F —- = — :: T=T—T because A I ok.
Case: Rule 2.23

I' ok
F'ka:T'(a)
Follows directly from the requirements for vy, and ~s.

Case: Rule 2.24
Ma:K'-A: K"

' Aa:K' A Toa:K'.K"
Without loss of generality, a ¢ dom(A).

As in the case for Rule 2.9, we have A -y K' =y, K’
and A, azy K' F yp[a—a] = ypla—al : T, K.

RISIGES

Thus by the inductive hypothesis,
A K'F (11a—=a])A = (1|la—a])A i (y1[a—a]) K.
(e) By Rule 2.36 we have A v (Aa: K" A) = yo(Aa: K" A) =y (e K'.K").

Case: Rule 2.25
'-A: K'-K" r+A: K

r-AA :: K"
(a) By the inductive hypothesis, AF 1A = vA :: (1 K')—=(nK")
(b) and A F ’YIA, = ’)’QA, o ’YlKI.
(c) Thus by Rule 2.37, Ay (AA") =v(AA") :mK".
Case: Rule 2.26

r+A:K r+A": K"
TF (A, A" = K'xK"
(a) By the inductive hypothesis, A Fy A" =y A" : n K’
(b) and Ak vy A" =y A" i K".
(¢) Thus AF (y A", y1 A") = (1A', 42 A"Y = 1 K'xy1 K" by Rule 2.40.
Case: Rule 2.27

'+A:Ya:K' K"
'mA: K’
(a) By the inductive hypothesis, A -y A = v A i1 11 (Za: K .K").

54

(b) By Rule 2.38, A F yi(mA) = yo(mA) = K’

Case: Rule 2.28
'FA:Ya:K' K"

I'FmA i [mA/a] K"
(a) By the inductive hypothesis, A F 41 A = v A :: 11 (ZBa: K. K").
(b) By Rule 2.39, A F ma(714) = ma(124) == [m1(114) /e (mi]a—a]) K.
(c) That is, A F ma(114) = m2(124) = vi([mA/a]K").
Case: Rule 2.29

''FA:T
'+ A:S(A)
(a) By the inductive hypothesis, A -y A =~y A :: T.
(b) By substitution, A F~; A :: T.
(¢) Thus A~y A::S(nA),
(d) but AFS(114) < S(v24)
(e) so AF 1A ::S(y24).
)
)
)

(f) By Rule 2.44, A+ vy A = 7y3A :: S(24)

(g) and by subsumption and symmetry, A F A =~y A T.
(h) Thus A F S(y124) < S(714)

(i) and so A F A =vA :: S(711A).

Case: Rule 2.30
'mA: K’ I'mA:: K"

'FA: K'xK"

(a) By the inductive hypothesis, A F 71(y14) = 71 (12A4) = K’
(b) and A F ma(y14) = ma(yA) = K.
(c) By Rule 241, A+ y1 A=A (K)x(mK").
Case: Rule 2.31
Da:K'FAa: K"
'+ A:Tae:L . L" r-K'=1r
- A:Ta:K' K"
Without loss of generality, a ¢ dom(A) and « ¢ FV(A).
As in the case for Rule 2.9, A+ K' = 2K’
and A, a:y1 K' F yp[a—a] = ypla—al : T, K.

(a
(b
(c
(d

~— ~— —

Thus by the inductive hypothesis,

Ay K'F (ia—a])(Aa) = (ela—a])(Aa) = (11 [a—a]) K.

(e) That is, A,y K'F (1 A)a = (y2A)a v [a—a] K.

(f) By Proposition 3.1.11, we have A -y A :: y (Il L' .L") and
AF yA i yo(Ha: L'.L").

(g) Similarly we have A+~ K' =~ L' and A+ ywK' =L

(h) so by Proposition 3.1.8, we have A F vy K' = v, L.

(i) Therefore by Rule 2.42, A+ vy A = A :: v (lla:: K'.K").

95

Case: Rule 2.32
F"AZ:Kl F"Kngg

'-A: K,
(a) By the inductive hypothesis, A Fy A =y A 7 K.
(b) By Proposition 3.1.11, A -y K; < 7 K.
(c) By Rule 243, AF vy A=A : 11 Ks.

Case: Rule 2.45
I'FA:T

L'+ Ty(A)
(a) By the inductive hypothesis, A -y A =~yA:: T.
(b) Thus A+ Ty(m1A) = Ty(y2A).

Rule 2.46
F'Fo:r T not a singleton

F'+S(v:T)

(a) By the inductive hypothesis, A F yjv = yv : 117

(b) and A F 7 = 7yor.

(c) Since neither 17 nor 7 can be a singleton (because 7 isn’t), we have
AF S(y1v:77) = S(yv @ y27).

Case: Rule 2.47

Lo =1
I'F (z:7)—7"
Same argument as for Rule 2.9.
Case: Rule 2.48
| R ol

L'E (zr)xr"
Same argument as for Rule 2.10.

Case: Rule 2.49
a:KFT

I'-Va:K.7
Similar argument to that for Rule 2.9.

Case: Rules 2.67-2.78. Essentially the same proofs as for the corresponding
constructor forms.

Proposition 3.2.4 (Validity)

1.

Gt Lo

IfT'FK)y <Ky thenl'F Ky and I' F Ks.

IfT'FKy =Ky then'F Ky and I' F K.
IfTFA: K thenT'F K.

IfTFA =A K thenT'HFA o K, TFA: K, and T+ K.
IfT'Fr <mthenl'F 71 and ' F 1.

o6

6. If ' =1 then ' 71 and ' 7.
7. IfT'Fe: 7 then ' 7.
8 IfTFeg=ey:7thenT ke :7,'Fes:7,and ' F 7.

Proof: There are only two interesting cases.

e (Case: Rule 2.39.

I'FA =Ay Yo K' K"
I'FmoA; = mAy i [m A/ K"

1. By the inductive hypothesis, I' - A; :: Sa: K. K",

2. Tk Ay :: Ba:K'. K",

3. and I' - Yo K'.K".

4. By inversion, I', a:: K' = K".

5. Then I' - mo A :: [m1 A1 /a]K” by Rule 2.28.

6. By Proposition 3.1.11, we have I' - [m1 A; /o] K.

7. Since'FmAs o K'and ' FmAy o K' and ' -4y = m Ayt K/,

8. we have I' F [As/a] = [mAi/a] : T, a:K'.

9. By Propositions 3.2.3 and 3.1.7 we have I' - [Ay /o] K" < [m1 A1 /o] K".
10. Thus by subsumption and I’ - my Ay :: [m1 Ay /a) K"
11. we have I' - mp Ay :: [m A1 /o] K".

e Case: Rule 2.86. The proof is analogous.

Corollary 3.2.5 (Full Functionality)

1. IfFl—Aleg::KandAl—’ylE’yg:FthenAl—’ylAl E’YQAQ ::’le.
2. fTEFKy =Ky and Ay = : T then Ay Ky =¥ Ko.
3. IfFI—KngQ a’ndAl—’)’lE’)’Q:FthenAl—’)/lKlé’)’gKg.
4. IfFI—TlETQ andAl—f)qE'yg:FthenAl—flelEq/ng.
5 IfTF<mand A~y = : T then AF vy < yomo.
6. IfTFei=ey:7 and AbF vy =7 : T then A yiep = yeg: 7.
Proof:
1. Assume I' - A1 = Ay :: K and A F vy =, : ['. By substitution, A -~y A; =y 45 = 11 K.

2-6.

By validity (Proposition 3.2.4) we have I' = Ay :: K, and so by Proposition 3.2.3,
AF ’)’1A2 = ’)/QAQ o ’YIK- By transitivity, A+ ’)’1A1 = ’)/QAQ o ’le.

The remaining cases are similar.

o7

Lemma 3.2.6
1. IfT azK,T" - ok andT' = Ay = Ay it K then T, [A1 /o]l F [A1/a] = [Ag/a] : (T, :: K, T")
and I [Ag /oI = [A1 /o] = [Az/a] : (T, a: K, T).

2. If T o, T = ok and T" vy = vy : 7 then I, [v /2]T" F [v1 /2] = [A2/a] : (T, z:7,T") and
I, [oa /o]0 - [on /2] = [oa/] : (T, o7,).

Proof: By induction on the proof of typing context well-formedness and Proposition 3.2.3. |

Corollary 3.2.7
1. If T a:L,T"F Ky = Ky and I+ By = By :: L then I, [By /o]l + [B1 /o] Ky = [Ba/a]Ks.

IfT a:L,T"F Ky < Ky and "'+ By = By :: L then I, [By /oI + [B1/a]Ky < [Bs/a]Ks.
IfT a:L,T"F1m =1 and I" - By = By :: L then I, [By /o] + [By/a]m = [Ba/a]rs.
IfT a:L,T"F 1 <1 and I" - By = By :: L then I, [By /]I + [By/a]m < [Ba/a]rs.

I L, T vy =ve: 7 and TV = By = By :: L then T, [B1 /o] + [B1/a]vy = [Ba/a]vs :
[Bi/a]T.

6. If T y:o0, 1" 1 =19 and ' - wy = we : o then TV, [wy [y F [wy /y]T1 = [wa/y|T2.

7. If U y:o, " 1 <19 and T - wy = woy : o then TV, [wy /y]T" + [wy /y]11 < [wa/y]T2.

8. If U y:o, 7" F vy =wo : 7 and I F wy = wy : o then TV, [wy [yl F [wy/ylvy = [wa/ylve :
[w1/y]T.

The proof of Proposition 3.2.3 depends heavily on the exact formulation of the rules defining
MILg. In particular, although dependent kinds and types force the rules to be asymmetric, they
are all “asymmetric in the same way”. For example, if Rule 2.39 were written instead as

F'FA =4y Ya:K' K"
L'FmA; = mAy i [mAs/a]K"

(where the substitution involves 71 As instead of 7 A1) then the above case for Rule 2.39 would not
go through. A more robust but more technically involved method would be to prove validity and
general functionality simultaneously. This requires a logical relations argument because inductively
one needs to know, for example, that not only are II and X kinds functional in their free variables,
but also that their codomains are functional with respect to the domain variable. Stone and
Harper [SH99] use this method for proving validity and functionality for the kind and constructors
levels.

Alternatively, functionality could be built into the system. Harper and Pfenning [HP99] take
the approach of making functionality into an axiom. However, it appears that the same proof
method used here would show their axiom admissible [Har00]. Martin-Lof goes further and makes
functionality the defining property of what it means to be a valid judgment-in-context [ML84].

Corollary 3.2.8 (Weakening 2)
1. If Fl,a::KQ,FQ F j and Fl F K1 S K2 then Fl,a::Kl,Fg F j

2. IfFl,$:Tg,F2 F j and Fl F T1 S T2 then F1,$:T1,F2 F j
3. IfT-TJ and =T =T then T+ J.

o8

3.3 Proofs of Admissibility

I now have enough technical machinery to prove the admissibility of Rules 2.92-2.124.

Proposition 3.3.1
Rules 2.119 and 2.122 are admissible.

Proof: I show the proof for Rule 2.119 only; the other proof is analogous.

BRIl

Assume ' A1 = Ay T.

By validity I' - Ay :: T,

so ' A; :: S(A;) by Rule 2.29.

But I' - S(A;) < S(As),

so by subsumption we have I' - A; :: S(As).

Lemma 3.3.2
v(S(A :: K)) = S(yA :: vK).

Proof: By induction on the size of K, and by cases on the form of K. |

Proposition 3.3.3

1.
2.

Rule 2.96 is admissible. That is, if T+ Ay = Ay :: K then T'F A1 = Ay :: S(4y - K).

Rules 2.92 and 2.93 are admissible.

That is, if T A= K thenT'F S(A:: K) and '+ A :: S(A :: K).

Rule 2.97 is admissible.

That is, if T Ay it S(Ag = K) and '+ Ay i K then T'H Ay = Ay 2 S(Ag = K).

Rule 2.9/ is admissible. That is, if '+ A K thenT'FS(A:: K) < K.

Rules 2.98 and 2.99 are admissible.

That is, if T = A :: DoK' K" and T+ A" - K' then T = AA" 2 [A'/a)K". Similarly, if
'FA =4 2 TTacK' K" andT'H A} = AL K' then T = Ay A = Ay Al = [A] /o] K".

Rule 2.102 is admissible.

That is, if '+ Ya:K'. K", T'F mA; = mAs = K', and T' - m9A; = mAs 2 [m Ay /a]K"
then T Ay = A9 = Sa:K'.K".

Rule 2.95 is admissible.

That is, if T A1 = Ag :: Ky and ' - K7 < Ky then ' S(A; = Kp) < S(Ag i1 K»).

Proof: By simultaneous induction on the size of kinds. (The size of K for parts 1-4, the size of
K' for part 5 and part 6, and the size of K; for part 7.)

1.

e Case K =T and S(As :: K) = S(A2).
(a) T'F Ay :: S(A2) by Rule 2.119.
(b) Then '+ A1 = Ay :: S(A2) by Rule 2.44
e Case K = S(B) and S(4; :: K) = S(As).
(a) T'F B :: T by validity and inversion, so I' - S(B) < T.

99

(b) Then I' = A} = Ay :: T by subsumption,
(c) and T+ A; :: S(Ag).
(d) Thus ' - A1 = Ay :: S(A2) by Rule 2.44.

e Case K = Ha:K'.K" and S(Ay :: K) = Ha:K'.S(Ay a it K").

(a) Inductively by part 5, I'a:K' - Ay a = As a s K"

(b) By the inductive hypothesis, I', a:: K' F Ay o = Ay o it S(Ag a:: K.

(c) By validity (Proposition 3.2.4) we have I' - A; :: [la:: K'. K" and
' Ay oK' .K".

(d) Therefore by Rule 2.42, T'+ A1 = Ay :: Tla:: K'.S(As « :: K).

o K =Ya:K'.K" and S(Ay :: K) = (S(m1Ag it K'))x(S(me Ay :: [m1 A2 /a]K")).

2. (a)
(b)
(c)
(d
3. °

(a) Then T'FmA; =mAs = K'
(b) and T' + mo Ay = moAg = [mA1/a]K".
(c) By functionality and subsumption, I' - mo Ay = moAg = [mAs/a] K.
(d) By the inductive hypothesis, I' - 1 A1 = m1 A : S(m1As 2 K')
(e) and '+ mgA; = mo Ay :: S(ma Ay i [mAs/a]K"). (Note that
size([m Az /a]K") = size(K") < size(K).)
(f) Therefore by Rule 2.41 we have
CFA; = Ay (S(mAs it K'))x(S(mAg i [m1 Ay /] K)).
Assume I'- A :: K.
By Rule2.33, T-FA=A: K.
By the previous part, '+ A= A:: S(4 :: K).
By validity, ' S(A:: K) and ' A :: S(A = K).
Case K =T and S(As :: K) = S(A2). By Rule 2.44, '+ A; = Ay :: S(Ag).
Case K = S(B) and S(Ay :: K) = S(A2). By Rule 2.44, ' - A; = A :: S(A4s).
Case K = Ha:K'.K" and S(Ag :: K) = a:K'.S(Ay a it K").
(a) Inductively by part 5 we have T',a:: K' F Ay« : S(Ay a2 K.

(b) and T, a:: K' - Ay v :: K"
(¢) By the inductive hypothesis, T, a:K' F Ay = Ay o :: S(Az o :: K.
(d) Therefore by Rule 2.42 we have I' - Ay = Ay :: Ha:K'.S(As a :: K").

K =Ya:K'. Ky and S(As : K) = (S(m1Ag 2 K'))x(S(m2Ag :: [mAs/a]K")).
(a) Then I' - 1y Ay :: S(m Ay : K') and

(b) Tk moAy :: S(me Ay i [m1 A1 /a]K").

(c) TFmAy:: K'and T F maAy 2 [m Ag/a] K/,

(d) so by the inductive hypothesis, I' - w1 A} = Ay it S(m A :: K') and

(e) Tk meAy = meAy it S(meAy i [m Ay /a]K").

(f) By Rule 2.41 we have I' - A} = Ay :: (S(m1Ag 2 K'))x(S(m2Az :: [m1 A /] K")).
Case K =T and S(A :: K) = S(A). By Rule 2.11 we have ' - S(A = T) < T.

Case K = S(B) and S(A4 :: K) = S(A).

(a) ThenT'HA=B:T so

(b) T+ S(4) < S(B).

60

5.

6.

7.

o Case K =Ila:K;. Ko and S(A : K) = lla:K;.S(Aa :: K»).
(a) Then '+ Ky and I'a: Ky F A« i K.
(b) By the inductive hypothesis, I', a:: K; - S(Aa :: K3) < K.
(c) Therefore, I' F ITa:: K1.S(A a2 Ko) < IMa: K. Ko.

e Case K = Ya:K'.K" and S(A :: K) = (S(m A :: K'))x(S(meA :: [mA/a]K")).

(a) ThenT'+mA :: K’

(b) so by the inductive hypothesis, I' - S(m A : K') < K'.
(c) Furthermore, I' - oA :: [m A/a]K".

(d

f) By part 3 we have I',a::S(mA = K')Fa=mA: S(mA:: K')

(g) so by functionality we have I', a::S(m A :: K') F [mA/o]K" < K".
(h) Therefore, I' - (S(m A :: K'))X(S(mpA :: [mA/a]K")) < Ba:K'.K".

(a) Assume I'F A :: Tla: K. K" and T H A" :: K'.
(b) Then by part 4, T F S(A' = K') < K.
(c¢) By validity and reflexivity we have I', a:: K' - K" < K".
(d) By weakening, I',a::S(A" : K') - K" < K".
(e) Since by part 3 we have ', a:S(A' : K') Fa=A":: S(A' :: K'),
(f) by functionality it follows that I, a::S(A" :: K') F K" < [A"/a]K".
(g) Thus I' F Ha:K'. K" < S(A" :: K')—=([A"/a]K").
(h) By subsumption I' - A :: S(A’ :: K')—([A"/a]K"),
(i) so by Rule 2.25 we have I' = A A" :: [A"/a]K".
The proof for Rule 2.99 is exactly analogous.

(a) Assume I' - Yau: K" K" T'FmA; =mAy:: K',and T' F Ay = moAg =

)
(b) Then by symmetry and part 1, I' - m A; = m Ag 2 S(m Ay 2 K'),
(c) sol'F A:: S(m Ayt K')x[A1/a]K".
(d) Now I' - S(m A1 : K') < K'.
) Since I, a::K' = K" by inversion,
f) by weakening and reflexivity we have ', a::S(m Ay = K') F K" < K".
(g) By functionality, ', a::S(m Ay :: K') F [m A1 /o] K" < K".
(h) Thus I' - S(m Ay == K')x[m A1 /a]K" < Ya:K'.K".
(i) By subsumption, I' - A; = Ay :: Ya:K'.K".
e Case K1 =T or S(A4;) and Ky = T or S(As).
(a) S(A; :: K1) = S(4y),
(b) S(Az :: K3) = S(As),
(c) and the desired conclusion follows by Rule 2.12.
e Case K; = llo::K{.K{ and Ky = la: K. KY.
(a) S(A4; :: K;) = Ha:K[.S(4; a :: K').

e

(
(

61

)
)
) By the inductive hypothesis, I' = S(meA :: [m A/a]K") < [mA/a)K".
(e) Also, by Proposition 3.1.1 and weakening, I, a::S(m A :: K') - K" < K".
(f)

)

[7T1A1/O[]K”.

By the inductive hypothesis, I', a:: K = S(A; o :: K{') < S(Az a0 2 KY).

I'F S(meAy i [mA1/a]K]) < S(meAsg :: [mAz/a]KY). (Here it is important that
the induction is on the size of K; and not by induction on the proof I' F K; < Ks.)
(h) The desired result follows by weakening and Rule 2.15.

Proposition 3.3.4
The remaining rules from §2.3 are all admissible

Proof: By cases.

e Case: Rule 2.100.
'-XYa:K'.K"
r-A: K 'EA"::[A)a)K"
(A A") : SanK' K"

Assume ' Yau:K' K" TFA = K',and '+ A" :: [A' /o] K".
Then ' A" :: S(A' :: K'),

soH (A" A"Y = S(A" = K')x[A"/a]K".

Now ' S(4':: K') < K'.

Since I', a:: K’ H K" by inversion,

by weakening and reflexivity we have T, a::S(A" :: K') F K" < K".
By functionality, I, a::S(A’ :: K') - [A" /o] K" < K".

Thus I' - S(A" :: K')x[A"/a) K" < Ba:K'.K".

By subsumption, I' F (A’, A") :: San:K'.K".

© XN e W

Case: Rule 2.101. Analogous to the proof for Rule 2.100.

Case: Rules 2.103 and 2.104. Analogous to the proof for Rule 2.98.
Case: Rules 2.105 and 2.106. Analogous to the proof for Rule 2.100.
Case: Rule 2.107

Ma:K'-A: K" r-A: K
' (MoK A)A'=[A"/a]A :: [A' /o) K"

62

Assume I'yai: Ko A K and ' Ay &2 Ko.

Then I', a:: Ko F A :: S(A :: K),

so I'F A Ky A - T K9.S(A :: K).

By Rule 2.98 we have I' - (Aa::K2.A) Ag :: S([A2/a]A :: [A2/a]K).
By substitution, I' - [Ay/a]A :: [A2/a]K.

Thus I' F (Aa::K9.A) Ay = [A2/a]A :: [A2/a]K by Rule 2.97.

SAERATIE .l ol

e Case: Rule 2.108
F"AliiKl F"AQKKQ

F'Em(A4,A4) = At Ky
Assume I'F Ay : Ky and ' Ay 0 K.
Then I' - A :: S(4; == Ky),
so I'F (A, Ag) :: S(A; : K1) x Ko.
Thus I' F 71 (A1, Ag) :: S(A4; :: K7)
and ' m(Aq, Ag) = Ay K.

otk W o

e Case: Rules 2.109-2.111. Analogous proof to Rule 2.108.

e Case: Rule 2.112. By Rule 2.107 and functionality.

e Case: Rules 2.113-2.116. By Rules 2.108-2.111 and subsumption.
e Case: Rules 2.117-2.118. By the S-rules and extensionality.

e Case: Rules 2.120-2.121. By validity and subsumption.

e Case: Rules 2.123-2.124. By validity and subsumption.

3.4 Kind Strengthening

One can drop those constructor variables in the context which are not referred to (directly or
indirectly) in a judgment. This follows from the fact that every kind classifies some constructor:

Proposition 3.4.1 (Inhabitation of Kinds)
IfI' - K then there exists a constructor A such that ' A :: K.

Proof: By induction on the size of K, and cases on the form of K.

e Case: K =T. Pick A = Int.

e Case: K =8S(A). Then ' A :: S(A).

e Case: K =Ila:K'.K". Then I', a:: K' F K" by inversion, so by the inductive hypothesis
there exists A” such that I', a:: K’ = A” :: K"”. Choose A = Ma::K'.A”.

e Case: K =Ya:K'.K". ThenT'+ K’ and T, a:: K’ - K" by inversion. By the inductive
hypothesis we may choose I' - A" :: K. By substitution, I' - [A"/a] K", so inductively we
may choose I'F A" :: [A'/a]K". (It is important here that induction proceeds by the size of
the kind, and that size is invariant under substitutions.) By the admissible Rule 2.100,
k(AL A"Y : YanK' K",

63

Corollary 3.4.2 (Kind Strengthening)
If Ty, B:L, Ty T and B & FV(I'9) U FV(J) then T'1, Ty F J.

Proof:

1. There exists a strict subderivation I'1, 5::L, I's F ok, which itself contains a subderivation
'+ L.

2. By Proposition 3.4.1 there exists 'y - B :: L.

3. By Proposition 3.1.11 we have I'y, [B/S]'2 F [B/B]T

4. But since [is not free in I's or J, this judgment is exactly I';,I's - J.
|

This proof strategy is not applicable for dropping unused term variables in the context; in
general one does not expect every type to be inhabited by values. Therefore the corresponding
proof of strengthening for term variables is delayed until §7.4.

64

Chapter 4

Algorithms for Kind and Constructor
Judgments

4.1 Introduction

In this chapter I present algorithms for checking instances of the kind and constructor-level judg-
ments. For each such algorithm, proving correctness requires showing that three properties hold.

e Soundness: if the algorithm verifies the judgment then the corresponding MILj judgment is
provable.

o Completeness: if a MILy judgment is provable then the algorithm will verify the judgment.

e Termination: the algorithm always either verifies or rejects a judgment. (That is, the

judgment is decidable.)

In this chapter I show soundness for all of the algorithms, but most completeness and termina-
tion results are postponed until the next chapter.

4.2 Principal Kinds

Checking the validity of type constructors is simplified by the existence of principal kinds. A
principal kind of a constructor (with respect to a given typing context) is a most-specific kind of

Fl>bz' ﬂ S(bz)

I'>afS(a:(a)

's x fS(x: T-T—-T)

I's = f S(—: T->T-T)

Lo dacK' A{la:K' K" il a:K'>Af K"

Lo AA f[A)a]K" i T» A MoK K"
Do (A, A") ft K'x K" i To A 4 K and T's A" 4 K.
TomA K’ T A SasK K"
I'>mAf [mA/a]K" ifI'> Af Ba:K'.K"

Figure 4.1: Algorithm for Principal Kind Synthesis

65

that constructor. Formally, K is principal for A in I' if and only if I' = A :: K and whenever
' = A: L we have ' K < L. When they exist, principal kinds are unique up to provable
equivalence.

I show that every well-kinded constructor has a principal kind by giving a correct algorithm for
explicitly calculating it; see Figure 4.1. This algorithm, like all of the algorithms I will present, is
organized as a collection of “algorithmic” inference rules. The rules have been carefully designed
so that a derivation I' > A ff K corresponds exactly to a run of the principal kind computation
algorithm which takes I' and A as inputs and produces the principal kind K as the result. To this
end, the inference rules are deterministic: given I' and A, there is at most one kind K such that
I'> At K. Furthermore, there is at most one rule which could possibly be used to produce such
a K — there is exactly one inference rule for each syntactic form that A might have. Thus given
I’ and A, a “proof search” for K such that I'> A f} K corresponds to a direct calculation of the
principal kind.

For example, in the empty typing context the principal kind of Aa::T.A\5::T.(«, 5) is computed
as follows:

pAa:TAB:T . (a, B) f o T.I18::T.S(a) XS(B)
because a:xT > AF:T. (o, B) f# LB=T.S(a) xS(S)
because a:T, BT > (o, B) ft S(a)xS(B)
because a:xT,B:Tr>af S(a) and a:T,5:T > 5 1 S(B)

The principal type synthesis algorithm is correct, as shown by the following theorem; note that
K is independent of L and hence is principal.

Theorem 4.2.1 (Principal Kinds)
IfT' = A :: L then there exists K such that T> A K andT'H A K and '+ K <S(A:: L), so
that ' - K < L.

Proof: By induction on the proof of the assumption and cases on the last rule used.

e (Case: Rule 2.20.

' ok
b T
1. Tob{r S(b) and I' - b :: S(b).
2. S(b::T)=S(b).
3. TFb=0b:T,so' - S(b) < S(b).
e Case: Rule 2.23.
I' - ok
F'ka:T'(a)

L. Toaf S(a:I'(a)).
2. By Rules 2.92 and 2.93, '+ S(a :: I'(a)) and ' - v =2 S(a :: T'(w)).
3. By reflexivity, I' F S(a :: I'(er)) < S(av :: I'(«v)).
e Case: Rule 2.24.
Da:K'-A: L
I'FXa:K" A= Ta:K'.L"

66

,_.
e

© ®© N> o W=

By the inductive hypothesis I', a:: K' > A ff K",

DazK'-A: K",

and I'yau:K'+ K" < S(A: L").

Then I'> Aa: K' A {) Tla: K'. K"

and I' - (Aa:K'.A) : (Ha:K'.K").

Now I'a:: K' F (Aa:K'.A) o = A :: L" by weakening and Rule 2.107,
so M auK'FS(A:: L") < S((Aa::K'.A) a :: L") by Rule 2.95.

Since S(Aa:K'. A :: Tla:K'.L") = Na:K'.S((Aa: K" A) a :: L)

and '+ K' < K',

we have ' Il K' K" < S(Aa:K'. A :: Ha: K'.L").

e Case: Rule 2.25.

—_ =
_= O

© ®© N> oW

rA:L'—=L" AL
r-AA :: L"

By the inductive hypothesis I'> A f} K

''FA: K

and T - K < S(A :: L' 5 L").

Now S(A :: L' L") = Ha:L'.S(A« :: L") where a ¢ FV(A) UFV(L").
By inversion of subkinding, K = Ha:K'. K",

THI <K',

and I'ya:L' HF K" <S(Aa:: L").

Then I'> A A’y [A'/a]K".

By subsumption, I' = A’ :: K', so

FAA :[A')a]K".

. Finally, by Lemma 3.3.2 and Proposition 3.1.11 applied to line 7 we have

T [A'/a]K" < S(AA' L"),

e Case: Rule 2.27

e A

F'FA:Xa:L'.L"
'FmA: L

By the inductive hypothesis, I'> A f} K,

'HFA: K,

and 'F K < S(A:: Ya:L'.L").

Now S(A :: Ya::L'.L") = S(m A :: L')xS(mpA i: [mA/a]L").
By inversion of subkinding, K = Ya:K'.K",

and ' F K' < S(mA:: L').

Finally, I'> m A f} K’

and '+ m A K'.

67

e Case: Rule 2.28

,_.
e

11.

© NS oW

'FA:Ya:L'.L"
I'F A [mA/a|L”

By the inductive hypothesis, I'> A f} K,

'FA: K,

and 'F K < S(A:: Xa:L'.L").

Now S(A :: Ya:L'.L") = S(m A :: L')xS(mpA i: [mA/a]L").
By inversion of subkinding, K = Ya:K'.K",

'FK <S(mA:L),

and I', a: K' = K" < S(meA :: [mA/a]L").

Then I' - m A :: K'.

so by Proposition 3.1.11 applied to line 7, T'F [m1 A/a] K" < S(mA ::

Finally, I'> mo A {} [m A/ o] K"
and I' F meA :: [mA/a]K".

e Case: Rule 2.26

—_ =
—_— O

© ®© NS ot W=

r-A:L r=A"..r"
TF (A, A"y = 'L

By the inductive hypothesis, I'> A’ f} K',
A : K',

K <S(A":: L),

r's A" 4 K,

r=A": K",

and ' K" < S(A" :: L").

Then T » (A', A") f K'x K",

and T F (A, A") - K'x K"

Now S((A’, A"y :: I'x L") = S(m(A’, A") :: L") xS(ma (A, A") :: L").
. By Rule 2.95, '+ S(A" :: L') < S(m (A", A") . L)

and T S(A” i L") < S(me(A', A"Y : L").

12.

Therefore, I' - K'x K" < S((A', A") : L'xL").

e Case: Rule 2.29

'-A:T
'k A:S(A)

By the inductive hypothesis, noting that S(A :: S(4)) = S(A).
e Case: Rule 2.31

Fa:K'-Aa:: K"
'+A:Ha:L'.L" r- K'=1r'
' A:a:K'.K"

68

[mA/a]L").

—_ =
_= O

12.
13.

© ®© N> oW

By the inductive hypothesis, I'> A f} K,

'HFA: K,

and I' - K < S(A :: Ha:: LY. LY).

Now S(A :: Me:: Ly . LY) = He:: L'.S(A v :: LY)

so by inversion K = Ia:K'.K"

and I - L) < K.

Since ' L' = L), we have I' - L' < L and hence I' - L' < K.
Also by the inductive hypothesis, I', a::L' > Ao t K,

Ioa:Ll'F Ao KY,

and I',a:L' F KI) < S(Aa :: L").

. But since the principal kind synthesis algorithm is deterministic and clearly obeys

weakening, we have K = [a/a|K" = K".
Now S(A :: Ma:: L. L") = Na:: L'.S(A« :: L").
Therefore I' F Ha: K'. K" < S(A :: M L'.L").

e (Case: Rule 2.30.

FrFmA: L L'FmA:: L"

'+A:L'xL"
1. There is a subderivation I' - A :: K7 for some kind K; (see Proposition 4.4.1 below).
2. By the inductive hypothesis, I'> m A {} K',
3. 'FmA: K,
4. andT'H K' <S(mA:=: L.
5. Also, I'> mA {} K",
6. T'FmA:: K",
7. and I'F K" < S(mpA :: [mA/a]L").
8. Principal kind synthesis never returns a dependent X type, so for kind synthesis for
m A and mA to have succeeded it must be that I'> A f K/ xK".

9. By the inductive hypothesis, ' - A :: K'xK".

10. Since S(A :: Yau:L/.L") = S(m A :: L')xS(maA :: [mA/a]L"),

11. TF K'xK" < S(A :: Sa::L'.L").

12. so by the inductive hypothesis I' - A :: K.

e Rule 2.32

F"A::Lg F"LQSL
I'FA: L

The desired result follows from the inductive hypothesis and by Rule 2.95 to get
'FS(A: Ly) <S(A: L).

69

Kind validity

I'sT

I'>S(A) ifI'sAeT

> a:K'.K" if'>c K'and ', a:: K' > K.
e Ya:K' K" ifI'> K and I', a: K' > K",
Subkinding

'-T<T always

'>S(4) <T always

I'> S(Al) < S(AQ) 1fFl>A1 =4 A2 = T.

I Ila:K) K <Ha:K,. K ifT'> K) < K] and I',a:: Kb > K| < K.
Tb Sa:K|.K! < Sa:KyK! ifTs K| < K and T, a:: K| » K < K.

Kind equivalence
'-T&T always
FDS(Al) <:>S(A2) 1fFl>A1 <:>A2 =T
I'clloa:Kq.L) & Ha:: K. Ly if I'n K| & Ky and F, a:Ki> L1 & Ly
I'>XYa:K.L1 < YatKe. Ly ifI'b Ky < Ko and I'yai: K1 > Ly < Lo

Figure 4.2: Algorithms for Kinds

4.3 Algorithms for Kind and Constructor Judgments

Figure 4.2 gives algorithms for determining kind validity, subkinding, and kind equivalence. Each
is specified as a deterministic set of inference rules. The symbol > is used instead of |- to distinguish
these as algorithmic judgments.
The kind validity judgment
I'sK

models the declarative kind validity judgment I' - K. Viewed as an algorithm this takes a well-
formed context I' and a kind K and determines whether there is a proof of I' - K. For any
conclusion, at most one rule could apply; there is one rule for each syntactic form that K might
have.

The subkinding judgment
I'> K1 < K2

models the declarative subkinding judgment I' - K; < K. As an algorithm, given kinds satisfying
I' - Kq and I' F Ky it determines whether there is a proof I' F K7 < K.
Similarly, the kind equivalence judgment

I'>K; & Ky

models declarative equivalence; given two kinds satisfying I' - K7 and I" - K5 it determines whether
there is a proof I' - K7 = K.

Figure 4.3 shows the algorithms for determining the well-formedness of constructors. The kind

synthesis judgment
' A= K

70

Kind synthesis
I'>Int = S(Int)
'> x = S(x:: T>T-T)
I's - = S(—:T->T->T)

I'>a = S(a: () if & € dom(I').

oK' A=Ila:K''K" ifI'>K andI',auK'> A= K".

v AA" = [A)a]K" > A= MoK K" and I'> A &= K.
Do (A, A" = K'x K" if P> A’ = K and ['> A" = K",
'>cmA=K' ifI'v A= oK' K"

I'>mA = [mA/a)K" if'> A= Ya:K' K"

Kind checking
' A= K ifI'mr A= Land'>L < K.

Figure 4.3: Algorithms for Constructor Validity

combines constructor validity checking with principal kind synthesis. As an algorithm, given a
well-formed context I' and a constructor A it returns a principal kind K of A if A is well-formed
(i.e., if it can be given any kind at all) and fails otherwise.
Because all well-formed constructors have principal kinds, it is easy to define a kind checking
judgment
' A= K.

which directly models the constructor validity checking. Given a context and kind satisfying I' - K
and constructor A, this algorithm determines whether I' = A :: K holds.

The judgments involved in constructor equivalence are shown in Figure 4.4. Following Co-
quand [Coq91] equivalence is determined in a direct fashion rather than by independently normal-
izing the two constructors and comparing normal forms (but see §5.5).

My algorithm is more involved than Coquand’s because of the context and kind-dependence
of equivalence. The algorithmic constructor equivalence rules are divided into a kind-directed
part and a structure-directed part, while Coquand needs only structural comparison. Weak head
normalization is extended to include looking for definitions in the context. I have also extended
the algorithm in a natural fashion to handle ¥ kinds, pairing, and projection.

The algorithm uses the notion of an elimination context; this is a series of applications to and
projections from “o”, which is called the context’s hole. If £ is such a context, then £[A] represents
the constructor resulting by replacing the hole in £ with A. If a constructor is either of the form
E[a] or of the form &[c] then this will be called a path and denoted by p. (Recall that ¢ ranges over
constant type constructors.)

E:= o
| €A
| m&
| 71'25
The kind extraction relation is written
I'spT K.

71

Kind Extraction
|
I'>x1+T—(T—>T)
I's -+ T—(T - T)

'vatl(a)

Tompt K’ T opt SpuK K"
I'>mop 1 [mp/ B K" if'ept XBuK' . K"
TopAt[A/BK" T opt K K"

Weak head reduction
I'>E[(AanK.A) Al ~ E[[A]a)A]
I's& 7T1<A1,A2>] A 5[141]

—

'sé& 7T2<A1,A2>] > E[AQ]

I'>E&[a] ~ B if I'v &[] T S(B)

Weak head normalization

'>Al B fI'vA~ A'and ' A’ | B

'sB| B otherwise

Algorithmic constructor equivalence

'bA) < Ay T ifI'> Ay Up1, P> As | po,and 'bpy <> po T T
I'>A) & As 1 S(B) always

I'> A © Ay = oK' K" fa:K'>Aiase Asa : K"

b Al © Ay = TanK'.K" if>m A & mAy o K

and I'> 1A & moAs i [m Ay /o] K"

Algorithmic path equivalence
b b1 T
I'>x < x1T—(T—T)
> ~4—=1T—(T—T)
F'va+ atl(a)

I'>pr Ay < po Ay T [A1 /o] K" if>p < po P oK' K" and I'> A & Ay it K/
Lo mpr <> mipe T K’ ifTopp < pot B K K"
['> mopy > mopa T [mip1/a) K" if['>py < pot e K .K"

Figure 4.4: Kind and Constructor Equivalence Algorithms

72

Given a well-formed context I and p which is well-formed in this context, kind extraction attempts
to determine a kind for a path by taking the kind of the head variable or constant and doing
appropriate substitutions and projections. A path is said to have a definition if its extracted kind
is a singleton kind S(B); in this case B is said to be the definition of the path.

The extracted kind is not always the most precise kind. For example, a::T >« 1T T but the
principal kind of « in this context would be S(«). Intuitively the extracted kind is the most precise
kind which can be assigned without the singleton introduction rule, or Rules 2.30 and 2.31 which
can be viewed as extending singleton introduction to higher kinds. This suffices to make S(p :: K)
principal for p if K is its extracted kind.

The weak head reduction relation

I'sA~ B

takes I' and A and returns the result of applying one step of head S-reduction if A has such a redex.
If the head of A is a path with a definition reduction then the definition is returned. Otherwise,
there is no weak head reduct.

The weak head normalization relation

ToAl B

takes I' and A and repeatedly applies weak head reduction to A until a weak head normal form is
found. Weak head reduction and weak head normalization are deterministic, since the head g-redex
is always unique if one exists, and a path can have at most one prefix with a definition.

The algorithmic constructor equivalence relation

FI>A1<=>A2 T K

models the declarative judgment I' - A; = Ay :: K on well-formed constructors. As an algorithm
this is defined by induction/recursion on the kind at which the two constructors are being compared.
At II and ¥ kinds the algorithm uses extensionality to reduce the problem to comparisons of
constructors at kinds whose size is strictly smaller. When comparing two constructors at a singleton
kind the algorithm can immediately report success because we only care about inputs where I' -
Ay o Kand T'+ Ay : K; if K = S(B) then Ay = B = Ay automatically. Finally, if we are
comparing two constructors of kind T then the algorithm must do some real work. This consists of
head-normalizing the two constructors, which (if the process terminates) yields two paths without
definitions. Then the paths are compared component-wise.
This component-wise comparison is specified by the algorithmic path equivalence relation

epr<p2 T K.

Given two well-formed head-normal paths I' = p1 :: Ky and I' F po :: Ky, this should succeed
yielding K if and only if I' - p; = py + K and K is the extracted kind of p; with respect to
I'. The only question that arises when writing down these rules is in the case for comparing two
applications. If the two function parts are recursively found to be equal, the two arguments must
then be compared. Since the two arguments need not be in normal form, they must be compared
using the < judgment; in this case we must decide at which kind the two arguments should be
compared.

The right answer is the domain kind of the extracted kind of the function parts, which (by
Lemma 4.4.2) below is the same as the domain kind of the principal kind of the function parts.
Assume we want to compare p; A; and py A using the typing context I', and that the principal

73

kind of p; (and ps, since they have been verified equivalent) is Ila:: K'.K"”. Then this is the least
kind at which the two paths are provably equal, and hence by contravariance the domain kind is
greatest. By comparing A; and A, at kind K’, then, we have the best chance of proving them
equal. (Two constructors equivalent at a subtype will be equivalent at a supertype, but not vice
versa.) Thus to find as many equivalences as possible K’ is intuitively the correct kind for the
algorithm to compare function arguments. Since the extracted kind agrees with the principal kind
in negative positions, and it suffices to look at the domain of the extracted function kind rather
than computing the full principal kind.

As an example, let I' = 3::(S(Int)—T)—T. Then:

I's g (Aa:T.a) (Aa:T.Int) = T
because I'>f(Aa:T.a) | 5 (Aa:T.«)
and I'> g (Aa:T.Int) § 5 (Aa:T.Int)
and ['vfg(Aa:T.a) < f(Aa:T.Int) 1T
because 't < 1 (S(Int)—»T)—T
and TI'> (Aa:T.a) & (Aa:T.Int) W
because I',a:S(Int)> (Aa:T.a)a < (Aa:T.Int)a:: T
because I, a:S(Int) > (Aa:T.a) | Int
and T, «:S(Int) > (Aa:T.Int)a | Int
and [, a:S(Int)>Int <> Int 1 T.

4.4 Soundness of the Algorithmic Judgments

In order to show soundness of the constructor equivalence algorithm I first show that given a well-
formed path, kind extraction succeeds and returns a valid kind for this path using induction on
the well-formedness proof for the path. (Compare the statement of Theorem 4.2.1 above and of
Lemma 4.4.2 below.)

Proposition 4.4.1
IfT' = E[A] :: L then there is a subderivation of the form I't= A :: K.

Proof: By induction on the kinding derivation. If £ = ¢ then the result follows trivially; otherwise,
the result follows by the inductive hypothesis. |

Lemma 4.4.2
IfT'Fp:: K then there exists L such that T>pt L, TFp:= L, and THS(p:: L) < K.

Proof: By induction on the proof of the hypothesis.

e Case: Rule 2.20. p =b.

1. ThenT'>b1 T and S(b:: T) = S(b).
2. By Rule 2.20, ' b :: T
3. and by Rule 2.11, ' = S(b) < T.

e Case: Rules 2.21 and 2.22. Similar to previous case, using admissible rule 2.94.
e Case: Rule 2.23. p = «.

74

1. Then I'> a1 ['(«).
2. By Rule 223 I' - a :: I'(a),
3. and by Rule 2.94, ' - S(a :: I'(a)) < T'(«).

e Case: Rule 2.25.
Pkp: K'—-K" r-A: K

'FpA K"
By the inductive hypothesis, I'> p 1 Ila:: L'.L",
I'kp: oL/ .L", and
F'FS(p:Ha:Ll'.L") < K'-K".
Then I'>p A’ 1 [A'/a]L".
Since S(p :: Ha:L'.L") = Ha: L' S(p o :: L"),
we have by inversion of Rule 2.14 that ' - K’ < L' and ', a:: K' + S(pa :: L") < K"
where o ¢ FV(K") and «a ¢ dom(T).
By subsumption, I' = A’ :: L/
8. and hence I' - p A" :: [A'/a|L" by Rule 2.98.
9. Finally, by substitution we have I' - S(p A’ :: [A"/a|L") < K.

SR e

=

e Case: Rule 2.27.
F'tp:SazK' K"

'-mp: K'

By the inductive hypothesis, ['>p 1 L,

I'p:: L, and

F'FS(p:L)<Xa:K'K'

By inversion S(p :: L) must be a 3 kind, and so L' = Ya::L'.L" for some L’ and L".
Then I'>mp 1t L,

and by Rule 2.27, ' - myp :: L.

Since S(p :: Yax: L' L") = S(mp :: L')xS(map :: [mp/a]L"),

by inversion of rule 2.15 we have I' - S(mp :: L') < K'.

® NS e W N

e Case: Rule 2.28.
L'kp:Ya:K' K"

I'F mop i [mip/a]K!

As in the previous case, I'>p T Yo L'.L",

'tp:BazLl'.L", and

I'FS(p:XaxLl' L") < Ya:K'.K".

Then I' > mop T [m1p/a]L”,

and I' - mop @z [mp/a]L” by Rule 2.28.

Since S(p :: Ya:L'.L") = S(myp 2 L')xS(mop :: [mp/a]L”),

by inversion of Rule 2.15 I', ::S(myp :: L") = S(map =2 [mip/a]L") < K".
Then I' F mp :: S(mp’ : L)

e B o

75

9. so by Proposition 3.1.11 we have I' F S(map :: [m1p/a]L”) < [mp/a]K".

e Case: Rule 2.29

'-p:T
I'Fp:S(p)
. By the inductive hypothesis, I'>p 1 L,

1
2. TFp: L,

3.andI'S(p:: L) <T.

4. Thus L is either T or a singleton, and S(p :: L) = S(p).
5. and by reflexivity, I' - S(p) < S(p).

e Case: Rule 2.30.
L'Emp: K L' mop i K"

'kp:: K'xK"
By Proposition 4.4.1 and the inductive hypothesis, I'> p t Sa::L'.L",
L't p:Bacl L,
Lempt L,
L'-mp: L,

'FS(mp:= L) <K',

['>mop 1 [mip/a]L”,

I+ mop :: [mp/a]L”,

and I' b S(mep = [mp/a]L") < K".
Thus ' F S(p :: Ya:L'.L") < K'xK"

© 0N e w e

e Case: Rule 2.31.
Na:K'-pa: K"
't p:Ha:L'.L" rK'=L'

L'kp:lacK' . K"

By the inductive hypothesis, I' > p T Ia:: L'.L",

'kp: oL/ . L",

and I' b (ITe:: L' S(p v :: L)) < e K'.K7.

By inversion, I' - K’ < L'.

By the inductive hypothesis, and determinacy and weakening of the kind extraction
algorithm, I', a:: K' >pa T L”

and I',a:K'+S(pa : L") < K".

7. Therefore, I' - Ha:L'.S(pa :: L") < Ha:K'.K".

oLl W=

o

e Case: Rule 2.32.
F"p::Kl F"Kngg

'kFp: Ko

1. By the inductive hypothesis, I'>p 1 L,
2. TFp: L,

76

3.
4.

and '-S(p:: L) < Kj.
By transitivity, I' - S(p :: L) < Ko.

Corollary 4.4.3
IfTFE&[p]: K andTep 1 S(A) thenT - Ep] = E[A] = K.

Proof:

Ll O

By Lemma 4.4.2, I'> E[p] 1 L,

'FE&p] = L,

and ' FS(€[p] = L) < K.

By the determinacy of kind extraction, this can be reconciled with T'>p T S(A) only if £ = ¢

and L = S(A).

© ®°® N s o

ThusI'Fp=A::T.

and S(&[p] :: L) = S(p).

By inversion of subkinding, either K = T or K = S(A’) withT'Fp= A" :: T.
In either case, 'Fp=A:: K.

That is, I' - E[p] = E[4] :: K as desired.

Proposition 4.4.4
IfTF Xac:K'\A:: L then,a:K'+ A :: K" for some kind K".

Proof: By induction on derivations. For proofs ending with Rule 2.24 the desired result is given
directly; for Rules 2.31 and 2.32, the result follows directly by the inductive hypothesis. |

Proposition 4.4.5
IfT F E[(Aa:L.A) A" : K then T F E[(Aa::L.A) A"l = E[[A"/a]A] i+ K

Proof: By induction on the given derivation.

e Case:

'+ Xa::L'.A:: Ha:K'.K" r-A:K
't (Aa:L' A) A" :: [A /o] K"

where £ = o.

1.

Bl o

Using Proposition 4.4.4 and the correctness of principal kind synthesis we have
D,azL's AL,

Do/ HA: L,

I'> Aa::L' A Hae:L'.L",

I'F XL A Moz L' L",

and '+ Mo L' L" < oK' K",

77

6. By inversion, ' - K' < L'
7. and I' oK'+ L" < K".
8. By subsumption, I' = A’ :: L.
9. Thus I' F (Aa:L.A) A" = [A'/a]A :: [A'/a]L" by Rule 2.107.
10. By substitution I' - [A"/a]L" < [A'/a]K".
11. Therefore by subsumption we have I' b (Aa::L.A) A’ = [A'/a]A :: [A' /o) K"

e All other cases follow by structural rules and reflexivity of declarative equivalence.

Proposition 4.4.6
1. IfTEEm(A,A")] - K then T+ E[m (A", A")] = E[A] K.

2. If T'F E[ma(A', A")] =t K then T+ E[ma (A, A"Y] = E[A"] : K.
3. IfT = (AL A"« BanK' K" thenTHA : K" and T+ A" :: [A' /o] K".

Proof:

1. e Case:
I'E (A A" SanK'.K"

I'Fm(A,A") o K’

where £ = o.
(a) Inductively by Part 3, ' - A’ :: K'
(b) and '+ A" :: [A"/a]K".
(c) The desired result follows by Rule 2.108.
e The remaining cases follow by structural rules and reflexivity.

2. e Case:
(A A") : SanK' K"

I'Emp(A, A" o [m (AT, A") Ja) K

where £ = o.
(a) Inductively by Part 3, "'+ A’ :: K’
(b) and '+ A" :: [A"/a]K".
(c) By Rule 2.109, I' F my(A’, A") = A" :: [A' /o] K.
(d) Asin Part 1, T+ E[m (A, A")] = E[A] = K.
(e) By validity and inversion, I', a:: K’ = K"
(f) so by functionality, I' F [m (A, A”) /o] K" = [A"/a]K".

(g) Thus by subsumption we have I' F mo (A, A”) :: [m (A", A”) /o] K".
e The remaining cases follow by structural rules and reflexivity.

3. e Case:
'-A = K ' Ay :: K"

e <A1,A2> K'xK"

Obvious.

78

e Case:
I'FXa:K' K"
'k m(A,A") o K’
I'Fmp(A, A" o [m (AT, A") Ja) K
F'H(ALA") = SanK' K"

(a) Inductively by part 1, I' -7 (A", A"y = A" .t K'
(b) Inductively by part 2, T' - mo(A’, A”) = A" i [m (A", A") /o] K.
(c) By inversion and functionality, I' F [(A", A") /o] K" = [A"/a] K"
(d) Thus by validity, subsumption and Proposition 3.1.1, ' - A’ :: K’
(e) and '+ A" :: [A"/a]K".
e Case
LE (A A" = K,
'K <XYa:K'.K"
LE (A A" = BazK' K"

(a) By inversion, K| = Ya:K|.K7,
(b) TF K! < K',
(c) and I',a: K| + K < K".
(d) By the inductive hypothesis, I' - A" :: K]
(e) and '+ A" :: [A" /o] KT
(f) By substitution, I' - [A'/a]K{ < [A"/a]K".
(g) Then the desired results follow by subsumption.

Corollary 4.4.7
IfTFA:KandT'> Ay B then'FA=B: K.

Proof: By transitivity and reflexivity of declarative equivalence, it suffices to show that if I' F
A:KandI'b A~ Bthen'H A= B :: K. But all possibilities for the reduction step are covered
by Corollary 4.4.3, Proposition 4.4.5, and Proposition 4.4.6. |

Proposition 4.4.8
IfT'F E[A A 2 L then there exists a kind K'—=K" such that T'F A K'-K" and T+ A" :: K'.

Proof: By induction on typing derivations. If £ = ¢ and the proof concludes with a use of the
application rule 2.25 then the result follows by inversion; in all other cases, the result follows by
the inductive hypothesis. |

Theorem 4.4.9 (Soundness)
1. IfTFA =K, TFAy =K, and'> A1 & Ay K thenT'H A1 = Ayt K.

IfTFpr o Ky, TFpei: Ko, and Dbpy < po T K then'Fpp =ps : K.
IfTHFK, TFKsy, and'> Ky < Ko then' - K1 < Ko.

IfTHFK, 'FKs and'> K| & Ky then I'F Ky = K.

IfT'Fokand T'> K then ' F K.

79

6. IfT-okand T A=K thenT'FA: K and'> A K.
7. IfTFK and v A= K then'F A K.

Proof: By (simultaneous) induction on proofs of the algorithmic judgments (i.e., by induction on
the execution of the algorithms). |

80

Chapter 5

Completeness and Decidability for
Constructors and Kinds

5.1 Introduction

Correctness of the algorithms for constructor and kind judgment can easily be seen to reduce
to correctness of the algorithm for constructor equivalence. Since the algorithms of the previous
chapter are sound, it suffices to prove completeness of the constructor equivalence algorithm (i.e.,
ifI'F Ay = Ay K then I'> A & Ay it K) and that this algorithm will terminate with an answer
for all well-formed inputs.

It is instructive to see why the direct approach of proving completeness by induction on the
derivation of I' - A1 = As :: K fails. We immediately run into trouble with such rules as Rule 2.37:

rrA=A"2K'-K" TFA=A K
Fl—AlAllEAQA% o K"

Here we would have by the induction hypothesis that T'p A < A" :: K'—»K" and > A; < A} : K.
However, there appears to be no way to show directly that these imply I'> A; A} & Ag AL i@ K"
because the algorithm proceeds via head-normalization rather than comparing the applications
component-wise.
Similarly, in Rule 2.44
'+ A:S(B)

I'-A=B:S(B)

there is no way to apply the induction hypothesis and hence no way to show the conclusion.

Coquand [Coq91] proves the completeness of an equivalence algorithm for a lambda calculus with
IT types using a form of Kripke logical relations. The key idea is to prove completeness by defining
a relation (here called logical equivalence) which not only implies algorithmic equivalence, but also
satisfies stronger properties. For example, if two functions are logically related then their application
to logically-related arguments yields logically-related applications. By proving inductively that
declarative equivalence implies logical equivalence, we have strengthened the induction hypothesis
enough to allow cases such as Rule 2.37 and 2.44 to go through.

I have substantially extended this approach to handle singleton kinds, as well as pairs and
subkinding. However, one essential obstacle remains: declarative equivalence is transitive and
symmetric, which requires showing that logical equivalence is transitive and symmetric. Since

81

logical equivalence is defined in terms of the equivalence algorithm, this requires showing that
algorithmic equivalence is both symmetric and transitive. Surprisingly, this is not at all obvious.

The difficulty is that the presentation of the algorithm is inherently asymmetric. Because of
dependencies in the kinds, at various points one must make a choice between one of two provably
equal kinds. For example, verifying

I'v A © Ay YanK' K"

requires checking that
I'> 7T1A1 =4 7r1A2 s K’

and either
I'> 7T2A1 = 7T2A2 u [7T1A1/04]K”

or
FI>7T2A1 -~ 7T2A2 o [7T1A2/O[]K”.

(Similar alternatives also appear in the definitions of path equivalence and kind equivalence as
well.) Although the kinds [A1 /a]K"” and [mA2/a]K"” will be provably equivalent, each choice
leads to different definitions in the context and may cause head-normalization to take an entirely
different path. If the algorithm is correct then it should end up with the same answer in either
case, but I am unable to give a direct proof that this is true.

The algorithm could be forced to be more symmetric by adding conditions, e.g., by specifying
that

v A & Ay oK' . K"

requires
FDWlAl =4 7r1A2 s K’
and
I'> 7T2A1 = 7T2A2 u [7T1A1/04]K”
and

FI>7T2A1 -~ 7T2A2 o [7T1A2/O[]K”,

but the problem of showing transitivity remains.

In §5.2 I give a revised form for the constructor and kind equivalence algorithms, designed
specifically to make both transitivity and symmetry obvious. This leads to a nonstandard form of
Kripke-style logical relation, described in §5.3; using this I show the revised equivalence algorithms
are terminating and complete with respect to MILj equivalence. Finally, since the revised algorithm
requires redundant bookkeeping, I show in §5.4 that the correctness of the revised algorithm implies
the completeness and termination of the equivalence algorithm presented in the previous chapter,
which forms the basis of the TILT implementation. It follows that all kind and constructor-level
judgments are decidable.

5.2 A Symmetric and Transitive Algorithm

5.2.1 Definition

The way to build transitivity into constructor and kind equivalence is to maintain two provably
equal typing contexts and two (provably equal) classifying kinds. Then the form of algorithmic

82

constructor equivalence becomes
Iy DAl t Ky <=>F2[>A2 = Ko.

Although the expectation is that the algorithm will only be applied when I'y - A; :: K; and
[y F Ay :: Ko, this is not a comparison of judgments but merely suggestive notation for a 6-place
relation. The algorithm takes these 6 inputs and returns success or failure (or fails to terminate).

The advantage of this formulation is that arbitrary choices disappear. For example, the com-

parison
A Ea::K{.Ké’ STy As Ea::Ké.Ké’

between two pairs of constructors checks
I'iemA; K{ STy mAs Ké
and
I'>mA; [WlAl/a]K{, S Ty mody i [7T1A2/04]Kg.

Both of the possible substitutions are used, in a symmetric fashion.
Similarly the algorithmic path equivalence relation takes the form

I'iopi T Ky < Db pe T Ko,
and algorithmic kind equivalence becomes
'Ky Ty K.

The full definitions of the revised algorithm are shown in Figure 5.1. (The kind extraction,
weak head reduction, and weak head normalization judgments are unchanged.) It is simple to show
that these definitions have the required behavior:

Lemma 5.2.1 (Algorithmic Symmetry and Transitivity)
1. IfF1DA1 2 Ky <=>F2[>A2 2 Ko then FQDAQ Ko <=>F1[>A1 t K.

2. IfF1DA1 ::K1<=>F21>A2 Ko anngbAg ::K2<=>F31>A3 i K3 then
N> A Ky e I'sp Az 0 K3.

3. IfFll>p1TK1 (—)FQDPQTKQ then F2[>p2TK2(_>F1[>p1TK1.

4. IfFll>p1TK1 (—)FQDPQTKQ andFQDPQTKQ(—)ngpgTKg then
Fiopr T Ky < T3eps3 T Ks.

. IfF1DK1<=>FQI>K2 then I'o > Ky & T'y > K.
6. IfF1DK1<=>FQI>K2 andF2>K2<:>F31>K3 thenF1>K1<:>F31>K3.

Proof: By induction on derivations of the algorithmic judgments (i.e., by induction on the exe-
cution of the algorithms). |

I have made two changes to the constructor equivalence algorithm beyond those necessary to
maintain symmetry and transitivity.

e When comparing two constructors with singleton kinds, the algorithm compares the two
constructors at kind T rather than short-circuiting with immediate success.

83

e When comparing two constructors with II kinds, the algorithm also compares the domain
kinds of the two II kinds.

Intuitively these additions are redundant, but they are useful when proving the existence of normal
forms of constructors (see §5.5). If this algorithm is sound, complete, and terminating, then it will
remain so when these redundant extensions are omitted. However, the converse is less obvious;
a priori these extra tests might cause the algorithm to become nonterminating on some inputs.
Hence proving the correctness of the algorithm as shown in Figure 5.1 is a stronger result.

5.2.2 Soundness

As before, path equivalence computes extracted kinds of paths, but here it extracts the kinds of
both paths:

Lemma 5.2.2
[fFIDAITKl HFQDAQTKQ then F11>A1TK1 a’ndFQDAQTKQ.

Then proof of soundness for the revised algorithms is very similar to the proof for the original
algorithmic equivalence:

Theorem 5.2.3 (Soundness)
1. If" Fl EFQ, Fl |‘K1 EKQ, Fl "Al :ZKl, F2 "AQ :ZKQ, andF1 I>A1 o K1 <=>F21>A2 o K2
then Fl F A1 = A2 o Kl.
2. Ifl—Fl EFQ, Fl I—pl o Ll, FQ l—pg ::LQ, andFlbplTKl (—)FQDPQTKQ then
Fll_KlEKQ G/I’ldFl "pl =p2 i Kl.

3. Ifl—Fleg, Fll_Kl, FQI_KQ, andF1>K1<:>F2>K2 then Fll—KlEKg.

Proof: Parts 1 and 2 follow by simultaneous induction on the algorithmic judgments and by
cases on the last step in the algorithmic derivation. I omit the proof of part 3, which follows from
part 1 and induction.

1. e Case: I'1p A1 : T I's> Ay i T because I'y > Ay | p1, I'o> A || po, and
iopr Tt T Teppy T T
(a) By Corollary 44.7, T1 - Ay =p; = T
(b) and I's F Ag = py :: T.
(c) By Corollary 3.2.8 I'y F Ay = py :: T.
(d) By Validity, 'y Fpy = T
(e) and 'y F po :: T.
(f) By the inductive hypothesis, I'; - p; = po :: T.
(8)
e Case: I'y > Ay :: S(By) & I'y > Ay it S(B3) because I'y > Ag | p1, o> Ay | po, and
T'iepir T T Teppy T T.

By symmetry and transitivity of equivalence therefore, I'y F A; = Ay :: T.

(a) As in the previous case, I'1 - Ay = Ay = T.

(b) ThenI'y F Ay = Ay :: S(A4)

(c) but I'y H Ay = By :: T by inversion of kind equivalence,
(d) soT'y F Ay = Ay :: S(B1) by subsumption.

84

Algorithmic constructor equivalence
I'>A T Iy>A T

Iy I>A1 o S(Bl) &Iy DAQ o S(BQ)
1> A oKL K & Top Ay i Tla K. KY

I'y> A YanK K ©Typ Ay i SanK).KY)

Algorithmic path equivalence
[>T T Texbt T
I'i> x 1 T>T—>T <+ I'yr x +TT—-T
r -1+T—-T->T+ Iy —-1T->T->T
Fl > o T Fl(a) — FQ >« T FQ(O()
[y Fpp Ay 1 [A/o]KT <
[y b po Ay 1 [A2/a] Ky
Lyompr T K] < Topmipe T K)
Fl F T2P1 T [Wlpl/a]K{' <~
[y F mopy 1 [mip2/a] K3

Algorithmic kind equivalence
I'iocT<IyrT
r'i> S(Al) Sy S(AQ)
I'yo oK) .KY < To> HanK).KY
' >Ya:K{ . K] & Ty> YooK KY)

ifF11>A1 ilpl and F21>A2 upg

and 'iop T T Iepp, Tt T
ifFll>A1 Upl and FQDAQ Upg

and 'iop T T Iepp, Tt T
i, aKiv Ay K & Ty, anKi> Ao KYf

and 'y > K| & Ty K))
if Iy >7T1A1 i K{ &Iy >7T1A2 i Ké, and

I'y>mA; [WlAl/a]Kil S opmods i [7T1A2/O[]Ké’

always
always
always
always
if Ty > py 1 Hae:K!LK" ¢ Ty o py 4 Hae: Kb K,
and 'y > Ay it K| & Ty Ay i K.
if Ty b p1 1 SanK! K" < Do b py 1 SasKL K.
ity opy 1T XK K < Typpe t Zan Ky Kl

always

oA o T Ihr Ay T

if ' Ky & T'yp> Ky and Fl,a::K{ > Ki’ -~ FQ,O{::Ké > Kél
ifI'y> K{ < Typ Ky and T, oK > K| < Ty, 0Ky > KY

Figure 5.1: Revised Equivalence Algorithm

85

Case: I'1 > A :: o K| . K & Ty Ay i lla: K5. Kb because

I',azK{pAja: K ©Ty,a:Kip Ay K and Ty > K| < To> KJ.

(a) Since FT'y, auK] =Ty, a: KJ,
(b) I', K| F Ay KT,
¢) I'y,anKh - Ay it K,

)
(c)
(d) and I'y, e K| + K{ = K7,
(e) the inductive hypothesis applies, yielding ', a:: K] - A = Az «
(f) Thus by Rule 2.42, Ty - A = Ay : Tla: K| . K.

Iy Ay YanK| K] © Typ Ay i: S K. KY because

IyomA o K & Te>mAg i Kby, and

I'i> 7T2A1 i [WlAl/a]K{, Sy 7r2A2 i [WlAg/a]Kg.

(a) Since I'y F mA; : K]

(b) Ty FmAg 2 Kb,

(c) and by inversion I'1 - K| = K,

(d) by the inductive hypothesis we have I'y F m A; = m A2 = K.
(e) By functionality, I'y - [m A1 /o] K] = [mAs/a] K.

(f) Then I'y F mo Ay = [Ay /a)KY

N N
=]

) and Ty F ma Ay 12 [Ag/a] K.

By the inductive hypothesis, I'y F mA; = mpAs = [m A1 /o] K.
By Corollary 3.2.8 and Rule 2.41, 'y - A} = Ag : Y K| . K.
Case: '1pb; 1 T < T'ob; T T.

By Proposition 3.1.1, I'y = ok. Thus by Rule 2.33, 'y - b; = b; :: T.
Case: I'1>pa T (a) & Ie>atDy(a).

By Validity and Rule 2.33, I'y F a = «a :: ['1 ().

Case: Ty >py Ay 1 [A1/a]LY < To>po A 1 [A2/a]LY because

—~
—
~—

Iy opy T Ha L)LY < To>py T M L. LY and Ty > Ay o L) & To> Ag i

(a) By Proposition 4.4.8, 'y - py ©: K| —K{,

(b) T1 + Ay = KT,

(c) ToFpo:: Ki—KY,

(d) and I's F Ay 2 KJ).

(e) By the inductive hypothesis, I'; F Ha:: LY.L = la:: L} LY.
(f) and T'y - py = po s Hau: LY. LY.

(g) By Lemma 4.4.2, 'y - S(py :: Ha: L. LY) < K| =K/

(h) and I's F S(pg == ML, LY) < Ki— K.

(i) Thus Iy - K! < L/

(j) and Iy - K, < LY.

(k) By subsumption then, I'y - A 2 L}

(1) and Ty = Ay iz L.
(m) The induction hypothesis applies, and so I'y = A = Ag :: L.
(n) Thus I'y F py A = po A == [Ar /)L

(o) and by functionality I'; F [A;/a]L = [A2/a]Lf.

86

. e
. Kl .

e Case: 'y >mpr T K1 & o> mips 1 Ko because
Tiopr T XacK 1. Ly < Tabpo T Ya:Ks. Lo
By Proposition 4.4.1 the inductive hypothesis applies,
so1 FYoau:K.Li = Ya::Ky.Lsy
and I'y F p1 = po i Ba: K. L.
Thus I'y F mp1 = mipo it Ky

_ T~ TS
c Ao T
~—

and by inversion, I'y - K1 = Kos.

e Case: I'y b mopy 1 [mip1/a]Ly <> Ty > mopy T [m1p2/a]Ls because

10p1 T XanK . Ly <> Do ps 1 Xai:Ko.Lo.

By Proposition 4.4.1 the inductive hypothesis applies,
so' FYauK .Li = Ya::Ky. Ly

and I'y F p1 = pg i Ba: K. L.

Thus I'y F mop1 = mopg :: [mip1/a]Ly.

s a2aa s 2@
N N N N’ N’ N

Fl [TPl = T1p2 K1

—
lms]

So by functionality, I'y F [m1p1/a|Ly = [r1pe/a]Ls

5.3 Completeness of the Revised Algorithms

To show the completeness and termination for the algorithm I use a modified Kripke-style logical
relations argument. The strategy for proving completeness of the algorithm is

1. Define the logical relations;
2. Show that logically-related constructors are related by the algorithm;

3. Show that provably-equivalent constructors are logically related.

From completeness it follows that the algorithm terminates for all well-formed inputs.

I use A to denote a Kripke world. Worlds are contexts containing no duplicate bound variables;
the partial order C on worlds is simply the weakening ordering given in Definition 3.1.4. The logical
relations I use are shown in Figures 5.2, 5.3, and 5.4.

The logical kind validity relation (A; K) valid is indexed by the world A and is well-defined by
induction on the size of kinds. Similarly, the logical constructor validity relation (A; A; K) valid is
indexed by a A and defined by induction on the size of K, which must itself be logically valid.

In addition to validity relations, I have logically-defined binary equivalence relations between
(logically valid) types and terms. The unusual part of these relations is that rather than being
a binary relation indexed by a world, they are relations between two kinds or constructors which
have been determined to be logically valid under two possibly different worlds. Thus the form of
the equivalence of kinds is (A1; K1) is (Ag; K3) and the form of the equivalence on constructors is
(A1; A1; Kq) is (Ag; Ag; K). With this modification, the logical relations are otherwise defined in a
reasonably familiar manner. At the base and singleton kinds I impose the algorithmic equivalence
as the definition of the logical relation. At higher kinds I use a Kripke-style logical relations
interpretation of II and X: functions are related if in all pairs of future worlds related arguments
yield related results, and pairs are related if their first and second components are related.

87

(A; K) valid iff

1. - K=T
— Or, K = S(A) and (A; 4; T) valid
— Or, K =la:K'.K" and (A; K') valid and VA’ D A, A" D A if
(A5 A K') is (A”; Ag; K') then (A5 [A1/a)K") is (A”;[Ag/a]K")
— Or, K = Ya:K'.\K" and (A; K') valid and VA’ D AJA” D A if
(A"; A1; K') is (A”; Ag; K') then (A';[A1/a]K") is (A";[A2/a]K")
(A1; Kyp) is (Ag; Ky) iff

1. (Al; Kl) valid and (AQ; KQ) valid.
2. And,
- KlzTa,nngzT
- OI‘, K1 = S(Al) and K2 = S(AQ) and (Al;Al;T) is (AQ;AQ;T)
— Or, K; =a:K|.K! and Ky = Ha: K. K and (A1; K{) is (Ag; K5) and
VA’I 2 Al,AIQ 2 AQ if (All,Al,K{) is (A&,AQ,K&) then
(A1;[A1/a]KY) is (Aj;[Ag/a]KY)
— Or, K; = Ya:K{.K{ and Ky = Ya:Ky. Ky and (A; K]) is (Ag; K)) and
VA] 2 Ay, A) O Ay if (Af; Ay K7) is (AY; Ao Kj) then
(A1;[A1/a]KY) is (Aj; [Ag/a]K)
(Al;Kl S Ll) is (AQ;KQ S Lg) iff

1. VA’I 2 Al,AIQ 2 AQ if (All;Al;Kl) iS (AIZ;AQ;KQ) then (All;Al;Ll) iS (Aé;AQ;Lg).

Figure 5.2: Logical Relations for Kinds

With these definitions in hand I construct derived relations. The relation (Ay; Ky < L) is
(Ag; K9 < Ls) is defined to satisfy the following “subsumption-like” behavior:

(A1; A1 Ky) is (Ag; Ag; Ko)
(A Ky < Ly) is (Ag; Ko < Ly)
(A5 Ag; Ly) is (Ag; Ag; Lo)

Finally, validity and equivalence relations for substitutions are defined pointwise.

The first property to be checked is that the logical relations are monotone (preserved when
passing to future worlds), which corresponds to the weakening property for the algorithmic relations.

Lemma 5.3.1 (Algorithmic Weakening)

1.

IfToA~ B and " DT thenT'> A~ B

IfT>AlpandI’ DT thenT'>A | p.

IfT> At K and " DT thenI'> AT K.

IfT1> A =Ky ©Top Ay i Ko, Ty DTy, and T, D Tg, then I > Ay = K1 & Th > Ay it Ko.
IfTib A 1 Ky ¢ Tov Ayt Ko, T DT, and Ty D Ty, then Ty b A, 1 Ky ¢3 Ty» Ay 1 Ko

88

e (A;A; K)valid iff

1. (A; K)valid
2. And,
—K=Tand AvA:T< A>A:T.
— Or, K =S(B) and (A; A;T) is (A;B;T).
— Or, K = lTa:K'.K", and VA" D AJA" D Aif (A';By;K') is (A”; By; K') then
(A'; ABy; [Bi/a]K") is (A"; A By;[Ba/a]K").
— Or, K =Ya:K'". K", (A;mA; K') valid and (A;mA; [m A/a]K") valid

[(Al;Al;Kl) is (AQ;AQ;KQ) iff

1. (A3 Ky) is (Ag; Ky)
2. And, (A; Ay Kyp) valid and (Ag; Ag; Ko) valid
3. And,
—Ki=Ky=Tand AijvA; : T Ay Ayt T.
— Or, K1 =8S(By1), K2 =S(Bs), and (A1;A1;T) is (Ag; A2; T)
— Or, Ky =a:K|.K{, Ky = Ha:K). K/, and VA] D Ay, AL D Ay if
(A}; B1; K7) is (Al; Be; Kb) then
(A%; A1 Bi; [Bi/o]KY) is (A%; Ay By [Ba/a]K7).
— Or, K; =Ya:K|. K, Ky = Ya:K).KY, (A1;m A1 KY) is (Ag;mAg; Kb) and
(Aq;mAy; [mA/a)KY) is (Ag;maAg; [m1 Az /a]KY)

Figure 5.3: Logical Relations for Constructors

o (A;v;T) valid iff
1. Va € dom(T"). (A;ya;v(I'(«))) valid.
o (Ap;y;I) is (Ag;ye;Ia) iff

L. (Aq;y;T) valid and (Ag; ye; ') valid
2. And, Va € dom(I'y) = dom(I'y). (Ar;via;71(Ti(@))) is (Ag;yaa; 2 (T2 (@))).

Figure 5.4: Logical Relations for Substitutions

89

6. IfF1DK1 <:>F21>K2, Fll D) Fl, and F,2 D) Fg, then FIIDKl <:>F,21>K2.

Proof: By induction on algorithmic derivations. |

Lemma 5.3.2 (Monotonicity)
1. If (Ay; Ky) valid and A} O Ay then (Al; K;) valid.

2. If (Al;Kl) is (AQ;KQ), All 2 Al, and Al2 2 AQ then (All,Kl) is (A%,Kg)

3. If (Al;Kl S Ll) is (AQ;KQ S Lg), All 2 Al, and AIZ 2 A2 then
(A3 K1 < L) is (Ay Ky < Ly).

If (Ay; Ay Ky) valid and A} D Ay then (Al; Ay Ky) valid.

If (A1; A1 Ky) s (Ag; Ags Ko), Al D Ay, and AL D Ay then (A]; Ar; K1) is (AL; Ag; Ko).
If (A;~;T) valid and A" O A then (A';~;T') valid.

If (A;yi;) is (A2sy2502), A 2 Ay, and Ay D Ay then (Aj;yi;) s (A y2;12)

NS S

Proof:

1-5. By induction on the size of kinds.
6—7. By the previous parts.

The logical relations obey reflexivity, symmetry, and transitivity properties. The logical rela-
tions were carefully defined so that the following property holds:

Lemma 5.3.3 (Reflexivity)
1. (A;K)valid if and only if (A;K) is (A; K).
2. (A; A; K) valid if and only if (A; A;K) is (A; A K).
3. (A;v; 1) valid if and only if (A;~;T) is (A;y;T).

Proof: The “if” direction is immediate from the definitions of the logical relations, so we only
show the “only if” direction.

1. By induction on the size of K. Assume (A; K) valid.

e Case: K = T. Follows by definition of (A; T) is (A;T).
e Case: K = S(B).

(a) (A;B;T) valid.

(b) AbB:T< ArB:T.

(c) Then (A; B;T) valid

(d) and (A;B;T) is (A; B;T).

(e) Therefore (A;S(B)) is (A;S(B)).
e Case: K =Ila:K'.K".

90

(e) By (A;Ila:K'.K") valid we have (A';[A1/a]K") is (A";[As/a]K").
(f) Therefore (A;Ma:K'.K") is (A;Ha:K'.K").

e Case: K = Yau:K'.K".
Same proof as for II case.

2. By induction on the size of A. Assume (A; A; K) valid. Then (A; K) valid so that by
part 1, (A;K) is (A K).
e Case: K =T.
(a) (A;A;T)valid implies AbA:=T< Ap A T.
(b) Therefore, (A; A;T) is (A; A;T).
e Case: K = S(B).
(a) (A;A;S(B))valid implies A>bA:: T< A>B:: T.
(b) By Lemma 5.2.1, AbA:T< Ap AT,
(c) so (A;A;T) valid
(d) and (A;A;T) is (A;4;T).
(e) Therefore (A; A;S(B)) is (A; A;S(B)).
e Case: K =Ila:K'.K".
(a) Let A’ A" D A and assume (A'; By; K') is (A”; By; K').
(b) Then (A’; ABy;[B1/a]K") is (A"; A By;[By/a)K").
(c) Therefore (A; A;lla: K'.K") is (A; A;Ila: K'.K").
e Case: K = Yau:K' . K".
(a) Then (A;m A; K') valid
(b) and (A;meA;[mA/a]K") valid.
(c¢) By the inductive hypothesis, (A;mA; K') is (A;m A; K')
(d) and (A;mA;[mA/a]K") is (A;meA;[mA/a)K").
(e) Therefore (A; A;Xa:K'.K") is (A; A;Xa:zK'.K").

3. (a) Assume (A;v;I") valid.
(b) Let 2 € dom(T") be given.
(c) Then (A;vyz;y(I'z)) valid.
(d) By part 2, (A;yz;y(I'z)) is (A;yz;y(I'z)).
(e) Therefore (A;y;T) is (A;v;).
|

I next give a technical lemma which relates logical equivalence of kinds to logical subkinding.
An easy corollary of this lemma is the following rule:
(A3 A Ky) s (Ag; Ag; Ko)
(Al;Kl) is (AQ;KQ)
is is
(Al;Ll) is (AQ;LQ)

(A1;A1;Ly) is (Ag; Ag; Lo)

91

Lemma 5.3.4
If (Al;Ll) is (AQ;LQ), (Al;Kl) is (Al;Ll), and (AQ;KQ) is (AQ;LQ) then
(Al;Kl S Ll) is (AQ;KQ S Lg)

Proof: By induction on the sizes of kinds.

Assume (Al;Ll) is (AQ;LQ), (Al;Kl) is (Al;Ll), and (AQ;KQ) is (AQ;LQ).

Let (A, AL) D (A1,A) and assume (A; Ay; Kq) is (Al; Ag; Ka). Then (A3 K7) is (Al Ky).
e Case K1 = Ko = L1 = Ly =T. (A]; A1;T) is (Al; Ay; T) by assumption.
e Case K1 = S(Bl), K2 = S(BQ), L1 = S(Cl), and L2 = S(Cg)

By weakening, A1>B; : T< Aj>Cy = T
and A5> By i T < Ay>Cy i T

and Al>Cy = T ApCy : T
Similarly, Al > A4; = T < Al >B; = T,
AL> Ay T < AL By T, and

and Alp Ay =TS AL> Ay = T.

Thus by transitivity, A} > A4; = T< Al >Cy = T
and Ay> Ay = T < AL>Cy T
Therefore (A'; A1;S(CY)) valid,

(AIZ, AQ; S(CQ)) valid,

11. and (A}; A1;8(Ch)) is (A); A2; S(C2)).

© ® N o g W

,_.
e

o Case: K| =lau:K|. K|, Ky = o::K).KY, L1 = Ha:L).LY, and Ly = Ile:: L. LY.
Let (AY,A%) D (A, AL) and assume (AY; By; L)) is (AL; By; LY).

By monotonicity, (AY; K1) is (A%Y; KJ),

(AT LY) is (A% Ly),

(AT; K1) is (AY;L}), and

(A% K3) is (Ag; L).

By reflexivity and the inductive hypothesis, (A; L] < K1) is (Al; L, < K}),
(AT; Ly < K7) is (Af; L < LY), and (A%; Ly < Kj) is (Aj; Ly < L),
Thus (AY; B1; K1) is (AL; By; KJ).

8. Since (A]; By; L)) is (AY; By; L)) and (Af; Bo; L) is (Af; By; L),

9. we have (AY; By; K1) is (A]; By; L)),

10. and (AY; Bo; KY) is (AL; By; LY).

11. SO, (Alll,Al Bl; [Bl/a]K{') iS (Ag,AQ BQ; [BQ/O(]KQ’),

12. (AT;[B1/alKY) is (AY;[Bi/a]Lf),

13. (AY;[Bi1/a]LY) is (A3;[B2/a]Ly),

14. and (Ay;[B2/alKy) is (Ay;[B2/alLy).

15. By the inductive hypothesis,
(AT; [Bi/e]KY < [Bi/e]Ly) is (A%;[By/a]Ky < [Bz/a]Ly).

AR Al O e

=

92

16.
17.
18.

Thus (AY; Ay By; [B1/a)LY) is (Al; A By; [Ba/a)Lh).
Similar arguments show that (A’; Ay; e:: LY. LY) valid and (A; Ag; a:: L. LY) valid.
Therefore (A}; Ay; T LY. LY) is (Al; Ag; Tl LY. LY).

o Case: K| = Xau:K|.K{, Ky = Ya:Ky.KY, L; = Ya::L.LY, and Ly = Ya::L}. LY.

—_ =
_ O

12.
13.
14.

© NS W N

(A;m A KY) is (AL mAg; KD).

Also, (A}; K1) is (Ay; K3),

(Ap; L) is (Ah; L)),

(A} K1) s (A} LY),

and (A5 K3) is (A5; Ly).

By the inductive hypothesis, (A}; K| < L)) is (Al; K, < L)),

so (Al;m Ay L)) is (AL mAg; LYy).

By similar considerations, (A];[m1A1/a]KY) is (A};[m1A1/a]LY),
(Ay; [m2Az/alK3) is (AY;[mAz/a]LY),

and (Al;[m A1 /a]LY) is (Al;[m As/a]LY).

. By the inductive hypothesis,

(A};[mAr/al K < [mAy/a]LY) is (AY;[mAz/a]Ky < [mAz/a]Lh).
Since (Al;moAr; [mA1/a]KY) is (AL; moAg; [m As/a]KY),

we have (A];moAy; [Ar/a|LY) is (AL; moAg; [m1 Ag/a]LY).
Therefore (A}; Ay; Xac: LY. LY) is (AL; Ag; Xa::Liy. LY).

Symmetry is straightforward and exactly analogous to the symmetry properties of the algorith-
mic relations.

Lemma 5.3.5 (Symmetry)
1. If (Al;Kl) is (AQ;KQ) then (AQ;KQ) is (Al;Kl)

2. If (Al;Al;Kl) is (AQ;AQ;KQ) then (AQ;AQ;KQ) is (Al;Al;Kl).
3. If (Asy1; 1) is (Ag;y2;12) then (Ag;y2; o) is (Aryyis).

Proof: Parts 1 and 2 are proved simultaneously by induction on the size of kinds. Part 3 then
follows directly.

1. Assume (A1; K7) is (Ag; K3). Then (Aq; K;) valid and (Ag; Ko) valid.

e Case: K1 = Ko = T. Trivial.
e Case: K1 =S(4), Ko =S(42).

(a) (Al;Al;T) is (AQ;AQ;T).
(b) Inductively by part 2, (Ag; Ag; T) is (Ag; Ap; T).
(c) Therefore (Ay;S(As)) is (A1;S(A41)).

e Case: K| =la:K{.K{ and Ky = Ila:K}. K}

(a) (AI;Ki) is (AQ,K&) by (Al;Kl) is (AQ;KQ).

93

(b) Inductively, (Ag; K}) is (Ay; K7).

(c) Let Al D Ay and A}, D Ay and assume (A); Ag; Kb) is (A]; A K7).
(d) Inductively by part 2, (A}; A1; K1) is (Al; Ag; Kb).

(e) By (A1; K1) is (Ag; Ky) again, (A};[A1/a]lKY) is (A);[Az/a]KY)
(f) By the inductive hypothesis again, (A};[As/a]KY) is (Al;[A1/a]KY)
(g) Therefore, (Ag; oK. KY) is (A e K{.K{)

e Case: K| = Xa:K|.K! and Ky = Ya::K}.KY. Same proof as for II types.

2. Assume (Al;Al;Kl) is (AQ;AQ;KQ). Then (Al;Kl) is (AQ;KQ), (AI;AI;Kl)valid, and
(AQ; Ag; K2) valid.

By part 1, (Ag; K») is (Aq; Ky).

e Case K1 =Ky =T.
(a) Ajp At K1 < Ag> Ay i Ky
(b) By Lemma 5.2.1, Ag> Ay it Ko & A1 > Ayt K.
(c) Therefore (Ag; Ag; T) is (Ay; A1;T).
e Case K| = S(By) and Ky = S(B3).
(a) (A1;A1;T) is (Ag; Ag; T).
(b) By the inductive hypothesis, (Ag; As; T) is (Ay; A1;T).
(c) Therefore (Ag; As; S(B1)) is (Aq; Ar;S(Bs)).
e Case K; = llo::K{.K{ and Ky = la: K. KY.
(a) Let AL D Ay and A} D Ay and assume (Al; By; K3) is (Al; By; K7).
(b) By the inductive hypothesis, (A'; B1; K1) is (Al; By; KJ).
(c) Thus (A}; Ay By; [Bi/a]KY) is (AY; Az Ba; [Ba/a]KY).
(d) By the inductive hypothesis, (Al; As By; [Ba/a|KY) is (Al; A1 By; [B1/a]KY).
(e) Therefore (Ag; Ag; Tl K. KY) is (Aq; Ay e K. KY).
e Case K| = Xa:K|.K{ and Ky = Xa: K} KY.
(a) Then (Ay;mAp; K) is (Ag;m Ag; KY)
(b) and (Ay;meAs;[mAL/a]KY) is (Ag;meAsg; [mAs/a)KY).
(c) By the inductive hypothesis, (Ag; w1 Ag; KY) is (A1;m A KY)
(d) and (Ag;moAg; [m1Ag/a]KY) is (Ay;meAy; [mAr/a]KY).
(e) Therefore (Ag; Ag; XKy . KY) is (Ay; Ay Xan K .KY).

In contrast, the logical relation cannot be easily shown to obey the same transitivity property
as the algorithmic relations; it does hold at the base kind but does not lift to function kinds. I
therefore prove a slightly weaker property, which is nevertheless what we need for the remainder
of the proof. The key difference is that the transitivity property for the algorithm involves three
contexts/worlds whereas the following lemma only involves two.

Lemma 5.3.6 (Transitivity)
1. If (Ag; Ky) is (Ag;Ly) and (Ag;Ly) is (Ag; K2) then (Ap; K1) is (Ag; Ka).

94

2. If (A1; A1; K1) is (Ayg; Bi; Ly) and (Aq; By L) is (Ag; Az; Ka) then
(A3 A1 Ky) is (Ag; Ag; Ko).

Proof:

1. Assume (A1;Ky) is (Ay;L1) and (Ag; Ly) is (Ag; Ko). First, (Ay; K1) valid and
(AQ; K2) valid.

e Case: K1 =L =Ky, =T.
(A;T) is (Ag;T) always.
e Case: Ky =S(4;), L1 = S(By), and Ky = S(A2).
(a) Then Aj> A = T@Alel T
(b) and Ay > By = T Ay Ay i
(¢) By Lemma 5.2.1, Aj> A; = T & Ag >Ay 2T
(d) Therefore (A1;S(A1)) is (Agz;S(A2)).
e Case: K| =la:K{.K{, L1 = lla:L|.LY, and Ky = Ha: K. K.
() (A K s (ALY and (A L) is (A KY).
(b) By induction, (Ay; K7) is (Ag; KY).
(c) Let (A}, AL) D (A, Ag)
(d) and assume (A}; Ay; K1) is (Al; Ag; Kb).
(e) By Lemma 5.3.3, (Ay; K}) is (A K7).
(f) By monotonicity and Lemma 5.3.4, (A}; K] < K7) is (A}; K1 < L)).
(g) Since (Al; A1; K1) is (Al; Ay K7Y),
(h) we have (A]; A1; K7) is (Al; Ay; LY).
(i) Thus (A};[A1/a]K]) is (A};[A1/a]LY).
(j) Similarly, (A}; K1 < L)) is (AL; K) < KY).
(k) Then (A;Ay; L)) is (A; Ag; KD).
() So, (AL;[4/a]LY) is (Al [As/a]KY).
(m) By induction, (A];[A1/a]KY) is (AL; [As/a]KY).
(n) Therefore (Aq;Ma:K{.K{) is (Ag; oK, KY).
e Case: K = YauK|.K{, Ly = Xa:L|.LY, and Ky = Ya::K}). K.
Same proof as for II types.

2. Assume (Al;Al;Kl) is (Al;Bl;Ll) and (Al;Bl;Ll) is (AQ;AQ;KQ). Then
(A1; Ar; Ky) valid, (Ag; Ag; Ko) valid, (Ay; K1) is (A Ly), and (Ag;Ly) is (Ag; Ka). By
pa,rt 1, (Al;Kl) is (AQ;KQ).

e Case: K1 =11 =Ky =
(a) Ajp AT A>B =T
(b) and Ay > By = T Ag> Ay =
(¢) By Lemma 5.2.1, Aj> A; = T & Ag >Ay T
(d) Therefore (Ay; A1;T) is (Ag; Ag; T).
e Case: Ky =S(A)), Ly =S(B)), and Ky = S(4)).

95

o Case: K| =lla:K{.K{, Ly = la::L|.LY, and Ky = Ia: K. K.
) Let (AL, AL) D (Ar, Ay)

) and assume (A}; A} K1) is (Af; AL KD).

) Then by monotonicity (A}; K1) is (A}; L)) and (Al; L)) is (A}; KJ).

) By Lemma 5.3.4, (A]; K] < K{) is (A}; K] < L).

) By Lemma 5.3.3, (A}; A}; K1) is (A}; A} KY),

) so (A}; Aj; KY) is (A Ay LY).

) Thus (A}; Ay Ajs [} /]KY) is (A} By Ay (4] fa]LY).

) Similarly, (A}; K] < L) is (Ay; Ky < Ky),

) so (AY; Ay L) is (Ah; Ay K3).

) Thus, (A}; By Al [4}/a]LY) is (Ab; A, Ay; 4} /a]KY).

) By the inductive hypothesis, (A]; A; A} [A]/a]KY) is (AL; Ay AL [AL /o) KY).
) Therefore, (Aq; Ay; oK. KY) is (Ag; Ag; e K. KY).

ase: K = YauK|.K{, L1 = Xa:L|.LY, and Ky = Ya:K}). K.

(Aq;m A KY) is (Aq;m By L)

and (Ay;mBy; L) is (Ag;m Ag; KJ).

By the inductive hypothesis, (A1;m1A1; K1) is (Ag;mAg; Kb).

Similarly, (Ay;meAy; [m1A1/a]KY) is (Ay;meBy; [mi By /a)LY)

and (Aq;meBy; [By/a|Ly) is (Ag;meAsg; [m1Ag/a]KY).

By the inductive hypothesis, (Ay;meAy; [m1A1/a]KY) is (Ag;maAg; [As/a]KY).
Therefore, (A1; Ay Xan K| K{') is (Ag; Ag; X K. KY).

[]
’O“../Q?OA

~~ o~
oo
NN AN NG NI NN

—~
IS

|

Because of this restricted formulation, I cannot use symmetry and transitivity to derive prop-

erties such as “if (Ay;K;) is (Ag; Ko) then (Ay;K;) is (A1;K31)”. An important purpose of

the validity predicates is to make sure that this property does in fact hold (by building it into the
definition of the equivalence logical relations).

Definition 5.3.7
The judgment I' > Ay ~ As holds if and only if A1 and Ay have a common weak head reduct under
typing context I'; that is, if and only if there exists B such that I'> Ay ~* B and I'> Ay ~* B.

Note that this definition does not require that either constructor have a weak head normal form,
though if either constructor has one then they share the same one. The following lemma then shows
that logical term equivalence and validity are preserved under weak head expansion and reduction.

Lemma 5.3.8 (Weak Head Closure)
1. If T> A~ B then T'> E[A] ~ E[B]

2. IfFDAl ~ A2 then FDS[AI] ~ (‘:[AQ]

96

3. If (A; A; K) valid and A> A’ ~ A, then (A; A'; K) valid.
4. If (Al;Al;Kl) is (AQ;AQ;KQ), Al I>All ~ Al; and A2 I>A,2 ~ A2 then
(Al;All;Kl) is (AQ;A’Z;KQ).
Proof:

1. Obvious by definition of I' > A ~ B.
2. By repeated application of part 1.

3. Proved simultaneously with the following part by induction on the size of K. Assume
(A; A; K) valid and A A’ ~ A. Note that (A; K) valid.

o Case: K =T.
(a) AbA:T<o A>A:T.
(b) By the definition of the algorithm and determinacy of weak head reduction,
Ap AT Av A = T.
(c) Therefore (A; A’; T) valid.
e Case: K = 8S(B)
(a) Then AbA:T< AprB: T
(b) so by the definition of the algorithm and determinacy of weak head reduction
AbA' 2T A>B:T
c¢) which yields (A; A’; S(B)) valid
e Case: K =Ta:K'.K".

so by reflexivity and Lemma 5.3.4,

(A;[mA/a)K" < [mA'/a)K") is (A;[mA/a)K" < [mA'Ja]K").
(k) so (A;meA;[m A" /a]K") valid.

(1) Therefore, (A; A'; Xa: K'.K") valid.

97

4. Assume (A1; A1; Ky) is (Ag; Ag; Ko), Ar> A} ~ Ay, and Ay > A}, ~ Ay. First, note that
(A1; Aq; Kq) valid, (Ag; Ag; Ko) valid, and (A1; K7) is (Ag; K3). By the argument in
part 3, (A; A; Ky) valid and (Ag; AY; Ky) valid.

e Case: K1 =Ky =T.
(a) Ajp A1 i T Ag»> Ay i T.
(b) By the definition of the algorithm, A; > A} = T < Ay Al = T.
(c) Therefore (Ay; A};T) is (Ag; AL;T).
e Case: K| =S(B;) and Ky = S(Bz2).
(a) Then Aj> A} = T Ayp Ay T
(b) so Ajp Al = T Ay AL = T
(c) which yields (Ay; A};S(By)) is (Ag; AL; S(Ba)).
e Case: K| = lla:K|.K{ and Ky = [la: K. K.

a) Let Al D Ay and A, D Ay and assume that (A; By; K)) is (Al; By; KJ).
1 2 1 1 2 2
(b) Then (Ay; Ay By [Bi/a]KY) is (AY; Az Ba;[Ba/a]K3),
(c) By part 2 and an obvious weakening property, A} > A; By ~ A} B;
(d) and AIZ > A2 BQ ~ AIQ BQ.
(e) By the inductive hypothesis (A'; A| By;[B1/a|KY) is (Al; A By; [Ba /o] KY).
(f) Therefore, (Aq; A e K. KY) is (Ag; Ab; oK) KY).

e Case: K| = Xa:K|.K{ and Ky = Ya:K). K.
(a) Then (Ay;m A KY) is (Ag;m Ag; KY),
(b) (A1;m A K]) is (Ay;mAL K,
(c) (Ag;mAg; Kb) is (Ag;miAg; Kb,
(d) and by part 2, Ay >m A} ~m A,

(e) and Ag > m Al ~ 11 As.

(f) By the inductive hypothesis, (Ay;m Al K7) is (Ag;mAL; KJ),

(8) (Ayy;mAy; Ky is (A mAl; K,

(h) and (Ag;mi Ay K3) is (Ag;miAd; K3).

(i) Similarly, (A1;medy;[mAr/a]KY) is (Ag;maAz; [mAz/a] Ky),

() AppmeAl ~maAy,

(k) and Ag > moAl ~ moAs.

(1) By the inductive hypothesis again,

(Aq;meAl; [m AL a)KY) is (Ag; oAl [m Az /o] KY).
(m) But (Ay;K;) is (Ap; Ky) and (Ag; Ko) is (Ag; Ka),
n) so (Ag;[mAr/a]KY) is (Ag;[mA}/e]KY),
0) (Ag;[miAz/a]Ky) is (Ag;[mAy/a]Ky),
)
)

»n

p) and (A [m1 AL /alKY) s (As; [m Ah/a]KE).

By Lemma 5.3.4,

(Ag;[mAr/al K < [mA}/o]KY) is (Ag;[mAr/a]Ky < [mA)/a]lKy).
(r) so (Ap;maAl;[m AL /a]KY) is (Ag;meAL; [AL a)KY).

(s) Therefore, (A1; Al XanK{ . KY) is (Ag; AL Yo K. KY).

(
(
(
(

q

98

Following all this preliminary work, I can now show that equivalence under the logical relations
implies equivalence under the algorithm. This requires a strengthened induction hypothesis: that
under suitable conditions variables (and more generally paths) are logically valid/equivalent.

Lemma 5.3.9

1. If (Al;Kl) is (AQ;KQ) then Al > K & AQ > Ko.

2. If (Al;Al;Kl) is (AQ;AQ;KQ) then Al DAl K& AQ DAQ 2 K.

3. If (A;K)valid, Abpt K < A>p?T K, then (A;p; K) valid.

4. If (A1; K1) is (Ag; Ka) and Ay>pr T Ky <> Ao>pa T Ko then (Aq;pr; Ky) is (Ag;po; Ka).
Proof: By simultaneous induction on the size of the kinds involved.
For part 4, note that in all cases Al > D1 T K1 <~ Al >Dp1 T K1 and AQ > Do T K2 <~ AQ > D2 T K2 by
symmetry and transitivity of the algorithm, (Aj; K;) valid, and (Ag; K5) valid. Hence by part 3,
(Al;pl; Kl) valid and (Ag;pg; KQ) valid.

e Case: K =K =Ky =T.

1. A;>T & Ay > T by the definition of the algorithm.
2. (a) Assume (A;;A;;T) is (Ag; Ay; T).

(b) By the definition of this relation, A; > A; =t T & Ag»> Ay 2 T
3. (a) Assume (A;T) valid and

(b) AbptT T+ Avp1T.

(¢) By Lemma 5.2.2, A>p 1 T.

(d) Then A p | p because p is a path without a definition.

(e) so App:T < Avp:: T,

(f) Therefore (A;p;T) valid.
4. (a) Assume A1>p; 1T+ Ag>py T T

(b) and (A1;T) is (Ag;T).

(¢c) By Lemma 5.2.2, A;>p; 1T and Ay >py T T.

(d) Thus A;>py § p1 and Ay >ps || po.

(e) so Ajpp; =T Ay>py i T.

(f) Therefore (A1;p1;T) is (Ag;po; T).

e Case: K =8(B), K; = S(By), and Ky = S(B>).

a) Assume (A1; K7) is (Ag; K»).
b) Then by definition (Aq; By; T) is (Ag; By; T),
c) so AipB; 2T Ay Byt T

(a)

(b)

()

(d) Therefore, A >S(B1) < Ag > S(By).
)
)
)

2. (a) Then (A1;Ap;T) is (Ag; Ag; T).

(
(b Thus A11>A1 ::T<=>A2[>A2 = T.
(c) By the definition of the algorithm then, A; > A :: S(B1) & Ay Ay 1 S(B3)

99

3. (a) Assume (A;S(B)) valid,

By definition of the logical relations, A;> By :: T < Ag> By :: T.

(g) Therefore (Al,pl, S(By)) is (AQ;p% S(B1)).

o Case: K =Tla:K'.K", K| = la:K|.K{, and Ky = Ha:K)). K.

1. (a) Assume (Aq; oK. KY) is (Ag; oK) . KY).
(b) Then (Ay; K1) is (Ag; K3).
(c) By the inductive hypothesis we have Ay > K| < Ag > KJ.
(d) Now Ay,au:K{>at K| < Ag,a:Ki> a1 K.
(e) Inductively by part 4, (A, a::K{; o5 K7) is (Ag, a:Kb; a; KY).
(f) Thus (Ay,a=K{; KY) is (Ag, an:Kb; KY)
(g) By the inductive hypothesis, Ay, a:: K| > K < Ag, a: Ky > K.
(h) Therefore Ay > oK. K < Ag > Mo K). KY).
2. (a) Assume (Ay; Ay oK KT) is (Ag; Ag; o K. KY).
(b) Then (Aq;Ma:K[.KY') is (Ag; MoK, . KY)
(c) so as above, inductively by part 4 we have (A, a:K{;a; K]) is (Ag, a:K); a; Kb).
(d) Then (Aq,a:K{; Ay o; KY) is (Ag, a: Kb As a; KY)).
(e) By the inductive hypothesis again, Ay, a:K{> Ay« K < Ag,anKh> As o i KY.
(f) Therefore Ay > A :: Ia: Kl K S Ag> Ay i T Kl K
(a) Assume (A; K) valid
(b) and AppT K < AvpT K.
(c) Let A", A" D A
(d) and assume (A’; B'; K') is (A"; B"; K').
(e) Inductively by part 2, A'>B' : K' & A" > B" : K'.
(f) Thus using Weakening, A’ >p B' 1 [B'/a]K" <+ A" >pB" 1 [B"/a]K".
(¢) By (A; K) valid, (A% [B'/a]K") is (A" [B"/a]K").
(h) Inductively by part 4, (A’;p B';[B'/a]K") is (A";p B";[B" /a]K").
(i) Therefore (A;p; e K'.K") valid.
. (a) Assume (Ay; MoK KY) is (Ag;IMa:K).KY),
(b) and Ay > p; T oK. KY < Ag > po 1 oKy . KY.

3.

100

Let A} D A; and A, O Ay and assume that (A]; By; K]) is (A); Be; KJ).
Then (A} [Bi/alK}) is (Al [Ba/a]KY).

Inductively by part 2, Al > By :: K| < AL > By :: K,

and by Weakening, A > p; 1 Ha:K{. K] < AL po T e K). K,

so we have A} >py By 1 [B1/a]K] <+ AL >pe By 1 [Ba/a] K.

By the inductive hypothesis, (A};p1 By;[B1/a|KY) is (Al; pe By [Ba/a)KY).
Therefore (Ay;p; Mo K{.KY') is (Ag;pe; MoK, . KY).

e Case: K =YauK' K", K| = Ya:K{.K{ and Ky = Yo:K).KY.

1. The corresponding argument for the II case also applies here.

s aa T ®
N

o R

—~
N . e N e v v N T e e Y e N e e N

—
G

R s

=

[. =

Assume (Ay; A Yo K KY) is (Ag; Ag; Y K. KY).

Then (Ay;m A KY) is (Ag;m Ag; KY).

and (Ap;medAy;[mAL/a)KY) is (Ag;maAg; [mAs/a]KY).

By the inductive hypothesis, Ay >m Ay 2 K| < Ag>m Ay it K
and Ay > moA i [mAL/a]K] & Ag> oAy i [mAy/a)KY.
Therefore A > A; : an K. K & Ag> Ay i Do K). K.
Assume (A; K) valid,

and AvptT K < A>pT K.

By definition of the algorithm, A>mp 1t K' <+ A mpt K’
and A mop 1 [mip/a]K" < A map 1 [mip/a]K".

By the induction hypothesis, (A;mp; K') valid.

By Lemma 5.3.3, (A;mp; K') is (A;mp; K').

By (A; K)valid, (A;[mp/a]K") is (A;[mp/a]K").

Thus (A;[m1p/a]K") valid.

By the induction hypothesis again, (A; mop; [m1p/a]K") valid.
Therefore, (A;p; Xa:K'.K") valid.

Assume (Ap;XanK(. K{) is (Ag;Xa:K).KY),

and A; > p; T oK. K < Ay > py T B Ky K.

Then Ay >mpy T K] ¢ Ao > mipe T K

and Ay > mopy 1 [mip1/a]KY < Ag > mope 1 [mipe/a) K.

The inductive hypothesis applies, yielding (Aq;mip1; K1) is (Ag; mipe; K5)
and (Ay;mopr; [mip1/a]KY) is (Ag;mape; [mipe/a)KY).
Therefore (Ay;p1; oK KY') is (Ag;pe; Lo K. KY).

Finally we come to the Fundamental Theorem of Logical Relations, which relates provable equiv-
alence of two constructors to the logical relations. The statement of the theorem is strengthened
to allow related substitutions, in order for the induction to go through.

Theorem 5.3.10 (Fundamental Theorem)
1 IfT'F K and (Ay;71;T) is (Ag;ye; 1) then (A K) is (Ao v K).

101

2. If T'F Ky < Ky and (A1;y1;10) is (Ag;ye; ') then
(A Kr <mKs) is (A 7Ky < 72Ky), (A;mKy) is (Ag;72Ky), and
(Ap;11Ka) is (Ag;yeKa).

3. IfI'F K1 = Ky and (Aq;71;1) is (Ag;y2; 1) then (Ay;viKy) is (Ag;y2Ko),
(A7 K1) is (Ag;72K1), and (Ap;iKa) is (Az;72Kz).

4. If D= A K and (A ;1) is (Ag; ;1) then (A A;viK) is (Ag; oAy 12 K).

5. IfTF Ay = Ayt K and (Ay;y;T) is (Ag;ye; 1) then (Ars 1A viK) is (Ag; Ay K),
(A 1A K) is (Ag;yeAz;12K), and (Ar;v1A2; 1K) is (Ag;y2As;12K).

Proof: By simultaneous induction on the hypothesized derivation.
Note that in all cases, (A1;v1;0) is (Aq;y1;T) and (Ag;y2;T) is (Ag;ye; T).

Kind Well-formedness Rules: ' - K.

e Case: Rule 2.7.

1. ’le = ’}’QT =T.
2. (Al;T) is (AQ;T).

e Case: Rule 2.8.
1. By the inductive hypothesis, (A1;y14; T) is (Ag;y2A4;T).
2. Therefore (A1;S(y14)) is (Ag;S(y24)).
e Case: Rule 2.9.
1. By Proposition 3.1.1, there is a strict subderivation I', a:: K’ F ok

2. and by inversion a strict subderivation I' - K.
By the inductive hypothesis, (A1; 71 K') is (Ag;yK').

bad

Let A} D Ay and A, D Ay and assume that (A]; Aj; 1 K') is (AL; Ag; v K').
Then by monotonicity (Al;v1[a—A1];T, a:K') is (AL yala— Ao T, a K').
By the inductive hypothesis, (A]; (y1[a—A1])K") is (Al; (y2[a—A2]) K).
That is, (AL; [4; /e](na—sa]) K) s (Ab;[As/a]((ralara]) K")).
Therefore, (A1;y1(Ila:K'.K")) is (Ag;ye(Ha::K'.K")).

@ NS g

e Case: Rule 2.10. Just like previous case.

Subkinding Rules: I' - K; < Kj. In all cases, the proofs that (A1;y1 K1) is (Ag;v2K;) and
(A; 11 K32) is (Ag;y2K>) follow essentially as in the proofs for the well-formedness rules.
Let A} D Ay and A, O Ay and assume (A'; By;71 K1) is (AL; Bo;v2Ky).

e Case: Rule 2.11. K; = S(A) and Ky = T. By monotonicity and the definitions of the logical
relations.

e Case: Rule 2.12. K; = S(A;) and Ky = S(Ag), with '+ A; = Ay :: T.

1. By the inductive hypothesis we have (A;v1A9; T) is (AL;v2A49;T),

102

(A1;mAR T) is (A} 11Ay T),

and (A% 72A1; T) is (A% 7242 T).

Thus (A};S(7142)) is (A% S(1242)),

(A1;8(7141)) is (A3 8(1142)),

and (A%; S(1241)) is (A S(1242)).

so by Lemma 5.3.4, (A};S(7141) < S(1142)) is (AL;S(1241) < S(7242)).
Therefore (A'; B1;S(7142)) is (AL; B2; S(y242)).

®© NS Otk W

e Case: Rule 2.13. K1 = K, =T.
Trivial, since 4T = 3T = T and (Ay;T) is (Ag;T).
e Case: Rule 2.14. K; = [lo::K{.K{ and Ky = Ila:K). K} with I' - K} < K| and
oK) - K < KJ.
1. Let AY D A} and A} D Al, and assume (AY; B{;y1 K}) is (AL; B); v KY).
2. By the inductive hypothesis, (A}; 1K) <y K7) is (ALK < % Ki).
3. so (A}; Bi;mKY) is (Ag; By;72K7)
4. and (AY; By By; (na—=Bi])KY) is (Ag; By By; (y2[a— By KT).
5. By monotonicity, (AY;yi[a—B]; T, a::Kb) is (A yala— BT, a: KD).
6. By the inductive hypothesis again,

(AT (nla—=BI)KY < (ma—=Bi])K3) is (Ag; (ye[a—=By]) KT < (y2[a—Bs]) K3),

so (A7; B1 By; (mila= B1))Ky) is (Ag; Bz By; (v2]a— By K3).
8. Thus (Al; By;v1(Ha::K5.KY)) is (AL; Bo;ye (e K. KY)).

=

e Case: Rule 2.15. K} = Xa:K/|.K{ and Ky = Ya:K). K with I' - K] < K}, and
I'oauK| F K < K.

By the inductive hypothesis, (A]; 11 K] < v1K)) is (A1 K| < v K)).
Thus (AII;WIBl;’YlKé) iS (Aé;'ﬂ—lBQ;’)’QKé).
Now (Al;mi[a—m B1];T, a:K]) is (AL ye[a—m Bal; T, e K7)

vl W N

Since (Al; moB1; (m[a—mB1])KY) is (AL; moBa; (ye[a—m1 Ba]) KY),
7. (AII;WQBl;(’yl[aHﬁlBl])Kg) is (A%;WQBQ;(’)’2[0{’—>7T132])Ké,).
8. Therefore, (Al; B1; 1 (Ba: K. KY)) is (Al; By vy (Xan K. KY)).

(A%; (re[a—=m Ba]) K < (y2[er—=m1 Ba]) K3)).

&

Kind Equivalence Rules: I' F K; = K.
It suffices to prove that if I' - Ky = Ky and (Ay;y1;0) is (Ag;y9; ') then

(A; 11 K7) is (Ag;y2K>), because we can apply this to get (Ag;y2K1) is (Ag;y2Ka), so
(A; 11 Ky) is (Ag;y2Ky) follows by symmetry and transitivity. A similar argument yields

(A;mKz) is (Ag;yeKy).

In all cases, the proofs that (A1;v1 K1) is (Ag;v2Ky) and (Ap;71Ky) is (Ag;y2Ky) follow

essentially as in the proofs for the well-formedness rules.

103

By the definitions of the logical relations, (A};m By;y1 K]) is (AL; w1 B2; 2 K1).

so by the inductive hypothesis, (Al; (y1[a—m B1]) K] < (y1[a—m B1])KY) is

e Case: Rule 2.16. K1 = Ko =T. (A;T) is (Ag;T) by the definition of the logical relation.
e Case: Rule 2.17. K; = S(A;) and Ky = S(Ag) with ' A4; = Ay :: T.

1.
2.

By the inductive hypothesis, (A1;v1A41; T) is (Ag;y2A2; T).
Therefore, (A1;8(7141)) is (Ag;S(7242)).

e Case: Rule 2.18. K; = [lo::K{.K{ and Ky = Ila: K. KY with I' - K < K| and
I'auK)F K < K.

—_ =
_ O

R B AN

By the inductive hypothesis, (Aj; 71 K]) is (Ag;72K)).

Let A} D Aj and A, D Ay

and assume (A]; Ap; 1 K7) is (Al Ag; v KD).

By the inductive hypothesis, (A}; 71 K]) is (A);v2K))

and (A%; 712 K1) is (Ay;72K3).

By symmetry, (A 72Kj) is (A);7K7),

and by reflexivity (A; 1 K1) is (A7 K7).

By Lemma 5.3.4, (A}; 11 K] < 1K7) is (Ab;7K) < 72KY),
so (Al Ay Ky) is (A); Az v K7).

. By monotonicity, then, (A}; v [aw—A1|;T, a::K7) is (Ah; yo[a— Aol T, K.
. By the inductive hypothesis again, (A; (71[a—A1])K]) is (AL; (ye[a—As])KY).
12.

Therefore (Ay;vi (M K. KY)) is (Ag;ye(lla: K. KY)).

e Case: Rule 2.19. Same proof as for previous case.

Constructor Validity Rules: '+ A :: K.

e (Case: Rule 2.20.

1.
2.
3.

(A;T) is (Ay;T)
AlbbiTTHAQDbZ’TT.
Thus by Lemma 5.3.9 we have (Ay;b;; T) is (Ag; b;; T).

Case: Rule 2.21. Analogous to the previous case.

Case: Rule 2.22. Analogous to the previous case.

Case: Rule 2.23.

By the assumptions for v; and 2, we have (Ay;y10571 (T())) is (Ag;yea;v2(T(@))).
Case: Rule 2.24.

AN I

By Proposition 3.1.1 there is a strict subderivation I' - K.

By the inductive hypothesis, (A1; 71 K') is (Ag; v K').

Let A} D A; and A, O Ay and assume (A}; By; 71 K') is (AL; Bo; v K').
Using monotonicity, (A};yi[a—B1];T, a:K') is (AL;ve[a—Bo]; T i K').

By the inductive hypothesis,
(A} (mle—=Bi]))A; (n[a—Bi])K") is (AY; (e[Ba]) A; (v2la— Bo]) K).

104

6. Now Ay > (y1[a—B1))A ~ (11(Aa::K'.A)) By
7. and Ag > (ye[a—Bs])A ~ (y2(Aa::K'.A))B;.

8. By Lemma 5.3.8,
(All, (’)’1 ()\O{Z:KI.A))Bl; (’)/1 [Ozi—)Bl])K”) is (AIQ, (’)’Q(AOzZ:KI.A))BQ; (’YQ[O('-)BQ])K”).

9. Similar arguments analogous to lines 3-8 (and reflexivity) show that
(Ar;v1(Aa: K" A); v (Ila:: K'.K")) valid
10. and (Ag;ya(Aa:K'.A); v (lla: K. K")) valid.

11. Therefore (Ay; 7 (Aas:K' A); v (Ha:K'.K")) is (Ag;ye(Aa:K'. A); v (la: K'.K")).
e Case: Rule 2.25

1. By the inductive hypothesis (A1; 71 4;71(K'=K")) is (Ag;v2A4;v2(K'—K"))
2. and (A A5 mK') is (Ag; 724" 7 K').
3. Therefore, (Ay;71(AA"); 1 (K")) is (Ag;y2(AA);72(K")).

e Case: Rule 2.26.

By the inductive hypothesis and reflexivity, (A1;y1A41;v1 K') valid
and (Aq;y1Ag; v K") valid.

Now Aj >y Ay ~ m (7141, 71 A2)

and Ay >y Ay ~ mo(y1 A1, 11 42).

By Lemma 5.3.8 we have (Aq;m(y1 41,71 42); 71 K') valid,

(Ar;mo(y1 A1, 71 A2); 11 K") valid

Therefore, (Aq; (141,71 A42); 71 (K'xK")) valid

NS ok W=

@

A very similar argument shows that (Ag; (7241, 7242);72(K'xK")) valid

9. and an analogous argument shows that
(Ar; (1A, 11A2); (K" K")) is (Ag; (y241, 7242); 72 (K< K")).

e Case: Rule 2.27.

1. By the inductive hypothesis, (A1;y14; 71 (ZazK' . K")) is (Ag;y24;y2 (Ba:K'.K")).
2. Therefore (A;my1 A; 1 K') is (Ag;miyeA; v K').

e (Case: Rule 2.28.

1. By the inductive hypothesis, (A1;y14; 71 (Za:K'.K")) is (Ag;y2A;y2(Xa:K'.K")).
2. Therefore (A1;moy1 A;y1([m1A/a)K")) is (Ag; moyaA;ye([m1A/a) K")).

e Case: Rule 2.29

1. By the inductive hypothesis, (A1;y14; T) is (Ag;y24;T).
2. As in the case for Rule 2.8, (A1;S(714)) is (Ag;S(124)).
3. Thus (A1;714;S(71A)) valid,

105

4.
d.

(A2;724;S(724)) valid,
and (A1;714;8(114)) is (Az;724;S(7124)).

e Case: Rule 2.30.

ANl

By the inductive hypothesis, (Ap;m (11 4); 71 K') is (Ag;mi(7124); 72 K'),
and (Ay;ma(1A);nK") is (Ag;ma(y24);72K").

Thus (A1;714;71 (K'xK")) valid,

(A2; 7245 72(K'x K")) valid,

and therefore (A1; 71 A;71(K'XK")) is (Ag;y24;v2(K'xK")),

e Case: Rule 2.31

ANl

&

(Ar; 1 (e K'.K")) is (Ag;y2(Ila:: K'.K")) as in the case for Rule 2.9.
Let Al D Aj and A}, D Ay

and assume (A]; By;v1K') is (Al; By K').

By monotonicity, (Al;y1[a—B1];T, a::K') is (AL;yo[a—Ba]; T, a: K').

By the inductive hypothesis,
(A} (mle—=Bi])(Aa); (vi[asBi])K") is (Ay; (2l Ba]) (A a); (y2[a—Ba]) K”).

That is, (A}; (114)By; (nla—=Bi))K") is (AY; (y24) By (y2]e—By]) K").

7. and (A7 A;yi(Ha K. K")) is (Ag; v A;ye (Lo K'.K")).

e Case: Rule 2.32

1.
2.
3.

By the inductive hypothesis, (A1;v14;71 K1) is (A1;v24;72K7)
and (A1 K < 7iKp) is (Ag; 1Ky < y2K»).
Therefore, (A1;714;71K2) is (Ar;924;72.Ko)

Constructor Equivalence Rules: ' A1 = Ay :: K.

It suffices to prove that if ' - Ay = Ay :: K and (Aq;91;T) is (Ag;y2;T') then

(AymA 1K) is (Ag;y2A2;72K), because it follows that (Ag;y2A1;72K) is (Ag;y2A42; 12 K),
so (Ap;mA; 1K) is (Ag;yeAg; v K) by symmetry and transitivity. A similar argument yields
(AymAo;mK) is (Ag;y2A2;72K).

e Case: Rule 2.33. By the inductive hypothesis.
e Case: Rule 2.34.

By the inductive hypothesis and Lemma 5.3.5.
e Case: Rule 2.35.

1.
2.
3.

By the inductive hypothesis, (A1;v141;71K) is (A1;7142; 11 K)
and (A1;71A2;71K) is (Ag;y243;72K).
By Lemma 5.3.6, (A1; 1141571 K) is (Ag;y2A3;72K).

e Case: Rule 2.36.
Analogous to the proof for rule 2.24.

106

e Case: Rule 2.37.
Analogous to the proof for Rule 2.25.
e Case: Rule 2.38.
Analogous to the proof for Rule 2.27.
e Case: Rule 2.39.
Analogous to proof for Rule 2.28.
e Case: Rule 2.40.
Analogous to proof for Rule 2.26.
e Case: Rule 2.41.
Analogous to the proof for Rule 2.30.
e Case: Rule 2.42.
Analogous to the proof of Rule 2.31.
e Case: Rule 2.43.
By the inductive hypothesis and the definition of the logical relations.
e Case: Rule 2.44. By the inductive hypothesis.

A straightforward proof by induction on well-formed contexts shows that the identity substitu-
tion is related to itself:

Lemma 5.3.11
If T'F ok then for all € dom(T") we have (I'; ;T(B)) is (I'; B;T(B)). That is,
([;id; T) is (T;id; T) where id is the identity function.

Proof: By induction on the proof of I' - ok.

e Case: Empty context. Vacuous.
e Case: I',a:K.

1. By Proposition 3.1.1, I' - K, and T" - ok.

2. Also, a ¢ dom(I).

3. By the inductive hypothesis, (I'; 8;'(8)) is (I'; ;T(B)) for all 8 € dom(T").

4. By monotonicity, (I', a:: K; 8; (T, a:: K)(B))) is (T, K 35 (I, a: K)(5))) for all
B € dom(T).

By Theorem 5.3.10, (I'; K) is (I'; K)

and by monotonicity (I', a::K; K) is ([a:K; K)

Now I'a::K>at K & Ta:K>rat K,

so by Lemma 5.3.9, (I, a:K;o; K) is (T, a:K; a; K).

N o

This yields the completeness result for the equivalence algorithms:

107

Corollary 5.3.12 (Completeness)
1. If T+ Ky = Ky then (I'; Ky) is ([K»).
2. IfT'F Ay = Ay it K then (I'; A3 K) is (D Ag; K).
3 IfT'F Ky =Ko then ' Ky & T'> Ks.
4. IfTFA =As . K thenT'> A1 K& T'p Ay it K.

Proof:

1,2 By Lemma 5.3.11, we can apply Theorem 5.3.10 with v; and 5 being identity substitutions.
3,4 Follows directly from parts 1 and 2 and Lemma 5.3.9.
|

Intuitively, the algorithmic constructor equivalence relation can be viewed as simultaneously
and independently normalizing the two constructors and comparing the results as it goes along (see
§5.5). Thus termination for both terms individually implies their simultaneous comparison will also
terminate. This can be proved by induction on the algorithmic judgments (i.e., by induction on
the steps of the algorithm).

Lemma 5.3.13
1. IfF1DA1 TKI <—)F11>A1TK1 and FQDAQTKQ HFQDAQTKQ then
I'i> A1 T Ki+TIsyp A2 T Ky is decidable.
2. IfF1DA1 2 Ky <=>F1[>A1 Ky and FQDAQ Ko <=>F2[>A2 i Ko then
> A Ky Ty Ay it Ky is decidable.
3. If i Ky eI Ky and I'op Ko Ty Ky then oKy Ty Ko is decidable.

Proof: By induction on algorithmic derivations. |

Then completeness yields the following corollary.

Corollary 5.3.14 (Algorithmic Decidability)
1. IfTFA =K andTF Ay :: K thenT'> Ay : K & T'> Ay it K is decidable.

2. If 'Ky and ' - Ky then I'> Ky < ['> Ky is decidable.
Proof: By reflexivity, Corollary 5.3.12, and by Lemma 5.3.13. |

I conclude this section with an application of completeness.

Proposition 5.3.15 (Consistency)
Assume ¢1 and cy are distinct type constructor constants. Then the judgment

'k 51[61] = 52[62] s K
18 not provable.

Proof: The MIL; constructor constants have either kind T or T—(T—T), so any path with a
constant at its head cannot have its extracted kind be a singleton kind, and hence must be head-
normal. Also, two paths with distinct constants at their heads will not be equivalent according to the
algorithmic weak constructor equivalence. Therefore the paths will be algorithmically inequivalent
at kind K, which by completeness implies inequivalence in the declarative system. |

In proving soundness of the TILT compiler’s intermediate language, these sorts of consistency
properties are essential. The argument that, for example, every closed value of type int is an integer
constant would fail if the type int were provably equivalent to a function type, a product type, or
another base type.

108

5.4 Completeness and Termination

Finally, I transfer the soundness and completeness results of the previous section back to the
original algorithm for constructor equivalence. I use a “size” metric for derivations in the six-
place equivalence system. This metric measures the size of the derivation ignoring head reduction,
head normalization, and kind equivalence steps; that is, the metric is the number of term or path
equivalence rules used directly in the derivation. Since every provable algorithmic judgment has at
most one derivation, I can refer unambiguously to the size of a judgment.

The important properties of this metric are summarized in the following two lemmas.

Lemma 5.4.1
1. IfThWp A o Ky ©Tovp Ay i Ko and 'y > Ay i Ky & s> Az i@ K3 then the two derivations
have equal sizes.
2. IfT'Mv A1t Ky ©T9p Ay T Ko and 'y > Ay T Ky < 3> As 1 K3 then the two derivations
have equal sizes.

Proof: [By induction on the hypothesized derivations]

e Assume F11>A1 o T<=>F2[>A2 T and F1>A1 o T<=>F3I>A3 :: T. Then F11>A1 Upl,
Lo Ag dpo, s> A3 §ps3, Liopr T T Dappe T, and Iy >py 1T <> I3 >p3 T T. By the
inductive hypothesis, these last two algorithmic judgments have equal sizes, so the original
equivalences have equal sizes (greater by one).

e Assume 'y > Ay :: S(By) & e > Ag :: S(Bg) and I'y > Ay :: S(By) < I's> Az :: S(Bs). Then
the derivations both have a size of one.

e Assume I'y > Ay :: Tla:: A} A & Top Ay i Tla: A5 A and
'y > A Ha AL AY © Ty A o o A5 AY. Then
I',azK{> Ao K © Ty, auK)> Ay a o K and
I',acK{> Ao K < s, azK)> Az o : K. By the inductive hypothesis these
derivations have equal sizes and hence the original equivalence judgments have equal sizes
(greater by one).

e Assume I'y > Ay 1 B Al A & Ty> Ay i Ba: AL AY and
I'1> A XanAl Al © Ty> Ag it BanAf AL Then Ty >m At K] < TypmAy i K,
Iy >7T1A1 i K{ -~ F3 >7T1A3 i K:I,,, I'e 7r2A1 i [WlAl/a]Kil Sy 7T1A2 o [7T1A2/0(]Ké’, and
Iy >mdy i [mA /oK < T3> mAs i [m1As/a)KY. Using the inductive hypothesis twice,
the judgments have equal sizes.

e Assume I'ipb; T T+ a9 b; T Tand 'y > b; T T <> I'g>b; T T. Both derivations have size
one.

e Assume ' >a T i(a) < Iypatly(a) and 'y a 1t (a) < s> a1 's(a). Both
derivations have size one.

e The remaining three cases follow directly by the inductive hypothesis.

Lemma 5.4.2
1. If 1> Ay =t Ky & 9> Ay it Ko then the deriwation T'a > As 2 Ko < T'y > Ay it Ky has the
same size.

109

2. If ''>A1 1T Ky & o> Ay T Ky then the derivation I'o> Ay T Ko <3 'y > Ay 1T K1 has the same
size.

Proof: The two derivations are mirror-images of each other, and hence use the same number of
rules of each kind. |

I can then show the completeness of the four-place algorithm with respect to the six-place
algorithm.

Lemma 5.4.3
1. Ifl— Fl EFQ, Fl I—Kl EKQ, Fl |—A1 o Kl, FQ I—AQ b KQ, and Fl DAl ot K1 <=>F2[>A2 ot K2
then'1> A1 & Ay it K.
2. Ifl—FlzI‘g, Fll—KlEKQ, Fll—Al ::Kl,]_—‘2|_A2 ::KQ, andFlelTKlﬁngAgTKg
then F11>A1(—>A2TK1.

Proof: [By induction on the size of the hypothesized algorithmic derivation.]
Assume F Fl = FQ, Fl F K1 = KQ, Fl F A1 s Kl, and FQ (o A2 o KQ.

e Case: ['1> A1 :: T I'y> Ay :: T because I'1 > Ay | p1, T'o> As | po, and
Liepr t T Teepa 1 T,

Now by the completeness of the six-place algorithm we have I'y > A; :: T < I'y > Ay 2 T,
where 'y > A phand Ty opy 1 T Ty > ph T T

By Lemma 5.4.1, the sizes of the two proofs of algorithmic path equivalence have equal
sizes. Since this size is less than the size of the original algorithmic judgment (by one), we
may apply the inductive hypothesis to the second derivation to get I'y > p; <> p), T T.
Therefore, I'' > A1 & Ay :: T.

e The remaining cases are all either trivial or follow easily from the inductive hypothesis.

Theorem 5.4.4 (Completeness for Constructors and Kinds)
1. IfFI—Al EA2 s K thenF>A1 <=>A2 t K.

IfI'F K thenT'v K.

IfTF Ky < Ky thenT'> Ky < Ks.
IfTHKy =Ks thenT'> K| & Ks.
IfTFA:K thenI'vb A= L and'> A1 L.
IfTFA: K thenT'> A K.

S S o

Proof:

1. Assume I' - A} = As :: K. By the completeness of the six-place algorithm,
I'sA1: K< T'v Ay K. Then I'> A1 & Ay 0 K by Lemma 5.4.3.

2-6. By part 1 and induction on derivations

Lemma 5.4.5
IfT'vpr < po T Ky, ' py ot K, and I' = py 2 L then I' > py T Ko for some kind Ko, and
'+ K1 = KQ.

110

Lemma 5.4.6
1. If Topr < p1 T Ky, UFpr o Ky, and T'F py 2 L then it is decidable whether
I'>py < po T Ky is provable.

2. IfTv Ay Ao K, 'F A :: K and '+ Ay :: K then it is decidable whether
I'> A & Ay 2 K is provable.

3. IfI'>Ki < Ky, ' Ky and I' = Ko then it is decidable whether I' > K1 < Ko is provable.

Proof:

1-2. By induction on algorithmic derivations.

The sequence of constructor and path comparisons is driven by I' and either p; or A; and
K. In particular, this is independent of As or py. Thus the only possible problem would be
for head normalization to fail to terminate, which can be seen to be impossible by
completeness of the revised algorithm.

3. By induction on kinds, using part 2.

Theorem 5.4.7 (Decidability for Constructors and Kinds)
1. IfTFA 2K and'F Ay :: K thenI'> A1 < Ag 2 K is decidable.

IfI'F Ky and I' = Kg then I'> Ky & Ko is decidable.

IfT'F Ky and ' K9 then I'> Ky < Ky is decidable.

IfT+-Ky, 'F Ky then I'> Ky < Ko is decidable.

If ' F ok then T'> K is decidable.

If ' ok then it is decidable whether I'> A = K holds for some K.
IfI'F K then I'> A &= K is decidable.

R N

Proof:

1-2. Follows from reflexivity of constructor and kind equivalence, Completeness, and
Lemma 5.4.6.

3-7. By Parts 1 and 2 and by induction on the sizes of constructors and kinds.

5.5 Normalization

The revised equivalence algorithms in Figure 5.1 are effectively doing the work of normalizing
the two constructors or two kinds being compared. However, because the algorithm interleaves
this process with comparisons, the normalized constructors and kinds need not be explicitly con-
structed. This is a beneficial for implementations, but it is still interesting and useful to consider
the normalization process in isolation. The corresponding algorithms are shown in Figure 5.5.

Lemma 5.5.1 (Determinacy of Normalization)
1. If T A:: K= By and ' A :: K = By then B; = Bs.

2. IfTop —pi 1 Ky and T'>p — pl, T Ky then p| = ply, and K1 = K.

111

Constructor Normalization

I'bA:T = A" fI'sAJ A andI'vb A — A"+ T

IbA:S(B) = A" T A A and oA —s A" 4T

I'>A:TlaK' K" = Ma::L'.B ifI'bK'— L' and ', a:K'> (Aa) : K" = B
I'>A:Ya:K' ' K'"—= (B",B") ifI'bmA: K = B and'>bmA::[mA/a]K" = B".

Path Normalization
b —b1T
's x — x 1 T—>T—>T
- - — —-~1T-T-T
I'va— a1 l(a)

'bpA—p A1 [A/a]K" f'>p— p tla:K' K" and I'b A K' = A
emp— mp T K’ if'ep — p 1 Xa:K'.K"
I'>mop — mop' 1 [mip/] K' if'sp —p t BauK'.K"
Kind Normalization
I'>sT=T
I'>S(4) = S(4) froA:T= A
I'>la:K' K" = Ha:L.L" ifI'cK'=— L'and ' a:K'> K" = L"
I'>Ya:K' K" = Ya:L.L" ifI'cK'=— L'and ' a: K'> K" = L"

Figure 5.5: Constructor and Kind Normalization

3 IfT> K= L1 and '> K = Lo then L1 = Ls.

Proof: By induction on algorithmic derivations. |

Lemma 5.5.2 (Soundness of Normalization)
1. IfTFA:KandT>A: K= B then'FA=B: K.

2. IfTFpuK and'vp — p' T L thenl'Fp=9p :: L.
3 IfTFK and'> K = L then ' K = L.

Proof: By induction on algorithmic derivations. |

Theorem 5.5.3
Assume FT1 =19 and I'1 F K1 = K.

1. ThHo A o Ky & Ty Ay it Ky zfand only ’ifFll>A1 2Ky = Band 'y > Ayt Ky :>Bf0’f'
some B.

2. T1opr P Ky < Todps t Ky if and only if T'y>py — p' 1 Ky and 'y opy — p' 1 Ky for
some p', K1, and K.

3. T1> Ky < Tor Ko if and only if I'y> K1 = L and I'o > Ko = L for some L.
Proof:

= By induction on algorithmic derivations.

112

< By soundness of normalization, transitivity and symmetry, and completeness of the revised
equivalence algorithm.

Corollary 5.5.4 (Normalization of Constructors and Kinds)
1. Ifl— Fl = FQ, Fl F A1 o K anng (o A2 :: K then Fl (o A1 = A2 K zfand only Zf
I'N>A 2 K=— BandI'y> Ay : K — B.
2.IfFT1 =09, T F Ky and 't F Ky then 't - K1 = Ky if and only if 'y > Ky = L and
I'o> Ko — L.

113

114

Chapter 6

Algorithms for Type and Term
Judgments

6.1 Introduction

I now turn to the term and type levels of MILg; the development parallels that for constructors and
kinds. In this chapter I consider algorithms corresponding to the term and type judgments, proving
soundness, and partial completeness and termination results depending on term equivalence. Term
equivalence is then studied in detail in the following chapter.

6.2 Type Head-Normalization

The kind-equivalence and subkinding relations are very simple and structural, and inversion imme-
diately yields various useful properties such as “if two II kinds are equivalent then their domain kinds
are equivalent and their codomain kinds are equivalent”. It is clear from inspection of type equiv-
alence that a universally-quantified type can only be equivalent to another universally-quantified
type (and that in this case the domain kinds are equivalent as are the codomain types), and similar
properties hold for singleton types. However, the fact that there is no chain of equivalences

Ty(Al)XTy(AQ) = Ty(Al XAQ) = Ty(BléBg) = Ty(Bl)—\Ty(BQ)

equating a function type with a product type (or a chain equating a product type and Ty(Int),
etc.) is a consequence of the consistency properties of constructor equivalence, which were proved
in the previous chapter.

It is convenient to extend the head-normalization algorithm for constructors to the head-
normalization of types; this algorithm is shown in Figure 6.1. The head-normalization algorithm
attempts to turn any type of the form Ty(A) into an equivalent function type or product type, and
leaves all other types unchanged. Viewed as an algorithm the judgment I' > 7 || o takes inputs I’
and 7 with I' - 7 and produces the type o. It depends upon a typing context because it uses the
constructor head-normalization, which is context-dependent.

Lemma 6.2.1 (Type Head-Normalization)
If ' - 7 then there exists a unique o such that T'>7 | 0. Furthermore, ' -7 = 0.

Proof: By induction on the derivation of type well-formedness, using the soundness of weak
head-reduction for constructors. |

115

Type head normalization
I's> Ty(A)u Ty(Al)XTy(Ag) ifFDAU/hXAQ
I'e Ty(A) 4 Ty(A1)—=Ty(Az) ifT'> A A—A;
o7 otherwise

Figure 6.1: Head Normalization Algorithm for Types

Use of head-normalization allows a sufficiently strong induction hypothesis to prove useful in-
version properties for type equivalence and for subtyping.

Theorem 6.2.2 (Inversion of Type Equivalence)
Assume ' 1 = 1.
1. Tom | (zr))—=1 if and only if T > 1 | (z:75)—7L. Furthermore, in this case I' - 1] = 7
and U,z - = 7).
2. Tor | (xr)xr{ if and only if T > 1o | (x:7h) x7Y. Furthermore, in this case I' & 7{ = 7}
and U,z - = 7).
3. Tom | Ty(db) if and only if U'> 1o | Ty(b).
4. 11 = Va:K{.1' if and only if 7o = Va:K}.7)l. Furthermore, in this case T - K| = K, and
IoauK{ Frf =7
5. 11 = S(v1 : 1) if and only if o = S(va : 7). Furthermore, in this case T' F vy = vy : 71 and
k7 =7l
Proof: By induction on the proof of I' - 7 = 75. |

Theorem 6.2.3 (Subtyping Inversion)
Assume ' -1 < 79.

1. IfTe>mn | (zr])—7] then T'> 1o | (2:75) =7 . Furthermore, in this case I' b 75 < 7] and
Loy b o <7y

2. If > 1o | (zimh)—7Y then 71 is a singleton type or else I'> 7 | (z:7])—7(and T' F 75 < 7]
and U, z:rh = < 7.

3. If T | (wr])xr{ then T'> 1o | (z:75)x7Y. Furthermore, in this case I' 1] < 1) and
Lyor B <.

4. If T 1o | (2:75) x 7Y then 71 is a singleton type or else T'> 1 | (z:7])x7{ and T+ 1 < 7

and U, z:rh = < 7.

If > 1 | Ty(b) then I'> 1o |} Ty(b).

IfT'> 1o || Ty(b) then 1 is a singleton type or else T'> 1o || Ty(b).

If 1y =VauK|. 1" then 7o =VauKy.m) and T'H K < K| and T', a: K - 7' < 7.

If 79 = Yau:K,.7) then 1 is a singleton type or else 7y = Yau:K|.7{' and '+ K, < K{ and

UyanKyF o < 7).

9. If 1 = S(vy : 01) then either 79 = S(vg : 03), T'F oy =09, and T'F vy = vy : 01, or else 1o is
not a singleton and I' - o1 < 7.
10. If 19 = S(vy : 03) then 71 =S(v1 :01), T'F o1 =09, and T F vy = vy : 01

xRS ™

Proof: By induction on the proof of I' - 7 < 75. |

116

Singleton stripping
(S(v: 7'))$ =T

=7 if 7 is not a singleton

Principal type synthesis
I'snfS(n:int)
I'v 2 S(z:(z)®)
> fun f(a:7"):7" is e
S((fun f(x:m"):7" is €) : (z:7")—1")
I'> A(a:K):T.e f S(A(a:K):7.e : Va: K.7)

I (vi,v9) t S({v1,v9) : T1XT2) ifTCrov; 7 and T'> vy 7.
I'omof S(mw: %) if oo 7 and T'o 78 || (@:7) x7".
['>mov { S(mav : ([7rw/x]7”)$) if Tov 7 and T'o 78 || (@:7) x7".
oo f [v/z]r" if oo 7and T'o 78 | (2:7))—7"
rvAq[Aa)r” if D>o 7 and 7% = Vo K.7"

IColet z:7'=€’ ine:T7end 1 7

Figure 6.2: Principal Type Synthesis Algorithm

6.3 Principal Types

Just as every well-formed constructor has a most-specific kind, every well-formed term has a most-
specific type (up to equivalence). The algorithmic judgment I'>e f} 7 determines the principal type
7 of the term e under context I'. This algorithm uses the auxiliary notion of a stripped type; for
any type 7, the stripped type 7° is the type label of 7 if 7 is a singleton type, and is 7 otherwise.

Note that because nested singletons are disallowed, 75 can never be a singleton type.

Lemma 6.3.1 (Singleton Stripping)

1. IfTF7 thenD F 7 < 75,
IfTF1 =7 thenT' 7'1$ = 7'2$.
IfI'Fm <719 then ' 7'1$ < 7'2$.
If ' =1 < 1y then either 1o is a singleton type or I' - ¥ <m.
IfT & 7 then 7% is the minimal non-singleton supertype of T.
IfTFv:7 then T FS(v:7%) < 7.

S v o X

Proof: Part 1 follows by reflexivity or by Theorem 6.2.3 and Rule 2.62, depending on whether 7
is a singleton type or not. Parts 2-3 are shown by induction on derivations. Part 4 is a restatement
of part 3. Finally, parts 5 and 6 follow by case analysis on the form of 7. |

Theorem 6.3.2 (Principal Types)
1. IfTFv:othenTooft7 and TFv:7 and TH7 < S(v:0®), so that T -1 < 0.

2. IfTFe:othen'veffTrand'Fe:Tand 'F7 < 0.

Proof: By simultaneous induction on the proof of the first premise, and cases on the last typing
rule used.

117

Case: Rule 2.67.
'+ ok

'Fn:int
Then I'>n) S(n :int) and I' F n: S(n : int). By reflexivity, I' = S(n : int) < S(n : int).

Case: Rule 2.68.
'+ ok

M-z :T(x)

Since I' F I'(z), by Lemma 6.3.1 we have I' - T'(z) < F(x)$
and hence I' -z : I‘(x)$.

(e) Finally by reflexivity, I' - S(z : F(x)$) < S(z: F(x)$).

Case: Rule 2.69.
L, f:(z:r) =" ' Fe: 7"

' F fun f(z:7):7" is e : (x:7)—7
(a) First, I'>fun f(2:7):7"is e ff S(fun f(z:7):7" is e : (z:7)—=7").
(b) By Rule 2.77, T' F fun f(z:7):7" is e : S(fun f(z:7):7" is e : (z:7)—=7").
(c) Finally, by reflexivity we have
T'F S(fun f(z:7):m" is e : (z:7)—=7") < S(fun f(a:7):7" is e : (x:7)—=7").
Case: Rule 2.70.

Fa:K'-e:o”
' A(a:K'):0".e:Va:K'.o"
(a) T'>A(a:K'):0".e S(A(a::K'):0".e : Va:K'.0").
(b) By Rule 2.77, ' - A(a::K'):0".e : S(A(a:: K'):0".e : Va:: K'.o").
(c) Finally, I' - Va::K'.0o" < Va:K'.c" by reflexivity,
(d) soI'F S(A(a::K'):0".e : Vo K'.0") < S(A(a::K'):0".e : Ya::K'.0").
Case: Rule 2.71.

I'kFov:oq I'kovy:og

L'k (vy,v2) : 01 %09

(a) By the inductive hypothesis I'> vy 7 and ' vy @7y and I'F 7 < S(wy ¢ 01$),
(b) and 'bwy ff o and ' v : 75 and '+ 75 < S(ve - 02$).

(¢) Thus I'> (vy,v9) ff S({(v1,v2) : T4 XT2).

(d) Also, ' (v1,v9) : 71 XT2,

(e) so by Rule 2.77, I' - (vy,v2) : S((v1,v2) : T1 XT2).

(f) Finally, I' F 7y x715 < S(vy : 01$)><S(v2 : 02$)

(g) and T'F S(vy : 01$)><S(vg :09%) < 01 %09,

(h) so T'F S((v1,v2) : 1 x72) < S({v1,v2) : 01 X02).

Case: Rule 2.72.
'Fo:(z:0')xo”

I'Fmo:o

118

By the inductive hypothesis, 'bv ff 7 and T'Fv:7and '+ 7 < S(v : (z:0")x0”).
By Lemma 6.3.1, T+ 7% < (z:0")x0"

and hence by Theorem 6.2.3 T'> 7% || (z:7')x7" with I - 7/ < o,

Thus I' > mv ff S(myv : 7"$).

By Lemmas 6.3.1 and 6.2.1 and subsumption, I' - myv : 7"$,
so by Rule 2.77 we have I' F v : S(myv : 7"$).

Finally, I' - % < o* by Lemma 6.3.1,

so '+ S(mw: T'$) < S(mw: a'$).

Case: Rule 2.73. Analogous to previous case.
Case: Rule 2.77.

I'Fv:o
F'Fov:S(v:o)

(0 not a singleton)

(a) By the inductive hypothesis, Tbv ft 7 and v :7and T+ 7 < S(v : o).
(b) It suffices to observe that S(v: (S(v : a$))$) =S(v:od).
Case: Rule 2.78.

I'ke:oy I'Fop <oy
I'kFe:oo

(a) By the inductive hypothesis, Tbv {7 and v :7and T F7 < S(v : 07%).
(b) By Lemma 6.3.1, T' - 1% < o8,
(c) so by transitivity, ' - 7 < S(v : 02%).

Case: e is a value. Follows by Part 1, Lemma 6.3.1, and transitivity.
Case: Rule 2.74.

—~

o

—~

—_

E/\

—_—

Er o228

—~

= oR

D o

lms)

o

~—

F'Fov:o'—o" r+v:0

oo :o"

By the inductive hypothesis, 'bv ff 7 and 'Fov:7and I' - 7 < o'—0".
Similarly, '>o' ff 7y and o' i and T 1y < o'

By Lemma 6.3.1, I' - 7% < o/ —0".

By Theorem 6.2.3, I'> 7% || (z:7)—7" with ' F o/ < 7/ and I, z:0' - 7" < o".
Thus I'> v o' 4 [v'/z]7".

By Lemmas 6.3.1 and 6.2.1, T' v : (z:7")—7".

Also by transitivity, ' -7 < 7/,

Hence I' oo’ : [v' /z]7".

Finally, by substitution we have I' F [v'/z|7" < [v'/z]o".

e Case: Rule 2.75

(
(

b

(c
(d) ThusT'pv A f [A/a]T".

)
)
)
)

'-v:Va:K'.o" r-A: K
CFvA:[A/alo”

a) By the inductive hypothesis, Tbv ff7and T'Fv:7and I' 7 < Va:K'.o".

By Lemma 6.3.1 T' - 7% < Va:K'.0”,
so by Theorem 6.2.3 7% = Va:L'.7" withTF K’ < L' and I, : K' - 7" < 0.

119

() Then ' v :VauL' 7" and '+ A L,
(f) soTFvA:[A)a]r".
(g) Finally, by substitution we have I' F [A/a]7" < [A/a]o”.

e Case: Rule 2.76.
e :o Iz:io'te:o '+o

Ik (let z:0'=€'ine:oend): o

(a) It is immediate that T'> (let z:0'=¢’ in e : o end) 1} 0,
(b) and ' (let z:0'=€’ in e : 0 end) : o by assumption.
(c) Finally, I' - 0 < o by reflexivity.

e Case: Rule 2.78. As in Part 1.

6.4 Algorithms

The term equivalence again makes use of term-level elimination contexts, again denoted by £. In
contrast to the elimination contexts for type constructors, applications are not included; the only
paths (£[v] where v is a constant or variable) of interest are those which are values:

Enx= o
| m&
| 71'25

6.5 Soundness

Proposition 6.5.1 (Inversion of Term Validity)
1. IfTHov i 7 thenT ko (z:7)=7" and T H o' : 7" with T+ [v' /2] < 7.

2. IfTFvA:7 thenT ko :VauK' 7" and T+ A K" with T+ [A/a]" < T.
3 IfTFmu:TthenTFov:miXxmand -1 < 7.
4. If U mou:i7T then D'l ov:mixmy and ' 1 < 7.

Proof: By inversion v must be well-formed, so (the stripped, head-normal version of) its principal
type satisfies the desired properties. |

Proposition 6.5.2
IfTF (v, v0) : 7 then T 7 L (27)x7" and Ty : 7 and T+ vy : [v1/x]T".

Proof: By induction on typing derivations, and cases on the last rule used.

e Case: Rule 2.71.
ko7 I'Fovy: 7"

TF (vi,v9) : 7'x7"

Trivial.

120

Type validity

s Ty(A) ifP> AT
'>S(v:T) if'>7and '>ov = 7.
L' (z:7)—7" if o7 and T, z:7" > 7",
L' () xr" if '>7 and I, z:7" > 7",
I'>Va:K.T if'> K and ', a:: K > 7.

Algorithmic subtyping
I'em <m ifFDTIUUl,FDTQUUQ,&HdFDUlEUQ

Weak algorithmic subtyping

I'> Ty(Al) C Ty(AQ) 1fFl>A1 =4 A2 = T.
I'>S(vy 1) ES(vg: 1) ifI'vm <1 and ' v & ve.
C'>S(vy:71) Em if 75 not a singleton and I'> 7y < 7o.

Lo (z:r))—=1 C(x:my)—=1y U T>7r <7 and Tz <7
Lo (zr))xr C(zrg)xmy T <7hand Tz o1 <79
' VoK. CVa:Kse.1o ifI'> Ko < Ky and T'ya:: Ko > 71 < 7.

Algorithmic type equivalence
Fl>7'1<=>7’2 ifFDTIUUl,FDTQUUQ,&HdFDUlﬁag.

Weak algorithmic type equivalence
I'> Ty(Al) — Ty(AQ) ifF>A1<:>A2 =T
I'>S(vy :7) <> S(vg: 7o) ' ©mand ' bovg & vg
Lo (z:r)—=1 < (zme)—1) U Ti>7 < 1 and Ty, x> 1 & 7
Lo (zr])xr < (wme)xrd i Ti>7 < 7 and Iy, x> 1 < 7
I'oVa:Ki.11 < Va: Ko if I'> K| & K5 and F1,$::K1 DT < T2

Figure 6.3: Algorithms for Types

121

Type synthesis
I'>n =2 S(n:int)
I's2 = S(z: [(z))

L fun f(z:7"):m" ise = if o7, 0z o7,

S((fun f(z:7"):7"is €) : (z:7")—=1") and T, f:(x:7")=7" z:7' b e = 7"
I'>AlaK):m.e =2 S(A(a:K):me: VauK.r) ifI'>K and I'azK>7and I'anK e & 7.
I (vi,v9) = S({v1,v2) : T1XT2) ifI'vv; = and T'> vy = 7.

'esmo=7 if C>o =7 and 7% = (@:7/)x 7",

I'>mv = [mo/x]r"” if P>o =7 and 7% = (@:7/)x 7",

Levv = v /z]r" ifToo =7, 7% = (2:7')=7", and T> o' = 7.
FovvA=[A)a)r if >0 =7, 7% =VauK.r,and I'v A = K.
I'olet z:7'=€' ine:7end = 7 if>7r , Toe =7, Tor,and I, z:7' pe = 7.
Typechecking

'veesT fl've=mocand'bo <.

Figure 6.4: Algorithms for Term Validity

e (Case: Rule 2.77.
Lk (vy,vg) 7

'k (vy,v9) : S(v:7)

(7 not a singleton)

By the inductive hypothesis.

e Case: Rule 2.78
Lk (vy,v9) 7 'tm <7

Lk (v1,v2) : 72

By the inductive hypothesis, T'> 7® || (@:7]) x 7/’
and Doy 7] and T'F g : [ug /a7
Then by Lemma 6.3.1, I' - ¥ < 7'2$,
so by Theorem 6.2.3 we have I' > 7% || (z:75) x 74/

and ' 7 <75 and T'z:r| F 7 < 7.

S o W=

Thus by substitution and subsumption, I' - vy : 75 and T' F vy : [v1 /275

Lemma 6.5.3
IfFl—vl:TandFl—vg:TandFl—vlzvg:T$ thenT'Fvi =v9: 7.

Proof:
e Case: 7 =S(w: o).

1. Then7$:aandfl—v1£v2:o.
2. By Rule 2.120, ' vy = v : S(v1 : 0).

122

Type extraction

I'>ntint

ezt I(x)

Femptn ifTep 1 (yim) X7
I'>mop 1 [mip/ylrs fI'>p T (yim) X72

Term weak head reduction
r l>5[71'1<’l)1,’l)2>] ~> 5[’01]
r's> 5[71’2(1)1, 1)2>] A 5[1)2]

I'> E[p] ~ Ev] if>ptS(v:T)

Term weak head normalization

'veld ifI've~ée and e || d
I'vele otherwise

Algorithmic term equivalence

I'bep & ey ifPDelUdl,FDGQUdg,aDdFDdl<—>d2
Algorithmic weak term equivalence
'bn+<n always
'z x always
L > fun f(z:7]):7] is e; <> if'>r & rhand Tz o1 & 7
fun f(z:7m5):7) is ey and T, f:(x:7m]) =71, 2:7] > €1 < ea.
o Al Ky)imy.e1 <> Ao Kg):m.e9 ifI'vK; © Koand Ty a: Kby © mand I an K pep &
€9.
> (v],v]) < (v}, vh) if I'> o] © vh and I'>of & of.
I'> mvg < mvg if C'>vp < v9
I'> oy v] ¢ vy v if I'> vy © vg and I'> o] &).
Cowv A < vo Ay f>vy < vy, Ipoy Jwy, Dow o, 0° =Va:L.o”,
and I'v A; & Ayt L.
> (let z:7{=€) in e : 7y end) + ifCe7] &7 e < e,
(let z:7h=é€!, in es : T2 end) D,z:m{>ep < e, and I'> 1 & 7o

Figure 6.5: Algorithms for Term Equivalence

123

3. ButI'Fv; :S(w:0),so'Fuvyy=w:o

4. and hence I' - S(v; : 0) = S(w : o).

5. By subsumption then, I' - v; = v9 : S(w : o).
6. That is, 'Fvi =wvg : 7.

$

e Case: 7° = 7. Trivial.

Lemma 6.5.4 (Term Weak Head-Normalization)
IfT' e : 1 then there exists at most one € such that I'>e || €. Furthermore, I' €' : 7 and
l'Fe=eé€:T.

Lemma 6.5.5 (Soundness for Path Weak Equivalence)
IfT'Fpr:mand D py 19 and D'bpy < po then D> py o1, I>po Yoo, I' F oy = 09, and
I'-p1=py:or.

Proof: By induction on I'>p; <> po, and cases on the last step.

e Case: I'>n < n. Direct.
e Case: I'> z < z. Direct.

e Case: I'> mp| <> mp), because I' > p| < pl.

1. By inversion, p| and p, are well-formed.
2. By the inductive hypothesis, T'>p} 1t o1, D> ph f o9, T'F o1 =09, and T' F p} = ply : 01.
3. Since mp} and mp) are well-formed, oy = S(p} : (z:0])x0o!) and
0 = S(pl : (w:0h) x o),
4. and I'> mp) + S(mip] @ of) and T' > myph £ S(miph : 0f).
5. By Theorem 6.2.2, I' - 0] = o).
6. By subsumption and Rule 2.85, I' F mp} = mip, : of.
7. Hence I' - mp) = miply : S(mp) : o)) and I' F S(mp| : o) = S(miph : oh).

e Case: ['> mop) < mopl, because I' > p} <> pl. Analogous to previous case.

Theorem 6.5.6 (Soundness of Equivalence)
1. IfTFei:7andTFey:Tand'vey S ex then' e =eo: 7.

2. IfT'Fer:7,'Fey:7,'bey < e9, and ey and ex are head-normal then ' e =eo @ 7.
3. IfI'Frmand -1 and b1 < 19 then ' 1 = 9.
4. IfT'Fmand U1 and > < 0 then I'F 1 = 7.

124

Proof: By simultaneous induction on algorithmic judgments (i.e., on the execution of the
algorithms).
1. By the inductive hypothesis and Lemma 6.5.4.
2. e Case: I'>n < n. Follows by reflexivity.
e Case: I'> 2 <> x. Follows by reflexivity.
e Case: I'>fun f(z:0)):07 is €1 > fun f(x:0)):0) is es.
(a) Then by inversion I' - o}, I'F o}, T, 2:0] o, Ty z:0h b off, T, z:0) F ey : of, and
T zioh Fey: ol

(b) By inversion of the algorithm, I' > o < o} and I', z:0] > o} < o).

(c) By the inductive hypothesis, I' - o} = o).

(d) Thus I',z:0f F ol and so by the inductive hypothesis T, z:0] F of = oF.

(e) This yields I', z:0] - ez : 07, so by the inductive hypothesis I, z:0] F e; = ey : of.
(f) Thus ' F fun f(z:0]):07 is e; = fun f(z:0}):0} is ey : (z:0])—07.

(g) Finally, by Theorem 6.3.2 and Lemma 6.2.1 we have I' - (z:0])—0” < 7% and so

L+ fun f(z:0!):07 is ey = fun f(z:0%):0] is ey : 75
(h) By Lemma 6.5.3, we have I - fun f(z:01):0{ is e; = fun f(x:0}):0Y is eg : 7.

e Case: I'> A(a:Ky):my.e1 > A K3):my.e0 because I'> Ky < Ky and ', i Ky > 1 < 7o
and I', a:: K > e; & es.

—~
&
~

By inversion of typing, I' - Ky and 'y a:: K1 -7 and Tyt Ky F ey 7.
Similarly, ' M K9 and I', a:: Ko - 19 and I', a:: Ko - eo @ 7o.

By the inductive hypothesis, I' - K1 = K.

Then T', a:: K7 F 79, so by the inductive hypothesis I', a:: K1 = 71 = 79.

G

N~
SIS

Then T', a:: K7 F eg : 71, so by the inductive hypothesis I', a:: K1 Fe; =ea @ 71.
Thus, I' - A(a:: Ky)1 .6y = A Kg):m9.69 : Va: Ky .1

By Theorem 6.3.2 and Lemma 6.3.1, I' - Va: K.y < 5.

By subsumption, I' - A(a: Ky):m.e1 = Aa:Kg):mo.e9 5.
Therefore by Lemma 6.5.3, I' = A(a:: Kq):m1.e1 = Aa:Ky):mo.e9 0 T.
e Case: I'> (v],v]) < (vh,v]) because I'>v] < v and I'> v} < 0.

By Proposition 6.5.2, I'> 7% || (z:7")x 7",

and Do} : 7" and T'Foh @ 7'

and I of @ [v]/z]r" and T F of : [v}/z]7".

!

By the inductive hypothesis, ' - v} =) : 7/,

A~~~

—~
= oR @)
N’ N N N e N

—~~
—
~—

ISICES
N

Thus by functionality and subsumption and T' - v} : [v] /z]7".

By the inductive hypothesis, I' - o] = ol : [v] /z]7".

By Rule 2.106, " - (v}, v}) = (v,) : (z:7")x7".

By Lemma 6.2.1 and subsumption, T' - (v}, v) = (v}, v}) : 75.

Therefore by Lemma 6.5.3, T' - (v}, v{) = (v, v5) : 7.

e Case: I' > mv1 < mv9 because I' > v1 <> v9. Since miv; and mive are head-normal and
well-formed they must be paths; the result follows by Lemma 6.5.5.

A~~~

—~
= oR @)
N N N N N N’

—~~
—
~—

e Case: ' > mou; ¢ mvy because I' > vy < v, Since movy and mwyvy are head-normal and
well-formed they must be paths; the result follows by Lemma 6.5.5.

125

e Case: ['> v v] <> v v) because I' > vy < vg and I' >0} < vl.

(a) Then I'> vy | wy and I'> vy | wy and I'> wy > wo

y Proposition 6.5.1, v1 : (z:7)—7] an v) 1 T an vy [z < T.
By P ition 6.5.1, I' F 1 "and I'F o} : 7{ and T+ [v] !
(c) Similarly, T' - vy : (z:75) =75 and T'F o), : 7, and T F [v/z]r) < 7.

) By Lemma 6.5.4, w; and ws have these function types. Thus w; and wy are not

type abstractions, pairs, or (because they are head-normal) projections from pairs.
The only remaining possibilities are that either w; and wy are both paths, or else
they are both term abstractions.

SUBCASE: w; = p1 and ws = p2. By Lemma 6.5.5, there exist o1 and o9 such
that T'pw; oy and 'bwes oy and I'-0y =00 and I' - wy = ws : 07,
SUBCASE: wy = fun f(z:0}):07 is e; and wg = fun f(x:0}):0Y is es.

* Put o1 = S(w; : (2:0])—0]) and o9 = S(wy : (2:0))—07).

*

Then I' > wy 1} o1 and T' > wsy 1 09.

*x By declarative and algorithmic inversion and the inductive hypothesis,

kol =0band T',2:0] - o] = o).

By the inductive hypothesis, I' F w; = ws : 01$,

*

x sol'Fop=cogcand ' F w; = wsy : 01.

Since I' F wy : (z:7{)—7{, by Theorem 6.3.2 we have I' - oy < (z:7])—717'.
Thus in either of the two cases above, o1® is of the form (z:0))—0?.
By Theorem 6.2.3, ' - 7] < o} and ', z:7] F of < 7{.

Thus I' F v} : 0.

Similarly, 0o® = (z:0)—0¥ and T' - v}, : o).

By subsumption, I' - v/, : of.

By the inductive hypothesis, I' - v} = v} : of.

Thus I' - wy v] = wy v}y : [v]/z]o].

By substitution, I' - [v] /z]o! < [v]/z]7],

so'F[v]/z]o] <7 and T'F wyv] =wyvh: 7.

Then I'F vy 0] =wiv] : 7 and T' - vg v = wovh : 7.

So by symmetry and transitivity, I’ - vy v] = vgvh : 7.

o Case: I'> vy A; <> vg Ay because I'> vy < vy, [b vy wy, D>wy 0, 0° = Vau:L' .o,
and FI>A1 <~ A2 = L.
Analogous to the previous case; this time the head normal forms of v; and vo must
either be paths or type abstractions. The return-type annotations on type abstractions
are vital here (as they are for term abstractions in proof of the previous case) so that
the induction hypothesis can be applied; they supply a common type for comparing the
functions’ bodies.

e Case: I'>let z:7{=¢] in €1 : 71 end «> let z:75=¢), in ey : 75 end because I' > 7] < 75, and
I'vel ©eyand ['z:m] >7 & 7 and I, z:7] b e) < ea.

Essentially analogous to the proof for equivalence of two term-level functions.

3. By the inductive hypothesis and Lemma 6.2.1.
4. e Case: I'> Ty(Ay1) <> Ty(A2) because I'> Ay & Ay i T.
(a) By inversion of typing, ' Ay : Tand '+ Ay :: T,

126

(b) By soundness of constructor equivalence then, I' - A = Ay :: T,
(c) By Rule 2.53, I' - Ty(A;) = Ty(As2).
e Case: I'>S(vy : 71) <> S(vg : 72) because I'> 7 & 15 and 'y b vy < vs.
(a) By inversion of typing and the inductive hypothesis, I' F 1, = 7.
(b) Thus ' vy : 7y and ' - vg = 7y.
(c) By the inductive hypothesis, I' - v; = v9 : 7.
(d) By Rule 2.54, T' = S(v; : 71) = S(vg : 72).
e Case: I'> (z:7])—71] ¢ (z:72) =74 because I'y > 7] < 75 and 'y, z:7] > 7] & 75
By inversion of typing and the inductive hypothesis.
o I'> (z:7])x7] <> (z:12) x74 because I'y > 7{ & 74 and I'y, z:7{ > 7 < 7.
By inversion of typing and the inductive hypothesis.
o I'>VaiuKy.m < Va::Ky. 1o because ' > K & Ky and ', z:: K1 > 71 < To.
By inversion of typing, soundness of kind equivalence, and the inductive hypothesis.

The soundness proofs for the remaining algorithmic judgments are then straightforward.

Theorem 6.5.7 (Soundness of Subtyping)
1. IfTFmand ' and U1 < 7o then I'F 1 < 7o.

2. IfTFrmandlFmand P> E o then ' 1 < 7o,

Proof: By induction on algorithmic derivations.

Theorem 6.5.8 (Soundness of Typechecking)
1. IfTFokand Uo7 then T'F 7.

2. IfTFokandTve=3 7 thenTFe:Tand e 7.
3 IfTFrandTves=71 then Fe:T.

Proof: By induction on algorithmic derivations.

127

128

Chapter 7

Completeness and Decidability for
Types and Terms

7.1

Type and Term Equivalence

The approach for studying type and term equivalence is very similar to that for constructor and
kind equivalence. Figures 7.1 and 7.2 show a symmetrized version of the type and term equivalence
algorithms. By construction the algorithm is symmetric and transitive:

Lemma 7.1.1 (Algorithmic PER Properties)

1.

S S o

If Ai>v; & Ag> vy then Ay b vy & Aq > oy,
If Ai>vi & Ag> vy and Ag > vy & Az >og then Ay > v & Az s,
If Ai>vp < Ag> vy then Ay b vy <> Aq b vy,
If Ai>vp & Ag> vy and Ag > vy > Az >ug then Ay > v < Az s,
If Ai>1 & Ag> 1y then Do b T & A>Ty,
If Ai> 1 < Ag> 19 and A b 1o & Ag> 13 then Ay > 71 < Az > T3.

The proof of completeness for term equivalence is essentially the same as the completeness
proof for constructor equivalence. Although the algorithm is not type-directed, the fact that it
must maintain two contexts requires the more complex two-world form of logical relation: see
Figures 7.3, 7.4, and 7.5. The main differences from the constructor- and kind-level relations are:

1.

Since type equivalence is not purely structural (e.g., Ty(IntxInt) = Ty(Int)x Ty(Int)) the
logical relations are defined using head normalization of types.

. The term-level logical relations are defined only for values, not all expressions.

3. The II cases of the term-level relations have been simplified, since applications are not values.

These logical relations also require that - A; = A, as well as declarative well-formedness
or equivalences, as appropriate. This allows the invocation of the correctness results for the
constructor algorithms.

It is not immediately obvious that these logical relations are well-defined, because they are not
defined simply by induction on types.

129

Algorithmic type equivalence
F1>7’1<:>F2[>7'2 ifFlellLO'l, FQDTQU«O’Z, and F1>0'1 (—)FQDO'Q.

Weak algorithmic type equivalence
Fley(Al)HFQDTy(AQ) ifFll>A1 ::T1<:>F21>A2 Ty
Fll>S(’U1 ZT1) (—)FQDS(’UQ : 7'2) ifF11>T1 S and I'ivvy &b v
Ty > (z:im)—0op < Top (z:m9) =0y ifTipm & Tebmand Iy, zim b oy & Do, > oy
[yo (zim)xop < Top (i) xoe if b < Debmand Iy, zim b oy & Do,z > oy
o VoK. < TopVa:Ko.m if ' Ky & T'y> Ky and Fl, a:Ki>m & FQ, a:: Ko > 1o

Figure 7.1: Revised Type Equivalence Algorithm

Algorithmic term equivalence

I'per e Tape ifF11>61 Udl, I'y>eo Udg, and 'y >dy & Ty do
Algorithmic weak term equivalence
I'ieneTibn always
vz always
[y > fun f(x:7])r{ is eg <> iy >7 © Toprhand Tz > 7] < Ty, 2275 > 75 and
Lo > fun f(z:75):7) is eo L, f:(zr)) =1, mm| > ey & Ty, fi(z:ms) =1, 275 > ea.
[y> Azir{.e; ¢ Do > Axi7heo fTyo7f & Tov7hand 'y, 27| >ep & Do, z:7) > €.

I'e A(a::Kl):’rl.el o A(Oz::KQ):TQ.eg if I'b Ky & T'y> K9 and Fl,a::Kl DT & FQ,O{::KQ > To
and 'y, a: Ky >ep & Dy, an Ko >es.

L'y > (v, vf) <> Ta > (vh, v5) if Ty >o) & Typvh and Ty > o) & Ty of.
I'y>muv & Ty mvg ifFlDUlHFQD'UQ
[y > o) < Typvgv) if Ty >y < ooy and Ty o] < Ty v,
Fll>’U1A1 (—)FQDUQAQ ifFll>U1 =4 F21>’U2, > l} ws, > w; ﬂ 0;, 0i$ =
Va:Ll.ol, and 'y > Ay o L) < Do Ag i: L.
[y F (let z:7{=€] ine; : 71 end) < UTy>r & Tenr), Tive] ©Typeé),
[y k= (let z:7h=¢l, in e2 : 72 end) Dy,zripe; T, mivey,and Ty > < Dyb 7.

Figure 7.2: Revised Term Equivalence Algorithm

130

e (A;7) valid iff

1. AT

2. and

T=Ty(A) and Ap7 |7

Or, 7 =8(v: o) and (A;v;0)valid

Or, A>7 | (2:7")—=7", and (A;7') valid, and for all A’ D A and A” D A if
(A0 77) is (A" w's 7' then (A'; [0 /z]7") is (A" [w'/x]T").

Or Av 7 | (x:7")x7", and (A;7') valid, and for all A’ O A and A” D A if
(A0 77) is (A" w'; ') then (A'; [0 /z]7") is (A" [w'/x]T").

Or 7 =Va:K.7", and for all A’ D A and A" D Aif - A’ = A" and

A'F Ay = Ay it K then (A [A1/a]m") is (A";[Ay/a)T").

o (Ay;7y) is (Ag; 7o) iff

1. I—AlEAQ a,ndAll_TlETQ
2. (Al;Tl) valid and (AQ;TQ) valid.

3.

i = Ty(A;) and Aj> 73 75

Or, 7; = S(v; : 0y) and (Ay;v1501) is (Az;ve;02)

Or, Aj> 7 | (z:7))—7), and (Ay; 7)) is (Ag;75), and for all Al D A; and Al D Ay
it (A};0];7") is (AL;vh;7") then (Al [v)/z]r]') is (AL; [vh/z]7Y).

Or, Aj> 7 | (z:7])x7), and (Aq;7]) is (Ag;75), and for all A} D Ay and Al D Ay
if (Al;0];7") is (AL;vh; ') then (Al [v)/z]T]) is (AL; [vh/x]7d).

Or 7; = Vau: K;.7)’, and for all Al D Ay and A}, D Ay if - A} = A, and

Al F Ay = Ay Ky then (Al [Ar/a)T]) is (AY; [Ao/a]T).

Figure 7.3: Logical Relations for Types

131

e (A;v;7)valid iff

1. (A;7) valid
2. Atov:T
3. Avv s Apw

4.

7= Ty(A) and A>7 | 7T

Or, 7 =S(w:7') and (A;v;7") is (A;w;7")

Or, Av71 | (m:7")—=1"

Or, Av7 | (z:7")x7", (A;mv;7') valid, and (A; mov; [myv/z]7") valid.
Or, 7 =Va:K.7'.

o (Ay;v1;m) is (Ag;vg; o) iff

1. (Al;ﬁ) is (AQ;TQ)
2. (Ay;v1;m)valid and (Aq;vg; 7p) valid

3. AiFvi=vy:m

4. Ai>vy & Agd g

5.

T, = Ty(AZ) and Al > T; U Ti

Or, 7; = S(w; : 0;) and (Ay;v1;01) is (Ag;ve;09)

Or, Ajo 7 | (zi1]) =71,

Or, A;j> 7 | (zer])x7), (Ar;mivg; 7)) is (Ag;mive; 19), and
(Ar;movy; [mor/z]r]) is (Ag; move; [mive/z]m)).

e K
— Or, 7, =Va:K;.7/.

Figure 7.4: Logical Relations for Values

132

[] (Al;Tl S 01) iS (AQ;TQ S 02) iff

1. VA D Ay and AL D Ay, if (Al;v1;71) is (AL;vg;72) then (Al;v1501) is (AL;va;09)

o (A;v;T)valid iff
1. Aok
2. Va € dom(T"). A+ ya = y(T'())
3. Vz € dom(T"). (A;vyz;y(T'(x))) valid

o (A1;v1;T) is (Ag;yg; o) iff
1. FAL = Ay
2. dom(I';) = dom(T'9)
3. (Aq;71;T) valid and (Ag; y9; ') valid
4. Ya € dom(T). Ay Fya = yoa = y(T1 (@)
5. Vo € dom(T). (A;yiz;71(Ti(x))) is (Ag;yam;y2(Ta(x)))

Figure 7.5: Derived Logical Relations

size(I; Va: K.7) = (1,0) + size(l', a1 K5 1)

size(T; S(v : 7)) = (1,0) + size(T; 1)

size(T; (z:7")—=1") = (0,1) + size(I'; 7") + size(L, z:7"5 7")

size(D; (x:7")x7") = (0,1) + size(T;7") + size(T, z:7';7")

size(I'; Ty(A) = (0,Number of of x’s and —’s in B where ' A :: T = B)

Figure 7.6: Size Metric for Types

133

I therefore define the size of a type 7 relative to a context I' to be pair of integers, (If I’
is apparent from context, I will just refer to the size of 7.) The formal definition is given in
Figure 7.6; the definition here uses componentwise addition:

(m1,ma) + (n1,n2) = (m1 + n1, m2 + na).

The first component of the size is the number of ¥V’s and S’s in the type. The second component is
the number of x and —’s in the type after all the constructors within Ty(-)’s have been normalized.
These sizes are ordered lexicographically:

(ml,mg) < (nl,ng) <~ (m1 < nl) V ((m1 = nl) A (m2 < ng))
The relevant properties of sizes are summarized in the following lemma:
Lemma 7.1.2 (Sizes of Types)
1. IfT'F 1 = 71 then size(I'; 1) = size(L'; 12).
. IfTFE7m and T> 7 | o then 71 and 7o have equal sizes.

2
3. IfT'FS(v :) then the size of S(v : T) is strictly greater than the size of T.
4

AfTF (z:7")—7" then the size of (x:7")—1" is strictly greater than both the size of 7' and the
size of [v/x]T" for any value satisfying I'F- v : 7'

5. If Tk (x:7")x 1" then the size of (z:7")x71" is strictly greater than both the size of 7' and the
size of [v/x]T" for any value satisfying T F v : 7'

6. If ' = Ya:K.T then the size of VYa::K.T is strictly greater than the size of [A/a]T for any
constructor satisfying ' - A : K.
Proof:

1. By induction on equivalence derivations and the properties of constructor normalization.
2. By part 1 and Lemma 6.2.1.
3-6. By definition of sizes.

Lemma 7.1.3 (Logical Reflexivity)
1. If (A;7) valid then (A;7) is (A;7).
2. If (A;v;7)valid then (Aj;v;7) is (A;v;7).
3. If (A;v;) valid then (A;vy;T) is (A;;T).

Proof: By induction on the size of types

1. In all cases, - A = A and and A F 7 = 7 by declarative reflexivity.

e Case: 7 = Ty(A) and A7 || 7. Trivially (A; Ty(A)) is (A; Ty(A)).

e Case: 7 = S(v: o). By the inductive hypothesis (A;v; o) valid implies
(A;v;0) is (A;v;0). Thus (A;S(v:0)) is (A;S(v: 0)).

e Case: A7 | (2:7")—=7". Then (A;7') valid. By the inductive hypothesis,
(A;7") is (A;7'). Let Al O A and A}, O A and assume (Af;0];7") is (AL; vh; 7).
Then (Af;[v]/2]7") is (AL; [vy/z]7"). Thus (A;7) is (A;7).

134

e Case: A7 | (z:7")x7". Same proof as in previous case.

e Case: 7 =VauK.7". Assume A} D Ay, AL, D Ay, Al = AL, and Al F Ay = Ay K.
Then (Al;[A1/a]T") is (AL; [As/a]7"). Thus (A;Va:K.7") is (A;Va:K.7").

2. In all cases, (A;7) is (A;7) by the argument of the previous part, AFv =wv:7 by
Rule 2.79, and A v < A v by assumption.
e Case: 7 = Ty(A) and A7 || 7. Trivial.
e Case: 7=S(w:7'). Then (A;v;7") is (A;w;7") so (A;v;7") valid. By the inductive
hypothesis (A;v;7') is (A;v;7'). Therefore (A;v;S(w : 7')) is (A;v; S(w : 7')).
e Case: A7 | (x:7")—7". Trivial.

e Case: A>7 || (z:7")x7". Then (A;mwv;7")valid, so by the inductive hypothesis we have
(A;mo;7') is (A;mo; ') and (A; mov; [mv/z)r") is (A;mov; [mv/z]r"). Thus
(A;v;7) is (A v;7).

e Case: 7; = Vau:K;.7). Trivial.
3. By declarative reflexivity we have F A = A. By reflexivity of constructor equivalence, for all

a € dom(I") we have A+ ya = ya :: y(I'(«)). By part 2, for all z € dom(I") we have
(A;7yz;7(T(2))) is (A;7yz;79(T(2))). Thus (A;%;T) is (A;7;1).

Lemma 7.1.4 (Logical Symmetry)
1. If (Al;Tl) is (AQ;TQ) then (AQ;TQ) is (Al;Tl).

2. If (Ay;m <o) is (Ag;me < 09) then (Ag; e < o09) is (A < op).
8. If (Arsv13m1) is (Ag;ve;72) then (Agjvz; 7o) is (Ar;vr; 7).
4- If (A1;91;01) is (Ag;ye;T2) then (Ag;y2;T2) is (Ar;y1;01).

Proof: By induction on the size of types, using context replacement, declarative symmetry, and
algorithmic symmetry. [|

The following two lemmas must be proved simultaneously by induction on the size of types. I
have separated their statements for clarity.

Lemma 7.1.5
1. If (Asv;7)valid and (A;7) is (A;0) then (A;v;0) valid.

2. If (Aq;v15m1) is (Ag;v9;7m2), (Ar;m) is (Ay;01), and (Ag; 1) is (Ag;o9) then
(Ar;v1501) is (Ag;vg;09).

Proof: In all cases, by subsumption we have A F v : o.

1. e Case: 7= Ty(A) and A>T | 7. Then o0 = Ty(B) and Ao || o.
e Case: 7 =S(w: 7). Then 0 = S(w' : ¢') where (A;w;7") is (A;w';0"). Since
(A;v;7") is (A;w; '), inductively by Logical Transitivity we have
(A;v; ") is (A w5 0').

e Case: Av> 7| (z:7')—=7". Then Ao || (z:0")—0".

135

Case: A7 | (z:7")x7". Then Avo || (z:0")x0”. Now (A;mv;7")valid and
(A;7") is (A;0'), so by the inductive hypothesis we have (A;miv;0’) valid. By
reflexivity and the inductive hypothesis, (A;mv;7') is (A;mv;0'), so
(A;[mv/z)r") is (A;[mv/z]e”). Since (A; mov; [mv/z]7") valid, by the inductive
hypothesis we have (A;mov; [mv/z]o”) valid.

Case: 7 =Va:K.7". Then 0 =Va::L.o'.

2. By subsumption, in all cases A F v} = vy : 07. By the argument in part 1, (Ay;v1;07) valid
and (Asg;v9; 09) valid. Recall that that (Aq;71) is (Ag; 7).

Case: 7, = Ty(A;) and A; > 7; | 73. Then o; = Ty(B;) and A; > o; | ;.

Case: 7; = S(v; : 7]). Then o; = S(w; : 0}), (Ar;v1;7]) is (Ag;ve;75),

(Aq;or;7) is (Ag;wi; o)), and (Ag;ve;74) is (Ag;we;of). Thus (Aq; 7)) is (Ar;0))
and (Ag;715) is (Ag;0b). By the inductive hypothesis, (Aq;v1;07) is (Ag;ve;0)).
Case: A;> 1 | (z:7])—7). Then A; >0y | (z:0})—0).

Case: A;> 71 | (z:7])x7]". Then A;>o; || (z:0})x0l. Now (Aq;77) is (Ay;0h),
(Ag;15) is (Ag;0h), and (Ay;mvr; 7)) is (Ag;mvg; 7). By the inductive hypothesis,
(Aq;mur; o) is (Ag;mivg; oh). Also by Reflexivity we have

(Ay;mvrs 7)) is (Agymor;) and (Aq; 7)) is (Ag;71), so by the inductive hypothesis
we have (Ay;mivg;7]) is (Ag;mvg;of). Similarly, (Ag;mivg;7h) is (Ag;mive; 0f). Thus
(Ar; v [mvr/z]ry) s (Ag; mve; [mive/z]7y), (Ar; [myvi/a]r') is (Ay; [mv/z]oy),
and (Ag; [mve/z]Ty) is (Ag; [r1v2/x]0y), so by the inductive hypothesis we have
(Al; T2V, [7(11)1/1‘]0’1/) is (AQ; TT2V9; [71’11)2/1‘]05).

Case: 7; = Va:K;.7/. Then 0; = Va::L;.0).

Lemma 7.1.6 (Logical Transitivity)
1. If (A1) is (A2;72) and (Ag;73) is (Ag;02) then (A1) is (Ag;02).

2. If (Arsvi5m1) is (Ag;ve;m2) and (Ag;ve;) is (Agjwa; o) then (Ar;vi;Ty) is (Ag;wa;o2).

Proof: By induction on the size of types.

1. By context replacement and declarative transitivity, Ay - 7 = o09.

Case: T; = Ty(Ai), g9 = Ty(Bg), Ai > T; U Ty and AQ > o9 U g2. Trivial.

Case: 7, = S(v; : 7)) and o9 = S(wg : 0)). (Ar;v1;7) is (Ag;vg;75) and
(Ag;ve;7h) is (Ag;wg; o). By the inductive hypothesis, (Aj;v1;7]) is (Ag;we;oh).
Case: A;> 1 | (z:7]))—7) and Ay > oy || (z:05)—0f. Then (Ay;7]) is (Ag; 7)) and
(Ag;15) is (Ag;0h), so by the inductive hypothesis we have (Aq;7{) is (Ag;0)). Let
A} D Ay and A, O Ay and assume that (A];0];7]) is (Al;vh;0)). By reflexivity and
inductively by Lemma 7.1.5, (Al;v};7() is (AL;v;7h), so

(A5 [v) /x]7]) is (AL; [vh/x]7)). Now by reflexivity, (A);vh;0h) is (Ah;vh;0f), so by
reflexivity and inductively by Lemma 7.1.5, (AL; vh; 74) is (Al;vh;0f). Thus

(AY; [V /x]7)) is (A; [v)/x]0Y). By the inductive hypothesis,

(A [v)/z]r) is (AY; [vh/x]og).

Case: A;> 1 | (z:7])x71]" and Ay > oy | (z:04)x0h. Same as previous case.

136

o Case: 7; = Vau:K;.7] and oy = Vau:Lo.oh. Assume A} D Aj and A}, D Ay, F A} = A,
and A} F A; = Ay :: K. Since A] F K| = Ky by Theorem 6.2.2, we have
(AL [Ar/alr]) is (AL [Ag/al1h). Also F AL = Al AL F Ky = Ly, and by context
replacement, declarative reflexivity, and subsumption we have Al F Ay = Ay 1 Ko, so
(AL; [Ag/alTh) is (AL; [A2/a]oh). By the inductive hypothesis,
(ALi[Ar/a]r]) is (Al [s/a]o}).

2. Inductively using context replacement, declarative and algorithmic transitivity, and part 1.

Definition 7.1.7
The judgment I' > vy ~ ve holds if and only if vi and vo have a common weak head reduct under
typing context I'; that is, if and only if there exists w such that T'> v ~* w and T' > vy ~* w.

Lemma 7.1.8 (Weak Head Closure)
1. IfAl > V1 <=>A2>1)2, A11>1)1 >~ wi, and AQDQ}Q >~ wa, then A11>’LU1 <:>A2>w2.
2. If (Ajv;7)valid, Abv ~w, and A+ w: 7 then (A;w;T)valid.
3. If (Aq;v1;m1) is (Ag;ve;72), Ar > = wy, Ao ve ~ wsy, and Ay F wy = we : 7y then
(Aywi;m) is (Ag;wa;T2).
Proof:
1. By definition of the algorithm.

2-3. By simultaneous induction on the sizes of types.

|

Lemma 7.1.9

1. If Avpt T, Avp+ Avp, and A b p: 7, then (A;p;7)valid.

2. If Ayopr T 71, Aabpe T 72, A1 bpr < Ao pa, A bpr =po i1, and (A7) is (Ag;7a)

then (Ar;p1;71) is (Ag;p2;).

Proof: By induction on algorithmic derivations and weak head closure. |
Corollary 7.1.10
If (A1; (A1(2))) is (Az; (Az())) then (Ar;z; (A1(z))) is (Az;z; (Az(x))).
Proof: By part 2 of Lemma 7.1.9 with p1 = ps =z, 1 = A¢(z), and 75 = Ag(x). |

Lemma 7.1.11
1. If A+ Ty(A) then (A; Ty(A)) valid.

2. Ifl— Al = AQ and Al (o Ty(Al) = Ty(AQ) then (Al; Ty(Al)) is (AQ; Ty(AQ))

Proof: By induction on the size of types. Note that Ty(A) cannot head-normalize to a truly
dependent product or function type, or to a polymorphic or singleton type. |

Lemma 7.1.12
[f (Al;Tl) is (AQ;TQ) then Al > T <= AQ > To.

137

Proof: By induction on the sizes of types.

In the following theorem, not that part 6 uses algorithm equivalence because logical equivalence
is defined only for values.

Theorem 7.1.13

1.

S S oo

If (Aq;91;T) is (Ag;y0;T) and T'F 7 then (Ar;y17) is (Ag;yeT)

If (Ag;91;T) is (Ag;92;T) and T'F 11 = 72 then (Ar;yim1) is (Ag;v272)

If (Ay;y1; 1) is (Ag;ye; 1) and I'E 1 < 1o then (A <yime) is (Ag;yem < 7272)
If (A y;1) is (Ag;ye;T) and D'k w7 then (A yiv;n) is (Az;72v3727)

If (Ar;y1;0) is (Ag;2;T) and ' vy = wg 0 7 then (A y1v1;7171) is (Az; 2025 7272)
If (Aq;71;T) is (Ag;ye;T) and T'F ey = eg : 7 then Ay >y1e1 < Ag > yaes.

Proof: By induction on derivations.

Type Well-formedness Rules: I' - 7. In all cases, by Substitution we have A - ;7 and
Ao F vo1 and by Functionality we have Ay F y17 = vo71.

e Case: Rule 2.45

'FA:T

L'+ Ty(A)
By Functionality, Ay - y1 A1 = y2A42 :: T. By Lemma 7.1.11,
(A1; Ty(7141)) is (Ag; Ty(y242)).

Case: Rule 2.46
F'Fo:r T not a singleton

F'+S(v:T)

By the inductive hypothesis, (A1;y1v;717) is (Ag;y2v;v27). Thus (Ay;S(y1v : y17)) valid,
(A2;S(72v : 727)) valid, and (A1;S(y1v : 717)) is (Ag; S(y2v : 727)).
Case: Rule 2.47

Lo =1

I'F (z:7)—7"

Same argument as for II kinds in Theorem 5.3.10.

Case: Rule 2.48
| R ol

L'F (z:r)xr"”
Same argument as for 3 kinds in Theorem 5.3.10.
Case: Rule 2.49

Na:KET
I'-Va:K.7

There is a strict subderivation, I' = K, so by substitution and functionality we have

A FyK, Ao FypK, and Ay Fy K =K. Assume A} O Ay and AY D Ay and

Ay F A=Ay i K. Then (A7 [a— A1 T, anK) is (A y1[a—Ag]; T, i K). By the
inductive hypothesis, (A}; (y1[a—A1])7) is (A; (y1[a—As])7). That is,

(AL [Ar/a)(ma—alT)) is (A];[A2/a](n[a—a]T)). Thus (A]; v (Va::K.7)) valid. Similar
arguments show that (AL;y2(Va::K.7)) valid and (A]; 11 (Va:K.7)) is (AL; v (Vo K.7)).

138

Type Equivalence: I' - 7, = 7. In all cases, by validity and substitution we have A; - ;7 and
Ao F vo19 and by functionality we have Ay - vi7 = v270.

e Case: Rule 2.50.

'~
Tr=r
By the inductive hypothesis.
e Case: Rule 2.51.
7=+

By symmetry, (Ag;vy2;) is (Ar;91;). By the inductive hypothesis, (Ag;y27’) is (Ag;y17).
By Symmetry again, (A1;y17) is (Ag;y27’).

e Case: Rule 2.52.
Fl—TlETQ Fl_TQET3

I'-r 1 =T3
Same proof as for transitive rule for constructor equivalence in Theorem 5.3.10.

e (Case: Rule 2.53.
'FA;=A4,:T

I'F Ty(Ar) = Ty(A2)

By functionality, Ay - y1 A1 = y242 :: T, so by Lemma 7.1.11,
(A1; Ty(7141)) is (Ag; Ty(y242)).

e Case: Rule 2.58.
'A; T I'FAy:: T

I'F Ty(Ai1xAz) = Ty(A1)x Ty(Az)
First, Ay >y (Ty(A1xA2)) | Ty(y141)x Ty(y1A2) and
Ao >y (Ty(Ar)x Ty(Az)) I Ty(y2A1)x Ty(y242). By functionality, Ay -y A1 =y A; =« T
and Ay F 7y Ag = 245 : T. By Lemma 7.1.11, (Ay; Ty(y141)) is (Ag; Ty(y241)) and
(A1; Ty(1142)) is (Ag; Ty(y2A2)).
e Case: Rule 2.59.

'FA; =T I'HFAy : T
'+ Ty(Al—\AQ) = Ty(Al)ATy(AQ)

Analogous to the proof for Rule 2.58.
e Case: Rule 2.54.

'tm=mn F'tvy=v:m 71, T2 not a singleton
L' S(vy: 1) =8(vg i 72)

By the inductive hypothesis, (A1;y1v1;7171) is (A2;92v2;7271) and (Az;y271) is (Ag;y2T2).
By Lemma 7.1.5, (Ay;y2v2;7272) valid and (Ay;y1v157171) is (Az;y2v2;7272)-

e (Case: Rule 2.55.
Pkr =1} Do brl =1

L'F (zir)—71 = (zi1h)—7)

As in the proof for IT kinds.

139

e (Case: Rule 2.56.

Pkr =7} oo b1 =71

IF (zir)xr] = (z:1h) %1y
As in the proof for 3 kinds.

e Case: Rule 2.57.
Fl—KlEKQ F,Oz::Kll—TlETQ

I'FVa:Ki.11 =Va:Ko. 1

Analogous to the proofs for the previous two rules, also using functionality to show
A EyKy = 72Ks.

Subtyping: I' - 71 < 79. In all cases, by validity and substitution we have Ay F y171, Ao F y279,
A1y <9179, and As F 911 < 970, By functionality we have Ay F v < yoro.

e (Case: Rule 2.60
'tErn=mn

r " T1 S T2
Let A} D A; and A, D Ay and assume (Al;v1;7171) is (Ah;ve;v271). By the inductive
hypothesis, (Al;7171) is (Al;7172) and (AL;ya71) is (AL;v272). By Lemma 7.1.5,
(AL vi3m72) is (A va;7272).

e Case: Rule 2.61
F|—71§72 Fl‘TQSTg

F"Tlng

Obvious by inductive hypothesis that (Al;v1;y171) is (AL;va;y271) implies
(Al;v157172) is (Ah;va;y272) which implies (A};v1;7173) is (AY;va;y273)-
e Case: Rule 2.62.
Fr'Fw:7 T not a singleton
'ES(w:t)<r
Let A} D A; and A, D Ay and assume (Al;v1;S(mw : 117)) is (AL; ve; S(yow : y27)).
Then by definition of the logical relation, (Al;vi;y17) is (AL; ve;yaT).
e Case: Rule 2.63

[S(wy :m)
F'Fw =wy: 1 'Fm <m

I'FS(wy) < S(wg : T2)

(11, T2 not a singleton)

Let A} D Ay and A, D Ag be given, and assume

(Al 0158 (yiwy = y1711)) is (Ah; w3 S(yowy : ¥271)). Then (Af;v3mm) is (A yiwi;yii)
and (AL;ve;v9m) is (AL;yvowr;vem) and (Al vi;v171) is (AL;ve;v271). Using the inductive
hypothesis we have (Al;v1;7172) is (A];y1wi;7172), and (Ah;ve;y272) is (A yowi;y2T2),
and (Al;v1;7172) is (AL;va;9272). Again by the inductive hypothesis,

(Al yiwis yim2) is (Al yiwe; vi72) and (Ab; yowr;y2m2) is (Ab; yawa; ¥272). By transitivity,
(A v13717m2) is (Al y1we;y172) and (Ab;vg;yeTe) is (Ab;yews;y272). Therefore
(Al 015 8(y1ws = 172)) is (AY;v; S(vows @ Y272)).

140

e (Case: Rule 2.64.
I'F (zir)x
k7l <7 Ty b7 <7

T'F (z:ir)—=7 < (z:75)—74

Same proof as for subkinding of II kinds.

e (Case: Rule 2.65.
I'F (zirh)xry
k7 <7} Ty b7 <7

IF (zir)x7 < (z:1h) %18

Same proof as for subkinding of ¥ kinds.

e Case: Rule 2.66.
I'Va:Ky.m
F"KQSKl F,Oz::KQI—TISTQ

I'FVa:Ki.11 <Va:Ks.m

Analogous to the proof for function types.

Term Validity: I' - e : 7. In all cases, by validity and Substitution we have A; F vyje : y17 and
Ao F yoe : y97. By functionality we have A; - vie = ye : y17.

e Case: Rule 2.67
I' ok
'Fn:int
Recall that int = Ty(Int). Now A; >int |} int, and A;>n < A;>n, and A;>n < Ay >n.
Since (Ayp;int) is (Ag;int), we have (A;;n;int) valid and (Ap;n;int) is (Ag;n;int).

e Case: Rule 2.68
'+ ok

M-z :T(x)
By the assumptions for v; and 7s.

e Case: Rule 2.69
L, f:(z:r) =" o' Fe: 7"

T Ffun f(z:7"):7"is e : (x:7")—1"

There are strict subderivations ' - (z:7')—7" and by inversion, I' - 7" and T, z:7' - 7". By
the inductive hypothesis, (A1;y17") is (Ag;v27') and

(Ar;7 ((z:r")—=7")) is (Ag; yv2((z:7")—7")). Then

(Aq, fi (") —=1"), 7" s [f= flle—); T, fi(z:r) =", x:7") s

(Ag, frya((z:7")=7"), wiyo s v2[f = flla—x]; T, fi(z:7")—=7", 2:7"). By the inductive
hypothesis, Ay, fiy1((x:7")=7"), zipy 7' > (1 [f = f[z—=2))e &

Ag, fryo((z:7")—=7"), 2:y21" > (y2[f— f][z—2])e. Similarly, by the inductive hypothesis
(A, zn s (m[a—a))T") is (Ag, z:ye s (y2[a—a])T"), so

Ay, 7' > (o))" < Ag, 2y > (y2[ar—al) 7. Therefore

Ay >y (fun f(z:7'):7" is e) & Ag > yo(fun f(z:7'):7" is e), so

(A (fun F(zer)r" is) (z:r)) is (Agsa(fun flzr)r" is €)iya((@r')—7").

141

Case: Rule 2.70.
a:KlFe:r

'k Ala:K):te: VauK.1

Analogous to previous case, using
(A, Ky [a—al; T acK) is (Ag, any K yala—al; T an K).

Case: Rule 2.71.
'kFvi:m IF'kuvy:m

L'k (v1,v2) : T X7y

By the inductive hypothesis, (A1;y1v1;7171) is (Ag;yev1;7271) and
(A1;71v2;7172) is (Ag;y2v2;¥272). By Lemma 7.1.8, we have
(Ar; i {y1v1,7102);7171) IS (Ag; (Y201, 7202);7271). and
(Ag; ma(y101,7102);7172) is (Ag; m2(y201, y202); Y2T2)-
Case: Rule 2.72.
CFo: (z:r)xr”

'Fmo:7

By the inductive hypothesis, (A1;y1v;71 ((z:7")x7")) is (Ag;y2v;v2((z:7")x7")). Thus
(A mi(no);mt) is (Az;mi(r20);727).

Case: Rule 2.73
TFov: (z:r)xr”

I'F mov : [mo/z]r"

By the inductive hypothesis, (Ay;y1v;71 ((z:7")x7")) is (Ag;y2v;y2((z:7")x7"")). Thus
(A ma(viv);n([mv/a]r")) is (Agsma(y20); v2([miv/alr")).
Case: Rule 2.74.

ro:r—7" o7

CFovo 7"

By the inductive hypothesis and definition of the logical relations, Aj > y1v < Ag > y9v and
Ay yv' & Ag >y’ Thus Ay >y (vo') & Ag s ya(vd)).

Case: Rule 2.75
I'Fo:Va:K.7 'rA: K

F'FvA:[A/a]r

By the inductive hypothesis and the definition of the logical relations, Ay > yiv & As > you.
That is, Ay >y1v | w; and Ay > yov || we and Ay >wy < Aswsy. By substitution,

Ay F vy (Va::K.1), so by soundness of weak head reduction we have

Ay Fwy iy (Ve K1), Let Ay wy @ L. Then Ay L% < ~v1(Va::K.7) by Lemma 6.3.1.
By Theorem 6.2.3, L% = Va::Li.of with Ay Fy K < L}. Similarly, Ay > wy 1 Va:: Lol
with Ay -y K < L},. Now either both w; and wy are paths or they are are both
polymorphic abstractions. In either case, Ay - Va::L).0f = Va::L}.0f. By Theorem 6.2.2,
Ay F Ly = L,. Then Ay vy A =724 :: 41 K by functionality, so Ay =y, A =y A :: v L] by
subsumption. Then A; >y At K < Ag >y A it v9 K by the completeness of constructor
equivalence, and therefore Ay >y (v A) & Ay > ya(v A).

142

e Case: Rule 2.76
e :7r Dzt'Fe:r Lkt

L'k (let z:7'=e' ine:7end): 7

By the inductive hypothesis and the definition of the logical relations, Ay > ye’ < Ag > o€’
There is a strict subderivation I' - 7. By the inductive hypothesis (A1;y17") is (Ag;ye1'),
so by Lemma, 7.1.12 we have Ay > 717" < Ag b yor'. Similarly, A >y 7 < Ay b7, Finally,
using Corollary 7.1.10 we have (A, z: 7' yi[a—a]; T z:7") is (Ag, x:ye 7' yola—al; T z:7'),
so by the inductive hypothesis Ay, z:y17' > (71 [a—=al)e & Ag, 1727 > (y2[a—al)e.
Therefore Ay >y (let z:7'=¢€’ in e: 7 end) < Ay > yo(let z:7'=¢€’ in e : T end).

Term Equivalence: I' - e; = ey : 7. All these cases are straightforward, similar to cases already
proved. |

Lemma 7.1.14
1. If T'F ok then (T';id; T) valid where id is the identity function.

2. If Tk ok (T;id; T) is (T;id; T') where id is the identity function.
Proof:
1. By induction on the proof of I' - ok.

e Case: Empty context. Vacuous.

e Case: I',a:: K - ok because I' - K.
By the inductive hypothesis and monotonicity.
e Case: I',z:7 - ok because I' - 7.
(a) By Proposition 3.1.1, I' - 7, and I' - ok.
(b) Also, 2 ¢ dom(T").
(c) By the inductive hypothesis, (I'; y; ['(y)) valid for all y € dom(I") and
(T; o; T'(x)) valid for all o € dom(T").
(d) By monotonicity, (I', z:7;y; (T', z:7)y)) valid for all y € dom(I"). and
(D, z:7; 5 (T, z: 7))) valid for all @ € dom(T").
) By Theorem 7.1.13, (I'; 7) valid
f) and by monotonicity (', z:7;7) valid
) Now by Corollary 7.1.10, (T', z:7; z; 7) valid.
h) Hence (T, z:7;id; T, 2:7) valid.

TN N
o

2. By part 1 and reflexivity.

This yields a completeness result for the symmetrized algorithm:

Corollary 7.1.15
1. IfTF 1 =1y then (I';m) is (T m2).
2. IfF Fe =ey: 7 then (F;el;T) is (1";62;7—)_
3 IfTFrn=mnthenl>r & T>m.

143

4. IfT'Fei=ey:7 then 'bep & I'>es.

Proof:
1,2 By Lemma 7.1.14, we can apply the Theorem 7.1.13 with ; and 72 being identity
substitutions.

3,4 Follows directly from parts 1 and 2 and the definition of the logical relations.
|

Again, use of a size function for algorithmic equivalence (number of non head-normalization
rules used) allows the proof to be transferred to the original equivalence algorithm.

Theorem 7.1.16
1. IfF =Ty, iber:im, ok e, and 'y >ep & Ty>es then ' >ep < es.
2. IfFI'1 =19, I'1Fe:m, I'okFe: 7, and 'y >e;p & Tyg>eg then 'y >ep < es.
3 Ifr-T1 =Ty, 17, Dok 1, and U1 > & Do 1o then 'y > 11 & 7o.
4. IfEFT1 =T, 11, Dok 1, and Ty 1 < Do 1y then 'y > 711 0 9.

Corollary 7.1.17 (Completeness for Type and Term Equivalence)
1. IfTFe;=ex:7 then'>ey & eo.

2. If T =mnthen'>m & 7.

Theorem 7.1.18
1. If '>7m <& 1 and I'> 19 < 7o then it is decidable whether I'> 1 < To.

2. If Tpe; & e1 and I'> ey & eo then it is decidable whether I'> e; < es.

Corollary 7.1.19 (Decidability of Type and Term Equivalence)
1. If T'F 11 and T' - 79 then it is decidable whether I' - 171 = 7.

2. If T'Fey:7 and I' - eq : 7 then it is decidable whether ' e =eg : 7.

Proof: Follows from Theorem 7.1.18 and by soundness and completeness of the equivalence algo-
rithms. |

7.2 Completeness and Decidability for Subtyping and Validity

Given completeness for term equivalence, proving completeness of the subtyping algorithm would
be straightforward if it were not for transitivity (Rule 2.61). Proving transitivity of the algorithm
requires some care because of polymorphic types, and the fact that changes to kinds in the typing
context affect type head-normalization.

Reflexivity, in contrast, is direct

Lemma 7.2.1
IfTFrthenTo7oandP>oCo (ie, b7 < 7).

Proof: By induction on the proof of I' - 7, using correctness of the term, kind, and constructor
equivalence algorithms. |

Proving transitivity requires showing that the algorithm obeys a weakening property: types in
the context can be replaced by subtypes, and kinds in the context can be replaced by subkinds.
Half of this is straightforward:

144

Lemma 7.2.2 (Algorithmic Weakening for Term Variables)
Assume I - o0y < 07

1. IfU,z:00, T F oy i 7 and TV, 2200, T F g : 7 and TV, z:01, T >y & vo then TV, 3:09, T bv; &
V3.

IfU, z:00, " b1 and U, z:00,T" = 19 and TV, z:01, T > 11 & 19 then TV, 2:09, 1" > 171 & 1.
IfU, z:00, 1" b1 and I, z:00, 1" = 15 and I, z:01, 1" > 1 C 79 then I, z:09, 1" > 1 C 79.
IfU, z:00, " b1 and T, z:00, 7" =19 and TV, z:01, T > 71 < 70 then T, xz:09, T > 1) < 79,
If U, z:00, I & ok and I, z:01, " > 7 then I, 2:09, 1" > T.

If U, z:00, 7"+ ok and TV, z:01,T" > e = 7 then I, z:09, " b e = 7.

IfU, z:00, " b7 and IV, z:00, 1" >e = 7 then IV, z:09, " b e &= 7T.

NS S e

Proof:

1,2. By soundness and completeness for type/term equivalence, and Corollary 3.2.8.

3,4. By induction on algorithmic derivations and part 1. (For part 4, note that
head-normalization of types is completely unaffected by the type of x.)

5-7. By induction on algorithmic derivations and part 4.

However, modifying kinds in the context affects head-normalization of types, and hence it is
harder to show that algorithmic subtyping is preserved when kinds in the context are made more
specific.

I solve this problem with a two-step process. First I prove soundness and completeness for the
algorithm applied to the subset of types not containing the universal quantifier. T then use this to
show the required weakening property, which then allows a proof of full transitivity. The success
of this method depends critically on the predicativity of MILy.

First, any two related types either both contain a universal quantifier, or neither do.

Proposition 7.2.3
1. If T'F 11 = 19 then 11 contains a ¥V if and only if 7o contains a V.

2. If U'F 1 < 19 then 71 contains a ¥V if and only if o contains a V.
Proof: By induction on derivations. |
Lemma 7.2.4 (Pre-transitivity of Algorithmic Subtyping)
Assume T, 10, and 13 contain no V’s, and that ' =7, ' - 1o, and I' F 73.
1. If > Emand > E 73 then I'> 1 C 73,
2. IfFDTl <mandT'>m < T3 then I'> 1 < 73.
Proof: By simultaneous induction on size(I'; 71) + size(T'; 72) + size(I'; 3).

1. e Case: I'> Ty(A;) C Ty(Az) C Ty(As). By transitivity of the constructor equivalence
algorithm.

e Case: I'>S(vy : 7)) C S(vg : 75) C S(v3 : 75). By the inductive hypothesis, I' > 7| < 7.
By the correctness of algorithmic term equivalence, I' > v < v3.

145

e Case: I'>S(vy : 7]) C S(vs : 75) C 73, where 73 is not a singleton. By the inductive
hypothesis, I' > 7 < 73.

e Case: I'>S(vy : T{) C 79 C 73, where 5 and 73 are not singletons. By the inductive
hypothesis, I' > 7] < 73.

e Case: I'> (z:7]) =7y C (z:75)—74 C (x:75)—74. By the inductive hypothesis,
I'> 74 <7{. By Lemma 7.2.2, T, z:75 > 7' < 7, so by the inductive hypothesis we have
Lerier <74

o Case: I'> (z:r{) x7)' C (2:75) 79 C (2:74)xT14. Analogous to previous case.
2. By part 1.

Lemma 7.2.5
Assume 1 and 19 contain no V'’s.
1. Ile = Ty(Al), Ty = Ty(AQ), and I' - A1 = A2 :: T then Fl>7'1 < T9.

2. IfTFm=mnthenlom Joy, Iom oy, 'boy Cog, and 'boy C oy (ie., P> < 19 and
Fl>7'2 S 7'1).

3. IfFl—Tl <7 thenFDnUal, FDTQUUQ, and I'> o1 C o9 (z'.e., I'sm STQ}.
Proof:

1. By induction on the common normal form of A; and As.

2-3. By induction on derivations, and part 1. Note that for the case of transitivity, by
Proposition 7.2.3 the mediating term will contain no V’s and so the inductive hypothesis
applies.

Lemma 7.2.6 (Algorithmic Weakening for Constructor Variables)
Assume I - Ky < K.

1. If UV, K, T Fop o7, TV oK, T Fog o 7, and TV, K, T b vy & vy then TV, a: Ko, T >
v & vy,

I, oK, I'"F7m, IV, K, I F 1, and I, a: K1, 1" > & 19 then IV, a: Ko, IV b1 & 19
If, auK, T =7, IV an K, " b 19, and T, a:: K1, T > 1y C 75 then TV, a:: Ko, T > 1 C 79.
If,au:K, T =7, IV oK, T" b 19, and T, a: K1, T > 1y < 19 then TV, a:: Ko, T b1 < 719
If UV, oK, T" = ok and T, a:: K1, T > 1 then T, a:: Ko, T" > 7.

IfU K, T" = ok and T, a: K1, T > e = 7 then T, a: Ko, T b e = 7.

IfU, K, -7 and I, a: K, I >e =171 then T, a:: K, T pe = 7.

R R

Proof:

1,2. By soundness and completeness for type/term equivalence, and Corollary 3.2.8.

3. Proved simultaneously with part 4, by induction on algorithmic derivations.

146

Case: I, a:: K1, T" > Ty(A1) € Ty(As). By correctuness of the constructor equivalence
algorithm and Corollary 3.2.8.

Case: I, : K1, T" > 8S(vy : 7]) E S(vg : 75). By the inductive hypothesis

IV, a:: Ko, " > 7 < 75. By correctness of term equivalence algorithm and

Corollary 3.2.8, I'!, a:: Ko, I'" > vy < vy,

Case: IV, K1, T > S(v1 : 1) E 72 where 73 is not a singleton. By the inductive
hypothesis IV, a:: Ko, I > 7] < 75.

Case: I, a: K1, T > (z:7])—71] C (2:75)—74. By the inductive hypothesis,

IV Ko, T" > 7 < 7] and TV, a: Ko, T ey o 1) < 7.

Case: I, a: K1, T" > (z:7)x 1] C (2:75) 7. Analogous to previous case.

Case: TV, K, T > VK| .7/ C Va:K).7). By correctness of algorithm subkinding
and Corollary 3.2.8, I, a:: K9, I > K}, < K| and by the inductive hypothesis,

IV o Ko, T a: Kb > 1) < 7l

Case: 71 and 79 contain V.

(a) Then neither type is of the form Ty(A),

(b) so I, K1, >y | 70, TV, K, T > 1o 4 70, T, : Ko, T > 1q || 71, and
IV oKy, I > 19 || 7.

(c) By part 3 we have I, a:: Ko, T > 11 C 79,

(d) so I, Ky, T" > 1 < 7.

Case: neither 7 nor 7 contains V.

(a) By assumption IV, a:: K1, T > 1y || 01, IV, i K1, T > 75 |} 092, and
I, a: K, I > 01 C 09.

(b) By part 3, IV, a:: Ko, T > 01 C 09.

(c) By Lemma 6.2.1, IV, a:: K1, I 11 = 07 and IV, a:: K1, T 19 = 09.

(d) By Corollary 3.2.8 and completeness of the type equivalence algorithm
M auKo, T o1 o], IV, Ko, I b1y || 0, TV, i Ko, T = 1y = 0], and
I a: Ky, I F 19 = 0.

(e) By Corollary 3.2.8 and transitivity, I, a:: Ko, T F 09 = 0] and
I oKy, I F oy = 0.

(f) By Lemma 7.2.5, IV, a:: Ko, I > o < o7 and I, a:: Ko, T > 09 < 7).

(g) Since I, a:: Ko, T" > o1 < 09, by Lemma 7.2.4 applied twice we have
IV a: Ko, T > o <ol

(h) But o} and o, are head-normal, so I, a:: Ko, I'" > 0] C o).

(i) Therefore IV, a:: Ko, T > 11 < 79.

5-7. By induction on algorithmic derivations and part 4.

Given this weakening property, I can now show the full transitivity result for algorithmic sub-
typing. I show only one case of the proof, because all the others are exactly the same as in the
proof of Lemma 7.2.4.

Lemma 7.2.7 (Transitivity of Algorithmic Subtyping)
Assume k-7, ' 7o, and ' F 73.

147

1. If > Emand > E 73 then I'> 1 C 73,
2. If T <mand 'y <75 then I'> 71 < 73.

Proof: By induction on size(I';71) + size(T'; 72) + size(L;13).

e Case: I'> VauK|.7{ C VoK) C Va:K§.15. By the transitivity of the subkinding
algorithm, I' > K} < K. By Lemma 7.2.6 have we I', a:: K} > 7/ < 74. By the inductive
hypothesis, I', a:: K5 > 7] < 7.

At this point I have shown that the subtyping and kind equivalence algorithms are transitive
on well-formed types. At this point, completeness of the remaining type and term algorithms is
straightforward.

Theorem 7.2.8 (Completeness for Subtyping and Validity)
1. IfT'F- 1 then T'> 7.
2. If T <1 then'>1 < 79.
3. IfT'F 1 <19 and 7 and 7o are head-normal then I'> 71 C 79.
4. IfTFe:Tthen'pe=30 and U'>eqo.
5 IfTFe:7then'pete= 1.

Proof: By simultaneous induction on the hypothesized derivations, using the completeness of the
type and term equivalence algorithms, and transitivity of algorithmic subtyping. |

Theorem 7.2.9
1. If T'F 1 and I' - 19 then it is decidable whether I'> 71 C 79

If T'F 1 and T = 79 then it is decidable whether I'> 71 < 1o

If ' ok then it is decidable whether I' > 7 is provable.

If ' F ok then it is decidable whether I'>e = 7 holds for some 7.

If ' F 7 and e is given then it is decidable whether ' > e & 7 is provable.

Proof:
1,2. By induction on size(I'; 1) 4 size(I'; 72), invoking the decidability of term equivalence and of
type head-normalization.

3-5. By simultaneous induction on the textual size of 7, e, and e respectively.

Corollary 7.2.10 (Decidability of Subtyping and Validity)
1. If ' & ok then it is decidable whether I' - 7 is provable.

2. If ' -1 and I' - 1o then it is decidable whether I' -1 < 19
3. If I' - ok then it is decidable whether I' - e : 7 holds for some T.
4. If U'F 7 and e is given then it is decidable whether I' - e : 7 is provable.

148

7.3 Antisymmetry of Subtyping

By taking advantage of the algorithmic form of subtyping — which contains no transitivity rule —
subtyping can be shown to be antisymmetric.

Lemma 7.3.1

Assume ' 1 and ' F 7.
1. If vy <mand I'>1m <71 then '> 1 & 9.
2. If T Empand 'b g E 1 then I'> 1 & 7.

Proof: By simultaneous induction on the size of the hypothesized derivations.
Note that by soundness, ' -7 < and I' - 15 < 7.

1. (a) By inversion, ' 7 | 01, '> 19} 09, '> oy C 09 and I'> 09 C o3.
(b) By the inductive hypothesis, ['> 01 < 05.
(¢) Thus I'> 1y < 9.
2. e Case: I'b Ty(A;) C Ty(Az2) and I'> Ty(Az) C Ty(A;) because I'> A) & Ay :: T and
'>Ay < A o T. Then I'> Ty(A1) <> Ty(As2).
e Case: I'>S(vy:7) C S(ve: 72) and I'> S(ve : 72) T S(vy : 71) because I'> 71 < 79,
I'vovy vy, ' <7, and I'>b vy & v,
By the inductive hypothesis, '> 71 < 19, so I'> S(v1 : 71) < S(v2 : 79).
e Case: I'> (z:7)—71] C (z:75)—74 and ' > (z:75)—7) C (z:7{)—71] because I'> 7 < 75
and D,z > 7' <7 and T 7y < 7 and T, 27| > 7 < 7.
(a) By the inductive hypothesis, I'> 7] < 75.
(b) By completeness, I', z:7{ b7 < 7.
(c) By the inductive hypothesis, T', z:7{ > 7{' < 74
(d) Thus I'> (z:7])—7] < (2:75)—75.

e The remaining two cases are similar.

|
Proposition 7.3.2 (Antisymmetry of Subtyping)
Il <mandThFrn <7 then ' 71 = 7.
Proof: By soundness and completeness of the subtyping algorithms and by Lemma 7.3.1. |

7.4 Strengthening for Term Variables

From the correctness of the algorithmic judgments I now derive a strengthening property for term
variables. I show that all of the judgments in the definition of MILg are preserved under dropping
of apparently-unused typing hypotheses for term variables.

However, recall that in the presence of transitivity rules strengthening cannot be proved directly
by induction on derivations. For example, consider an instance of Rule 2.81:

I,yo,l'goFe=¢€:71 I,yo, gk =€ : 1

I,yo,lgke=¢€":71

149

And assume that y is not used in the conclusion (formally, that y & (FV(I'y) UFV(e) UFV(e”) U
FV(7))) It does not follow, however, that y ¢ FV(e'); a priori, it might be that the equivalence of
e and €” is provable only by equating both to a term involving y. Thus the inductive hypothesis
cannot be applied to the premises.

Also, the trick used for eliminating unused kind variables in §3.4 is not applicable here, because
although every kind may be inhabited by a constructor, we cannot expect in general that every
type is likewise inhabited by a value.!

However, the definitions of the algorithmic relations involve no transitivity rules, so here
strengthening can be proved directly:

Lemma 7.4.1
If T'y,y:0,T9> T holds and y ¢ (FV(I'9) U FV(J)) then I'1,Ty > J holds as well.

Proof: By induction on the derivation I'y, y:0, 'y > 7. |

By soundness and completeness of the algorithmic relations, the strengthening property can
be transferred to the official MILy. This is easy, but not quite immediate. For example, suppose
y,y:0,T9 F 1 < 79 where y € (dom(T'y)UFV (1) UFV(72)). By Completeness we have I'y, y:0, 9>
71 < 79, and by Lemma 7.4.1 we have I';,I's > 7 < 79. However, we cannot simply conclude that
I'1,To F 711 < 79; the statement of soundness requires that we previously know I'y,I's F 71 and
Fl, F2 F T2.

Lemma 7.4.2
If T'1,y:0,T9 F ok and y € FV(I'g) then I'1,T's F ok.

Proof: By induction on I's.
First, note that if 'y, y:0, ' I ok then y ¢ FV(I';). Then there are three cases for the form of the
proof I'y, y:0, s - ok:

e Case: ['y = o.

Fl Fo g d (F)
_ om
T,yokok !
Then by Proposition 3.1.1, I'; - ok.
e Case: I'y =T%, a:K.
Iy,y:0, T K

Iy, y:0,T%, K ok (o ¢ dom(T'y, g0, T))
By Completeness, I'1, y:0,T% > K.
By Lemma 7.4.1, Ty, T, > K.
By Proposition 3.1.1 and the inductive hypothesis, I';, I', I ok.
By Soundness, I';, T + K.
Therefore I'1, I'y, a:: K | ok.

ANl A

! Actually, since all the base types mentioned are inhabited, every type in MILg 4s inhabited by a value. Because
this property is not preserved when recursive types are added, I choose not take advantage of it.

150

e Case: 'y =T, 7.
Iy,yio0,TL E 7

z ¢ dom(I'y,y:0,T"
Ty, y:0,T%, 27 - ok ? Ty 2)

By Completeness, I'1, y:0,T% > 7.

By Lemma 7.4.1, Ty, T > 7.

By Proposition 3.1.1 and the inductive hypothesis, I'y, I, - ok.
By Soundness, I'1, T F 7.

Therefore I'y, I'Yy, z:7 = ok.

ANl

Theorem 7.4.3 (Strengthening for Term Variables)
If T1,y:0,T9 = T holds and y & (FV(I's) U FV(T)) then T'1,T's B J holds as well.

Proof: By Lemmas 7.4.1 and 7.4.2, and soundness and completeness of the algorithmic
judgments with respect to the MILg definition. I show two representative cases:

e Case: I'1,y:0,'g F 7.
By Completeness, I'1,y:0, o > 7.
By Lemma 7.4.1, I'1, I’y > 7.

1.
2.
3. By Proposition 3.1.1 and Lemma 7.4.2, I';, 'y I ok.
4. By Soundness, ['1,I's - 7.

e Case: I'1,y:0,s 71 < 7o.

1. By Completeness, I'1, y:0, s > 11 < 9.

2. By Lemma 7.4.1, I';, T2 > 1 < 70.

3. As in the previous case I'1,I's F ok and I'1,I's = 7y and I'1, 'y F 9.
4. By Soundness, 'y, 'y - 71 < 9.

151

152

Chapter 8

Properties of Evaluation

8.1 Determinacy of Evaluation

It is straightforward to show that evaluation in MILg is deterministic.
Proposition 8.1.1
1. Given A, there is at most one U and one instruction I such that A = U[I].

2. Given e, there is at most one C and one instruction I such that e = C[I].

Proof: By induction on A and e respectively. |

Corollary 8.1.2 (Determinacy of Evaluation)
If e ~ e and e ~» ey then e; = eg.

8.2 Type Soundness

Type soundness is informally the property that “well-typed programs don’t go wrong”. In a small-
step operational semantics, soundness can be expressed as the combination of two principles:

1. Type Preservation: If e is well-typed and e can take a step to €/, then ¢’ is well-typed.

2. Progress: 1If e is well-typed then either e is a fully-evaluated value and execution is done, or

else e can take a step to some €'

Put together, these guarantee that, when starting with a well-formed program, execution either
terminates (yielding a fully-evaluated value) or execution goes on forever. Evaluation of well-typed
programs cannot get “stuck” — reach a situation where no execution step applies but evaluation
has not terminated. Examples of stuck programs would be 3(4) or 7y (fun f(z:int):int is z).

Lemma 8.2.1
1. IfT-T1:K and I~ R thenT'FR:: K.

2.IfT-T:7and I~ Rthen'FR:T.

Lemma 8.2.2 (Decomposition and Replacement)
1. If = Cle] : T then for some o, Fe:o, and F e :o implies - Cle']: .

2. If = C[A]: T then for some L, &= A:: L, and + A" :: L implies + C[A]: 7.

153

3. If FU[A] :: K then for some L, - A:: L, and = A’ :: L implies FU[A'] :: K.
Proof: By induction on derivations.

Corollary 8.2.3 (Type Preservation)
IfTFexTande~¢€ thenT ke 7.

Lemma 8.2.4 (Canonical Forms for Constructors)
1. If FA:SanK' K" then A= (4 ,A").
2. If FA:Toa:K' K" then either A = Aa::L.A or else A=cA; --- A, with n > 0.

Proof: By induction on the kinding derivation.

Lemma 8.2.5 (Canonical Forms for Terms)
Assume Fw:T.
1. If > 7% |l int then T = n for some integer n.
2. If v 7 || (z:7)x7" then © = (¥, 7") for some T and 7",
3. If v 7% | (:7")—=7" then T = fun f(z:0"):0" is e for some o', 0", and e.

4. If > 7% | YauK.1 then T = A(a:L'):L".e for some L', L", and e.
Proof: By induction on typing derivations, using Theorem 6.2.3 and Lemma 6.3.1.

Theorem 8.2.6 (Progress)
1. If FA: K then A= A or A~ A’ for some A'.

2. If Fe:71 then e =T or e—~¢€' for some €.

Proof: By simultaneous induction on typing and kinding derivations, and cases on the last
inference rule used. I show one representative case:

e Case: Rule 2.25
A =« K'—-K" Ay K'

Fl_AlAQ - K”

If Ay is not a constructor value, then by the inductive hypothesis Ay ~ A, so

Ay Ag ~ Al Ay. Alternatively, if A; is a value but A, is not, then Ay ~ A} and

Ay As ~ Ay Al,. Finally, assume A; and Ay are both values. Then by Lemma 8.2.4,

Ay =cv)...v], and so A; Ay is a value, or else A} = Aa::K.A so that A; Ag ~ [Az/a]A.

154

Chapter 9

Intensional Polymorphism

9.1 Introduction

As discussed earlier, the TIL and TILT compilers use the intensional type analysis framework
of Harper and Morrisett [HM95, TMC*96, Mor95]. Type constructors correspond to run-time
values, and the language includes constructs which permit primitive recursion over constructors
of kind T. I model these by adding two new constructs to the language: Typerec and typerec.
The former is a constructor which does run-time analysis of constructors, while the latter is a
term which does a similar run-time analysis. There are several applications for such constructs,
both in implementing Standard ML (by, for example, using different array representations for
values of different types) and elsewhere (e.g., implementing generic pretty-printing or marshaling
routines) [HM95, TMC*96, Mor95].

9.2 Language Changes

9.2.1 Grammar

Intensional type analysis adds two constructs to the language: Typerec allows primitive recursion
over constructors to compute a type constructor, while typerec allows primitive recursion over
constructors to compute a term value.

Type Constructors A, B == ---
| Typerec[a.K](A; A= ; A°V)
Terms e,d = ---
| typerec[a.T|(A;e™;e%)

For simplicity, the type analysis constructs considered here make only the distinction between
those constructors which are (equivalent to) function type constructors, and the rest (the “other-

wise” case). That is, I have restricted Typerec to allow the definitions for a function F' :: I[la::T. K
of the form

Flog = ag) = Glar)(az)(F(en))(F(az))
F(a) = H(a) if o is not equivalent to a function type constructor

where G and H are arbitrary constructor-level functions of the right kind; this function F' would
be defined in the official syntax as

AB:T. Typerec|a. K] (5; G; H).

155

A similar restriction is made for the term-level typerec.

The most interesting aspects of constructs for intensional polymorphism are distinctions made
between different constructors, primitive recursion, and the possibility of a default case. Extending
Typerec and typerec to test for specific base type constructors or the product type constructor
would not substantially affect the results of this chapter.

9.2.2 Static Semantics

The following rules must be added:

Well-Formedness
FFA:T INa:THFK
F'F A" o HopaT Hagn T oy /o] K—[as /o] K= (a1 —ag) /o] K
'E A = HaT.K
'+ Typerec[a. K|(A; A7 AV) i [A/a] K

(9.1)

'-A:T Moa:Tk7T
I'Fe™ :Va T Vag:T.[ag /a]T—[as/a]t—[(a1—a2) /a]T
I'Ee®Y:VauT.r
I' F typerec[a.7](A; e ;eY) : [A/a]T

Equivalence
Fl—AlEAQ::T F,Oz::Tl—KlEKQ
'FAT = A5 = o T Iag:T. [on /o] K1 — o /o] K1 —[(0g —a2) /o] Ky
' A" = ASY = Ila::T. K,
I' F Typerec[a. K](A1; A7 5 AYY) = Typerec[a. Ko (Ag; A5 ASY) =2 [Ar /o] K,

(9.3)

'-A4;::T 'FAy:: T a:THFK
I'F A7 2 llap =T Iag:T. [ar /o] K—[ag/a] K= [(a1—a2) /o] K
'A% . [Ta::T.K
[+ Typerec[a. K](A1—Ag; A7 A%V) =
A7 (A1) (Ag) (Typerec[a. K] (A1; A5 A°Y)) (Typerec[a. K[(Ag; A7 A%V)) = [(A1—Ag) /o) K

(9.4)
F'FE&]=T ¢ is not — Ia:THK
F'F A" o Hop T agn T oy /o] K—[as /o] K= (a1 —ag) /o] K
'F A°Y :: Tla:T.K (9.5)
I+ Typerecla KI(Elci A 3 A™) = A™ () 5 [A/a]K |
I'FA; =A45: T Na:THFn=n
kel =ey :VaruTVag:T. [ar/aln—[az/a]m —[(a1—a2) /o]

eV =ef" :VauT.my (9.6)

I' F typereca.71|(A1; €7 5 e9V) = typerec|a.m2](Ag; €5 5€9Y) : [A1 /a1

156

9.2.3 Dynamic Semantics

The constructor-level and term-level evaluation contexts are each extended with one case:

== ---
| Typerecla. K|(U; A7 ; A°Y)

| typerecla.T|(U;e;e")
and there are four new instruction reduction steps:

Typerec[a. K](A;j—Ag; A7 A°Y) ~ A~ (A1) (A2) (Typerec[a. K](A1; A7 5 A°Y))
(Typerec[a. K](Ag; A7 A°Y))
Typerec[a. K](A; A= A°V) ~s A% (A), if A not of the form A;— A

typereca.7](A1—Ag; e eV) ~ e (A1) (Ag) (typerec[a.K|(Ar1; e ;€%Y))
(typerec[o. K](Az; €73 €7Y))
typerec[a.7](A; e ™5 eV) ~ €™V (A), if A not of the form A;—A,

9.3 Declarative Properties

The proofs of Chapter 3 go through without any problems. Those proofs needing modifications
merely require extra cases to be added for each of the new static semantic rules; these are straight-
forward uses of the inductive hypotheses. Preserved properties include substitution, validity, and
functionality.

The reduction rule for Typerec is not admissible. However, it is interesting to note that the
system comes very close to having an admissible extensionality rule for Typerec. Suppose this
construct contained no kind annotation, as in the formulation of Harper and Morrisett [HL94].
The well-formedness rule would be little changed:

F'FA:T Noa:THK
F'F A" o HoapuT ag: T oy /o] K—|as /o] K= (a1 —ag) /o] K
'E A% Ha:T.K
'+ Typerec(A; A= A°Y) 1 [A/a]K

But assume now that I' = f :: T—L for some kind L, and I' = A :: T. By taking K = S(f(«) :: L)
in the above rule we can derive

'+ Typerec(A; Aap T A aguT A LA L. f (g —ag); Aag T f () = S(f(A) = L),

where T have used _ to denote function arguments which are not used in their body. It follows,
then, that

I'F f(A) = Typerec(4A; dag T Aag:T A :L A L. f (g —ag); A= T. f(aq)) == L.
This is exactly analogous to the standard extensionality rule for sum types [Mit96]:

f(z) = (case z of inl z = f(inl) | inrz = f(inr z)).

157

9.4 Algorithms for Constructors and Kinds
To make the following algorithms readable, for any kind K I will use K* to stand for the kind
Hap =T Hag:T.[ay /o] K—|ag /o] K= (a1 —a2) /o] K.
This is the kind of the function-type constructor arm of a Typerec whose kind annotation is [a.K].
The principal kind for a well-formed Typerec is easily computed from the kind annotation:
> Typerec[a. K](A; A7 ; A°Y) {r S(Typerec|a. K](A; A7 A°Y) : [A/ o] K),
but actually checking that a Typerec is well-formed requires more work:

> Typerec[a. K](A; A= A%Y) =2 [A/a]K i a:T>r K, 'b A& T,
b A7 = K% and I'> A°Y &= [T T.K.

I extend the notion of a constructor-level path to allow Typerec’s:

Eun= -
| Typerec[a. K](E; A7 A°Y)

Then the equivalence algorithm is extended with the following cases:

Kind extraction
I'> Typerec[a. K|(A; A7 A°Y) 1 [A/a]K

Weak head reduction
I'> E[Typerec[a. K](A1—Ag; A7 A%V)] ~
E[A™ (A1) (As) (Typereclor. K] (Ar; A~; A)) (Typerecfar. K |(Ag; A=; A7V))]
[> E[Typerec[a. K](A; A5 A%)] ~»

E[AY (A)[A/a]K] if A not of the form A;— Ay
Algorithmic path equivalence
I'> Typerec[a. K1](p1; A7 5 ATY) <>
Typerec[a. Ko|(p2; A5 3 ASY) T [p1/a)Ky if T, auTe Ky < Ko, I'>pp < p2 1T,
' A7 & A5 K¢
and I' > AW & A9Y = [la: T.K.

It is straightforward to show that soundness is preserved by the above modifications.

9.5 Completeness and Decidability for Constructors and Kinds

The revised version of path equivalence is extended in the obvious fashion:

I’y > Typereca. K] (p1; AT AY) 1 [p1 /el K1 <
[y > Typerec[a. Ky |(p2; A3 3 ASY) T [po/ o) Ko

if Fl, a:Tr K| & FQ, a:T> KQ,
Lippr T T aepa 1T,
I'ipo A? i Kga sy A; i Kga,
and
[y> AYY o [la:T. Ky < Tap AV o Tan T K.

158

The logical relations, however, need not change. One point to be aware of, however, is that a
path £[c] is no longer guaranteed to be head-normal, because of cases like

Typerec[a.T](Int; A= ; A°Y).

Thus, for example, parts 3 and 4 of Lemma 5.3.9 must be restricted to the case where either p;
and pe and of the form &;[a] or else of the form &[c] and head-normal. In all cases in which this
lemma has been invoked, one of these two cases holds. (For the same reason, Proposition 5.3.15
must be restricted to the case in which &;[c1] and £2[cz] are both head-normal.)

With the addition of new kinding and equivalence rules for Typerec, two new cases must be
added to the proof of the logical relations theorem (Theorem 5.3.10). These cases follow from the
following lemma:

Lemma 9.5.1

IfAI> A T Agp Ay i T, (A AT Ko%) is (Ag; A5 Ko®), and

(A1; A9V Tl T K) is (Ag; AQY; M T.Ky) then

(Ay; Typerec[o. Ky |(A1; A7 5 AY); [A1/a]Ky) is (Ag; Typerec[a. Kp](Az; Ay ASY); [Ag /o Ky).

Proof: By inductionon A;>A; & T< Ay Ay i T,
[} Al > A1 l} 51[,6] and AQ > A2 l} 52[,6], with Al Dgl[ﬂ] T T < AQ > gg[ﬁ] T T.
1. Then Typerec[a.K1](E1[F]; A7 5 ATY) and Typerec[a. K1](E2[f]; AT AJWY) are

head-normal.

2. The last assumption in the statement of the lemma implies
(AT Ky) is (Ag; T T.Ky).
3. By Lemma 5.3.9 parts 1 and 2, we have A > Typerec[a. K1](E1[6]; AT 5 A9Y) 1
[E1[B]/a] K1 > Az > Typerec[a. Ko|(E2[8]; A7 3 AS™) 1 [E2(B]/ e Ko.
4. By the same lemma we have (Ay;&1[F]; T) is (Ag; E2(F]; T),
5. (A [&[B]/alKy) is (Ag; [E2[B]/ 0] Ky).
6. By Lemma 5.3.9 part 4, it then follows that
(Aq; Typerec[a. K1 (€1[B]; Ay 5 ATY); [61[B]/a] K1) s
(Ag; Typerec[a. Ko |(E2[B]; A5 A3™); [E2[B]/] Ka).
7. Using Lemma 5.3.8 and Lemma 5.3.4 it follows that
(Al; Typerec[a.Kl](Al; Af, A(l)w); [Al/a]Kl) is
(Ag; Typerec[o. Kp](A2; A3 5 ASY); [A2/a] K3).

e Case: Al > A1 U 81[4] and AQ > A2 l} 52[—\]A1 > 51[—\] T T < AQ > 52[—\] T T.
1. Since Ay > &[] 1 T, it follows that Ay > Ay || A]—AY, and similarly that
A2 > A2 u AIQ—\Ag,
2. and that Ajp A} = T Agp A, o Tand Ay > A = T < Ag> A T

3. By the inductive hypothesis, then (Ay; Typerec[a. K1](A; AT 5 ASY); [A) /o) Ky) is
(Ag; Typerec[a. Ko (AY; Ay ATY); [AL /] Ka).

4. and (Aq; Typerec[a. K1](AY; A7 AY); [AY /o] K) is
(Ag; Typerec[a. Ko|(AY; A5 ASY); [AL /o) K2).

159

5. Therefore,
(Aq; Ay (A7) (A7) (Typerec[on K1 (A7 Ay A7) (Typerec[on K1 | (A7; A5 ATY)); [Aj— A7 /0] Ky) is
(Ag; A" (A3)(A3) (Typerec[a. K5 (A); Ay AS™))(Typereclon K] (A3 Ay ASY)); [A5— A5/ a] Ks).

6. By Lemma 5.3.8 and Lemma 5.3.4, (Ay; Typerec[a. K1](A1; AT AYY); [A1 /o] K) is
(Az; Typereca. Ko (Ag; Ay'; ASY); [A2/a] Ka).

e Ay Al &c] and Ay Ay || E9c] where ¢ is not —. Analogous to previous case, although
there is no need to appeal to the inductive hypothesis for the “otherwise” case.

Then the remaining decidability results for the constructor and kind algorithms go through
unchanged. Finally, the normalization algorithm must be extended with a new case:

[> Typerec[a.K](p; A~ ; A°Y) — Typerec[a. K'](p'; A™'; A°Y') 1 [p/a] K

if axTo K = K', I'vp: T =y,
'>A- o K= A,
and I'> A% = [Tan:T. K = A°V'.

9.6 Algorithms for Type and Term Judgments

In analogy with the notation for kinds, for any type 7 I write 7¢ to represent the type
Vag:TVag:T.[ay/a]t—]az/a]T—[(c1—a2) /a]T.
This is the type of the function type-constructor case of a term-level typerec annotated with [a.7].

Head-normalization and other properties of types are unaffected by the addition of Typerec and
typerec. A new cases must be added to the algorithm for computing principal types

> Typerec[a.T](A; e ;) ft [A/a]T,
to weak term equivalence
I'> Typerec[a.m1](Az2; €7 ; €5V) < Typerec[a.m2](Az; 5 ;€9%)

if a:Toeom &, I'bA o Ay T,
I'vel ©e;, and I'peV & €V,

and to type synthesis
I'> Typerec[a.7|(A;e75e°Y) =2 [A/a]T
if Tya:To7, '>b AT,
Fve” &=7% and v eV = Va:K.7.

9.7 Completeness and Decidability for Types and Terms
The symmetrized weak term equivalence algorithm gets a new case:
I'y > Typerec[a.m1|(A2; €75 e5V) <> Ty > Typereca.m2](Asg; €575 €5%)

if M',a:T>m e ya:Tern, A aTey>Ay T,
I'ivel ©ITapey, and Ti>edV & Typeg”,

160

Again, the logical relations are unchanged. The new case for the proof that declarative equiva-
lence implies algorithmic equivalence follows directly from the inductive hypothesis. The complete-
ness and decidability results then hold unchanged, as does strengthening for term variables.

9.8 Properties of Evaluation

Even if Proposition 5.3.15 is restricted to head-normal paths as suggested above, one can still prove
the Canonical Forms lemmas. Thus it is easy to see that evaluation of well-typed terms never gets
“stuck”.

161

162

Chapter 10

Conclusion

10.1 Summary of Contributions

In this dissertation I have presented the MILg calculus, which models the internal language used
by the TILT compiler. The language contains two variants of singletons: singletons with [Sn-
equivalence (instantiated as singleton kinds) and labeled singletons with a weak term equivalence
(instantiated as singleton types). The former is particularly simple and elegant, but is unusually
context-sensitive.

I have thoroughly studied the equational and proof-theoretic properties of the MILg calculus,
and have shown that typechecking is decidable. I have presented algorithms for implementing
typechecking; those for constructors and kinds form the basis of the typechecker implementation
in the TILT compiler [Pet00].

The equivalence algorithm for type constructors employs an apparently novel kind-directed
framework. This is extremely well-suited for cases in which equivalence is dependent upon the
classifier. Examples of other such languages include those with terminal types (where all terms of
this type are equal), or calculi with records and width subtyping (where equivalence of two records
depends only on the equivalence of the subset of fields mentioned in the classifying record type).
This approach can even be used in the absence of subtyping, subkinding, or singletons [HP99].

The correctness proofs for my equivalence algorithms employ an unusual variant of Kripke
logical relation, in which the relations are indexed by two kinds or types and by two worlds. This
permits a very straightforward proof of correctness for the equivalence algorithms. I have found the
logical relations approach to proving completeness to be remarkably robust under minor changes
to the equational theory; even the addition of type analysis constructs requires few changes.

Crary has used the results of Chapter 5 to show that a language with singleton kinds can be
translated into a language without, in a fashion which preserves well-typedness [Cra00]. Intuitively,
one can certainly “substitute in” all of the definitions induced by singletons. However, the correct-
ness of afterwards erasing all of singleton kinds is a form of strengthening property. Crary proves
this by working with the algorithmic form of constructor equivalence.

10.2 Related Work

10.2.1 Singletons and Definitions in Type Systems

The main previous study of singleton types in the literature is due to Aspinall [Asp95, Asp97]. He
studied a calculus A<y containing singleton types, dependent function types, and f-equivalence.

163

Labeled singletons are primitive notions in this system; in the absence of n-equivalence the encoding
of §2.3 does not work. He conjectured that term equivalence in A<y} was decidable, but gave no
algorithm.

Crary has also used singleton types and singleton kinds. His thesis [Cra98] includes a system
whose kind system extends the one presented here with subtyping and power kinds. He also
conjectured that both type equivalence and typechecking were decidable.

Crary has also used an extremely simple form of singleton type (with no elimination rule or
subtyping) in order to prove parametricity results [Cra99]. As one example, he shows that any
function f of type Va.a—« must act as a the identity because

f(S(v:7))(v):S(v:7)

so by soundness of the type system any value returned by this application must be equal to v.
Furthermore, evaluation in his system obviously does not depend upon type arguments to functions,
so f must act as an identity!' for every argument of any type. (This argument does not apply to
MIL(because here singleton types are not type constructors.)

There are other ways to support equational information in a type system besides singleton
types. Severi and Poll [SP94] study confluence and normalization of fd-reduction for a pure type
system with definitions (let bindings), where ¢ is the replacement of an occurrence of a variable
with its definition. In this system, the typing context contains both the type for each variable, and
an optional definition. This calculus contains no notion of partial definition, no subtyping, and
cannot express constraints on function arguments. This approach may be sufficient to represent
information needed for cross-module inlining (particularly when based upon the lambda-splitting
work of Blume and Appel [BA97, Blu97]), but this cannot model sharing constraints or definitions
in a modular framework (where only some parts of a module have known definition).

Type theoretic studies of the SML module system have been studied by Harper and Lillibridge
under the name of translucent sums [HL94, Lil97] in which modules are first-class values, and
by Leroy under the name of manifest types [Ler94] in which modules are second-class. These
two systems are essentially similar: the calculus includes module constructs, and corresponding
signatures; as in Standard ML the type components of signatures may optionally specify definitions.
The key difference from MILg is that type definitions are specified at the type level, rather than
at the kind level. Because of this, type equivalence does depend on the typing context but not
on the (unique) classifying kind. Typechecking for translucent sums is undecidable (although type
equivalence is decidable). No analogous result is known for manifest types; modules may lack
most-specific signatures, prohibiting standard methods for typechecking.

A very powerful construct is the I-type of Martin-Lof’s extensional type theory [ML84, Hof95].
A term of type I(e,e2) represents a proof that e; and e are equivalent. This can lead to unde-
cidable typechecking very quickly, as one can use this to add arbitrary equations as assumptions
in the typing context.

The language Dylan [Sha96] contains a notion of “singleton type”, but these are checked only
at run-time (essentially pointer-equality) to resolve dynamic overloading.

10.2.2 Decidability of Equivalence and Typechecking

My approach to implementing and studying constructor equivalence was inspired by work by Co-
quand for a dependently-typed lambda calculus [Coq91]. However, because his the equivalence
was not context-sensitive in any way, both our algorithm and proof are substantially different from

'Up to type annotations, which as just stated do not affect evaluation behavior

164

Coquand’s. Because of issues such as the form of the validity logical relations and the particular
symmetry and transitivity properties of the 6-place algorithm, our initial attempts to use more
traditional Kripke logical relations (with a pair of contexts being a single world) were unsuccessful.

Systems in which equivalence depends upon the typing context were mentioned in §10.2.1. How-
ever, there appear to be relatively few decidability results for lambda calculi with typing-context-
sensitive or classifier-sensitive equivalences, perhaps because standard techniques of rewriting to
normal form are difficult to apply. Many calculi include subtyping but not subkinding; in such
cases either only type equivalence is considered (which is independent of subtyping) or else term
equivalence is not affected by subtyping and hence can be computed in a context-free manner.

One exception is the work of Curien and Ghelli [CG94], who proved the decidability of term
equivalence in F< with fBrn-reduction and a Top type. Because their Top type is both terminal
and maximal, equivalence depends on both the typing context and the type at which terms are
compared. They eliminate context-sensitivity by inserting explicit coercions to mark uses of sub-
sumption and then give a rewriting strategy for the calculus with coercions. Their proof uses
translations between three different typed A-calculi.

It would be interesting to see if the approach used for MILy could be applied to their source
language, avoiding the use of translations. Although adapting my equivalence algorithm seems
easy, the fact that they study an impredicative calculus would require an extension of the theory
in order to prove the completeness of this algorithm.

Compagnoni and Goguen [CG97] also use a normalization algorithm and Kripke logical rela-
tions argument for proving properties (including decidability of subtyping) for the language F<, a
variant of F¥, with higher-order subtyping and the kernel Fun rule [CW85] for quantifier subtyping.
However, adapting these methods to include subkinding and 7n-expansion seems nontrivial.

10.3 Open Questions and Conjectures

I conclude with an overview of several remaining issues which could be the subject of future work
in the study of singleton types and kinds.

10.3.1 Removing Type Annotations from let

The primary practical defect of the MILg term language appears to be the required type labels in
let-bindings — in particular, the type annotation on the bound variable. Because a local binding is
required for every sub-computation, these type annotations can substantially increase the total size
of a program. This exacts not only a penalty in the space consumed by the program’s representation,
but also costs time in manipulating the representation: the typechecker must verify the correctness
of these annotations, transformations such as substitutions or optimizations must be applied to
all of the annotations, and so on. Furthermore, if one wishes to bind x to the pair (3,4), one
must choose whether to annotate this binding with the simple type intXint, or one of its larger but
more-precise types: S(3 :int)xS(4 : int) or S((3,4) : intxint) or even S((3,4) : S(3 : int)xS(4 : int)).

This is easy to change in the MILj definition; the mediating type of the bound variable is simply
chosen nondeterministically. In this fashion Rule 2.76 becomes

e :7 Dot Fe:r 'kt

'k (let z=¢' ine:7end): 7

165

and Rule 2.89 becomes

P .
F'Fey=ey: 7
I'Fr=n Do Fer=ex:n

['F (let z=¢} in ey : 7 end) = (let z=ch inez: o end) : 7

Adapting the algorithm for checking the well-formedness of a let-binding is easy: just replace
uses of the annotation with uses of the principal type of the bound expression, which is already
being calculated. As the type annotation need no longer be validated, this requires doing strictly
less work.

Unfortunately, computing equivalence of two let-bindings without this type annotation is more
difficult. It should look something like the following;:

I'> (let z=¢) ine; : 7y end) « ifIve] o ehand D,z 777 | ey © ey, and D> 7 & 1.
(let z=¢€l, in ez : T2 end).

But what type x should be given while comparing e; and e2? A problem arises; is entirely possible
for e} and €}, to be well-formed and for I' > €] < €}, but for €] and €}, to have different principal
types. (For example, assume :S((3,4) : intxint) and compare y with (3,4).) If I attempt to avoid
this asymmetry by maintaining two contexts and using both principal types, then the contexts
maintained by the algorithm no longer remain provably equivalent and properties like soundness
become more difficult to show.

However, any two equivalent terms in weak head-normal form have equivalent principal types.
More generally, any two well-formed terms equivalent under the weak term equivalence relation <
have provably equivalent principal types. This suggests the strategy of using the principal type of
the head-normal form of either let-bound expression:

I'> (let z=¢) ine; : 71 end) < if'>e) e, I'nel Jd), Tod 7,
(let =€), in e : T2 end) D,z:t'ber & e, and I'> 1 & To.

or using both equivalent types in the symmetric form of the algorithm.
It is not too hard to show this modified algorithm is sound. The key insight is that if d; is the
head-normal form for €] (for i € {1,2}) then

[+ (let z=¢} in e; : 7; end) = (let z=d} ine; : 7; end) : 7;

so that while comparing the bodies the algorithm can assume it was given d} and d, instead of ¢}
and e}, taking advantage of the equal principal types.

Unfortunately, I cannot prove this algorithm complete. Everything goes through except the
final step, proving that declarative equivalence implies logical equivalence. The difficulty is that
the type 7/ computed by the algorithm need not have a counterpart in the declarative proof of
equivalence, so that the inductive hypothesis cannot be applied to 7'.

Conjecture 10.3.1
The algorithm as modified as suggested here is not only sound, but complete and terminating for
the language where the type annotations are omitted from local variable bindings.

166

10.3.2 Unlabeled Singleton Types

Principal types in MILj can be quite large. For example, the principal type of the pair ((2,3), (4,5))
is

S({(2,3),(4,5)) : S({(2,3) : S(2 :int)xS(3 :int))xS((4,5) : S(4 : int) xS(5 : int))).
Despite the fact that this type classifies exactly the same values as the simpler type

S({(2,3),(4,5)) : (intxint) x (intxint))

these two types are not provably equivalent. The former is a strict subtype of the latter, and is
hence the one which must be synthesized by the typechecking algorithms. Even if type equivalence
were strengthened to equate these two types, experience in the TILT compiler with labeled singleton
kinds has demonstrated that it is difficult to avoid generating singletons with redundant information
in the labels.

Furthermore, term equivalence is weak enough that it does not depend upon the classifying
type. In a sense, then, the classifier in a singleton type is not adding useful information. An
obvious alternative is the “unlabeled singleton” S(v) briefly considered by Aspinall. Declaratively

one might have such rules as
F'Fo:r

I'twv:S(v)

and
'to:7

I'-Sw) <7~

Finding a plausible typechecking algorithm for such a language has proven surprisingly difficult,
however. Principal type synthesis becomes trivial (the principal type for any value v is just S(v))
and useless for the purposes of type-checking. What is needed is the “most-precise type that is
not a singleton”, which for values is the “second-most-precise type”2. I do not yet have a plausible
algorithm for when both projections and pairs are values?.

Leaf Petersen has studied a variant of the MILg kind system which allows unlabeled singleton
kinds [Pet00] to decrease the size of program representations. This has been implemented in TILT.
His approach is to treat unlabeled singletons as an abbreviation mechanism, and he shows how to
translate away all uses of unlabeled singletons.

It is possible that a similar approach may work for singleton types. There are additional
difficulties, however. In particular, mixing labeled and unlabeled singletons can cause problems.
Assume we have a program context in which x has type intxint. Then under the natural translation
approach one would expect S(z) to be equivalent to the labeled singleton type S(z : intxint). How-
ever, upon substituting the pair (2, 3) the types become S((2,3)) and S((2,3) : intxint). However,
the labeled singleton corresponding to the former of these two types is now the more precise type
S((2,3) : S(2:int)xS(3 : int)).

Thus two equivalent types become inequivalent after substitution of a value for a variable. This
means that substitution (and hence inlining) is no longer guaranteed to preserve well-formedness
of programs. This is not a good property for a compiler representation to have.

2Leaf Petersen has suggested this be called the “vice-principal type”.
3There are some hints, however, that computing types of values by looking at their head-normal forms may be
possible.

167

Conjecture 10.3.2
If labeled singleton types are replaced completely with unlabeled singleton types, then there is still a
reasonable algorithm for deciding well-formedness of programs.

The current TILT implementation includes only singleton kinds. I intend to implement singleton
types for cross-module inlining, based on the algorithm sketched here.

10.3.3 Recursive Types

Several authors from Amadio and Cardelli on [AC93, Bra97] have studied algorithms for deciding
type equivalence for recursive types, which are viewed as representing infinite trees. This can be
most simply formalized with two rules: the roll-unroll rule

INa:THFA
't pacT A= [paT.A/a]A = T

and a coinductive principle. Together these rules allow such equivalences as
F (pa:T.int—a) = (paz:T.int—(int—a)) :: T.

For the case of simple types where type equivalence is the congruence induced by these two
rules, the standard simple algorithm combines structural comparison of the two types with un-
rolling whenever a recursive type is reached. To prevent infinite unrolling, a trail of the previously
compared types is maintained; by coinductive nature of equivalence, any comparison previously
seen can simply be reported successful.

The requirements for the TILT compiler appear to be much simpler; we need only the one rule

I'F [pa:T. A1 /o)Ay = [pa:T.Ag/a)As = T
I'Fpa:T.A; = pa:T. Ay = T

That is, two recursive types are equal if their unrollings are equal. This is equivalent to the rule

INa:THFA
't pacT A= pasT.[pa:T.A/a)A :: T

called “Shao’s Rule” in [CHC"98]. This is a much weaker equational theory; In contrast to the
roll-unroll rule above, it equates recursive types only to other recursive types.

There has been no study of algorithms for recursive types where there are other interesting
type equations such as f-equivalence (e.g., F,, extended with recursive types). However there is a
seemingly natural extension of the simple algorithm above, which has been implemented in TILT.

1. TILT keeps a trail of the pairs of recursive types previously compared;

2. Whenever weak path equivalence is about to compare two recursive types, it adds them to
the trail, unrolls the two types, and runs the general constructor equivalence algorithm on
the two results.

3. If a loop is detected, comparison fails. (Recall that we are not requiring equivalence to be
coinductive.)

Conjecture 10.3.3
The above algorithm is sound, complete, and terminating for MILy extended with recursive types
and Shao’s rule.

168

The difficulty in proving completeness and termination is that because of the trail I see no way
to make this algorithm obviously transitive. This is a key step in my theoretical development, and
so the approach I use in this dissertation does not appear to extend in any nice fashion.

169

170

Bibliography

[ACY3]
[Asp95]
[Asp97]
[Asp00]

[BAYT]

[Bluy7]
[Bra97]
[CGY4)
[CGY7)

[CHC*98]

[CM94]

[Coq91]

[Cra98]

[Cra99)

[Cra00]

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions
on Programming Languages and Systems, 15(4):575-631, 1993.

David Aspinall. Subtyping with Singleton Types. In Proc. Computer Science Logic
(CSL ’94), 1995. In Springer LNCS 933.

David Aspinall. Type Systems for Modular Programs and Specifications. PhD thesis,
Department of Computer Science, University of Edinburgh, 1997.

David Aspinall. Subtyping with Power Types. In Proc. Computer Science Logic (CSL
2000), 2000. To Appear.

Matthias Blume and Andrew W. Appel. Lambda-Splitting: A Higher-Order Approach
to Cross-Module Optimizations. In Proc. 1997 ACM International Conference on
Functional Programming (ICFP ’97), pages 112-124, 1997.

Matthias Blume. Hierarchical Modularity and Intermodule Optimization. PhD thesis,
Princeton University, 1997.

Michael Brandt. Recursive subtyping: Axiomatizations and computational interpre-
tations. Master’s thesis, DIKU, University of Copenhagen, August 1997.

Pierre-Louis Curien and Giorgio Ghelli. Decidability and Confluence of Sntop. Re-
duction in F<. Information and Computation, 1/2:57-114, 1994.

Adriana Compagnoni and Healfdene Goguen. Typed Operational Semantics for Higher
Order Subtyping. Technical Report ECS-LFCS-97-361, University of Edinburgh, 1997.

Karl Crary, Robert Harper, Perry Cheng, Leaf Petersen, and Chris Stone. Trans-
parent and Opaque Interpretations of Datatypes. Technical Report CMU-CS-98-177,
Department of Computer Science, Carnegie Mellon University, 1998.

Pierre Crégut and David B. MacQueen. An implementation of higher-order functors,
June 1994.

Thierry Coquand. An Algorithm for Testing Conversion in Type Theory. In Gérard
Huet and G. Plotkin, editors, Logical frameworks, pages 255-277. Cambridge Univer-
sity Press, 1991.

Karl F. Crary. Type-Theoretic Methodology for Practical Programming Languages.
PhD thesis, Department of Computer Science, Cornell University, 1998.

Karl Crary. A simple proof technique for certain parametricity results. In Proc. 1999
ACM International Conference on Functional Programming (ICFP ’99), pages 82-89,
1999.

Karl Crary. Sound and complete elimination of singleton kinds. Technical Report
CMU-CS-00-104, School of Computer Science, Carnegie Mellon University, 2000.

171

[CW85]

[Fel88]

[FSDF93]

[Gir72]

[Har00]

[HL94]

[HMY5]

[HMMOY0]

[Hof95]

[HP99)]

[HS97]

[HSO00]

[KR88]

[Ler94]

[Ler95]

[Lil97]

[Mit96]

Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction and
Polymorphism. ACM Computing Surveys, 17(4):471-522, 1985.

Matthias Felleisen. The theory and practice of first-class prompts. In Proc. 15th ACM
Symposium on Principles of Programming Languages (POPL ’88), pages 180-190,
1988.

C. Flanagan, A. Sabry, B. Duba, and M. Felleisen. The Essence of Compiling with
Continuations. In Proc. ACM 1993 Conference on Programming Language Design and
Implementation (PLDI ’93), pages 237—-247, 1993.

J. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

Robert Harper, 2000. Private communication.

Robert Harper and Mark Lillibridge. A Type-Theoretic Approach to Higher-Order
Modules with Sharing. In Proc. 21st ACM Symposium on Principles of Programming
Languages (POPL ’94), pages 123-137, 1994.

Robert Harper and Greg Morrisett. Compiling Polymorphism using Intensional Type
Analysis. In Proc. 22nd ACM Symposium on Principles of Programming Languages
(POPL ’95), pages 130141, 1995.

Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order Modules and
the Phase Distinction. In Proc. 17th ACM Symposium on Principles of Programming
Languages (POPL ’90), pages 341-354, 1990.

Martin Hofmann. Eztensional concepts in intensional type theory. PhD thesis, Edin-
burgh LFCS, 1995. Available as Edinburgh LFCS Technical Report ECS-LFCS-95-327.

Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF
type theory. In Proc. Workshop on Logical Frameworks and Meta-Languages, 1999.
Extended version available as CMU Technical Report CMU-CS-99-159.

Robert Harper and Christopher Stone. An interpretation of Standard ML in type
theory. Technical Report CMU-CS-97-147, School of Computer Science, Carnegie
Mellon University, 1997.

Robert Harper and Christopher Stone. A Type-Theoretic Interpretation of Standard
ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Second
Edition. Prentice Hall, 1988.

Xavier Leroy. Manifest types, modules, and separate compilation. In Proc. 21st ACM
Symposium on Principles of Programming Languages (POPL ’94), pages 109-122,
1994.

Xavier Leroy. Applicative Functors and Fully Transparent Higher-Order Modules. In
Proc. 22nd ACM Symposium on Principles of Programming Languages (POPL ’95),
pages 142-153, 1995.

Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1997. Available
as CMU Technical Report CMU-CS-97-122.

John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

172

[ML84]
[MMHY6]

[Mor95]

[MTI1]

[MT94]

[MTHY0]

[MTHMY7]

[MWCG97]

[Myc84]

[Nec97]

[Nec98]

[Pet00]

[Pie91]

[Plo81]

[PZ00)

[SHOY]

[Sha96]
[Sha9s]

[SPY94]

Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis-Napoli, 1984.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed Closure Conversion.
In Proc. 23rd ACM Symposium on Principles of Programming Languages (POPL ’96),
pages 271-283, 1996.

Greg Morrisett. Compiling with Types. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1995. Available as CMU Technical Report CMU-CS-95-
226.

Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, 1991.

David B. MacQueen and Mads Tofte. A Semantics for Higher-order Functors. In Proc.
5th European Symposium on Programming, number 788 in LNCS, pages 409-423, 1994.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed
Assembly Language. Technical Report TR97-1651, Department of Computer Science,
Cornell University, 1997.

A. Mycroft. Polymorphic Type Schemes and Recursive Definitions. In Proc. 6th Int.
Conf. on Programming, number 167 in LNCS, pages 217-239, 1984.

George C. Necula. Proof-Carrying Code. In Proc. 24th ACM Symposium on Principles
of Programming Languages (POPL ’97), pages 106-119, 1997.

George Ciprian Necula. Compiling with Proofs. PhD thesis, School of Computer
Science, Carnegie Mellon University, 1998. Available as CMU Technical Report CMU-
(CS-98-154.

Leaf Petersen, 2000. Unpublished manuscript.

Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymor-
phism. PhD thesis, School of Computer Science, Carnegie Mellon University, 1991.
Available as CMU Technical Report CMU-CS-91-205.

Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus Univ., Computer Science Dept., Denmark, 1981.

Jens Palsberg and Tian Zhao. Efficient and Flexible Matching of Recursive Types. In
Proc. 15th Annual IEEE Symposium on Logic in Computer Science (LICS ’00), pages
388-400, 2000.

Christopher A. Stone and Robert Harper. Deciding Type Equivalence in a Language
with Singleton Kinds. Technical Report CMU-CS-99-155, Department of Computer
Science, Carnegie Mellon University, 1999.

Andrew Shalit. The Dylan Reference Manual: The Definitive Guide to the New Object-
Oriented Dynamic Language. Addison-Wesley, 1996.

Zhong Shao. Typed Cross-Module Compilation. In Proc. 1998 ACM International
Conference on Functional Programming (ICFP ’98), pages 141-152, 1998.

Paula Severi and Eric Poll. Pure Type Systems with definitions. In Logical Foundations
of Computer Science 94, number 813 in LNCS, 1994.

173

[Tar96]

[TMC*96]

David Tarditi. Design and Implementation of Code Optimizations for a Type-Directed
Compiler for Standard ML. PhD thesis, School of Computer Science, Carnegie Mellon
University, 1996. Available as CMU Technical Report CMU-CS-97-108.

David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Pe-
ter Lee. TIL: A Type-Directed Optimizing Compiler for ML. In Proc. ACM 1996

Conference on Programming Language Design and Implementation (PLDI ’96), pages
181-192, 1996.

174

