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Abstract

When a C programmer needs an efficient data structure for a particular prob-
lem, he or she can often simply look one up in any of a number of good text-
books or handbooks. Unfortunately, programmers in functional languages such
as Standard ML or Haskell do not have this luxury. Although some data struc-
tures designed for imperative languages such as C can be quite easily adapted to a
functional setting, most cannot, usually because they depend in crucial ways on as-
signments, which are disallowed, or at least discouraged, in functional languages.
To address this imbalance, we describe several techniques for designing functional
data structures, and numerous original data structures based on these techniques,
including multiple variations of lists, queues, double-ended queues, and heaps,
many supporting more exotic features such as random access or efficient catena-
tion.

In addition, we expose the fundamental role of lazy evaluation in amortized
functional data structures. Traditional methods of amortization break down when
old versions of a data structure, not just the most recent, are available for further
processing. This property is known as persistence, and is taken for granted in
functional languages. On the surface, persistence and amortization appear to be
incompatible, but we show how lazy evaluation can be used to resolve this conflict,
yielding amortized data structures that are efficient even when used persistently.
Turning this relationship between lazy evaluation and amortization around, the
notion of amortization also provides the first practical techniques for analyzing the
time requirements of non-trivial lazy programs.

Finally, our data structures offer numerous hints to programming language de-
signers, illustrating the utility of combining strict and lazy evaluation in a single
language, and providing non-trivial examples using polymorphic recursion and
higher-order, recursive modules.
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Chapter 1

Introduction

Efficient data structures have been studied extensively for over thirty years, resulting in a vast
literature from which the knowledgeable programmer can extract efficient solutions to a stun-
ning variety of problems. Much of this literature purports to be language-independent, but
unfortunately it is language-independent only in the sense of Henry Ford: Programmers can
use any language they want, as long as it’s imperative.1 Only a small fraction of existing
data structures are suitable for implementation in functional languages, such as Standard ML
or Haskell. This thesis addresses this imbalance by specifically considering the design and
analysis of functional data structures.

1.1 Functional vs. Imperative Data Structures

The methodological benefits of functional languages are well known [Bac78, Hug89, HJ94],
but still the vast majority of programs are written in imperative languages such as C. This
apparent contradiction is easily explained by the fact that functional languages have historically
been slower than their more traditional cousins, but this gap is narrowing. Impressive advances
have been made across a wide front, from basic compiler technology to sophisticated analyses
and optimizations. However, there is one aspect of functional programming that no amount
of cleverness on the part of the compiler writer is likely to mitigate — the use of inferior or
inappropriate data structures. Unfortunately, the existing literature has relatively little advice
to offer on this subject.

Why should functional data structures be any more difficult to design and implement than
imperative ones? There are two basic problems. First, from the point of view of designing and
implementing efficient data structures, functional programming’s stricture against destructive

1Henry Ford once said of the available colors for his Model T automobile, “[Customers] can have any color
they want, as long as it’s black.”
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updates (assignments) is a staggering handicap, tantamount to confiscating a master chef’s
knives. Like knives, destructive updates can be dangerous when misused, but tremendously
effective when used properly. Imperative data structures often rely on assignments in crucial
ways, and so different solutions must be found for functional programs.

The second difficulty is that functional data structures are expected to be more flexible than
their imperative counterparts. In particular, when we update an imperative data structure we
typically accept that the old version of the data structure will no longer be available, but, when
we update a functional data structure, we expect that both the old and new versions of the
data structure will be available for further processing. A data structure that supports multiple
versions is called persistent while a data structure that allows only a single version at a time
is called ephemeral [DSST89]. Functional programming languages have the curious property
that all data structures are automatically persistent. Imperative data structures are typically
ephemeral, but when a persistent data structure is required, imperative programmers are not
surprised if the persistent data structure is more complicated and perhaps even asymptotically
less efficient than an equivalent ephemeral data structure.

Furthermore, theoreticians have established lower bounds suggesting that functional pro-
gramming languages may be fundamentally less efficient than imperative languages in some
situations [BAG92, Pip96]. In spite of all these points, this thesis shows that it is often possible
to devise functional data structures that are asymptotically as efficient as the best imperative
solutions.

1.2 Strict vs. Lazy Evaluation

Most (sequential) functional programming languages can be classified as either strict or lazy,
according to their order of evaluation. Which is superior is a topic debated with religious fervor
by functional programmers. The difference between the two evaluation orders is most apparent
in their treatment of arguments to functions. In strict languages, the arguments to a function
are evaluated before the body of the function. In lazy languages, arguments are evaluated
in a demand-driven fashion; they are initially passed in unevaluated form and are evaluated
only when (and if!) the computation needs the results to continue. Furthermore, once a given
argument is evaluated, the value of that argument is cached so that if it is ever needed again, it
can be looked up rather than recomputed. This caching is known as memoization [Mic68].

Each evaluation order has its advantages and disadvantages, but strict evaluation is clearly
superior in at least one area: ease of reasoning about asymptotic complexity. In strict lan-
guages, exactly which subexpressions will be evaluated, and when, is for the most part syn-
tactically apparent. Thus, reasoning about the running time of a given program is relatively
straightforward. However, in lazy languages, even experts frequently have difficulty predicting
when, or even if, a given subexpression will be evaluated. Programmers in such languages
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Name Running Times of Supported Functions Page
banker’s queues snoc/head /tail : O(1) 26
physicist’s queues snoc/head /tail : O(1) 31
real-time queues snoc/head /tail : O(1)y 43
bootstrapped queues head : O(1)y, snoc/tail : O(log� n) 89
implicit queues snoc/head /tail : O(1) 113
banker’s deques cons/head /tail /snoc/last/init : O(1) 56
real-time deques cons/head /tail /snoc/last/init : O(1)y 59
implicit deques cons/head /tail /snoc/last/init : O(1) 116
catenable lists cons/snoc/head /tail /++: O(1) 97
simple catenable deques cons/head /tail /snoc/last/init : O(1), ++: O(logn) 119
catenable deques cons/head /tail /snoc/last/init /++: O(1) 122
skew-binary random-access lists cons/head /tail : O(1)y, lookup/update : O(logn)y 79
skew binomial heaps insert : O(1)y, merge/�ndMin/deleteMin : O(logn)y 83
bootstrapped heaps insert /merge/�ndMin: O(1)y, deleteMin: O(logn)y 102
sortable collections add : O(logn), sort : O(n) 35
scheduled sortable collections add : O(logn)y, sort : O(n)y 47

Worst-case running times marked with y. All other running times are amortized.

Table 1.1: Summary of Implementations

are often reduced to pretending the language is actually strict to make even gross estimates of
running time!

Both evaluation orders have implications for the design and analysis of data structures. As
we will see in Chapters 3 and 4, strict languages can describe worst-case data structures, but not
amortized ones, and lazy languages can describe amortized data structures, but not worst-case
ones. To be able to describe both kinds of data structures, we need a programming language
that supports both evaluation orders. Fortunately, combining strict and lazy evaluation in a
single language is not difficult. Chapter 2 describes $-notation — a convenient way of adding
lazy evaluation to an otherwise strict language (in this case, Standard ML).

1.3 Contributions

This thesis makes contributions in three major areas:

� Functional programming. Besides developing a suite of efficient data structures that
are useful in their own right (see Table 1.1), we also describe general approaches to
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designing and analyzing functional data structures, including powerful new techniques
for reasoning about the running time of lazy programs.

� Persistent data structures. Until this research, it was widely believed that amortization
was incompatible with persistence [DST94, Ram92]. However, we show that memoiza-
tion, in the form of lazy evaluation, is the key to reconciling the two. Furthermore, as
noted by Kaplan and Tarjan [KT96b], functional programming is a convenient medium
for developing new persistent data structures, even when the data structure will eventu-
ally be implemented in an imperative language. The data structures and techniques in
this thesis can easily be adapted to imperative languages for those situations when an
imperative programmer needs a persistent data structure.

� Programming language design. Functional programmers have long debated the relative
merits of strict and lazy evaluation. This thesis shows that both are algorithmically im-
portant and suggests that the ideal functional language should seamlessly integrate both.
As a modest step in this direction, we propose $-notation, which allows the use of lazy
evaluation in a strict language with a minimum of syntactic overhead.

1.4 Source Language

All source code will be presented in Standard ML [MTH90], extended with primitives for
lazy evaluation. However, the algorithms can all easily be translated into any other functional
language supporting both strict and lazy evaluation. Programmers in functional languages
that are either entirely strict or entirely lazy will be able to use some, but not all, of the data
structures in this thesis.

In Chapters 7 and 8, we will encounter several recursive data structures that are difficult to
describe cleanly in Standard ML because of the language’s restrictions against certain sophisti-
cated and difficult-to-implement forms of recursion, such as polymorphic recursion and recur-
sive modules. When this occurs, we will first sacrifice executability for clarity and describe the
data structures using ML-like pseudo-code incorporating the desired forms of recursion. Then,
we will show how to convert the given implementations to legal Standard ML. These examples
should be regarded as challenges to the language design community to provide a programming
language capable of economically describing the appropriate abstractions.

1.5 Terminology

Any discussion of data structures is fraught with the potential for confusion, because the term
data structure has at least four distinct, but related, meanings.
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� An abstract data type (that is, a type and a collection of functions on that type). We will
refer to this as an abstraction.

� A concrete realization of an abstract data type. We will refer to this as an implementa-
tion, but note that an implementation need not be actualized as code — a concrete design
is sufficient.

� An instance of a data type, such as a particular list or tree. We will refer to such an
instance generically as an object or a version. However, particular data types typically
have their own nomenclature. For example, we will refer to stack or queue objects simply
as stacks or queues.

� A unique identity that is invariant under updates. For example, in a stack-based in-
terpreter, we often speak informally about “the stack” as if there were only one stack,
rather than different versions at different times. We will refer to this identity as a persis-
tent identity. This issue mainly arises in the context of persistent data structures; when
we speak of different versions of the same data structure, we mean that the different
versions share a common persistent identity.

Roughly speaking, abstractions correspond to signatures in Standard ML, implementations
to structures or functors, and objects or versions to values. There is no good analogue for
persistent identities in Standard ML.2

The term operation is similarly overloaded, meaning both the functions supplied by an
abstract data type and applications of those functions. We reserve the term operation for the
latter meaning, and use the terms operator or function for the former.

1.6 Overview

This thesis is structured in two parts. The first part (Chapters 2–4) concerns algorithmic aspects
of lazy evaluation. Chapter 2 sets the stage by briefly reviewing the basic concepts of lazy
evaluation and introducing $-notation.

Chapter 3 is the foundation upon which the rest of the thesis is built. It describes the
mediating role lazy evaluation plays in combining amortization and persistence, and gives two
methods for analyzing the amortized cost of data structures implemented with lazy evaluation.

Chapter 4 illustrates the power of combining strict and lazy evaluation in a single language.
It describes how one can often derive a worst-case data structure from an amortized data struc-
ture by systematically scheduling the premature execution of lazy components.

2The persistent identity of an ephemeral data structure can be reified as a reference cell, but this is insufficient
for modelling the persistent identity of a persistent data structure.
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The second part of the thesis (Chapters 5–8) concerns the design of functional data struc-
tures. Rather than cataloguing efficient data structures for every purpose (a hopeless task!), we
instead concentrate on a handful of general techniques for designing efficient functional data
structures and illustrate each technique with one or more implementations of fundamental ab-
stractions such as priority queues, random-access structures, and various flavors of sequences.

Chapter 5 describes lazy rebuilding, a lazy variant of global rebuilding [Ove83]. Lazy re-
building is significantly simpler than global rebuilding, but yields amortized rather than worst-
case bounds. By combining lazy rebuilding with the scheduling techniques of Chapter 4, the
worst-case bounds can be recovered.

Chapter 6 explores numerical representations, implementations designed in analogy to rep-
resentations of numbers (typically binary numbers). In this model, designing efficient insertion
and deletion routines corresponds to choosing variants of binary numbers in which adding or
subtracting one take constant time.

Chapter 7 examines data-structural bootstrapping [Buc93]. Data-structural bootstrapping
comes in two flavors: structural decomposition, in which unbounded solutions are bootstrapped
from bounded solutions, and structural abstraction, in which efficient solutions are boot-
strapped from inefficient solutions.

Chapter 8 describes implicit recursive slowdown, a lazy variant of the recursive-slowdown
technique of Kaplan and Tarjan [KT95]. As with lazy rebuilding, implicit recursive slowdown
is significantly simpler than recursive slowdown, but yields amortized rather than worst-case
bounds. Again, we can recover the worst-case bounds using scheduling.

Finally, Chapter 9 concludes by summarizing the implications of this work on functional
programming, on persistent data structures, and on programming language design, and by
describing some of the open problems related to this thesis.



Chapter 2

Lazy Evaluation and $-Notation

Lazy evaluation is an evaluation strategy employed by many purely functional programming
languages, such as Haskell [H+92]. This strategy has two essential properties. First, the evalu-
ation of a given expression is delayed, or suspended, until its result is needed. Second, the first
time a suspended expression is evaluated, the result is memoized (i.e., cached) so that the next
time it is needed, it can be looked up rather than recomputed.

Supporting lazy evaluation in a strict language such as Standard ML requires two primi-
tives: one to suspend the evaluation of an expression and one to resume the evaluation of a
suspended expression (and memoize the result). These primitives are often called delay and
force. For example, Standard ML of New Jersey offers the following primitives for lazy eval-
uation:

type � susp
val delay : (unit ! �) ! � susp
val force : � susp ! �

These primitives are sufficient to encode all the algorithms in this thesis. However, program-
ming with these primitives can be rather inconvenient. For instance, to suspend the evaluation
of some expression e, one writes delay (fn () ) e). Depending on the use of whitespace, this
introduces an overhead of 13–17 characters! Although acceptable when only a few expressions
are to be suspended, this overhead quickly becomes intolerable when many expressions must
be delayed.

To make suspending an expression as syntactically lightweight as possible, we instead use
$-notation — to suspend the evaluation of some expression e, we simply write $e. $e is called
a suspension and has type � susp, where � is the type of e. The scope of the $ operator extends
as far to the right as possible. Thus, for example, $f x parses as $(f x ) rather than ($f ) x
and $x+y parses as $(x+y) rather than ($x )+y . Note that $e is itself an expression and can be
suspended by writing $$e , yielding a nested suspension of type � susp susp.
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If s is a suspension of type � susp, then force s evaluates and memoizes the contents of
s and returns the resulting value of type � . However, explicitly forcing a suspension with a
force operation can also be inconvenient. In particular, it often interacts poorly with pattern
matching, requiring a single case expression to be broken into two or more nested case ex-
pressions, interspersed with force operations. To avoid this problem, we integrate $-notation
with pattern matching. Matching a suspension against a pattern of the form $p first forces the
suspension and then matches the result against p. At times, an explicit force operator is still
useful. However, it can now be defined in terms of $ patterns.

fun force ($x ) = x

To compare the two notations, consider the standard take function, which extracts the first n
elements of a stream. Streams are defined as follows:

datatype � StreamCell = Nil j Cons of � � � Stream
withtype � Stream = � StreamCell susp

Using delay and force, take would be written

fun take (n , s) =
delay (fn () ) case n of

0 ) Nil
j ) case force s of

Nil ) Nil
j Cons (x , s 0) ) Cons (x , take (n�1, s0)))

In contrast, using $-notation, take can be written more concisely as

fun take (n , s) = $case (n , s) of
(0, ) ) Nil
j ( , $Nil) ) Nil
j ( , $Cons (x , s0)) ) Cons (x , take (n�1, s 0))

In fact, it is tempting to write take even more concisely as

fun take (0, ) = $Nil
j take ( , $Nil) = $Nil
j take (n , $Cons (x , s)) = $Cons (x , take (n�1, s))

However, this third implementation is not equivalent to the first two. In particular, it forces its
second argument when take is applied, rather than when the resulting stream is forced.

The syntax and semantics of $-notation are formally defined in Appendix A.
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2.1 Streams

As an extended example of lazy evaluation and $-notation in Standard ML, we next develop
a small streams package. These streams will also be used by several of the data structures in
subsequent chapters.

Streams (also known as lazy lists) are very similar to ordinary lists, except that every cell
is systematically suspended. The type of streams is

datatype � StreamCell = Nil j Cons of � � � Stream
withtype � Stream = � StreamCell susp

A simple stream containing the elements 1, 2, and 3 could be written

$Cons (1, $Cons (2, $Cons (3, $Nil)))

It is illuminating to contrast streams with simple suspended lists of type � list susp. The
computations represented by the latter type are inherently monolithic — once begun by forcing
the suspended list, they run to completion. The computations represented by streams, on the
other hand, are often incremental — forcing a stream executes only enough of the computation
to produce the outermost cell and suspends the rest. This behavior is common among datatypes
such as streams that contain nested suspensions.

To see this difference in behavior more clearly, consider the append function, written s ++
t . On suspended lists, this function might be written

fun s ++ t = $(force s @ force t )

Once begun, this function forces both its arguments and then appends the two lists, producing
the entire result. Hence, this function is monolithic. On streams, the append function is written

fun s ++ t = $case s of
$Nil ) force t
j $Cons (x , s 0) ) Cons (x , s 0 ++ t )

Once begun, this function forces the first cell of s (by matching against a $ pattern). If this cell
is Nil , then the first cell of the result is the first cell of t , so the function forces t . Otherwise,
the function constructs the first cell of the result from the first element of s and — this is the
key point — the suspension that will eventually calculate the rest of the appended list. Hence,
this function is incremental. The take function described earlier is similarly incremental.

However, consider the function to drop the first n elements of a stream.

fun drop (n , s) = let fun drop0 (0, s 0) = force s 0

j drop0 (n , $Nil) = Nil
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j drop0 (n , $Cons (x , s0)) = drop0 (n�1, s 0)
in $drop0 (n , s) end

This function is monolithic because the recursive calls to drop0 are never delayed — calcu-
lating the first cell of the result requires executing the entire drop function. Another common
monolithic stream function is reverse .

fun reverse s = let fun reverse0 ($Nil, r ) = r

j reverse0 ($Cons (x , s), r ) = reverse0 (s , Cons (x , $r ))
in $reverse0 (s , Nil) end

Here the recursive calls to reverse0 are never delayed, but note that each recursive call creates
a new suspension of the form $r . It might seem then that reverse does not in fact do all
of its work at once. However, suspensions such as these, whose bodies are manifestly values
(i.e., composed entirely of constructors and variables, with no function applications), are called
trivial. A good compiler would create these suspensions in already-memoized form, but even
if the compiler does not perform this optimization, trivial suspensions always evaluate in O(1)
time.

Although monolithic stream functions such as drop and reverse are common, incremental
functions such as ++ and take are the raison d’être of streams. Each suspension carries a small
but significant overhead, so for maximum efficiency laziness should be used only when there
is a good reason to do so. If the only uses of lazy lists in a given application are monolithic,
then that application should use simple suspended lists rather than streams.

Figure 2.1 summarizes these stream functions as a Standard ML module. Note that the
type of streams is defined using Standard ML’s withtype construction, but that older versions
of Standard ML do not allow withtype declarations in signatures. This feature will be sup-
ported in future versions of Standard ML, but if your compiler does not allow it, then a sim-
ple workaround is to delete the Stream type and replace every occurrence of � Stream with
� StreamCell susp. By including the StreamCell datatype in the signature, we have delib-
erately chosen to expose the internal representation in order to support pattern matching on
streams.

2.2 Historical Notes

Lazy Evaluation Wadsworth [Wad71] first proposed lazy evaluation as an optimization of
normal-order reduction in the lambda calculus. Vuillemin [Vui74] later showed that, under
certain restricted conditions, lazy evaluation is an optimal evaluation strategy. The formal
semantics of lazy evaluation has been studied extensively [Jos89, Lau93, OLT94, AFM+95].
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signature STREAM =
sig

datatype � StreamCell = Nil j Cons of � � � Stream
withtype � Stream = � StreamCell susp

val ++ : � Stream � � Stream ! � Stream (� stream append �)
val take : int� � Stream ! � Stream
val drop : int� � Stream ! � Stream
val reverse : � Stream ! � Stream

end

structure Stream : STREAM =
sig

datatype � StreamCell = Nil j Cons of � � � Stream
withtype � Stream = � StreamCell susp

fun s ++ t = $case s of
$Nil) force t

j $Cons (x , s 0) ) Cons (x , s 0 ++ t)
fun take (n, s) = $case (n, s) of

(0, ) ) Nil
j ( , $Nil)) Nil
j ( , $Cons (x , s 0)) ) Cons (x , take (n�1, s0))

fun drop (n, s) = let fun drop0 (0, $c) = c

j drop0 (n, $Nil) = Nil
j drop0 (n, $Cons (x , s 0)) = drop0 (n�1, s 0)

in $drop0 (n, s) end
fun reverse s = let fun reverse0 ($Nil, r ) = r

j reverse0 ($Cons (x , s), r ) = reverse0 (s , Cons (x , $r ))
in $reverse0 (s , Nil) end

end

Figure 2.1: A small streams package.

Streams Landin introduced streams in [Lan65], but without memoization. Friedman and
Wise [FW76] and Henderson and Morris [HM76] extended Landin’s streams with memoiza-
tion.

Memoization Michie [Mic68] coined the term memoization to denote the augmentation of
functions with a cache of argument-result pairs. (The argument field is dropped when memoiz-
ing suspensions by regarding suspensions as nullary functions.) Hughes [Hug85] later applied
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memoization, in the original sense of Michie, to functional programs.

Algorithmics Both components of lazy evaluation — delaying computations and memoizing
the results — have a long history in algorithm design, although not always in combination. The
idea of delaying the execution of potentially expensive computations (often deletions) is used to
good effect in hash tables [WV86], priority queues [ST86b, FT87], and search trees [DSST89].
Memoization, on the other hand, is the basic principle of such techniques as dynamic program-
ming [Bel57] and path compression [HU73, TvL84].

Syntax for Lazy Evaluation Early versions of CAML [W+90], a close cousin of Standard
ML, offered support for lazy evaluation similar to the $-notation proposed here. Rather than
providing a single lazy constructor, however, CAML allowed any data constructor to be tagged
as lazy, after which all applications of the constructor would be evaluated lazily. Although this
is more flexible than $-notation, it also leads to programs that are significantly harder to read.
With $-notation, it is syntactically apparent which subexpressions are to be evaluated strictly
and which are to be evaluated lazily, but in CAML, this information can only be determined by
referring back to the type declarations.



Chapter 3

Amortization and Persistence via Lazy
Evaluation

Over the past fifteen years, amortization has become a powerful tool in the design and analysis
of data structures. Implementations with good amortized bounds are often simpler and faster
than implementations with equivalent worst-case bounds. Unfortunately, standard techniques
for amortization apply only to ephemeral data structures, and so are unsuitable for designing
or analyzing functional data structures, which are automatically persistent.

In this chapter, we review the two traditional techniques for analyzing amortized data struc-
tures — the banker’s method and the physicist’s method — and show where they break down
for persistent data structures. Then, we demonstrate how lazy evaluation can mediate the con-
flict between amortization and persistence. Finally, we adapt the banker’s and physicist’s meth-
ods to analyze lazy amortized data structures.

The resulting techniques are both the first techniques for designing and analyzing persis-
tent amortized data structures and the first practical techniques for analyzing non-trivial lazy
programs.

3.1 Traditional Amortization

The notion of amortization arises from the following observation. Given a sequence of oper-
ations, we may wish to know the running time of the entire sequence, but not care about the
running time of any individual operation. For instance, given a sequence of n operations, we
may wish to bound the total running time of the sequence by O(n) without insisting that each
individual operation run inO(1) time. We might be satisfied if a few operations run in O(log n)
or even O(n) time, provided the total cost of the sequence is only O(n). This freedom opens
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up a wide design space of possible solutions, and often yields new solutions that are simpler
and faster than worst-case solutions with equivalent bounds. In fact, for some problems, such
as the union-find problem [TvL84], there are amortized solutions that are asymptotically faster
than any possible worst-case solution (assuming certain modest restrictions) [Blu86].

To prove an amortized bound, one defines the amortized cost of each operation and then
proves that, for any sequence of operations, the total amortized cost of the operations is an
upper bound on the total actual cost, i.e.,

mX
i=1

ai �

mX
i=1

ti

where ai is the amortized cost of operation i, ti is the actual cost of operation i, and m is the
total number of operations. Usually, in fact, one proves a slightly stronger result: that at any
intermediate stage in a sequence of operations, the accumulated amortized cost is an upper
bound on the accumulated actual cost, i.e.,

jX
i=1

ai �

jX
i=1

ti

for any j. The difference between the accumulated amortized costs and the accumulated actual
costs is called the accumulated savings. Thus, the accumulated amortized costs are an upper
bound on the accumulated actual costs whenever the accumulated savings is non-negative.

Amortization allows for occasional operations to have actual costs that exceed their amor-
tized costs. Such operations are called expensive. Operations whose actual costs are less than
their amortized costs are called cheap. Expensive operations decrease the accumulated savings
and cheap operations increase it. The key to proving amortized bounds is to show that expen-
sive operations occur only when the accumulated savings are sufficient to cover the cost, since
otherwise the accumulated savings would become negative.

Tarjan [Tar85] describes two techniques for analyzing ephemeral amortized data structures:
the banker’s method and the physicist’s method. In the banker’s method, the accumulated sav-
ings are represented as credits that are associated with individual locations in the data structure.
These credits are used to pay for future accesses to these locations. The amortized cost of any
operation is defined to be the actual cost of the operation plus the credits allocated by the
operation minus the credits spent by the operation, i.e.,

ai = ti + ci � ci

where ci is the number of credits allocated by operation i, and ci is the number of credits
spent by operation i. Every credit must be allocated before it is spent, and no credit may be
spent more than once. Therefore,

P
ci �

P
ci, which in turn guarantees that

P
ai �

P
ti,

as desired. Proofs using the banker’s method typically define a credit invariant that regulates
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the distribution of credits in such a way that, whenever an expensive operation might occur,
sufficient credits have been allocated in the right locations to cover its cost.

In the physicist’s method, one describes a function � that maps each object d to a real
number called the potential of d. The function � is typically chosen so that the potential is
initially zero and is always non-negative. Then, the potential represents a lower bound on the
accumulated savings.

Let di be the output of operation i and the input of operation i+1. Then, the amortized cost
of operation i is defined to be the actual cost plus the change in potential between di�1 and di,
i.e.,

ai = ti + �(di)��(di�1)

The accumulated actual costs of the sequence of operations are
Pj

i=1 ti =
Pj

i=1(ai + �(di�1)� �(di))

=
Pj

i=1 ai +
Pj

i=1(�(di�1)� �(di))

=
Pj

i=1 ai + �(d0)� �(dj)

Sums such as
P
(�(di�1)� �(di)), where alternating positive and negative terms cancel each

other out, are called telescoping series. Provided � is chosen in such a way that �(d0) is zero
and �(dj) is non-negative, then �(dj) � �(d0) and

P
ai �

P
ti, so the accumulated amortized

costs are an upper bound on the accumulated actual costs, as desired.

Remark: This is a somewhat simplified view of the physicist’s method. In real analyses, one
often encounters situations that are difficult to fit into the framework as described. For example,
what about functions that take or return more than one object? However, this simplified view
suffices to illustrate the relevant issues. 3

Clearly, the two methods are very similar. We can convert the banker’s method to the physi-
cist’s method by ignoring locations and taking the potential to be the total number of credits in
the object, as indicated by the credit invariant. Similarly, we can convert the physicist’s method
to the banker’s method by converting potential to credits, and placing all credits on the root.
It is perhaps surprising that the knowledge of locations in the banker’s method offers no extra
power, but the two methods are in fact equivalent [Tar85, Sch92]. The physicist’s method is
usually simpler, but it is occasionally convenient to take locations into account.

Note that both credits and potential are analysis tools only; neither actually appears in the
program text (except maybe in comments).

3.1.1 Example: Queues

We next illustrate the banker’s and physicist’s methods by analyzing a simple functional im-
plementation of the queue abstraction, as specified by the signature in Figure 3.1.
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signature QUEUE =
sig

type � Queue

exception EMPTY

val empty : � Queue
val isEmpty : � Queue ! bool

val snoc : � Queue � �! � Queue
val head : � Queue ! � (� raises EMPTY if queue is empty �)
val tail : � Queue ! � Queue (� raises EMPTY if queue is empty �)

end

Figure 3.1: Signature for queues.

(Etymological note: snoc is cons spelled backward and means “cons on the right”.)

A common representation for purely functional queues [Gri81, HM81, Bur82] is as a pair
of lists, F and R, where F contains the front elements of the queue in the correct order and R

contains the rear elements of the queue in reverse order. For example, a queue containing the
integers 1. . . 6 might be represented by the lists F = [1,2,3] and R = [6,5,4]. This representation
is described by the following datatype:

datatype � Queue = Queue of fF : � list, R : � listg

In this representation, the head of the queue is the first element of F , so head and tail return
and remove this element, respectively.

fun head (Queue fF = x :: f , R = rg) = x

fun tail (Queue fF = x :: f , R = rg) = Queue fF = f , R = rg

Remark: To avoid distracting the reader with minor details, we will commonly ignore error
cases when presenting code fragments. For example, the above code fragments do not describe
the behavior of head or tail on empty queues. We will always include the error cases when
presenting complete implementations. 3

Now, the last element of the queue is the first element of R, so snoc simply adds a new
element at the head of R.

fun snoc (Queue fF = f , R = rg, x ) = Queue fF = f , R = x :: rg
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Elements are added to R and removed from F , so they must somehow migrate from one list to
the other. This is accomplished by reversing R and installing the result as the new F whenever
F would otherwise become empty, simultaneously setting the new R to [ ]. The goal is to
maintain the invariant that F is empty only if R is also empty (i.e., the entire queue is empty).
Note that if F were empty when R was not, then the first element of the queue would be the
last element of R, which would take O(n) time to access. By maintaining this invariant, we
guarantee that head can always find the first element in O(1) time.

snoc and tail must now detect those cases that would otherwise result in a violation of the
invariant, and change their behavior accordingly.

fun snoc (Queue fF = [ ], . . .g, x ) = Queue fF = [x ], R = [ ]g
j snoc (Queue fF = f , R = rg, x ) = Queue fF = f , R = x :: rg

fun tail (Queue fF = [x ], R = rg) = Queue fF = rev r , R = [ ]g
j tail (Queue fF = x :: f , R = rg) = Queue fF = f , R = rg

Note the use of the record wildcard (. . . ) in the first clause of snoc. This is Standard ML
pattern-matching notation meaning “the remaining fields of this record are irrelevant”. In this
case, the R field is irrelevant because we know by the invariant that if F is [ ], then so is R.

A cleaner way to write these functions is to consolidate the invariant-maintenance duties of
snoc and tail into a single pseudo-constructor. Pseudo-constructors, sometimes called smart
constructors [Ada93], are functions that replace ordinary constructors in the construction of
data, but that check and enforce an invariant. In this case, the pseudo-constructor queue re-
places the ordinary constructor Queue , but guarantees that F is empty only if R is also empty.

fun queue fF = [ ], R = rg = Queue fF = rev r , R = [ ]g
j queue fF = f , R = rg = Queue fF = f , R = rg

fun snoc (Queue fF = f , R = rg, x ) = queue fF = f , R = x :: rg
fun tail (Queue fF = x :: f , R = rg) = queue fF = f , R = rg

The complete code for this implementation is shown in Figure 3.2. Every function except
tail takes O(1) worst-case time, but tail takes O(n) worst-case time. However, we can show
that snoc and tail each take only O(1) amortized time using either the banker’s method or the
physicist’s method.

Using the banker’s method, we maintain a credit invariant that the rear list always contains
a number of credits equal to its length. Every snoc into a non-empty queue takes one actual
step and allocates a credit to the new element of the rear list, for an amortized cost of two.
Every tail that does not reverse the rear list takes one actual step and neither allocates nor
spends any credits, for an amortized cost of one. Finally, every tail that does reverse the rear
list takes m + 1 actual steps, where m is the length of the rear list, and spends the m credits
contained by that list, for an amortized cost of m+ 1�m = 1.
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structure BatchedQueue : QUEUE =
struct

datatype � Queue = Queue of fF : � list, R : � listg
(� Invariant: F is empty only if R is also empty �)

exception EMPTY

val empty = Queue fF = [ ], R = [ ]g
fun isEmpty (Queue fF = f , R = rg) = null f

fun queue fF = [ ], R = r ) = Queue fF = rev r , R = [ ]g
j queue q = Queue q

fun snoc (Queue fF = f , R = r ), x ) = queue fF = f , R = x :: rg

fun head (Queue fF = [ ], . . . g) = raise EMPTY

j head (Queue fF = x :: f , . . . g) = x

fun tail (Queue fF = [ ], . . . g) = raise EMPTY

j tail (Queue fF = x :: f , R = rg) = queue fF = f , R = rg

end

Figure 3.2: A common implementation of purely functional queues [Gri81, HM81, Bur82].

Using the physicist’s method, we define the potential function � to be the length of the rear
list. Then every snoc into a non-empty queue takes one actual step and increases the potential
by one, for an amortized cost of two. Every tail that does not reverse the rear list takes one
actual step and leaves the potential unchanged, for an amortized cost of one. Finally, every tail
that does reverse the rear list takes m+1 actual steps and sets the new rear list to [ ], decreasing
the potential by m, for an amortized cost of m+ 1�m = 1.

In this simple example, the proofs are virtually identical. Even so, the physicist’s method
is slightly simpler for the following reason. Using the banker’s method, we must first choose a
credit invariant, and then decide for each function when to allocate or spend credits. The credit
invariant provides guidance in this decision, but does not make it automatic. For instance,
should snoc allocate one credit and spend none, or allocate two credits and spend one? The
net effect is the same, so this freedom is just one more potential source of confusion. On the
other hand, using the physicist’s method, we have only one decision to make — the choice of
the potential function. After that, the analysis is mere calculation, with no more freedom of
choice.
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3.2 Persistence: The Problem of Multiple Futures

In the above analyses, we implicitly assumed that queues were used ephemerally (i.e., in a
single-threaded fashion). What happens if we try to use these queues persistently?

Let q be the result of inserting n elements into an initially empty queue, so that the front
list of q contains a single element and the rear list contains n � 1 elements. Now, suppose
we use q persistently by taking its tail n times. Each call of tail q takes n actual steps. The
total actual cost of this sequence of operations, including the time to build q, is n2 + n. If the
operations truly took O(1) amortized time each, then the total actual cost would be only O(n).
Clearly, using these queues persistently invalidates the O(1) amortized time bounds proved
above. Where do these proofs go wrong?

In both cases, a fundamental requirement of the analysis is violated by persistent data struc-
tures. The banker’s method requires that no credit be spent more than once, while the physi-
cist’s method requires that the output of one operation be the input of the next operation (or,
more generally, that no output be used as input more than once). Now, consider the second
call to tail q in the example above. The first call to tail q spends all the credits on the rear list
of q , leaving none to pay for the second and subsequent calls, so the banker’s method breaks.
And the second call to tail q reuses q rather than the output of the first call, so the physicist’s
method breaks.

Both these failures reflect the inherent weakness of any accounting system based on ac-
cumulated savings — that savings can only be spent once. The traditional methods of amor-
tization operate by accumulating savings (as either credits or potential) for future use. This
works well in an ephemeral setting, where every operation has only a single logical future. But
with persistence, an operation might have multiple logical futures, each competing to spend
the same savings.

3.2.1 Execution Traces and Logical Time

What exactly do we mean by the “logical future” of an operation?

We model logical time with execution traces, which give an abstract view of the history
of a computation. An execution trace is a directed graph whose nodes represent “interesting”
operations, usually just update operations on the data type in question. An edge from v to v

0

indicates that operation v
0 uses some result of operation v. The logical history of operation

v, denoted v̂, is the set of all operations on which the result of v depends (including v itself).
In other words, v̂ is the set of all nodes w such that there exists a path (possibly of length 0)
from w to v. A logical future of a node v is any path from v to a terminal node (i.e., a node
with out-degree zero). If there is more than one such path, then node v has multiple logical
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futures. We will sometimes refer to the logical history or logical future of an object, meaning
the logical history or logical future of the operation that created the object.

Execution traces generalize the notion of version graphs [DSST89], which are often used to
model the histories of persistent data structures. In a version graph, nodes represent the various
versions of a single persistent identity and edges represent dependencies between versions.
Thus, version graphs model the results of operations and execution traces model the operations
themselves. Execution traces are often more convenient for combining the histories of several
persistent identities (perhaps not even of the same data type) or for reasoning about operations
that do not return a new version (e.g., queries) or that return several results (e.g., splitting a list
into two sublists).

For ephemeral data structures, the out-degree of every node in a version graph or execu-
tion trace is typically restricted to be at most one, reflecting the limitation that objects can
be updated at most once. To model various flavors of persistence, version graphs allow the
out-degree of every node to be unbounded, but make other restrictions. For instance, version
graphs are often limited to be trees (forests) by restricting the in-degree of every node to be at
most one. Other version graphs allow in-degrees of greater than one, but forbid cycles, making
every graph a dag. We make none of these restrictions on execution traces. Nodes with in-
degree greater than one correspond to operations that take more than one argument, such as list
catenation or set union. Cycles arise from recursively defined objects, which are supported by
many lazy languages. We even allow multiple edges between a single pair of nodes, as might
occur if a list is catenated with itself.

We will use execution traces in Section 3.4.1 when we extend the banker’s method to cope
with persistence.

3.3 Reconciling Amortization and Persistence

In the previous section, we saw that traditional methods of amortization break in the presence
of persistence because they assume a unique future, in which the accumulated savings will be
spent at most once. However, with persistence, multiple logical futures might all try to spend
the same savings. In this section, we show how the banker’s and physicist’s methods can be
repaired by replacing the notion of accumulated savings with accumulated debt, where debt
measures the cost of unevaluated lazy computations. The intuition is that, although savings
can only be spent once, it does no harm to pay off debt more than once.

3.3.1 The Role of Lazy Evaluation

Recall that an expensive operation is one whose actual costs are greater than its (desired) amor-
tized costs. For example, suppose some application f x is expensive. With persistence, a
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malicious adversary might call f x arbitrarily often. (Note that each operation is a new logi-
cal future of x .) If each operation takes the same amount of time, then the amortized bounds
degrade to the worst-case bounds. Hence, we must find a way to guarantee that if the first
application of f to x is expensive, then subsequent applications of f to x will not be.

Without side-effects, this is impossible under call-by-value (i.e., strict evaluation) or call-
by-name (i.e., lazy evaluation without memoization), because every application of f to x will
take exactly the same amount of time. Therefore, amortization cannot be usefully combined
with persistence in languages supporting only these evaluation orders.

But now consider call-by-need (i.e., lazy evaluation with memoization). If x contains some
suspended component that is needed by f , then the first application of f to x will force the
(potentially expensive) evaluation of that component and memoize the result. Subsequent op-
erations may then access the memoized result directly. This is exactly the desired behavior!

Remark: In retrospect, the relationship between lazy evaluation and amortization is not
surprising. Lazy evaluation can be viewed as a form of self-modification, and amortization
often involves self-modification [ST85, ST86b]. However, lazy evaluation is a particularly
disciplined form of self-modification — not all forms of self-modification typically used in
amortized ephemeral data structures can be encoded as lazy evaluation. In particular, splay-
ing [ST85] does not appear to be amenable to this technique. 3

3.3.2 A Framework for Analyzing Lazy Data Structures

We have just shown that lazy evaluation is necessary to implement amortized data structures
purely functionally. Unfortunately, analyzing the running times of programs involving lazy
evaluation is notoriously difficult. Historically, the most common technique for analyzing
lazy programs has been to pretend that they are actually strict. However, this technique is
completely inadequate for analyzing lazy amortized data structures. We next describe a basic
framework to support such analyses. In the remainder of this chapter, we will adapt the banker’s
and physicist’s methods to this framework, yielding both the first techniques for analyzing
persistent amortized data structures and the first practical techniques for analyzing non-trivial
lazy programs.

We classify the costs of any given operation into several categories. First, the unshared cost
of an operation is the actual time it would take to execute the operation under the assumption
that every suspension in the system at the beginning of the operation has already been forced
and memoized (i.e., under the assumption that force always takes O(1) time, except for those
suspensions that are created and forced within the same operation). The shared cost of an
operation is the time that it would take to execute every suspension created but not evaluated
by the operation (under the same assumption as above). The complete cost of an operation is
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the sum of its shared and unshared costs. Note that the complete cost is what the actual cost of
the operation would be if lazy evaluation were replaced with strict evaluation.

We further partition the total shared costs of a sequence of operations into realized and
unrealized costs. Realized costs are the shared costs for suspensions that are executed during
the overall computation. Unrealized costs are the shared costs for suspensions that are never
executed. The total actual cost of a sequence of operations is the sum of the unshared costs and
the realized shared costs — unrealized costs do not contribute to the actual cost. Note that the
amount that any particular operation contributes to the total actual cost is at least its unshared
cost, and at most its complete cost, depending on how much of its shared cost is realized.

We account for shared costs using the notion of accumulated debt. Initially, the accumu-
lated debt is zero, but every time a suspension is created, we increase the accumulated debt
by the shared cost of the suspension (and any nested suspensions). Each operation then pays
off a portion of the accumulated debt. The amortized cost of an operation is the unshared cost
of the operation plus the amount of accumulated debt paid off by the operation. We are not
allowed to force a suspension until the debt associated with the suspension is entirely paid off.
This treatment of debt is reminiscent of a layaway plan, in which one reserves an item and then
makes regular payments, but receives the item only when it is entirely paid off.

There are three important moments in the life cycle of a suspension: when it is created,
when it is entirely paid off, and when it is executed. The proof obligation is to show that the
second moment precedes the third. If every suspension is paid off before it is forced, then the
total amount of debt that has been paid off is an upper bound on the realized shared costs, and
therefore the total amortized cost (i.e., the total unshared cost plus the total amount of debt that
has been paid off) is an upper bound on the total actual cost (i.e., the total unshared cost plus
the realized shared costs). We will formalize this argument in Section 3.4.1.

One of the most difficult problems in analyzing the running time of lazy programs is rea-
soning about the interactions of multiple logical futures. We avoid this problem by reasoning
about each logical future as if it were the only one. From the point of view of the operation
that creates a suspension, any logical future that forces the suspension must itself pay for the
suspension. If two logical futures wish to force the same suspension, then both must pay for
the suspension individually — they may not cooperate and each pay only a portion of the debt.
An alternative view of this restriction is that we are allowed to force a suspension only when
the debt for that suspension has been paid off within the logical history of current operation.
Using this method, we will sometimes pay off a debt more than once, thereby overestimating
the total time required for a particular computation, but this does no harm and is a small price
to pay for the simplicity of the resulting analyses.
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3.4 The Banker’s Method

We adapt the banker’s method to account for accumulated debt rather than accumulated savings
by replacing credits with debits. Each debit represents a constant amount of suspended work.
When we initially suspend a given computation, we create a number of debits proportional to
its shared cost and associate each debit with a location in the object. The choice of location
for each debit depends on the nature of the computation. If the computation is monolithic (i.e.,
once begun, it runs to completion), then all debits are usually assigned to the root of the result.
On the other hand, if the computation is incremental (i.e., decomposable into fragments that
may be executed independently), then the debits may be distributed among the roots of the
partial results.

The amortized cost of an operation is the unshared cost of the operation plus the number of
debits discharged by the operation. Note that the number of debits created by an operation is not
included in its amortized cost. The order in which debits should be discharged depends on how
the object will be accessed; debits on nodes likely to be accessed soon should be discharged
first. To prove an amortized bound, we must show that, whenever we access a location (possibly
triggering the execution of a suspension), all debits associated with that location have already
been discharged (and hence the suspended computation has been paid for). This guarantees
that the total number of debits discharged by a sequence of operations is an upper bound on the
realized shared costs of the operations. The total amortized costs are therefore an upper bound
on the total actual costs. Debits leftover at the end of the computation correspond to unrealized
shared costs, and are irrelevant to the total actual costs.

Incremental functions play an important role in the banker’s method because they allow
debits to be dispersed to different locations in a data structure, each corresponding to a nested
suspension. Then, each location can be accessed as soon as its debits are discharged, without
waiting for the debits at other locations to be discharged. In practice, this means that the initial
partial results of an incremental computation can be paid for very quickly, and that subsequent
partial results may be paid for as they are needed. Monolithic functions, on the other hand, are
much less flexible. The programmer must anticipate when the result of an expensive monolithic
computation will be needed, and set up the computation far enough in advance to be able to
discharge all its debits by the time its result is needed.

3.4.1 Justifying the Banker’s Method

In this section, we justify the claim that the total amortized cost is an upper bound on the total
actual cost. The total amortized cost is the total unshared cost plus the total number of debits
discharged (counting duplicates); the total actual cost is the total unshared cost plus the realized
shared costs. Therefore, we must show that the total number of debits discharged is an upper
bound on the realized shared costs.
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We can view the banker’s method abstractly as a graph labelling problem, using the execu-
tion traces of Section 3.2.1. The problem is to label every node in a trace with three (multi)sets
s(v), a(v), and r(v) such that

(I) v 6= v
0
) s(v) \ s(v0) = ;

(II) a(v) �
S
w2v̂ s(w)

(III) r(v) �
S
w2v̂ a(w)

s(v) is a set, but a(v) and r(v) may be multisets (i.e., may contain duplicates). Conditions II
and III ignore duplicates.

s(v) is the set of debits allocated by operation v. Condition I states that no debit may be
allocated more than once. a(v) is the multiset of debits discharged by v. Condition II insists
that no debit may be discharged before it is created, or more specifically, that an operation
can only discharge debits that appear in its logical history. Finally, r(v) is the multiset of
debits realized by v (that is, the multiset of debits corresponding to the suspensions forced
by v). Condition III requires that no debit may be realized before it is discharged, or more
specifically, that no debit may realized unless it has been discharged within the logical history
of the current operation.

Why are a(v) and r(v) multisets rather than sets? Because a single operation might dis-
charge the same debits more than once or realize the same debits more than once (by forcing
the same suspensions more than once). Although we never deliberately discharge the same
debit more than once, it could happen if we were to combine a single object with itself. For
example, suppose in some analysis of a list catenation function, we discharge a few debits from
the first argument and a few debits from the second argument. If we then catenate a list with
itself, we might discharge the same few debits twice.

Given this abstract view of the banker’s method, we can easily measure various costs of a
computation. Let V be the set of all nodes in the execution trace. Then, the total shared cost isP

v2V js(v)j and the total number of debits discharged is
P

v2V ja(v)j. Because of memoization,
the realized shared cost is not

P
v2V jr(v)j, but rather j

S
v2V r(v)j, where

S
discards duplicates.

By Condition III, we know that
S
v2V r(v) �

S
v2V a(v). Therefore,

j
S
v2V r(v)j � j

S
v2V a(v)j �

P
v2V ja(v)j

So the realized shared cost is bounded by the total number of debits discharged, and the total
actual cost is bounded by the total amortized cost, as desired.

Remark: This argument once again emphasizes the importance of memoization. Without
memoization (i.e., if we were using call-by-name rather than call-by-need), the total realized
cost would be

P
v2V jr(v)j, and there is no reason to expect this sum to be less than

P
v2V ja(v)j.

3
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3.4.2 Example: Queues

We next develop an efficient persistent implementation of queues, and prove that every opera-
tion takes only O(1) amortized time using the banker’s method.

Based on the discussion in the previous section, we must somehow incorporate lazy eval-
uation into the design of the data structure, so we replace the pair of lists in the previous
implementation with a pair of streams.1 To simplify later operations, we also explicitly track
the lengths of the two streams.

datatype � Queue = Queue fF : � Stream, LenF : int, R : � Stream, LenR : intg

Note that a pleasant side effect of maintaining this length information is that we can trivially
support a constant-time size function.

Now, waiting until the front list becomes empty to reverse the rear list does not leave suf-
ficient time to pay for the reverse. Instead, we periodically rotate the queue by moving all the
elements of the rear stream to the end of the front stream, replacing F with F ++ reverse R and
setting the new rear stream to empty ($Nil ). Note that this transformation does not affect the
relative ordering of the elements.

When should we rotate the queue? Recall that reverse is a monolithic function. We must
therefore set up the computation far enough in advance to be able to discharge all its debits by
the time its result is needed. The reverse computation takes jRj steps, so we will allocate jRj
debits to account for its cost. (For now we ignore the cost of the ++ operation). The earliest the
reverse suspension could be forced is after jF j applications of tail , so if we rotate the queue
when jRj � jF j and discharge one debit per operation, then we will have paid for the reverse
by the time it is executed. In fact, we will rotate the queue whenever R becomes one longer
than F , thereby maintaining the invariant that jF j � jRj. Incidentally, this guarantees that F
is empty only if R is also empty. The major queue functions can now be written as follows:

fun snoc (Queue fF = f , LenF = lenF , R = r , LenR = lenRg, x ) =
queue fF = f , LenF = lenF , R = $Cons (x , r ), LenR = lenR+1g

fun head (Queue fF = $Cons (x , f ), . . .g) = x

fun tail (Queue fF = $Cons (x , f ), LenF = lenF , R = r , LenR = lenRg) =
queue fF = f , LenF = lenF�1, R = r , LenR = lenRg

where the pseudo-constructor queue guarantees that jF j � jRj.

fun queue (q as fF = f , LenF = lenF , R = r , LenR = lenRg) =
if lenR � lenF then Queue q
else Queue fF = f ++ reverse r , LenF = lenF+lenR, R = $Nil, LenR = 0g

The complete code for this implementation appears in Figure 3.3.
1Actually, it would be enough to replace only the front list with a stream, but we replace both for simplicity.
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structure BankersQueue : QUEUE =
struct

datatype � Queue = Queue fF : � Stream, LenF : int, R : � Stream, LenR : intg
(� Invariants: jFj � jRj, LenF = jFj, LenR = jRj �)

exception EMPTY

val empty = Queue fF = $Nil, LenF = 0, R = $Nil, LenR = 0g
fun isEmpty (Queue fLenF = lenF , . . . g) = (lenF = 0 )

fun queue (q as fF = f , LenF = lenF , R = r , LenR = lenRg) =
if lenR � lenF then Queue q

else Queue fF = f ++ reverse r , LenF = lenF+lenR, R = $Nil, LenR = 0g

fun snoc (Queue fF = f , LenF = lenF , R = r , LenR = lenRg, x ) =
queue fF = f , LenF = lenF , R = $Cons (x , r ), LenR = lenR+1g

fun head (Queue fF = $Nil, . . . g) = raise EMPTY

j head (Queue fF = $Cons (x , f ), . . . g) = x

fun tail (Queue fF = $Nil, . . . g) = raise EMPTY

j tail (Queue fF = $Cons (x , f ), LenF = lenF , R = r , LenR = lenRg) =
queue fF = f , LenF = lenF�1, R = r , LenR = lenRg

end

Figure 3.3: Amortized queues using the banker’s method.

To understand how this implementation deals efficiently with persistence, consider the fol-
lowing scenario. Let q0 be some queue whose front and rear streams are both of length m, and
let qi = tail qi�1, for 0 < i � m+ 1. The queue is rotated during the first application of tail ,
and the reverse suspension created by the rotation is forced during the last application of tail .
This reversal takes m steps, and its cost is amortized over the sequence q1 : : : qm. (For now, we
are concerned only with the cost of the reverse — we ignore the cost of the ++.)

Now, choose some branch point k, and repeat the calculation from qk to qm+1. (Note that qk
is used persistently.) Do this d times. How often is the reverse executed? It depends on whether
the branch point k is before or after the rotation. Suppose k is after the rotation. In fact, suppose
k = m so that each of the repeated branches is a single tail . Each of these branches forces the
reverse suspension, but they each force the same suspension, so the reverse is executed only
once. Memoization is crucial here — without memoization the reverse would be re-executed
each time, for a total cost of m(d + 1) steps, with only m + 1 + d operations over which to
amortize this cost. For large d, this would result in an O(m) amortized cost per operation, but
memoization gives us an amortized cost of only O(1) per operation.

It is possible to re-execute the reverse however. Simply take k = 0 (i.e., make the branch
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point just before the rotation). Then the first tail of each branch repeats the rotation and creates
a new reverse suspension. This new suspension is forced in the last tail of each branch,
executing the reverse . Because these are different suspensions, memoization does not help at
all. The total cost of all the reversals is m � d, but now we have (m + 1)(d + 1) operations
over which to amortize this cost, yielding an amortized cost of O(1) per operation. The key is
that we duplicate work only when we also duplicate the sequence of operations over which to
amortize the cost of that work.

This informal argument shows that these queues require only O(1) amortized time per
operation even when used persistently. We formalize this proof using the banker’s method.

By inspection, the unshared cost of every queue operation is O(1). Therefore, to show
that the amortized cost of every queue operation is O(1), we must prove that discharging O(1)
debits per operation suffices to pay off every suspension before it is forced. (In fact, only snoc
and tail must discharge any debits.)

Let d(i) be the number of debits on the ith node of the front stream and let D(i) =P
i

j=0 d(j) be the cumulative number of debits on all nodes up to and including the ith node.
We maintain the following debit invariant:

D(i) � min(2i; jF j � jRj)

The 2i term guarantees that all debits on the first node of the front stream have been discharged
(since d(0) = D(0) � 2 � 0 = 0), so this node may be forced at will (for instance, by head or
tail ). The jF j � jRj term guarantees that all debits in the entire queue have been discharged
whenever the streams are of equal length (i.e., just before the next rotation).

Theorem 3.1 The snoc and tail operations maintain the debit invariant by discharging one
and two debits, respectively.

Proof: Every snoc operation that does not cause a rotation simply adds a new element to
the rear stream, increasing jRj by one and decreasing jF j � jRj by one. This will cause the
invariant to be violated at any node for which D(i) was previously equal to jF j � jRj. We
can restore the invariant by discharging the first debit in the queue, which decreases every
subsequent cumulative debit total by one. Similarly, every tail that does not cause a rotation
simply removes an element from the front stream. This decreases jF j by one (and hence
jF j � jRj by one), but, more importantly, it decreases the index i of every remaining node by
one, which in turn decreases 2i by two. Discharging the first two debits in the queue restores
the invariant. Finally, consider a snoc or tail that causes a rotation. Just before the rotation, we
are guaranteed that all debits in the queue have been discharged, so, after the rotation, the only
debits are those generated by the rotation itself. If jF j = m and jRj = m + 1 at the time of
the rotation, then there will be m debits for the append and m+ 1 debits for the reverse. The
append function is incremental so we place one of its debits on each of the first m nodes. On
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the other hand, the reverse function is monolithic so we place all m+ 1 of its debits on node
m, the first node of the reversed stream. Thus, the debits are distributed such that

d(i) =

8><
>:

1 if i < m

m+ 1 if i = m

0 if i > m

and D(i) =

(
i+ 1 if i < m

2m+ 1 if i � m

This distribution violates the invariant at both node 0 and node m, but discharging the debit on
the first node restores the invariant. 2

The format of this argument is typical. Debits are distributed across several nodes for
incremental functions, and all on the same node for monolithic functions. Debit invariants
measure, not just the number of debits on a given node, but the number of debits along the
path from the root to the given node. This reflects the fact that accessing a node requires first
accessing all its ancestors. Therefore, the debits on all those nodes must be zero as well.

This data structure also illustrates a subtle point about nested suspensions — the debits for
a nested suspension may be allocated, and even discharged, before the suspension is physi-
cally created. For example, consider how ++ (append) works. The suspension for the second
node in the stream is not physically created until the suspension for the first node is forced.
However, because of memoization, the suspension for the second node will be shared when-
ever the suspension for the first node is shared. Therefore, we consider a nested suspension to
be implicitly created at the time that its enclosing suspension is created. Furthermore, when
considering debit arguments or otherwise reasoning about the shape of an object, we ignore
whether a node has been physically created or not. Rather we reason about the shape of an
object as if all nodes were in their final form, i.e., as if all suspensions in the object had been
forced.

3.5 The Physicist’s Method

Like the banker’s method, the physicist’s method can also be adapted to work with accumulated
debt rather than accumulated savings. In the traditional physicist’s method, one describes a
potential function � that represents a lower bound on the accumulated savings. To work with
debt instead of savings, we replace � with a function 	 that maps each object to a potential
representing an upper bound on the accumulated debt (or at least, an upper bound on this
object’s portion of the accumulated debt). Roughly speaking, the amortized cost of an operation
is then the complete cost of the operation (i.e., the shared and unshared costs) minus the change
in potential. Recall that an easy way to calculate the complete cost of an operation is to pretend
that all computation is strict.

Any changes in the accumulated debt are reflected by changes in the potential. If an op-
eration does not pay any shared costs, then the change in potential is equal to its shared cost,
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so the amortized cost of the operation is equal to its unshared cost. On the other hand if an
operation does pay some of its shared cost, or shared costs of previous operations, then the
change in potential is smaller than its shared cost (i.e., the accumulated debt increases by less
than the shared cost), so the amortized cost of the operation is greater than its unshared cost.
However, the change in potential may never be more than the shared cost — the amortized cost
of an operation may not be less than its unshared cost.

We can justify the physicist’s method by relating it back to the banker’s method. Recall
that in the banker’s method, the amortized cost of an operation was its unshared cost plus the
number of debits discharged. In the physicist’s method, the amortized cost is the complete
cost minus the change in potential, or, in other words, the unshared cost plus the difference
between the shared cost and the change in potential. If we consider one unit of potential to be
equivalent to one debit, then the shared cost is the number of debits by which the accumulated
debt could have increased, and the change in potential is the number of debits by which the
accumulated debt did increase. The difference must have been made up by discharging some
debits. Therefore, the amortized cost in the physicist’s method can also be viewed as the
unshared cost plus the number of debits discharged.

Sometimes, we wish to force a suspension in an object when the potential of the object
is not zero. In that case, we add the object’s potential to the amortized cost. This typically
happens in queries, where the cost of forcing the suspension cannot be reflected by a change in
potential because the operation does not return a new object.

The major difference between the banker’s and physicist’s methods is that, in the banker’s
method, we are allowed to force a suspension as soon as the debits for that suspension have
been paid off, without waiting for the debits for other suspensions to be discharged, but in the
physicist’s method, we can force a shared suspension only when we have reduced the entire
accumulated debt of an object, as measured by the potential, to zero. Since potential measures
only the accumulated debt of an object as a whole and does not distinguish between different
locations, we must pessimistically assume that the entire outstanding debt is associated with
the particular suspension we wish to force. For this reason, the physicist’s method appears to be
less powerful than the banker’s method. The physicist’s method is also weaker in other ways.
For instance, it has trouble with operations that take multiple objects as arguments or return
multiple objects as results, for which it is difficult to define exactly what “change in potential”
means. However, when it applies, the physicist’s method tends to be much simpler than the
banker’s method.

Since the physicist’s method cannot take advantage of the piecemeal execution of nested
suspensions, there is no reason to prefer incremental functions to monolithic functions. In fact,
a good hint that the physicist’s method might be applicable is if all or most suspensions are
monolithic.



30 Amortization and Persistence via Lazy Evaluation

3.5.1 Example: Queues

We next adapt our implementation of queues to use the physicist’s method. Again, we show
that every operation takes only O(1) amortized time.

Because there is no longer any reason to prefer incremental suspensions over monolithic
suspensions, we use suspended lists instead of streams. In fact, the rear list need not be sus-
pended at all, so we represent it with an ordinary list. Again, we explicitly track the lengths of
the lists and guarantee that the front list is always at least as long as the rear list.

Since the front list is suspended, we cannot access its first element without executing the
entire suspension. We therefore keep a working copy of a prefix of the front list. This working
copy is represented as an ordinary list for efficient access, and is non-empty whenever the front
list is non-empty. The final datatype is

datatype � Queue = Queue of fW : � list, F : � list susp, LenF : int, R : � list, LenR : intg

The major functions on queues may then be written

fun snoc (Queue fW = w , F = f , LenF = lenF , R = r , LenR = lenRg, x ) =
queue fW = w , F = f , LenF = lenF , R = x :: r , LenR = lenR+1g

fun head (Queue fW = x :: w , . . .g) = x

fun tail (Queue fW = x :: w , F = f , LenF = lenF , R = r , LenR = lenRg) =
queue fW = w , F = $tl (force f ), LenF = lenF�1, R = r , LenR = lenRg)

The pseudo-constructor queue must enforce two invariants: that R is no longer than F , and
that W is non-empty whenever F is non-empty.

fun checkW fW = [ ], F = f , LenF = lenF , R = r , LenR = lenRg) =
Queue fW = force f , F = f , LenF = lenF , R = r , LenR = lenRg)

j checkW q = Queue q
fun checkR (q as fW = w , F = f , LenF = lenF , R = r , LenR = lenRg) =

if lenR � lenF then q

else let val w 0 = force f
in fW = w 0, F = $(w 0 @ rev r ), LenF = lenF+lenR, R = [ ], LenR = 0g end

fun queue q = checkW (checkR q)

The complete implementation of these queues appears in Figure 3.4.

To analyze these queues using the physicist’s method, we choose a potential function 	 in
such a way that the potential will be zero whenever we force the suspended list. This happens
in two situations: when W becomes empty and when R becomes longer than F . We therefore
choose 	 to be

	(q) = min(2jW j; jF j � jRj)



3.5 The Physicist’s Method 31

structure PhysicistsQueue : QUEUE =
struct

datatype � Queue = Queue of fW : � list, F : � list susp, LenF : int, R : � list, LenR : intg
(� Invariants: W is a prefix of force F, W = [ ] only if F = $[ ], �)
(� jFj � jRj, LenF = jFj, LenR = jRj �)

exception EMPTY

val empty = Queue fW = [ ], F = $[ ], LenF = 0, R = [ ], LenR = 0g
fun isEmpty (Queue fLenF = lenF , . . . g) = (lenF = 0 )

fun checkW fW = [ ], F = f , LenF = lenF , R = r , LenR = lenRg) =
Queue fW = force f , F = f , LenF = lenF , R = r , LenR = lenRg)

j checkW q = Queue q

fun checkR (q as fW = w , F = f , LenF = lenF , R = r , LenR = lenRg) =
if lenR � lenF then q

else let val w 0 = force f

in fW = w
0, F = $(w 0 @ rev r ), LenF = lenF + lenR, R = [ ], LenR = 0g end

fun queue q = checkW (checkR q)

fun snoc (Queue fW = w , F = f , LenF = lenF , R = r , LenR = lenRg, x ) =
queue fW = w , F = f , LenF = lenF , R = x :: r , LenR = lenR+1g

fun head (Queue fW = [ ], . . . g) = raise EMPTY

j head (Queue fW = x :: w , . . . g) = x

fun tail (Queue fW = [ ], . . . g) = raise EMPTY

j tail (Queue fW = x :: w , F = f , LenF = lenF , R = r , LenR = lenRg) =
queue fW = w , F = $tl (force f ), LenF = lenF�1, R = r , LenR = lenRg)

end

Figure 3.4: Amortized queues using the physicist’s method.

Theorem 3.2 The amortized costs of snoc and tail are at most two and four, respectively.

Proof: Every snoc that does not cause a rotation simply adds a new element to the rear list,
increasing jRj by one and decreasing jF j � jRj by one. The complete cost of the snoc is one,
and the decrease in potential is at most one, for an amortized cost of at most 1 � (�1) = 2.
Every tail that does not cause a rotation removes the first element from the working list and
lazily removes the same element from the front list. This decreases jW j by one and jF j � jRj

by one, which decreases the potential by at most two. The complete cost of tail is two, one for
the unshared costs (including removing the first element from W ) and one for the shared cost
of lazily removing the head of F . The amortized cost is therefore at most 2 � (�2) = 4.

Finally, consider a snoc or tail that causes a rotation. In the initial queue, jF j = jRj so
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	 = 0. Just before the rotation, jF j = m and jRj = m + 1. The shared cost of the rotation
is 2m + 1 and the potential of the resulting queue is 2m. The amortized cost of snoc is thus
1 + (2m + 1) � 2m = 2. The amortized cost of tail is 2 + (2m + 1) � 2m = 3. (The
difference is that tail must also account for the shared cost of removing the first element of F .)

2

Finally, we consider two variations of these queues that on the surface appear to be mod-
est improvements, but which actually break the amortized bounds. These variations illustrate
common mistakes in designing persistent amortized data structures.

In the first variation, we observe that checkR forces F during a rotation and installs the
result in W . Wouldn’t it be “lazier”, and therefore better, to never force F until W becomes
empty? The answer is no, and a brief consideration of the potential function reveals why. If
W were very short, then the potential would only increase to 2jW j after the rotation. This
increase would not be large enough to offset the large shared cost of the rotation. Another way
of looking at it is that, if jW j = 1 at the time of the rotation, then the front list could be forced
during the very next tail , which does not leave enough time to pay for the rotation.

In the second variation, we observe that during a tail , we replace F with $tl (force F ).
Creating and forcing suspensions have non-trivial overheads that, even if O(1), can contribute
to a large constant factor. Wouldn’t it be “lazier”, and therefore better, to not change F , but
instead to merely decrement LenF to indicate that the element has been removed? The answer
is again no, because the removed elements would be discarded all at once when the front list
was finally forced. This would contribute to the unshared cost of the operation, not the shared
cost, making the unshared cost linear in the worst case. Since the amortized cost can never be
less than the unshared cost, this would also make the amortized cost linear.

3.5.2 Example: Bottom-Up Mergesort with Sharing

The majority of examples in the remaining chapters use the banker’s method rather than the
physicist’s method. Therefore, we give a second example of the physicist’s method here.

Imagine that you want to sort several similar lists, such as xs and x :: xs , or xs @ zs and
ys @ zs. For efficiency, you wish to take advantage of the fact that these lists share common
tails, so that you do not repeat the work of sorting those tails. We call an abstract data type for
this problem a sortable collection.

Figure 3.5 gives a signature for sortable collections. Note that the new function, which
creates an empty collection, is parameterized by the “less than” relation on the elements to be
sorted.

Now, if we create a sortable collection xs 0 by adding each of the elements in xs , then we
can sort both xs and x :: xs by calling sort xs 0 and sort (add (x , xs 0)).
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signature SORTABLE =
sig

type � Sortable

val new : fLess : � � �! boolg! � Sortable (� sort in increasing order by Less �)
val add : � � � Sortable ! � Sortable
val sort : � Sortable ! � list

end

Figure 3.5: Signature for sortable collections.

One possible representation for sortable collections is balanced binary search trees. Then
add takes O(log n) worst-case time and sort takes O(n) time. We achieve the same bounds,
but in an amortized sense, using bottom-up mergesort.

Bottom-up mergesort first splits a list into n ordered segments, where each segment initially
contains a single element. It then merges equal-sized segments in pairs until only one segment
of each size remains. Finally, segments of unequal size are merged, from smallest to largest.

Suppose we take a snapshot just before the final cleanup phase. Then the sizes of all
segments are distinct powers of 2, corresponding to the one bits of n. This is the representation
we will use for sortable collections. Then similar collections will share all the work of bottom-
up mergesort except for the final cleanup phase merging unequal-sized segments. The complete
representation is a suspended list of segments, each of which is an � list , together with the
comparison function and the size.

type � Sortable = fLess : � � �! bool, Size : int, Segments : � list list suspg

The individual segments are stored in increasing order of size, and the elements in each segment
are stored in increasing order as determined by the comparison function.

The fundamental operation on segments is merge , which merges two ordered lists. Except
for being parameterized on less , this function is completely standard.

fun merge less (xs , ys) =
let fun mrg ([ ], ys) = ys

j mrg (xs , [ ]) = xs

j mrg (x :: xs , y :: ys) = if less (x , y) then x :: mrg (xs , y :: ys)
else y :: mrg (x :: xs , ys)

in mrg (xs , ys) end

To add a new element, we create a new singleton segment. If the smallest existing segment
is also a singleton, we merge the two segments and continue merging until the new segment
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is smaller than the smallest existing segment. This merging is controlled by the bits of n. If
the lowest bit of n is zero, then we simply cons the new segment onto the segment list. If the
lowest bit is one, then we merge the two segments and repeat. Of course, all this is done lazily.

fun add (x , fLess = less , Size = size , Segments = segsg) =
let fun addSeg (seg , segs , size) =

if size mod 2 = 0 then seg :: segs
else addSeg (merge less (seg , hd segs), tl segs , size div 2)

in fLess = less , Size = size+1, Segments = $addSeg ([x ], force segs , size)g end

Finally, to sort a collection, we merge the segments from smallest to largest.

fun sort fLess = less , Segments = segs , . . .g =
let fun mergeAll (xs , [ ]) = xs

j mergeAll (xs , seg :: segs) = mergeAll (merge less (xs , seg), segs)
in mergeAll ([ ], force segs ) end

Remark: mergeAll can be viewed as computing

[ ] 1 s1 1 � � � 1 sm

where si is the ith segment and 1 is left-associative, infix notation for merge . This is a specific
instance of a very common program schema, which can be written

c� x1 � � � � � xm

for any c and left-associative �. Other instances of this schema include summing a list of
integers (c = 0 and � = +) or finding the maximum of a list of natural numbers (c = 0
and � = max). One of the greatest strengths of functional languages is the ability to define
schemas like this as higher-order functions (i.e., functions that take functions as arguments or
return functions as results). For example, the above schema might be written

fun foldl (f , c, [ ]) = c

j foldl (f , c, x :: xs) = foldl (f , f (c, x ), xs )

Then sort could be written

fun sort fLess = less , Segments = segs , . . .g = foldl (merge less , [ ], force segs)

This also takes advantage of the fact that merge is written as a curried function. A curried
function is a multiargument function that can be partially applied (i.e., applied to just some of
its arguments). The result is a function that takes the remaining arguments. In this case, we
have applied merge to just one of its three arguments, less . The remaining two arguments will
be supplied by foldl . 3
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structure BottomUpMergeSort : SORTABLE =
struct

type � Sortable = fLess : � � �! bool, Size : int, Segments : � list list suspg

fun merge less (xs , ys) =
let fun mrg ([ ], ys) = ys

j mrg (xs, [ ]) = xs

j mrg (x :: xs , y :: ys) = if less (x , y) then x :: mrg (xs , y :: ys)
else y :: mrg (x :: xs , ys)

in mrg (xs, ys) end

fun new fLess = lessg = fLess = less, Size = 0, Segments = $[ ]g
fun add (x , fLess = less, Size = size, Segments = segsg) =

let fun addSeg (seg, segs, size) =
if size mod 2 = 0 then seg :: segs
else addSeg (merge less (seg, hd segs), tl segs, size div 2)

in fLess = less, Size = size+1, Segments = $addSeg ([x ], force segs, size)g end
fun sort fLess = less, Segments = segs, . . . g =

let fun mergeAll (xs, [ ]) = xs

j mergeAll (xs, seg :: segs) = mergeAll (merge less (xs , seg), segs)
in mergeAll ([ ], force segs) end

end

Figure 3.6: Sortable collections based on bottom-up mergesort.

The complete code for this implementation of sortable collections appears in Figure 3.6.

We show that add takes O(log n) amortized time and sort takes O(n) amortized time using
the physicist’s method. We begin by defining the potential function 	, which is completely
determined by the size of the collection:

	(n) = 2n� 2
1X
i=0

bi(n mod 2i + 1)

where bi is the ith bit of n. Note that 	(n) is bounded above by 2n and that 	(n) = 0 exactly
when n = 2k � 1 for some k.

We first calculate the complete cost of add . Its unshared cost is one and its shared cost is
the cost of performing the merges in addSeg . Suppose that the lowest k bits of n are one (i.e.,
bi = 1 for i < k and bk = 0). Then addSeg performs k merges. The first combines two lists
of size 1, the second combines two lists of size 2, and so on. Since merging two lists of size m
takes 2m steps, addSeg takes (1+1)+(2+2)+ � � �+(2k�1+2k�1) = 2(

P
k�1
i=0

2i) = 2(2k�1)
steps. The complete cost of add is therefore 2(2k � 1) + 1 = 2k+1 � 1.
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Next, we calculate the change in potential. Let n0 = n + 1 and let b0
i

be the ith bit of n0.
Then,

	(n0)�	(n) = 2n0 � 2
P1

i=0
b
0
i
(n0 mod 2i + 1)� (2n� 2

P1
i=0

bi(n mod 2i + 1))
= 2 + 2

P1
i=0

(bi(n mod 2i + 1)� b
0
i
(n0 mod 2i + 1))

= 2 + 2
P1

i=0 �(i)

where �(i) = bi(n mod 2i + 1) � b
0
i
(n0 mod 2i + 1). We consider three cases: i < k, i = k,

and i > k.

� (i < k): Since bi = 1 and b
0
i
= 0, �(k) = n mod 2i + 1. But n mod 2i = 2i � 1 so

�(k) = 2i.

� (i = k): Since bk = 0 and b
0
k
= 1, �(k) = �(n0 mod 2k + 1). But n0 mod 2k = 0 so

�(k) = �1 = �b
0
k
.

� (i > k): Since b
0
i
= bi, �(k) = b

0
i
(n mod 2i � n

0 mod 2i). But n0 mod 2i = (n +
1) mod 2i = n mod 2i + 1 so �(i) = b

0
i
(�1) = �b

0
i
.

Therefore,
	(n0)�	(n) = 2 + 2

P1
i=0 �(i)

= 2 + 2
P

k�1
i=0 2

i + 2
P1

i=k(�b
0
i
)

= 2 + 2(2k � 1)� 2
P1

i=k
b
0
i

= 2k+1 � 2B0

where B0 is the number of one bits in n0. Then the amortized cost of add is

(2k+1 � 1) � (2k+1 � 2B0) = 2B0
� 1

Since B0 is O(log n), so is the amortized cost of add .

Finally, we calculate the amortized cost of sort . The first action of sort is to force the
suspended list of segments. Since the potential is not necessarily zero, this adds 	(n) to the
amortized cost of the operation. It next merges the segments from smallest to largest. The
worst case is when n = 2k � 1, so that there is one segment of each size from 1 to 2k�1.
Merging these segments takes

(1 + 2) + (1 + 2 + 4) + (1 + 2 + 4 + 8) + � � �+ (1 + 2 + � � �+ 2k�1)

=
k�1X
i=1

iX
j=0

2j =
k�1X
i=1

(2i+1 � 1) = (2k+1 � 4) � (k � 1) = 2n � k � 1

steps altogether. The amortized cost of sort is therefore O(n) + 	(n) = O(n).
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3.6 Related Work

Debits Some analyses using the traditional banker’s method, such as Tarjan’s analysis of
path compression [Tar83], include both credits and debits. Whenever an operation needs more
credits than are currently available, it creates a credit-debit pair and immediately spends the
credit. The debit remains as an obligation that must be fulfilled. Later, a surplus credit may be
used to discharge the credit.2 Any debits that remain at the end of the computation add to the
total actual cost. Although there are some similarities between the two kinds of debits, there
are also some clear differences. For instance, with the debits introduced in this chapter, any
debits leftover at the end of the computation are silently discarded.

It is interesting that debits arise in Tarjan’s analysis of path compression since path com-
pression is essentially an application of memoization to the �nd function.

Amortization and Persistence Until this work, amortization and persistence were thought
to be incompatible. Several researchers [DST94, Ram92] had noted that amortized data struc-
tures could not be made efficiently persistent using existing techniques for adding persistence to
ephemeral data structures, such as [DSST89, Die89], for reasons similar to those cited in Sec-
tion 3.2. Ironically, these techniques produce persistent data structures with amortized bounds,
but the underlying data structure must be worst-case. (These techniques have other limitations
as well. Most notably, they cannot be applied to data structures supporting functions that com-
bine two or more versions. Examples of offending functions include list catenation and set
union.)

The idea that lazy evaluation could reconcile amortization and persistence first appeared,
in rudimentary form, in [Oka95c]. The theory and practice of this technique was further devel-
oped in [Oka95a, Oka96b].

Amortization and Functional Data Structures In his thesis, Schoenmakers [Sch93] studies
amortized data structures in a strict functional language, concentrating on formal derivations
of amortized bounds using the traditional physicist’s method. He avoids the problems of per-
sistence by insisting that data structures only be used in a single-threaded fashion.

Queues Gries [Gri81, pages 250–251] and Hood and Melville [HM81] first proposed the
queues in Section 3.1.1. Burton [Bur82] proposed a similar implementation, but without the
restriction that the front list be non-empty whenever the queue is non-empty. (Burton combines
head and tail into a single operation, and so does not require this restriction to support head
efficiently.) The queues in Section 3.4.2 first appeared in [Oka96b].

2There is a clear analogy here to the spontaneous creation and mutual annihilation of particle-antiparticle pairs
in physics. In fact, a better name for these debits might be “anticredits”.
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Time-Analysis of Lazy Programs Several researchers have developed theoretical frame-
works for analyzing the time complexity of lazy programs [BH89, San90, San95, Wad88].
However, these frameworks are not yet mature enough to be useful in practice. One difficulty
is that these frameworks are, in some ways, too general. In each of these systems, the cost of
a program is calculated with respect to some context, which is a description of how the result
of the program will be used. However, this approach is often inappropriate for a methodology
of program development in which data structures are designed as abstract data types whose
behavior, including time complexity, is specified in isolation. In contrast, our analyses prove
results that are independent of context (i.e., that hold regardless of how the data structures are
used).



Chapter 4

Eliminating Amortization

Most of the time, we do not care whether a data structure has amortized bounds or worst-case
bounds; our primary criteria for choosing one data structure over another are overall efficiency
and simplicity of implementation (and perhaps availability of source code). However, in some
application areas, it is important to bound the running times of individual operations, rather
than sequences of operations. In these situations, a worst-case data structure will often be
preferable to an amortized data structure, even if the amortized data structure is simpler and
faster overall. Raman [Ram92] identifies several such application areas, including

� Real-time systems: In real-time systems, predictability is more important than raw
speed [Sta88]. If an expensive operation causes the system to miss a hard deadline,
it does not matter how many cheap operations finished well ahead of schedule.

� Parallel systems: If one processor in a synchronous system executes an expensive oper-
ation while the other processors execute cheap operations, then the other processors may
sit idle until the slow processor finishes.

� Interactive systems: Interactive systems are similar to real-time systems — users often
value consistency more than raw speed [But83]. For instance, users might prefer 100 1-
second response times to 99 0.25-second response times and 1 25-second response time,
even though the latter scenario is twice as fast.

Remark: Raman also identified a fourth application area — persistent data structures. As dis-
cussed in the previous chapter, amortization was thought to be incompatible with persistence.
But, of course, we now know this to be untrue. 3

Does this mean that amortized data structures are of no interest to programmers in these
areas? Not at all. Since amortized data structures are often simpler than worst-case data struc-
tures, it is sometimes easier to design an amortized data structure, and then convert it to a
worst-case data structure, than to design a worst-case data structure from scratch.
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In this chapter, we describe scheduling — a technique for converting many lazy amortized
data structures to worst-case data structures by systematically forcing lazy components in such
a way that no suspension ever takes very long to execute. Scheduling extends every object with
an extra component, called a schedule, that regulates the order in which the lazy components
of that object are forced.

4.1 Scheduling

Amortized and worst-case data structures differ mainly in when the computations charged to a
given operation occur. In a worst-case data structure, all computations charged to an operation
occur during the operation. In an amortized data structure, some computations charged to
an operation may actually occur during later operations. From this, we see that virtually all
nominally worst-case data structures become amortized when implemented in an entirely lazy
language because many computations are unnecessarily suspended. To describe true worst-
case data structures, we therefore need a strict language. If we want to describe both amortized
and worst-case data structures, we need a language that supports both lazy and strict evaluation.
Given such a language, we can also consider an intriguing hybrid approach: worst-case data
structures that use lazy evaluation internally. We will obtain such data structures by beginning
with lazy amortized data structures and modifying them in such a way that every operation
runs in the allotted time.

In a lazy amortized data structure, any specific operation might take longer than the stated
bounds. However, this only occurs when the operation forces a suspension that has been paid
off, but that takes a long time to execute. To achieve worst-case bounds, we must guarantee
that every suspension executes in less than the allotted time.

Define the intrinsic cost of a suspension to be the amount of time it takes to force the
suspension under the assumption that all other suspensions on which it depends have already
been forced and memoized, and therefore each take only O(1) time to execute. (This is similar
to the definition of the unshared cost of an operation.) The first step in converting an amortized
data structure to a worst-case data structure is to reduce the intrinsic cost of every suspension
to less than the desired bounds. Usually, this involves rewriting expensive monolithic functions
as incremental functions. However, just being incremental is not always good enough — the
granularity of each incremental function must be sufficiently fine. Typically, each fragment of
an incremental function will have an O(1) intrinsic cost.

Even if every suspension has a small intrinsic cost, however, some suspensions might still
take longer than the allotted time to execute. This happens when one suspension depends on
another suspension, which in turn depends on a third, and so on. If none of the suspensions
have been previously executed, then forcing the first suspension will result in a cascade of
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forces. For example, consider the following computation:

(� � �((s1 ++ s2) ++ s3) ++ � � �) ++ sk

++ is the canonical incremental function on streams. It does only one step of the append at a
time, and each step has an O(1) intrinsic cost. However, it also forces the first node of its left
argument. In this example, forcing the first node of the stream returned by the outermost ++
forces the first node of the stream returned by the next ++, and so on. Altogether, this takes
O(k) time to execute (or even more if the first node of s1 is expensive to force).

The second step in converting an amortized data structure to a worst-case data structure
is to avoid cascading forces by arranging that, whenever we force a suspension, any other
suspensions on which it depends have already been forced and memoized. Then, no suspension
takes longer than its intrinsic cost to execute. We accomplish this by systematically scheduling
the execution of each suspension so that each is ready by the time we need it. The trick is to
regard paying off debt as a literal activity, and to force each suspension as it is paid for.

We extend every object with an extra component, called the schedule, that, at least concep-
tually, contains a pointer to every unevaluated suspension in the object. (Some of the suspen-
sions in the schedule may have already been evaluated in a different logical future, but forcing
these suspensions a second time does no harm since it can only make our algorithms run faster
than expected, not slower.) Every operation, in addition to whatever other manipulations it
performs on an object, forces the first few suspensions in the schedule. The exact number of
suspensions forced is governed by the amortized analysis; typically, every suspension takes
O(1) time to execute, so we force a number of suspensions proportional to the amortized cost
of the operation. Depending on the data structure, maintaining the schedule can be non-trivial.
For this technique to apply, adding new suspensions to the schedule, or retrieving the next
suspension to be forced, cannot require more time than the desired worst-case bounds.

4.2 Real-Time Queues

As an example of this technique, we convert the amortized banker’s queues of Section 3.4.2 to
worst-case queues. Queues such as these that support all operations in O(1) worst-case time
are called real-time queues [HM81].

In the original data structure, queues are rotated using ++ and reverse . Since reverse is
monolithic, our first task is finding a way to perform rotations incrementally. This can be done
by executing one step of the reverse for every step of the ++. We define a function rotate such
that

rotate (f , r , a) = f ++ reverse r ++ a

Then
rotate (f , r , $Nil) = f ++ reverse r
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The extra argument a is called an accumulating parameter and is used to accumulate the partial
results of reversing r . It is initially empty.

Rotations occur when jRj = jF j + 1, so initially jrj = jf j + 1. This relationship is
preserved throughout the rotation, so when f is empty, r contains a single element. The base
case is therefore

rotate ($Nil, $Cons (y , $Nil), a) = ($Nil) ++ reverse ($Cons (y , $Nil)) ++ a

= $Cons (y , a)

In the recursive case,

rotate ($Cons (x , f ), $Cons (y , r ), a) = ($Cons (x , f )) ++ reverse ($Cons (y , r )) ++ a

= $Cons (x , f ++ reverse ($Cons (y , r )) ++ a)
= $Cons (x , f ++ reverse r ++ $Cons (y , a))
= $Cons (x , rotate (f , r , $Cons (y , a)))

The complete code for rotate is

fun rotate (f , r , a) = $case (f , r ) of
($Nil, $Cons (y , )) ) Cons (y , a)
j ($Cons (x , f 0), $Cons (y , r 0)) ) Cons (x , rotate (f 0, r 0, $Cons (y , a)))

Note that the intrinsic cost of every suspension created by rotate is O(1). Just rewriting the
pseudo-constructor queue to call rotate (f , r , $Nil ) instead f ++ reverse r , and making no
other changes, already drastically improves the worst-case behavior of the queue operations
from O(n) to O(log n) (see [Oka95c]), but we can further improve the worst-case behavior to
O(1) using scheduling.

We begin by adding a schedule to the datatype. The original datatype is

datatype � Queue = Queue fF : � Stream, LenF : int, R : � Stream, LenR : intg

We add a new field S of type � Stream that represents a schedule for forcing the nodes of
F . S is some suffix of F such that all the nodes before S in F have already been forced and
memoized. To force the next suspension in F , we simply inspect the first node of S .

Besides adding S , we make two further changes to the datatype. First, to emphasize the fact
that the nodes of R need not be scheduled, we change R from a stream to a list. This involves
minor changes to rotate. Second, we eliminate the length fields. As we will see shortly, we no
longer need the length fields to determine when R becomes longer than F — instead, we will
obtain this information from the schedule. The new datatype is thus

datatype � Queue = Queue of fF : � stream, R : � list, S : � streamg

Now, the major queue functions are simply
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structure RealTimeQueue : QUEUE =
struct

datatype � Queue = Queue of fF : � stream, R : � list, S : � streamg
(� Invariant: jSj = jFj � jRj �)

exception EMPTY

val empty = Queue fF = $Nil, R = [ ], S = $Nilg
fun isEmpty (Queue fF = f , . . . g) = null f

fun rotate (f , r , a) = $case (f , r ) of
($Nil, $Cons (y , )) ) Cons (y , a)
j ($Cons (x , f 0), $Cons (y , r 0)) ) Cons (x , rotate (f 0, r 0, $Cons (y , a)))

fun queue fF = f , R = r , S = $Cons (x , s)g = Queue fF = f , R = r , S = sg

j queue fF = f , R = r , S = $Nilg = let val f 0 = rotate (f , r , $Nil)
in Queue fF = f

0, R = [ ], S = f
0g end

fun snoc (Queue fF = f , R = r , S = sg, x ) = queue fF = f , R = x :: r , S = sg

fun head (Queue fF = $Nil, . . . g) = raise EMPTY

j head (Queue fF = $Cons (x , f ), . . . g) = x

fun tail (Queue fF = $Nil, . . . g) = raise EMPTY

j tail (Queue fF = $Cons (x , f ), R = r , S = sg) = queue fF = f , R = r , S = sg

end

Figure 4.1: Real-time queues based on scheduling [Oka95c].

fun snoc (Queue fF = f , R = r , S = sg, x ) = queue fF = f , R = x :: r , S = sg

fun head (Queue fF = $Cons (x , f ), . . .g) = x

fun tail (Queue fF = $Cons (x , f ), R = r , S = sg) = queue fF = f , R = r , S = sg

The pseudo-constructor queue maintains the invariant that jSj = jF j � jRj (which incidentally
guarantees that jF j � jRj since jSj cannot be negative). snoc increases jRj by one and tail

decreases jF j by one, so when queue is called, jSj = jF j � jRj + 1. If S is non-empty, then
we restore the invariant by simply taking the tail of S . If S is empty, then R is one longer than
F , so we rotate the queue. In either case, inspecting S to determine whether or not it is empty
forces and memoizes the next suspension in the schedule.

fun queue fF = f , R = r , S = $Cons (x , s)g = Queue fF = f , R = r , S = sg

j queue fF = f , R = r , S = $Nilg = let val f 0 = rotate (f , r , $Nil)
in Queue fF = f 0, R = [ ], S = f 0g end

The complete code for this implementation appears in Figure 4.1.
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In the amortized analysis, the unshared cost of every queue operation is O(1). Therefore,
every queue operation does only O(1) work outside of forcing suspensions. Hence, to show
that all queue operations run in O(1) worst-case time, we must prove that no suspension takes
more than O(1) time to execute.

Only three forms of suspensions are created by the various queue functions.

� $Nil is created by empty and queue (in the initial call to rotate). This suspension is
trivial and therefore executes in O(1) time regardless of whether it has been forced and
memoized previously.

� $Cons (y , a) is created in the second line of rotate and is also trivial.

� Every call to rotate immediately creates a suspension of the form

$case (f , r , a) of
($Nil, [y], a) ) Cons (y , a)
j ($Cons (x , f 0), y :: r 0, a) ) Cons (x , rotate (f 0, r 0, $Cons (y , a)))

The intrinsic cost of this suspension is O(1). However, it also forces the first node of
f , creating the potential for a cascade of forces. But note that f is a suffix of the front
stream that existed just before the previous rotation. The treatment of the schedule S

guarantees that every node in that stream was forced and memoized prior to the rotation.
Forcing the first node of f simply looks up that memoized value in O(1) time. The above
suspension therefore takes only O(1) time altogether.

Since every suspension executes in O(1) time, every queue operation takes only O(1) worst-
case time.

Hint to Practitioners: These queues are not particularly fast when used ephemerally, because
of overheads associated with memoizing values that are never looked at again, but are the fastest
known real-time implementation when used persistently.

4.3 Bottom-Up Mergesort with Sharing

As a second example, we modify the sortable collections from Section 3.5.2 to support add in
O(log n) worst-case time and sort in O(n) worst-case time.

The only use of lazy evaluation in the amortized implementation is the suspended call
to addSeg in add . This suspension is clearly monolithic, so the first task is to perform this
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computation incrementally. In fact, we need only make merge incremental; since addSeg

takes only O(log n) steps, we can afford to execute it strictly. We therefore represent segments
as streams rather than lists, and eliminate the suspension on the collection of segments. The
new type for the Segments field is thus � Stream list rather than � list list susp.

Rewriting merge, add , and sort to use this new type is straightforward, except that sort
must convert the final sorted stream back to a list. This is accomplished by the streamToList
conversion function.

fun streamToList ($Nil) = [ ]
j streamToList ($Cons (x , xs)) = x :: streamToList xs

The new version of merge , shown in Figure 4.2, performs one step of the merge at a time,
with an O(1) intrinsic cost per step. Our second goal is to execute enough merge steps per
add to guarantee that any sortable collection contains only O(n) unevaluated suspensions.
Then sort executes at most O(n) unevaluated suspensions in addition to its own O(n) work.
Executing these unevaluated suspensions takes at most O(n) time, so sort takes only O(n)
time altogether.

In the amortized analysis, the amortized cost of add was approximately 2B0, where B0 is
the number of one bits in n

0 = n + 1. This suggests that add should execute two suspensions
per one bit, or equivalently, two suspensions per segment. We maintain a separate schedule for
each segment. Each schedule is an � Stream list containing the partial results of the merge
sequence that created this segment. The complete type is therefore

type � Schedule = � Stream list
type � Sortable = fLess : � � �! bool, Size : int, Segments : (� Stream � � Schedule) listg

To execute one merge step from a schedule, we call the function exec1 .

fun exec1 [ ] = [ ]
j exec1 (($Nil) :: sched ) = exec1 sched

j exec1 (($Cons (x , xs )) :: sched ) = xs :: sched

In the second clause, we reach the end of one stream and execute the first step of the next
stream. This cannot loop because only the first stream in a schedule can ever be empty. The
function exec2PerSeg invokes exec1 twice per segment.

fun exec2PerSeg [ ] = [ ]
j exec2PerSeg ((xs, sched ) :: segs) = (xs , exec1 (exec1 sched )) :: exec2PerSeg segs

Now, add calls exec2PerSeg , but it is also responsible for building the schedule for the new
segment. If the lowest k bits of n are one, then adding a new element will trigger k merges, of
the form

((s0 1 s1) 1 s2) 1 � � � 1 sk
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where s0 is the new singleton segment and s1 : : : sk are the first k segments of the existing col-
lection. The partial results of this computation are s0

0
: : : s

0
k
, where s0

0
= s0 and s0

i
= s

0
i�1 1 si.

Since the suspensions in s0
i

depend on the suspensions in s0
i�1, we must schedule the execution

of s0
i�1 before the execution of s0

i
. The suspensions in s0

i
also depend on the suspensions in si,

but we guarantee that s1 : : : sk have been completely evaluated at the time of the call to add .

The final version of add , that creates the new schedule and executes two suspensions per
segment, is

fun add (x , fLess = less , Size = size , Segments = segsg) =
let fun addSeg (xs , segs , size , rsched ) =

if size mod 2 = 0 then (xs , rev (xs :: rsched)) :: segs
else let val ((xs 0, [ ]) :: segs 0) = segs

in addSeg (merge less (xs , xs 0), segs 0, size div 2, xs :: rsched )
val segs 0 = addSeg ($Cons (x , $Nil), segs , size , [ ])

in fLess = less , Size = size+1, Segments = exec2PerSeg segs0g end

The accumulating parameter rsched collects the newly merged streams in reverse order. There-
fore, we reverse it back to the correct order on the last step. The pattern match in line 4 asserts
that the old schedule for that segment is empty, i.e., that it has already been completely exe-
cuted. We will see shortly why this true.

The complete code for this implementation is shown in Figure 4.2. add has an unshared
cost of O(log n) and sort has an unshared cost of O(n), so to prove the desired worst-case
bounds, we must show that the O(log n) suspensions forced by add take O(1) time each, and
that the O(n) unevaluated suspensions forced by sort take O(n) time altogether.

Every merge step forced by add (through exec2PerSeg and exec1 ) depends on two other
streams. If the current step is part of the stream s

0
i
, then it depends on the streams s0

i�1 and si.
The stream s

0
i�1 was scheduled before s0

i
, so s

0
i�1 has been completely evaluated by the time

we begin evaluating s
0
i
. Furthermore, si was completely evaluated before the add that created

s
0
i
. Since the intrinsic cost of each merge step is O(1), and the suspensions forced by each

step have already been forced and memoized, every merge step forced by add takes only O(1)
worst-case time.

The following lemma establishes both that any segment involved in a merge by addSeg has
been completely evaluated and that the collection as a whole contains at mostO(n) unevaluated
suspensions.

Lemma 4.1 In any sortable collection of size n, the schedule for a segment of size m = 2k

contains a total of at most 2m� 2(n mod m+ 1) elements.

Proof: Consider a sortable collection of size n, where the lowest k bits of n are ones (i.e., n
can be written c2k+1+(2k� 1), for some integer c). Then add produces a new segment of size



4.3 Bottom-Up Mergesort with Sharing 47

structure ScheduledBottomUpMergeSort : SORTABLE =
struct

type � Schedule = � Stream list
type � Sortable = fLess : � � �! bool, Size : int, Segments : (� Stream � � Schedule) listg

fun merge less (xs , ys) =
let fun mrg ($Nil, ys) = ys

j mrg (xs , $Nil) = xs

j mrg (xs as $Cons (x , xs0), ys as $Cons (y , ys0)) =
if less (x , y) then $Cons (x , mrg (xs0, ys))
else $Cons (y , mrg (xs, ys0))

in mrg (xs, ys) end

fun exec1 [ ] = [ ]
j exec1 (($Nil) :: sched ) = exec1 sched

j exec1 (($Cons (x , xs)) :: sched) = xs :: sched
fun exec2PerSeg [ ] = [ ]
j exec2PerSeg ((xs , sched) :: segs) = (xs , exec1 (exec1 sched )) :: exec2PerSeg segs

fun new fLess = lessg = fLess = less, Size = 0, Segments = [ ]g
fun add (x , fLess = less, Size = size, Segments = segsg) =

let fun addSeg (xs, segs, size, rsched ) =
if size mod 2 = 0 then (xs , rev (xs :: rsched )) :: segs
else let val ((xs 0, [ ]) :: segs0) = segs

in addSeg (merge less (xs , xs0), segs0, size div 2, xs :: rsched )
val segs 0 = addSeg ($Cons (x , $Nil), segs, size, [ ])

in fLess = less, Size = size+1, Segments = exec2PerSeg segs
0g end

fun sort fLess = less, Segments = segs, . . . g =
let fun mergeAll (xs, [ ]) = xs

j mergeAll (xs, (xs0, sched) :: segs) = mergeAll (merge less (xs , xs0), segs)
fun streamToList ($Nil) = [ ]
j streamToList ($Cons (x , xs)) = x :: streamToList xs

in streamToList (mergeAll ($Nil, segs)) end
end

Figure 4.2: Scheduled bottom-up mergesort.

m = 2k, whose schedule contains streams of sizes 1; 2; 4; : : : ; 2k. The total size of this schedule
is 2k+1�1 = 2m�1. After executing two steps, the size of the schedule is 2m�3. The size of
the new collection is n0 = n+1 = c2k+1+2k . Since 2m�3 < 2m�2(n0 mod m+1) = 2m�2,
the lemma holds for this segment.

Every segment of size m0 larger than m is unaffected by the add , except for the execution
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of two steps from the segment’s schedule. The size of the new schedule is bounded by

2m0
� 2(n mod m0 + 1)� 2 = 2m0

� 2(n0 mod m
0 + 1);

so the lemma holds for these segments as well. 2

Now, whenever the k lowest bits of n are ones (i.e., whenever the next add will merge the
first k segments), we know by Lemma 4.1 that, for any segment of size m = 2i, where i < k,
the number of elements in that segment’s schedule is at most

2m� 2(n mod m+ 1) = 2m� 2((m� 1) + 1) = 0

In other words, that segment has been completely evaluated.

Finally, the combined schedules for all segments comprise at most

2
1X
i=0

bi(2
i
� (n mod 2i + 1)) = 2n � 2

1X
i=0

bi(n mod 2i + 1)

elements, where bi is the ith bit of n. Note the similarity to the potential function from the
physicist’s analysis in Section 3.5.2. Since this total is bounded by 2n, the collection as a
whole contains only O(n) unevaluated suspensions, and therefore sort takes only O(n) worst-
case time.

4.4 Related Work

Eliminating Amortization Dietz and Raman [DR91, DR93, Ram92] have devised a frame-
work for eliminating amortization based on pebble games, where the derived worst-case algo-
rithms correspond to winning strategies in some game. Others have used ad hoc techniques
similar to scheduling to eliminate amortization from specific data structures such as relaxed
heaps [DGST88] and implicit binomial queues [CMP88]. The form of scheduling described
here was first applied to queues in [Oka95c] and later generalized in [Oka96b].

Queues The queue implementation in Section 4.2 first appeared in [Oka95c]. Hood and
Melville [HM81] presented the first purely functional implementation of real-time queues,
based on a technique known as global rebuilding [Ove83], which will be discussed further in
the next chapter. Their implementation does not use lazy evaluation and is more complicated
than ours.



Chapter 5

Lazy Rebuilding

The next four chapters describe general techniques for designing functional data structures. We
begin in this chapter with lazy rebuilding, a variant of global rebuilding [Ove83].

5.1 Batched Rebuilding

Many data structures obey balance invariants that guarantee efficient access. The canonical ex-
ample is balanced binary search trees, which improve the worst-case running time of many tree
operations from the O(n) required by unbalanced trees to O(log n). One approach to main-
taining a balance invariant is to rebalance the structure after every update. For most balanced
structures, there is a notion of perfect balance, which is a configuration that minimizes the cost
of subsequent operations. However, since it is usually too expensive to restore perfect balance
after every update, most implementations settle for approximations of perfect balance that are
at most a constant factor slower. Examples of this approach include AVL trees [AVL62] and
red-black trees [GS78].

However, provided no update disturbs the balance too drastically, an attractive alternative
is to postpone rebalancing until after a sequence of updates, and then to rebalance the entire
structure, restoring it to perfect balance. We call this approach batched rebuilding. Batched
rebuilding yields good amortized time bounds provided that (1) the data structure is not rebuilt
too often, and (2) individual updates do not excessively degrade the performance of later op-
erations. More precisely, condition (1) states that, if one hopes to achieve a bound of O(f(n))
amortized time per operation, and the global transformation requires O(g(n)) time, then the
global transformation cannot be executed any more frequently than every c � g(n)=f(n) oper-
ations, for some constant c. For example, consider binary search trees. Rebuilding a tree to
perfect balance takes O(n) time, so if one wants each operation to take O(log n) amortized
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time, then the data structure must not be rebuilt more often than every c � n= log n operations,
for some constant c.

Assume that a data structure is to be rebuilt every c � g(n)=f(n) operations, and that an
individual operation on a newly rebuilt data structure requires O(f(n)) time (worst-case or
amortized). Then, condition (2) states that, after up to c � g(n)=f(n) updates to a newly rebuilt
data structure, individual operations must still take only O(f(n)) time (i.e., the cost of an indi-
vidual operation can only degrade by a constant factor). Update functions satisfying condition
(2) are called weak updates.

For example, consider the following approach to implementing a delete function on binary
search trees. Instead of physically removing the specified node from the tree, leave it in the
tree but mark it as deleted. Then, whenever half the nodes in the tree have been deleted, make
a global pass removing the deleted nodes and restoring the tree to perfect balance. Does this
approach satisfy both conditions, assuming we want deletions to takeO(log n) amortized time?

Suppose a tree contains n nodes, up to half of which are marked as deleted. Then removing
the deleted nodes and restoring the tree to perfect balance takes O(n) time. We execute the
transformation only every 1

2
n delete operations, so condition (1) is satisfied. In fact, condition

(1) would allow us to rebuild the data structure even more often, as often as every c � n= log n
operations. The naive delete algorithm finds the desired node and marks it as deleted. This
takes O(log n) time, even if up to half the nodes have been marked as deleted, so condition
(2) is satisfied. Note that even if half the nodes in the tree are marked as deleted, the average
depth per active node is only about one greater than it would be if the deleted nodes had been
physically removed. This degrades each operation by only a constant additive factor, whereas
condition (2) allows for each operation to be degraded by a constant multiplicative factor.
Hence, condition (2) would allow us to rebuild the data structure even less often.

In the above discussion, we described only deletions, but of course binary search trees
typically support insertions as well. Unfortunately, insertions are not weak because they can
create a deep path very quickly. However, a hybrid approach is possible, in which insertions
are handled by local rebalancing after every update, as in AVL trees or red-black trees, but
deletions are handled via batched rebuilding.

As a second example of batched rebuilding, consider the batched queues of Section 3.1.1.
The global rebuilding transformation reverses the rear list into the front list, restoring the queue
to a state of perfect balance in which every element is contained in the front list. As we have
already seen, batched queues have good amortized efficiency, but only when used ephemerally.
Under persistent usage, the amortized bounds degrade to the cost of the rebuilding transforma-
tion because it is possible to trigger the transformation arbitrarily often. In fact, this is true for
all data structures based on batched rebuilding.
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5.2 Global Rebuilding

Overmars [Ove83] developed a technique for eliminating the amortization from batched re-
building. He called this technique global rebuilding. The basic idea is to execute the rebuilding
transformation incrementally, performing a few steps per normal operation. This can be use-
fully viewed as running the rebuilding transformation as a coroutine. The tricky part of global
rebuilding is that the coroutine must be started early enough that it can finish by the time the
rebuilt structure is needed.

Concretely, global rebuilding is accomplished by maintaining two copies of each object.
The primary, or working, copy is the ordinary structure. The secondary copy is the one that
is gradually being rebuilt. All queries and updates operate on the working copy. When the
secondary copy is completed, it becomes the new working copy and the old working copy is
discarded. A new secondary copy might be started immediately, or the object may carry on for
a while without a secondary structure, before eventually starting the next rebuilding phase.

There is a further complication to handle updates that occur while the secondary copy is
being rebuilt. The working copy will be updated in the normal fashion, but the secondary copy
must be updated as well or the effect of the update will be lost when the secondary copy takes
over. However, the secondary copy will not in general be represented in a form that can be
efficiently updated. Thus, these updates to the secondary copy are buffered and executed, a
few at a time, after the secondary copy has been rebuilt, but before it takes over as the working
copy.

Global rebuilding can be implemented purely functionally, and has been several times.
For example, the real-time queues of Hood and Melville [HM81] are based on this technique.
Unlike batched rebuilding, global rebuilding has no problems with persistence. Since no one
operation is particularly expensive, arbitrarily repeating operations has no effect on the time
bounds. Unfortunately, global rebuilding is often quite complicated. In particular, representing
the secondary copy, which amounts to capturing the intermediate state of a coroutine, can be
quite messy.

5.3 Lazy Rebuilding

The implementation of queues in Section 3.5.1, based on the physicist’s method, is closely
related to global rebuilding, but there is an important difference. As in global rebuilding, this
implementation keeps two copies of the front list, the working copy W and the secondary copy
F , with all queries being answered by the working copy. Updates to F (i.e., tail operations)
are buffered, to be executed during the next rotation, by writing

. . . F = $tl (force f ) . . .
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In addition, this implementation takes care to start (or at least set up) the rotation long before its
result is needed. However, unlike global rebuilding, this implementation does not execute the
rebuilding transformation (i.e., the rotation) concurrently with the normal operations; rather, it
pays for the rebuilding transformation concurrently with the normal operations, but then exe-
cutes the transformation all at once at some point after it has been paid for. In essence, we have
replaced the complications of explicitly or implicitly coroutining the rebuilding transformation
with the simpler mechanism of lazy evaluation. We call this variant of global rebuilding lazy
rebuilding.

The implementation of queues in Section 3.4.2, based on the banker’s method, reveals
a further simplification possible under lazy rebuilding. By incorporating nested suspensions
into the basic data structure — for instance, by using streams instead of lists — we can often
eliminate the distinction between the working copy and the secondary copy and employ a single
structure that combines aspects of both. The “working” portion of that structure is the part that
has already been paid for, and the “secondary” portion is the part that has not yet been paid for.

Global rebuilding has two advantages over batched rebuilding: it is suitable for implement-
ing persistent data structures and it yields worst-case bounds rather than amortized bounds.
Lazy rebuilding shares the first advantage, but, at least in its simplest form, yields amortized
bounds. However, if desired, worst-case bounds can often be recovered using the schedul-
ing techniques of Chapter 4. For example, the real-time queues in Section 4.2 combine lazy
rebuilding with scheduling to achieve worst-case bounds. In fact, when lazy rebuilding is
combined with scheduling, it can be viewed as an instance of global rebuilding in which the
coroutines are reified in a particularly simple way using lazy evaluation.

5.4 Double-Ended Queues

As further examples of lazy rebuilding, we next present several implementations of double-
ended queues, also known as deques. Deques differ from FIFO queues in that elements can
be both inserted and deleted from either end of the queue. A signature for deques appears in
Figure 5.1. This signature extends the signature for queues with three new functions: cons (in-
sert an element at the front), last (return the rearmost element), and init (remove the rearmost
element).

Remark: Note that the signature for queues is a strict subset of the signature for deques — the
same names have been chosen for the types, exceptions, and overlapping functions. Because
deques are thus a strict extension of queues, Standard ML will allow us to use a deque module
wherever a queue module is expected. 3
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signature DEQUE =
sig

type � Queue

exception EMPTY

val empty : � Queue
val isEmpty : � Queue ! bool

(� insert, inspect, and remove the front element �)
val cons : � � � Queue ! � Queue
val head : � Queue ! � (� raises EMPTY if queue is empty �)
val tail : � Queue ! � Queue (� raises EMPTY if queue is empty �)

(� insert, inspect, and remove the rear element �)
val snoc : � Queue � �! � Queue
val last : � Queue ! � (� raises EMPTY if queue is empty �)
val init : � Queue ! � Queue (� raises EMPTY if queue is empty �)

end

Figure 5.1: Signature for double-ended queues.

5.4.1 Output-restricted Deques

First, note that extending the queue implementations from Chapters 3 and 4 to support cons ,
in addition to snoc, is trivial. A queue that supports insertions at both ends, but deletions from
only one end, is called an output-restricted deque.

For example, we can implement cons for the banker’s queues of Section 3.4.2 as follows:

fun cons (x , Queue fF = f , LenF = lenF , R = r , LenR = lenRg) =
Queue fF = $Cons (x , f ), LenF = lenF+1, R = r , LenR = lenRg

Note that we invoke the true constructor Queue rather than the pseudo-constructor queue be-
cause adding an element to F cannot possibly make F shorter than R.

Similarly, we can easily extend the real-time queues of Section 4.2.

fun cons (x , Queue fF = f , R = r , S = sg) =
Queue fF = $Cons (x , f ), R = r , S = $Cons (x , s)g)

We add x to S only to maintain the invariant that jSj = jF j � jRj. Again, we invoke the true
constructor Queue rather than the pseudo-constructor queue .
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5.4.2 Banker’s Deques

Deques can be represented in essentially the same way as queues, as two streams (or lists) F
and R, plus some associated information to help maintain balance. For queues, the notion of
perfect balance is for all the elements to be in the front stream. For deques, the notion of perfect
balance is for the elements to be evenly divided between the front and rear streams. Since we
cannot afford to restore perfect balance after every operation, we will settle for guaranteeing
that neither stream is more than about c times longer than the other, for some constant c > 1.
Specifically, we maintain the following balance invariant:

jF j � cjRj+ 1 ^ jRj � cjF j+ 1

The “+1” in each term allows for the only element of a singleton queue to be stored in either
stream. Note that both streams will be non-empty whenever the queue contains at least two
elements. Whenever the invariant would otherwise be violated, we restore the queue to perfect
balance by transferring elements from the longer stream to the shorter stream until both streams
have the same length.

Using these ideas, we can adapt either the banker’s queues of Section 3.4.2 or the physicist’s
queues of Section 3.5.1 to obtain deques that support every operation in O(1) amortized time.
Because the banker’s queues are slightly simpler, we choose to begin with that implementation.

The type of double-ended queues is precisely the same as for ordinary queues.

datatype � Queue = Queue fF : � Stream, LenF : int, R : � Stream, LenR : intg

The functions on the front element are defined as follows:

fun cons (Queue fF = f , LenF = lenF , R = r , LenR = lenRg, x ) =
queue fF = $Cons (x , f ), LenF = lenF+1, R = r , LenR = lenRg

fun head (Queue fF = $Nil, R = $Cons (x , ), . . .g = x

j head (Queue fF = $Cons (x , f ), . . .g) = x

fun tail (Queue fF = $Nil, R = $Cons (x , ), . . .g = empty
j tail (Queue fF = $Cons (x , f ), LenF = lenF , R = r , LenR = lenRg) =

queue fF = f , LenF = lenF�1, R = r , LenR = lenRg

The first clauses of head and tail handle singleton queues where the single element is stored
in the rear stream. The functions on the rear element — snoc, last , and init — are defined
symmetrically on R rather than F .

The interesting portion of this implementation is the pseudo-constructor queue , which re-
stores the queue to perfect balance when one stream becomes too long by first truncating
the longer stream to half the combined length of both streams and then transferring the re-
maining elements of the longer stream onto the back of the shorter stream. For example, if
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jF j > cjRj+1, then queue replaces F with take (i , F ) and R with R ++ reverse (drop (i , F )),
where i = b(jF j+ jRj)=2c. The full definition of queue is

fun queue (q as fF = f , LenF = lenF , R = r , LenR = lenRg) =
if lenF > c�lenR + 1 then

let val i = (lenF + lenR) div 2 val j = lenF + lenR � i

val f 0 = take (i , f ) val r 0 = r ++ reverse (drop (i , f ))
in Queue fF = f 0, LenF = i , R = r0, LenR = jg end

else if lenR > c�lenF + 1 then
let val i = (lenF + lenR) div 2 val j = lenF + lenR � i

val f 0 = f ++ reverse (drop (j , r )) val r 0 = take (j , r )
in Queue fF = f 0, LenF = i , R = r0, LenR = jg end

else Queue q

The complete implementation appears in Figure 5.2.

Remark: Because of the symmetry of this implementation, we can reverse a deque in O(1)
time by simply swapping the roles of F and R.

fun reverse (Queue fF = f , LenF = lenF , R = r , LenR = lenRg) =
Queue fF = r , LenF = lenR, R = f , LenR = lenF g

Many other implementations of deques share this property [Hoo92b, CG93]. Rather than es-
sentially duplicating the code for the functions on the front element and the functions on the
rear element, we could define the functions on the rear element in terms of reverse and the
corresponding functions on the front element. For example, we could implement init as

fun init q = reverse (tail (reverse q))

Of course, init will be slightly faster if implemented directly. 3

To analyze these deques, we again turn to the banker’s method. For both the front and rear
streams, let d(i) be the number of debits on element i of the stream, and let D(i) =

P
i

j=0
d(j).

We maintain the debit invariants that, for both the front and rear streams,

D(i) � min(ci+ i; cs+ 1� t)

where s = min(jF j; jRj) and t = max(jF j; jRj). Since D(0) = 0 for both streams, we can
always access the first and last elements of the queue via head or last .

Theorem 5.1 cons and tail (symmetrically, snoc and init ) maintain the debit invariants on
both the front and rear streams by discharging at most 1 and c + 1 debits per stream, respec-
tively.
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functor BankersDeque (val c : int) : DEQUE = (� c > 1 �)
struct

datatype � Queue = Queue fF : � Stream, LenF : int, R : � Stream, LenR : intg
(� Invariants: jFj � cjRj+ 1, jRj � cjFj+ 1, LenF = jFj, LenR = jRj �)

exception EMPTY

val empty = Queue fF = $Nil, LenF = 0, R = $Nil, LenR = 0g
fun isEmpty (Queue fLenF = lenF , LenR = lenR, . . . g) = (lenF+lenR = 0)

fun queue (q as fF = f , LenF = lenF , R = r , LenR = lenRg) =
if lenF > c�lenR + 1 then

let val i = (lenF + lenR) div 2 val j = lenF + lenR � i

val f 0 = take (i , f ) val r 0 = r ++ reverse (drop (i , f ))
in Queue fF = f

0, LenF = i , R = r
0, LenR = j g end

else if lenR > c�lenF + 1 then
let val i = (lenF + lenR) div 2 val j = lenF + lenR � i

val f 0 = f ++ reverse (drop (j , r )) val r 0 = take (j , r )
in Queue fF = f

0, LenF = i , R = r
0, LenR = j g end

else Queue q

fun cons (Queue fF = f , LenF = lenF , R = r , LenR = lenRg, x ) =
queue fF = $Cons (x , f ), LenF = lenF+1, R = r , LenR = lenRg

fun head (Queue fF = $Nil, R = $Nil, . . . g) = raise EMPTY

j head (Queue fF = $Nil, R = $Cons (x , ), . . . g = x

j head (Queue fF = $Cons (x , f ), . . . g) = x

fun tail (Queue fF = $Nil, R = $Nil, . . . g) = raise EMPTY

j tail (Queue fF = $Nil, R = $Cons (x , ), . . . g = empty
j tail (Queue fF = $Cons (x , f ), LenF = lenF , R = r , LenR = lenRg) =

queue fF = f , LenF = lenF�1, R = r , LenR = lenRg

. . . snoc, last, and init defined symmetrically. . .
end

Figure 5.2: An implementation of deques based on lazy rebuilding and the banker’s method.
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Proof: Similar to the proof of Theorem 3.1 on page 27. 2

By inspection, every operation has an O(1) unshared cost, and by Theorem 5.1, every oper-
ation discharges no more than O(1) debits. Therefore, every operation runs in O(1) amortized
time.

5.4.3 Real-Time Deques

Real-time deques support every operation inO(1) worst-case time. We obtain real-time deques
from the deques of the previous section by scheduling both the front and rear streams.

As always, the first step in applying the scheduling technique is to convert all monolithic
functions to incremental functions. In the previous implementation, the rebuilding transfor-
mation rebuilt F and R as take (i , F ) and R ++ reverse (drop (i , F )) (or vice versa). take

and ++ are already incremental, but reverse and drop are monolithic. We therefore rewrite
R ++ reverse (drop (i , F )) as rotateDrop (R, i , F ) where rotateDrop performs c steps of the
drop for every step of the ++ and eventually calls rotateRev , which in turn performs c steps of
the reverse for every remaining step of the ++. rotateDrop can be implemented as

fun rotateDrop (r , i , f ) =
if i < c then rotateRev (r , drop (i , f ), $Nil)
else let val ($Cons (x , r 0)) = r in $Cons (x , rotateDrop (r 0, i � c, drop (c, f ))) end

Initially, jf j = cjrj + 1 + k where 1 � k � c. Every call to rotateDrop drops c elements of f
and processes one element of r , except the last, which drops i mod c elements of f and leaves
r unchanged. Therefore, at the time of the first call to rotateRev , jf j = cjrj+1+k�(i mod c).
It will be convenient to insist that jf j � cjrj, so we require that 1 + k � (i mod c) � 0. This
is guaranteed only if c is two or three, so these are the only values of c that we allow. Then we
can implement rotateRev as

fun rotateRev ($Nil, f , a) = reverse f ++ a

j rotateRev ($Cons (x , r ), f , a) =
$Cons (x , rotateRev (r , drop (c, f ), reverse (take (c, f )) ++ a))

Note that rotateDrop and rotateRev make frequent calls to drop and reverse , which were
exactly the functions we were trying to eliminate. However, now drop and reverse are always
called with arguments of bounded size, and therefore execute in O(1) steps.

Once we have converted the monolithic functions to incremental functions, the next step is
to schedule the execution of the suspensions in F and R. We maintain a separate schedule for
each stream and execute a few suspensions per operation from each schedule. As with the real-
time queues of Section 4.2, the goal is to ensure that both schedules are completely evaluated
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before the next rotation. Assume that both streams have length m immediately after a rotation.
How soon can the next rotation occur? It will occur soonest if all the insertions occur on one
end and all the deletions occur on the other end. If i is the number of insertions and d is the
number of deletions, then the next rotation will occur when

m+ i > c(m� d) + 1

Rewriting both sides yields
i+ cd > m(c� 1) + 1

The next rotation will occur sooner for c = 2 than for c = 3, so substitute 2 for c.

i+ 2d > m+ 1

Therefore, executing one suspension per stream per insertion and two suspensions per stream
per deletion is enough to guarantee that both schedules are completely evaluated before the
next rotation.

The complete implementation appears in Figure 5.3.

5.5 Related Work

Global Rebuilding Overmars introduced global rebuilding in [Ove83]. It has since been
used in many situations, including real-time queues [HM81], real-time deques [Hoo82, GT86,
Sar86, CG93], catenable deques [BT95], and the order maintenance problem [DS87].

Deques Hood [Hoo82] first modified the real-time queues of [HM81] to obtain real-time
deques based on global rebuilding. Several other researchers later duplicated this work [GT86,
Sar86, CG93]. These implementations are all similar to techniques used to simulate multihead
Turing machines [Sto70, FMR72, LS81]. Hoogerwoord [Hoo92b] proposed amortized deques
based on batched rebuilding, but, as always with batched rebuilding, his implementation is not
efficient when used persistently. The real-time deques in Figure 5.3 first appeared in [Oka95c].

Coroutines and Lazy Evaluation Streams (and other lazy data structures) have frequently
been used to implement a form of coroutining between the producer of a stream and the con-
sumer of a stream. Landin [Lan65] first pointed out this connection between streams and
coroutines. See [Hug89] for some compelling applications of this feature.
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functor RealTimeDeque (val c : int) : DEQUE = (� c = 2 or c = 3 �)
struct

datatype � Queue = Queue fF : � Stream, LenF : int, SF : � Stream,
R : � Stream, LenR : int, SR : � Streamg

(� Invariants: jFj � cjRj+ 1, jRj � cjFj+ 1, LenF = jFj, LenR = jRj �)

exception EMPTY

val empty = Queue fF = $Nil, LenF = 0, SF = $Nil, R = $Nil, LenR = 0, SR = $Nilg
fun isEmpty (Queue fLenF = lenF , LenR = lenR, . . . g) = (lenF+lenR = 0)

fun exec1 ($Cons (x , s)) = s

j exec1 s = s

fun exec2 s = exec1 (exec1 s)

fun rotateRev ($Nil, f , a) = reverse f ++ a

j rotateRev ($Cons (x , r ), f , a) =
$Cons (x , rotateRev (r , drop (c, f ), reverse (take (c, f )) ++ a))

fun rotateDrop (r , i , f ) =
if i < c then rotateRev (r , drop (i , f ), $Nil)
else let val ($Cons (x , r 0)) = r in $Cons (x , rotateDrop (r 0, i � c, drop (c, f ))) end

fun queue (q as fF = f , LenF = lenF , SF = sf , R = r , LenR = lenR, SR = srg) =
if lenF > c�lenR + 1 then

let val i = (lenF + lenR) div 2 val j = lenF + lenR � i

val f 0 = take (i , f ) val r 0 = rotateDrop (i , r , f )
in Queue fF = f

0, LenF = i , SF = f
0, R = r

0, LenR = j , SR = r
0g end

else if lenR > c�lenF + 1 then
let val i = (lenF + lenR) div 2 val j = lenF + lenR � i

val f 0 = rotateDrop (j , f , r ) val r 0 = take (j , r )
in Queue fF = f

0, LenF = i , SF = f
0, R = r

0, LenR = j , SR = r
0g end

else Queue q

fun cons (Queue fF = f , LenF = lenF , SF = sf , R = r , LenR = lenR, SR = srg, x ) =
queue fF = $Cons (x , f ), LenF = lenF+1, SF = exec1 sf ,

R = r , LenR = lenR, SR = exec1 srg

fun head (Queue fF = $Nil, R = $Nil, . . . g) = raise EMPTY

j head (Queue fF = $Nil, R = $Cons (x , ), . . . g = x

j head (Queue fF = $Cons (x , f ), . . . g) = x

fun tail (Queue fF = $Nil, R = $Nil, . . . g) = raise EMPTY

j tail (Queue fF = $Nil, R = $Cons (x , ), . . . g = empty
j tail (Queue fF = $Cons (x , f ), LenF = lenF , SF = sf , R = r , LenR = lenR, SR = srg) =

queue fF = f , LenF = lenF�1, SF = exec2 sf , R = r , LenR = lenR, SR = exec2 srg

. . . snoc, last, and init defined symmetrically. . .
end

Figure 5.3: Real-time deques via lazy rebuilding and scheduling.
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Chapter 6

Numerical Representations

Consider the usual representations of lists and natural numbers, along with several typical
functions on each data type.

datatype � List = datatype Nat =
Nil Zero
j Cons of � � � List j Succ of Nat

fun tail (Cons (x , xs )) = xs fun pred (Succ n) = n

fun append (Nil, ys) = ys fun plus (Zero, n) = n

j append (Cons (x , xs), ys) = j plus (Succ m , n) =
Cons (x , append (xs , ys)) Succ (plus (m , n))

Other than the fact that lists contain elements and natural numbers do not, these two imple-
mentations are virtually identical. This suggests a strong analogy between representations of
the number n and representations of container objects of size n. Functions on the container
strongly resemble arithmetic functions on the number. For example, inserting an element re-
sembles incrementing a number, deleting an element resembles decrementing a number, and
combining two containers resembles adding two numbers. This analogy can be exploited to
design new implementations of container abstractions — simply choose a representation of nat-
ural numbers with certain desired properties and define the functions on the container objects
accordingly. Call an implementation designed in this fashion a numerical representation.

The typical representation of lists can be viewed as a numerical representation based on
unary numbers. However, numerical representations based on binary numbers are also com-
mon; the best known of these is the binomial queues of Vuillemin [Vui78]. Incrementing a
unary number takes O(1) time, so inserting an element into a unary representation also usu-
ally takes O(1) time. However, adding two unary numbers takes O(n) time, so combining
two containers in a unary representation takes O(n) time. Binary numbers improve the time
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required for addition (and hence the time required to combine two containers) to O(log n), but
also slow the time required to increment a number or insert an element to O(log n). In this
chapter, we consider several variations of binary numbers that achieve the best of both worlds
by supporting the increment function in O(1) time and addition in O(log n) time. Numerical
representations based on these variations naturally support inserting an element in O(1) time
and combining two containers in O(log n) time.

Example abstractions for which numerical representations are particularly useful include
random-access lists (also known as flexible arrays) and heaps (also known as priority queues).

6.1 Positional Number Systems

A positional number system [Knu73] is a notation for writing a number as a sequence of digits
b0 : : : bm�1. The digit b0 is called the least significant digit and the digit bm�1 is called the
most significant digit. Except when writing ordinary, decimal numbers, we will always write
sequences of digits from least significant to most significant.

Each digit bi has weight wi, so the value of the sequence b0 : : : bm�1 is
P

m�1
i=0 biwi. For any

given positional number system, the sequence of weights is fixed, as is the set of digits Di from
which each bi is chosen. For unary numbers, wi = 1 and Di = f1g for all i, and for binary
numbers wi = 2i and Di = f0;1g. (By convention, we write all digits in typewriter font
except for ordinary, decimal digits.) A number is said to be written in base B if wi = B

i and
Di = f0; : : : ; B � 1g. Usually, but not always, weights are increasing sequences of powers,
and the set Di is the same for every digit.

A number system is said to be redundant if there is more than one way to represent some
numbers. For example, we can obtain a redundant system of binary numbers by takingwi = 2i

and Di = f0;1;2g. Then the decimal number 13 can be written 1011, or 1201, or 122. If
we allow trailing 0s, then almost all positional number systems are redundant, since b0 : : : bm�1
is always equivalent to b0 : : : bm�10. Therefore, we disallow trailing 0s.

Computer representations of positional number systems can be dense or sparse. A dense
representation is simply a list (or some other kind of sequence) of digits, including those digits
that happen to be 0. A sparse representation, on the other hand, includes only non-zero digits.
It must then include information on either the rank (i.e., the index) or the weight of each digit.
For example, Figure 6.1 shows two different representations of binary numbers in Standard
ML— one dense and one sparse — along with several representative functions on each.
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structure Dense =
struct

datatype Digit = Zero j One
type Nat = Digit list (� increasing order of significance, no trailing Zeros �)

fun inc [ ] = [One]
j inc (Zero :: ds) = One :: ds
j inc (One :: ds) = Zero :: inc ds (� carry �)

fun dec [One] = [ ]
j dec (One :: ds) = Zero :: ds
j dec (Zero :: ds) = One :: dec ds (� borrow �)

fun add (ds , [ ]) = ds

j add ([ ], ds) = ds

j add (d :: ds1, Zero :: ds2) = d :: add (ds1, ds2)
j add (Zero :: ds1, d :: ds2) = d :: add (ds1, ds2)
j add (One :: ds1, One :: ds2) = Zero :: inc (add (ds1, ds2)) (� carry �)

end

structure SparseByWeight =
struct

type Nat = int list (� increasing list of weights, each a power of two �)

(� add a new weight to a list, recurse if weight is already present �)
fun carry (w , [ ]) = [w ]
j carry (w , ws as w 0 :: rest) = if w < w

0 then w :: ws else carry (2�w , rest)

(� borrow from a digit of weight w , recurse if weight is not present �)
fun borrow (w , ws as w 0 :: rest) = if w = w

0 then rest else w :: borrow (2�w , ws)

fun inc ws = carry (1, ws)
fun dec ws = borrow (1, ws)

fun add (ws , [ ]) = ws

j add ([ ], ws) = ws

j add (m as w1 :: ws1, n as w2 :: ws2) =
if w1 < w2 then w1 :: add (ws1, n)
else if w2 < w1 then w2 :: add (m, ws2)
else carry (2�w1, add (ws1, ws2))

end

Figure 6.1: Two implementations of binary numbers.
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6.2 Binary Representations

Given a positional number system, we can implement a numerical representation based on
that number system as a sequence of trees. The number and sizes of the trees representing a
collection of size n are governed by the representation of n in the positional number system.
For each weight wi, there are bi trees of that size. For example, the binary representation of 73
is 1001001, so a collection of size 73 in a binary numerical representation would comprise
three trees, of sizes 1, 8, and 64, respectively.

Trees in numerical representations typically exhibit a very regular structure. For example,
in binary numerical representations, all trees have sizes that are powers of 2. Three com-
mon kinds of trees that exhibit this structure are complete binary leaf trees [KD96], binomial
trees [Vui78], and pennants [SS90].

Definition 6.1 (Complete binary leaf trees) A complete binary tree of rank 0 is a leaf and a
complete binary tree of rank r > 0 is a node with two children, each of which is a complete
binary tree of rank r � 1. A leaf tree is a tree that contains elements only at the leaves, unlike
ordinary trees that contain elements at every node. A complete binary tree of rank r has 2r+1�1
nodes, but only 2r leaves. Hence, a complete binary leaf tree of rank r contains 2r elements.

Definition 6.2 (Binomial trees) A binomial tree of rank r is a node with r children c1 : : : cr,
where ci is a binomial tree of rank r � i. Alternatively, a binomial tree of rank r > 0 is a
binomial tree of rank r � 1 to which another binomial tree of rank r � 1 has been added as
the leftmost child. From the second definition, it is easy to see that a binomial tree of rank r

contains 2r nodes.

Definition 6.3 (Pennants) A pennant of rank 0 is a single node and a pennant of rank r > 0
is a node with a single child that is a complete binary tree of rank r � 1. The complete binary
tree contains 2r � 1 elements, so the pennant contains 2r elements.

Figure 6.2 illustrates the three kinds of trees. Which kind of tree is superior for a given
data structure depends on the properties the data structure must maintain, such as the order in
which elements should be stored in the trees. A key factor in the suitability of a particular kind
of tree for a given data structure is how easily the tree supports functions analogous to carries
and borrows in binary arithmetic. When simulating a carry, we link two trees of rank r to form
a tree of rank r + 1. Symmetrically, when simulating a borrow, we unlink a tree of rank r > 0
to obtain two trees of rank r � 1. Figure 6.3 illustrates the link operation (denoted �) on each
of the three kinds of trees. Assuming that elements are not rearranged, each of the three kinds
of trees can be linked or unlinked in O(1) time.

We next describe two existing data structures in terms of this framework: the one-sided flex-
ible arrays of Kaldewaij and Dielissen [KD96], and the binomial queues of Vuillemin [Vui78,
Bro78].
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Figure 6.2: Three trees of rank 3: (a) a complete binary leaf tree, (b) a binomial tree, and (c) a
pennant.
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Figure 6.3: Linking two trees of rank r to obtain a tree of rank r + 1 for (a) complete binary
leaf trees, (b) binomial trees, and (c) pennants.
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signature RANDOMACCESSLIST =
sig

type � RList

exception EMPTY and INDEX

val empty : � RList
val isEmpty : � RList ! bool

val cons : � � � RList! � RList
val head : � RList ! � (� raises EMPTY if list is empty �)
val tail : � RList ! � RList (� raises EMPTY if list is empty �)

val lookup : � RList � int! � (� raises INDEX if out of bounds �)
val update : � RList � int� �! � RList (� raises INDEX if out of bounds �)

end

Figure 6.4: Signature for random-access lists.

6.2.1 Binary Random-Access Lists

A random-access list, also called a one-sided flexible array, is a data structure that supports
array-like lookup and update functions, as well as the usual cons , head , and tail functions on
lists. A signature for random-access lists is shown in Figure 6.4.

Kaldewaij and Dielissen [KD96] describe an implementation of random-access lists in
terms of leftist left-perfect leaf trees. We can easily translate their implementation into the
framework of numerical representations as a binary representation using complete binary leaf
trees. A binary random-access list of size n thus contains a complete binary leaf tree for each
1 in the binary representation of n. The rank of each tree corresponds to the rank of the corre-
sponding digit; if the ith bit of n is 1, then the random-access list contains a tree of size 2i. For
this example, we choose a dense representation, so the type of binary random-access lists is

datatype � Tree = Leaf of � j Node of int � � Tree � � Tree
datatype � Digit = Zero j One of � Tree
type � RList = � Digit list

The integer in each node is the size of the tree. This number is redundant since the size of
every tree is completely determined by the size of its parent or by its position in the list of
digits, but we include it anyway for convenience. Trees are stored in increasing order of size,
and the order of elements (both within and between trees) is left-to-right. Thus, the head of the
random-access list is the leftmost leaf of the smallest tree. Figure 6.5 shows a binary random-
access list of size 7. Note that the maximum number of trees in a list of size n is blog(n + 1)c
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Figure 6.5: A binary random-access list containing the elements 0 : : : 6.

and the maximum depth of any tree is blog nc.

Now, insertion into a binary random-access list (i.e., cons) is analogous to incrementing a
binary number. Recall the increment function on dense binary numbers:

fun inc [ ] = [One]
j inc (Zero :: ds) = One :: ds
j inc (One :: ds) = Zero :: inc ds

To insert an element with cons , we first convert the element into a leaf, and then insert the leaf
into the list of trees using a helper function insTree that follows the rules of inc .

fun cons (x , ts ) = insTree (Leaf x , ts)

fun insTree (t , [ ]) = [One t ]
j insTree (t , Zero :: ts ) = One t :: ts
j insTree (t1, One t2 :: ts) = Zero :: insTree (link (t1, t2), ts)

The link helper function is a pseudo-constructor for Node that automatically calculates the size
of the new tree from the sizes of its children.

Deleting an element from a binary random-access list (using tail ) is analogous to decre-
menting a binary number. Recall the decrement function on dense binary numbers:

fun dec [One] = [ ]
j dec (One :: ds) = Zero :: ds
j dec (Zero :: ds) = One :: dec ds

Essentially, this function resets the first 1 to 0, while setting all the preceding 0s to 1s. The
analogous operation on lists of trees is borrowTree. When applied to a list whose first digit has
rank r, borrowTree returns a pair containing a tree of rank r, and the new list without that tree.

fun borrowTree [One t ] = (t , [ ])
j borrowTree (One t :: ts ) = (t , Zero :: ts)
j borrowTree (Zero :: ts) = let val (Node ( , t1, t2), ts 0) = borrowTree ts

in (t1, One t2 :: ts 0) end
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The head and tail functions “borrow” the leftmost leaf using borrowTree and then either return
that leaf’s element or discard the leaf, respectively.

fun head ts = let val (Leaf x , ) = borrowTree ts in x end
fun tail ts = let val ( , ts 0) = borrowTree ts in ts 0 end

The lookup and update functions do not have analogous arithmetic operations. Rather, they
take advantage of the organization of binary random-access lists as logarithmic-length lists of
logarithmic-depth trees. Looking up an element is a two-stage process. We first search the
list for the correct tree, and then search the tree for the correct element. The helper function
lookupTree uses the size field in each node to determine whether the ith element is in the left
subtree or the right subtree.

fun lookup (Zero :: ts , i ) = lookup (ts , i )
j lookup (One t :: ts , i ) =

if i < size t then lookupTree (t , i ) else lookup (ts , i � size t )

fun lookupTree (Leaf x , 0) = x

j lookupTree (Node (w , t1, t2), i ) =
if i < w div 2 then lookupTree (t1, i ) else lookupTree (t2, i � w div 2)

update works in same way but also reconstructs the path from the root to the updated leaf. This
reconstruction is called path copying [ST86a] and is necessary for persistence.

fun update (Zero :: ts , i , y) = Zero :: update (ts, i , y)
j update (One t :: ts , i , y) =

if i < size t then One (updateTree (t , i , y)) :: ts else One t :: update (ts , i � size t , y)

fun updateTree (Leaf x , 0, y) = Leaf y
j updateTree (Node (w , t1, t2), i , y) =

if i < w div 2 then Node (w , updateTree (t1, i , y), t2)
else Node (w , t1, updateTree (t2, i � w div 2, y))

The complete code for this implementation is shown in Figure 6.6.

cons , head , and tail perform at most O(1) work per digit and so run in O(log n) worst-
case time. lookup and update take at most O(log n) time to find the right tree, and then at most
O(log n) time to find the right element in that tree, for a total of O(log n) worst-case time.

6.2.2 Binomial Heaps

Binomial queues [Vui78, Bro78] are a classical implementation of mergeable priority queues.
To avoid confusion with FIFO queues, we will henceforth refer to priority queues as heaps and
binomial queues as binomial heaps. Heaps support four main functions: inserting an element
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structure BinaryRandomAccessList : RANDOMACCESSLIST =
struct

datatype � Tree = Leaf of � j Node of int� � Tree � � Tree (� int is size of tree �)
datatype � Digit = Zero j One of � Tree
type � RList = � Digit list

exception EMPTY and INDEX

val empty = [ ]
fun isEmpty ts = null ts

fun size (Leaf x ) = 1
j size (Node (w , t1, t2)) = w

fun link (t1, t2) = Node (size t1+size t2, t1, t2)
fun insTree (t , [ ]) = [One t]
j insTree (t , Zero :: ts) = One t :: ts
j insTree (t1, One t2 :: ts) = Zero :: insTree (link (t1, t2), ts)

fun borrowTree [ ] = raise EMPTY

j borrowTree [One t] = (t , [ ])
j borrowTree (One t :: ts) = (t , Zero :: ts)
j borrowTree (Zero :: ts) = let val (Node ( , t1, t2), ts 0) = borrowTree ts

in (t1, One t2 :: ts 0) end

fun cons (x , ts) = insTree (Leaf x , ts)
fun head ts = let val (Leaf x , ) = borrowTree ts in x end
fun tail ts = let val ( , ts 0) = borrowTree ts in ts

0 end

fun lookupTree (Leaf x , 0) = x

j lookupTree (Leaf x , i ) = raise INDEX

j lookupTree (Node (w , t1, t2), i ) =
if i < w div 2 then lookupTree (t1, i ) else lookupTree (t2, i � w div 2)

fun updateTree (Leaf x , 0, y) = Leaf y
j updateTree (Leaf x , i , y) = raise INDEX

j updateTree (Node (w , t1, t2), i , y) =
if i < w div 2 then Node (w , updateTree (t1, i , y), t2)
else Node (w , t1, updateTree (t2, i � w div 2, y))

fun lookup ([ ], i ) = raise INDEX

j lookup (Zero :: ts, i ) = lookup (ts, i )
j lookup (One t :: ts, i ) =

if i < size t then lookupTree (t , i ) else lookup (ts, i � size t)
fun update ([ ], i , y) = raise INDEX

j update (Zero :: ts, i , y) = Zero :: update (ts , i , y)
j update (One t :: ts , i , y) =

if i < size t then One (updateTree (t , i , y)) :: ts else One t :: update (ts, i � size t , y)
end

Figure 6.6: Binary random-access lists.
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signature ORDERED =
sig

type T (� type of ordered elements �)
val leq : T � T ! bool (� total ordering relation �)

end

signature HEAP =
sig

structure Elem : ORDERED

type Heap

exception EMPTY

val empty : Heap
val isEmpty : Heap ! bool

val insert : Elem.T � Heap ! Heap
val merge : Heap � Heap ! Heap

val findMin : Heap ! Elem.T (� raises EMPTY if heap is empty �)
val deleteMin : Heap ! Heap (� raises EMPTY if heap is empty �)

end

Figure 6.7: Signature for heaps.

(insert ), merging two heaps (merge), finding the minimum element (�ndMin), and deleting
the minimum element (deleteMin ). A Standard ML signature for heaps appears Figure 6.7.

Remark: Heaps are similar to the sortable collections of Section 3.5.2, but use a different
mechanism for specifying the desired comparison function. For sortable collections, the com-
parison function is supplied when a new object is created, and every object can have a different
comparison function. This approach is very flexible, but causes problems in the presence of
an function that combines two objects, such as merge . If the two objects being merged have
different comparison functions, which should the resulting object keep? To avoid this ambigu-
ity, we fix the comparison function (and therefore the type of elements being compared) when
the Standard ML structure implementing heaps is created. Then, we can be sure that any two
objects being merged shared the same comparison function. 3

In the framework of numerical representations, binomial heaps are a binary representation
with heap-ordered, binomial trees. A tree is heap-ordered if the element at every node is
smaller than the elements at any of its children, with ties broken arbitrarily. As with binary
random-access lists, binomial heaps contain one tree for each 1 in the binary representation of
the size of the heap, and the trees have the same weights as their matching digits.
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Assuming an ORDERED structure Elem that specifies the element type and comparison
function, the types of binomial trees and binomial heaps can be written as follows:

datatype Tree = Node of int � Elem.T � Tree list
type Heap = Tree list

This time, we have chosen a sparse representation, where the integer at each node is the rank
of the tree. For reasons that will become clear later, we maintain the list of trees representing
a heap in increasing order of rank, but maintain the list of trees representing the children of a
node in decreasing order of rank.

Remark: The rank information on each node that is not a root is redundant since the ith child
of a node of rank r always has rank r � i. However, we maintain this information anyway
because doing so simplifies the code slightly. 3

The fundamental operation on binomial trees is link , which compares the roots of two trees
of rank r and makes the tree with the larger root a child of the tree with the smaller root,
producing a tree of rank r + 1.

fun link (t1 as Node (r , x1, c1), t2 as Node ( , x2, c2)) =
if Elem.leq (x1, x2) then Node (r+1, x1, t2 :: c1) else Node (r+1, x2, t1 :: c2)

Since the children of a tree are maintained in decreasing order of rank, adding the new child to
the list takes only O(1) time.

Now, inserting an element into a binomial heap is similar to the increment function on
sparse binary numbers. Whenever we find two trees of the same rank, we link them and
reinsert the linked tree into the list. This corresponds to a carry in binary arithmetic. We
use the insTree helper function to insert new trees into the list of trees; insert builds a new
singleton tree and calls insTree.

fun insTree (t , [ ]) = [t ]
j insTree (t1, ts as t2 :: rest) =

if rank t1 < rank t2 then t1 :: ts else insTree (link (t1, t2), rest)

fun insert (x , ts) = insTree (Node (0, x , [ ]), ts)

merge is similar to addition on sparse binary numbers, where again we link trees of equal
rank whenever there is a carry.

fun merge (ts1, [ ]) = ts1
j merge ([ ], ts2) = ts2
j merge (t1 :: ts1, t2 :: ts2) =

if rank t1 < rank t2 then t1 :: merge (ts1, t2 :: ts2)
else if rank t2 < rank t1 then t2 :: merge (t1 :: ts1, ts2)
else insTree (link (t1, t2), merge (ts1, ts2))
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Since every tree is heap-ordered, we know that the minimum element within any given tree
is the root. However, we do not know which tree has the minimum root, so �ndMin scans all
the roots in the heap.

fun findMin [t ] = root t
j findMin (t :: ts ) = let val x = root t

val y = findMin ts
in if Elem.leq (x , y) then x else y end

Finally, deleteMin begins by removing the tree with the minimum root. (In the case of ties, we
should take care to remove the tree with the same root as returned by �ndMin .) Once we have
discarded the root of this tree, we are left with two lists of trees: one representing the children
of the discarded tree, and one representing the remaining trees in the heap. To obtain a single
heap, we simply merge these two lists, but since the lists are maintained in opposite orders, we
first reverse the list of children.

fun deleteMin ts =
let fun getMin [t ] = (t , [ ])

j getMin (t :: ts) =
let val (t 0, ts 0) = getMin ts

in if Elem.leq (root t , root t 0) then (t , ts ) else (t 0, t :: ts 0) end
val (Node ( , x , ts1), ts2) = getMin ts

in merge (rev ts 1, ts2) end

The complete implementation of binomial heaps appears in Figure 6.8. Since heaps contain
no more than blog(n + 1)c trees, and binomial trees have no more than blog nc children, each
of these functions takes O(log n) worst-case time.

6.3 Segmented Binary Numbers

We next explore two variations of binary numbers that allow a number to be incremented or
decremented in O(1) worst-case time. Basing a numerical representation on these variations,
rather than ordinary binary numbers, reduces the running time of many insertion and deletion
functions fromO(log n) to O(1). First, we present a somewhat complicated representation and
sketch the design of random-access lists and heaps based on this representation. In the next
section, we present a much simpler representation that is usually superior in practice.

The problem with ordinary binary numbers is that carries and borrows can cascade. For
example, incrementing 2k�1 causes k carries in binary arithmetic. Symmetrically, decrement-
ing 2k causes k borrows. Segmented binary numbers solve this problem by allowing multiple
carries or borrows to be executed in a single step.
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functor BinomialHeap (structure E : ORDERED) : HEAP =
struct

structure Elem = E

datatype Tree = Node of int� Elem.T � Tree list (� the integer is the rank of the tree �)
type Heap = Tree list

exception EMPTY

val empty = [ ]
fun isEmpty ts = null ts

fun rank (Node (r , x , c)) = r

fun root (Node (r , x , c)) = x

fun link (t1 as Node (r , x1, c1), t2 as Node ( , x2, c2)) =
if Elem.leq (x1, x2) then Node (r+1, x1, t2 :: c1) else Node (r+1, x2, t1 :: c2)

fun insTree (t , [ ]) = [t]
j insTree (t1, ts as t2 :: rest) =

if rank t1 < rank t2 then t1 :: ts else insTree (link (t1, t2), rest)

fun insert (x , ts) = insTree (Node (0, x , [ ]), ts)
fun merge (ts1, [ ]) = ts1

j merge ([ ], ts2) = ts2

j merge (t1 :: ts1, t2 :: ts2) =
if rank t1 < rank t2 then t1 :: merge (ts1, t2 :: ts2)
else if rank t2 < rank t1 then t2 :: merge (t1 :: ts1, ts2)
else insTree (link (t1, t2), merge (ts1, ts2))

fun findMin [ ] = raise EMPTY

j findMin [t] = root t
j findMin (t :: ts) = let val x = root t

val y = findMin ts

in if Elem.leq (x , y) then x else y end

fun deleteMin [ ] = raise EMPTY

j deleteMin ts =
let fun getMin [t] = (t , [ ])

j getMin (t :: ts) =
let val (t 0, ts0) = getMin ts

in if Elem.leq (root t , root t 0) then (t , ts) else (t0, t :: ts 0) end
val (Node ( , x , ts1), ts2) = getMin ts

in merge (rev ts1, ts2) end
end

Figure 6.8: Binomial heaps [Vui78, Bro78].
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Note that incrementing a binary number takes k steps whenever the number begins with a
block of k 1s. Similarly, decrementing a binary number takes k steps whenever the number be-
gins with a block of k 0s. Segmented binary numbers group contiguous sequences of identical
digits into blocks so that we can execute a carry or borrow on an entire block in a single step.
We represent segmented binary numbers as alternating blocks of 0s and 1s using the following
datatype:

datatype DigitBlock = Zeros of int j Ones of int
type Nat = DigitBlock list

where the integer in each DigitBlock represents the block’s length. Note that since we have
forbidden trailing 0s, the last block (if any) always contains 1s.

We use the pseudo-constructors zeros and ones to add new blocks to the front of a list of
blocks. These pseudo-constructors merge adjacent blocks of the same digit and discard empty
blocks. In addition, the zeros pseudo-constructor discards any trailing block of 0s.

fun zeros (i , [ ]) = [ ]
j zeros (i , Zeros j :: blks ) = Zeros (i+j ) :: blks
j zeros (0, blks ) = blks

j zeros (i , blks ) = Zeros i :: blks

fun ones (i , Ones j :: blks ) = Ones (i+j ) :: blks
j ones (0, blks ) = blks

j ones (i , blks ) = Ones i :: blks

Now, to increment a segmented binary number, we inspect the first block of digits (if any).
If the first block contains i 0s, then we replace the first 0 with a 1, creating a new singleton
block of 1s and shrinking the block of 0s by one. If the first block contains i 1s, then we
perform i carries in a single step by changing the 1s to 0s and incrementing the next digit.

fun inc [ ] = [Ones 1]
j inc (Zeros i :: blks ) = ones (1, zeros (i�1, blks ))
j inc (Ones i :: blks ) = Zeros i :: inc blks

In the third line, we know the recursive call to inc cannot loop because the next block, if any,
must contain 0s. In the second line, the pseudo-constructors deal gracefully with the special
cases that occur when the leading block contains a single 0.

Decrementing a segmented binary number is almost exactly the same, but with the roles of
0s and 1s reversed.

fun dec (Ones i :: blks ) = zeros (1, ones (i�1, blks ))
j dec (Zeros i :: blks ) = Ones i :: dec blks
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6.3.1 Segmented Binomial Random-Access Lists and Heaps

In both the binary random-access lists of Section 6.2.1 and the binomial heaps of Section 6.2.2,
we linked two trees into a new, larger tree for every carry. In a cascade of k carries, we linked
a new singleton tree with existing trees of sizes 20; 21; : : : ; 2k�1 to obtain a new tree of size 2k .
Similarly, in binary random-access lists, a cascade of borrows decomposes a tree of size 2k into
a singleton tree and k trees of sizes 20; 21; : : : ; 2k�1.

Segmented binary numbers support fast carries and borrows, but to take advantage of this in
a numerical representation, we must choose a tree representation that will allow us to link and
unlink many trees in a single step. Of the three kinds of trees described earlier, only binomial
trees support this behavior. A node of rank r consists of an element and a sequence of trees of
ranks 0; : : : ; r � 1. Therefore, we can combine an element and a sequence of trees into a new
tree — or decompose a tree into an element and a sequence of trees — in O(1) time.

Adapting the earlier implementations of binary random-access lists and binomial heaps
to use segmented binary arithmetic rather than ordinary binary arithmetic, and in the case of
binary random-access lists, to use binomial trees rather than complete binary leaf trees, is
tedious, but mostly straightforward, except for the following issues:

� To link and unlink multiple trees in a single step, we must use the same representation
for the sequence of trees corresponding to a block of 1s (called a segment) and for the
children of a node. So, for example, we cannot maintain one in increasing order of
rank and the other in decreasing order of rank as we did for binomial heaps. For both
segmented binomial heaps and segmented binomial random-access lists, we need easy
access to the smallest tree in a segment, but we also need easy access to the largest child
of a node. Therefore, we represent both kinds of sequences as real-time deques.

� For binomial heaps, the cascade of links that produces a new tree also compares the
roots of trees as it goes to find the minimum element in the tree. For segmented binomial
heaps, we do not have time to search a segment for the root with the minimum element,
so we insist that the smallest tree in any segment always have the minimum root. Then,
whenever we create a new tree from a new element and a segment of trees of ranks
0; : : : ; r � 1, we simply compare the new element with the first root in the segment (i.e.,
the root of the rank 0 tree). The smaller element becomes the new root and the larger
element becomes the rank 0 child of the root. Whenever we add a new tree of rank r to
a segment whose smallest tree has rank r + 1, we decompose the tree of rank r + 1 into
two trees of rank r. We then keep the tree with the smallest root, and link the remaining
two trees into a new tree of rank r + 1.

With these changes segmented binomial random-access lists support cons , head , and tail in
O(1) worst-case time, and lookup and update in O(log n) worst-case time. Segmented bino-
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mial heaps support insert in O(1) worst-case time, and merge , �ndMin , and deleteMin in
O(log n) worst-case time.

6.4 Skew Binary Numbers

Numerical representations based on segmented binary numbers rather than ordinary binary
numbers improve the asymptotic behavior of certain operations from O(log n) to O(1), while
retaining the same asymptotic behavior for all other operations. Unfortunately, such data struc-
tures are too complicated to be useful in practice. We next consider another number system,
skew binary numbers, that usually achieves similar asymptotic benefits, but that is simpler and
faster in practice.

In skew binary numbers [Mye83, Oka95b], the weight wi of the ith digit is 2i+1 � 1, rather
than 2i as in ordinary binary numbers. Digits may be 0, 1, or 2 (i.e., Di = f0;1;2g). For
example, the decimal number 92 could be written 002101 (least-significant digit first).

This number system is redundant, but, if we add the further constraint that only the lowest
non-0 digit may be 2, then we regain unique representations. Such a number is said to be in
canonical form. Henceforth, we will assume that all skew binary numbers are in canonical
form.

Theorem 6.1 (Myers [Mye83]) Every natural number has a unique skew binary canonical
form.

Recall that the weight of digit i is 2i+1 � 1 and note that 1 + 2(2i+1 � 1) = 2i+2 � 1. This
implies that we can increment a skew binary number whose lowest non-0 digit is 2 by resetting
the 2 to 0 and incrementing the next digit from 0 to 1 or from 1 to 2. (The next digit cannot
already be 2.) Incrementing a skew binary number that does not contain a 2 is even easier —
simply increment the lowest digit from 0 to 1 or from 1 to 2. In both cases, the result is still
in canonical form. And, assuming we can find the lowest non-0 digit in O(1) time, both cases
take only O(1) time!

We cannot use a dense representation for skew binary numbers since scanning for the lowest
non-0 digit would take more than O(1) time. Instead, we choose a sparse representation, so
that we always have immediate access to the lowest non-0 digit.

type Nat = int list

The integers represent either the rank or weight of each non-0 digit. For now, we use weights.
The weights are stored in increasing order, except that the smallest two weights may be identi-
cal, indicating that the lowest non-0 digit is 2. Given this representation, we implement inc as
follows:



6.4 Skew Binary Numbers 77

fun inc (ws as w1 :: w2 :: rest) =
if w1 = w2 then (1+w1+w2) :: rest else 1 :: ws

j inc ws = 1 :: ws

The first clause checks whether the first two weights are equal and then either combines the
weights into the next larger weight (incrementing the next digit) or adds a new weight of 1
(incrementing the smallest digit). The second clause handles the case that ws is empty or
contains only a single weight. Clearly, inc runs in only O(1) worst-case time.

Decrementing a skew binary number is just as easy as incrementing a number. If the lowest
digit is non-0, then we simply decrement that digit from 2 to 1 or from 1 to 0. Otherwise, we
decrement the lowest non-0 digit and reset the previous 0 to 2. This can be implemented as
follows:

fun dec (1 :: ws ) = ws

j dec (w :: ws) = (w div 2) :: (w div 2) :: ws

In the second line, note that if w = 2k+1 � 1, then bw=2c = 2k � 1. Clearly, dec also runs in
only O(1) worst-case time.

6.4.1 Skew Binary Random-Access Lists

We next design a numerical representation for random-access lists, based on skew binary num-
bers. The basic representation is a list of trees, with one tree for each 1 digit and two trees for
each 2 digit. The trees are maintained in increasing order of size, except that the smallest two
trees are the same size when the lowest non-0 digit is 2.

The sizes of the trees should correspond to the weights in skew binary numbers, so a tree
representing the ith digit should have size 2i+1 � 1. Up until now, we have mainly considered
trees whose sizes are powers of two, but we have also encountered a kind of tree whose sizes
have the desired form: complete binary trees. Therefore, we represent skew binary random-
access lists as lists of complete binary trees.

To support head efficiently, the first element in the random-access list should be the root
of the first tree, so we store the elements within each tree in left-to-right preorder and with the
elements in each tree preceding the elements in the next tree.

In previous examples, we have stored a size or rank in every node, even when that infor-
mation was redundant. For this example, we adopt the more realistic approach of maintaining
size information only for the root of each tree in the list, and not for every subtree as well. The
type of skew binary random-access lists is therefore

datatype � Tree = Leaf of � j Node of � � � Tree � � Tree
type � RList = (int � � Tree) list
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Now, we can define cons in analogy to inc .

fun cons (x , ts as (w1, t1) :: (w2, t2) :: rest) =
if w1 = w2 then (1+w1+w2, Node (x , t1, t2)) :: rest ) else (1, Leaf x ) :: ts

j cons (x , ts) = (1, Leaf x ) :: ts

head and tail inspect and remove the root of the first tree. tail returns the children of the root
(if any) back to the front of the list, where they represent a new 2 digit.

fun head ((1, Leaf x ) :: ts ) = x

j head ((w , Node (x , t1, t2)) :: ts ) = x

fun tail ((1, Leaf x ) :: ts) = ts

j tail ((w , Node (x , t1, t2)) :: ts) = (w div 2, t1) :: (w div 2, t2) :: ts

To lookup an element, we first search the list for the right tree, and then search the tree for the
right element.

fun lookup ((w , t ) :: ts , i ) = if i < w then lookupTree (w , t , i ) else lookup (ts, i�w )

fun lookupTree (1, Leaf x , 0) = x

j lookupTree (w , Node (x , t1, t2), 0) = x

j lookupTree (w , Node (x , t1, t2), i ) =
if i < w div 2 then lookupTree (w div 2, t1, i�1)
else lookupTree (w div 2, t2, i � 1 � w div 2)

Note that in the penultimate line, we subtract one from i because we have skipped over x . In
the last line, we subtract 1+bw=2c from i because we have skipped over x and all the elements
in t1. update and updateTree are defined similarly, and are shown in Figure 6.9, which contains
the complete implementation.

It is easy to verify that cons , head , and tail run in O(1) worst-case time. Like binary
random-access lists, skew binary random-access lists are logarithmic-length lists of logarithmic-
depth trees. Hence, lookup and update run in O(log n) worst-case time. In fact, every unsuc-
cessful step of lookup or update discards at least one element, so this bound can be improved
slightly to O(min(i; logn)).

Hint to Practitioners: Skew binary random-access lists are a good choice for applications that
take advantage of both the list-like aspects and the array-like aspects of random-access lists.
Although there are better implementations of lists, and better implementations of (persistent)
arrays, none are better at both [Oka95b].
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structure SkewBinaryRandomAccessList : RANDOMACCESSLIST =
struct

datatype � Tree = Leaf of � j Node of � � � Tree � � Tree
type � RList = (int� � Tree) list (� integer is the weight of the tree �)

exception EMPTY and INDEX

val empty = [ ]
fun isEmpty ts = null ts

fun cons (x , ts as (w1, t1) :: (w2, t2) :: ts 0) =
if w1 = w2 then (1+w1+w2, Node (x , t1, t2)) :: ts 0) else (1, Leaf x ) :: ts

j cons (x , ts) = (1, Leaf x ) :: ts
fun head [ ] = raise EMPTY

j head ((1, Leaf x ) :: ts) = x

j head ((w , Node (x , t1, t2)) :: ts) = x

fun tail [ ] = raise EMPTY

j tail ((1, Leaf x ) :: ts) = ts

j tail ((w , Node (x , t1, t2)) :: ts) = (w div 2, t1) :: (w div 2, t2) :: ts

fun lookupTree (1, Leaf x , 0) = x

j lookupTree (1, Leaf x , i ) = raise INDEX

j lookupTree (w , Node (x , t1, t2), 0) = x

j lookupTree (w , Node (x , t1, t2), i ) =
if i < w div 2 then lookupTree (w div 2, t1, i�1)
else lookupTree (w div 2, t2, i � 1 � w div 2)

fun updateTree (1, Leaf x , 0, y) = Leaf y
j updateTree (1, Leaf x , i , y) = raise INDEX

j updateTree (w , Node (x , t1, t2), 0, y) = Node (y , t1, t2)
j updateTree (w , Node (x , t1, t2), i , y) =

if i < w div 2 then Node (x , updateTree (w div 2, t1, i�1, y), t2)
else Node (x , t1, updateTree (w div 2, t2, i � 1 � w div 2, y))

fun lookup ([ ], i ) = raise INDEX

j lookup ((w , t) :: ts, i ) = if i < w then lookupTree (w , t , i ) else lookup (ts , i�w )
fun update ([ ], i , y) = raise INDEX

j update ((w , t) :: ts , i , y) =
if i < w then updateTree (w , t , i , y) :: ts else (w , t) :: update (ts, i�w , y)

end

Figure 6.9: Skew binary random-access lists.
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6.4.2 Skew Binomial Heaps

Finally, we consider a hybrid numerical representation for heaps based on both skew binary
numbers and ordinary binary numbers. Incrementing a skew binary number is both quick and
simple, and serves admirably as a template for the insert function. Unfortunately, addition
of two arbitrary skew binary numbers is awkward. We therefore base the merge function on
ordinary binary addition, rather than skew binary addition.

A skew binomial tree is a binomial tree in which every node is augmented with a list of up
to r elements, where r is the rank of the node in question.

datatype Tree = Node of int � Elem.T � Elem.T list � Tree list

Unlike ordinary binomial trees, the size of a skew binomial tree is not completely determined
by its rank; rather the rank of a skew binomial tree determines a range of possible sizes.

Lemma 6.2 If t is a skew binomial tree of rank r, then 2r � jtj � 2r+1 � 1.

Proof: By induction. t has r children t1 : : : tr, where ti is a skew binomial tree of rank
r � i, and 2r�i � jtij � 2r�i+1 � 1. In addition, the root of t is augmented with a list of k
elements, where 0 � k � r. Therefore, jtj � 1 + 0 +

P
r�1
i=0 2

i = 1 + (2r � 1) = 2r and
jtj � 1 + r +

P
r�1
i=0

(2i+1 � 1) = 1 + r + (2r+1 � r � 2) = 2r+1 � 1. 2

Note that a tree of rank r is always larger than a tree of rank r � 1.

Skew binomial trees may be linked or skew linked. The link function combines two trees
of rank r to form a tree of rank r + 1 by making the tree with the larger root a child of the tree
with the smaller root.

fun link (t1 as Node (r , x1, xs1, c1), t2 as Node ( , x2, xs2, c2)) =
if Elem.leq (x1, x2) then Node (r+1, x1, xs1, t2 :: c1) else Node (r+1, x2, xs2, t1 :: c2)

The skewLink function combines two trees of rank r with an additional element to form a tree
of rank r + 1 by first linking the two trees, and then comparing the root of the resulting tree
with the additional element. The smaller of the two elements remains as the root, and the larger
is added to the auxiliary list of elements.

fun skewLink (x , t1, t2) =
let val Node (r , y , ys , c) = link (t1, t2)
in if Elem.leq (x , y) then Node (r , x , y :: ys , c) else Node (r , y , x :: ys , c) end

A skew binomial heap is represented as a list of heap-ordered skew binomial trees of in-
creasing rank, except that the first two trees may share the same rank. Since skew binomial
trees of the same rank may have different sizes, there is no longer a direct correspondence
between the trees in the heap and the digits in the skew binary number representing the size of
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the heap. For example, even though the skew binary representation of 4 is 11, a skew binomial
heap of size 4 may contain one rank 2 tree of size 4; two rank 1 trees, each of size 2; a rank 1
tree of size 3 and a rank 0 tree; or a rank 1 tree of size 2 and two rank 0 trees. However, the
maximum number of trees in a heap is still O(log n).

The big advantage of skew binomial heaps is that we can insert a new element inO(1) time.
We first compare the ranks of the two smallest trees. If they are the same, we skew link the
new element with these two trees. Otherwise, we simply add a new singleton tree to the list.

fun insert (x , ts as t1 :: t2 :: rest) =
if rank t1 = rank t2 then skewLink (x , t1, t2) :: rest else Node (0, x , [ ], [ ]) :: ts

j insert (x , ts) = Node (0, x , [ ], [ ]) :: ts

We implement merge in terms of two helper functions, insTree and mergeTrees, that behave
exactly like their counterparts from ordinary binomial heaps, performing a regular link (not
a skew link!) whenever they find two trees of equal rank. Since mergeTrees expects lists of
strictly increasing rank, merge normalizes its two arguments to remove any leading duplicates
before calling mergeTrees .

fun normalize [ ] = [ ]
j normalize (t :: ts) = insTree (t , ts )

fun merge (ts1, ts2) = mergeTrees (normalize ts1, normalize ts2)

�ndMin also behaves exactly like its counterpart from ordinary binomial heaps; since it ignores
the rank of each tree, it is unaffected by the possibility that the first two trees might have the
same rank. It simply scans the list of trees for the minimum root.

fun findMin [t ] = root t
j findMin (t :: ts ) = let val x = root t

val y = findMin ts
in if Elem.leq (x , y) then x else y end

Finally, deleteMin on skew binomial heaps is similar to its counterpart for ordinary binomial
heaps except that it must deal with the list of auxiliary elements that has been added to every
node. We first find and remove the tree with the minimum root. After discarding this root, we
merge the children of this root with the remaining trees. To do so, we must first reverse the list
of children, since it is stored in decreasing order, and normalize the list of trees, since the first
rank might be duplicated. Finally, we reinsert each of the elements from the auxiliary list.

fun deleteMin ts =
let fun getMin [t ] = (t , [ ])

j getMin (t :: ts ) = let val (t 0, ts 0) = getMin ts

in if Elem.leq (root t , root t 0) then (t , ts ) else (t 0, t :: ts 0) end
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val (Node ( , x , xs , c), ts0) = getMin ts
fun insertAll ([ ], ts) = ts

j insertAll (x :: xs , ts) = insertAll (xs , insert (x , ts))
in insertAll (xs , mergeTrees (rev c, normalize ts 0)) end

Figure 6.10 presents the complete implementation of skew binomial heaps.

insert clearly runs in O(1) worst-case time, while merge , �ndMin , and deleteMin run
in the same time as their counterparts for ordinary binomial queues, i.e., O(log n) worst-case
time each. Note that the various phases of deleteMin — finding the tree with the minimum
root, reversing the children, merging the children with the remaining trees, and reinserting the
auxiliary elements — take O(log n) time each.

6.5 Discussion

In designing numerical representations, we draw analogies between container data structures
and representations of natural numbers. However, this analogy can also be extended to other
kinds of numbers. For example, difference lists [SS86] in Prolog support a notion of lists with
negative length; appending a list of length 15 and a list of length �10 results in a list of length
5. This behavior is also possible using the catenable lists of Hughes [Hug86], which are the
functional counterpart of difference lists.1

As another example, Brodal and Okasaki [BO96] support a delete function on heaps using
two primitive heaps, one containing positive elements and one containing negative elements.
The negative elements are ones that have been deleted, but that have not yet been physically
removed from the positive heap. In this representation, it is possible to delete elements that
have not yet been inserted. If the negative heap is larger than the positive heap, then the overall
“size” of the heap is negative.

Can this analogy between data structures and representations of numbers be extended even
further, to non-integral numbers? We know of no such examples, but it is intriguing to speculate
on possible uses for such data structures. For instance, might a numerical representation based
on floating point numbers be useful in approximation algorithms?

6.6 Related Work

Numerical Representations Data structures that can be cast as numerical representations
are surprisingly common, but only rarely is the connection to a variant number system noted
explicitly [GMPR77, Mye83, CMP88, KT96b].

1Thanks to Phil Wadler for this observation.
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functor SkewBinomialHeap (structure E : ORDERED) : HEAP =
struct

structure Elem = E

datatype Tree = Node of int� Elem.T � Elem.T list� Tree list
type Heap = Tree list

exception EMPTY

val empty = [ ]
fun isEmpty ts = null ts

fun rank (Node (r , x , xs , c)) = r

fun root (Node (r , x , xs, c)) = x

fun link (t1 as Node (r , x1, xs1, c1), t2 as Node ( , x2, xs2, c2)) =
if Elem.leq (x1, x2) then Node (r+1, x1, xs1, t2 :: c1) else Node (r+1, x2, xs2, t1 :: c2)

fun skewLink (x , t1, t2) =
let val Node (r , y , ys , c) = link (t1, t2)
in if Elem.leq (x , y) then Node (r , x , y :: ys, c) else Node (r , y , x :: ys, c) end

fun insTree (t , [ ]) = [t]
j insTree (t1, t2 :: ts) = if rank t1 < rank t2 then t1 :: t2 :: ts else insTree (link (t1, t2), ts)

fun mergeTrees (ts1, [ ]) = ts1

j mergeTrees ([ ], ts2) = ts2

j mergeTrees (t1 :: ts1, t2 :: ts2) = if rank t1 < rank t2 then t1 :: mergeTrees (ts1, t2 :: ts2)
else if rank t2 < rank t1 then t2 :: mergeTrees (t1 :: ts1,ts2)
else insTree (link (t1, t2), mergeTrees (ts1, ts2))

fun normalize [ ] = [ ]
j normalize (t :: ts) = insTree (t , ts)

fun insert (x , ts as t1 :: t2 :: rest) =
if rank t1 = rank t2 then skewLink (x , t1, t2) :: rest else Node (0, x , [ ], [ ]) :: ts

j insert (x , ts) = Node (0, x , [ ], [ ]) :: ts
fun merge (ts1, ts2) = mergeTrees (normalize ts1, normalize ts2)
fun findMin [ ] = raise EMPTY

j findMin [t] = root t
j findMin (t :: ts) = let val x = root t and y = findMin ts

in if Elem.leq (x , y) then x else y end

fun deleteMin [ ] = raise EMPTY

j deleteMin ts =
let fun getMin [t] = (t , [ ])

j getMin (t :: ts) = let val (t 0, ts 0) = getMin ts

in if Elem.leq (root t , root t 0) then (t , ts) else (t0, t :: ts 0) end
val (Node ( , x , xs, c), ts0) = getMin ts

fun insertAll ([ ], ts) = ts

j insertAll (x :: xs , ts) = insertAll (xs, insert (x , ts))
in insertAll (xs , mergeTrees (rev c, normalize ts

0)) end
end

Figure 6.10: Skew binomial heaps.
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Random-Access Lists Random-access lists are usually implemented in purely functional
languages as balanced trees, such as AVL trees [Mye84], Braun trees [Hoo92a, Pau91], or
leftist left-perfect leaf trees [KD96]. Such trees easily support O(log n) lookups and updates
(O(log i) in the case of Braun trees), but require O(log n) time for cons or tail .

Myers [Mye83] describes the first implementation of random-access lists based on skew
binary numbers. He augments a standard singly-linked list with auxiliary pointers allowing
one to skip arbitrarily far ahead in the list. The number of elements skipped by each auxiliary
pointer is controlled by the digits of a skew binary number. His scheme supports cons , head ,
and tail in O(1) time, and lookup in O(log n) time, but requires O(i) time for update . The
difficulty with updates is that his scheme contains many redundant pointers. Removing those
redundant pointers yields a structure isomorphic to the skew binary random-access lists of
Section 6.4.1, which first appeared in [Oka95b].

Kaplan and Tarjan [KT95] recently introduced the algorithmic notion of recursive slow-
down, and used it to design a new, purely functional implementation of real-time deques. A
pleasant accidental property of their data structure is that it also supports random access in
O(log d) worst-case time, where d is the distance from the desired element to the nearest end
of the deque (i.e., d = min(i; n � 1 � i)). We will consider a simplification of their data
structure in Chapter 8.

Finger search trees [GMPR77, Tsa85] support not only random access in O(log d) worst-
case time, but also insertions and deletions at arbitrary locations. Kaplan and Tarjan apply their
methods to purely functional finger search trees in [KT96b].

Binomial Heaps Binomial heaps were introduced by Vuillemin [Vui78] and extensively
studied by Brown [Bro78]. King [Kin94] showed that binomial heaps could be implemented
elegantly in a purely functional language (in his case, Haskell).

Fagerberg [Fag96] describes a generalization of binomial heaps in which the set Di of
allowable digits at position i in a sequence of digits can be different for each i. Varying the
choices for each Di allows a tradeoff between the costs of insert and meld , and the cost of
deleteMin .

Skew binomial heaps were originally presented, in a slightly different form, in [BO96].



Chapter 7

Data-Structural Bootstrapping

The term bootstrapping refers to “pulling yourself up by your bootstraps”. This seemingly
nonsensical image is representative of a common situation in computer science: problems
whose solutions require solutions to (simpler) instances of the same problem.

For example, consider loading an operating system from disk or tape onto a bare computer.
Without an operating system, the computer cannot even read from the disk or tape! One solu-
tion is a bootstrap loader, a very tiny, incomplete operating system whose only purpose is to
read in and pass control to a somewhat larger, more capable operating system that in turn reads
in and passes control to the actual, desired operating system. This can be viewed as a instance
of bootstrapping a complete solution from an incomplete solution.

Another example is bootstrapping a compiler. A common activity is to write the compiler
for a new language in the language itself. But then how do you compile that compiler? One
solution is to write a very simple, inefficient interpreter for the language in some other, existing
language. Then, using the interpreter, you can execute the compiler on itself, thereby obtain-
ing an efficient, compiled executable for the compiler. This can be viewed as an instance of
bootstrapping an efficient solution from an inefficient solution.

In his thesis [Buc93], Adam Buchsbaum describes two algorithmic design techniques he
collectively calls data-structural bootstrapping. The first technique, structural decomposition,
involves bootstrapping complete data structures from incomplete data structures. The second
technique, structural abstraction, involves bootstrapping efficient data structures from ineffi-
cient data structures. In this chapter, we reexamine data-structural bootstrapping, and describe
several functional data structures based on these techniques.
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7.1 Structural Decomposition

Structural decomposition is a technique for bootstrapping complete data structures from in-
complete data structures. Typically, this involves taking an implementation that can handle
objects only up to some bounded size (perhaps even zero), and extending it to handle objects
of unbounded size.

Consider typical recursive datatypes such as lists and binary leaf trees:

datatype � List = Nil j Cons of � � � List
datatype � Tree = Leaf of � j Node of � Tree � � Tree

In some ways, these can be regarded as instances of structural decomposition. Both consist
of a simple implementation of objects of some bounded size (zero for lists and one for trees)
and a rule for recursively decomposing larger objects into smaller objects until eventually each
object is small enough to be handled by the bounded case.

However, both of these definitions are particularly simple in that the recursive component
in each definition is identical to the type being defined. For instance, the recursive component
in the definition of � List is also � List . Such a datatype is called uniformly recursive.

In general, we reserve the term structural decomposition to describe recursive data struc-
tures that are non-uniform. For example, consider the following definition of sequences:

datatype � Seq = Empty j Seq of � � (� � �) Seq

Here, a sequence is either empty or a single element together with a sequence of pairs of
elements. The recursive component (� � �) Seq is different from � Seq so this datatype is
non-uniform. (In Chapter 8, we will consider an implementation of queues that is similar to
this definition of sequences.)

Why might such a non-uniform definition be preferable to a uniform definition? The more
sophisticated structure of non-uniform types often supports more efficient algorithms than their
uniform cousins. For example, compare the following size functions on lists and sequences.

fun sizeL Nil = 0 fun sizeS Empty = 0
j sizeL (Cons (x , xs)) = 1 + sizeL xs j sizeS (Seq (x , ps)) = 1 + 2 � sizeS ps

The function on lists runs in O(n) time whereas the function on sequences runs in O(log n)
time.

7.1.1 Non-Uniform Recursion and Standard ML

Although Standard ML allows the definition of non-uniform recursive datatypes, the type sys-
tem disallows the definition of most useful functions on such datatypes. For instance, consider
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the sizeS function on sequences. This function definition would be rejected by Standard ML
because the type system requires that all recursive calls in the body of a recursive function have
the same type as the enclosing function (i.e., recursive function definitions must be uniform).
The sizeS function violates this restriction because the enclosing sizeS has type � Seq ! int

but the inner sizeS has type (� � �) Seq ! int .

It is usually possible to convert a non-uniform type into a uniform type by introducing a
new datatype to collapse the different instances into a single type. For example, by collapsing
elements and pairs, the Seq type could be written

datatype � ElemOrPair = Elem of � j Pair of � ElemOrPair � � ElemOrPair
datatype � Seq = Empty j Seq of � ElemOrPair � � Seq

Then the sizeS function would be perfectly legal as written; both the enclosing sizeS and the
inner sizeS would have type � Seq ! int .

Although necessary to satisfy the Standard ML type system, this solution is unsatisfactory
in at least two ways. First, the programmer must manually insert Elem and Pair constructors
everywhere. This is tedious and error-prone. Second, and more importantly, this definition of
Seq is not isomorphic to the earlier, non-uniform definition of Seq . In particular, the first defi-
nition ensures that the outermost Seq constructor contains a single element, the second a pair of
elements, the third a pair of pairs of elements, and so on. However, the second definition makes
no such restriction; elements and pairs may be freely mixed. If such a restriction is desired,
the programmer must establish it as a system invariant. But if the programmer accidentally
violates this invariant — say, by using an element where a pair is expected — the type system
will be of no help in catching the error.

For these reasons, we will often present code as if Standard ML supported non-uniform
recursive function definitions, also known as polymorphic recursion [Myc84]. This code will
not be executable but will be easier to read. We will then sketch the coercions necessary to
eliminate the polymorphic recursion and make the code executable.

7.1.2 Queues Revisited

Consider the use of ++ in the banker’s queues of Section 3.4.2. During a rotation, the front
stream F is replaced by F ++ reverse R. After a series of rotations, F will have the form

(� � � ((f ++ reverse r1) ++ reverse r2) � � �++ reverse rk)

Append is well-known to be inefficient in left-associative contexts like this because it repeat-
edly processes the elements of the leftmost streams. For example, in this case, the elements of
f will be processed k times (once by each ++), and the elements of ri will be processed k� i+1
times (once by reverse and once for each following ++). In general, left-associative appends
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can easily lead to quadratic behavior. In this case, fortunately, the total cost of the appends is
still linear because each ri is at least twice as long as the one before. Still, this repeated pro-
cessing does sometimes make these queues slow in practice. In this section, we use structural
decomposition to eliminate this inefficiency.

Given that F has the above form and writing R as r , we can decompose a queue into three
parts: f , r , and the collection m = freverse r1; : : : ; reverse rkg. Previously, f , r , and each
reverse ri was a stream, but now we can represent f and r as ordinary lists and each reverse ri
as a suspended list. This eliminates the vast majority of suspensions and avoids almost all of
the overheads associated with lazy evaluation. But how should we represent the collection m?
As we will see, this collection is accessed in FIFO order, so using structural decomposition
we can represent it as a queue of suspended lists. As with any recursive type, we need a base
case, so we will represent empty queues with a special constructor.1 The new representation is
therefore

datatype � Queue =
Empty
j Queue of fF : � list, M : � list susp Queue, LenFM : int, R : � list, LenR : intg

LenFM is the combined length of F and all the suspended lists in M (i.e., what used to be
simply LenF in the old representation). R can never be longer than this combined length. In
addition, F must always be non-empty. (In the old representation, F could be empty if the
entire queue was empty, but now we represent that case separately.)

As always, the queue functions are simple to describe.

fun snoc (Empty, x ) = Queue fF = [x ], M = Empty, LenFM = 1, R = [ ], LenR = 0g
j snoc (Queue fF = f , M = m , LenFM = lenFM , R = r , LenR = lenRg, x ) =

queue fF = f , M = m , LenFM = lenFM , R = x :: r , LenR = lenR+1g
fun head (Queue fF = x :: f , . . .g) = x

fun tail (Queue fF = x :: f , M = m , LenFM = lenFM , R = r , LenR = lenRg) =
queue fF = f , M = m , LenFM = lenFM�1, R = r , LenR = lenRg

The real action is in the pseudo-constructor queue . If R is too long, queue creates a suspension
to reverse R and adds the suspension to M . After checking the length of R, queue invokes a
helper function checkF that guarantees that F is non-empty. If both F and M are empty, then
the entire queue is empty. Otherwise, if F is empty we remove the first suspension from M ,
force it, and install the resulting list as the new F .

fun queue (q as fF = f , M = m , LenFM = lenFM , R = r , LenR = lenRg) =
if lenR � lenFM then checkF q

else checkF fF = f , M = snoc (m , $rev r ), LenFM = lenFM+lenR, R = [ ], LenR = 0g

1A slightly more efficient alternative is to represent queues up to some fixed size simply as lists.
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structure BootstrappedQueue : QUEUE = (� assumes polymorphic recursion! �)
struct

datatype � Queue =
Empty
j Queue of fF : � list, M : � list susp Queue, LenFM : int, R : � list, LenR : int g

exception EMPTY

val empty = Empty
fun isEmpty Empty
j isEmpty (Queue ) = false

fun queue (q as fF = f , M = m, LenFM = lenFM , R = r , LenR = lenRg) =
if lenR � lenFM then checkF q

else checkF fF = f , M = snoc (m, $rev r ), LenFM = lenFM+lenR, R = [ ], LenR = 0g
and checkF fF = [ ], M = Empty, . . . g = Empty

j checkF fF = [ ], M = m, LenFM = lenFM , R = r , LenR = lenRg) =
Queue fF = force (head m), M = tail m, LenFM = lenFM , R = r , LenR = lenRg

j checkF q = Queue q

and snoc (Empty, x ) = Queue fF = [x ], M = Empty, LenFM = 1, R = [ ], LenR = 0g
j snoc (Queue fF = f , M = m, LenFM = lenFM , R = r , LenR = lenRg, x ) =

queue fF = f , M = m, LenFM = lenFM , R = x :: r , LenR = lenR+1g
and head Empty = raise EMPTY

j head (Queue fF = x :: f , . . . g) = x

and tail Empty = raise EMPTY

j tail (Queue fF = x :: f , M = m, LenFM = lenFM , R = r , LenR = lenRg) =
queue fF = f , M = m, LenFM = lenFM�1, R = r , LenR = lenRg

end

Figure 7.1: Bootstrapped queues based on structural decomposition.

and checkF fF = [ ], M = Empty, . . .g = Empty
j checkF fF = [ ], M = m , LenFM = lenFM , R = r , LenR = lenRg) =

Queue fF = force (head m), M = tail m , LenFM = lenFM , R = r , LenR = lenRg

j checkF q = Queue q

Note that queue and checkF call snoc and tail , which in turn call queue . These functions
must therefore all be defined mutually recursively. The complete implementation appears in
Figure 7.1.

Remark: To implement these queues without polymorphic recursion, we redefine the datatype
as
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datatype � ElemOrList = Elem of � j List of � ElemOrList list susp
datatype � Queue =

Empty
j Queue of fF : � ElemOrList list, M : � Queue, LenFM : int,

R : � ElemOrList list, LenR : int g

Then snoc and head add and remove the Elem constructor when inserting or inspecting an ele-
ment, and queue and checkF add and remove the List constructor when inserting or removing
a list from M . 3

These queues create a suspension to reverse the rear list at exactly the same time as banker’s
queues, and force the suspension one operation earlier than banker’s queues. Thus, since the re-
verse computation contributes onlyO(1) amortized time to each operation on banker’s queues,
it also contributes only O(1) amortized time to each operation on bootstrapped queues. How-
ever, the running time of the snoc and tail operations is not constant! Note that snoc calls
queue , which in turn might call snoc on M . In this way we might get a cascade of calls to
snoc , one at each level of the queue. However, successive lists in M at least double in size so
the length of M is O(log n). Since the size of the middle queue decreases by at least a logarith-
mic factor at each level, the entire queue can only have depth O(log� n). snoc performs O(1)
amortized work at each level, so in total snoc requires O(log� n) amortized time.

Similarly, tail might result in recursive calls to both snoc and tail . The snoc might in turn
recursively call snoc and the tail might recursively call both snoc and tail . However, for any
given level, snoc and tail can not both recursively call snoc. Therefore, both snoc and tail are
each called at most once per level. Since both snoc and tail do O(1) amortized work at each
level, the total amortized cost of tail is also O(log� n).

Remark: O(log� n) is constant in practice. To have a depth of more than five, a queue would
need to contain at least 265536 elements. In fact, if one represents queues of up to size 4 simply
as lists, then all queues with fewer than about 4 billion elements will have no more than three
levels. 3

Although it makes no difference in practice, one could reduce the amortized running time
of snoc and tail to O(1) by wrapping M in a suspension and executing all operations on M

lazily. The type of M then becomes � list susp Queue susp.

Yet another variation that yields O(1) behavior is to abandon structural decomposition and
simply use a stream of type � list susp Stream forM . Then every queue has exactly two levels.
Adding a new list suspension to the end of the stream with ++ takes O(jM j) time, but, since
++ is incremental, this cost can be amortized over the operations on the top-level queue. Since
these queues are not recursive, we have no need for polymorphic recursion. This variation is
explored in greater detail in [Oka96a].



7.2 Structural Abstraction 91

Hint to Practitioners: In practice, variations on these queues are the fastest known imple-
mentations for applications that use persistence sparingly, but that require good behavior even
in pathological cases.

7.2 Structural Abstraction

The second kind of data-structural bootstrapping is structural abstraction, which is typically
used to extend an implementation of collections, such as lists or heaps, with an efficient join
function for combining two collections. For many implementations, designing an efficient
insert function, which adds a single element to a collection, is easy, but designing an efficient
join function is difficult. Structural abstraction creates collections that contain other collections
as elements. Then two collections can be joined by simply inserting one collection into the
other.

The ideas of structural abstraction can largely be described at the level of types. Suppose
�C is a collection datatype with elements of type �, and that this datatype supports an efficient
insert function, with signature

val insert : � � � C ! � C

Call � C the primitive type. From this type, we wish to derive a new datatype � B , called the
bootstrapped type, such that � B supports both insert and join efficiently, with signatures

val insertB : � � � B ! � B
val join

B
: � B � � B ! � B

(We use the B subscript to distinguish functions on the bootstrapped type from functions on
the primitive type.) In addition, � B should support an efficient unit function for creating a
new singleton collection.

val unitB : �! � B

Then, insertB can be implemented simply as

fun insertB (x , b) = join
B

(unitB x , b)

The basic idea of structural abstraction is to somehow represent bootstrapped collections as
primitive collections of other bootstrapped collections. Then join

B
can be implemented in

terms of insert (not insertB!) roughly as

fun join
B

(b1, b2) = insert (b1, b2)
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This inserts b1 as an element of b2. Alternatively, one could insert b2 as an element of b1, but
the point is that join has been reduced to simple insertion.

Of course, the situation is not quite that simple. Based on the above description, we might
attempt to define � B as

datatype � B = B of (� B) C

This definition can be viewed as specifying an isomorphism

� B �= (� B)C

By unrolling this isomorphism a few times, we can quickly spot the flaw in this definition.

� B �= (� B)C �= ((� B)C )C �= � � � �= ((� � �C)C)C

The primitive elements of type � have disappeared! We can solve this by making each boot-
strapped collection a pair of a single element with a primitive collection.

datatype � B = B of � � (� B) C

Then, for instance, unitB can be defined as

fun unitB x = B (x , empty)

where empty is the empty primitive collection.

But now we have another problem. If every bootstrapped collection contains at least a
single element, how do we represent the empty bootstrapped collection? We therefore refine
the type one more time.

datatype � B = Empty j B of � � (� B) C

Remark: Actually, we will always arrange that the primitive collection C contains only non-
empty bootstrapped collections. This situation can be described more precisely by the types

datatype � B+ = B+ of � � (� B+) C
datatype � B = Empty j NonEmpty of B+

Unfortunately, definitions of this form lead to more verbose code. Hence, for presentation
purposes, we will use the earlier less precise, but more concise, definition. 3

Now, we can refine the above templates for insertB and join
B

as
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fun insertB (x , Empty) = B (x , empty)
j insertB (x , B (y , c)) = B (x , insert (unitB y , c))

fun join
B

(b, Empty) = b

j join
B

(Empty, b) = b

j join
B

(B (x , c), b) = B (x , insert (b, c))

These templates can easily be varied in several ways. For instance, in the second clause of
insertB, we could reverse the roles of x and y . Similarly, in the third clause of join

B
, we could

reverse the roles of the first argument and the second argument.

For any given collection, there is typically some distinguished element that can be inspected
or deleted, such as the first element or the smallest element. The insertB and join

B
templates

should be instantiated in such a way that the distinguished element in the bootstrapped col-
lection B (x , c) is x itself. The creative part of designing a bootstrapped data structure using
structural abstraction is implementing the deleteB routine that discards the distinguished ele-
ment x . After discarding x , we are left with a collection of type (� B ) C , which must then be
converted into a bootstrapped collection of type � B . The details of how this is accomplished
vary from data structure to data structure.

We next instantiate these templates in two ways. First, we bootstrap queues to support
catenation (i.e., append) efficiently. Second, we bootstrap heaps to support merge efficiently.

7.2.1 Lists With Efficient Catenation

The first data structure we will implement using structural abstraction is catenable lists, as
specified by the signature in Figure 7.2. Catenable lists extend the usual list signature with an
efficient append function (++). As a convenience, catenable lists also support snoc, even though
we could easily simulate snoc (xs , x ) by xs ++ cons (x , empty ). Because of this ability to add
elements to the rear of a list, a more accurate name for this data structure would be catenable
output-restricted deques.

We obtain an efficient implementation of catenable lists that supports all operations in O(1)
amortized time by bootstrapping an efficient implementation of FIFO queues. The exact choice
of implementation for the primitive queues is largely irrelevant; any of the persistent, constant-
time queue implementations will do, whether amortized or worst-case.

Given an implementation Q of primitive queues matching the QUEUE signature, structural
abstraction suggests that we can represent catenable lists as

datatype � Cat = Empty j Cat of � � � Cat Q.Queue

One way to interpret this type is as a tree where each node contains an element, and the children
of each node are stored in a queue from left to right. Since we wish for the first element of the
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signature CATENABLELIST =
sig

type � Cat

exception EMPTY

val empty : � Cat
val isEmpty : � Cat ! bool

val cons : � � � Cat ! � Cat
val snoc : � Cat � �! � Cat
val ++ : � Cat � � Cat ! � Cat

val head : � Cat ! � (� raises EMPTY if list is empty �)
val tail : � Cat ! � Cat (� raises EMPTY if list is empty �)

end

Figure 7.2: Signature for catenable lists.
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Figure 7.3: A tree representing the list a : : : t.

list to be easily accessible, we will store it at the root of the tree. This suggests ordering the
elements in a preorder, left-to-right traversal of the tree. A sample list containing the elements
a : : : t is shown in Figure 7.3.

Now, head is simply

fun head (Cat (x , )) = x

To catenate two non-empty lists, we link the two trees by making the second tree the last child
of the first tree.
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Figure 7.4: Illustration of the tail operation.

fun xs ++ Empty = xs

j Empty ++ xs = xs

j xs ++ ys = link (xs , ys)

where link adds its second argument to the queue of its first argument.

fun link (Cat (x , q), s) = Cat (x , Q.snoc (q , s))

cons and snoc simply call ++.

fun cons (x , xs ) = Cat (x , Q.empty) ++ xs

fun snoc (xs , x ) = xs ++ Cat (x , Q.empty)

Finally, given a non-empty tree, tail should discard the root and somehow combine the queue
of children into a single tree. If the queue is empty, then tail should return Empty . Otherwise
we link all the children together.

fun tail (Cat (x , q)) = if Q.isEmpty q then Empty else linkAll q

Since catenation is associative, we can link the children in any order we desire. However, a
little thought reveals that linking the children from right to left, as illustrated in Figure 7.4,
will result in the least duplicated work on subsequent calls to tail . Therefore, we implement
linkAll as

fun linkAll q = let val t = Q.head q

val q 0 = Q.tail q
in if Q.isEmpty q 0 then t else link (t , linkAll q 0) end

Remark: linkAll is an instance of the foldr1 program schema. 3
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In this implementation, tail may take as much as O(n) time, but it is not difficult to show
that the amortized cost of tail is only O(1), provided lists are used ephemerally. Unfortunately,
this implementation is not efficient when used persistently.

To achieve good amortized bounds even in the face of persistence, we must somehow in-
corporate lazy evaluation into this implementation. Since linkAll is the only routine that takes
more thanO(1) time, it is the obvious candidate. We rewrite linkAll to suspend every recursive
call. This suspension is forced when a tree is removed from a queue.

fun linkAll q = let val $t = Q.head q
val q 0 = Q.tail q

in if Q.isEmpty q 0 then t else link (t , $linkAll q 0) end

For this definition to make sense, every queue must contain tree suspensions rather than trees,
so we redefine the datatype as

datatype � Cat = Empty j Cat of � � � Cat susp Q.Queue

To conform to this new datatype, ++ must spuriously suspend its second argument.

fun xs ++ Empty = xs

j Empty ++ xs = xs

j xs ++ ys = link (xs , $ys)

The complete implementation is shown in Figure 7.5.

head clearly runs in O(1) worst-case time, while cons and snoc have the same time re-
quirements as ++. We now prove that ++ and tail run in O(1) amortized time using the banker’s
method. The unshared cost of each is O(1), so we must merely show that each discharges only
O(1) debits.

Let dt(i) be the number of debits on the ith node of tree t and let Dt(i) =
P

i

j=0
dt(j) be

the cumulative number of debits on all nodes of t up to and including node i. Finally, let Dt be
the total number debits on all nodes in t (i.e., Dt = Dt(jtj � 1)). We maintain two invariants
on debits.

First, we require that the number of debits on any node be bounded by the degree of the
node (i.e., dt(i) � degree

t
(i)). Since the sum of degrees of all nodes in a non-empty tree is one

less than the size of the tree, this implies that the total number of debits in a tree is bounded by
the size of the tree (i.e., Dt < jtj). We will maintain this invariant by incrementing the number
of debits on a node only when we also increment its degree.

Second, we insist that the Dt(i) be bounded by some linear function on i. The particular
linear function we choose is

Dt(i) � i+ depth
t
(i)
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functor CatenableList (structure Q : QUEUE) : CATENABLELIST =
struct

datatype � Cat = Empty j Cat of � � � Cat susp Q.Queue

exception EMPTY

val empty = Empty
fun isEmpty Empty = true
j isEmpty (Cat q) = false

fun link (Cat (x , q), s) = Cat (x , Q.snoc (q , s))
fun linkAll q = let val $t = Q.head q

val q 0 = Q.tail q
in if Q.isEmpty q

0 then t else link (t , $linkAll q 0) end

fun xs ++ Empty = xs

j Empty ++ xs = xs

j xs ++ ys = link (xs , $ys)
fun cons (x , xs) = Cat (x , Q.empty) ++ xs

fun snoc (xs, x ) = xs ++ Cat (x , Q.empty)

fun head Empty = raise EMPTY

j head (Cat (x , )) = x

fun tail Empty = raise EMPTY

j tail (Cat (x , q)) = if Q.isEmpty q then Empty else linkAll q
end

Figure 7.5: Catenable lists.

where depth
t
(i) is the length of the path in t from the root to node i. This invariant is called

the left-linear debit invariant. Notice that the left-linear debit invariant guarantees that dt(0) =
Dt(0) � 0 + 0 = 0, so all debits on a node have been discharged by the time it reaches the
root. (In fact, the root is not even suspended!) The only time we actually force a suspension is
when the suspended node is about become the new root.

Theorem 7.1 ++ and tail maintain both debit invariants by discharging one and three debits,
respectively.

Proof: (++) The only debit created by ++ is for the trivial suspension of its second argument.
Since we are not increasing the degree of this node, we immediately discharge the new debit.
Now, assume that t1 and t2 are non-empty and let t = t1++t2. Let n = jt1j. Note that the index,
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depth, and cumulative debits of each node in t1 are unaffected by the catenation, so for i < n

Dt(i) = Dt1
(i)

� i+ depth
t1
(i)

= i+ depth
t
(i)

The nodes in t2 increase in index by n, increase in depth by one, and accumulate the total debits
of t1, so

Dt(n+ i) = Dt1
+Dt2

(i)
< n+Dt2

(i)
� n+ i+ depth

t2
(i)

= n+ i+ depth
t
(n+ i)� 1

< (n+ i) + depth
t
(n+ i)

Thus, we do not need to discharge any further debits to maintain the left-linear debit invariant.

(tail ) Let t0 = tail t. After discarding the root of t, we link the children t0 : : : tm�1 from
right to left. Let t0

j
be the partial result of linking tj : : : tm�1. Then t

0 = t
0
0. Since every link

except the outermost is suspended, we assign a single debit to the root of each tj , 0 < j <

m� 1. Note that the degree of each of these nodes increases by one. We also assign a debit to
the root of t0

m�1 because the last call to linkAll is suspended even though it does not call link .
Since the degree of this node does not change, we immediately discharge this final debit.

Now, suppose the ith node of t appears in tj . By the left-linear debit invariant, we know
that Dt(i) < i + depth

t
(i), but consider how each of these quantities changes with the tail . i

decreases by one because the first element is discarded. The depth of each node in tj increases
by j � 1 (see Figure 7.4) while the cumulative debits of each node in tj increase by j. Thus,

Dt0(i� 1) = Dt(i) + j

� i+ depth
t
(i) + j

= i+ (depth
t0
(i� 1) � (j � 1)) + j

= (i� 1) + depth
t0
(i� 1) + 2

Discharging the first two debits restores the invariant, for a total of three debits. 2

Hint to Practitioners: Given a good implementation of queues, this is the fastest known
implementation of persistent catenable lists, especially for applications that use persistence
heavily.
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7.2.2 Heaps With Efficient Merging

Next, we apply structural abstraction to heaps to obtain an efficient merge operation. This
section reflects joint work with Gerth Brodal.

Assume that we have an implementation of heaps that supports insert in O(1) worst-case
time and merge , �ndMin , and deleteMin in O(log n) worst-case time. The skew binomial
heaps of Section 6.4.2 are one such implementation. Using structural abstraction, we improve
the running time of both �ndMin and merge to O(1) worst-case time.

For now, assume that the type of heaps is polymorphic in the type of elements, and that,
for any type of elements, we magically know the right comparison function to use. Later we
will account for the fact that both the type of elements and the comparison function on those
elements are fixed at functor-application time.

Under the above assumption, the type of bootstrapped heaps can be given as

datatype � Heap = Empty j Heap of � � (� Heap) H.Heap

where H is the implementation of primitive heaps. The element stored at any given Heap node
will be the minimum element in the subtree rooted at that node. The elements of the primitive
heaps are themselves bootstrapped heaps. Within the primitive heaps, bootstrapped heaps are
ordered with respect to their minimum elements (i.e., their roots).

Since the minimum element is stored at the root, �ndMin is simply

fun findMin (Heap (x , )) = x

To merge two bootstrapped heaps, we insert the heap with the larger root into the heap with
the smaller root.

fun merge (Empty, h) = h

j merge (h , Empty) = h

j merge (h1 as Heap (x , p1), h2 as Heap (y , p2)) =
if x < y then Heap (x , H.insert (h2, p1)) else Heap (y , H.insert (h1, p2))

(In the comparison x < y , we assume that < is the right comparison function for these ele-
ments.) Now, insert is defined in terms of merge .

fun insert (x , h) = merge (Heap (x , H.empty), h)

Finally, we consider deleteMin , defined as

fun deleteMin (Heap (x , p)) =
if H.isEmpty p then Empty
else let val (Heap (y , p1)) = H.findMin p

val p2 = H.deleteMin p

in Heap (y , H.merge (p1, p2)) end
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After discarding the root, we first check if the primitive heap p is empty. If it is, then the
new heap is empty. Otherwise, we find and remove the minimum element in p, which is the
bootstrapped heap with the overall minimum element; this element becomes the new root.
Finally, we merge p1 and p2 to obtain the new primitive heap.

The analysis of these heaps is simple. Clearly, �ndMin runs in O(1) worst-case time
regardless of the underlying implementation of primitive heaps. insert and merge depend only
on H :insert . Since we have assumed that H :insert runs in O(1) worst-case time, so do insert
and merge . Finally, deleteMin calls H :�ndMin , H :deleteMin , and H :merge. Since each of
these runs in O(log n) worst-case time, so does deleteMin .

Until now, we have assumed that heaps are polymorphic, but in fact the HEAP signature
specifies that heaps are monomorphic — both the type of elements and the comparison function
on those elements are fixed at functor-application time. The implementation of a heap is a
functor that is parameterized by the element type and the comparison function. Therefore, the
functor that we use to bootstrap heaps maps heap functors to heap functors, rather than heap
structures to heap structures. Using higher-order functors [MT94], this can be expressed as

functor Bootstrap (functor MakeH (structure E : ORDERED) : sig
include HEAP

sharing Elem = E
end)

(structure E : ORDERED) : HEAP = . . .

The Bootstrap functor takes the MakeH functor as an argument. The MakeH functor takes
the ORDERED structure E , which contains the element type and the comparison function, and
returns a HEAP structure. Given MakeH , Bootstrap returns a functor that takes an ORDERED

structure E and returns a HEAP structure.

Remark: The sharing constraint in the signature for the MakeH functor is necessary to ensure
that the functor returns a heap structure with the desired element type. This kind of sharing
constraint is extremely common with higher-order functors. 3

Now, to create a structure of primitive heaps with bootstrapped heaps as elements, we apply
MakeH to the ORDERED structure BootstrappedH that defines the type of bootstrapped heaps
and a comparison function that orders two bootstrapped heaps by their minimum elements.
(The ordering relation is undefined on empty bootstrapped heaps.) This is expressed by the
following mutually recursive structure declarations.

structure rec BootstrappedH =
struct

datatype T = Empty j Heap of Elem.T � H.Heap
fun leq (Heap (x , ), Heap (y , )) = Elem.leq (x , y)

end
and H = MakeH (structure E = BootstrappedH)
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where Elem is the ORDERED structure specifying the true elements of the bootstrapped heap.
The complete implementation of the Bootstrap functor is shown in Figure 7.6.

Remark: Standard ML does not support recursive structure declarations, and for good reason
— this declaration does not make sense for MakeH functors that have effects. However, the
MakeH functors to which we might consider applying Bootstrap, such as SkewBinomialHeap
from Section 6.4.2, are well-behaved in this respect, and the recursive pattern embodied by the
Bootstrap functor does make sense for these functors. It is unfortunate that Standard ML does
not allow us to express bootstrapping in this fashion.

We can still implement bootstrapped heaps in Standard ML by inlining a particular choice
for MakeH , such as SkewBinomialHeap , and then eliminating BootstrappedH and H as sep-
arate structures. The recursion on structures then reduces to recursion on datatypes, which is
supported by Standard ML. 3

7.3 Related Work

Data-Structural Bootstrapping Buchsbaum et al. identified data-structural bootstrapping
as a general data structure design technique in [Buc93, BT95, BST95]. Structural decomposi-
tion and structural abstraction had previously been used in [Die82] and [DST94], respectively.

Catenable Lists Although it is relatively easy to design alternative representations of persis-
tent lists that support efficient catenation (see, for example, [Hug86]), such alternative repre-
sentations seem almost inevitably to sacrifice efficiency on the head and/or tail functions.

Myers [Mye84] described a representation based on AVL trees that supports all relevant list
functions in O(log n) time.

Driscoll, Sleator, and Tarjan achieved the first sub-logarithmic implementation in [DST94].
They represent catenable lists as n-ary trees with the elements at the leaves. To keep the left-
most leaves near the root, they use a restructuring operation known as pull that removes the first
grandchild of the root and reattaches it directly to the root. Unfortunately, catenation breaks
all useful invariants based on this restructuring heuristic, so they are forced to develop quite
a bit of machinery to support catenation. The resulting implementation supports catenation
in O(log log k) worst-case time, where k is the number of list operations (note that k may be
much smaller than n), and all other functions in O(1) worst-case time.

Buchsbaum and Tarjan [BT95] use structural decomposition to recursively decompose
catenable deques of size n into catenable deques of size O(log n). They use the pull oper-
ation of Driscoll, Sleator, and Tarjan to keep their tree balanced (i.e., of depth O(log n)), and
then use the smaller deques to represent the left and right spines of each subtree. This yields an
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functor Bootstrap (functor MakeH (structure E : ORDERED) : sig
include HEAP

sharing Elem = E
end)

(structure E : ORDERED) : HEAP =
struct

structure Elem = E

(� recursive structures not supported in SML! �)
structure rec BootstrappedH =

struct
datatype T = Empty j Heap of Elem.T � H.Heap
fun leq (Heap (x , ), Heap (y , )) = Elem.leq (x , y)

end
and H = MakeH (structure E = BootstrappedH)

open BootstrappedH (� expose Empty and Heap constructors �)

type Heap = BootstrappedH.T

exception EMPTY

val empty = Empty
fun isEmpty Empty = true
j isEmpty (Heap ) = false

fun merge (Empty, h) = h

j merge (h, Empty) = h

j merge (h1 as Heap (x , p1), h2 as Heap (y , p2)) =
if Elem.leq (x , y) then Heap (x , H.insert (h2, p1)) else Heap (y , H.insert (h1, p2))

fun insert (x , h) = merge (Heap (x , H.empty), h)

fun findMin Empty = raise EMPTY

j findMin (Heap (x , )) = x

fun deleteMin Empty = raise EMPTY

j deleteMin (Heap (x , p)) =
if H.isEmpty p then Empty
else let val (Heap (y , p1)) = H.findMin p

val p2 = H.deleteMin p

in Heap (y , H.merge (p1, p2)) end
end

Figure 7.6: Bootstrapped heaps.
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implementation that supports deletion of the first or last element in O(log� k) worst-case time,
and all other deque functions, including catenation, in O(1) worst-case time.

Kaplan and Tarjan [KT95] finally achieved an implementation that supports catenation and
all other usual list functions in O(1) worst-case time. Their data structure is based on the
technique of recursive slowdown. We will describe recursive slowdown in greater detail in
Chapter 8.

The implementation of catenable lists in Section 7.2.1 first appeared in [Oka95a]. It is
much simpler than Kaplan and Tarjan’s, but yields amortized bounds rather than worst-case
bounds.

Mergeable Heaps Many imperative implementations support insert , merge , and �ndMin in
O(1) amortized time, and deleteMin in O(log n) amortized time, including binomial queues
[KL93], Fibonacci heaps [FT87], relaxed heaps [DGST88], V-heaps [Pet87], bottom-up skew
heaps [ST86b], and pairing heaps [FSST86]. However, of these, only pairing heaps appear
to retain their amortized efficiency when combined with lazy evaluation in a persistent set-
ting [Oka96a], and, unfortunately, the bounds for pairing heaps have only been conjectured,
not proved.

Brodal [Bro95, Bro96] achieves equivalent worst-case bounds. His original data structure
[Bro95] can be implemented purely functionally (and thus made persistent) by combining the
recursive-slowdown technique of Kaplan and Tarjan [KT95] with a purely functional imple-
mentation of real-time deques, such as the real-time deques of Section 5.4.3. However, such
an implementation would be both complicated and slow. Brodal and Okasaki simplify this im-
plementation in [BO96], using skew binomial heaps (Section 6.4.2) and structural abstraction
(Section 7.2.2).

Polymorphic Recursion Several attempts have been made to extend Standard ML with poly-
morphic recursion, such as [Myc84, Hen93, KTU93]. One complication is that type inference
is undecidable in the presence of polymorphic recursion [Hen93, KTU93], even though it is
tractable in practice. Haskell 1.3 [P+96] sidesteps this problem by allowing polymorphic re-
cursion whenever the programmer provides an explicit type signature.
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Chapter 8

Implicit Recursive Slowdown

Implicit recursive slowdown is a lazy variant of the recursive-slowdown technique of Kaplan
and Tarjan [KT95]. We first review recursive slowdown, and then show how lazy evaluation
can significantly simplify this technique. Finally, we illustrate implicit recursive slowdown
with implementations of queues and catenable deques.

8.1 Recursive Slowdown

The simplest illustration of recursive slowdown is a variant of binary numbers that can be
incremented in O(1) worst-case time. (We have already seen several such variants, including
skew binary numbers and segmented binary numbers.) As always, the trick is to avoid cascades
of carries. In recursive slowdown, we allow digits to be 0, 1, or 2. 2s exist only temporarily
and represent a carry in progress. To increment a number, we first increment the first digit,
which is guaranteed not to be 2. We then find the first non-1 digit. If it is 0, we do nothing,
but if it is 2, we convert it to 0 and increment the following digit, which is also guaranteed not
to be 2. Changing a 2 to a 0 and incrementing the following digit corresponds to executing a
single carry step.

It is easy to show that following the above rules maintains the invariant that the first 2 is
preceded by at least one 0 (and any number of 1s) and that any pair of2s is separated by at least
one 0 (and any number of 1s). This invariant guarantees that we never attempt to increment a
digit that is already 2.

Since we want the increment function to run in O(1) worst-case time, we cannot afford to
scan the digits to find the first non-1 digit. Instead, we choose a representation that groups
contiguous blocks of 1s together.

datatype Digit = Zero j Ones of int j Two
type Nat = Digit list
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The integer associated with Ones is the size of the block. Now the first non-1 digit is either
the first element of the Digit list or the second element if the first element is a Ones block.

To increment a number, we first blindly increment the first digit, which is either 0 or 1. If it
is 0, it becomes 1 (and possibly joins an existing block of 1s). If it is 1, it becomes 2 (possibly
eliminating an existing block of 1s). This is achieved by the following function:

fun simpleInc [ ] = [Ones 1]
j simpleInc (Zero :: ds) = ones (1, ds)
j simpleInc (Ones k :: ds) = Two :: ones (k�1, ds)

where the ones pseudo-constructor discards empty blocks and combines adjacent blocks of 1s.

fun ones (0, ds) = ds

j ones (k1, Ones k2 :: ds) = Ones (k1+k2) :: ds
j ones (k , ds) = Ones k :: ds

The �xup function finds the first non-1 digit, and if it is 2, converts it to 0 and blindly incre-
ments the following digit.

fun fixup (Two :: ds) = Zero :: simpleInc ds
j fixup (Ones k :: Two :: ds) = Ones k :: Zero :: simpleInc ds
j fixup ds = ds

Finally, inc calls simpleInc , followed by �xup .

fun inc ds = fixup (simpleInc ds)

Remark: Actually, in a functional language, inc would typically be implemented using func-
tion composition, as in

val inc = fixup � simpleInc

� is a higher-order operator that takes two functions and returns a function such that (f �g) x =
f (g x ). 3

This implementation can serve as a template for many other data structures. Such a data
structure comprises a sequence of levels, where each level can be classified as green, yellow, or
red. Each color corresponds to a digit in the above implementation, with green=0, yellow=1,
and red=2. We maintain the invariants that the first red level is preceded by at least one green
level, and that any two red levels are separated by at least one green level. An operation on
any given object may degrade the first level from green to yellow, or from yellow to red, but
never from green to red. A �xup procedure then checks if the first non-yellow level is red, and
if so converts it to green, possibly degrading the following level from green to yellow, or from
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yellow to red. Consecutive yellow levels are grouped in a block to support efficient access to
the first non-yellow level. Kaplan and Tarjan [KT95] describe two implementations based on
this template: real-time deques and real-time catenable lists.

8.2 Implicit Recursive Slowdown

The essence of the recursive-slowdown implementation of binary numbers is a method for
executing carries incrementally. By now we have seen many examples of incremental functions
implemented with lazy evaluation. By combining the ideas of recursive slowdown with lazy
evaluation, we obtain a new technique, called implicit recursive slowdown, that is significantly
simpler than the original.

Consider the following, straightforward implementation of binary numbers as streams of
0s and 1s:

datatype Digit = Zero j One
type Nat = Digit Stream

fun inc ($Nil) = $Cons (One, $Nil)
j inc ($Cons (Zero, ds)) = $Cons (One, ds)
j inc ($Cons (One, ds)) = $Cons (Zero, inc ds)

This is exactly the same as the original presentation of binary numbers in Chapter 6, except
with streams instead of lists.

Remark: This implementation is less lazy than it could be. It forces its argument immediately,
and then creates a suspension of the result. A reasonable alternative would be to also suspend
forcing the argument, as in

fun inc0 ds = $case force ds of
Nil ) Cons (One, $Nil)
j Cons (Zero, ds0) ) Cons (One, ds 0)
j Cons (One, ds0) ) Cons (Zero, inc0 ds 0)

However, in this chapter, we will often need to force one level ahead of the current level, so we
stick with the first implementation. 3

Theorem 8.1 inc runs in O(1) amortized time.

Proof: We use the banker’s method. By inspection, the unshared cost of inc is O(1). There-
fore, to show that inc runs in O(1) amortized time, we must merely show that inc discharges
only O(1) debits per operation. In fact, we show that inc discharges only two debits.
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Each suspension except the outermost is the tail of some digit. We allow the tail of a 0 to
retain a single debit, but require that the tail of a 1 be fully paid off. In addition, the outermost
suspension may not have any debits.

We argue by debit passing. Whenever a suspension has more debits than it is allowed,
we pass those debits to the enclosing suspension, which is the tail of the previous digit. We
discharge debits whenever they reach the outermost suspension. Debit passing is safe because
earlier tails must be forced before later tails can be forced. Passing responsibility for discharg-
ing debits from a later tail to an earlier tail ensures that those debits will be discharged before
the earlier tail is forced, and hence before the later tail can be forced. We show by induction
on the depth of recursion that, after any cascade of incs, the outermost suspension always has
two debits that must be discharged.

First, consider a call to inc that changes a 0 to a 1 (i.e., the final call in a cascade). We begin
by creating a debit to cover the cost of the new suspension. In addition, the new suspension
receives a debit from the current digit’s tail, since that tail’s debit allowance has dropped from
one to zero. Altogether, the new suspension has been charged two debits.

Next, consider a call to inc that changes a 1 to a 0 and recurses. Again, we begin by
creating a debit to cover the cost of the new suspension. When forced, this suspension will
force the current digit’s tail, but that is okay since the tail of a 1 has no debits. Finally, the new
suspension receives a single debit from the recursive call to inc , since that suspension (which
is the tail of a 0) is allowed one debit, but, by the inductive hypothesis, has been charged two
debits. Again, the new suspension has been charged a total of two debits. 2

As with recursive slowdown, this very simple implementation can serve as a template for
many other data structures. Such a data structure consists of a lazy sequence of levels (digits),
where each level can be classified as green (0) or yellow (1). An operation on an object begins
at the outer level and only occasionally propagates to the next level. In particular, an operation
on a green level never propagates to the next level but may degrade the level from green to
yellow. Operations on yellow levels may (lazily) propagate to the next level, but only after
upgrading the current level to green. For example, with binary numbers, incrementing a 0
produces a 1 and stops. Incrementing a 1 recurses to the next level, but produces a 0 at the
current level.

The intuition behind this framework is that successive operations at a given level cannot
both propagate to the next level; there is a delay of at least one operation when the level is
changed from green to yellow. Hence, every other operation may affect the second level,
but only every fourth operation may affect the third level, and so on. Intuitively, then, the
amortized cost of a single operation is approximately O(1 + 1=2 + 1=4 + 1=8 + � � �) = O(1).
Unfortunately, this clean intuitive picture is complicated by persistence. However, the above
proof can be generalized to apply to any problem in this framework.

Clearly, implicit recursive slowdown is much simpler than recursive slowdown. We have
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eliminated the headache of grouping yellow levels into blocks, and have also eliminated explicit
representations of red levels. In a sense, red levels are still present, but they are represented
implicitly as suspended computations that have not yet been executed. However, recursive
slowdown has the advantage that it naturally yields data structures with worst-case bounds,
whereas implicit recursive slowdown naturally yields data structures with amortized bounds.
If desired, we can often regain worst-case bounds using the scheduling techniques of Chapter 4.
We illustrate the use of scheduling on binary numbers.

We extend the type of binary numbers with a schedule of type Digit Stream list . The
elements of this list will be suspended calls to lazyInc , where lazyInc is just the inc function
defined above.

fun lazyInc ($Nil) = $Cons (One, $Nil)
j lazyInc ($Cons (Zero, ds)) = $Cons (One, ds)
j lazyInc ($Cons (One, ds)) = $Cons (Zero, lazyInc ds)

The initial schedule is empty.

type Nat = Digit Stream � Digit Stream list
val zero = ($Nil, [ ])

To execute a suspension, we simply inspect the first digit of a stream. If it is 0, then there is
another recursive call to lazyInc, so we put the remaining stream back in the schedule. If it is
1, then this call to lazyInc terminates, so we discard the rest of the stream.

fun exec [ ] = [ ]
j exec (($Cons (One, )) :: sched ) = sched

j exec (($Cons (Zero, ds)) :: sched ) = ds :: sched

Altogether, inc calls lazyInc, places the resulting stream on the schedule, and then executes
two suspensions from the schedule.

fun inc (ds , sched ) =
let val ds 0 = lazyInc ds
in (ds 0, exec (exec (ds0 :: sched ))) end

To show that inc runs in O(1) worst-case time, we prove that, whenever exec executes
a suspension of the form lazyInc ds , ds has already been forced and memoized. Define the
range of a call to lazyInc to be the set of indices of all digits altered by that lazyInc . Note that
digits for any given range form a (possibly empty) sequence of 0s followed by a 1. We say
two ranges overlap if their intersection is non-empty. At any given moment, all unevaluated
suspensions in a digit stream are at indices in the range of some suspension in the schedule.
Therefore, we can show that ds has already been executed whenever we execute a suspension
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of the form lazyInc ds by proving that no two suspensions in the schedule have overlapping
ranges.

In fact, we prove a slightly stronger result. Define a completed 0 to be a 0whose suspension
has already been forced and memoized.

Theorem 8.2 inc maintains the invariant that every digit stream contains at least two com-
pleted 0s prior to the first range in the schedule, and at least one completed 0 between every
two adjacent ranges in the schedule.

Proof: Consider the situation just before a call to inc . Let r1 and r2 be the first two ranges in
the schedule. Let z0 and z1 be the two completed 0s before r1, and let z2 be the completed 0
between r1 and r2. Now, before executing two suspensions from the schedule, inc first adds a
new range r0 to the front of the schedule. Note that r0 terminates in a 1 that replaces z0. Let m
be the number of 0s in r0. There are three cases.

� m = 0. The only digit in r0 is a 1, so r0 is eliminated by executing a single suspension.
Executing the second suspension forces the first digit of r1. If this digit is 0, then it
becomes the second completed 0 (along with z1) before the first range. If this digit is 1,
then r1 is eliminated and r2 becomes the new first range. The two completed zeros prior
to r2 are z1 and z2.

� m = 1. The first two digits of the old digit stream were1 and 0 (z0), but they are replaced
with 0 and 1. Executing two suspensions evaluates and memoizes both of these digits,
and eliminates r0. The leading 0 replaces z0 as one of the two completed 0s before the
first range.

� m � 2. The first two digits of r0 are both 0s. They are both completed by executing the
first two suspensions, and become the two completed 0s before the new first range (the
rest of r0). z1 becomes the single completed zero between r0 and r1.

2

8.3 Supporting a Decrement Function

We have now presented several implementations of an increment function, but of course such
a function is useless without some other operations on binary numbers, such as addition and
comparisons. These operations typically have an O(log n) cost, since they must inspect ev-
ery digit. In the lazy implementation (without scheduling), a digit stream contains at most
O(log n) debits, so discharging those debits does not increase the asymptotic complexity of
these operations.

But something interesting happens when we consider the decrement function.
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fun dec ($Cons (One, $Nil)) = $Nil
j dec ($Cons (One, ds)) = $Cons (Zero, ds)
j dec ($Cons (Zero, ds)) = $Cons (One, dec ds)

Since this function follows exactly the same pattern as inc , but with the roles of 0 and 1
reversed, we would expect that a similar proof would yield a similar bound. And, in fact, it does
provided we do not use both increments and decrements. However, if we use both functions,
then at least one must be charged O(log n) amortized time. Simply consider a sequence of
increments and decrements that cycle between 2k � 1 and 2k . In that case, every operation
touches every digit.

But didn’t we prove that both functions run in O(1) amortized time? What went wrong?
The problem is that the two proofs require contradictory debit invariants. To prove that inc
runs in O(1) amortized time, we require that the tail of a 0 has one debit and the tail of a 1 has
zero debits. To prove that dec runs in O(1) amortized time, we require that the tail of a 1 has
one debit and the tail of a 0 has zero debits. Put another way, inc needs the green digit to be
smaller than the yellow digit while dec needs the green digit to be larger than the yellow digit.
We cannot satisfy both requirements simultaneously in this representation.

However, we can achieve O(1) amortized bounds for both operations at the same time by
changing the implementation slightly. For increments, we want the largest digit to be yellow,
with a smaller green digit. For decrements, we want the smallest digit to be yellow, with a
larger green digit. We can satisfy both requirements by allowing digits to be 1, 2, or 3, where
2 is green and 1 and 3 are yellow.

This observation leads immediately to the following implementation:

datatype Digit = One j Two j Three
datatype Nat = Digit Stream

fun inc ($Nil) = $Cons (One, $Nil)
j inc ($Cons (One, ds)) = $Cons (Two, ds)
j inc ($Cons (Two, ds)) = $Cons (Three, ds)
j inc ($Cons (Three, ds)) = $Cons (Two, inc ds)

fun dec ($Cons (One, $Nil)) = $Nil
j dec ($Cons (One, ds)) = $Cons (Two, dec ds)
j dec ($Cons (Two, ds)) = $Cons (One, ds)
j dec ($Cons (Three, ds)) = $Cons (Two, ds)

Now it is simple to show that both functions run in O(1) amortized time using a proof in
which the tail of every green digit has one debit and the tail of every yellow digit has zero
debits.
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8.4 Queues and Deques

As our first substantial example of implicit recursive slowdown, we present an implementation
of queues that also integrates aspects of numerical representations and structural decomposi-
tion.

A queue is either shallow or deep. A shallow queue contains either zero or one elements. A
deep queue is decomposed into three segments: a front, containing either one or two elements;
a rear, containing either zero or one elements; and a middle, which is a suspended queue of
pairs.

datatype � ZeroOne = Zero j One of �
datatype � OneTwo = One0 of � j Two0 of � � �

datatype � Queue = Shallow of � ZeroOne
j Deep of fF : � OneTwo, M : (� � �) Queue susp, R : � ZeroOneg

To add an element to a deep queue using snoc, we look at R. If it is 0, then we add the element
to R. If it is 1, then we pair the new element with the existing element, and add the pair to M ,
resetting R to 0. We also need a few special cases for adding an element to a shallow queue.

fun snoc (Shallow Zero, y) = Shallow (One y)
j snoc (Shallow (One x ), y) = Deep fF = Two0 (x , y), M = $empty, R = Zerog
j snoc (Deep fF = f , M = m , R = Zerog, y) = Deep fF = f , M = m , R = One yg
j snoc (Deep fF = f , M = $q , R = One xg, y) =

Deep fF = f , M = $snoc (q , (x , y)), R = Zerog

Note that in the final clause of snoc, we force M earlier than we need to. Instead, we could
write this clause as

j snoc (Deep fF = f , M = m , R = One xg, y) =
Deep fF = f , M = $snoc (force m , (x , y)), R = Zerog

However, this change has no effect on the running time.

To remove an element from a deep queue using tail , we look at F . If it is 2, then we simply
remove the element, setting F to 1. If it is 1, then we “borrow” a pair from M , and set F to 2.
Again, there are several special cases dealing with shallow queues.

fun tail (Shallow (One x )) = Shallow Zero
j tail (Deep fF = Two0 (x , y), M = m , R = rg) = Deep fF = One0 y , M = m , R = rg

j tail (Deep fF = One0 x , M = $q , R = rg) =
if isEmpty q then Shallow r

else let val (y , z ) = head q
in Deep fF = Two (y , z ), M = $tail q , R = rg end
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structure ImplicitQueue : QUEUE = (� assumes polymorphic recursion! �)
struct

datatype � ZeroOne = Zero j One of �
datatype � OneTwo = One0 of � j Two0 of � � �

datatype � Queue = Shallow of � ZeroOne
j Deep of fF : � OneTwo, M : (� � �) Queue susp, R : � ZeroOneg

exception EMPTY

val empty = Shallow Zero
fun isEmpty (Shallow Zero) = true
j isEmpty = false

fun snoc (Shallow Zero, y) = Shallow (One y)
j snoc (Shallow (One x ), y) = Deep fF = Two0 (x , y), M = $empty, R = Zerog
j snoc (Deep fF = f , M = m, R = Zerog, y) = Deep fF = f , M = m, R = One yg

j snoc (Deep fF = f , M = $q , R = One xg, y) = Deep fF = f , M = $snoc (q , (x , y)), R = Zerog
fun head (Shallow Zero) = raise EMPTY

j head (Shallow (One x )) = x

j head (Deep fF = One0 x , . . . g) = x

j head (Deep fF = Two0 (x , y), . . . g) = x

fun tail (Shallow Zero) = raise EMPTY

j tail (Shallow (One x )) = Shallow Zero
j tail (Deep fF = Two0 (x , y), M = m, R = rg) = Deep fF = One0 y , M = m, R = rg

j tail (Deep fF = One0 x , M = $q , R = rg) =
if isEmpty q then Shallow r

else let val (y , z ) = head q

in Deep fF = Two (y , z ), M = $tail q , R = rg end
end

Figure 8.1: Queues based on implicit recursive slowdown.

Note that in the last clause of tail , we have choice but to force M since we must test whether
M is empty, and if not, query its first pair. However, we can delay the recursive call to tail .
The complete code appears in Figure 8.1.

Remark: This implementation highlights a third simplification that implicit recursive slow-
down offers as compared to ordinary recursive slowdown, along with not explicitly represent-
ing red nodes and not grouping yellow nodes into blocks. Whereas this implementation limits
F to contain one or two elements and R to contain zero or one elements, an implementation
based on ordinary recursive slowdown would allow both F and R to contain from zero to three
elements. For F , 0 is red, 1 is yellow, and 2 and 3 are green. For R, 3 is red, 2 is yellow,
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and 1 and 0 are green. We expect the addition of a red digit, but the extra green digit in each
case is surprising. It arises because, under recursive slowdown, when we convert either F or R
from red to green by doing a “carry” or “borrow”, we must ensure that the other is also green
by doing a second “carry” or “borrow”, if necessary. So, for instance, when we convert F from
red to green, if R is 3 (red), then we move two elements to the middle, changing R to 1. If R
is 2 (yellow), then again we move two elements to the middle, changing R to 0. Without the
second green digit, there would be no way to convert a yellow node to a green node. 3

To analyze this implementation, we assign debits to every suspension, each of which is the
middle field of some deep queue. We adopt a debit invariant that allows each suspension a
number of debits governed by the colors of the front and rear fields. F is green if it is 2 and
yellow if it is 1. R is green if it is 0 and yellow if it is 1. M may have two debits if both F and
R are green, one debit if one of F and R is green, and zero debits if both F and R are yellow.

Theorem 8.3 snoc and tail run in O(1) amortized time.

Proof: The unshared cost of each function is O(1), so we must merely show that both func-
tions discharge no more than O(1) debits. The analysis of both functions is identical, so we
describe only the tail function.

We argue by debit passing. Each cascade of tail s ends in a call to tail that changes F

from 2 to 1. (For simplicity of presentation, we ignore the possibility of shallow queues).
This decreases the debit allowance of M by one, so we pass the excess debit to the enclosing
suspension.

Every intermediate call to tail changes F from1 to 2 and recurses. There are two subcases:

� R is 0. M has one debit, which must be discharged before M can be forced. We pass
this debit to the enclosing suspension. We create one debit to cover the unshared cost
of the suspended recursive call. In addition, this suspension is passed one debit by the
recursive call. Since this suspension has a debit allowance of two, we are done.

� R is 1. M has zero debits, so we can force it for free. We create one debit to cover the
unshared cost of the suspended recursive call. In addition, this suspension is passed one
debit by the recursive call. Since this suspension has a debit allowance of one, we keep
one debit and pass the other to the enclosing suspension.

Every call to tail passes one debit to its enclosing suspension, except the outermost call,
which has no enclosing suspension. That call simply discharges its excess debit. 2

Remark: In practice, these queues are slower than the implementations in Chapters 3, 4, and
7. However, like many other numerical representations, these queues have the advantage of
supporting random access efficiently. In particular, we can lookup or update the ith element
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in O(log i) time. As with the numerical representations in Chapter 6, these queues contain a
logarithmic number of trees of logarithmic depth. Random access is a two stage process of
finding the right tree and then finding the right element.

In the implementation as presented, the presence of trees is somewhat obscured by the use
of structural decomposition. However, recall that the first level contains elements, the second
level contains pairs of elements, the third level contains pairs of pairs of elements, and so on.
These are just complete binary leaf trees. 3

Finally, we show how to modify this implementation of queues to support double-ended
queues. To support deques, we must be able to insert or remove elements from either the front
or rear. This is analogous to supporting both increments and decrements for binary numbers.
We saw in Section 8.3 that this could be accomplished by allowing digits to range over 1, 2, and
3. Thus, to implement deques, we modify the earlier implementation to allow both the front
and rear fields of a deep queue to contain one, two, or three elements. This implementation is
shown in Figure 8.2. The analysis is almost identical to that of queues, except that 1s and 3s
are yellow, and 2s are green.

We can also easily implement several forms of restricted deques, including

� Output-restricted deques, which support insertions on both sides, but removals only from
the front. We allow the front field to contain one, two, or three elements, but the rear field
to contain only zero or one elements.

� Input-restricted deques, which support removals from both sides, but insertions only at
the front. We allow the front field to contain one, two, or three elements, but the rear
field to contain only one or two elements.

8.5 Catenable Double-Ended Queues

Finally, we use implicit recursive slowdown to implement catenable double-ended queues,
with the signature shown in Figure 8.3. We first describe a relatively simple implementation
that supports ++ in O(log n) amortized time and all other operations in O(1) amortized time.
We then describe a much more complicated implementation that improves the running time of
++ to O(1).

Consider the following representation for catenable double-ended queues, or c-deques. A
c-deque is either shallow or deep. A shallow c-deque is simply an ordinary deque, such as those
presented in Chapter 5 or in the previous section. A deep c-deque is decomposed into three
segments: a front, a middle, and a rear. The front and rear are both ordinary deques containing
two or more elements each. The middle is a c-deque of ordinary deques, each containing two
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structure ImplicitDeque : DEQUE = (� assumes polymorphic recursion! �)
struct

datatype � D = Zero j One of � j Two of of � � � j Three of � � � � �

datatype � Queue = Shallow of � D
j Deep of fF : � D, M : (� � �) Queue susp, R : � Dg

exception EMPTY

val empty = Shallow Zero
fun isEmpty (Shallow Zero) = true
j isEmpty = false

fun dcons (x , Zero) = One x fun dsnoc (Zero, x ) = One x

j dcons (x , One a) = Two (x , a) j dsnoc (One a, x ) = Two (a, x )
j dcons (x , Two (a, b)) = Three (x , a, b) j dsnoc (Two (a, b), x ) = Three (a, b, x )

fun dhead Zero = raise EMPTY fun dlast Zero = raise EMPTY

j dhead (One a) = a j dlast (One a) = a

j dhead (Two (a, b)) = a j dlast (Two (a, b)) = b

j dhead (Three (a, b, c)) = a j dlast (Three (a, b, c)) = c

fun dtail Zero = raise EMPTY fun dinit Zero = raise EMPTY

j dtail (One a) = Zero j dinit (One a) = Zero
j dtail (Two (a, b)) = One b j dinit (Two (a, b)) = One a

j dtail (Three (a, b, c)) = Two (b, c) j dinit (Three (a, b, c)) = Two (a, b)

fun cons (x , Shallow (Three (a, b, c))) = Deep fF = Two (x , a), M = $empty, R = Two (b, c)g
j cons (x , Shallow d ) = Shallow (dcons (x , d ))
j cons (x , Deep fF = Three (a, b, c), M = m, R = rg) =

Deep fF = Two (x , a), M = $cons ((b, c), force m), R = rg

j cons (x , Deep fF = f , M = m, R = rg) = Deep fF = dcons (x , f ), M = m, R = rg

fun head (Shallow d ) = dhead d

j head (Deep fF = f , . . . g) = dhead f

fun tail (Shallow d ) = Shallow (dtail d )
j tail (Deep fF = One a, M = $ps, R = rg) =

if isEmpty ps then Shallow r

else let val (b, c) = head ps

in Deep fF = Two (b, c), M = $tail ps , R = rg end
j tail (Deep fF = f , M = m, R = rg) = Deep fF = dtail f , M = m, R = rg

. . . snoc, last, and init defined symmetrically. . .
end

Figure 8.2: Double-ended queues based on implicit recursive slowdown.
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signature CATENABLEDEQUE =
sig

type � Cat

exception EMPTY

val empty : � Cat
val isEmpty : � Cat ! bool

val cons : � � � Cat ! � Cat
val head : � Cat ! � (� raises EMPTY if deque is empty �)
val tail : � Cat ! � Cat (� raises EMPTY if deque is empty �)

val snoc : � Cat � �! � Cat
val last : � Cat ! � (� raises EMPTY if deque is empty �)
val init : � Cat ! � Cat (� raises EMPTY if deque is empty �)

val ++ : � Cat � � Cat ! � Cat

end

Figure 8.3: Signature for catenable double-ended queues.

or more elements. We assume that D is an implementation of deques satisfying the signature
DEQUE.

datatype � Cat = Shallow of � D.Queue
j Deep of fF : � D.Queue, M : � D.Queue Cat susp, R : � D.Queueg

Note that this definition assumes polymorphic recursion.

To insert an element at either end, we simply insert the element into either the front deque
or the rear deque. For instance, cons is implemented as

fun cons (x , Shallow d ) = Shallow (D.cons (x , d ))
j cons (x , Deep fF = f , M = m , R = rg) = Deep fF = D.cons (x , f ), M = m , R = rg

To remove an element from either end, we remove an element from either the front deque or
the rear deque. If this drops the length of that deque below two, then we remove the next deque
from the middle, add the one remaining element from the old deque, and install the result as
the new front or rear. With the addition of the remaining element from the old deque, the
new deque now contains at least three elements, so the next operation on that deque will not
propagate to the next level. For example, the code for tail is

fun tail (Shallow d ) = Shallow (D.tail d )
j tail (Deep fF = f , M = m , R = rg) =
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if D.size f > 2 then Deep fF = D.tail f , M = m , R = rg

else if isEmpty (force m) then Shallow r

else Deep fF = D.cons (D.last f , head (force m)), M = $tail (force m), R = rg

It is simple to see that the proof techniques of this chapter will yield O(1) amortized time
bounds on each of these functions.

But what about catenation? To catenate two deep c-deques c1 and c2, we retain the front of
c1 as the new front, the rear of c2 as the new rear, and combine the remaining segments into the
new middle by inserting the rear of c1 into the middle of c1, and the front of c2 into the middle
of c2, and then catenating the results.

fun (Deep fF = f1, M = m1, R = r1g) ++ (Deep fF = f2, M = m2, R = r2g) =
Deep fF = f1, M = $(snoc (force m1, r1) ++ cons (f2, force m2)), R = r2g

(Of course, there are also cases where c1 and/or c2 are shallow.) Note that ++ recurses to the
depth of the shallower c-deque. Furthermore, ++ creates O(1) debits per level, which must be
immediately discharged to restore the debit invariant required by the tail function. Therefore,
++ runs in O(min(log n1; log n2)) amortized time, where ni is the size of ci.

The complete code for this implementation of c-deques appears in Figure 8.4.

To improve the running time of ++ to O(1) we modify the representation of c-deques so
that ++ does not recurse. The key is to enable ++ at one level to call only cons and snoc at
the next level. Instead of a front, a middle, and a rear, we expand deep c-deques to contain
five segments: a front (F ), an antemedial (A), a middle (M ), a postmedial (B ), and a rear
(R). F , M , and R are all ordinary deques; F and R contain three or more elements each,
and M contains two or more elements. A and B are c-deques of compound elements. A
degenerate compound element is simply an ordinary deque containing two or more elements.
A full compound element has three segments: a front (F ), a middle (C ), and a rear (R),
where F and R are ordinary deques containing at least two elements each, and C is a c-
deque of compound elements. This datatype can be written in Standard ML (with polymorphic
recursion) as

datatype � Cat = Shallow of � D.Queue
j Deep of fF : � D.Queue (� � 3 �),

A : � CmpdElem Cat susp,
M : � D.Queue (� � 2 �),
B : � CmpdElem Cat susp,
R : � D.Queue (� � 3 �)g

and � CmpdElem = Simple of � D.Queue (� � 2 �)
j CE of fF : � D.Queue (� � 2 �),

C : � CmpdElem Cat susp,
R : � D.Queue (� � 2 �)g
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functor SimpleCatenableDeque (structure D : DEQUE) : CATENABLEDEQUE =
(� assumes polymorphic recursion! �)

struct
datatype � Cat = Shallow of � D.Queue

j Deep of fF : � D.Queue, M : � D.Queue Cat susp, R : � D.Queueg

exception EMPTY

val empty = Shallow D.empty
fun isEmpty (Shallow d ) = D.isEmpty d

j isEmpty = false

fun cons (x , Shallow d ) = Shallow (D.cons (x , d ))
j cons (x , Deep fF = f , M = m, R = rg) = Deep fF = D.cons (x , f ), M = m, R = rg

fun head (Shallow d ) = if D.isEmpty d then raise EMPTY else D.head d

j head (Deep fF = f , . . . g) = D.head f

fun tail (Shallow d ) = if D.isEmpty d then raise EMPTY else Shallow (D.tail d )
j tail (Deep fF = f , M = m, R = rg) =

if D.size f > 2 then Deep fF = D.tail f , M = m, R = rg

else if isEmpty (force m) then Shallow r

else Deep fF = D.cons (D.last f , head (force m)), M = $tail (force m), R = rg

. . . snoc, last, and init defined symmetrically. . .

fun shortAppendL (d1, d2) = if D.isEmpty d1 then d2 else D.cons (D.head d1, d2)
fun shortAppendR (d1, d2) = if D.isEmpty d2 then d1 else D.snoc (d1, D.last d2)

fun (Shallow d1) ++ (Shallow d2) =
if D.size d1 < 2 then Shallow (shortAppendL (d1, d2))
else if D.size d2 < 2 then Shallow (shortAppendR (d1, d2))
else Deep fF = d1, M = $empty, R = d2g

j (Shallow d ) ++ (Deep fF = f , M = m, R = rg) =
if D.size d < 2 then Deep fF = shortAppendL (d , f ), M = m, R = rg

else Deep fF = d , M = $cons (f , force m), R = rg

j (Deep fF = f , M = m, R = rg) ++ (Shallow d ) =
if D.size d < 2 then Deep fF = f , M = m, R = shortAppendR (r , d )g
else Deep fF = f , M = $snoc (force m, r ), R = dg

j (Deep fF = f1, M = m1, R = r1g) ++ (Deep fF = f2, M = m2, R = r2g) =
Deep fF = f1, M = $(snoc (force m1, r1) ++ cons (f2, force m2)), R = r2g

end

Figure 8.4: Simple catenable deques.
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Now, given two deep c-deques c1 = hF1;A1;M1;B1;R1i and c2 = hF2;A2;M2;B2;R2i, we
compute their catenation as follows: First, we retain F1 as the front of the result, and R2 as the
rear of the result. Next, we build the new middle deque from the last element of R1 and the first
element of F2. We then combine M1, B1, and the rest of R1 into a compound element, which
we snoc onto A1. This becomes the antemedial segment of the result. Finally, we combine the
rest of F2, A2, and M2 into a compound element, which we cons onto B2. This becomes the
postmedial segment of the result. Altogether, this is implemented as

fun (Deep fF = f1, A = a1, M = m1, B = b1, R = r1g)
++ (Deep fF = f2, A = a2, M = m2, B = b2, R = r2g) =

let val (r 01, m , f 02) = share (r1, f2)
val a 01 = $snoc (force a1, CE fF = m1, A = b1, R = r 01g)
val b 0

2
= $cons (CE fF = f 0

2
, A = a2, R = m2g, force b2)

in Deep fF = f1, A = a 0
1
, M = m , B = b0

2
, R = r2g end

where

fun share (f , r ) = (D.init f , D.cons (D.last f , D.cons (D.head r , D.empty)), D.tail r )

fun cons (x , Deep fF = f , A = a , M = m , B = b, R = rg) =
Deep fF = D.cons (x , f ), A = a , M = m , B = b, R = rg)

fun snoc (Deep fF = f , A = a , M = m , B = b, R = rg, x ) =
Deep fF = f , A = a , M = m , B = b, R = D.snoc (r , x )g)

(For simplicity of presentation, we have ignored all cases involving shallow c-deques.)

Unfortunately, in this implementation, tail and init are downright messy. Since the two
functions are symmetric, we describe only tail . Given some deep c-deque c = hF ;A;M ;B ;Ri,
there are six cases:

� jF j > 3.

� jF j = 3.

– A is non-empty.

� The first compound element of A is degenerate.
� The first compound element of A is full.

– A is empty and B is non-empty.

� The first compound element of B is degenerate.
� The first compound element of B is full.

– A and B are both empty.
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Here we describe the behavior of tail c in the first three cases. The remaining cases are covered
by the complete implementation in Figures 8.5 and 8.6. If jF j > 3 then we simply replace F
with D :tail F . If jF j = 3, then removing an element from F would drop its length below the
allowable minimum. Therefore, we remove a new front deque from A and combine it with the
remaining two elements of the old F . The new F contains at least four elements, so the next
call to tail will fall into the jF j > 3 case.

When we remove the first compound element of A to find the new front deque, we get
either a degenerate compound element or a full compound element. If we get a degenerate
compound element (i.e., a simple deque), then the new value of A is $tail (force A). If we get
a full compound element hF 0

;C 0
;R0

i, then F 0 becomes the new F (along with the remaining
elements of the old F ), and the new value of A is

$(force C 0 ++ cons (Simple R0, tail (force A)))

But note that the effect of the cons and tail is to replace the first element of A. We can do this
directly, and avoid an unnecessary call to tail , using the function replaceHead .

fun replaceHead (x , Shallow d ) = Shallow (D.cons (x , D.tail d ))
j replaceHead (x , Deep fF = f , A = a , M = m , B = b, R = rg) =

Deep fF = D.cons (x , D.tail f ), A = a , M = m , B = b, R = rg)

The remaining cases of tail are similar, each doing O(1) work followed by at most one call to
tail .

The cons , snoc, head , and last functions make no use of lazy evaluation, and are easily
seen to take O(1) worst-case time. We analyze the remaining functions using the banker’s
method and debit passing.

As always, we assign debits to every suspension, each of which is the antemedial (A) or
postmedial (B ) segment of a deep c-deque, or the middle (C ) of a compound element. Each
C field is allowed four debits, but A and B fields may have from zero to five debits, based
on the lengths of the F and R fields. A and B have a base allowance of zero debits. If F
contains more than three elements, then the allowance for A increases by four debits and the
allowance for B increases by one debit. Similarly, if R contains more than three elements, then
the allowance for B increases by four debits and the allowance for A increases by one debit.

Theorem 8.4 ++, tail , and init run in O(1) amortized time.

Proof: (++) The interesting case is catenating two deep c-deques c1 = hF1;A1;M1;B1;R1i

and c2 = hF2;A2;M2;B2;R2i. In that case, ++ does O(1) unshared work and discharges at
most four debits. First, we create two debits for the suspended snoc and cons onto A1 and B2,
respectively. We always discharge these two debits. In addition, if B1 orA2 has five debits, then
we must discharge one debit when that segment becomes the middle of a compound element.
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functor ImplicitCatenableDeque (structure D : DEQUE) : CATENABLEDEQUE =
struct

datatype � Cat = Shallow of � D.Queue
j Deep of fF : � D.Queue, A : � CmpdElem Cat susp, M : � D.Queue,

B : � CmpdElem Cat susp, R : � D.Queueg
and � CmpdElem = Simple of � D.Queue

j CE of fF : � D.Queue, A : � CmpdElem Cat susp, R : � D.Queueg

exception EMPTY

val empty = Shallow D.empty
fun isEmpty (Shallow d ) = D.isEmpty d

j isEmpty = false

fun cons (x , Shallow d ) = Shallow (D.cons (x , d ))
j cons (x , Deep fF = f , A = a, M = m, B = b, R = rg) =

Deep fF = D.cons (x , f ), A = a, M = m, B = b, R = rg)
fun head (Shallow d ) = if D.isEmpty d then raise EMPTY else D.head d

j head (Deep fF = f , . . . g) = D.head f

. . . snoc and last defined symmetrically. . .

fun share (f , r ) = (D.init f , D.cons (D.last f , D.cons (D.head r , D.empty)), D.tail r )
fun shortAppendL (d1, d2) =

if D.isEmpty d1 then d2 else shortAppendL (D.init d1, D.cons (D.last d1, d2))
fun shortAppendR (d1, d2) =

if D.isEmpty d2 then d1 else shortAppendR (D.snoc (d1, D.head d2), D.tail d2)

fun (Shallow d1) ++ (Shallow d2) =
if D.size d1 < 4 then Shallow (shortAppendL (d1, d2))
else if D.size d2 < 4 then Shallow (shortAppendR (d1, d2))
else let val (f , m, r ) = share (d1, d2)

in Deep fF = f , A = $empty, M = m, B = $empty, R = rg end
j (Shallow d ) ++ (Deep fF = f , A = a, M = m, B = b, R = rg) =

if D.size d < 3 then Deep fF = shortAppendL (d , f ), A = a, M = m, B = b, R = rg

else Deep fF = d , A = $cons (Simple f , force a), M = m, B = b, R = rg

j (Deep fF = f , A = a, M = m, B = b, R = rg) ++ (Shallow d ) =
if D.size d < 3 then Deep fF = f , A = a, M = m, B = b, R = shortAppendR (r , d )g
else Deep fF = f , A = a, M = m, B = $snoc (force b, Simple r ), R = dg

j (Deep fF = f1, A = a1, M = m1, B = b1, R = r1g)
++ (Deep fF = f2, A = a2, M = m2, B = b2, R = r2g) =

let val (r 01, m, f 02) = share (r1, f2)
val a 01 = $snoc (force a1, CE fF = m1, A = b1, R = r

0
1g)

val b 02 = $cons (CE fF = f
0
2, A = a2, R = m2g, force b2)

in Deep fF = f1, A = a
0
1, M = m, B = b

0
2, R = r2g end

. . .

Figure 8.5: Catenable deques using implicit recursive slowdown (part I).
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. . .

fun replaceHead (x , Shallow d ) = Shallow (D.cons (x , D.tail d ))
j replaceHead (x , Deep fF = f , A = a, M = m, B = b, R = rg) =

Deep fF = D.cons (x , D.tail f ), A = a, M = m, B = b, R = rg)

fun tail (Shallow d ) = if D.isEmpty d then raise EMPTY else Shallow (D.tail d )
j tail (Deep fF = f , A = a, M = m, B = b, R = rg) =

if D.size f > 3 then Deep fF = D.tail f , A = a, M = m, B = b, R = rg

else if not (isEmpty (force a)) then
case head (force a) of

Simple d )

let val f 0 = shortAppendL (D.tail f , d )
in Deep fF = f

0, A = $tail (force a), M = m, B = b, R = rg end
j CE fF = f

0, A = a
0, R = r

0g )

let val f 00 = shortAppendL (D.tail f , f 0)
val a 00 = $(force a

0 ++ replaceHead (Simple r
0, force a))

in Deep fF = f
00, A = a

00, M = m, B = b, R = rg end
else if not (isEmpty (force b)) then

case head (force b) of
Simple d )

let val f 0 = shortAppendL (D.tail f , m)
in Deep fF = f

0, A = $empty, M = d , B = $tail (force b), R = rg end
j CE fF = f

0, A = a
0, R = r

0g )

let val f 00 = shortAppendL (D.tail f , m)
val a 00 = $cons (Simple f

0, force a
0)

in Deep fF = f
00, A = a

00, M = r
0, B = $tail (force b), R = rg end

else Shallow (shortAppendL (D.tail f , m)) ++ Shallow r

. . . replaceLast and init defined symmetrically. . .
end

Figure 8.6: Catenable deques using implicit recursive slowdown (part II).
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Also, ifF1 has only three elements but F2 has more than three elements, then we must discharge
a debit from B2 as it becomes the new B . Similarly for R1 and R2. However, note that if B1

has five debits, then F1 has more than three elements, and that if A2 has five debits, then R2

has more than three elements. Therefore, we must discharge at most four debits altogether, or
at least pass those debits to an enclosing suspension.

(tail and init ) Since tail and init are symmetric, we include the argument only for tail .
By inspection, tail does O(1) unshared work, so we must show that it discharges only O(1)
debits. In fact, we show that it discharges at most five debits.

Since tail can call itself recursively, we must account for a cascade of tail s. We argue by
debit passing. Given some deep c-deque c = hF ;A;M ;B ;Ri, there is one case for each case
of tail .

If jF j > 3, then this is the end of a cascade. We create no new debits, but removing an
element from F might decrease the allowance of A by four debits, and the allowance of B by
one debit, so we pass these debits to the enclosing suspension.

If jF j = 3, then assume A is non-empty. (The cases where A is empty are similar.) If
jRj > 3, then A might have one debit, which we pass to the enclosing suspension. Otherwise,
A has no debits. If the head of A is a degenerate compound element (i.e., a simple deque of
elements), then this becomes the new F along with the remaining elements of the old F . The
new A is a suspension of the tail of the old A. This suspension receives at most five debits from
the recursive call to tail . Since the new allowance of A is at least four debits, we pass at most
one of these debits to the enclosing suspension, for a total of at most two debits. (Actually, the
total is at most one debit since we pass one debit here exactly in the case that we did not have
to pass one debit for the original A).

Otherwise, if the head of A is a full compound element hF 0
;C 0

;R0
i, then F 0 becomes the

new F along with the remaining elements of the old F . The new A involves calls to ++ and
replaceHead . The total number of debits on the new A is nine: four debits from C 0, four debits
from the ++, and one newly created debit for the replaceHead . The allowance for the new A is
either four or five, so we pass either five or four of these nine debits to the enclosing suspension.
Since we pass four of these debits exactly in the case that we had to pass one debit from the
original A, we always pass at most five debits. 2

8.6 Related Work

Recursive Slowdown Kaplan and Tarjan introduced recursive slowdown in [KT95], and
used it again in [KT96b], but it is closely related to the regularity constraints of Guibas et
al. [GMPR77]. Brodal [Bro95] used a similar technique to implement heaps.
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Implicit Recursive Slowdown and Binomial Heaps Lazy implementations of binomial
heaps [Kin94, Oka96b] can be viewed as using implicit recursive slowdown. Such implemen-
tations support insert in O(1) amortized time and all other operations in O(log n) amortized
time. [Oka96b] extends a lazy implementation of binomial heaps with scheduling to improve
these bounds to worst-case.

Catenable Deques Buchsbaum and Tarjan [BT95] presented a purely functional implemen-
tation of catenable deques that supports tail and init inO(log� n) worst-case time and all other
operations in O(1) worst-case time. Our implementation improves that bound to O(1) for all
operations, although in the amortized rather than worst-case sense. Kaplan and Tarjan have in-
dependently developed a similar implementation with worst-case bounds [KT96a]. However,
the details of their implementation are quite complicated.
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Chapter 9

Conclusions

In the preceding chapters, we have described a framework for designing and analyzing func-
tional amortized data structures (Chapter 3), a method for eliminating amortization from such
data structures (Chapter 4), four general data structure design techniques (Chapters 5–8), and
sixteen new implementations of specific data structures. We next step back and reflect on the
significance of this work.

9.1 Functional Programming

Functional programming languages have historically suffered from the reputation of being
slow. Regardless of the advances in compiler technology, functional programs will never be
faster than their imperative counterparts as long as the algorithms available to functional pro-
grammers are significantly slower than those available to imperative programmers. This thesis
provides numerous functional data structures that are asymptotically just as efficient as the
best imperative implementations. More importantly, we also provide numerous design tech-
niques so that functional programmers can create their own data structures, customized to their
particular needs.

Our most significant contribution to the field of functional programming, however, is the
new understanding of the relationship between amortization and lazy evaluation. In the one
direction, the techniques of amortized analysis — suitably extended as in Chapter 3 — pro-
vide the first practical approach to estimating the complexity of lazy programs. Previously,
functional programmers often had no better option than to pretend their lazy programs were
actually strict.

In the other direction, lazy evaluation allows us to implement amortized data structures
that are efficient even when used persistently. Amortized data structures are desirable because
they are often both simpler and faster than their worst-case counterparts. Without exception,
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the amortized data structures described in this thesis are significantly simpler than compet-
ing worst-case designs.1 Because of the overheads of lazy evaluation, however, our amortized
data structures are not necessarily faster than their strict worst-case cousins. When used in a
mostly single-threaded fashion, our implementations are often slower than competing imple-
mentations not based on memoization, because most of the time spent doing memoization is
wasted. However, when persistence is used heavily, memoization more than pays for itself and
our implementations fly.

In a followup to [Pip96], Bird, Jones, and de Moor [BJdM96] have recently exhibited a
problem for which a lazy solution exists that is asymptotically superior to any possible strict
solution. However, this result depends on several extremely restrictive assumptions. Our work
suggests a promising approach towards removing these restrictions. What is required is an
example of a data structure for which a lazy, amortized solution exists that is asymptotically
superior to any possible strict, worst-case solution. Unfortunately, at this time, we know of no
such data structure — for every lazy, amortized data structure we have developed, there is a
strict, worst-case data structure with equivalent bounds, albeit one that is more complicated.

9.2 Persistent Data Structures

We have shown that memoization, in the form of lazy evaluation, can resolve the apparent
conflict between amortization and persistence. We expect to see many persistent amortized
data structures based on these ideas in the coming years.

We have also reinforced the observation that functional programming is an excellent medium
for developing new persistent data structures, even when the target language is imperative. It
is trivial to implement most functional data structures in an imperative language such as C,
and such implementations suffer few of the complications and overheads associated with other
methods for implementing persistent data structures, such as [DSST89] or [Die89]. Further-
more, unlike these other methods, functional programming has no problems with data struc-
tures that support combining functions such as list catenation. It is no surprise that the best
persistent implementations of data structures such as catenable lists (Section 7.2.1) and caten-
able deques (Section 8.5) are all purely functional (see also [KT95, KT96a]).

9.3 Programming Language Design

Next, we briefly discuss the implications of this work on programming language design.

1As partial evidence for this fact, we note that only one of these implementations takes more than one page.
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Order of Evaluation Most functional programming languages support either strict evalu-
ation or lazy evaluation, but not both. Algorithmically, the two orders of evaluation fulfill
complementary roles — strict evaluation is useful in implementing worst-case data structures
and lazy evaluation is useful in implementing amortized data structures. Therefore, functional
programming languages that purport to be general-purpose should support both. $-notation
offers a lightweight syntax for integrating lazy evaluation into a predominantly strict language.

Polymorphic Recursion Data structures based on structural decomposition, such as those in
Chapters 7 and 8, often obey invariants that can be precisely captured by non-uniform recursive
datatypes. Unfortunately, processing such datatypes requires polymorphic recursion, which
causes difficulties for type inference and hence is disallowed by most functional programming
languages. We can usually sidestep this restriction by rewriting the datatypes to be uniform,
but then the types fail to capture the desired invariants and the type system will not catch
bugs involving violations of those invariants. All in all, we believe the compromise taken by
Haskell 1.3 [P+96] is best: allow polymorphic recursion in those cases where the programmer
explicitly provides a type signature, and disallow it everywhere else.

Higher-order, Recursive Modules The bootstrapped heaps of Section 7.2.2 (see also [BO96])
demonstrate the usefulness of higher-order, recursive modules. In languages such as Standard
ML that do not support higher-order, recursive modules, we can often sidestep this restriction
by manually inlining the desired definitions for each instance of bootstrapping. Clearly, how-
ever, it would be cleaner, and much less error-prone, to provide a single module-to-module
transformation that performs the bootstrapping. In the case of bootstrapped heaps, Simon Pey-
ton Jones and Jan Nicklisch [private communication] have recently shown how to implement
the desired recursion using constructor classes [Jon95].

Pattern Matching Ironically, pattern matching — one of the most popular features in func-
tional programming languages — is also one of the biggest obstacles to the widespread use
of efficient functional data structures. The problem is that pattern matching can only be per-
formed on data structures whose representation is known, yet the basic software-engineering
principle of abstraction tells us that the representation of non-trivial data structures should be
hidden. The seductive allure of pattern matching leads many functional programmers to aban-
don sophisticated data structures in favor of simple, known representations such as lists, even
when doing so causes an otherwise linear algorithm to explode to quadratic or even exponential
time.

Views [Wad87] and their successors [BC93, PPN96] offer one way of reconciling the con-
venience of pattern matching with the desirability of data abstraction. In fact, $-patterns are
just a special case of views. Unfortunately, views are not supported by any major functional
programming language.
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Implementation Finally, we note that functional catenable lists are an essential ingredient
in the implementation of certain sophisticated control structures [FWFD88]. The advent of
new, efficient implementations of catenable lists, both here and in [KT95], makes the efficient
implementation of such control structures possible for the first time.

9.4 Open Problems

We conclude by describing some of the open problems related to this thesis.

� What are appropriate empirical measurements for persistent data structures? Standard
benchmarks are misleading since they do not measure how well a data structure sup-
ports access to older versions. Unfortunately, the theory and practice of benchmarking
persistent data structures is still in its infancy.

� For ephemeral data structures, the physicist’s method is just as powerful as the banker’s
method. However, for persistent data structures, the physicist’s method appears to be
substantially weaker. Can the physicist’s method, as described in Section 3.5, be im-
proved and made more widely applicable?

� The catenable deques of Section 8.5 are substantially more complicated than the caten-
able lists of Section 7.2.1. Is there a simpler implementation of catenable deques closer
in spirit to that of catenable lists?

� Finally, can scheduling be applied to these implementations of catenable lists and de-
ques? In both cases, maintaining a schedule appears to take more than O(1) time.



Appendix A

The Definition of Lazy Evaluation in
Standard ML

The syntax and semantics of Standard ML are formally specified in The Definition of Standard
ML [MTH90]. This appendix extends the Definition with the syntax and semantics of the lazy
evaluation primitives ($-notation) described in Chapter 2. This appendix is designed to be read
in conjunction with the Definition; it describes only the relevant changes and additions.

Paragraph headers such as [2.8 Grammar (8,9)] refer to sections within the Definition. The
numbers in parentheses specify the relevant pages.

A.1 Syntax

[2.1 Reserved Words (3)] $ is a reserved word and may not be used as an identifier.

[2.8 Grammar (8,9)] Add the following productions for expressions and patterns.

exp ::= $ exp and pat ::= $ pat

[Appendix B: Full Grammar (71–73)] Add the following productions for expressions and
patterns.

exp ::= $ exp and pat ::= $ pat

These productions have lower precedence than any alternative form (i.e., appear last in the lists
of alternatives).
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A.2 Static Semantics

[4.4 Types and Type functions (18)] � susp does not admit equality.

Remark: This is an arbitrary choice. Allowing an equality operator on suspensions that
automatically forces the suspensions and compares the results would also be reasonable, but
would be moderately complicated. 3

[4.7 Non-expansive Expressions (20)] $ expressions are non-expansive.

Remark: The dynamic evaluation of a $ expression may in fact extend the domain of memory,
but, for typechecking purposes, suspensions should be more like functions than references. 3

[4.10 Inference Rules (24,29)] Add the following inference rules.

C ` exp ) �

C ` $ exp ) � susp
and

C ` pat ) �

C ` $ pat ) � susp

[4.11 Further Restrictions (30)] Because matching against a $ pattern may have effects (in
particular, may cause assignments), it is now more difficult to determine if matches involving
both suspensions and references are irredundant and exhaustive. For example, the first function
below is non-exhaustive even though the first and third clauses appear to cover all cases and
the second is irredundant even though the first and fourth clauses appear to overlap.

fun f (ref true, ) = 0 fun f (ref true, ) = 0
j f (ref false, $0) = 1 j f (ref false, $0) = 1
j f (ref false, ) = 2 j f (ref false, ) = 2

j f (ref true, ) = 3

(Consider the execution off (r,$(r := true; 1))where r initially equals reffalse.)

[Appendix C: The Initial Static Basis (74,75)] Extend T0 to include susp, which has arity
1 and does not admit equality.

Add force to VE0 (Figure 23), where

force 7! 8’a:’a susp! ’a
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A.3 Dynamic Semantics

[6.3 Compound Objects (47)] Add the following definitions to Figure 13.

(exp; E) 2 Thunk = Exp � Env

mem 2 Mem = Addr fin
! (Val [ Thunk)

Remark: Addresses and memory are overloaded to represent both references and suspensions.
The values of both references and suspensions are addresses. Addresses representing refer-
ences are always mapped to values, but addresses representing suspensions may be mapped
to either thunks (if unevaluated) or values (if evaluated and memoized). The static semantics
ensures that there will be no confusion about whether a value in memory represents a reference
or a memoized suspension. 3

[6.7 Inference Rules (52,55,56)] Add the following inference rule for suspending an expres-
sion.

a 62 Dom(mem of s)

s;E ` $ exp ) a; s+ fa 7! (exp; E)g

Extend the signatures involving pattern rows and patterns to allow exceptions to be raised
during pattern matching.

E; r ` patrow ) VE=FAIL=p

E; v ` pat ) VE=FAIL=p

Add the following inference rules for forcing a suspension.

s(a) = v s;E; v ` pat ) VE=FAIL; s0

s;E; a ` $ pat ) VE=FAIL; s0

s(a) = (exp; E0) s;E
0
` exp ) v; s

0
s
0 + fa 7! vg; E; v ` pat ) VE=FAIL; s00

s;E; a ` $ pat ) VE=FAIL; s00

The first rule looks up a memoized value. The second rule evaluates a suspension and memo-
izes the result.

Finally, modify Rule 158 to reflect the fact that matching against a pattern may change the
state.

s(a) = v s;E; v ` atpat ) VE=FAIL; s0

s;E; a ` ref atpat ) VE=FAIL; s0
(158)
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Remark: The interaction between suspensions and exceptions is specified by the exception
convention. If an exception is raised while forcing a suspension, the evaluation of that sus-
pension is aborted and the result is not memoized. Forcing the suspension a second time will
duplicate any side effects it may have. A reasonable alternative would be to memoize raised
exceptions, so that forcing such a suspension a second time would simply reraise the memoized
exception without duplicating any side effects. 3

[Appendix D: The Initial Dynamic Basis (77,79)] Extend E
00
0

with the following declara-
tion:

fun force ($x) = x

A.4 Recursion

This section details the changes necessary to support recursive suspensions.

[2.9 Syntactic Restrictions (9)] Lift the syntactic restriction on rec to allow value bindings
of the form var = $ exp within rec.

[6.7 Inference Rules (54)] Modify Rule 137 as follows.

s;E ` valbind) VE; s0 VE 0 = Rec VE s
00 = SRec(VE 0

; s
0)

s;E ` rec valbind) VE 0
; s

00
137

where
SRec : VarEnv � State ! State

and

� ens of SRec(VE; s) = ens of s

� Dom(mem of SRec(VE; s)) = Dom(mem of s)

� If a 62 Ran(VE), then SRec(VE; s)(a) = s(a)

� If a 2 Ran(VE) and s(a) = (exp; E), then SRec(VE; s)(a) = (exp; E + VE)
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The SRec operator defines recursive suspensions by “tying the knot” through the memory. Note
that in the definition of SRec, it will never be the case that a 2 Ran(VE) and s(a) 62 Thunk,
because the suspension could not have been forced yet.

Remark: In the presence of recursion, a suspension might be memoized more than once
if evaluating its body somehow forces itself. Then, the inner evaluation might produce and
memoize a value that is subsequently overwritten by the result of the outer evaluation. Note,
however, that evaluating a suspension that forces itself will not terminate unless side effects
are involved. If desired, the “blackhole” technique [Jon92] can be used to detect such circular
suspensions and guarantee that a given suspension is only memoized once. 3
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