
Functional Programming with Names and Necessity

Aleksandar Nanevski

June 9, 2004

2

Contents

1 Constructive modal logic 11

1.1 Natural deduction . 11

1.1.1 Judgments and propositions . 11
1.1.2 Hypothetical judgments and implication . 13

1.1.3 Necessity . 16
1.1.4 Possibility . 19

1.1.5 Summary of the system . 22

1.2 Modal λ-calculus . 23
1.2.1 Judgments and proof terms . 23

1.2.2 Summary of the system . 27

1.3 Notes . 29

2 Partial modal logic 33
2.1 Natural deduction . 33

2.1.1 Partial judgments and supports . 33

2.1.2 Hypothetical partial judgments . 35
2.1.3 Relativized necessity . 37

2.1.4 Simultaneous possibility . 42

2.1.5 Names . 45
2.1.6 Name-space management . 47

2.2 Modal ν-calculus . 51

2.2.1 Partial judgments and proof terms . 51
2.2.2 Name-space management . 58

2.2.3 Summary and structural properties . 61
2.3 Notes . 67

3 Staged computation and meta programming 71
3.1 Introduction . 71

3.2 The ν
�
-calculus . 74

3.2.1 Motivation . 74

3.2.2 Syntax and type checking . 76

3.2.3 Operational semantics . 82
3.3 Support polymorphism . 84

3.4 Intensional program analysis . 89

3.4.1 Syntax and type checking . 89
3.4.2 Operational semantics . 92

3.5 Logical relations . 96

3

CONTENTS CONTENTS

3.6 Notes . 107

4 Modal theory of effects 109
4.1 Propositional lax logic . 109

4.1.1 Judgments and propositions . 109
4.1.2 Lax λ-calculus . 114
4.1.3 Values and computations . 115

4.2 Modalities for effectful computation . 119
4.3 A modal type system for benign effects . 123
4.4 Dynamic binding . 131
4.5 State . 138
4.6 Exceptions . 149
4.7 Catch and throw . 159
4.8 Composable continuations . 164
4.9 Notes . 173

4

Introduction

It is becoming increasingly important today to execute programs in very complex run-time envi-
ronments. Modern programs are often required to run in parallel, be mobile, use distributed data
owned by different authorities, accommodate dynamically to changing run-time conditions. More-
over, as the run-time environments are becoming more complex, so is the programming for these
environments.

When approaching complex programming problems, a language-enforced programming disci-
pline is crucial, and a natural way to enforce this discipline is through the type mechanism of
functional languages. Types express assumptions and guarantees required of expressions, and usu-
ally correspond to propositions in some logic. The compiler can mechanically check if the expression
matches its specified type, thereby aiding the debugging process.

The type systems of most languages today usually ensure that functions are invoked with
matching arguments but, unfortunately, ignore how programs interact with run-time environments.
In order to manage the increased complexity of programming, a language-enforced typing discipline
that takes environments into account seems like a critical component. Indeed, if types could capture
important aspects of run-time environments, then the type system may also ensure that expressions
are always executed in matching environments.

What does it mean for an expression and an environment to match? The definition may be given
in many different ways, depending on the particular application. However, just as an illustration
of the concept, consider the following simple, but concrete example. Assume that an environment
consists on a number of allocated, but not necessarily initialized memory locations. An expression
interacts with this environment by reading or writing into the locations. One possible definition
of matching may, for example, insist that each expression reading from a number of locations is
always executed in a state of memory where these locations are actually initialized.

A related issue is whether an expression only depends on the environment in which it executes,
or perhaps the execution of the expression may cause a change in the environment. To refer to
the previous example, a program that does not interact explicitly with the memory locations will
produce the same result irrespectively of the particular values stored into the locations. Such a
program is pure. If the program reads from a certain location, then changing that locations value
may certainly change the result of the program. If the program actually writes into a location,
than not only the program depends on the memory environment, but it also changes it. It may be
beneficial in several ways to make a typing distinction between expressions that are pure, expres-
sions that depend on the environment, and expressions that may change the environment. A pure
expression is self-contained. One can easily optimize it and reason about it. If the expression is
impure, optimizations and reasoning are much harder, because interactions with unknown environ-
ments must be taken into account. The reasoning is made easier if types could restrict the kinds
of environments that may be encountered, and also inform about the nature of the interaction.

A natural question then becomes: which logic may capture the properties of run-time environ-

5

CHAPTER 0. INTRODUCTION

ments, and thus may serve as a foundation for type systems with above properties? The proposed
answer in this dissertation is: modal logic. More specifically, the thesis statement of the dissertation
is:

Partial modal logic with names provides an appropriate type theoretic foundation for expressing
diverse aspects of the interaction between a functional program and the environment in which this
program executes.

Modal logic is designed for reasoning about truth across various – abstract – worlds. A propo-
sition may be true in some world, but not true in some other. The versions of modal logic that will
be consider here feature two operators on propositions: � (box) and 3 (diamond). The operator
� is a universal quantifier: �A is true at the current world iff A is necessary, i.e. true at all worlds.
The operator 3 is an existential quantifier: 3A is true at the current world iff A is possible, i.e. true
in at least some world.

For the application to programming languages, we may assume that, intuitively, the worlds
from modal logic stand for the run-time environments in which the programs execute. Then,
according to the proofs-as-programs paradigm of type theory, deriving truth of a proposition A
in a particular world, computationally corresponds to producing a value of type A in a particular
run-time environment.

Partial modal logic further introduces an additional condition C that may or my not be satisfied
by any given world. Then instead of two modal operators � and 3, we consider two indexed
families of operators �C and 3C which correspond to bounded universal and bounded existential
quantification over worlds, respectively. The proposition �CA is true at the current world iff A is
true at every world in which C holds. The proposition 3CA is true at the current world if there
exists a world in which both C holds and A is true.

Computationally, the condition C represents properties of interests that the run-time envi-
ronment must satisfy in order for the considered expression to be evaluated. In the previously
mentioned example with memory reads and writes, C may be a list of currently initialized memory
locations. The type system may ensure that expressions reading from locations listed in C are
always executed in environments in which locations from C are initialized.

The computational interpretation of the modal type �CA parallels its logical meaning: �CA
classifies expressions of type A that may execute in any environment satisfying the condition C.
The results of the execution may differ depending on the particular environment, but it is important
that the environment is not changed as result of the execution. In our example with memory, �CA
will classify expressions that do not write into any locations, but may read from locations in C,
before computing a value of type A.

The interpretation of the modal type 3CA is dual: 3CA classifies expressions that may change
the current environment (and the condition C captures the aspects that are subject to change)
before producing a value of type A in the changed environment. Such expressions correspond to
bounded existential quantification. Indeed, they are the witness that there exists an environment
(i.e. the one obtained after the change has been carried out) in which a value of type A can be
computed. In the example with memory, 3CA will classify expressions that may first write into
the memory locations C before computing a value of type A in the changed state.

Names are objects that are used to formally represent the partiality condition C. In the exam-
ple with memory, each memory location is associated with a name which uniquely identifies this
location. The condition C is a set of names, representing the set of locations that are currently
initialized. Names may be dynamically allocated and introduced into the computation.

6

CHAPTER 0. INTRODUCTION

The idea to use types to differentiate pure from effectful expressions has certainly been studied
before. Here we only mention the most popular approaches: type-and-effect systems [GL86, LG88,
Wad98, JG91, TJ94, TT97], and monads [Mog91, Wad92, Wad95, Wad98]. In modal logic, however,
the emphasis is not on the effects themselves, but is rather on the environments (as the reader have
undoubtedly already noticed). For example, in the framework of effect systems or monads, an
expression may be described as “causing the effects of reading from memory locations C”. In
modal logic, the same expression will be characterized as being “executable in any state of memory
in which the locations C are initialized”.

This switch of emphasis will allow modal systems that may express interactions between pro-
grams and environments that are much more diverse than just effects. In fact, the notion of a
generic monad gives rise to a particularly simple version of modal logic, called lax logic [FM97],
and thus monads may be seen as a special case of the modal approach. Of course, there are
many other modal logics, which may potentially capture many different aspects of programs and
environments. For example, Chapter 3 studies in more detail a version of modal logic suitable
for application to staged computation and meta programming, where programs may be generated,
compiled and even inspected at run time.

The rest of this sections describes the organization of the dissertation and the contributions of
each particular chapter.

Organization and contributions

Chapter 1: Constructive modal logic

The purpose of this chapter is to establish the main concepts that we operate with in the rest of the
document. We use the methodology of Martin-Löf [ML96] to clearly separate between the notions of
proposition and judgments, and then develop a natural deduction for a particular version of modal
logic. The modal logic in question is called Constructive S4 (CS4), and it will be a basis for all the
considerations in the following chapters. In addition to the usual connectives of propositional logic,
CS4 contains the modal propositional operators � and 3 which express universal and existential
quantification over possible worlds.

The proof term assignment for the developed natural deduction defines a modal extension of the
λ-calculus, and provides the computational context for the modal logic CS4. The modal λ-calculus
is characterized by the new term constructors box and let box (which correspond to the inference
rules for the operator �) and dia and let dia (which correspond to the inference rules for the
operator 3).

The chapter concludes with the formulation of the relevant expression substitutions, and the
corresponding substitution principles in the setting of both the natural deduction and the modal
λ-calculus.

The development in this chapter closely follows the work of Pfenning and Davies [PD01]. The
chapter does not contain any novel contributions.

Chapter 2: Partial modal logic

This chapter develops partial modal logic CS4, as an extension of ordinary CS4 from Chapter 1.
The main idea is to introduce a condition C that serves to characterize arbitrary aspect of the
possible worlds that may be of relevance for the eventual application. The condition C is called
support. The basics of the logic are developed with the support C kept abstract, so that the chapter

7

CHAPTER 0. INTRODUCTION

is rather general. Eventually, C is defined as a set of names (to be described below), but many
other definitions seem plausible.

The introduction of supports leads to the definition of modal operators �C and 3C , which are
indexed by the support C. The indexed modal operators correspond to bounded quantification over
possible worlds. For example, �CA will intuitively be true at the current world iff A is true at all
possible worlds in which C holds. Dually, 3CA will be true at the current world iff there exists a
world in which both C holds and A is true.

The extensions of the logic will also influence the corresponding λ-calculus. In order to preserve
the completeness, we will add new term constructors. But most importantly, the definition of
supports will lead to a definition of a new and interesting operation of modal substitution. Unlike
the ordinary substitution, which treats the substituting terms parametrically, modal substitution
allows that the term may be modified before it is substituted in. It is important that a different
modification may be specified for each substituting occurrence. This process of modification is
called reflection, and may be defined in many ways, depending on the definition of supports.

This chapter also introduces names, which provide a particular way to specify supports. Each
name is associated with some proposition A, and it serves as a placeholder for proofs of A (or
for that matter, any proofs of any other property related to A that may be of interest for the
application). As already mentioned, support C may then be viewed as a set of names. In this case,
the condition expressed by C is the conjunction of the propositions associated with each name in
C. The process of reflection is then defined as an explicit substitution of the names in C. The
proof-term assignment obtained for the partial modal logic with names gives rise to an extension
of a λ-calculus, which we call a modal ν-calculus.

The chapter concludes with the proofs of the main principles associated with ordinary, modal
and explicit substitutions. All the work presented in this chapter is original.

Chapter 3: Staged computation and meta programming

In staged computation and meta programming, we are concerned in writing code that generates
other code. Frequently, the generated code may be seen as source code (i.e. a syntactic entity),
and the operations of interest include not only generating but also compiling and inspecting source
code.

The type safety for meta programming applications has to guarantee that well-typed meta
programs only generate well-typed source code. One of the most persistent challenges related to
the types in meta programming has been in devising a type system that may differentiate between
source code which is closed (i.e. it does not depend on free variables, and may therefore be compiled
and executed at run time), and source code which is open, i.e. may depend on free variables.

It turns out that the �-fragment of the modal ν-calculus from Chapter 2 directly extends to a
meta programming calculus with types for closed and open source code. The type �CA classifies
source code of type A which may depend on free variables (i.e. names) listed in the set C. When the
set C is empty, then �A classifies closed source code. In this chapter, we also define the notion of
polymorphism in supports, so that we can write programs that manipulate source code of different
or even unknown support. The chapter also presents some initial development towards extending
the calculus with features for pattern matching against source code.

From the technical standpoint, the contributions of the chapter involve the development of the
logical relations for the �-fragment of the modal ν-calculus, as well as proofs of the appropriate
progress and type preservation theorems. All the work presented in this chapter is original.

8

CHAPTER 0. INTRODUCTION

Chapter 4: Modal theory of effects

In this chapter we develop a general modal calculus in which types can distinguish between two
kinds of effects: effects that are persistent, and effects that are benign. The execution of a persistent
effects inflicts a change upon the run-time environment, while the benign effects only depend on the
environment, but do not change it. A typical persistent effect is writing into a memory location,
while typical benign effects are memory reads or control flow effects. The derived type system
is able to differentiate between values (which are ascribed non-modal types), computations with
benign effects (ascribed the indexed modal type �CA) and computations with persistent effects
(ascribed the type 3CA). This development is an original contribution.

The programming style enforced by this type system serializes the computations with persistent
effects. The persistent effects must be totally ordered, simply because their execution changes the
run-time environment, so any well-defined semantics has to fix this order. Such a requirement,
however, is not imposed on benign effects.

The idea to use types to differentiate between values and (possibly effectful) computations have
certainly been considered before. The most prominent representative of this line of research are
monads and the monadic meta language [Mog91, Wad92, Wad95, Wad98]. The notion of a generic
monadic type operator © gives rise to lax logic [FM97], which is a simple variant of modal logic.

It is interesting that lax logic may be embedded into the constructive modal logic S4, as dis-
covered by Pfenning and Davies [PD01]. In this chapter, we present both the lax logic and its
embedding. While we adopt the approach of [PD01] in the description of lax logic, the embedding
itself is presented in a novel way. Rather than insisting on the formal syntactic particulars of the
embedding, we focus on its more illustrative semantical importance, which is in identifying the
concepts of truth and necessity. This identification of truth and necessity may be formally achieved
by adjoining a single axiom schema A→ �A to modal logic CS4. In this case, the modal operator
3 becomes the monadic operator © from lax logic.

The development of the chapter proceeds by performing a similar modification to partial modal
logic. When truth and necessity are identified in partial modal logic (or, equivalently, if partial
modal logic is extended with the axiom schema A → �A), we obtain a general type system
for benign and persistent effects described at the beginning. This observation is also an original
contribution.

The general calculus may be uniformly instantiated to treat various different effects, and we do
so to obtain novel calculi for memory reads and writes and calculi for control effects like exceptions,
catch-and-throw and composable continuations. As mentioned before, an important characteristics
of these calculi is that benign effects need not be explicitly serialized. This is an improvement when
compared to the monadic meta language, where programs must explicitly specify a total ordering
on all effects. In the modal calculus, such total ordering in imposed only on persistent effects. The
modal formulation of benign effects may also potentially improve the efficiency of the computations,
when compared to the monadic treatment of the same effects.

It is interesting that the �-fragment of the calculus for memory implements a type-safe version
of dynamic binding. In this calculus, computations that read from memory are ascribed a universal
bounded type �CA. The construct for dynamic binding binds values to memory locations, and
thus specifies an environment in which a computation of type �CA may be executed. In this
sense, dynamic binding logically corresponds to instantiation of the bounded universal quantifier
�C . Discovering the logic behind dynamic binding was a long-standing problem in functional
programming.

9

CHAPTER 0. INTRODUCTION

10

Chapter 1

Constructive modal logic

1.1 Natural deduction

1.1.1 Judgments and propositions

A modality is a logical operator that qualifies assertions about the truth of propositions. For
example, given a certain proposition A, we may consider if A is true or false, but may also be
interested if A is necessarily true, or possibly true, will be true at the next moment in time, is
believed to be true, and so on.

The assertions expressed by modalities are customarily given formal semantics using the ap-
proach of Kripke frames [Kri63]. A Kripke frame is a relational structure (W, R), consisting of a
set of possible worlds W, and a relation R ⊆ W ×W of accessibility. Then, a modally qualified
proposition expresses an assertion about truth across accessible worlds. The nature of the assertion
is determined by the nature of the accessibility relation.

We illustrate the concept of Kripke frames using a particularly simple example of temporal
modal logic, which is a logic for reasoning about truth in subsequent moments in time. The
appropriate Kripke frame for this logic defines the possible worlds W as moments in time. The
accessibility relation R is discrete and total, determining the temporal relation between worlds. We
have (w,w′) ∈ R if and only if w is a moment occuring sometime before w ′. Because R is discrete,
for each moment w there is a w′ that can be chosen as a subsequent moment. Then we can define a
modality© as an operator on propositions expressing truth at the subsequent time moment. More
precisely, we say that ©A is true at time moment w if and only if A is true at the subsequent time
moment w′.

Some other operators frequently considered in modal logic are the operator � of necessity and
the operator 3 of possibility. The two operators express universal and existential quantification
over accessible worlds, respectively. As an illustration, in the temporal logic described above, we
say that �A is true at some time moment w if and only if A is true at all time moments in the
future of w. Dually, 3A is true at w if and only if A is true at some time moment in the future of
w.

In this section, we review the results of Pfenning and Davies from [PD01] and consider modal
logic from intuitionistic and type theoretic perspective, rather than from the perspective of Kripke
frames and possible worlds. The intuitionistic approach puts special emphasis on the constructive
import of propositions: A will be considered true, if and only if we can construct and exhibit an
evidence of it. In our formulation, we follow the methodology of Martin-Löf [ML96] to clearly
separate the notions of judgments and propositions. Propositions are logical objects which encode

11

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

statements of interest for the formal consideration. Judgments represent properties of propositions
that are subject to proof.

For example, we can judge if a certain proposition A is well formed or not, and we can formulate
a judgment

A prop

defining what counts as a proof of well-formedness. If we assume that our logic contains an operator
∧ for conjunction, then a conjunction of two propositions A and B is a well-formed proposition
whenever both A and B are well-formed. This (rather self-evident) fact can be expressed as an
inference rule of the judgment A prop as follows

A prop B prop

A ∧B prop

The inference rule is oriented in a top-down manner: the judgments above the line are premises,
and the judgment below the line is a conclusion that may be inferred after the premises have been
judged satisfied (i.e. witnessed by a proof). In this sense, a proof that A ∧ B prop consists of the
proofs that A prop and B prop.

A completely separate judgment has to be used to determine when a proposition A is true,
and what constitutes a proof, i.e. evidence for the truth of A. Appropriately enough, we call this
judgment

A true

and we implicitly assume that A prop is satisfied before we can judge if A true. In intuitionistic
logic, we have an evidence of A∧B if and only if we have an evidence of each of the two propositions.
We can express the if-then direction of this fact using the introduction rule

A true B true

A ∧B true

and the only-if direction is encoded using the two elimination rules

A ∧B true

A true

A ∧B true

B true

The introduction rule defines when it is justified to conclude that a conjunction of two propo-
sitions is true. The rule is named “introduction” because it allows us to introduce the ∧ operator
into the proposition A∧B. The elimination rules define how to use a conjunction once it has been
proved. In particular, we can always “eliminate” the ∧ operator from A ∧ B, and obtain A in
isolation from B, or vice versa.

Of course, the introduction and elimination rules for a logical operator cannot be completely
arbitrary, but must satisfy certain coherence conditions which ensure that the rules match. For
example, the elimination rules should not be too strong and allow us to infer unjustified conclusions.
We can make a conclusion from the elimination rule only if we have enough evidence for the
premises. This property is known as local soundness. It is witnessed by local reduction which
constructs evidence for the conclusion of an elimination rule out of evidence of the premises. The
local reductions witnessing the local soundness of the elimination rules for conjunction are stated
in the following form.

A true B true

A ∧B true

A true

=⇒R A true

12

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

and
A true B true

A ∧B true

B true

=⇒R B true

The first local reduction shows that the conclusion A true obtained after eliminating A ∧ B true
could have already been obtained as a first premise of the rule that introduced A∧B true. There-
fore, the elimination rule is not too strong, because we can only use it to establish something we
already had. The local reduction shows how the proof could have been derived without the detour
of introducing and then eliminating the conjunction. This is why it is called “reduction”; it estab-
lishes simpler evidence for the conclusion obtained after conjunction elimination. The other local
reduction is completely symmetric, except that it uses the second elimination rule for conjunction.

The elimination rules must not be too weak either. We should be able to use an elimination rule
in such a way that its premises can be recovered. This property is known as local completeness.
It is witnessed by local expansion, which applies the elimination rules in order to obtain enough
knowledge to reconstruct the original judgment. It is called “expansion” because it obtains a more
complex evidence for the original judgment. In case of conjunction, the local expansion takes the
following form.

A ∧B true =⇒E

A ∧B true

A true

A ∧B true

B true

A ∧B true

As shown above, the local expansion eliminates A∧B true to obtain A true and B true. The two
are then combined to reintroduce A ∧B true.

1.1.2 Hypothetical judgments and implication

A further primitive notion that we need is that of a hypothetical judgment, i.e. a judgment which is
made under hypotheses, or assumptions. Hypothetical judgments are needed in order to formalize
the concept of implication. We would like to define the implication A→ B to be true if and only if
B true can be proved whenever A true can. But in order to formally state this causal dependence
between A and B, we need to define what it means to judge B true under an assumption that
A true.

The general form of a hypothetical judgment is written as

J1, . . . Jn ` J

which expresses that J can be proved under the hypotheses J1, . . . , Jn. We also refer to J1, . . . ,
Jn as antecedents and J as the succedent of the hypothetical judgment.

The first specific hypothetical judgment that we consider in this section limits J1, . . . , Jn, J to
be instances of A true, and therefore has the form

A1 true, . . . , An true ` A true

The collection A1 true, . . . , An true is called a context of hypothesis. We use Γ and variants to
range over contexts, and will usually write the hypothetical judgment in an abbreviated form

Γ ` A true.

When defining a new judgment, we need to state what counts as an evidence, or proof for it.
In the particular case of the hypothetical judgment Γ ` A true, we need to define a notion of

13

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

hypothetical proof. What does it mean to derive A true under assumptions Γ? In a hypothetical
proof of A true under assumptions A1 true, . . . , An true, we can use the hypotheses as if we knew
them. Once a derivation of Ai true is given (for some Ai), we can substitute it for the uses of the
assumption Ai true in the hypothetical proof, to obtain a judgment and a proof that no longer
depend on Ai true. In this sense, a proof of Γ ` A true prescribes how a proof A true can be
constructed, once proofs of A1 true, . . . , An true are given. The emphasis in this construction is
on the operation of substitution. When deriving A true, the proofs of A1 true, . . . , An true may
only be used as given, without any opportunity for inspection or modification. Because of this
particular property, we say that the hypothetical judgment is parametric in its assumptions.

The nature of the hypothetical judgment and the dependence between antecedents and succe-
dent is usually stated in the form of the following substitution principle.

If Γ ` A true and Γ, A true,Γ′ ` B true, then Γ,Γ′ ` B true.

The substitution principle implicitly assumes that the proof of Γ ` A true is indeed substituted into
the proof of Γ, A true,Γ′ ` B true to obtain a proof of Γ,Γ′ ` B true. Notice that the substitution
principle should not be viewed as an inference rule. Rather, it is a meta-theoretic property which
we will have to prove once all the inference rules of Γ ` A true are defined.

In addition to the substitution principle, we impose some further structure of the hypothetical
judgment. In particular, we require the following structural properties.

1. Exchange. If Γ1, A1 true,Γ2, A2 true ` B true, then Γ1, A2 true,Γ2, A1 true ` B true.

This structural property of exchange states that the ordering of hypothesis in the context Γ
is irrelevant for the judgment. In other words, we may consider Γ to be a set, rather than a
list. We immediately put exchange to use in order to abbreviate the statements about our
hypothetical judgments.

2. Weakening. If Γ ` B true then Γ, A true ` B true.

3. Contraction. If Γ, A true,A true ` B true, then Γ, A true ` B true.

Using the structural properties of exchange and weakening, we can further simplify the substi-
tution principle for the truth judgment, and rephrase it as presented below. It is this form of the
substitution principle that we adopt in the rest of the dissertation.

Principle (Substitution)
If Γ ` A true and Γ, A true ` B true, then Γ ` B true.

The hypothesis rule of the truth judgment formalizes the intuition that assumptions in a hypo-
thetical judgment may be used as if they were known. In particular, under the assumption A true,
we may always conclude A true. Following the structural property of exchange, the rule ignores
the ordering of the hypothesis in the context Γ.

Γ, A true ` A true

After introducing all the machinery of hypothetical judgments and proofs, we are finally ready
to define implication A → B as a new form of propositions, which expresses that B true may be
derived when A true is given. We will frequently say that implication internalizes hypothetical
truth, because it provides means to reason about hypothetical truth within the ordinary truth
judgment.

14

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

As a first step in the definition of the new propositional operator, we need to extend the
formation judgment A prop so that it can treat the new case involving the operator →. The
appropriate formation rule simply states that A→ B is a well formed proposition, whenever both
A and B are.

A prop B prop

A→ B prop

More interesting are the inference rules that extend the truth judgment. Following the methodology
of natural deduction that we previously used in the case of conjunction, we provide an introduction
and an elimination rule for implication. The introduction rule formally states that A → B true
can be derived if there is a hypothetical proof of A true ` B true. The introduction rule therefore
exactly serves to define the operator of implication as an internalization of hypothetical judgments.

Γ, A true ` B true

Γ ` A→ B true

The elimination rule for implication realizes the substitution principle, and provides a way to infer
B true when both A→ B true and A true can be obtained.

Γ ` A→ B true Γ ` A true

Γ ` B true

The rules are locally sound and complete, and therefore of matching strength. Local reduction is
presented below, and is justified by the substitution principle.

Γ, A true ` B true

Γ ` A→ B true Γ ` A true

Γ ` B true

=⇒R Γ ` B true

Indeed, the derivation of Γ ` B true may be obtained by substituting the premise Γ ` A true into
the premise Γ, A true ` B true, just as claimed by the substitution principle.

The local completeness is witnessed by local expansion.

Γ ` A→ B true =⇒E

Γ, A true ` A→ B true Γ, A true ` A true

Γ, A true ` B true

Γ ` A→ B true

Local expansion first uses the structural property of weakening to modify Γ ` A → B true into
Γ, A true ` A→ B true. Implication elimination is performed on this premise to obtain Γ, A true `
B true, before reintroducing implication again and conclude Γ ` A→ B true.

Example 1 The following are example judgments that can be derived in the logic presented so
far.

1. ` A→ A true

2. ` A→ B → A true

3. ` (A→ B → C)→ (A→ B)→ A→ C true

15

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

1. Derivation of ` A→ A true.
A true ` A true

` A→ A true

2. Derivation of ` A → B → A true first uses the hypothesis rule to infer A true,B true `
A true, which is then followed by two introductions.

A true,B true ` A true

A true ` B → A true

` A→ B → A true

3. Derivation of ` (A→ B → C)→ (A→ B)→ A→ C true. To reduce clutter, we abbreviate
contexts as follows: Γ1 = A → B → C true, Γ2 = (Γ1, A→ B true), and Γ = (Γ2, A true).

Γ ` A→ B → C true Γ ` A true

Γ ` B → C true

Γ ` A→ B true Γ ` A true

Γ ` B true

Γ ` C true

Γ2 ` A→ C true

Γ1 ` (A→ B)→ A→ C true

` (A→ B → C)→ (A→ B)→ A→ C true

�

1.1.3 Necessity

In the previous sections we considered two versions of the judgment for truth: the hypothetical
version Γ ` A true, and the non-hypothetical version A true. The hypothetical version Γ ` A true
extends A true, in the sense that the later can be recovered as · ` A true where the context Γ is
chosen to be empty. The variant · ` A true is known as a categorical judgment, because it does
not depend on any hypotheses. It can be seen as stating a universal fact, which does not rely on
external arguments. Categorical judgments are witnessed by categorical proofs. A categorical proof
is, again, a proof that does not depend on any hypotheses; a proof which is, in some sense, closed.

In this section we isolate the notions of categorical judgment and categorical proof, and consider
them in and of themselves, rather than as special cases of hypothetical judgments and proofs. To
this end, we introduce the judgment for necessity

A nec

defined by the following two clauses.

1. If · ` A true, then A nec.

2. If A nec, then Γ ` A true.

The two clauses define that A nec holds if and only if · ` A true. The clause (1) establishes that
if-then direction, and the clause (2) corresponds to the only-if direction. Notice that we allow
non-empty Γ in the definitional clause (2) in order to avoid explicit context weakening.

16

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

The choice of the name for the necessity judgment is not accidental. As we will soon demon-
strate, the consideration of categorical proofs and categorically true propositions very quickly leads
to a formulation of modal logic. An informal but useful intuition that relates categorical judgments
to modal logic is based on the following observation. Each context Γ of a hypothetical truth judg-
ment may be seen as selecting a set of possible worlds in a Kripke-style semantics. The selected
worlds are those that satisfy all the hypotheses in Γ. If the proposition A is categorically true, i.e.
if · ` A true, then A is true in a generic world about which we know nothing. In other words,
A is true in all accessible worlds. In this sense, categorical truth corresponds to universal quan-
tification, and categorically true propositions are necessary. On the other hand, the hypothetical
judgment Γ ` A true only provides evidence for the truth of A in the current world of reference.
We will frequently rely on this intuition to motivate particular design choices in our logic, but we
do not pursue further its formal side. The interested reader is refered to the work of Alechina at
al. [AMdPR01], which provides a Kripke semantics for a natural deduction related to ours.

As evident from the definition, necessity is a judgment whose meaning is described in terms of
truth. Thus, necessity in itself does not introduce anything new, unless we take a step further and
extend the truth judgment so that it can depend on necessary hypotheses. Because the order of
hypotheses is not important, we separate the context into two parts (separated by semi-colon for
visual clarity), and consider a judgment of the following form.

B1 nec, . . . , Bm nec;A1 true, . . . , An true ` A true

We use Γ to range over sets of hypotheses of the form A true, and ∆ to range over sets of hypothesis
A nec. We will implicitly assume that both the contexts are subject to the structural properties of
weakening, exchange and contraction.

To define what counts as a proof of the new hypothetical judgment, we need to extend the
notion of categorical proof. Similar to before, a categorical proof of ∆; Γ ` A true is a proof
obtained without any reference to truth hypotheses. However, a categorical proof is allowed to
depend on necessary hypotheses. This is only natural, because categorical proofs are evidence for
necessary propositions, and could therefore be substituted for necessary hypotheses. The following
substitution principle formaly states the described reasoning.

Principle (Substitution for necessity)
If ∆; · ` A true and (∆, A nec); Γ ` B true then ∆; Γ ` B true.

Note that the judgment ∆; · ` A true in the substitution principle does not depend on true
hypotheses. Its proof is categorical, and can therefore be substituted for the hypotheses A nec to
derive B true. The emphasis here is again on substitution. The proof of A may not be modified or
inspected in any way before it is used to derive B true.

Related to the substitution principle for necessity is the rule for necessary hypotheses. The
judgment A nec is witnessed by a categorical proof of A true, and a categorical proof can always
be viewed as an ordinary proof. Thus, given A nec, we are justified in deriving A true, as the
following rule for necessary hypotheses states.

(∆, A nec); Γ ` A true

After introducing the concept of necessity, the next step is to internalize it. To that end, we
introduce a new unary operator on propositions �, with the expected formation rule.

A prop

�A prop

17

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

The introduction rule follows the definition of necessity: we can derive �A true only if there is a
derivation of A nec, i.e. only if there is a categorical derivation of A true.

∆; · ` A true

∆;Γ ` �A true

The elimination rule follows the substitution principle for necessity. Given a derivation of �A true,
we know by definition that ∆; · ` A true. If in addition (∆, A nec); Γ ` B true, then by the
substitution principle for necessity, we may derive ∆; Γ ` B true.

∆; Γ ` �A true (∆, A nec); Γ ` B true

∆;Γ ` B true

This exact reasoning justifies the local reduction and local soundness.

∆; · ` A true

∆; · ` �A true (∆, A nec); Γ ` B true

∆;Γ ` B true

=⇒R ∆;Γ ` B true

The local completeness is established by the local expansion given below.

∆; Γ ` �A true =⇒E ∆;Γ ` �A true

(∆, A nec); · ` A true

(∆, A nec); Γ ` �A true

∆;Γ ` �A true

Example 2 The following are valid derivations in the modal logic of necessity presented so far.

1. ` �A→ A true

2. ` �A→ ��A true

3. ` �(A→ B)→ �A→ �B true

1. Derivation of ` �A→ A true.

·;�A true ` �A true A nec;�A true ` A true

·;�A true ` A true

` �A→ A true

2. Derivation of ` �A→ ��A true.

·;�A true ` ��A true

A nec; · ` A true

A nec; · ` �A true

A nec;�A true ` ��A true

·;�A true ` ��A true

` �A→ ��A true

18

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

3. Derivation of ` �(A→ B)→ �A→ �B true. To reduce clutter, we introduce the following
abbreviations: Γ1 = �(A→ B) true, Γ = Γ1,�A true, and ∆1 = (A → B) nec, ∆ =
∆1, A nec.

·; Γ ` �(A→ B) true

∆1; Γ ` �A true

∆; · ` A→ B true ∆; · ` A true

∆; · ` B true

∆;Γ ` �B true

∆1; Γ ` �B true

·; Γ ` �B true

·; Γ1 ` �A→ �B true

` �(A→ B)→ �A→ �B true

�

1.1.4 Possibility

In modal logic, a proposition is necessarily true if it is true in all the accessible worlds. A dual
concept is that of possible truth. We say that A is possible if there exists an accessible world in
which A is true. The formulation of possible truth in classical modal logic is usually in terms of
necessity, simply because in classical logic existential quantification may be expressed in terms of
universal quantification. But since we are interested in a constructive variant of modal logic, this
approach is not available — possibility should be defined in and of itself. Furthermore, we would
like to analyze possibility without actually referring to particular worlds within the formal system,
and without describing the totality of worlds and the accessibility relation on it.

As discovered by Pfenning and Davies [PD01], this kind of a formulation can be achieved if
one adopts a judgmental approach and considers how the knowledge that A is possibly true can
be used to derive new facts. If A is possibly true, than there exists a world about which we know
nothing, except that A is true at that world. Therefore, if we assume that A is true (but nothing
else), and then conclude that B is possible, then B must be possible. Notice that starting from
the possibility of A, we can only make conclusions about the possibility of B, but not about the
truth of B. To initially establish that A is possible, we simply need to show that A is true. To
formalize this reasoning, we introduce a new judgment A poss to witness the possibility of A, and
immediately consider its hypothetical variant

∆; Γ ` A poss

where ∆ and Γ abbreviate necessary and true assumptions, respectively. The possibility judgment
is defined by the following two clauses.

1. If ∆; Γ ` A true, then ∆; Γ ` A poss.

2. If ∆; Γ ` A poss and ∆;A true ` B poss, then ∆; Γ ` B poss.

Note that the definitional clause (2) makes the necessity assumptions ∆ available for deriving
B poss, but removes the truth assumptions Γ. This is because the context ∆ stands for propositions
that are true in all possible worlds, while Γ stands for propositions that are true only in the current
world. Therefore, if A is possible in some world, then we may assume of that world that it validates

19

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

∆, but not Γ. The definitional clause (2) takes form of a substitution principle, and establishes the
hypothetical nature of the judgment for possibility with respect to truth hypotheses. On the other
hand, the hypothetical character of possibility with respect to necessity hypotheses is described by
a version of the substitution principle for necessity.

If ∆; · ` A true and (∆, A nec); Γ ` B poss, then ∆; Γ ` B poss.

Next we internalize possibility as a propositional operator 3, with the obvious formation rule.

A prop

3A prop

The introduction rule for 3 simply encodes the fact that 3 internalizes possibility into the truth
judgment. The elimination rule for 3 follows the definitional clause (2), except that instead of the
assumption ∆; Γ ` A poss, it uses the internalized variant ∆; Γ ` 3A true.

∆; Γ ` A poss

∆;Γ ` 3A true

∆;Γ ` 3A true ∆;A true ` B poss

∆;Γ ` B poss

We also need an inference rule in order to realize the definitional clause (1). This rule takes the
form of a judgmental coercion from possibility into truth.

∆; Γ ` A true

∆;Γ ` A poss

It is easy to see that the presented inference rules are locally sound and complete. Local
soundness is witnessed by the local reduction below.

∆; Γ ` A poss

∆;Γ ` 3A true ∆;A true ` B poss

∆;Γ ` B poss

=⇒R ∆;Γ ` B poss

This local reduction is justified on the grounds of the definitional clause (2). Indeed, given the
premises ∆; Γ ` A poss and ∆;A true ` B poss, the clause (2) leads to the reduct ∆; Γ ` B poss.

Local completeness is witnessed by the local expansion, which itself relies on the judgmental
coercion from truth to possibility in order to derive ∆;A true ` A poss.

∆; Γ ` 3A true =⇒E

∆;Γ ` 3A true

∆;A true ` A true

∆;A true ` A poss

∆;Γ ` A poss

∆;Γ ` 3A true

We need a yet further rule to realize the substitution principle for necessary hypotheses within
the judgment for possibility.

∆; Γ ` �A true (∆, A nec); Γ ` B poss

∆;Γ ` B poss

As explained in [PD01], without this rule, the logic will not posses the strict subformula property.
For example, a proof of the judgment ·;�(A→ B) true,3A true ` B poss, will first have to make

20

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

a detour and establish a more complicated fact ·;�(A → B) true,3A true ` 3B true, before
eliminating 3B true to obtain B poss. The new rule is sound, as witnessed by the following local
reduction, justified on the grounds of the substitution principle for necessary hypotheses.

∆; · ` A true

∆;Γ ` �A true (∆, A nec); Γ ` B poss

∆;Γ ` B poss

=⇒R ∆;Γ ` B poss

Example 3 The following are valid derivations in the presented modal logic.

1. ` A→ 3A true

2. ` 33A→ 3A true

3. ` �(A→ B)→ 3A→ 3B true

1. Derivation of ` A→ 3A true.

·;A true ` A true

·;A true ` A poss

·;A true ` 3A true

` A→ 3A true

2. Derivation of ` 33A→ 3A true.

·;33A true ` 33A true

·;3A true ` 3A true

·;A true ` A true

·;A true ` A poss

·;3A true ` A poss

·;33A true ` A poss

·;33A true ` 3A true

` 33A→ 3A true

3. Derivation of ` �(A → B) → 3A → 3B true. To reduce clutter, we explicitly name the
contexts Γ1 = �(A→ B) true, Γ2 = Γ1,3A true, Γ = A true, and ∆ = (A→ B) nec.

·; Γ2 ` �(A→ B) true

∆;Γ2 ` 3A true

∆;Γ ` A→ B true ∆;Γ ` A true

∆;Γ ` B true

∆;Γ ` B poss

∆;Γ2 ` B poss

∆;Γ2 ` 3B true

·; Γ2 ` 3B true

·; Γ1 ` 3A→ 3B true

` �(A→ B)→ 3A→ 3B true

21

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

�

Examples 2 and 3 between themselves list six propositions whose truth is derivable in our logic.
It is of particular interests here to emphasize the connection between two pairs of dual propositions

1. �A→ A and A→ 3A

2. �A→ ��A and 33A→ 3A

In classical modal logic these pairs correspond to particular properties of the accessibility relation
in the possible world semantics. The pair (1), for example, requires that the accessibility relation
between worlds is reflexive. The pair (2) requires that the accessibility relation is transitive. The
classical modal logic satisfying these two requirements is known under the name of S4. In analogy
with this notational convention, we call the logic presented here Constructive S4, or simply CS41. A
formulation of many other intuitionistic modal logics (including a yet another intuitionistic version
of S4) can be found in the PhD dissertation of Alex Simpson [Sim94].

1.1.5 Summary of the system

We now summarize the formal system of modal logic with implication, necessity and possibility, as
described in the previous sections.

Propositions A,B ::= P | A→ B | �A | 3A
True hypothesis Γ ::= · | Γ, A true
Necessary hypothesis ∆ ::= · | ∆, A nec

The logic consists of three basic judgments A true, A nec and A poss, which are used as
hypotheses in two different hypothetical judgments ∆; Γ ` A true and ∆;Γ ` A poss. The rules of
the hypothetical judgments are listed below.

∆; (Γ, A true) ` A true

∆; (Γ, A true) ` B true

∆;Γ ` A→ B true

∆;Γ ` A→ B true ∆;Γ ` A true

∆;Γ ` B true

(∆, A nec); Γ ` A true

∆; · ` A true

∆;Γ ` �A true

∆;Γ ` �A true (∆, A nec); Γ ` B true

∆;Γ ` B true

1The name Constructive S4 has already been proposed in [AMdPR01] for a logic obtained when the six propositions
from Examples 2 and 3 are added to the axioms of the intuitionistic propositional calculus. The inference rules of
Constructive S4 include modus ponens and the rule of necessitation. We take the liberty to use the same name for
our logic, because we expect that it is equal to the logic proposed in [AMdPR01]. This conjecture, however, has not
been proved.

22

CHAPTER 1. MODAL LOGIC 1.2. MODAL λ-CALCULUS

∆;Γ ` A true

∆;Γ ` A poss

∆;Γ ` A poss

∆;Γ ` 3A true

∆;Γ ` 3A true ∆;A true ` B poss

∆;Γ ` B poss

∆;Γ ` �A true (∆, A nec); Γ ` B poss

∆;Γ ` B poss

The inference rules indeed respect the definitional properties of the hypothetical judgments, as
the following theorem shows.

Theorem 1 (Substitution principles)
1. If ∆;Γ ` A true then

(a) if ∆; (Γ, A true) ` B true then ∆;Γ ` B true

(b) if ∆; (Γ, A true) ` B poss then ∆;Γ ` B poss

2. If ∆; · ` A true, then

(a) if (∆, A nec); Γ ` B true, then ∆;Γ ` B true

(b) if (∆, A nec); Γ ` B poss, then ∆;Γ ` B poss

3. If ∆;Γ ` A poss and ∆;A true ` B poss, then ∆;Γ ` B poss

Proof: Statements (1) and (2) are proved by straightforward induction over the structure of the
first given derivation. Statement (3) is proved by induction over the second derivation. �

1.2 Modal λ-calculus

1.2.1 Judgments and proof terms

Following the type-theoretic methodology of Martin-Löf [ML96], in this section we annotate the
judgments of our natural deduction with proof terms. A proof term serves as a witness for its
corresponding judgment, in the sense that a derivation of the judgment may be recovered by
inspection of the proof term. If a judgment is annotated with a proof term, then each judgment
contains in itself an instruction on how to discover its derivation. It is not necessary to look outside
of the judgment to establish an evidence for it.

In this case, instead of A true and A poss, we will have judgments e : A and f ÷ A. The
meaning of the judgment e : A is that “e is a proof term witnessing that A true”. The meaning
of the judgment f ÷ A is that “f is a proof term witnessing that A poss. The elements of the
syntactic category e are called expressions, and the elements of the syntactic category f are called
phrases.

As an illustration, consider the rules for conjunction from Section 1.1.1, which we here decorate
with proof terms.

23

1.2. MODAL λ-CALCULUS CHAPTER 1. MODAL LOGIC

e1 : A e2 : B

〈e1, e2〉 : B

e : A ∧B

fst e : A

e : A ∧B

snd e : B

The proof-annotated rules uncover the computational content of the logic, as proofs can be
treated as programs, and propositions can be treated as types. For example, the introduction rule
for conjuction makes it explicit that the proof of A ∧B can be constructed using e1 : A and e2 : B
as a pair 〈e1, e2〉 : A ∧B. The elimination forms fst e and snd e destruct a pair by taking its first
or second component.

Local reduction and local expansions can now be stated using proof terms for conjuction.

fst 〈e1, e2〉 =⇒R e1

snd 〈e1, e2〉 =⇒R e2

e : A ∧B =⇒E 〈fst e, snd e〉

As customary for type theory, the proof-annotated version of local reduction is what carries the
computational meaning of the logical construct, because it explains how a program can reduced,
i.e. evaluated. In the case of conjuction, for example, local reductions formally specify what it
means to select the first or the second element of a pair. If the pair has the form 〈e1, e2〉 then, in
order to compute its first element we simply need to take the expression e1, and to compute the
second element, we need to take e2. On the other hand, local expansion implements the principle
of extensionality. In the case of conjuction, it states that every expression e:A∧B is guaranteed to
be equal (in an appropriate sense of equality which we do not define here) to the pair 〈fst e, snd e〉.

To obtain the proof-annotated versions of the hypothetical judgments, we first label the as-
sumptions from the contexts Γ and ∆ with variables. We write x:A for “x is a proof of A true”,
and u::A for “u is a proof of A nec”. The usual assumptions of variables contexts hold here as
well: variables declared in ∆ and Γ are considered different and we tacitly employ α-renaming
to guarantee this invariant. We will call variables from Γ ordinary or value variables, while the
variables from ∆ will be modal or expression variables. The decorated hypothesis rule now has the
form

∆; (Γ, x:A) ` x:A

and the corresponding substitution principle formalizes how the hypothetical judgments depend on
the value variables.

Principle (Value substitution)
If ∆; Γ ` e1 : A then the following holds:

1. if ∆; (Γ, x:A) ` e2 : B, then ∆; Γ ` [e1/x]e2 : B.

2. if ∆; (Γ, x:A) ` f2 ÷ B, then ∆; Γ ` [e1/x]f2 ÷ B.

In this principle, we denote by [e1/x]e2 and [e1/x]f2 the result of capture-avoiding substitution of
e1 for x in the expression e2 and phrase f2, respectively. Because the substitution principle now

24

CHAPTER 1. MODAL LOGIC 1.2. MODAL λ-CALCULUS

has access to proof terms, it can explicitly state that the judgments are parametric with respect to
variables. The expression e1 : A can only be substituted for x in the hypothetical proofs, but cannot
be used in any other way. This reliance on substitution was only implicitly assumed in the previous
formulations of the principle, but once proof terms are provided, it can be stated explicitly.

The rules for implication introduction and elimination are annotated using λ-abstraction and
function application, respectively.

∆; (Γ, x:A) ` e : B

∆;Γ ` λx:A. e : A→ B

∆;Γ ` e1 : A→ B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

As usual, the local soundness and completeness are witnessed by local reduction and expansion on
the proof terms, which in this case are the ordinary β-reduction and η-expansion of the λ-calculus.

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A→ B =⇒E λx:A. (e x) where x not free in e

Example 4 The following are well-typed expression in the modal λ-calculus.

1. ∆; Γ ` λx. x : A→ A

2. ∆; Γ ` λx. λy. x : A→ B → A

3. ∆; Γ ` λf. λg. λx. (f x) (g x) : (A→ B → C)→ (A→ B)→ A→ C

�

The hypothesis rule for modal variables is annotated as follows

(∆, u::A); Γ ` u : A

and the corresponding substitution principle is given below.

Principle (Modal substitution)

If ∆; · ` e1 : A, then the following holds.

1. if (∆, u::A); Γ ` e2 : B, then ∆; Γ ` [[e1/u]]e2 : B

2. if (∆, u::A); Γ ` f2 ÷ B, then ∆; Γ ` [[e1/u]]f2 ÷ B

In this principle, the operations [[e1/u]]e2 and [[e1/u]]f2 are capture-avoiding substitutions of e1 for
the modal variable u in e2 and f2, respectively. We use a different notation because the operation
substitutes a different kind of variables. The separate notation will come handy in the future
sections, where we redefine the modal substitution so that it differs from ordinary substitution.

The proof-annotated forms of the introduction and elimination rules for � are as follows.

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

25

1.2. MODAL λ-CALCULUS CHAPTER 1. MODAL LOGIC

and the local soundness and completeness are witnessed by the local reduction and expansion

let box u = box e1 in e2 =⇒R [[e1/u]]e2

e : �A =⇒E let box u = e in box u

Example 5 The following are well-typed expressions in the modal λ-calculus.

1. ∆; Γ ` λx. let box u = x in u : �A→ A

2. ∆; Γ ` λx. let box u = x in box box u : 2A→ ��A

3. ∆; Γ ` λx. λy. let box u = x in let box v = y in box u v
: �(A→ B)→ �A→ �B

�

The inference rules for possibility are easily annotated as well. The proof terms that we use
in this case belong to the syntactic category of phrases, and we start by rewriting the definitional
clauses for possibility (Section 1.1.4) to take phrases into account.

1. If ∆; Γ ` e : A then ∆; Γ ` e ÷ A.

2. If ∆; Γ ` f1 ÷ A and ∆;x:A ` f2 ÷ B, then ∆; Γ ` 〈〈f1/x〉〉f2 ÷ B.

The definitional clause (1) makes it evident that each expression e : A may be considered as a
phrase witnessing e ÷ A. The definitional clause (2) takes a form of a phrase substitution principle.
It uses a new operation of phrase substitution 〈〈f1/x〉〉f2 which we define below after introducing
the other phrase constructors.

Just as in Section 1.1.4, the formulation of the proof-annotated possibility judgment, uses an
explicit inference rule to realize the definitional clause (1).

∆; Γ ` e : A

∆;Γ ` e ÷ A

The introduction and elimination rules are decorated using the new phrase constructors dia and
let dia as follows.

∆; Γ ` f ÷ A

∆;Γ ` dia f : 3A

∆;Γ ` e : 3A ∆;x:A ` f ÷ B

∆;Γ ` let dia x = e in f ÷ B

Notice that the typing rule for let dia erases the context Γ, and introduces a new variable x:A,
which is considered bound by the let dia constructor.

There is also an additional rule for eliminating � into the possibility judgment.

∆; Γ ` e : �A (∆, u::A); Γ ` f ÷ B

∆;Γ ` let box u = e in f ÷ B

let dia x = dia f1 in f2 =⇒R 〈〈f1/x〉〉f2

let box u = box e1 in f2 =⇒R [[e1/u]]f2

e : 3A =⇒E dia (let dia x = e in x)

26

CHAPTER 1. MODAL LOGIC 1.2. MODAL λ-CALCULUS

The new substitution operation 〈〈f1/x〉〉f is defined in a slightly unusal way, by induction on
the structure of f1, rather than by induction on the structure of f .

〈〈e1/x〉〉f = [e1/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

Example 6 The following are well-typed terms in the modal λ-calculus.

1. ∆; Γ ` λx. dia x : A→ 3A

2. ∆; Γ ` λx. dia (let dia y = x in let dia z = y in z) : 33A→ 3A

3. ∆; Γ ` λx. λy. let box u = x in dia (let dia z = y in u z)
: �(A→ B)→ 3A→ 3B

�

1.2.2 Summary of the system

This section sumarizes the main aspects of the definition of the modal λ-calculus.

Types A,B ::= P | A→ B | �A | 3A
Expressions e ::= x | λx:A. e | e1 e2

| u | box e | let box u = e1 in e2

| dia f
Phrases f ::= e | let dia x = e in f

| let box u = e in f
Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A

The calculus contains two typing judgments:

∆; Γ ` e : A and ∆;Γ ` f ÷ A

The first judgment states that the expression e has type A relative to the modal context ∆ and
ordinary context Γ. Alternatively, e is a proof of A true, under necessary hypotheses ∆ and true
hypotheses Γ. The second judgment states that the phrase f has type A relative to the modal
context ∆ and ordinary context Γ. The alternative reading of this judgment is that f is a proof of
A poss under necessary hypotheses ∆ and true hypotheses Γ. The following are the inference rules
of the two judgments.

∆; (Γ, x:A) ` x:A

∆; (Γ, x:A) ` e : B

∆;Γ ` λx:A. e : A→ B

∆;Γ ` e1 : A→ B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

27

1.2. MODAL λ-CALCULUS CHAPTER 1. MODAL LOGIC

(∆, u::A); Γ ` u : A

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

∆;Γ ` e : A

∆;Γ ` e ÷ A

∆;Γ ` f ÷ A

∆;Γ ` dia f : 3A

∆;Γ ` e : 3A ∆;x:A ` f ÷ B

∆;Γ ` let dia x = e in f ÷ B

∆;Γ ` e : �A (∆, u::A); Γ ` f ÷ B

∆;Γ ` let box u = e in f ÷ B

There are three different forms of capture-avoiding substitution in the calculus:

1. Ordinary substitution. [e1/x]e and [e1/x]f which replace the value variable x by the expression
e1

2. Modal substitution. [[e1/u]]e and [[e1/u]]f which replace the modal variable u by the expression
e1

3. Phrase substitution. 〈〈f1/x〉〉f which replaces an ordinary variable x by a phrase f1.

The ordinary and modal substitutions are defined in a standard way, but the phrase substitution
is a bit unusal. It is defined by induction on the structure of f1, rather than f , using the following
three clauses.

〈〈e1/x〉〉f = [e1/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

The following theorem proves that the presented formulation respect the substitution principles
stated before as definitional properties of the judgments.

Theorem 2 (Substitution principles)
1. If ∆;Γ ` e1 : A then

(a) if ∆; (Γ, x:A) ` e2 : B then ∆;Γ ` [e1/x]e2 : B

(b) if ∆; (Γ, x:A) ` f2 ÷ B then ∆;Γ ` [e1/x]f2 ÷ B

2. If ∆; · ` e1 : A, then

(a) if (∆, u::A); Γ ` e2 : B, then ∆;Γ ` [e1/u]e2 : B

(b) if (∆, u::A); Γ ` f2 ÷ B, then ∆;Γ ` [e1/u]f2 ÷ B

3. If ∆;Γ ` f1 ÷ A and ∆;x:A ` f2 ÷ B, then ∆;Γ ` 〈〈f1/x〉〉f2 ÷ B

Proof: By straightforward induction on the structure of the typing derivations [PD01]. �

28

CHAPTER 1. MODAL LOGIC 1.3. NOTES

1.3 Notes

Related work on the proof theory of intuitionistic modal logics

As already mentioned, our presentation of constructive S4 from the previous section was based on
the work by Pfenning and Davies. But other approaches to the natural deduction have also been
proposed. For example, in the work of Alechina at al. [AMdPR01], Biermana and de Paiva [BdP00],
and Benton, Bierman and de Paiva [BBdP98], the modalities are formulated in the following way.

Γ ` e1 : �A1 · · · Γ ` en : �An x1 : �A1, . . . , xn : �An ` e : B

Γ ` box e with ē for x̄ : �B

Γ ` e : �A

Γ ` unbox e : A

Γ ` e : A

Γ ` dia e : 3A

Γ ` e1 : �A1 · · · Γ ` en : �An Γ ` e : 3B x1 : �A1, . . . , xn : �An, y : B ` f : 3C

Γ ` let dia y = e in f with ē for x̄ : 3C

This formulation is similar to the approach by Prawitz in [Pra65]. Notice how the �-introduction
and 3-elimination rules require explicit substitution. This is avoided in our presentation in Section 1
by separating ordinary variables from modal variables.

In fact, in the subsequent sections (Section 2 and Section 3) we will introduce Partial CS4,
which extends the ordinary CS4 with explicit substitutions. The use of explicit substitutions there,
however, will be directly opposite to the CS4 from this note. In Partial CS4, it will be the �-
elimination and 3-introduction rules that use explicit substitutions. This kind of approach will
provide a lot of additional expressiveness and flexibility when compared to ordinary CS4.

Another approach to the natural deduction of constructive modal logic in general, and versions
of modal S4 in particular, is exemplified by the work of Alex Simpson [Sim94]. The truth judgment
used in this kind of approaches has the form w : A, denoting that the proposition A is true at the
world w. The inference rules explicitly manipulate the accessibility relation R for the modal logic
in question. We show below the rules for modalities, in the form of derivation trees, as formulated
in [Sim94].

[wRw′]
...

w′ : A

w : �A

w′ : �A w′Rw

w : A

w′ : A wRw′

w : 3A

w′ : 3A

[w′′ : A][w′Rw′′]
...

w : B

w : B

It is interesting that the version of modal logic formulated by Simpson is slightly different from
the Constructive S4 introduced in Section 1. In particular, Simpsons’ formulation, which is called

29

1.3. NOTES CHAPTER 1. MODAL LOGIC

Intuitionistic S4 (or IS4 for short), admits the following theorems.

1. ¬3⊥

2. 3(A ∨B)→ (3A ∨3B)

3. (3A→ �B)→ �(A→ B)

These propositions are not derivable in an appropriate extensions of CS4 with disjunction and ⊥.
Simpson’s dissertation also axiomatizes many other intuitionistic modal logics, and is a good

source of hystorical references on this subject.

Related work on the Kripke semantics of Constructive S4

A Kripke model of CS4 is presented by Alechina at al. in [AMdPR01]. The model consists of a set
of worlds W and two accessibility relations, one for the intuitionistic implication v, and one for
the modalities →. More formally:

Definition 3
A Kripke model of CS4 is a structure M = (W,v,→, |=), where W is a non-empty set, v and →
are reflexive and transitive binary relations on W , and |= a relation between elements of w ∈ W
and propositions A, such that:

• v is monotone with respect to atomic propositions, i.e. if w v w ′ and P is an atomic
proposition, then w |= P implies w′ |= P

• v and → are coherent in the following sense:

if w → v and v v v′, there exists w′ such that w v w′ and w′ → v′

• the relation |= has the following properties

– w |= >

– w |= A ∧B iff w |= A and w |= B

– w |= A ∨B iff w |= A or w |= B

– w |= A→ B iff for all w′ w w, w′ |= A implies w′ |= B

– w |= �A iff for all w′ w w and u′ ← w′, u′ |= A

– w |= 3A iff for all w′ w w there exists u′ ← w′ such that u′ |= A

The definition does not require that w 6|= ⊥. Rather, inconsistent worlds are permitted, as
long as the following requirements are met:

– if w |= ⊥ and w v w′ then w′ |= ⊥

– if w |= ⊥ then for every atomic proposition P , w |= P

In his dissertation [Sim94], Simpson describes Kripke semantics for IS4, but not for CS4. The
differences between the two semantics include:

1. The semantics for IS4 does not allow inconsistent worlds. The inconsistent worlds are the
feature that eliminates the theorem ¬3⊥ in the CS4 semantics.

30

CHAPTER 1. MODAL LOGIC 1.3. NOTES

2. In IS4, w |= 3A iff there exists w′ w w such that w′ |= A. This definition permits the theorem
3(A ∨B)→ (3A ∨3B).

3. In IS4, a further coherence condition is imposed between the two accessibility relations. In
particular, the IS4 semantics requires that

if w′ w w and w→ v, then there exists v′ such that w′ → v′ and v′ w v

The presence of this condition in IS4 permits the theorem (3A→ �B)→ �(A→ B).

Related work on the categorical semantics of Constructive S4

Categorical semantics for CS4 has been considered by several authors, most notably by Kobayashi
[Kob97], Bierman and de Paiva [BdP00] and Alechina at al. [AMdPR01]. As established in these
papers, a categorical model for CS4 consists of a cartesian closed category with co-products C,
together with a monoidal comonad � and a �-strong monad 3.

We present here only the standard definitions of a monad and a comonad, but for simplicity,
we omit the details related to monoidal functors and �-strength. The ommitted details describe
various important commuting conditions that the functors � and 3 have to satisfy. We refer to
the work cited above for a thorough treatment.

Definition 4
1. A monad 3 is an endofunctor on C with two natural transformations η : A → 3A and

µ : 33A→ 3A, satisfying the following equations:

(a) µA ◦ η3A = µA ◦3(ηA) = id3A

(b) µA ◦ µ3A = µA ◦3(µA)

2. A comonad � is an endofunctor on C with two natural transformations ε : �A → A and
δ : �A→ ��A satisfying the following equations:

(a) ε � A ◦ δA = �(εA) ◦ δA = id � A

(b) δ � A ◦ δA = �(δA) ◦ δA

31

1.3. NOTES CHAPTER 1. MODAL LOGIC

32

Chapter 2

Partial modal logic

2.1 Natural deduction

2.1.1 Partial judgments and supports

In this section, we develop the notion of partial truth judgments. The idea is to capture that a
derivation or a witness of some fact may be obtained, but only if a certain condition is satisfied.
The syntactic form of the partial truth judgment is

A true [C]

where A is a proposition, and C is a supporting condition, or support, for short. The semantics of
this judgment is to witness that a proof of A true can be obtained if the condition C is fulfilled.
To emphasize this contrast between the partial judgment A true [C], and the ordinary judgment
A true defined in Chapter 1, we will call the later judgment total. Partial truth judgments resemble
somewhat the idea behind total hypothetical judgments. In a hypothetical judgment

A1 true, . . . , An true ` A true

the condition on A true consists of a set of hypotheses A1 true, . . . , An true, and a derivation of
A true can be obtained by means of substitution from the derivations of A1 true, . . . , An true.
Because these derivations must be substituted without any inspection or modification, the judgment
A1 true, . . . , An true ` A true is said to be parametric in its hypotheses.

Partial judgments, however, are intended to be much more general. For example, given a
derivation of A true [C] and a witness that the condition C is satisfied, it will be possible to
reconstruct a derivation of A true, but it is not required that the witness for C is used only via
substitution. In fact, any particular application may specify a different way to obtain A true from a
witness of C and a derivation of A true [C]. In this section, we remain uncommitted and treat this
dependency in the abstract. That will lead to properties of partial judgments that persist across a
broader range of applications.

The process of transforming the proof of A true [C], when a witness for C is provided, is called
reflection, and will typically be justified by the meta-theoretic properties of the truth judgment and
its derivations. In this sense, a support C may be seen as a condition in the meta-logical reasoning
about derivability of A true. Correspondingly, reflection allows that a conclusion obtained in the
meta logic be coerced into the truth judgment, when the condition C holds.

Reflection will have interesting consequences for the computational content of partial truth,
when propositions are seen as types, and proofs as programs. For example, a proof of A true [C]

33

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

may be considered as a program that produces a value of type A, but only if executed in a run-time
environment that satisfies the condition C. In this case, reflection may be defined as evaluation, or
for that matter, any other kind of type-preserving program transformation.

In the remainder of this section, we embark on the formulation and analysis of partial truth,
which will eventually motivate a development of a whole modal logic of partial judgments, with
very diverse applications in functional programming. Because supports are syntactic equivalents
of meta-logical propositions, any definition of partial truth must start by formally explaining the
correspondence between a given support C and the proposition that C represents. For that purpose,
we will use the judgments

C supp and C holds

which will need to be defined for any particular application, but which we keep abstract for the time
being. The judgment C supp determines if a support C is well-formed, and the judgment C holds
determines if a condition represented by C is satisfied. It is implicitly assumed that C holds is
itself well-formed only if C is a valid support, i.e. only if C supp.

In order to formally capture the causal dependency between supports, we need to impose some
further algebraic structure. In particular, we require that the set of all supports is partially ordered
by the reflexive, anti-symmetric and transitive relation v, and that it has a minimal element 0.
The idea is that C v D if and only if the condition associated with D implies in the meta logic
the condition associated with C. In this case, the minimal support 0 simply corresponds to the
condition that is always, trivially, true. To formalize this intuition, the support judgments will
contain the derivation rules

0 supp and 0 holds

which establish that 0 is a well-formed support, and that 0 corresponds to a true condition, respec-
tively. We also require the following support weakening principle.

Principle (Support weakening)
If C v D, than any witness of D holds is a witness of C holds as well.

Having introduced the support judgments and ordering, we can now provide a formal definition
for the partial truth. Henceforth, we write

A true [C]

if and only if C holds implies A true. We assume here that the partial truth judgment is well
formed, i.e. that A prop and C supp. Notice that each particular application will have to specify
concretely the dependency between the derivations of C holds and A true [C]. However, having
in mind that the support 0 always holds, we impose the requirement that A true [0] if and only
if A true. This will allow us to regard the total truth judgment as a special case of its partial
counterpart.

We also consider a partial version of the support judgment C holds, and write

C holds [D]

if and only if D holds implies C holds. In order for this judgment to respect the support ordering,
we require the following as one of its derivation rules.

C v D

C holds [D]

34

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

Again, we insist that C holds [0] if and only if C holds, and treat C holds as a special case of
C holds [D], when D is the 0 support.

The two partial judgments are further required to respect the partial ordering v, in the sense
of the following support weakening principle. The support weakening principle stated previously is
subsumed as a special case (obtained when the support D ′ is taken to be 0).

Principle (Support weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if A true [C], then A true [D]

2. if C1 holds [C], then C1 holds [D]

3. if D holds [D1], then C holds [D1]

Finally, in order to relate partial truth with the partial support judgment, we impose the following
requirement phrased as a reflection principle.

Principle (Reflection)
If C holds [D], then the following holds:

1. if A true [C], then A true [D]

2. if C1 holds [C], then C1 holds [D]

Notice that if D is taken to be 0, then the reflection principle makes a connection between the
partial truth and support judgments and their total counterparts.

2.1.2 Hypothetical partial judgments

The next step in the development of the logic of partial truth is to extend the non-hypothetical
reasoning associated with supports and reflection, and parametrize the judgments with respect to
a context of hypotheses

A1 true, . . . , An true.

As customary, we use Γ to range over contexts, and generalize the judgments to the following form

Γ ` C holds [D] and Γ ` A true [D].

Of course, the usual coherence conditions apply to this generalization. In particular, if Γ is the
empty context, the new judgments reduce to the non-hypothetical partial judgments from the
previous section. Analogously, if D is the minimal support 0, we require that the partial judgment
Γ ` A true [0] be equivalent to the total judgment Γ ` A true. In a similar fashion, we will
abbreviate Γ ` C holds [0] simply as Γ ` C holds. To simplify matters, the definition of the partial
judgments will immediately assume that Γ is a set, so that the judgment will satisfy the structural
rule of exchange.

Henceforth, we define the judgment

Γ ` C holds [D]

to be satisfied only if a derivation of C holds [D] can be obtained given the derivations of A1 true [D],
. . . , An true [D]. It is important that the derivations of Ai true [D] must be used in a parametric

35

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

way, i.e. by means of substitutions. These proofs may not be modified in any way, and in particular,
they are not subject to reflection. The rules of the judgment must extend accordingly, to account
for the context Γ. For example, the following is a rule of the hypothetical support judgment which
relates causally dependent contexts.

C v D

Γ ` C holds [D]

The partial hypothetical truth judgment is defined in the similar fashion. We say that

Γ ` A true [D]

only if a derivation of A true [D] may be obtained from derivations of A1 true [D], . . . , An true [D],
by means of substitution. Notice how the scope of the support D in the above definitions extends
across the whole judgment. The support modifies the hypotheses A1 true, . . . , An true, as well as
the conclusions C holds and A true.1

As a coherence condition, we impose a support weakening principle for hypothetical partial
judgments analogous to the support weakening principle from the previous section.

Principle (Support weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if Γ ` A true [C], then Γ ` A true [D]

2. if Γ ` C1 holds [C], then Γ ` C1 holds [D]

3. if Γ ` D holds [D1], then Γ ` C holds [D1]

The extensions of the reflection principle is also straightforward, but with one essential restric-
tion.

Principle (Reflection)
If Γ ` C holds [D], then the following holds:

1. if · ` A true [C], then Γ ` A true [D]

2. if · ` C1 holds [C], then Γ ` C1 holds [D]

It is of crucial importance to observe that the above reflection principle involve premises that are
categorical, i.e. do not depend on any hypotheses. In the case of supports, we reflect a proof of
· ` C1 holds [C], and in the case of truth, we reflected a proof of · ` A true [C], but neither of these
judgments depends on Γ. Indeed, reflecting a hypothetical proof would violate its hypothetical
nature, because the operations of substitution and reflection need not commute. Any sound way
to combine hypothetical reasoning embodied by substitution, with the non-hypothetical reasoning
embodied by reflection, must impose that reflection is only used on categorical proofs.

The hypothetical nature of the partial judgments is axiomatized by means of the hypothesis
rule

Γ, A true ` A true [D]
1In the terminology of modal logic, we can say that the support D is a condition on the current world. Because

the hypotheses A1 true, . . . , An true are associated with the current world, their derivations are allowed to be partial
in D.

36

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

The corresponding substitution principle simply axiomatizes the definitional properties.

Principle (Substitution)
If Γ ` A true [C], then the following holds:

1. if Γ, A true ` B true [C], then Γ ` B true [C]

2. if Γ, A true ` D holds [C], then Γ ` D holds [C]

The partial judgments also require rules to witness that proofs can be derived by reflection. We
state the appropriate rules here, but repeat that each specific application may define its own notions
of supports and reflection. For each of these applications, we will have to prove that reflection is
sound, i.e. that the reflected and the derived proof are witnessing one and the same judgment.

Γ ` C holds [D] · ` A true [C]

Γ ` A true [D]

Γ ` C holds [D] · ` C1 holds [C]

Γ ` C1 holds [D]

Just as in the case of total judgments, we can internalize the hypothetical dependence between an
antecedent and a conclusion by means of the new propositional constructor of implication A→ B.
We say that Γ ` A→ B true [C] if and only if Γ, A true ` B true [C] implies Γ ` B true [C]. The
new operator is axiomatized by standard introduction and elimination rules.

Γ, A true ` B true [C]

Γ ` A→ B true [C]

Γ ` A→ B true [C] Γ ` A true [C]

Γ ` B true [C]

The local reduction and expansion are similar as in the case of total judgments.

Γ, A true ` B true [C]

Γ ` A→ B true [C] Γ ` A true [C]

Γ ` B true [C]

=⇒R Γ ` B true [C]

Γ ` A→ B true [C] =⇒E

Γ ` A→ B true [C]

Γ, A true ` A→ B true [C] Γ, A true ` A true [C]

Γ, A true ` B true [C]

Γ ` A→ B true [C]

2.1.3 Relativized necessity

As illustrated by the previous sections, dealing with partial judgments and reflection puts a special
emphasis on proofs that are categorical, i.e. do not depend on any hypotheses. It therefore seems
particularly fruitful for the theory of partial judgments, if we could separate the notions of categor-
ical and hypothetical partial truth. Such a development will have many important consequences.
For one, we could clearly specify that reflection may only be performed over categorical proofs, but
not over hypothetical ones. But most importantly, categorical partial truth may be internalized.
As described in Section 2.1.1, supports and partial proofs are intended to capture aspects of the
meta theory of the truth judgment. If we internalize categorical partial truth, that would provide

37

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

a way to reason, within the logic itself, about the meta theoretic properties represented by the
supports.

Motivated by the need for this distinction, we employ here the theory of modal logic and modal
λ-calculus from Section 1.2. The idea is to introduce a separate judgment

A nec [C]

of partial, or relativized necessity, to witness the categorical partial truth · ` A true [C].

The intuition behind necessity in modal logic can be given using the notion of possible worlds
(Section 1.1.3). We imagine the existence of a set of worlds, interconnected in some way, so that
some worlds are accessible from the others. Any given proposition may be true at a certain world,
but need not be true elsewhere. In the hypothetical judgment Γ ` A true, the set of antecedents
describes the propositions that are known to be true at the current world, and the conclusion A
is deemed true at the same world. Therefore, if A nec, then · ` A true, establishing the truth of
A in a generic world that we know nothing about. In other words, if A nec, then A is true in all
accessible worlds — necessity is universal quantification over accessible worlds.

The intuition behind the relativized necessity is similar, except that now A nec [C] is a witness
that A is true in all accessible worlds in which C holds. Relativized necessity is bounded universal
quantification over accessible worlds. The reflection principles can then be viewed as specialization
of bounded universal quantification. Indeed, if we have a proof that is valid in all worlds where
C holds, by reflection we can modify and specialize it to correspond to the current world.

Just as in Section 1.1.3, the interesting development begins once we introduce hypotheses of
relativized necessity, and extend the judgments Γ ` C holds [D] and Γ ` A true [C] into

∆; Γ ` C holds [D] and ∆;Γ ` A true [D]

where ∆ is the set of hypotheses B1 nec [C1], . . . , Bm nec [Cm], and Γ is the set of hypotheses
A1 true, . . . , An true. Of course, we treat the necessity and truth hypotheses in different ways.
Recall from Section 1.1, that the truth hypotheses in the hypothetical judgments are used only
in a parametric way, by means of substitutions. We adopt a similar requirement here. Given
derivations of A1 true [D], . . . , An true [D], they may only be substituted to obtain derivations of
C holds [D] and A true [D], respectively. Such a restriction is not imposed on necessity hypotheses.
Derivations of B1 nec [C1], . . . , Bm nec [Cm] in fact witness categorical judgments · ` B1 true [C1],
. . . , · ` Bm true [Cm], and may therefore be reflected to obtain derivations of Γ ` C holds [D] and
Γ ` A true [D].

Because relativized necessity is defined via the notion of partial truth, we do not require a
separate judgment for hypothetical relativized necessity ∆ ` A nec [C]. It can already be expressed
as ∆; · ` A true [C].

The support weakening principle for the new judgment is a straightforward extension of the
principle from the previous section.

Principle (Support weakening)

Let C and D be well-formed supports with C v D. Then the following holds:

1. if ∆; Γ ` A true [C], then ∆; Γ ` A true [D]

2. if ∆; Γ ` C1 holds [C], then ∆; Γ ` C1 holds [D]

3. if ∆; Γ ` D holds [D1], then ∆; Γ ` C holds [D1]

38

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

The extensions of the reflection principle still allows reflection to be perform only over derivations
that are obtained in a categorical way. In the judgments ∆; Γ ` C holds [D] and ∆;Γ ` A true [D],
a derivation is categorical if it does not use the ordinary truth hypotheses from Γ. However, a
categorical derivation may use hypotheses from ∆, because the hypotheses from ∆ themselves
stand for other categorical derivations. This leads to the following reflection principle.

Principle (Reflection)

If ∆; Γ ` C holds [D], then the following holds:

1. if ∆; · ` A true [C], then ∆; Γ ` A true [D]

2. if ∆; · ` C1 holds [C], then ∆; Γ ` C1 holds [D]

In the axiomatization of the judgment ∆; Γ ` A true [C], the hypothetical nature of the judg-
ment with respect to relativized necessity is made explicit by the hypothesis rule below.

(∆, A nec[C]); Γ ` C holds [D]

(∆, A nec[C]); Γ ` A true [D]

The rule is justified on the following grounds: a proof of A nec [C] is a proof of the categorical
judgment · ` A true [C], and hence may be reflected into a proof of A true [D], given the evidence
of C holds [D]. The corresponding substitution principle follows the definition of the hypothetical
judgment.

Principle (Substitution for relativized necessity)

If ∆; · ` A true [C], then the following holds:

1. if (∆, A nec[C]); Γ ` B [D], then ∆; Γ ` B [D]

2. if (∆, A nec[C]); Γ ` D′ holds [D], then ∆; Γ ` D′ holds [D]

We refer to this principle as a substitution principle, even though, strictly speaking, there is no
requirement that the derivation of ∆; · ` A true [C] must, in fact, be used unmodified. The reason
for this terminology is that, while categorical proofs may be modified by reflection, the reflection is
really the only operation that may be used for this purpose. Therefore, we may still consider the
judgments parametric in necessity hypotheses, except that the concept of a parametricity is now
extended to admit a limited and well-specified way to alter derivations. 2

Finally, we internalize the judgment of relativized necessity into the truth judgment, by in-
troducing a new operator on propositions �. Unlike in Section 1.1.3, this time we have a whole
family �C operators, in order to express bounded universal quantification over accessible worlds.
When the support C is 0, we will simply write �A instead of �0A. The formation rule for the �C

operator is as follows:
A prop C supp

�CA prop
2The following analogy may be illustrative. The full-fledged parametricity of truth hypotheses requires that the

corresponding proofs be used as black boxes. The proofs can be substituted into desired positions, but they must
remain unmodified. On the other hand, proofs of necessity hypotheses are black boxes whose functionality may be
controlled by a well-specified interface C, but by no other means.

39

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

with the introduction and elimination rules similar as before, but this time indexed by supports.

∆; · ` A true [C]

∆; Γ ` �CA true [D]

∆; Γ ` �CA true [D] (∆, A nec[C]); Γ ` B true [D]

∆; Γ ` B true [D]

While the elimination rule above is justified simply on the grounds of the substitution principle for
necessary hypothesis, it is the introduction rule that is interesting, as it embodies the definition of
the relativized necessity. Indeed, �CA is true if and only if A true [C] can be proved categorically.
This motivates the erasure of the context Γ from the premise of the rule. In contrast, notice that
the support C persists in the judgment. Unlike Γ which represents hypotheses that are local to the
current world, the support condition C has global nature. On the other hand, while the conclusion
�CA is obtained in a total way, we allow weakening with an arbitrary support D in order to conform
with the support weakening principle.

Local soundness is justified on the grounds of the substitution principle for relativized necessity.

∆; · ` A true [C]

∆; · ` �CA true [D] (∆, A nec[C]); Γ ` B true [D]

∆; Γ ` B true [D]

=⇒R ∆;Γ ` B true [D]

Local completeness is witnessed by the local expansion similar to Section 1.1.3.

∆; Γ ` �CA true [D] =⇒E

∆;Γ ` �CA true [D]

C v C

(∆, A nec[C]); · ` C holds [C]

(∆, A nec[C]); · ` A true [C]

(∆, A nec[C]); Γ ` �CA true [D]

∆; Γ ` �CA true [D]

Note that the local expansion employs the following rule of the support judgment

C v D

∆;Γ ` C holds [D]

to derive that (∆, A nec[C]); · ` C holds [C].

Example 7 Let C and D be well-formed supports such that C v D. Then the following derivation
(which we denote by DA

C,D) is a valid derivation of the judgment (∆, A nec[C]); Γ ` A true [D].

C v D

(∆, A nec[C]); Γ ` C holds [D]

(∆, A nec[C]); Γ ` A true [D]

We next use this derivation to establish that ∆; Γ ` �CA→ �DA true.

∆; (Γ,�CA true) ` �CA true

DA
C,D

(∆, A nec[C]); · ` A true[D]

(∆, A nec[C]); Γ ` �DA true

∆; (Γ,�CA true) ` �DA true

∆;Γ ` �CA→ �DA true

40

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

We also establish the support-decorated versions of the customary axioms of constructive modal
logic S4 (Section 1.1.3):

1. ∆; Γ ` �CA→ A true [D]

2. ∆; Γ ` �CA→ ��CA true

3. ∆; Γ ` �C(A→ B)→ �CA→ �CB true

1. Derivation of ∆; Γ ` �CA→ A true [D].

∆; (Γ,�CA true) ` �CA true [D]

DA
C,D

(∆, A nec[C]); Γ ` A true [D]

∆; (Γ,�CA true) ` A true [D]

∆; Γ ` �CA→ A true [D]

2. Derivation of ∆; Γ ` �CA→ ��CA true.

∆; (Γ,�CA true) ` �CA true

DA
C,C

(∆, A nec[C]); · ` A true [C]

(∆, A nec[C]); · ` �CA true

(∆, A nec[C]); Γ ` ��CA true

∆; (Γ,�CA true) ` ��CA true

∆;Γ ` �CA→ ��CA true

3. Derivation of ∆; Γ ` �C(A → B) → �CA → �CB true. To reduce clutter, we define Γ1 =
Γ,�C(A → B) true, ∆1 = ∆, (A → B) nec[C], Γ2 = Γ1,�CA true, and ∆2 = ∆1, A nec[C].
We proceed by splitting the derivation of ∆; Γ ` �C(A→ B)→ �CA→ �CB true into two
parts. First, we obtain a derivation D ′ to establish that ∆2; Γ2 ` �CB true.

DA→B
C,C

∆2; · ` A→ B true [C]

DA
C,C

∆2; · ` A true [C]

∆2; · ` B true [C]

∆2; Γ2 ` �CB true

Then D′ can be used to obtain a derivation of ∆; Γ ` �C(A→ B)→ �CA→ �CB true.

∆; Γ2 ` �C(A→ B) true

∆1; Γ2 ` �CA true
D′

∆2; Γ2 ` �CB true

∆1; Γ2 ` �CB true

∆;Γ2 ` �CB true

∆;Γ1 ` �CA→ �CB true

∆;Γ ` �C(A→ B)→ �CA→ �CB true

�

41

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

2.1.4 Simultaneous possibility

The dual concepts to bounded universal quantification and relativized necessity, are of course,
bounded existential quantification, and the related notion of simultaneous possibility. Where rela-
tivized necessity expresses that a proposition A is true in all worlds in which C holds, simultaneous
possibility expresses that there exists a world in which C holds and also A true. In order to
formalize the notion of simultaneous possibility, we introduce a new judgment 〈C,A〉 poss, and
immediately generalize it to its partial and hypothetical variant

∆; Γ ` 〈C,A〉 poss [D]

When C is the 0 support, we omit it from the notation and abbreviate simply as ∆; Γ ` A poss [D].
The intuition behind this judgment is to establish the derivability of both ∆; Γ ` C holds [D] and
∆;Γ ` A true [D], but where the second derivation may be obtained by means of reflection using
the first derivation.

Being intuitively specified in terms of C holds and A true, the new judgment is required to
satisfy similar weakening, reflection and substitution principles.

Principle (Support weakening)

If ∆; Γ ` 〈C1, A〉 poss [C] and C v D, then ∆; Γ ` 〈C1, A〉 poss [D].

Principle (Reflection)

If ∆; Γ ` C holds [D] and ∆; · ` 〈C1, A〉 poss [C], then ∆; Γ ` 〈C1, A〉 poss [D].

Principle (Substitution for truth)

If ∆; Γ ` A true [C] and ∆; (Γ, A true) ` 〈D,B〉 poss [C], then ∆; Γ ` 〈D,B〉 poss [C].

Principle (Substitution for relativized necessity)

If ∆; · ` A true [C] and (∆, A nec[C]); Γ ` 〈C1, B〉 poss [D], then ∆; Γ ` 〈C1, B〉 poss [D].

There are four ways simultaneous possibility can be established, giving raise to four basic
definitional principles.

1. If ∆; Γ ` A true [C], then ∆; Γ ` A poss [C].

2. If ∆; Γ ` C holds [D] and ∆; · ` A true [C], then ∆; Γ ` 〈C,A〉 poss [D].

3. If ∆; Γ ` 〈C1, A〉 poss [D] and ∆;A true ` B true [C1], then ∆; Γ ` 〈C1, B〉 poss [D].

4. If ∆; Γ ` 〈C1, A〉 poss [D] and ∆;A true ` 〈C2, B〉 poss [C1], then
∆; Γ ` 〈C2, B〉 poss [D].

Principle (1) is justified by the fact that ∆; Γ ` 0 holds [C] always trivially holds. Taken together
with the assumed ∆;Γ ` A true [C], this ensures that the two judgments simultaneously hold in
the current world, and are therefore simultaneously possible.

To justify principle (2), observe that given C holds [D] and A true [C], we can obtain A true [D]
by reflection. The derivations are in the current world, and are therefore simultaneously true. The

42

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

required reflection, however, can only be performed if A true [C] is derived in a categorical way.
Hence the restriction that the judgment ∆; · ` A true [C] uses no truth hypotheses.

Principle (3) is justified by the following observation: if C1 holds and A true are simultaneously
possible, then there exists a world about which we know nothing, except that C1 holds and A true
can be derived in it. If we can use these two facts, but nothing else, to conclude that B true in the
very same world, then certainly C1 holds and B true are simultaneously true in this world, and
are therefore simultaneously possible. If the possibility of C1 holds and A true is partial in D, so
would be the concluded possibility of C1 holds and B true.

The reasoning behind the principle (4) is similar. If C1 holds and A true are simultaneously
possible in some world, and we can use these two facts, but nothing else, to conclude the simultane-
ous possibility of C2 holds and B true, then the later two are certainly possible. If the possibility
of C1 holds and A true is partial in D, so is the concluded possibility of C2 holds and B true.

In order to internalize simultaneous possibility of C holds and A true, we introduce the indexed
family of operators 3CA for bounded existential quantification over possible worlds. When the
support C is 0, we will simply write 3A instead of 30A. The appropriate formation rule is

A prop C supp

3CA prop

and the introduction rule defines the operator as an internalization of simultaneous possibility.

∆; Γ ` 〈C,A〉 poss [D]

∆; Γ ` 3CA true [D]

The axiomatization of the possibility judgment itself reflects the definitional principles outlined pre-
viously. For example, the principles (1) and (2) are directly translated into the following derivation
rules.

∆; Γ ` A true [C]

∆; Γ ` A poss [C]

∆; Γ ` C holds [D] ∆; · ` A true [C]

∆; Γ ` 〈C,A〉 poss [D]

There are two elimination rules for 3C , arising from the definitional principles (3) and (4). However,
instead of the hypothesis 〈C1, A〉 poss, these rules use the internalized version 3C1

A true.

∆; Γ ` 3C1
A true [D] ∆;A true ` B true [C1]

∆; Γ ` 〈C1, B〉 poss [D]

∆; Γ ` 3C1
A true [D] ∆;A true ` 〈C2, B〉 poss [C1]

∆; Γ ` 〈C2, B〉 poss [D]

Local soundness is established by two local reduction, which are justified by the definitional
principles (3) and (4). Local completeness and local expansion are also simple to verify.

∆; Γ ` 〈C1, A〉 poss [D]

∆; Γ ` 3C1
A true [D] ∆;A true ` B true [C1]

∆; Γ ` 〈C1, B〉 poss [D]

=⇒R ∆;Γ ` 〈C1, B〉 poss [D]

43

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

∆;Γ ` 〈C1, A〉 poss [D]

∆; Γ ` 3C1
A true [D] ∆;A true ` 〈C2, B〉 poss [C1]

∆; Γ ` 〈C2, B〉 poss [D]

=⇒R ∆;Γ ` 〈C2, B〉 poss [D]

∆; Γ ` 3CA true [D] =⇒E

∆;Γ ` 3CA true [D] ∆;A true ` A true [C]

∆; Γ ` 〈C,A〉 poss [D]

∆; Γ ` 3CA true [D]

Finally, similar to Section 1.1.4, we also have the additional rule for eliminating �C in the new
possibility judgment

∆; Γ ` �CA true [D] (∆, A nec[C]); Γ ` 〈C2, B〉 poss [D]

∆; Γ ` 〈C2, B〉 poss [D]

Example 8 Let C, C1 and D be well-formed supports such that C v D. Then the following are
support-decorated versions of the customary axioms of constructive modal logic S4 (Section 1.1.4):

1. ∆; Γ ` A→ 3A true

2. ∆; Γ ` 3C1
3CA→ 3CA true

3. ∆; Γ ` �C(A→ B)→ 3DA→ 3DB true

The derivations proceed as follows.

1.
∆; (Γ, A true) ` A true

∆; (Γ, A true) ` A poss

∆; (Γ, A true) ` 3A true

∆;Γ ` A→ 3A true

2. To reduce clutter, we define Γ1 = Γ,3C1
3CA true. Then we have the following inference.

∆; Γ1 ` 3C1
3CA true

∆;3CA true ` 3CA true [C1] ∆;A true ` A true [C]

∆;3CA true ` 〈C,A〉 poss [C1]

∆; Γ1 ` 〈C,A〉 poss

∆;Γ1 ` 3CA true

∆;Γ ` 3C1
3CA→ 3CA true

3. In this case, we introduce the following abbreviations: Γ1 = Γ,�C(A → B) true, Γ2 =
Γ1,3DA true, and ∆1 = ∆, (A → B) nec[C]. We also recall the inference DA→B

C,D of the

44

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

judgment ∆1; Γ ` A → B true [D] derived in Example 7. The proof is now split into two
parts. We first obtain the derivation D ′ of the judgment ∆1; Γ2 ` 〈B,D〉 poss.

∆1; Γ2 ` 3DA true

DA→B
C,D

∆1;A true ` A→ B true [D] ∆1;A true ` A true [D]

∆1;A true ` B true [D]

∆1; Γ2 ` 〈B,D〉 poss

The derivation D′ can now be used to infer the required ∆; Γ ` �C(A → B) → 3DA →
3DB true.

∆; Γ2 ` �C(A→ B) true

D′

∆1; Γ2 ` 〈B,D〉 poss

∆1; Γ2 ` 3DB true

∆;Γ2 ` 3DB true

∆;Γ1 ` 3DA→ 3DB true

∆;Γ ` �C(A→ B)→ 3DA→ 3DB true

�

2.1.5 Names

One possible way to specify the notion of support for the modal logic of partial judgments from
Section 2.1.1 is by using names. Names are elements of a countable universe N , and will be used
as labels witnessing a certain fact about the derivability of truth judgments. Every name from N
is associated with some proposition, and for each proposition itself there is a countable number of
names associated with it. When the name X is associated with the proposition A, we will write
that as3

typeof(X) = A.

The semantics of this relation between X and A may be defined in various ways. For example, a
particularly simple definition – and this is the semantics of names that we consider in this chapter
– is to associate X with the existence of a derivation of A true.

Having introduced names, we define the notion of support as a finite set of names. If the
support C consists of names X1, . . . , Xn, then the condition represented by C is the conjunction
of the properties represented by each of the names. For example, if X1, . . . , Xn are associated
with propositions A1, . . . , An, respectively, then the whole support C stands for the meta theoretic
statement that the judgments A1 true, . . . , An true are all derivable. In such a case, the partial
judgment

A true [X1, . . . , Xn]

simply expresses the fact that A is true, given the derivability of A1 true, . . . , An true. Obviously,
in this formulation names very much resemble ordinary variables in hypothetical judgments from
Chapter 1, but there are several notable proof-theoretic distinctions between the two. First of
all, ordinary variables in the hypothetical judgments have local nature. In terminology of modal

3Should we insist that this relation is well-founded? Seems unnecessary, though once Σ is introduced, well-
foundedness is enforced.

45

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

logic, variables represent proofs that are meaningful only in the current world. On the other hand,
names are global and their identity persists across the worlds. This will be significant in the
later developments of the calculus. For example, in Section 3.3 we will consider polymorphism
in supports, and universally quantify over arbitrary finite sets of names. A similar quantification
over parts of local contexts would result in impredicativity of the calculus. However, the most
significant distinction between names and variables involves the process of reflection. The only way
a hypothetical proof depending on A1 true, . . . , An true may be used is by substituting the proofs
of A1 true, . . . , An true when these proofs are available. In contrast, a categorical proof that is
partial in X1, . . . , Xn may be modified in an arbitrary way, as specified by reflection.

We further remark on a particular aspect illustrating the versatility of names, which we will
not explore in this chapter. While a variable of type A in a hypothetical judgment must stand
for a derivability of the judgment A true, such a requirement is not enforced upon names. It is
possible that a name X with typeof(X) = A may stand for the derivations of A true that satisfy
particular properties or invariants. For example, X may represent that A true is provable using
only introduction, or using only elimination rules. Or, for that matter, X may even stand for
the fact that 6` A true. Combined with modalities and reflection, this provides a way to encode
arbitrary aspects of the meta reasoning about derivability, for a number of different meta logics.

Having defined the universe of supports as the set Pfin(N), we also need to establish a partial
ordering on it. For the purposes of this section, if C and D are two supports, we will consider

C v D if and only if C ⊆ D

Then the empty support set, which we denote by (·) is the minimal support in this ordering. In
addition, we will have the following formation rules for supports.

· supp

C supp

C,X supp

The axiomatization of the judgments ∆; Γ ` A true [C] and ∆;Γ ` C holds [D] now proceeds
in a mutually recursive way. The most important rule is

typeof(X) = A
(∗)

∆; Γ ` A true [C,X]

specifying that if the name X witnesses the derivability of A true, then we can certainly conclude
that A is true partially in X. Notice that we allow weakening with an arbitrary support set C
in the conclusion, in order to give rise to the support weakening principle. On the other hand,
∆; Γ ` C holds [D] is axiomatized using the following two rules:

C ⊆ D

∆;Γ ` C holds [D]

∆; Γ ` A true [D] ∆; Γ ` (C \X) holds [D] typeof(X) = A

∆;Γ ` C holds [D]

where we denote by C\X the set-difference between C and {X}. The first of the above rules serves to
establish the basic causal dependence between supports – if D represents a stronger condition than
C, then trivially C holds [D]. The second rule formalizes that the support C actually represents
the conjunction of the conditions associated with the names in C. Indeed, if C consists of names
X1, . . . , Xn, where typeof(Xi) = Ai, then ∆; Γ ` C holds [D] if and only if ∆; Γ ` Ai true [D] for
every i = 1, . . . , n.

46

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

2.1.6 Name-space management

A notable feature of the formulation of partial judgments from the previous section is the global
nature of names. Names are given once and for all, and are shared by all the worlds. For computa-
tional purposes, however, it is beneficial to introduce the notion of local names. Local names can
dynamically be generated during the derivation; each generated name is fresh, i.e. different from all
the names generated so far. Also, each local name will have a scope within which it can be used,
and outside of which it is inaccessible.

In order to deal with the freshness of local names, we make the judgments hypothetical in a yet
another context – the context generated names. This context will associate each generated name
with its type. For example, the new truth judgment will now have the form

Σ;∆; Γ ` A true [C]

where Σ consists of X1:A1, . . . , Xn:An, associating the names X1, . . . , Xn with propositions A1,
. . . , An, respectively. We denote by dom(Σ) the set of names {X1, . . . , Xn}. Notice that Σ is
a dependently typed context, because each proposition may itself depend on names. Henceforth,
we impose on Σ the typical requirements of dependent contexts. In particular, we assume that
the names X1, . . . , Xn are all different, and that each Xi may be used only to the right of its
declaration. For example, the name X1 may appear in the propositions A2, . . . , An, as well as in
∆, Γ, A and C, but not in A1. The name X2 may not appear in A1 and A2, but may appear
elsewhere, and so on. Furthermore, we insist that a name can be used in this judgment only if it
is actually declared in the name context Σ. Thus, we rephrase the rule (∗) of the truth judgment
from the previous section, which now has the form:

X:A ∈ Σ

Σ;∆; Γ ` A true [C,X]

While we insist that the judgment Σ;∆; Γ ` A true [C] is well-formed only if all its names are
declared in Σ, we allow a bit more leeway in defining what counts as a proof of Σ;∆; Γ ` A true [C].
In particular, the intended meaning of Σ;∆; Γ ` A true [C] is that there exists a name context Σ ′

extending Σ and a proof for ∆; Γ ` A true [C], such that the names contained in this proof are
declared in Σ′ (even though ∆, Γ, A, and C must still use only the names from Σ, in order to be
well-formed). In this sense, a proof of the judgment Σ;∆; Γ ` A true [C] will be a pair consisting
of both Σ′ and a proof of ∆; Γ ` A true [C] satisfying the above requirement.4

Notice that the outlined semantics of name contexts to serve as lists of currently generated
names does allow the following structural properties. Here we use J as an abbreviation for the
∆; Γ ` A true [C], and Σ ` J as an abbreviation for Σ;∆; Γ ` A true [C].

1. Strengthening. If (Σ, X:A) ` J , and X is not used in J , then Σ ` J .

Indeed, if X is not used in J , then Σ ` J is well-formed. Furthermore any context Σ ′ ⊇
(Σ, X:A) is also Σ′ ⊇ Σ, and thus a proof of (Σ, X:A) ` J is also a proof of Σ ` J .

2. Renaming. If (Σ, X:A,Σ′) ` J and the name Y is not used in Σ, Σ′, A, or J , then
(Σ, Y :A, [Y/X]Σ′) ` ([Y/X]J).

3. Weakening. If Σ ` J , and X is not used in J , then (Σ, X:A) ` J .

4I.e. the proof may use the names from Σ′.

47

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

This principle is justified on the grounds of the previous principle for renaming. Indeed, if
Σ ` J , then there exists a name context Σ′ ⊇ Σ and a proof of J using Σ′. If Σ′ does not
declare X, then Σ′, X:A is a well-formed name context and the proof of J uses Σ′, X:A. If Σ′

declared X then we can rename that occurrence of X in both Σ′ and the supplied proof of J .

4. Exchange. Permutation of name contexts is allowed if it does not violate the dependencies be-
tween names and the propositions associated with them. In other words, if (Σ, X:A,Σ ′,Σ′′) `
J , and X is not used in Σ′, then (Σ,Σ′, X:A,Σ′′) ` J . In the rest of this document, we will
abuse the notation and treat name contexts as if they were sets. In particular, we consider
Σ′ and Σ to be equal if they only differ by a dependency-preserving reordering. Similarly, we
write Σ′ ⊇ Σ, if Σ′ extends Σ (with possible name reordering).

Notice however that contraction is not something we require of a name context. We want to
preserve the distinction between names: if the judgment B true is derived by reflection using two
different names X:A and Y :A, there is no requirement that the same derivation is produced if
X and Y are simultaneously renamed into some new name Z:A. In accord with the renaming
principle, both X and Y may individually be renamed into Z, but not at the same time.

The judgments ∆; Γ ` C holds [D] and ∆;Γ ` 〈C,A〉 poss [D] are extended with Σ in a similar
way. For example, the rules for introduction and elimination of implication in the truth judgment
now have the form

Σ;∆; (Γ, A true) ` B true [C]

Σ;∆; Γ ` A→ B true [C]

Σ;∆; Γ ` A→ B true [C] Σ;∆; Γ ` A true [C]

Σ;∆; Γ ` B true [C]

The elimination rule deserves further discussion. From the premises, we know that there exist
name contexts Σ1 ⊇ Σ, Σ2 ⊇ Σ such that the proof of ∆; Γ ` A → B [C] uses only Σ1, and the
proof of ∆; Γ ` A [C] uses only Σ2. By the substitution principle for truth, we may then produce a
derivation of ∆; Γ ` B true [C], which uses the names from Σ1 and Σ2. This derivation, together
with the context Σ3 obtained as a union of Σ1 and Σ2, is a witness of Σ;∆; Γ ` B true [C]. 5

We also need to account for Σ in the judgments for formation of supports and propositions, and
extend then into Σ ` C supp and Σ ` A prop. The relevant rules of the new judgments are listed
below.

Σ ` · supp

Σ ` C supp X ∈ dom(Σ)

Σ ` C,X supp

Σ ` A prop Σ ` C supp

Σ ` �CA prop

Σ ` A prop Σ ` C supp

Σ ` 3CA prop

As customary, we will implicitly assume that the proposition and supports in our judgments
for truth, necessity and possibility are always well-formed according to the above rules.

The next step in the axiomatization of the judgment Σ;∆; Γ ` B true [C], is to internalize
the dependence of the conclusion B true on names from Σ. With that goal, we introduce a new

5We need not rename here, as we assume that each name is associated with a type right from the beginning. Thus,
Σ1 and Σ2 will coherently ascribe types to names.

48

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

constructor on propositions A 9 B, with the following formation rule.

Σ ` A prop Σ ` B prop

Σ ` A 9 B prop

The judgment A 9 B true should be provable if and only if B true can be proved using an arbitrary
fresh name of type A. In other words, we have the following introduction rule.

(Σ, X:A);∆; Γ ` B true [C]

Σ;∆; Γ ` A 9 B true [C]

In this rule we assume that X is fresh, i.e. X does not appear in Σ, ∆, Γ, A, B, or C. Notice
that the exact identity of the name X is irrelevant, as long as X is one of the unused names with
typeof(X) = A. Indeed, by the renaming principle for names, any chosen fresh name would have
produced the same derivation. Furthermore, because X does not appear in Σ, ∆, Γ, A, B, or C, it
remains local to the proof of ∆; Γ ` B true [C].

If we can prove Σ;∆; Γ ` A 9 B true [C], then there exists a proof of ∆; Γ ` B true [C] that
uses names from some context Σ′ ⊇ (Σ, X:A), where X is fresh. But then Σ′ ⊇ Σ, and therefore
the same derivation proves Σ;∆; Γ ` B true [C] as well. This reasoning gives rise to the following
elimination rule for A 9 B.

Σ;∆; Γ ` A 9 B true [C]

Σ;∆; Γ ` B true [C]

The local reduction for the new type operator is justified by the strengthening principle, because
of the assumption that X does not appear in Σ, ∆, Γ, B, C.

(Σ, X:A);∆; Γ ` B true [C]

Σ;∆; Γ ` A 9 B true [C]

Σ;∆; Γ ` B true [C]

=⇒R Σ;∆; Γ ` B true [C]

The local expansion is justified by the weakening principle

Σ;∆; Γ ` A 9 B true [C] =⇒E

Σ;∆; Γ ` A 9 B true [C]

Σ;∆; Γ ` B true [C]

(Σ, X:A);∆; Γ ` B true [C]

Σ;∆; Γ ` A 9 B true [C]

We conclude this section with a summary of the system with names, as presented thus far. We
postpone proving its properties until Section 2.2 where we introduce a proof-term calculus for the
judgments. Proof terms will give us a way to describe explicitly the process of reflection, and will
provide a concrete notation for developing our meta theory.

Names X,Y ∈ N
Supports C,D ::= · | C,X
Propositions A,B ::= P | A→ B | A 9 B | �CA | 3CA
True hypothesis Γ ::= · | Γ, A true
Necessary hypothesis ∆ ::= · | ∆, A nec[C]
Name context Σ ::= · | Σ, X:A

49

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

The system consists of the following six judgments: Σ ` C supp, Σ ` A prop, Σ;∆; Γ ` C holds [D],
Σ;∆; Γ ` A true [C] and Σ;∆; Γ ` 〈C,A〉 poss [D], whose rules we list below.

Definition of Σ ` C supp.

Σ ` · supp

Σ ` C supp X ∈ dom(Σ)

Σ ` C, X supp

Definition of Σ ` A prop.

Σ ` P prop

Σ ` A prop Σ ` B prop

Σ ` A → B prop

Σ ` A prop Σ ` B prop

Σ ` A � B prop

Σ ` A prop Σ ` C supp

Σ ` � CA prop

Σ ` A prop Σ ` C supp

Σ ` 3CA prop

Definition of Σ;∆; Γ ` C holds [D].

C ⊆ D

Σ; ∆; Γ ` C holds [D]

Σ; ∆; Γ ` A true [D] Σ; ∆; Γ ` (C \ X) holds [D] X:A ∈ Σ

Σ; ∆; Γ ` C holds [D]

Σ; ∆; Γ ` C holds [D] Σ; ∆; · ` C1 holds [C]

Σ; ∆; Γ ` C1 holds [D]

Definition of Σ;∆; Γ ` A true [C].

X:A ∈ Σ

Σ; ∆; Γ ` A true [C, X]

Σ; ∆; Γ ` C holds [D] Σ; ∆; · ` A true [C]

Σ; ∆; Γ ` A true [D]

Σ; ∆; (Γ, A true) ` A true [C]

Σ; ∆; (Γ, A true) ` B true [C]

Σ; ∆; Γ ` A → B true [C]

Σ; ∆; Γ ` A → B true [C] Σ; ∆; Γ ` A true [C]

Σ; ∆; Γ ` B true [C]

Σ; (∆, A nec[C]); Γ ` C holds [D]

Σ; (∆, A nec[C]); Γ ` A true [D]

Σ; ∆; · ` A true [C]

Σ; ∆; Γ ` � CA true [D]

Σ; ∆; Γ ` � CA true [D] Σ; (∆, A nec[C]); Γ ` B true [D]

Σ; ∆; Γ ` B true [D]

50

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

(Σ, X:A); ∆; Γ ` B true [C]

Σ; ∆; Γ ` A � B true [C]

Σ; ∆; Γ ` A � B true [C]

Σ; ∆; Γ ` B true [C]

Definition of Σ;∆; Γ ` 〈C,A〉 poss [D].

Σ; ∆; Γ ` A true [C]

Σ; ∆; Γ ` A poss [C]

Σ; ∆; Γ ` C holds [D] Σ; ∆; · ` A true [C]

Σ; ∆; Γ ` 〈C, A〉 poss [D]

Σ; ∆; Γ ` 〈C, A〉 poss [D]

Σ; ∆; Γ ` 3CA true [D]

Σ; ∆; Γ ` 3C1
A true [D] Σ; ∆; A true ` B true [C1]

Σ; ∆; Γ ` 〈C1, B〉 poss [D]

Σ; ∆; Γ ` 3C1
A true [D] Σ; ∆; A true ` 〈C2, B〉 poss [C1]

Σ; ∆; Γ ` 〈C2, B〉 poss [D]

Σ; ∆; Γ ` � CA true [D] Σ; (∆, A nec[C]); Γ ` 〈C2, B〉 poss [D]

Σ; ∆; Γ ` 〈C2, B〉 poss [D]

2.2 Modal ν-calculus

2.2.1 Partial judgments and proof terms

In this section, we develop a proof-term system for the modal logic of partial judgments, which we
call the modal ν-calculus. The presentation will closely follow the development and methodology of
the modal λ-calculus from Section 1.2. Each of the judgments ∆; Γ ` C holds [D], ∆; Γ ` A true [C],
and ∆;Γ ` 〈C,A〉 poss [D] defined in the previous sections, is now decorated with proof terms, and
has the form ∆;Γ ` 〈Θ〉 : [C] ⇒ [D], ∆; Γ ` e : A [C], and ∆;Γ ` f ÷C A [D], respectively. As
can be noticed, we now have three separate syntactic categories that serve to encode proofs of our
judgments.

1. Expressions are ranged over by e, and serve as proofs for partial truth and partial necessity.

2. Phrases are ranged over by f , and serve to witness simultaneous possibility.

3. Explicit substitutions are ranged over by Θ, and serve as proof objects for the support judg-
ment C holds [D]. Correspondingly, they will be used to witness derivation of proofs by
reflection.

The assumptions from contexts ∆ and Γ are now labeled with variables. We write x:A and u::A[C]
to denote that x stands for a proof of A true and that u stands for a proof of A nec[C], respectively.
Just as in Section 1.2, we will refer to variables x as ordinary or value variables, and to variables
u as modal or expression variables. The usual assumptions of variable contexts apply here as

51

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

well: variables declared in ∆ and Γ are considered different, and we tacitly employ α-renaming to
guarantee this invariant.

We start with the formulation of the λ-calculus fragment of the system. The development is
fairly standard. The decorated version of the hypothesis rule of the truth judgment has the form

∆; (Γ, x:A) ` x:A [C]

The associated substitution principle is also customary. Because the judgments ∆; Γ ` f ÷D A [C]
and ∆;Γ ` 〈Θ〉 : [D] ⇒ [C] are defined in a mutually recursive fashion with the truth judgment,
we list here the substitution principles for value variables for all the three judgments.

Principle (Value substitution)
Let ∆; Γ ` e1 : A [C]. Then the following holds:

1. if ∆; (Γ, x:A) ` e2 : B [C], then ∆; Γ ` [e1/x]e2 : B [C]

2. if ∆; (Γ, x:A) ` 〈Θ〉 : [D]⇒ [C], then ∆; Γ ` 〈[e1/x]Θ〉 : [D]⇒ [C]

3. if ∆; (Γ, x:A) ` f ÷D A [C], then ∆; Γ ` [e1/x]f ÷D A [C]

The rules for implication introduction and elimination are annotated using λ-abstraction and
application, respectively, and the local soundness and completeness are witnessed by local reduction
and expansion on proof terms.

∆; (Γ, x:A) ` e : B [C]

∆; Γ ` λx:A. e : A→ B [C]

∆; Γ ` e1 : A→ B [C] ∆; Γ ` e2 : A [C]

∆; Γ ` e1 e2 : B [C]

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A→ B [C] =⇒E λx:A. (e x) where x not free in e

Of course, the most important development in this section concerns names, partiality and the
treatment of reflection. In order to define the notion of proof for the judgment of partial truth, we
allow names into the syntactic category of expression. Thus, for example, using names to derive
partial truth is now formalized by the following rule.

typeof(X) = A

∆;Γ ` X : A [C,X]

The justification for this rule is as follows. If X is associated with the proposition A, then it stands
for a proof of A true. Thus, we may use X itself as a proof of A true, which is partial in X.
Notice that we allow weakening with an arbitrary support C, in order to provide for the support
weakening principle.

Principle (Support weakening)
Let C ⊆ D be two supports. Then the following holds.

1. if ∆; Γ ` e : A [C], then ∆; Γ ` e : A [D]

52

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

2. if ∆; Γ ` 〈Θ〉 : [C1]⇒ [C], then ∆; Γ ` 〈Θ〉 : [C1]⇒ [D]

3. if ∆; Γ ` 〈Θ〉 : [D]⇒ [C1], then ∆; Γ ` 〈Θ〉 : [C]⇒ [C1]

4. if ∆; Γ ` f ÷C1
A [C], then ∆; Γ ` f ÷C1

A [D]

Associated with the notion of partial proofs is the reflection principle as a way to remove or
replace the support of a given derivation. In Section 2.1, we used the judgment C holds [D] to
formalize when a support C may be replaced by the support D in any given derivation of partial
truth. A proof-annotated version of this judgment has the form ∆;Γ ` 〈Θ〉 : [C] ⇒ [D], where Θ
belongs to the syntactic category of explicit substitution.

Definition 5 (Explicit substitution, its domain and range)
An explicit substitution is a finite set of pairs X → e, where X is a name, and e is an expression, so
that the name X is paired up with the expression e. Given an explicit substitution Θ, its domain
and range are the following sets.

dom(Θ) = {X | X → e ∈ Θ}

and
range(Θ) = {e | X → e ∈ Θ}

The set fv(Θ) of free variables of Θ is the set of free variables of expressions in range(Θ). The set
fn(Θ) of free names of Θ is the set of names in the domain and range of Θ. The empty substitution
is denoted as 〈 〉.

Having defined explicit substitutions, we may now use them to axiomatize the judgment ∆; Γ `
〈Θ〉 : [C] ⇒ [D]. Notice how the rules below closely resemble the rules of the judgment ∆; Γ `
C holds [D] from Section 2.1.2.

C ⊆ D

∆;Γ ` 〈 〉 : [C]⇒ [D]

∆; Γ ` e : A [D] ∆; Γ ` 〈Θ〉 : [C \X]⇒ [D] typeof(X) = A

∆;Γ ` 〈X → e,Θ〉 : [C]⇒ [D]

Every explicit substitution Θ determines a function [[Θ]] from names to expressions, defined as
follows.

[[Θ]](X) =

{
e if X → e ∈ Θ
X otherwise

This function can also be uniquely extended to a new function {Θ} that acts over arbitrary expres-
sions and phrases. We will define this function explicitly in Section 2.2.3, once we introduce all the
expression constructors of the ν-calculus. Here we just present several typical rules.

{Θ} X = [[Θ]](X)
{Θ} x = x
{Θ} λx:A. e = λx:A. {Θ}e x 6∈ fv(Θ)
{Θ} e1 e2 = {Θ}e1 {Θ}e2

Given two explicit substitutions Θ and Θ′, we can define the operation of substitution compo-
sition Θ ◦ Θ′, so that {Θ ◦ Θ′} is a composition of functions {Θ} and {Θ′}. We also postpone the
definition of this operation until Section 2.2.3.

53

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

The operation {Θ} is the crucial part of the ν-calculus, because it describes how expressions are
reflected, i.e. transformed from proofs of categorical partial judgments into proofs of total judgments.
For example, if e is an expression such that ` e : A [C], and 〈Θ〉 : [C] ⇒ [], then reflection of e
under Θ is defined as {Θ}e, and it will be the case that {Θ}e : A. The typing properties of
reflected categorical proofs are established by the following explicit substitution principle, which is
the equivalent of the reflection principles in the logic of partial judgments.

Principle (Explicit substitution)
Let ∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if ∆; · ` e : A [C], then ∆; Γ ` {Θ}e : A [D]

2. if ∆; · ` 〈Θ1〉 : [C1]⇒ [C], then ∆; Γ ` 〈Θ ◦Θ1〉 : [C1]⇒ [D]

3. if ∆; · ` f ÷C1
A [C], then ∆; Γ ` {Θ}f ÷C1

A [D]

Because modal variables stand for proof expressions that are subject to reflection, the hypothesis
rule for modal variables must specify the explicit substitutions that will guide the reflection. The
annotated version of this rule has the following form.

(∆, u::A[C]); Γ ` 〈Θ〉 : [C]⇒ [D]

(∆, u::A[C]); Γ ` 〈Θ〉u : A [D]

As can be noticed, each use of modal variable u is now paired up with an explicit substitution
Θ (and when Θ is the empty substitution, we will abbreviate 〈Θ〉u simply as u). The above
rule realizes a form of elimination for the bounded universal quantification that is embodied by
relativized necessitation. Indeed, if u::A[C] stands for a proof that A true in any world in which
C holds, and we have an explicit substitution Θ proving that C holds [D] in the current world,
then A true [D] must hold in the current world. The proof of the later, however, is obtained by
reflection.

This intuition gives rise to the new operation of modal substitution [[e/u]]e ′, which substitutes
the categorical proof e for u in e′. However, e may first be reflected, i.e. modified in accordance with
the explicit substitutions that are paired up with the occurrences of u in e ′. The new operation
is defined by induction on the structure of e′. Again, we postpone the complete definition for
Section 2.2.3, where we introduce all of our language constructs. Here we present the two most
important cases, which illustrate the gist of the operation of modal substitution.

[[e/u]]〈Θ〉u = {[[e/u]]Θ}e

[[e/u]]〈Θ〉v = 〈[[e/u]]Θ〉v u 6= v

It is essential to observe in these equations that substituting e for u in the term 〈Θ〉u actually applies
{[[e/u]]Θ} to e. This explicit substitution exactly carries out the process of reflection mentioned
above – the categorical expression e is reflected before it is substituted for u. Reflection of categorical
expressions is what differentiates modal substitution from the ordinary value substitution. Ordinary
value substitution treats the substituted expressions parametrically, and is not allowed to modify
them in any way.

Principle (Modal substitution)
Let ∆; · ` e : A [C]. Then the following holds:

54

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

1. if (∆, u::A[C]); Γ ` e2 : B [D], then ∆; Γ ` [[e1/u]]e2 : B [D]

2. if (∆, u::A[C]); Γ ` 〈Θ〉 : [D′]⇒ [D], then ∆; Γ ` 〈[[e1/u]]Θ〉 : [D′]⇒ [D]

3. if (∆, u::A[C]); Γ ` f ÷C1
B [D], then ∆; Γ ` [[e1/u]]f ÷C1

B [D]

The introduction and elimination rules for relativized modal necessity operator use the box
and let box proof term constructors, just like in the modal λ-calculus.

∆; · ` e : A [C]

∆; Γ ` box e : �CA [D]

∆; Γ ` e1 : �CA [D] (∆, u::A[C]); Γ ` e2 : B [D]

∆; Γ ` let box u = e1 in e2 : B [D]

However, in the ν-calculus, the local reduction is realized by means of the new operation of modal
substitution [[e1/u]]e2.

let box u = e1 in e2 =⇒R [[e1/u]]e2 : B [D]

The local expansion still has the same form as in Section 1.1.3.

e : �CA [D] =⇒E let box u = e in box u

Example 9 Let X be a name of type A. Then the term T defined as

let box u = (box X) in box (λy:A. 〈X → y〉u)

is well-typed, of type �(A→ A). The β-reduction of T is computed as

[[X/u]](box (λy:A. 〈X → y〉u))

= box (λy:A. {X → y}X)

= box (λy:A. y)

�

Example 10 Let C and D be well-formed supports such that C ⊆ D. Then the following are
valid typings in the modal ν-calculus.

1. (∆, u::A[C]); Γ ` u : A [D]

2. ∆; Γ ` λx. let box u = x in box u : �CA→ �DA

3. ∆; Γ ` λx. let box u = x in u : �CA→ A [D]

4. ∆; Γ ` λx. let box u = x in box box u : �CA→ ��CA

5. ∆; Γ ` λx. λy. let box u = x in let box v = y in box u v
: �C(A→ B)→ �CA→ �CB

55

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

�

The proof annotation of the judgment for simultaneous possibility starts with the following two
rules.

∆; Γ ` e : A [C]

∆; Γ ` e ÷ A [C]

∆; Γ ` 〈Θ〉 : [C]⇒ [D] ∆; · ` e : A [C]

∆; Γ ` [Θ, e] ÷C A [D]

The first rule follows the definitional property (1) of simultaneous possibility from Section 2.1.4.
If a proposition A is true in the current world, then A is possible (simultaneously with the empty
support). If the witness for the truth of A is the expression e, then e witness the possibility of A
as well.

The second rule above is justified by the definitional property (2) of simultaneous possibility.
The rule prescribes the pair [Θ, e] as a witness for simultaneous truth of ∆; Γ ` C holds [D]
and ∆;Γ ` A true [D]. In this pair, Θ is a proof of ∆; Γ ` C holds [D], and e is a proof for
∆; · ` A true [C]. By reflection, these two can obtain a derivation of ∆; Γ ` A true [D]. Notice
that e has to be typed with an empty context Γ, in order to enable reflection.

The introduction rule for 3C uses the phrase constructors dia to internalize the judgment for
simultaneous modal possibility, just like in the modal λ-calculus from Section 1.1.4.

∆; Γ ` f ÷C A [D]

∆; Γ ` dia f : 3CA [D]

The elimination rules for simultaneous possibility follow he inference rules from Section 2.1.4. We
have two different let forms, which serve as proof terms corresponding to two different definitional
properties. For definitional property (3), we use let cdia x = e1 in e2, where e2 is an expression;
for the definitional property (4), we use let dia x = e1 in f where f is a phrase. As customary in
the judgments for possibility, we also have a term constructor let box u = e in f , that serves to
eliminate relativized necessity in the judgment for simultaneous possibility.

∆; Γ ` e1 : 3C1
A [D] ∆;x:A ` e2 : B [C1]

∆; Γ ` let cdia x = e1 in e2 ÷C1
B [D]

∆; Γ ` e : 3C1
A [D] ∆;x:A ` f ÷C2

B [C1]

∆; Γ ` let dia x = e in f ÷C2
B [D]

∆; Γ ` e : �CA [D] (∆, u::A[C]); Γ ` f ÷C1
B [D]

∆; Γ ` let box u = e in f ÷C1
B [D]

The local reductions and expansions are

let cdia x = dia f1 in e =⇒R 〈〈f1/x〉〉e

let dia x = dia f1 in f =⇒R 〈〈f1/x〉〉f

e : 3C [D] =⇒E dia (let cdia x = e in x)

56

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

Example 11 Let C, C1, D be well-formed supports such that C ⊆ D. Then the following are
valid typings in the modal ν-calculus.

1. ∆; Γ ` λx. dia x : A→ 3A

2. ∆; Γ ` λx. dia (let dia y = x in let cdia z = y in z) : 3C1
3CA→ 3CA

3. ∆; Γ ` λx. λy. let box u = x in dia (let cdia z = y in u z)
: �C(A→ B)→ 3DA→ 3DB

�

The two operations 〈〈f1/x〉〉e and 〈〈f1/x〉〉f are defined by induction on the structure of f1 as
follows.

〈〈e1/x〉〉e = [e1/x]e

〈〈[Θ, e1]/x〉〉e = [Θ, ([e1/x]e)]

〈〈let cdia y = e1 in e2/x〉〉e = let cdia y = e1 in [e2/x]e

〈〈let dia y = e1 in f2/x〉〉e = let dia y = e1 in 〈〈f2/x〉〉e

〈〈let box u = e1 in f2/x〉〉e = let box u = e1 in 〈〈f2/x〉〉e

〈〈e1/x〉〉f = [e1/x]f

〈〈[Θ, e1]/x〉〉f = {Θ}([e1/x]f)

〈〈let cdia y = e1 in e2/x〉〉f = let dia y = e1 in [e2/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

We emphasize in the above definition the most characteristic case, which defines the value of
〈〈let cdia y = e1 in e2/x〉〉f to be let dia x = e1 in [e2/x]f . Notice how the elimination form was
changed from let cdia in the argument of the substitution, to let dia in the result.

Application of {Θ} to a phrase f realizes the reflection principle for phrases. It is defined by
induction on the structure of f .

{Θ}e = {Θ}e

{Θ}[Θ1, e] = [Θ ◦Θ1, e]

{Θ}(let cdia x = e1 in e2) = let cdia x = {Θ}e1 in e2

{Θ}(let dia x = e1 in f2) = let dia x = {Θ}e1 in f2

{Θ}(let box u = e1 in f2) = let box u = {Θ}e1 in {Θ}f2

Notice here that we only apply {Θ} in the body of let box, but not in the bodies of the other
let forms. This fact closely corresponds to the presented typing rules for simultaneous possibility
and is therefore important for the soundness of the calculus. Indeed, when compared to the other
let forms, the rule for let box is the only one using the same support D in both of the premises.
Because the explicit substitution Θ may change the support of a phrase it is applied to, we must
apply Θ to both the branch and the body of the let box in order to preserve the equality of their
supports.

57

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

Example 12 Let X and Y be names of type A, and let e, f be expressions such that e : A,
f : A→ A. Consider the phrase F defined as

let dia y = dia [X → e,X] in [X → f (X), Y → y, Y].

The phrase F is well-typed, with F ÷X,Y A. The β-reduction of F is computed as

{X → e}([X/y][X → f (X), Y → y, Y])

= {X → e}[X → f (X), Y → X,Y]

= [(X → e) ◦ (X → f (X), Y → X), Y]

= [X → f (e), Y → e, Y]

�

Principle (Phrase substitution)
If ∆; Γ ` f1 ÷C1

A [D], then the following holds:

1. if ∆;x:A ` e : B [C1], then ∆; Γ ` 〈〈f1/x〉〉e ÷C1
B [D].

2. if ∆;x:A ` f ÷C2
B [C1], then ∆; Γ ` 〈〈f1/x〉〉f ÷C2

B [D].

2.2.2 Name-space management

In Section 2.1.6, we decorated the judgments with the additional name context Σ, in order to
establish a discipline for dynamic introduction of names into derivation. For example, the partial
truth judgment Σ;∆; Γ ` A true [C] was defined to hold if and only if: (1) the names appearing
in ∆, Γ, A and C are all listed with their types in Σ, and (2) there exists a name context Σ ′ ⊇ Σ,
and a proof of ∆; Γ ` A true [C] which uses only the names from Σ′.

As a consequence of this semantics, it follows that a proof for the judgment Σ;∆; Γ ` A true [C]
should in fact consist of a pair 〈Σ′, e〉 where Σ′ ⊇ Σ, and e is a proof of of the judgment ∆; Γ `
A true [C], under the restriction that e only uses names in Σ′. The proof-annotated version of this
judgment has the form

Σ;∆; Γ ` 〈Σ′, e〉 : A [C]

and it holds if and only if Σ′ ⊇ Σ, e is an expression such that fn(e) ⊆ dom(Σ′) and ∆;Γ ` e : A [C],
and ∆, Γ, A and C are well-formed with respect to Σ. In the sense of this definition, it may be
said that Σ′ declares the names that are local to the expression e.

The definition of the annotated judgment obviously motivates the following versions of the
structural properties from the previous section.

1. Strengthening. If (Σ, X:A);∆; Γ ` 〈(Σ′, X:A), e〉 : B [C], then Σ;∆; Γ ` 〈(Σ′, X:A), e〉 : B [C].

2. Renaming. If (Σ, X:A,Σ1);∆; Γ ` 〈Σ′, e〉 : B [C], and the name Y is fresh, i.e. it does not
appear anywhere in the above judgment, then

(Σ, Y :A, [Y/X]Σ1); [Y/X]∆; [Y/X]Γ ` 〈[Y/X]Σ′, [Y/X]e〉 : ([Y/X]B) [[Y/X]C]

3. Weakening. If Σ;∆; Γ ` 〈Σ′, e〉 : B [C], and X 6∈ dom(Σ′), then (Σ, X:A);∆; Γ ` 〈(Σ′, X:A), e〉 :
B [C].

58

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

Since the names appearing in the judgment are now declared in the name context, we rephrase
the rules to take this into account. In particular, instead of having the rule

typeof(X) = A

∆;Γ ` X : A [C,X]

we can now introduce the following formulation.

X:A ∈ Σ

Σ;∆; Γ ` 〈Σ′, X〉 : A [C,X]

The introduction and the elimination rules for the type A 9 B are annotated using the proof
terms νX:A. e and choose e, as follows.

(Σ, X:A);∆; Γ ` 〈(Σ′, X:A), e〉 : B [C]

Σ;∆; Γ ` 〈Σ′, νX:A. e〉 : A 9 B [C]

Σ;∆; Γ ` 〈Σ′, e〉 : A 9 B [C]

Σ;∆; Γ ` 〈Σ′, choose e〉 : B [C]

In the introduction rule it is assumed that X is a fresh name, that is, X 6∈ dom(Σ ′).6 The exact
identity of the name X in this rule is not important. As ensured by the renaming principle, any
unused name X such that as typeof(X) = A may be chosen. This observation justifies the proof
term νX:A. e which actually binds the name X and allows α-renaming X into other unused names.
7

The local soundness of the new rules is established by the following local reduction, which we
represent in a form of a derivation tree.

(Σ, X:A);∆; Γ ` 〈(Σ′, X:A), e〉 : B [C]

Σ;∆; Γ ` 〈Σ′, νX:A. e〉 : A 9 B [C]

Σ;∆; Γ ` 〈Σ′, choose νX:A. e〉 : B [C]

=⇒R Σ;∆; Γ ` 〈(Σ′, X:A), e〉 : B [C]

or in a more compact form, using the proof terms:

〈Σ′, choose νX:A. e〉 =⇒R 〈(Σ′, X:A), e〉 X 6∈ dom(Σ′)

The local reduction is justified by the strengthening principle. Indeed, if 〈(Σ ′, X:A), e〉 is a witness
for (Σ, X:A);∆; Γ ` B true [C], then ∆; Γ ` e : B [C], and X does not appear in ∆, Γ, B or C.
By definition, this is sufficient to ensure that 〈(Σ′, X:A), e〉 is a witness for Σ;∆; Γ ` B true [C] as
well.

The local completeness of the rules is established by local elimination as follows.

Σ;∆; Γ ` 〈Σ′, e〉 : A 9 B [C] =⇒E

Σ;∆; Γ ` 〈Σ′, e〉 : A 9 B [C]

Σ;∆; Γ ` 〈Σ′, choose e〉 : B [C]

(Σ, Y :A);∆; Γ ` 〈(Σ′, Y :A), choose e〉 : B [C]

Σ;∆; Γ ` 〈Σ′, νY :A. choose e〉 : A 9 B [C]
6And in fact X will not be introduced again by any other ν-construct.
7Do I need a comment on application? If 〈Σ1, e1〉 : A → B [C], and 〈Σ2, e2〉 : A [C], we assume that Σ1 and

Σ2 are disjoint, before we join them into 〈(Σ1, Σ2), (e1 e2)〉 : B [C]? This is justified by the assumption that names
are ascribed types globally, and the context Σ only repeats this global typing. In other words, two different name
contexts cannot ascribe two different types to one and the same name.

Notice that with this approach names are not completely fresh, as one and the same name may be chosen by both
e1 and e2 above. Fully fresh names require explicit serialization of the name generation process.

59

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

or in a short form:

〈Σ′, e〉 =⇒E 〈Σ′, νX:A. choose e〉

The expanded derivation is justified by the weakening principle, which allows us to conclude
(Σ, Y :A);∆; Γ ` 〈(Σ′, Y :A), choose e〉 : B [C] out of Σ;∆; Γ ` 〈Σ′, choose e〉 : B [C], under
the assumption that Y is fresh, i.e. Y 6∈ dom(Σ′).

Observe that the names appearing in the expression e such that ∆; Γ ` e : A [C] can always
be recovered by simply inspecting e. Strictly speaking, therefore, it is not really necessary that
the rules of our judgments explicitly carry the second name context Σ′. We can always keep Σ′

implicit, and only rely on Σ to declare which names can be used in a well-formed judgment. Thus,
we introduce an abbreviated notation for the case when Σ′ and Σ are equal. In this case, instead
of

Σ;∆; Γ ` 〈Σ, e〉 : A [C]

we will simply write

Σ;∆; Γ ` e : A [C]

The introduction and elimination rules for A 9 B now have the following form.

(Σ, X:A);∆; Γ ` e : B [C]

Σ;∆; Γ ` νX:A. e : A 9 B [C]

Σ;∆; Γ ` e : A 9 B [C]

Σ;∆; Γ ` choose e : B [C]

It is important, however, to remember that these two rules are just an abbreviation for the
old judgment. The name context Σ′, while made implicit, remains explicit in the local reduction,
and will therefore have a computational import. Once we ascribe operational semantics to the
ν-calculus, Σ′ will serve as a run-time context that lists the currently generated names. It will be
used to determine which names are fresh and can therefore be introduced next time a fresh name
is needed.

On a related note, the local reduction associated with the type constructor 9 will itself have a
computational meaning – that of introducing a fresh name into the computation. In the usual for-
mulation of calculi for fresh name generation [PS93, PG00, Ode94] , this operation is not related to
a β-reduction, but is formulated by a separate language construct. In this respect, our formulation
is closer to the λ-calculus, where computational content is always reserved for β-reduction.

Just as it is customary in λ-calculus to introduce an abbreviation let val x = e1 in e2 for the
expression (λx. e2) (e1), we can introduce a new abbreviation here as well. We will define a new
expression constructor let name X:A in e to stand for

(let name X:A in e) = choose (νX:A. e)

The typing rule for let name is appropriately derived as

(Σ, X:A);∆; Γ ` e : B [C]

Σ;∆; Γ ` let name X:A in e : B [C]

A similar constructor is introduced in the syntactic category of phrases, with the following typing
rule.

(Σ, X:A);∆; Γ ` f ÷C B [D]

Σ;∆; Γ ` let name X:A in f ÷C B [D]

In both of these rules, it is assumed that X is a fresh name, i.e. that X 6∈ dom(Σ).

60

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

2.2.3 Summary and structural properties

Syntax

The syntax of the modal ν-calculus is summarized in the table below. Here we assume that N is a
countable universe of names, so that each name is associated with a certain well-formed type, and
there is a countably infinite set of names for each type.8

Names X,Y ∈ N
Supports C,D ::= · | C,X
Types A,B ::= P | A→ B | A 9 B | �CA | 3CA
Explicit substitutions Θ ::= · | X → e,Θ
Expressions e ::= X | x | 〈Θ〉u | λx:A. e | e1 e2

| box e | let box u = e1 in e2

| νX:A. e | choose e
| dia f

Phrases f ::= e | [Θ, e] | let cdia x = e1 in e2

| let dia x = e in f | let box u = e in f
Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A[C]
Name context Σ ::= · | Σ, X:A

The name contexts Σ are dependent contexts, because types may depend on names. It is assumed
that a name declared in Σ may be used in the types appearing to the right of its declaration, but
not to the left9.

Type system

Just like in Section 2.1.6, here too we have six typing judgments: Σ ` C supp, Σ ` A type,
Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D], Σ;∆; Γ ` e : A [C], and Σ;∆; Γ ` f ÷C A [D], whose rules we list below.

Definition of Σ ` C supp.

Σ ` · supp

Σ ` C supp X ∈ dom(Σ)

Σ ` C, X supp

Definition of Σ ` A type.

Σ ` P type

Σ ` A type Σ ` B type

Σ ` A → B type

Σ ` A type Σ ` B type

Σ ` A � B type

Σ ` A type Σ ` C supp

Σ ` � CA type

Σ ` A type Σ ` C supp

Σ ` 3CA type

Definition of Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D].

8Furthermore, we assume that the relation between names and types is well-founded.
9This in itself ensures that the relation between names and types is well-founded. Is there a better way to phrase

this?

61

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

C ⊆ D

Σ; ∆; Γ ` 〈 〉 : [C] ⇒ [D]

Σ; ∆; Γ ` e : A [D] Σ; ∆; Γ ` 〈Θ〉 : [C \ X] ⇒ [D] X:A ∈ Σ

Σ; ∆; Γ ` 〈X → e, Θ〉 : [C] ⇒ [D]

Definition of Σ;∆; Γ ` e : A [C].

X:A ∈ Σ

Σ; ∆; Γ ` X : A [X, C] Σ; ∆; (Γ, x:A) ` x : A [C]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉 : [C] ⇒ [D]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉u : A [D]

Σ; ∆; (Γ, x:A) ` e : B [C]

Σ; ∆; Γ ` λx:A. e : A → B [C]

Σ; ∆; Γ ` e1 : A → B [C] Σ; ∆; Γ ` e2 : A [C]

Σ; ∆; Γ ` e1 e2 : B [C]

Σ; ∆; · ` e : A [D]

Σ; ∆; Γ ` box e : � DA [C]

Σ; ∆; Γ ` e1 : � DA [C] Σ; (∆, u::A[D]); Γ ` e2 : B [C]

Σ; ∆; Γ ` let box u = e1 in e2 : B [C]

(Σ, X:A); ∆; Γ ` e : B [C]

Σ; ∆; Γ ` νX:A. e : A 	 B [C]

Σ; ∆; Γ ` e : A 	 B [C]

Σ; ∆; Γ ` choose e : B [C]

Definition of Σ;∆; Γ ` f ÷C A [D].

Σ; ∆; Γ ` e : A [C]

Σ; ∆; Γ ` e ÷ A [C]

Σ; ∆; Γ ` 〈Θ〉 : [C] ⇒ [D] Σ; ∆; · ` e : A [C]

Σ; ∆; Γ ` [Θ, e] ÷C A [D]

Σ; ∆; Γ ` f ÷C A [D]

Σ; ∆; Γ ` dia f : 3CA [D]

Σ; ∆; Γ ` e1 : 3C1
A [D] Σ; ∆; x:A ` e2 : B [C1]

Σ; ∆; Γ ` let cdia x = e1 in e2 ÷C1
B [D]

Σ; ∆; Γ ` e : 3C1
A [D] Σ; ∆; x:A ` f ÷C2

B [C1]

Σ; ∆; Γ ` let dia x = e in f ÷C2
B [D]

Σ; ∆; Γ ` e : � C1
A [D] Σ; (∆, u::A[C1]); Γ ` f ÷C2

B [D]

Σ; ∆; Γ ` let box u = e in f ÷C2
B [D]

62

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

Structural properties

An explicit substitution is a finite set of pairs X → e, where X is a name, and e is an expression.
Each explicit substitution Θ defines a function [[Θ]] from names to expressions.

[[Θ]](X) =

{
e if X → e ∈ Θ
X otherwise

A substitution can be uniquely extended to a function over arbitrary expressions and phrases,
in the following way.

Definition 6 (Substitution application)
Given a substitution Θ, the operations {Θ}e and {Θ}f for applying Θ over the expression e or
a phrase f , are defined by induction on the structure of e and f as given below. Substitution
application is capture-avoiding.

{Θ} X = [[Θ]](X)
{Θ} x = x
{Θ} (〈Θ1〉u) = 〈Θ ◦Θ1〉u
{Θ} (λx:A. e1) = λx:A. {Θ}e1 x 6∈ fv(Θ)
{Θ} (e1 e2) = {Θ}e1 {Θ}e2

{Θ} (box e1) = box e1

{Θ} (let box u = e1 in e2) = let box u = {Θ}e1 in {Θ}e2 u 6∈ fv(Θ)
{Θ} (νX:A. e1) = νX:A. {Θ}e1 X 6∈ fn(Θ)
{Θ} (choose e1) = choose {Θ}e1

{Θ} (dia f1) = dia {Θ}f1

{Θ} e1 = {Θ}e1

{Θ} [Θ1, e1] = [Θ ◦Θ1, e1]
{Θ} let cdia x = e1 in e2 = let cdia x = {Θ}e1 in e2 x 6∈ fv(Θ)
{Θ} let dia x = e1 in f2 = let dia x = {Θ}e1 in f2 x 6∈ fv(Θ)
{Θ} let box u = e1 in f2 = let box u = {Θ}e1 in {Θ}f2 u 6∈ fv(Θ)

The most important aspect of the above definition is that substitution application does not recur-
sively descend under box. This property is of utmost importance for the soundness of our calculus
as it preserves the distinction between the categorical and hypothetical proofs. It is also justified,
as applying explicit substitution Θ to the expression e is intended to replace the names which are
in the support of e, and names appearing under box do not contribute to the support.

The operation of substitution application depends upon the operation of substitution composi-
tion Θ1 ◦Θ2, which we define next.

Definition 7 (Composition of substitutions)
Given two substitutions Θ1 and Θ2, their composition Θ1 ◦Θ2 is the set

Θ1 ◦Θ2 = {X → {Θ1}([[Θ2]](X)) | X ∈ dom(Θ1) ∪ dom(Θ2)}

It will occasionally be beneficial to represent this set as a disjoint union of two smaller sets Ψ1

and Ψ2 defined as:

Ψ1 = {X → [[Θ1]] (X) | X ∈ dom(Θ1) \ dom(Θ2)}

Ψ2 = {X → {Θ1}([[Θ2]] (X)) | X ∈ dom(Θ2)}

63

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

It is important to notice that, though the definitions of substitution application and substitution
composition are mutually recursive, both operations are well founded. Substitution application is
defined inductively over the structure of its argument, so the size of terms on which it operates is
always decreasing. Computing Θ1 ◦Θ2 only requires applying Θ1 to subterms in Θ2.

Lemma 8
Let Θ1,Θ2,Θ3 be explicit substitutions. Then the following holds:

1. {Θ1}({Θ2}e) = {Θ1 ◦Θ2}e, for every expression e

2. {Θ1}({Θ2}f) = {Θ1 ◦Θ2}f , for every phrase f

3. Θ1 ◦ (Θ2 ◦Θ3) = (Θ1 ◦Θ2) ◦Θ3, for every explicit substitution Θ3.

Proof: By simultaneous induction on the structure of e, f and Θ3. We present the characteristic
cases.

case e = 〈Θ〉u. By definition, {Θ1}({Θ2}e) = 〈Θ1 ◦ (Θ2 ◦Θ)〉u. By second induction hypothesis,
this is equal to 〈(Θ1 ◦Θ2) ◦Θ〉u = {Θ1 ◦Θ2}e.

case f = [Θ′, e]. Then {Θ1}({Θ2}f) = {Θ1}[Θ2 ◦Θ′, e] = [Θ1 ◦ (Θ2 ◦Θ′), e] = {Θ1 ◦Θ2}f .

case Θ3 = (X 7→ e,Θ′). Let Z be an arbitrary name.

If Z = X, then {Θ1}([[Θ2 ◦Θ3]](Z)) = {Θ1}({Θ2}e). By first induction hypothesis, this is
equal to {Θ1 ◦Θ2}e = {Θ1 ◦Θ2}([[Θ3]](Z)).

If Z 6= X, then {Θ1} [[Θ2 ◦Θ3]](Z) = {Θ1} [[Θ2 ◦Θ′]](Z), and also {Θ1 ◦ Θ2} [[Θ3]](Z) =
{Θ1◦Θ2} [[Θ

′]](Z). By second induction hypothesis, Θ1◦(Θ2◦Θ
′) = (Θ1◦Θ2)◦Θ

′, and therefore
{Θ1} [[Θ2 ◦Θ′]](Z) = {Θ1 ◦Θ2} [[Θ

′]](Z). Therefore, {Θ1} [[Θ2 ◦Θ3]](Z) = {Θ1 ◦Θ2} [[Θ3]](Z),
thus concluding the proof.

�

We will frequently blur the distinction between a substitution Θ, and its corresponding function
[[Θ]], and write Θ(X) instead of [[Θ]](X), or {Θ}(X). Representations of substitutions that differ
only in the ordering of the assignment pairs are considered to define equal substitutions.

Theorem 9 (Structural properties)
The following are the structural properties of the judgment Σ;∆; Γ ` e : A [C]. Similar properties
hold for Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D] and Σ;∆; Γ ` f ÷C A [D], but we omit these for simplicity.

1. Context weakening Let Σ ⊆ Σ′, ∆ ⊆ ∆′ and Γ ⊆ Γ′. If Σ;∆; Γ ` e : A [C], then Σ′;∆′; Γ′ `
e : A [C].

2. Contraction on variables

(a) if Σ;∆; (Γ, x:A, y:A) ` e : A [C], then Σ;∆; (Γ, w:A) ` [w/x,w/y]e : A [C]

(b) if Σ; (∆, u::A[C1], v::A[C1]); Γ ` e : A [C], then Σ; (∆, w::A[C1]); Γ ` [w/u,w/v]e : A [C].

3. Renaming If (Σ, X:A,Σ1);∆; Γ ` e : B [C], and the name Y :A is fresh, then

(Σ, Y :A, [Y/X]Σ1); [Y/X]∆; [Y/X]Γ ` [Y/X]e : ([Y/X]B) [[Y/X]C]

64

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

Proof: By straightforward induction on the structure of the derivations. �

Theorem 10 (Support weakening)
Support weakening is covariant on the right-hand side and contravariant on the left-hand side of
the judgments. More formally, let C ⊆ D ⊆ dom(Σ) be well-formed supports. Then the following
holds:

1. if Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e : A [D]

2. if Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [D]

3. if Σ;∆; Γ ` f ÷C1
A [C], then Σ;∆; Γ ` f ÷C1

A [D]

4. if Σ; (∆, u::A[D]); Γ ` e : B [C1], then Σ; (∆, u::A[C]); Γ ` e : B [C1]

5. if Σ;∆; Γ ` 〈Θ〉 : [D]⇒ [C1], then Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [C1]

6. if Σ; (∆, u::A[D]); Γ ` f ÷C1
B [C2], then Σ; (∆, u::A[C]); Γ ` f ÷C1

B [C2]

Proof: The first three statements are proved by simultaneous induction on the structure of their
derivations. The last three statements are also proved by simultaneous induction on the structure
of their respective derivations, but are independent of the first three. �

Theorem 11 (Explicit substitution principle)
Let Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ;∆; Γ ` e : A [C] then Σ;∆; Γ ` {Θ}e : A [D]

2. if Σ;∆; Γ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

3. if Σ;∆; Γ ` f ÷C1
A [C], then Σ;∆; Γ ` {Θ}f ÷C1

A [D]

Proof: By simultaneous induction on the structure of the derivations. Proving the first and the
third induction hypothesis is easy. For the second induction hypothesis, let Ψ = Θ ◦ Θ ′. We split
Ψ into two disjoint sets:

Ψ′
1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}

Ψ′
2 = {X → {Θ}(Θ′(X)) | X ∈ dom(Θ′)}

Let X:A. It suffices to show that

(a) if X 6∈ dom(Ψ) and X ∈ C1, then X ∈ D

(b) if X → e ∈ Ψ, then Σ;∆; Γ ` e : A [D]

To establish (a), observe that X 6∈ dom(Ψ) implies X 6∈ dom(Θ) and X 6∈ dom(Θ′), by defini-
tion. If X 6∈ dom(Θ′) and X ∈ C1, then X ∈ C by the typing of Θ′. If X 6∈ dom(Θ) and X ∈ C,
then X ∈ D, by the typing of Θ.

To establish (b), we need to consider two cases: (1) X → e ∈ Ψ′
1 and (2) X → e ∈ Ψ′

2. In case
(1), by the typing of Θ, we immediately have Σ;∆; Γ ` e : A [D]. In case (2), there exists a term e ′

such that X → e′ ∈ Θ′ and e = {Θ}e′. By the typing of Θ′, we have Σ;∆; Γ ` e′ : A [C]. Because e′

is a subterm of Θ′, we can apply the first first induction hypothesis to obtain Σ;∆; Γ ` {Θ}e′ : A [D].

65

2.2. MODAL ν-CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

This concludes the proof, since e = {Θ}e′. �

The following theorem is a version of the substitution principle for truth, decorated with explicit
proof terms in the judgments.

Theorem 12 (Value substitution principle)
Let Σ;∆; Γ ` e1 : A [C]. Then the following holds:

1. if Σ;∆; (Γ, x:A) ` e2 : B [C], then Σ;∆; Γ ` [e1/x]e2 : B [C]

2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈[e1/x]Θ〉 : [C1]⇒ [C]

3. if Σ;∆; (Γ, x:A) ` f ÷C1
B [C], then Σ;∆; Γ ` [e1/x]f ÷C1

B [C]

Proof: Simultaneous induction on the two derivations. �

Definition 13 (Modal substitution)
The capture-avoiding substitution of [[e/u]] of the expression e for the modal variable u is defined
recursively as presented below. Note that in the first clause of the definition, substituting e for u
in 〈Θ〉u is defined to actually carry of the explicit substitution.

[[e/u]] 〈Θ〉u = {[[e/u]]Θ}e
[[e/u]] 〈Θ〉v = 〈[[e/u]]Θ〉v u 6= v
[[e/u]] x = x
[[e/u]] X = X
[[e/u]] λx:A. e1 = λx:A. [[e/u]]e1 x 6∈ fv(e)
[[e/u]] e1 e2 = [[e/u]]e1 [[e/u]]e2

[[e/u]] box e1 = box [[e/u]]e1

[[e/u]] let box v = e1 in e2 = let box v = [[e/u]]e1 in [[e/u]]e2 v 6∈ fv(e)
[[e/u]] νX:A. e1 = νX:A. [[e/u]]e1 X 6∈ fn(e)
[[e/u]] choose e1 = choose ([[e/u]]e1)
[[e/u]] dia f = dia ([[e/u]]f)

[[e/u]] (·) = (·)
[[e/u]] (X → e1,Θ) = (X → [[e/u]]e1, [[e/u]]Θ)

[[e/u]] e1 = [[e/u]]e1

[[e/u]] [Θ, e1] = [[[e/u]]Θ, [[e/u]]e1]
[[e/u]] let cdia x = e1 in e2 = let cdia x = [[e/u]]e1 in [[e/u]]e2 x 6∈ fv(e)
[[e/u]] let dia x = e1 in f2 = let dia x = [[e/u]]e1 in [[e/u]]f2 x 6∈ fv(e)
[[e/u]] let box v = e1 in f2 = let box v = [[e/u]]e1 in [[e/u]]f2 v 6∈ fv(e)

The following theorem is a version of the substitution principle for relativized necessity.

Theorem 14 (Modal substitution principle)
Let Σ;∆; · ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u::A[C]); Γ ` e2 : B [D], then Σ;∆; Γ ` [[e1/u]]e2 : B [D]

2. if Σ; (∆, u::A[C]); Γ ` 〈Θ〉 : [C1]⇒ [D], then Σ;∆; Γ ` 〈[[e1/u]]Θ〉 : [C1]⇒ [D]

66

CHAPTER 2. PARTIAL MODAL LOGIC 2.3. NOTES

3. if Σ; (∆, u::A[C]); Γ ` f ÷C1
B [D], then Σ;∆; Γ ` [[e1/u]]f ÷C1

B [D]

Proof: By simultaneous induction on the two derivations. �

Definition 15 (Phrase substitution)
The operations 〈〈f1/x〉〉e and 〈〈f1/x〉〉f of substituting the phrase f1 into an expression e or another
phrase f2 are defined by induction on the structure of f as follows.

〈〈e1/x〉〉e = [e1/x]e

〈〈[Θ, e1]/x〉〉e = [Θ, ([e1/x]e)]

〈〈let cdia y = e1 in e2/x〉〉e = let cdia y = e1 in [e2/x]e

〈〈let dia y = e1 in f2/x〉〉e = let dia y = e1 in 〈〈f2/x〉〉e

〈〈let box u = e1 in f2/x〉〉e = let box u = e1 in 〈〈f2/x〉〉e

〈〈e1/x〉〉f = [e1/x]f

〈〈[Θ, e1]/x〉〉f = {Θ}([e1/x]f)

〈〈let cdia y = e1 in e2/x〉〉f = let dia y = e1 in [e2/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

The following theorem establishes that our calculus indeed satisfies the substitution principle
for possibility from Section 2.2.1.

Theorem 16 (Phrase substitution principle)
If Σ;∆; Γ ` f1 ÷C1

A [D], then the following holds:

1. if Σ;∆;x:A ` e : B [C1], then Σ;∆; Γ ` 〈〈f1/x〉〉e ÷C1
B [D].

2. if Σ;∆;x:A ` f ÷C2
B [C1], then Σ;∆; Γ ` 〈〈f1/x〉〉f ÷C2

B [D].

Proof: By straightforward induction on the structure of f1. We just present a selected case
when f1 = let cdia y = e1 in e2. In this case, by assumption Σ;∆; Γ ` e1 : 3C1

A1 [D], and
Σ;∆; y:A1 ` e2 : A [C1].

To establish the first statement, recall that Σ;∆;x:A ` e : B [C1]. Then by the value sub-
stitution principle, Σ;∆; y:A1 ` [e2/x]e : B [C1]. According to the typing rule for let cdia,
Σ;∆; Γ ` let cdia y = e1 in [e2/x]e ÷C1

B [D], which was required to prove.
The proof of the second statement is similar. By assumption, Σ;∆;x:A ` f ÷C2

B [C1], and by
the value substitution principle, Σ;∆; y:A1 ` [e2/x]f ÷C2

B [C1]. The conclusion now follows by
the typing rule for let dia. �

2.3 Notes

Related and future work on names

The work that explicitly motivated the developments presented in this dissertation is described
in the series of papers on Nominal Logic and FreshML [GP02, PG00, Pit01, Gab00]. The names

67

2.3. NOTES CHAPTER 2. PARTIAL MODAL LOGIC

of Nominal Logic are introduced as the urelements of Fraenkel-Mostowsky set theory. FreshML
is a language for manipulation of object syntax with binding structure based on this model. Its
primitive notion is that of swapping of two names which is then used to define the operations of
name abstraction (producing an α-equivalence class with respect to the abstracted name) and name
concretion (providing a specific representative of an α-equivalence class).

In FreshML, if X is a name appearing in the expression e, then the support of e will contain X,
unless X occurrs in dead code or is otherwise abstracted using the construct for name abstraction.
Names are introduced into the computation by new X in e which is roughly equivalent to our
let name X in e. The typing rule for new X in e requires that X does not appear in the support
of e. This way, the type system prevents unabstracted names from escaping the scope of their
introducing new.

Keeping track of supports in the type system significantly simplifies FreshML when compared
to some previous calculi that use names. For example, the ν-calculus of [PS93] describes a system
similar to FreshML, but does not track supports of expressions, and does not insist that X is absent
from the support of e in new X:e in . This gives rise to a very powerful language, but also a very
complicated one. For example, the ν-calculus has a rather involved equational theory; in particular,
it does not equate a term with its β-reduct.

The λν-calculus of [Ode94] introduces a somewhat different idea for treating names, charac-
terized by reductions that push the name declaration inside other term constructors. A typical
reduction rule in λν would be paraphrased in the notation of ν

as

let name X in (λx. e) 7−→ λx. let name X in e

Just like the ν-calculus, λν does not keep track of which names appear in the terms. As a conse-
quence, it does not possess the usual progress and preservation properties, as well-typed expressions
in λν may get stuck. A typical example is the expression νX. X, which does not denote any value.

All these cited name calculi are designed around the single goal: that of providing the operation
of equality on names. In contrast to this goal, the modal ν-calculus uses names primarily as a way
of describing supports, i.e. as a way of specifying the partiality of expressions. In fact, names in
the ν-calculus are second-class objects – they cannot be passed as arguments to other functions,
and may not be tested for equality directly.

The reason for second-class names has to do with the fact that names in the ν-calculus may be
ascribed an arbitrary type; a dynamic introduction of a name of type A into a computation serves
as a dynamic extension of the type A. Such an extension may render partial the previously defined
functions with domain A. We discuss this issue in more detail in Section 3.2.3, where we define an
operational semantics for the modal ν-calculus.

This is not to say that names cannot be tested for equality indirectly. As will be explained
in Section 3, expressions of the type �CA may be interpreted as syntactic expression with free
variables listed in the set C. In Section 3.4, we exploit this feature, and make some initial steps
towards extending the ν-calculus with pattern-matching against syntactic expressions. Since the
syntactic expressions may contain names, this will provide an indirect way to test for name equality.

Of course, other ways to extend the ν-calculus with first-class names and name equality may
be possible. For example, it may be interesting to define a new type constructor

N : Type→ Type,

so that N(A) classifies all the names of type A. The question then becomes how names interact
with the modal operators. Of course, it is likely that all the difficulties from the name calculi with

68

CHAPTER 2. PARTIAL MODAL LOGIC 2.3. NOTES

first-class names (like the ν-calculus of [PS93]) will still be present. We leave this research direction
as an important future work.

Even when dealing with second-class names, it seems possible that other approaches may be
employed for dynamic name management. For example, the variable declaration u:A [C] may be
viewed as binding the names listed in C, so that these names have scope local to the explicit
substitutions associated to u. This idea has been employed in [NPP03] to define a dependently
typed calculus for representing meta variables in logical frameworks.

Similar idea has been used by Ancona and Moggi in their recent work motivated by the ν-
calculus [AM03]. In their paper, name generation is tied to the box term constructor, which then
also becomes a binder10.

In this dissertation, we deliberately separate name generation from other language constructs,
and give names global scope in order to avoid excessive renaming and rebinding. Moreover, in
Chapter 4, we will consider effectful computations where names correspond to particular memory
locations and exceptions. In practice today memory and exceptions are typically given global scope,
so our approach will faitfully capture this aspect of effects.

Related and future work on contexts and partiality in modal logic

Since modal logic is invented in order to reason about truth relative to various worlds, it shouldn’t
be a surprise that modal logic and partiality are so closely related. This is especially true of the
first-order modal logics with equality (and also of higher-order modal logics), where the research
questions of interest are typically concerned with reasoning with and about individuals that – in an
appropriate sense – do not really exist. Derivations produced in this way are partial in the existence
of the individuals in question. The names from the modal ν-calculus serve to specify the partiality
condition, and thus may be seen as a simplification (appropriate for the propositional partial CS4
that we investigate) of the more general concept of an individual. In this sense, names resemble the
non-rigid designators considered by Fitting and Mendelsohn in [FM99], names of Kripke [Kri80],
and the virtual individuals of Scott [Sco70], but also touch on the issues of existence and identity
explored in [Sco79].

Frequently, the modal reasoning is only valid under a certain set of hypotheses, i.e. a context.
A context need not include only the existence of individuals, but may contain more general propo-
sitions. The study of contexts as first-class logical object has been initiated by McCarthy [McC93],
and we also list the work of Attardi and Simi [AS95] as a continuation of this line of research. Most
of the work on formalizing contexts has been carried out in a classical setting, but there are also
efforts related to the intuitionistic logic, like the recent work of de Paiva [dP03].

It may be particularly convenient to address the mentioned distinction between the partiality
in individuals and the partiality in propositions within the framework of a modal type theory. As
an illustration – and a rather far-fetched one, currently – consider the following example.

Let X : real be an indeterminate number, for which we have derived that X 2 = −1. Such a real
number clearly does not exist, and we may easily derive falsehood by instantiating the universal
quantification ∀x:real. x2 ≥ 0. However, as argued by Scott in [Sco79], it may still be useful to use
the fact that X2 = −1 in order to derive X3 = −X or X4 + X2 = 0, without actually stipulating
that these equalities are inconsistent.

If we had a modal theory with names, then perhaps the described equations may be obtained
by using the following two names: the name X : real to stands for the indeterminate number, and

10This paper is not published, and it is even taken out from Moggi’s home page. Perhaps I shouldn’t reference it,
or if I do, then also give an example rule

69

2.3. NOTES CHAPTER 2. PARTIAL MODAL LOGIC

the name P : Proof(X2 = −1) to stand for a non-existent proof that X2 = −1. It is important
that X and P are names, rather than ordinary variables; variables will only stand for individuals
and proofs that can be exhibited, while names may remain partial. Using X, P and the usual
arithmetic properties of real numbers, we can then easily produce a proof Q so that

Q : Proof(X3 = −X) [X,P]

As expected, this proof would be partial in X and P , and could be turned into a total proof only
if witnesses for X and P are exhibited. This partial derivation will actually not be inconsistent, as
the proposition ∀x:real. x2 ≥ 0 may not be used to derive contradiction. Indeed, the proposition
universally quantifies only over variables and thus may not be instantiated with X, which is only
a name.11

11This is very esoteric. Do I really want such wild speculations in the dissertation? Does this even make sense
technically?

70

Chapter 3

Staged computation and meta

programming

3.1 Introduction

Staging is a programming technique for explicitly dividing a computation in order to exploit early
availability of some arguments [Ers77, GJ95, DP01]. For example, consider filtering a set of points
to see on which side of a line defined by two points they lie. This is a typical test used in many
convex hull algorithms. The test can be staged by first forming the line and its normal, and then
checking the position of each point from the set. Such a staged test obviates the need to repeat the
part of the computation pertinent to the normal whenever a new point is tested, and can potentially
save a lot of work.

Because it is often quite cumbersome to design programs that fully exploit the natural stage
separation of their arguments, it is very desirable for a programming language to provide support for
early detection and reporting of staging errors. As an illustration, let us look at the exponentiation
function, presented below in ML-like notation.

fun exp1 (n : int) (x : int) : int =

if n = 0 then 1 else x * exp1 (n-1) x

The function exp1 : int -> int -> int is written in curried form so that it can be applied
when only a part of its input is known. For example, if an actual parameter for n is available,
exp1(n) returns a function for computing the n-th power of its argument. From the computational
standpoint, however, in most compilers the outcome of this partial instantiation will be a closure
waiting to receive an actual parameter for x before it proceeds with evaluation. Thus, one can
argue that the following reformulation of exp1 is preferable.

fun exp2 (n : int) : int -> int =

if n = 0 then λx:int.1
else

let val u = exp2 (n - 1)

in

λx:int. x * u(x)

end

Indeed, when only n is provided, but not x, the expression exp2(n) performs computation steps
based on the value of n to produce a function specialized for computing the n-th power of its

71

3.1. INTRODUCTION CHAPTER 3. META PROGRAMMING

∆; (Γ, x:A) ` x : A (∆, u::A); Γ ` u : A

∆; (Γ, x:A) ` e : B

∆;Γ ` λx:A. e : A→ B

∆;Γ ` e1 : A→ B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

Figure 3.1: Typing rules for λ
�
.

argument. In particular, the resulting function will not perform any operations or take decisions
at run time based on the value of n; in fact, it does not even depend on n – all the computation
steps dependent on n have been taken during the specialization.

A useful intuition for understanding the programming idiom of the above example, is to view
exp2 as a code generator; once supplied with n, it generates at run time a specialized function for
computing n-th powers. This immediately suggests a stratification of expressions into two stages.
Object stage (or the stage of generated expressions) comprises of expressions that are to be viewed
as data – they are result of the process of code generation. In the exp2 function, such expressions
are (λx:int.1) and (λx:int. x * u(x)). Meta stage (or run-time stage) comprises of expressions
that are executable, i.e. they describe computational steps to be performed at run time. This is
why the above-illustrated programming style is referred to as staged computation.

We further postulate that there exists an inclusion from the object stage into the meta stage.
In other words, code generated at the object stage as data, may be coerced into the meta stage,
and executed. The opposite inclusion, however, does not exist, and in particular, we prohibit that
meta-level variables appear in object-level expressions. For example, in the function exp2, the
variable n is absent from the expressions (λx:int.1) and (λx:int. x * u(x)). This restriction
guarantees that none of the computation steps dependent on n are postponed beyond the time at
which n is specialized to a particular integer value.

As it has been noticed in the previous work [PD01, WLP98, WLPD98], the fragment of the
constructive modal logic S4 containing the � operator (Chapter 1), and the associated proof-term
calculus (called λ

�
-calculus) are naturally suited to capture many aspects of program staging. We

recall the syntax of λ
�

below, and the relevant typing rules are presented in Figure 3.1.

Types A,B ::= P | A→ B | �A
Expressions e ::= x | u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2

Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A

The main observation relating staged computation to modal logic is already illustrated by our
analysis of the exp2 function. Since generated code does not depend on meta-level variables, the
object expressions are either closed, or are computed by substitution out of other object (and
therefore closed) expressions. This operational property of the object stage exactly matches the

72

CHAPTER 3. META PROGRAMMING 3.1. INTRODUCTION

notion of categorical proof in modal logic. As defined in Chapter 1.1.3, a categorical proof is closed
with respect to value variables, but it may depend on modal variables (which stand for other
categorical proofs).

Following the analogy between object expressions and categorical proofs, we can use the type
�A to classify generated code of type A. Under this computational interpretation of the λ

�
calculus,

the introduction form box e serves to coerce the closed expression e into the object stage. The
elimination form let box u = e1 in e2 allows code to be generated by means of substitution:
a code generated by e1 can be substituted for u in e2. This way, the λ

�
-calculus makes the

distinction between stages explicit. The programmer can specify the intended staging using the
term constructors box and let box. Then the type system can check whether the written program
conforms to the staging specifications, turning staging errors into type errors.

Of course, in order to use the λ
�
-calculus for programming, we need to extend it with some

primitive types and recursion. In our examples we will assume the standard ML-like syntax and
semantics for natural numbers, integers, booleans and conditionals, recursive functions and pairs.
Addition of these features to the λ

�
-calculus does not present any theoretical problems.

Figure 3.2 presents the small-step operational semantics of λ
�
. We have decided on a call-by-

value strategy which, in addition, prohibits reductions under box. Thus, if an expression is boxed,
its evaluation will be suspended. Values of modal types are thus boxed closed expressions encoding
object-level programs.

We can now use the type system of λ
�

to make explicit the staging of exp2.

fun exp3 (n : int) : �(int->int) =

if n = 0 then box (λx:int. 1)

else

let box u = exp3 (n - 1)

in

box (λx:int. x * u(x))

end

Application of exp3 at argument 2 generates a function for squaring.

- sqbox = exp3 2;

val sqbox = box (λx:int. x *

(λy:int. y *

(λz:int. 1) y) x) : �(int -> int)

In the elimination form let box u = e1 in e2, the bound variable u belongs to the context ∆ of
modal variables, but it can be used in e2 in both modal positions (i.e., under a box) and meta
positions. Thus the calculus is not only capable of composing generated programs, but can also
explicitly force their evaluation. For example we can use the generated function sqbox in the
following way.

- sq = (let box u = sqbox in u);

val sq = [fn] : int -> int

- sq 3;

val it = 9 : int

This example demonstrates how closed object expressions can be reflected, i.e. coerced from the
object level into the meta level. The opposite coercion, referred to as reification, is not possible.
This suggests that λ

�
could be given even a more specific model in which reflection naturally exists,

73

3.2. ν

-CALCULUS CHAPTER 3. META PROGRAMMING

e1 7−→ e′1

e1 e2 7−→ e′1 e2

e2 7−→ e′2

v1 e2 7−→ v1 e′2 (λx:A. e) v 7−→ [v/x]e

e1 7−→ e′1

let box u = e1 in e2 7−→ let box u = e′1 in e2

let box u = box e1 in e2 7−→ [e1/u]e2

Figure 3.2: Operational semantics of λ

.

but reification does not. A possible interpretation exhibiting this behavior considers object-level
expressions as generated source code, i.e. actual closed syntactic expressions, or abstract syntax trees
of closed λ

-terms. In contrast, the meta-level expressions are compiled executables. The operation

of reflection corresponds to the natural process of compiling a source program into an executable.
The opposite operation of reconstructing source code out of its compiled equivalent is not usually
feasible, so this interpretation does not support reification, just as required. Furthermore, the
typing of λ

ensures that only well-typed syntactic expressions can be represented in the calculus.

This property makes the λ

approach to syntax representation reminiscent of the well-known
methodology of higher-order abstract syntax [PE88].

The above intuitive “syntactic” model makes the λ

-calculus very appropriate not only for

staged computation, but also for meta programming. In meta programming, expressions are again
stratified into stages, but this time the syntactic structure of object expressions may be inspected and
analyzed. In meta programming, object expressions represent source code which can be compared
for syntactic equality and even pattern-matched against.

In the rest of this chapter, we will frequently rely on the described syntactic nature of object
expressions in order to supply the intuition behind formal developments. However, whether a prac-
tical implementation actually needs to represent object expression as syntax, will depend on the
application. In staged computation, for example, we are usually not interested in inspecting the
structure of generated programs, so the generated programs may be represented in some intermedi-
ate, or even fully compiled form. At this point, we do not commit to any particular implementation
strategy, but instead focus on the logical properties of the type system.

3.2 The ν
�-calculus

3.2.1 Motivation

If we adhere to the interpretation of categorical proofs as generated source code, then the λ

staging of exp3 is rather unsatisfactory. The problem is that the object programs generated by
exp3 (e.g., sqbox), contain unnecessary variable-for-variable redexes, and hence are not as optimal
as one would want. From the standpoint of syntax manipulation, λ

is too restrictive. It cannot

express this rather simple way in which well-typed syntactic expressions can be put together to
form a more complex syntactic expression. The reason for the deficiency lies in the requirement

74

CHAPTER 3. META PROGRAMMING 3.2. ν
�
-CALCULUS

that the syntactic object expressions that λ
�

can represent and manipulate must always be closed.
Furthermore, if we only have a type of closed syntactic expressions at our disposal, we can’t

ever type the body of an object-level λ-abstraction in isolation from the λ-binder itself – subterms
of a closed term are not necessarily closed themselves. Thus, it would be impossible to ever inspect,
destruct or recurse over object-level expressions with binding structure.

What we need in order to avoid the problem of superfluous redexes, but also in order to support
code inspection, is the ability to represent open expressions and specify substitution with capture.
This need has long been recognized in the staged computation and meta programming community,
and Section 3.6 discusses several different systems and their solution of the problem. The technique
predominantly used in these solutions goes back to Davies’ λ©-calculus [Dav96]. The type con-
structor © of this calculus corresponds to discrete temporal logic modality for propositions true at
the subsequent time moment. In a meta programming interpretation, the modal type ©A stands
for open object expression of type A, where the free variables of the object expression are modeled
by λ-bound variables from the subsequent time moment.

In this chapter, we present a different approach to the problem of spurious redexes. The
approach is based on names and the fragment of the modal ν-calculus from Section 2.2 that contains
the � operator. We call this fragment ν

�
-calculus. The idea is to employ names to stand for the

free variables of object expressions, and correspondingly, to employ explicit name substitutions to
facilitate capture of free variables. Intuitively, the expressions of the ν

�
-calculus are obtained by

adjoining names to the expressions of the λ
�
-calculus. The situation is somewhat analogous to that

in polynomial algebra, where one is given a base algebraic structure A and a set of indeterminates
(or generators) {X1, . . . , Xn}, which are then freely adjoined to A into a structure of polynomials
A[X1, . . . , Xn]. In our setup, the indeterminates are the names, and we build “polynomials” over
the base structure of λ

�
expressions.

When an object expression e contains a name X, we will say that e depends on X, or that X is
in the support of e. For example, assuming for a moment that X and Y are names of type int, and
that the usual operations of addition, multiplication and exponentiation of integers are primitive
in ν

�
, the term

e1 = X3 + 3X2Y + 3XY 2 + Y 3

would have type int and support set {X,Y }. The names X and Y appear in e1 at the meta level,
and indeed, notice that in order to evaluate e1 to an integer, we first need to provide definitions for
X and Y . On the other hand, if we box the term e1, we obtain

e2 = box (X3 + 3X2Y + 3XY 2 + Y 3)

which has the type �X,Y int, but its support is the empty set, as the names X and Y only appear
at the object level (i.e., under a box). Thus, the support of a term (in this case e1) becomes part
of the type once the term itself is boxed. This way, the types maintain the information about the
support of subterms at all stages. For example, assuming that our language has pairs, the term

e3 = 〈X2,box Y 2〉

would have the type int×�Y int with support {X}.
As illustrated by the above examples, if an object expression depends on some names, then it

is only partially specified. Such partially specified expressions cannot be evaluated before every
name in the expression’s support is provided a definition. We use explicit substitutions for this
purpose. Explicit substitutions remove substituted names from the support, eventually turning
non-executable expressions into executable ones.

75

3.2. ν
�
-CALCULUS CHAPTER 3. META PROGRAMMING

Example 13 Assuming that X and Y are names of type int, the ν
�

segment below creates a
“polynomial” expression over X and Y and then evaluates it at the point (X = 1, Y = 2).

- let box u = box (X3 + 3X2Y + 3XY2 + Y3)

in

〈X -> 1, Y -> 2〉 u

end

val it = 27 : int

Notice how the explicit substitution 〈X → 1, Y → 2〉 captures the names X and Y in the expression
X3 + 3X2Y + 3XY 2 + Y 3, when this expression is substituted for u. �

In addition to solving the problem of spurious redexes in staged computation, the ν
�
-calculus

has an application in meta programming as well. In Section 3.4, we will extend the ν
�
-calculus

with primitives for intensional code analysis i.e. pattern matching over syntactic structure of object
expressions. It is interesting that intensional code analysis crucially depends on the fact that free
variables of syntactic expressions are represented by names, rather than by λ-bound variables (as
it is the case in λ© and other modal type systems based on it). Indeed, imagine a function f that
recurses over two expressions with binding structure to compare them for syntactic equality modulo
α-conversion. Whenever a λ-abstraction is encountered in both expressions, f needs to introduce a
new symbol to stand for the bound variable of that λ-abstraction, and then recursively proceed to
compare the bodies of the abstractions. But the construct that generates this new symbol should
not be a type introduction form. If it were, then the exact number, types and order of symbols
that f may generate will be apparent from and fixed by the type of f . As a consequence, f could
not be recursively invoked over the bodies of the abstractions, because of a type mismatch.

3.2.2 Syntax and type checking

Here we recall the constructs of the ν-calculus that are relevent for the ν
�
-fragment, and discuss

these constructs in terms of their computational application to staging and meta programming.
For the logical and type theoretic consideration, we refer the reader to Chapter 2 and Section 2.2.3.
The table below recalls the syntax of the ν

�
-calculus.

Names X,Y ∈ N
Supports C,D ::= · | C,X
Types A,B ::= P | A→ B | A 9 B | �CA
Explicit substitutions Θ ::= · | X → e,Θ
Expressions e ::= X | x | 〈Θ〉u | λx:A. e | e1 e2

| box e | let box u = e1 in e2

| νX:A. e | choose e
Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A[C]
Name context Σ ::= · | Σ, X:A

The type system of ν
�

consists of two judgments of the modal ν-calculus:

Σ;∆; Γ ` e : A [C]

76

CHAPTER 3. META PROGRAMMING 3.2. ν
�
-CALCULUS

Explicit substitutions

C ⊆ D

Σ; ∆; Γ ` 〈 〉 : [C] ⇒ [D]

Σ; ∆; Γ ` e : A [D] Σ; ∆; Γ ` 〈Θ〉 : [C \ {X}] ⇒ [D] X:A ∈ Σ

Σ; ∆; Γ ` 〈X → e, Θ〉 : [C] ⇒ [D]

Hypothesis

X:A ∈ Σ

Σ; ∆; Γ ` X : A [X, C] Σ; ∆; (Γ, x:A) ` x : A [C]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉 : [C] ⇒ [D]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉u : A [D]

λ-calculus

Σ; ∆; (Γ, x:A) ` e : B [C]

Σ; ∆; Γ ` λx:A. e : A → B [C]

Σ; ∆; Γ ` e1 : A → B [C] Σ; ∆; Γ ` e2 : A [C]

Σ; ∆; Γ ` e1 e2 : B [C]

Modality

Σ; ∆; · ` e : A [D]

Σ; ∆; Γ ` box e : � DA [C]

Σ; ∆; Γ ` e1 : � DA [C] Σ; (∆, u::A[D]); Γ ` e2 : B [C]

Σ; ∆; Γ ` let box u = e1 in e2 : B [C]

Names

(Σ, X:A); ∆; Γ ` e : B [C]

Σ; ∆; Γ ` νX:A. e : A � B [C]

Σ; ∆; Γ ` e : A � B [C]

Σ; ∆; Γ ` choose e : B [C]

Figure 3.3: Typing rules of the ν
�
-calculus.

and
Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D]

The first judgment types expressions. Given an expression e it checks whether e has type A, and
depends on the support C. The second judgment types explicit substitutions. Given a substitution
Θ and two support sets C and D, the substitution has the type [C]⇒ [D] if it maps expressions of

77

3.2. ν
�
-CALCULUS CHAPTER 3. META PROGRAMMING

support C to expressions of support D.
Both judgments work with three contexts: Σ, ∆ and Γ. The name context Σ ascribes types to

names. Because each type may contain names, name contexts are dependent. We assume that a
name declared in Σ may only be used to the right of its declaration. Context of modal variables ∆
ascribes types and supports to modal variables. Modal variables are bound to object expressions –
which are syntactic – by the term constructor let box u = e1 in e2. Context of value variables Γ
ascribes types to ordinary variables (also called value variables). Ordinary variables are introduced
into Γ by λ-abstraction, and are bound to expressions from the meta stage. As already described in
the previous section, the meta-stage expressions correspond to compiled executables. The typing
rules of the ν

�
-calculus are presented in Figure 3.3, and discuss them next.

A pervasive characteristic of the type system is support weakening. If the names that an ex-
pression depends on are contained in the support set C, then they are certainly contained in any
support D ⊇ C. We recall here the formal statement of the support weakening principle for the
two judgments of the ν

�
-calculus. The proof of the support weakening principle, as well as the

proofs of the other formal statements that we present here, may be found in Section 2.2.3.

Principle (Support weakening)
Support weakening is covariant on the right-hand side and contravariant on the left-hand side of

the judgments. More formally, let C ⊆ D ⊆ dom(Σ) be well-formed supports. Then the following
holds:

1. if Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e : A [D]

2. if Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [D]

3. if Σ; (∆, u::A[D]); Γ ` e : B [C1], then Σ; (∆, u::A[C]); Γ ` e : B [C1]

4. if Σ;∆; Γ ` 〈Θ〉 : [D]⇒ [C1], then Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [C1]

Explicit substitutions. As explained in Chapter 2, applying the empty substitution over a given
term, does not change the term itself – the empty substitution corresponds to the identity function
on expressions. Thus, when an empty substitution is applied to a term containing names from C,
the resulting term obviously contains the same names. The typing rule for empty substitutions
formalizes this property. We also allow weakening to an arbitrary superset D, in order to ensure
that the support weakening principle holds. We implicitly require that both the sets are well-
formed; that is, they both contain only names already declared in the name context Σ. The rule
for non-empty substitutions recursively checks if each of component expressions is well-typed.

The result of applying the substitution Θ over an expression e is denoted as {Θ}e. We denote
by Θ1 ◦Θ2 the composition of the substitutions Θ1 and Θ2. Both of these operations are formally
defined in Section 2.2.3.

When an explicit substitution Θ : [C] ⇒ [D] is applied over an expression e : A [C], the result
{Θ}e will have support D. Consider for example the explicit substitution Θ = (X → 10, Y → 20),
with domain dom(Θ) = {X,Y }. This substitution can be given (among others) the typings:
[] ⇒ [], [X] ⇒ [], as well as [X,Y,Z] ⇒ [Z]. And indeed, Θ does map a term of support [] into
another term with support [], a term of support [X] into a term with support [], and a term with
support [X,Y,Z] into a term with support [Z]. This typing property of explicit substitutions are
summarized by the following explicit substitution principle.

Principle (Explicit substitution)

78

CHAPTER 3. META PROGRAMMING 3.2. ν
�
-CALCULUS

Let Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ;∆; Γ ` e : A [C] then Σ;∆; Γ ` {Θ}e : A [D]

2. if Σ;∆; Γ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

Hypothesis rules. Because there are three kinds of variable contexts, we have three hypothesis
rules. First is the rule for names. A name X can be used provided it has been declared in Σ and
is accounted for in the supplied support set. The implicit assumption is that the support set C
is well-formed; that is, C ⊆ dom (Σ). The rule for value variables is straightforward. The typing
x:A can be inferred, if x:A is declared in Γ. The actual support of such a term can be any support
set C as long as it is well-formed, which is implicitly assumed. Modal variables occur in a term
always prefixed with an explicit substitution. The rule for modal variables has to check if the modal
variable is declared in the context ∆ and if its corresponding substitution has the appropriate type.

λ-calculus fragment. The rule for λ-abstraction is quite standard. Its implicit assumption is
that the argument type A is well-formed in name context Σ before it is introduced into the variable
context Γ. The application rule checks both the function and the application argument against the
same support set. Associated with the λ-calculus fragment is the value substitution principle.

Principle (Value substitution)
Let Σ;∆; Γ ` e1 : A [C]. Then the following holds:

1. if Σ;∆; (Γ, x:A) ` e2 : B [C], then Σ;∆; Γ ` [e1/x]e2 : B [C]

2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈[e1/x]Θ〉 : [C1]⇒ [C]

Modal fragment. Just as in λ
�
-calculus, the meaning of the rule for �-introduction is to ensure

the staging separation between expressions. In the term box e, the expression e belongs to the
object stage, and may be treated as a syntactic entity. Correspondingly, the typing rule for box
must typecheck e against an empty context of value variables Γ. Indeed, value variables are bound
to meta-level expressions, and meta-level expressions correspond to compiled executables. If e is
to be syntactic, it must not depend on compiled code.

The �-elimination rule is also a straightforward extension of the corresponding λ
�

rule. The
only difference is that the bound modal variable u from the context ∆ now has to be stored with
its support annotation.

Associated with modal variables and with the modal fragment of the calculus is the operation of
modal substitution [[e/u]]e2, where u is a modal variable, and e is a closed syntactic expression. The
operation substitutes e for u in e2, but so that e is first transformed by the explicit substitution
associated with each occurrence of u in e2. For example, the following are the two most characteristic
clauses in the definition of modal substitution.

[[e/u]]〈Θ〉u = {[[e/u]]Θ}e

[[e/u]]〈Θ〉v = 〈[[e/u]]Θ〉v u 6= v

Note that the first clause of the definition actually applies to explicit substitution Θ to e. The typing
properties of this operation are formally stated in the modal substitution principle below. Again,

79

3.2. ν
�
-CALCULUS CHAPTER 3. META PROGRAMMING

the complete definition of modal substitution and the proof of the modal substitution principle can
be found in Section 2.2.3.

Principle (Modal substitution)
Let ∆; · ` e : A [C]. Then the following holds:

1. if (∆, u::A[C]); Γ ` e2 : B [D], then ∆; Γ ` [[e1/u]]e2 : B [D]

2. if (∆, u::A[C]); Γ ` 〈Θ〉 : [D′]⇒ [D], then ∆; Γ ` 〈[[e1/u]]Θ〉 : [D′]⇒ [D]

Names fragment. The introduction form for names is νX:A. e with its corresponding type
A 9 B. It introduces a name X:A into the computation determined by e. It is assumed that the
type A is well-formed relative to the context Σ. The term constructor choose is the elimination form
for A 9 B. It picks a fresh name and substitutes it for the bound name in the ν-abstraction. In
other words, the operational semantics of the redex choose (νX:A. e) (formalized in Section 3.2.3)
proceeds with the evaluation of e in a run-time context in which a fresh name has been picked
for X. It is justified to do so because X is bound by ν and, by convention, can be renamed with
a fresh name. In the ν-introduction rule, it is assumed that the name X is completely new –
it does not appear in the contexts of the judgment, and in particular, it does not appear in the
type B and support C. This typing discipline effectively limits X to appear only in subterms of e
which are not encountered during evaluation (i.e. dead-code subterms), or in subterms from which
it will eventually be removed by some explicit substitution. For example, consider the following
expression.

νX:int. νY:int.
box (let box u = box X

box v = box Y

in

〈X -> 1〉 u

end)

This expression contains a substituted occurrence of X and a dead-code occurrence of Y , and is
therefore well-typed (of type int 9 int 9 �int). Another way to paraphrase this typing discipline
is the following: in order to prevent the name bound in νX:A. e from escaping the scope of
its definition, when leaving this scope we have to turn the “polynomials” depending on X into
functions. An illustration of this technique is the program presented in Example 14. The described
aspect of fresh name generation is important because it it ensures the preservation and progress
properties of ν

�
(Theorems 17 and 18). Indeed, if during evaluation, X is encountered outside its

defining ν, the evaluation will get stuck, because there are no expression to substitute for X.
We will frequently abbreviate the β-redex

choose (νX:A. e)

simply as
let name X:A in e.

In fact, it will become apparent from the future examples in this document, that the only way we
actually use choose and ν is in some β-redex choose (νX:A. e), and never in isolation from each
other. Of course, all of these uses may have been abbreviated into a let name construct, which

80

CHAPTER 3. META PROGRAMMING 3.2. ν
�
-CALCULUS

raises the following question: why not define let name as primitive and omit choose and ν? The
answer lies in the logical considerations from Section 2.1.6. If let name is taken as primitive, then
the judgment Σ;∆; Γ ` A true [C] obtained by erasing the proof term e from Σ;∆; Γ ` e : A [C]
would not be directed by the syntactic structure of the propositions A.

Example 14 To illustrate the language constructors, we present a version of the staged expo-
nentiation function that we can write in ν

�
-calculus. In this and in other examples we resort to

concrete syntax in ML fashion, and assume the presence of the base type of integers, recursive
functions and let-definitions.

fun exp (n : int) : �(int -> int) =

let name X : int

fun exp’ (m : int) : �Xint =

if m = 0 then box 1

else

let box u = exp’ (m - 1)

in

box (X * u)

end

box v = exp’ (n)

in

box (λx:int. 〈X -> x〉 v)

end

- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

The function exp takes an integer n and generates a fresh name X of integer type. Then it calls
the helper function exp’ to build the expression v = X ∗ · · · ∗X

︸ ︷︷ ︸

n

∗1 of type int and support {X}.

Finally, it turns the expression v into a function by explicitly substituting the name X in v with a
newly introduced bound variable x, incurring capture. Notice that the generated residual code for
sq does not contain any unnecessary redexes, in contrast to the λ

�
version of the program from

Section 3.1. �

Example 15 This example presents the function conv for computing the convolution of two
integer lists. Convolution of lists x = [x1, . . . , xn] and y = [y1, . . . , yn], is the list [xny1, . . . , x1yn].
We ignore the possibility that the two lists can be of different sizes.

The function conv, which we present in Figure 3.4, is staged in the first argument, so that
given the list x, conv outputs a source code specialized for computing the convolution with x. In
this example, we assume the existence of a function lift : int → �int, mapping each integer
n into box n. This is a reasonable assumption, as the base type of integers is always considered
observable; in any realistic situation, it would be possible to coerce an integer value into its own
syntactic representation. The helper function conv’ recurses over the list x to build the output
code; it keeps the unfinished part of the output abstracted using the variable z:�TLintlist.

Specializing conv to the list [3,2], results with the following program.

81

3.2. ν
�
-CALCULUS CHAPTER 3. META PROGRAMMING

(*
* val conv : intlist ->
* � (intlist -> intlist)
*)

fun conv (xs : intlist) =
let name TL:intlist
(*
* conv’ : intlist -> � TLintlist
* -> � (intlist -> intlist)
*)

fun conv’ (nil) =
λz: � TLintlist.

let box u = z
in

box (λy:intlist.
<TL -> y>u)

end

| conv’ (x::xs’) =
let val f = conv’ (xs’)

box x’ = lift x
in

λz: � TLintlist.
let box u = z
in
f (box (

let val (hd::tl) = TL
in

x’*hd :: <TL -> tl>u
end))

end
end

in
conv’ xs (box nil)

end

Figure 3.4: Staged convolution.

- conv [3,2];

val it = box (λy:intlist.
let val (hd::tl) = y

in

2*hd :: let val (hd::tl) = tl

in

3*hd :: nil

end

end) : �(intlist -> intlist)

It remains a challenge to write a ν
�

program that could generate even more concise specialized
code, like for example the following fragment for convolution with [3,2]:

box (λy:intlist. let val (y1::y2::tl) = y in [2*y1, 3*y2])

�

3.2.3 Operational semantics

We define the small-step call-by-value operational semantics of the ν
�
-calculus through the judg-

ment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The expressions e and e′ do not contain
any free variables, but they may contain free names. However, we require that e and e ′ must have
empty support. In other words, we only consider for evaluation those terms whose names appear
exclusively in boxed subterms, or are otherwise captured by some explicit substitution. Because
free names are allowed under these conditions, the operational semantics has to keep track of them

82

CHAPTER 3. META PROGRAMMING 3.2. ν
�
-CALCULUS

Σ, e1 7−→ Σ′, e′1

Σ, (e1 e2) 7−→ Σ′, (e′1 e2)

Σ, e2 7−→ Σ′, e′2

Σ, (v1 e2) 7−→ Σ′, (v1 e′2)

Σ, (λx:A. e) v 7−→ Σ, [v/x]e

Σ, e1 7−→ Σ′, e′1

Σ, (let box u = e1 in e2) 7−→ Σ′, (let box u = e′1 in e2)

Σ, (let box u = box e1 in e2) 7−→ Σ, [[e1/u]]e2

Σ, e 7−→ Σ′, e′

Σ, choose e 7−→ Σ′, choose e′

X 6∈ dom(Σ)

Σ, choose (νX:A. e) 7−→ (Σ, X:A), e

Figure 3.5: Structured operational semantics of ν
�
-calculus.

in the run-time name contexts Σ and Σ′. The rules of the judgment are given in Figure 3.5, and
the values of the language are generated by the grammar below.

V alues v ::= c | λx:A. e | box e | νX:A. e

The rules agree with the β-reductions from Section 2.2.3, and are standard except for two important
observations. First of all, the β-redex for the type constructor 9 extends the run-time context with
a fresh name before proceeding. This way, we keep track of names that have been generated in the
course of evaluation, so that we can select a fresh name when it is needed.

Even more important is to observe that names in ν
�

are not values. This is a direct consequence
of the fact that names in ν

�
can be ascribed an arbitrary type. If a name X : A were a value, then

introducing X into the computation extends the type A with a new value. Such a dynamic type
extension effectively renders the already defined functions of domain A incomplete. Suddenly, if a
function f has domain A, then it is forced to check at run time if its argument is a name-free value
(in which case f can be applied), or if its argument is an expression containing a name X. This is
where the modal constructor � comes in — it classifies object expressions with names, so that the
above checks can be done statically during type checking. Thus, while X:A is not a value in ν

�
,

the expression (box X) : �XA is. In that sense, the requirement that names are not values is not
really a restriction in expressiveness.

The evaluation relation is sound with respect to typing, and it never gets stuck, as the following
theorems establish.

Theorem 17 (Type preservation)
If Σ; ·; · ` e : A [] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; ·; · ` e′ : A [].

Proof: By a straightforward induction on the structure of e using the substitution principles. �

83

3.3. SUPPORT POLYMORPHISM CHAPTER 3. META PROGRAMMING

Theorem 18 (Progress)
If Σ; ·; · ` e : A [], then either

1. e is a value, or

2. there exist a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof: By a straightforward induction on the structure of e. �

The progress theorem does not indicate that the reduct e′ and the context Σ′ are unique for
each given e and Σ. In fact, they are not, as fresh names may be introduced during the course of the
computation, and two different evaluations of one and the same term may choose the fresh names
differently. The determinacy theorem below shows that the choice of fresh names is actually the
only difference that may appear between two reductions of one and the same term. As customary,
we denote by 7−→n the n-step reduction relation.

Theorem 19 (Determinacy)
If Σ, e 7−→n Σ1, e1, and Σ, e 7−→n Σ2, e2, then there exists a permutation of names π : N → N ,
fixing dom(Σ), such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: By induction on the length of the reductions, using the property that if Σ, e 7−→n Σ′, e′

and π is a permutation on names, then π(Σ), π(e) 7−→n π(Σ′), π(e′). The only interesting case is
when n = 1 and e = choose (νX:A. e′). In that case, it must be e1 = [X1/X]e′, e2 = [X2/X]e′,
and Σ1 = (Σ, X1:A), Σ2 = (Σ, X2:A), where X1, X2 ∈ N are fresh. Obviously, the involution
π = (X1 X2) which swaps these two names has the required properties. �

3.3 Support polymorphism

It is frequently necessary to write programs that are polymorphic in the support of their arguments,
because they manipulate syntactic expressions of unknown support. A typical example is a function
that recurses over an expression with binding structure. When this function encounters a λ-
abstraction, it has to place a fresh name instead of the bound variable, and recursively continue
scanning the body of the λ-abstraction, which is itself a syntactic expression but depending on this
newly introduced name1. For such uses, we extend the ν

�
-calculus with a notion of explicit support

polymorphism in the style of Girard and Reynolds [Gir86, Rey83].

To add support polymorphism to the simple ν
�
-calculus, we create a new syntactic category

of support variables, which stand for unknown support sets. Then the rest of the syntax of ν
�

is
extended to take support variables into account. We summarize the changes in the following table.

Support variables p, q ∈ S
Supports C,D ::= . . . | C, p
Types A ::= . . . | ∀p. A
Expressions e ::= . . . | Λp. e | e [C]
Name contexts Σ ::= . . . | Σ, p
Values v ::= . . . | Λp. e

1The calculus described in this document cannot support this scenario in full generality yet because it lacks type
polymorphism and type-polymorphic recursion, but support polymorphism is a necessary step in that direction.

84

CHAPTER 3. META PROGRAMMING 3.3. SUPPORT POLYMORPHISM

Before a support variable can be used, it has to be declared in the name context Σ. For the
new definition of Σ, we retain the same well-formedness conditions as before. In particular, a
support variable p ∈ Σ may only be used to the right of its declaration. It is important that
supports themselves are allowed to contain support variables, to express the situation in which
only a portion of a support set is known. Consequently, the function fn(−) is updated to return
the set of names and support variables appearing in its argument. The family of types is extended
with the type ∀p. A expressing universal support quantification. Its introduction form is Λp. e,
which binds a support variable p in the expression e. This Λ-abstraction will also be a value in the
extended operational semantics. The corresponding elimination form is the application e [C] whose
meaning is to instantiate the unknown support set abstracted in e with the provided support set
C.

The typing judgment has to be instrumented with new rules for typing support-polymorphic
abstraction and application.

(Σ, p);∆; Γ ` e : A [C]

Σ;∆; Γ ` Λp. e : ∀p. A [C]

Σ;∆; Γ ` e : ∀p. A [C]

Σ;∆; Γ ` e [D] : ([D/p]A) [C]

The ∀-introduction rule requires that the bound variable p is a fresh support variable, as customary
in binding forms. In particular, p 6∈ Σ, and consequently, p 6∈ ∆,Γ, fn(A[C]). The rule for ∀-
elimination substitutes the argument support set D into the type A. It assumes that D is well-
formed relative to the context Σ; that is, D ⊆ dom(Σ). The operational semantics for the new
constructs is also not surprising.

Σ, e 7−→ Σ′, e′

Σ, (e [C]) 7−→ Σ′, (e′ [C]) Σ, (Λp. e) [C] 7−→ Σ, [C/p]e

The extended language satisfies the following substitution principle.

Lemma 20 (Support substitution principle)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substituting D for p.
Then the following holds.

1. if Σ;∆; Γ ` e : A [C], then (Σ1,Σ
′
2);∆

′; Γ′ ` e′ : A′ [C ′]

2. if Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [C2], then (Σ1,Σ
′
2);∆

′; Γ′ ` 〈Θ′〉 : [C ′
1]⇒ [C ′

2]

Proof: By simultaneous induction on the two derivations. We present one case from the proof of
the second statement.

case Θ = (X → e,Θ1), where X:A ∈ Σ.

1. by derivation, Σ;∆; Γ ` e : A [C2] and Σ;∆; Γ ` Θ1 : [C1 \ {X}]⇒ [C2]

85

3.3. SUPPORT POLYMORPHISM CHAPTER 3. META PROGRAMMING

2. by first induction hypothesis, (Σ1,Σ
′
2);∆

′; Γ′ ` e′ : A′ [C ′
2]

3. by second induction hypothesis, (Σ1,Σ
′
2);∆

′; Γ′ ` Θ′
1 : [(C1 \ {X})

′]⇒ [C ′
2]

4. because (C ′
1 \ {X}) ⊆ (C1 \ {X})

′, by support weakening (Lemma 10.5),
(Σ1,Σ

′
2);∆

′; Γ′ ` Θ′
1 : [C ′

1 \ {X}]⇒ [C ′
2]

5. result follows from (2) and (4) by the typing rule for non-empty substitutions

�

The structural properties presented in Section 2.2.3 readily extend to the new language with
support polymorphism. The same is true of the type preservation (Theorem 17) and progress
(Theorem 18) whose additional cases involving support abstraction and application are handled
using the above Lemma 20.

Example 16 In a support-polymorphic ν
�
-calculus we can slightly generalize the program from

Example 14 by pulling out the helper function exp’ and parameterizing it over the exponentiating
expression. In the following program, we use [p] in the function definition as a concrete syntax for
Λ-abstraction of a support variable p.

fun exp’ [p] (e : �pint) (n : int) : �pint =

if n = 0 then box 1

else

let box u = exp’ [p] e (n - 1)

box w = e

in

box (u * w)

end

fun exp (n : int) : �(int -> int) =

let name X : int

box w = exp’ [X] (box X) n

in

box (λx:int. 〈X -> x〉 w)

end

- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

�

Example 17 As an example of a more realistic program we present the regular expression matcher
from [DP01] and [Dav96]. The example assumes the declaration of the datatype of regular expres-
sions:

datatype regexp =

Empty

| Plus of regexp * regexp

| Times of regexp * regexp

| Star of regexp

| Const of char

86

CHAPTER 3. META PROGRAMMING 3.3. SUPPORT POLYMORPHISM

(*
* val acc1 : regexp -> (char list -> bool) ->
* char list -> bool
*)

fun acc1 (Empty) k s = k s

| acc1 (Plus (e1, e2)) k s =
(acc1 e1 k s) orelse (acc1 e2 k s)

| acc1 (Times (e1, e2)) k s =
(acc1 e1 (acc1 e2 k)) s

| acc1 (Star e) k s =
(k s) orelse
acc1 e (λs’ =>

if s = s’ then false
else acc1 (Star e) k s’)

| acc1 (Const c) k s =
case s
of nil => false
| (x::l) =>

((x = c) andalso (k s))

(*
* val accept1 : regexp -> char list -> bool
*)

fun accept1 e s = acc1 e null s

Figure 3.6: Unstaged regular expression matcher.

We also assume a primitive predicate null : char list -> bool for testing if the input list of
characters is empty. Figure 3.6 presents an ordinary ML implementation of the matcher, and λ

�

and λ© versions can be found in [DP01, Dav96]. The helper function acc1 in Figure 3.6 takes
a regular expression e, a continuation function k, and an input string s (represented as a list of
characters). The function attempts to match a prefix of s to the regular expression e. If the
matching succeeds, the remainder of s is passed to the continuation k to determine if s is accepted
or not.

We now want to use the ν
�
-calculus to stage the program from Figure 3.6 so that it can be

specialized with respect to a given regular expression. For that purpose, it is useful to view the
helper function acc1 from Figure 3.6 as a code generator. Indeed, acc1 may be seen as follows:
it first generates code for matching a string against a regular expression e, and then appends k
to that code. This is the main idea behind the function acc, and the ν

�
program in Figure 3.7.

In this program, we use the name S for the input string to be matched by the code that acc

generates. The continuation k is not a function anymore, but code to be attached at the end of the
generated result. We want code k to contain further names standing for yet unbound variables, and
hence the support-polymorphic typing acc : regexp -> ∀p.(�S,pbool -> �S,pbool). The
support polymorphism pays off when generating code for alternation Plus(e1, e2) and iteration
Star(e). For example, observe in the alternation case that the generated code does not duplicate
the “continuation” code of k. Rather, k is emitted as a separate function which is a joining point
for the computation branches corresponding to e1 and e2. Similarly, in the case of iteration, we set
up a loop in the output code that would attempt zero or more matchings against e. The support
polymorphism of acc enables us to produce code in chunks without knowing the exact identity of

87

3.3. SUPPORT POLYMORPHISM CHAPTER 3. META PROGRAMMING

(*
* val accept : regexp ->
* � (char list -> bool)
*)

fun accept (e : regexp) =
let name S : char list

(*
* acc : regexp -> ∀p.(� S,pbool
* -> � S,pbool)
*)

fun acc (Empty) [p] k = k

| acc (Plus (e1, e2)) [p] k =
let name JOIN : char list

-> bool
box u1 =
acc e1 [JOIN] box(JOIN S)

box u2 =
acc e2 [JOIN] box(JOIN S)

box kk = k
in

box(let fun join t =
<S->t>kk

in
<JOIN->join>u1

orelse
<JOIN->join>u2

end)
end

| acc (Times (e1, e2)) [p] k =
acc e1 (acc e2 k)

| acc (Star e) [p] k =
let name T : char list

name LOOP : char list
-> bool

box u =
acc e [T, LOOP]
box(if T = S then false

else LOOP S)
box kk = k

in
box(let fun loop t =

<S->t>kk
orelse
<LOOP->loop,
T->t,S->t>u

in
loop S

end)
end

| acc (Const c) [p] k =
let box cc = lift c

box kk = k
in

box(case S
of (x::xs) =>

(x = cc) andalso
<S->xs>kk

| nil => false)
end

box code = acc e [] box (null S)
in

box (λs:char list. <S->s>code)
end

Figure 3.7: Regular expression matcher staged in the ν
�
-calculus.

88

CHAPTER 3. META PROGRAMMING 3.4. INTENSIONALITY

� accept (Star (Empty))

� acc (Star(Empty)) [] (box (null S))

� acc Empty [T, LOOP] (box (if T = S then false
else LOOP S))

� box (if T = S then false else LOOP S)

� box (let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop S

end)

� box (λs. let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop s

end)

Figure 3.8: Example execution trace for a regular expression matcher in ν
�
. Function calls are

marked by � and the corresponding return results are marked by an aligned �.

the above-mentioned joining or looping points. Once all the parts of the output code are generated,
we just stitch them together by means of explicit substitutions.

At this point, it may be illustrative to trace the execution of the program on a concrete in-
put. Figure 3.8 presents the function calls and the intermediate results that occur when the ν

�

matcher is applied to the regular expression Star(Empty). The resulting specialized program does
not contain variable-for-variable redexes, thanks to the features and expressiveness of ν

�
, but it

unnecessarily tests if t = t. Removing these extraneous tests requires some further examination
and preprocessing of e, but the thorough description of such a process is beyond our scope. We
refer to [Har99] for an insightful analysis. �

3.4 Intensional program analysis

3.4.1 Syntax and type checking

As explained in Section 3.2, it is possible to intuitively consider the type �CA as the set of closed
syntactic expressions e, such that Σ; ·; · ` e : A [C]. The calculus presented so far contains constructs
for creating elements of type �CA, but it is impossible to inspect the syntactic structure of these
elements, let alone take them apart.

In this section, we extend the support-polymorphic ν
�
-calculus with primitives for pattern

matching against syntactic expressions with binding structure. Our extension is limited to only
test if an expression is a name, a λ-abstraction or an application, and limit all other cases for future
work. It is not clear, however, whether the expressiveness of pattern matching can be extended to
handle a larger subset of the object stage of ν

�
, without significant additions to the meta stage. The

89

3.4. INTENSIONALITY CHAPTER 3. META PROGRAMMING

problem is that any such addition would require extensions to pattern match against the additions,
which would itself require new extensions to the meta stage, and so on.

The syntactic extensions that we consider in this section are summarized in the the table below.

Pattern variables w ∈ W
Higher-order patterns π ::= (w x1 . . . xn):A[C] | X | x | λx:A. π | π1 π2

Pattern assignments σ ::= · | w → e, σ
Terms e ::= . . . | case e of box π ⇒ e1 else e2

We use higher-order patterns [Mil90] to match against syntactic expressions with binding structure.
In higher-order patterns, we distinguish between pattern variables and bound variables. Pattern
variables are placeholders intended to bind syntactic subexpressions in the process of matching and
pass them to the subsequent computation. Bound variables are introduced by patterns for binding
structure λx:A. π and are syntactic entities that can match only themselves. We use x, y and
variants to range over bound variables, and w and variants to range over pattern variables.

The basic pattern (w x1 . . . xn):A[C] declares a pattern variable w which matches a syntactic
expression of type A and support C subject to the condition that the expression’s bound variables
are among x1, . . . , xn. Pattern X matches a name X from the global name context. Pattern
λx:A. π matches a λ-abstraction of domain type A. It declares a new bound variable x which is
local to the pattern, and demands that the body of the matched expression conforms to the pattern
π. The bound variable x matches only the pattern x. Pattern π1 π2 matches a syntactic expression
representing application. Notice that the decision to explicitly assign types to every pattern variable
forces the pattern for application to be monomorphic. In other words, the application pattern
cannot match a pair of expressions representing a function and its argument if the domain type of
the function is now known in advance. It is an important future work to extend intensional analysis
to allow patterns which are type-polymorphic in this sense. The patterns are assumed to be linear,
i.e. no pattern variable occurs twice.

The typing judgment for patterns has the form

Σ;Γ ` π : A [C] =⇒ Γ1.

The judgment is hypothetical in the global context of names Σ, and the context of locally declared
bound variables Γ. It checks if the pattern π has type A and support C and if the pattern
variables from π conform to the typings given in the residual context Γ1. The typing rules are
presented in Figure 3.9. Most of them are straightforward and we do not explain them, but the
rule for pattern variables deserves special attention. As it shows, in order for the pattern expression
(w x1 . . . xn):A[C] to be well-typed, the bound variables x1:A1, . . . , xn:An have to be declared in
the local context Γ. We also allow strengthening of the support: if w is required to match expressions
of support C, than any expression with support D ⊆ C is eligible for matching. If the pattern
expression (w x1 . . . xn):A[C] is well-typed, then w will match only expressions of type A with the
given bound variables and the names declared in D. The residual context types w as a function
over types �pAi with polymorphic support. This hints at the operational semantics that will be
assigned to higher-order patterns. If an expression e with a local bound variable x:A matches to a
pattern variable w, then w will residualize to a meta-level function whose meaning is as follows: it
takes a syntactic expression e′:A and returns back the syntactic expression [e′/x]e.

In order to incorporate pattern matching into ν

, the syntax is extended with a new term

constructor case e of box π ⇒ e1 else e2. The intended operational interpretation of case is to
evaluate the argument e to obtain a boxed expression box e′, then match e′ to the pattern π. If

90

CHAPTER 3. META PROGRAMMING 3.4. INTENSIONALITY

D ⊆ C p 6∈ Σ

Σ; (Γ, x1:A1, . . . , xn:An) ` ((w x1 . . . xn):A[D]) : A [C]

=⇒ w:∀p. �pA1 → · · · → �pAn → �p,DA

X:A ∈ Σ

Σ;Γ ` X : A [X,C] =⇒ · Σ; (Γ, x:A) ` x : A [C] =⇒ ·

Σ; (Γ, x:A) ` π : B [C] =⇒ Γ1

Σ;Γ ` λx:A. π : A→ B [C] =⇒ Γ1

Σ;Γ ` π1 : A→ B [C] =⇒ Γ1 Σ;Γ ` π2 : A [C] =⇒ Γ2 fn(A) ⊆ dom(Σ)

Σ; Γ ` π1 π2 : B [C] =⇒ (Γ1,Γ2)

Figure 3.9: Typing rules for patterns.

the matching is successful, it creates an environment with bindings for the pattern variables, and
then evaluates e1 in this environment. If the matching fails, the branch e2 is taken.

Example 18 Consider the (rather restricted) function reduce that takes a syntactic expression
of type A, and checks if it is a β-redex (λx:A. w1) (w2). If the answer is yes, it applies the “call-by-
value” strategy: it reduces w2, substitutes the reduct for x in w1 and then continue reducing thus
obtained expression. If the answer is no, it simply returns the argument.

fun reduce (e : �A) : �A =

case e of

box ((λx:A. ((w1 x):A[])) (w2:A[])) =>

(* w1 : ∀q. �qA -> �qA *)

(* w2 : ∀q. �qA *)

let val e2 = reduce (w2 [])

in

reduce (w1 [] e2)

end

else e

Ideally, one would want to reduce an arbitrary expression, not just simple top-level redexes. We
cannot currently write such a function mainly because our language lacks type-polymorphic patterns
and type-polymorphic recursion. In particular, if the syntactic argument we are dealing with is an
application of a general term of type A → A rather than a λ-abstraction, we cannot recursively
reduce that term first unless the language is equipped with type-polymorphic recursion.

Nevertheless, reduce is illustrative of the way higher-order patterns work. Patterns trans-
form an expression with a bound variable into a function on syntax that substitutes the bound
variable with the argument. That way we can employ meta-level reduction to perform object-level
substitution. This is reminiscent of the idea of normalization-by-evaluation [BS91, BES98] and
type-directed partial evaluation [Dan96]. �

91

3.4. INTENSIONALITY CHAPTER 3. META PROGRAMMING

The typing rule for case is:

Σ;∆; Γ ` e : �DA [C] Σ; · ` π : A [D] =⇒ Γ1 Σ;∆; (Γ,Γ1) ` e1 : B [C] Σ;∆; Γ ` e2 : B [C]

Σ;∆; Γ ` case e of box π ⇒ e1 else e2 : B [C]

Observe that the second premise of the rule requires an empty variable context, so that patterns
cannot contain outside value or modal variables. However (and this is important), they can contain
names. It is easy to incorporate the new syntax into the language. We first extend explicit
substitution over the new case construct

{Θ} (case e of box π ⇒ e1 else e2) = case ({Θ}e) of box π ⇒ ({Θ}e1) else ({Θ}e2)

and similarly for expression substitution, and then all the structural properties derived in Sec-
tion 2.2.3 easily hold. The only complication comes in handling names and support substitution
because patterns are allowed to depend on names and support variables from the global context Σ.
However, the lemmas below establish the required invariants.

Lemma 21 (Structural properties of pattern matching)
1. Exchange Let Σ′, Γ′ and Γ′

1 be well-formed contexts obtained by permutation from Σ, Γ
and Γ1 respectively and Σ;Γ ` π : A [C] =⇒ Γ1. Then Σ′; Γ′ ` π : A [C] =⇒ Γ′

1

2. Weakening Let Σ ⊆ Σ′ and Σ;Γ ` π : A [C] =⇒ Γ1. Then Σ′; Γ ` π : A [C] =⇒ Γ1

Proof: By straightforward introduction on the structure of the typing derivations. �

Lemma 22 (Support substitution principle for pattern matching)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substituting D for p.
Assume also that Σ;Γ ` π : A [C] =⇒ Γ1. Then (Σ1,Σ

′
2); Γ

′ ` π′ : A′ [C ′] =⇒ Γ′
1.

Proof: By straightforward induction on the structure of π. �

3.4.2 Operational semantics

Operational semantics for pattern matching is established by the new judgment

Σ; Γ ` e � π =⇒ σ

which reads: in a global context of names and support variables Σ and a context of locally declared
free variables Γ the matching of the expression e to the pattern π generates an assignment of values
σ to the pattern variables of π. The rules for this judgment are given in Figure 3.10. Most of
the rules are self-evident, but the rule for pattern variables deserves more attention. Its premise
requires a run-time typecheck of the expression e, in order to preserve soundness. Because of this
reason, the judgment for operational semantics of ν

!
-calculus with pattern matching must keep

track of a run-time name context Σ. The context Σ not only lists the used names, but it also
assigns types to the used names. The following lemma relates the typing judgment for patterns and
their operational semantics.

Lemma 23 (Soundness of pattern matching)
Let π be a pattern such that Σ;Γ ` π : A [C] =⇒ Γ1, where Γ1 = (w1:A1, . . . , wn:An). Furthermore,
let e be an expression matching π to produce a pattern assignment σ, i.e. Σ;Γ ` e � π : A =⇒ σ.
Then σ = (w1 → e1, . . . , wn → en) where Σ; ·; · ` ei : A1, for every i = 1, . . . , n.

92

CHAPTER 3. META PROGRAMMING 3.4. INTENSIONALITY

Σ; ·; (x1:A1, . . . , xn:An) ` e : A [D]

Σ; (Γ, x1:A1, . . . , xn:An) ` e � ((w x1 . . . xn):A[D]) : A

=⇒ [w → Λp. λyi:�pAi. let box xi = yi in box e]

(Σ, X :A); Γ ` X � X : A =⇒ · Σ; (Γ, x:A) ` x � x : A =⇒ ·

Σ; (Γ, x:A) ` e � π : B =⇒ σ

Σ; Γ ` λx:A. e � λx:A. π : (A→ B) =⇒ σ

Σ; Γ ` e1 � π1 : A→ B =⇒ σ1 Σ; Γ ` e2 � π2 : A =⇒ σ2

Σ; Γ ` e1 e2 � π1 π2 : B =⇒ (σ1, σ2)

Figure 3.10: Operational semantics for pattern matching.

Notice that in the lemma we did not require that e be well-typed, or even syntactically well-formed.
If it were not well-formed, the matching simply would not succeed.

Proof: By induction on the structure of π. We present the base case below.

case π = (w x1 . . . xn):A[D], where Γ = Γ2, xi:Ai.

1. let e′ = (Λp. λyi:�pAi. let box xi = yi in box e) and A′ = ∀p. �pA1 → · · · → �pAn →
�p,DA

2. by typing derivation, D ⊆ C and xi:Ai ∈ Γ and also Γ1 = (w:A′)

3. by matching derivation, Σ; ·; (x1:A1, . . . , xn:An) ` e : A [D], and σ = (w → e′)

4. by straightforward structural induction, Σ; (x1:A1, . . . , xn:An); · ` e : A [D]

5. it is simply to show now that, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` e : A [D, p]

6. and thus also, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` box e : �D,pA []

7. and (Σ, p); ·; (y1:�pA1, . . . , yn:�pAn) ` let box xi = yi in box e : �D,pA []

8. and finally, Σ; ·; · ` e′ : A′ []

�

The last piece to be added is the operational semantics for the case statement, and the required
rules are given below. Notice that the premise of last rule makes use of the fact that the operational
semantics for patterns is deterministic; the rule applies if the expression and e and the pattern π
cannot be matched.

Σ, e 7−→ Σ′, e′

Σ, (case e of box π ⇒ e1 else e2) 7−→ Σ′, (case e′ of box π ⇒ e1 else e2)

Σ; · ` e � π : A =⇒ (w1 → e′1, . . . , wn → e′n)

Σ, (case box e of box π ⇒ e1 else e2) 7−→ Σ, [e′1/w1, . . . , e′n/wn]e193

3.4. INTENSIONALITY CHAPTER 3. META PROGRAMMING

Σ; · ` e � π 6=⇒ σ for any σ

Σ, (case box e of box π ⇒ e1 else e2) 7−→ Σ, e2

Finally, using the lemmas established in this section, we can easily augment the proof of the
preservation and progress theorems (Theorem 17 and 18) to cover the extended language. The
statements of the theorems are unchanged.

Example 19 The following examples present a generalization of our old exponentiation function.
Instead of computing only powers of integers, we can compute powers of functions too, i.e. have
a functional for mapping f 7→ λx. (fx)n. The functional is passed the source code for f , and
an integer n, and returns the source code for λx. (fx)n. The idea is to have the resulting source
code be as optimized as possible, while still computing the extensionally same result. We rely on
programs presented in Section 3.2 and Examples 14 and 16.

For comparison, we first present a λ
"

version of the function-exponentiating functional.

fun fexp1 (f : �(int->int)) (n : int) : �(int->int) =

let box g = f

box p = exp3 n

in

box (λv:int. (p (g v)))

end

- fexp1 (box λw:int. w + 1) 2;

val it = box (λv:int. (λx.x*(λy.y*(λz.1)y)x) ((λw.w+1)v)) : �(int->int)

Observe that the residual program contains a lot of unnecessary redexes. As could be expected,
the ν

"
-calculus provides a better way to stage the code2, simply by using the function exp from

Example 14 instead exp3 from Section 3.1.

fun fexp2 (f : �(int->int)) (n : int) : �(int->int) =

let box g = f

box p = exp n

in

box (λv:int. p (g v))

end

-fexp2 (box λw:int. w + 1) 2;

val it = box (λv:int. (λx.x*(x*1)) ((λw.w+1) v)) : �(int->int)

In fact, there is at least one other way to program this functional: we can eliminate the outer
β-redex from the residual code, at the price of duplicating the inner one.

2And similar programs can be written in λ© and MetaML, as well.

94

CHAPTER 3. META PROGRAMMING 3.4. INTENSIONALITY

fun fexp3 (f : �(int->int)) (n : int) : �(int->int) =

let name X : int

box g = f

box e = exp’ [X] (box (g X)) n

in

box (λv:int. 〈X -> v〉e)
end

- fexp3 (box (λw:int. w + 1)) 2;

val it = box (λv:int. ((λw.w+1) v) * ((λw.w+1) v) * 1) : �(int->int)

However, neither of the above implementations is quite satisfactory, since, evidently, the residual
code in all the cases contains unnecessary redexes. The reason is that we do not utilize the in-
tensional information that the passed argument is actually a boxed λ-abstraction, rather than a
more general expression of a functional type. In a language with intensional code analysis, we can
do a bit better. We can test the argument at run time and output a more optimized result if the
argument is a λ-abstraction. This way we can obtain the most simplified, if not the most efficient
residual code.

fun fexp (f : �(int->int)) (n : int) : �(int->int) =

case f of

box (λx:int. (w x:int[])) =>

(* w : ∀q. �qint -> �qint *)

let name X : int

box F = exp’ [X] (w [X] (box X)) n

in

box (λv:int. 〈X->v〉F)
end

else fexp2 f n

- fexp (box λx:int. x + 1) 2;

val it = box(λv:int.(v + 1) * (v + 1) * 1) : �(int->int)

�

Example 20 This example is a (segment of the) meta function for symbolic differentiation with
respect to a distinguished indeterminate X.

fun diff (e : �Xreal) : �Xreal =

case e of

box X => box 1

| box ((w1:real[X]) + (w2:real[X])) =>

let box e1 = diff (w1 [])

box e2 = diff (w2 [])

in

box (e1 + e2)

end

95

3.5. LOGICAL RELATIONS CHAPTER 3. META PROGRAMMING

| box ((λx:real. ((FX x):real[X])) (GX:real[X])) =>

(* FX : ∀q. �qreal -> �q,Xreal *)

(* GX : ∀q. �q,Xreal *)

(* check if FX really depends on X *)

let name Y : real

in

case (FX [Y] (box Y)) of

box (F:real[Y]) =>

(* FX is independent of X; apply the chain rule *)

let box f = F []

box f’ = diff (box 〈Y->X〉f)
box gx = GX []

box gx’ = diff (GX [])

in

box (〈X->gx〉f’ * gx’)

end

else diff (FX [X] (GX []))

end

else (box 0) (* the argument is a constant *)

The most interesting part of diff is its treatment of application. The same limitations encountered
in Example 18 apply here too, in the sense that we can pattern match only when the applying
function is actually a λ-abstraction. Although it is wrong, we currently let all the other cases pass
through the default case. Nevertheless, the example is still illustrative.

After splitting the application into the function part f and the argument part g we test if
f is independent of X. If that indeed is the case, it means that our application was actually a
composition of functions f (g X), and thus we can apply the chain rule to compute the derivative
as f ′ (g X) ∗ (g′ X). Otherwise, if f contains occurrences of X, the chain rule is inapplicable, so
we only reduce the β-redex and differentiate the result. �

3.5 Logical relations for program equivalence

In this section we develop the notion of equivalence between programs in the core ν
#
-calculus

(without recursion and support polymorphism), with which we establish the intensional properties
of the modal operator, and justify our intuitive view of �CA as classifying syntactic expressions.

To that end, we consider two notions of equivalence. The first is intensional, or syntactic, by
which two programs are equal if and only if their abstract syntax representations are the same; the
programs may only differ in the names of their bound variables, and possibly also in the represen-
tation of their explicit substitutions. On the other hand, two programs are extensionally equivalent
if, in some appropriate sense which we will define shortly, they produce the same results. Of course,
if two expression are intensionally equivalent, they should also be extensionally equivalent.

One of the questions that we explore in this section is an interplay between intensional and
extensional equivalences of programs. The ν

#
-calculus is particularly appropriate for investigating

and combining the two notions, because we can use the modal constructs as explicit boundaries
between the different notions of equivalence. In particular, we can treat values of modal types as
being observable, i.e. amenable to inspection of their structure. Then two general expressions of

96

CHAPTER 3. META PROGRAMMING 3.5. LOGICAL RELATIONS

modal type will be extensionally equivalent if and only if their values are intensionally equivalent.
We are also interested in exploring the properties of the calculus when only extensional equivalence is
used, as the present formulation of ν

$
does not contain any constructs for inspecting the structure

of modal values. In both of these cases, we will establish that our formulation of ν
$

is purely
functional, in the sense that it satisfies the logical equivalences arising from the β-reductions and η-
expansions of the language. The development presented here will follow the methodology of logical
relations, as used, for example, in other works concerned with names in functional programming
[PS93]. However, the details of our approach are different because we want to make the identity of
locally declared names irrelevant for the purposes of expression comparison.

To motivate our approach, we first present several examples of intensional and extensional
equivalences that we would like our programs to satisfy. We use the symbol ∼= for extensional
equivalence, and ≡α for intensional equivalence. The equivalences will always be considered at a
certain type and support.

Example 21 In the examples below, we assume that X is a name of integer type.

1. (λx:int. x+1) 2 ∼= (λx:int. x+2) 1 ∼= 3 : int, because all three terms evaluate to 3; however,
neither of them is intensionally equivalent to any other.

2. (λx:int. x + X) 2 ∼= 2 + X ∼= X + 2 : int [X], because whenever X is substituted by e (and x
is not free in e), the three terms evaluate to the same value.

3. (λx:�X int. 2) (box X) ∼= (1 + 1) : int, because both terms evaluate to 2. Notice that X
does not appear in the second term, nor in the type and support of comparison.

4. box (X + 1) ∼= box (X + 1) : �X int, because X + 1 ≡α X + 1 : int [X] intensionally, as
syntactic expressions.

�

As illustrated by this example, in our equivalence relations we should distinguish between two
different kinds of names: (1) names which may appear in either of the compared terms, as well as
their type and support (Example 21 cases 2 and 4), and (2) names which are local to some of the
terms (Example 21 case 3). The later kind of names should not influence the equivalence relations
– these names could freely be renamed.

The described requirement leads to the following formulation of our equivalence relations. The
judgment for intensional equivalence compares two expressions for syntactic equality modulo α-
equivalence

e1 ≡α e2,

and the judgment for extensional equivalence has the form

Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C].

In this judgment, we assume that Σ is a well-formed name context and that ∆, Γ, Σ1, Σ2, A and
C are all well-formed with respect to Σ. Intuitively, the context Σ declares the names that matter
when comparing two terms; hence the requirement that ∆, Γ, A and C contain only the names
from Σ. On the other hand, the contexts Σ1 and Σ2 declare the names that may appear in e1 and
e2, but these names are, in some sense, irrelevant. They will be subject to renaming, as they do
not appear in ∆, Γ, A or C.

97

3.5. LOGICAL RELATIONS CHAPTER 3. META PROGRAMMING

For the purposes of this section, we further restrict our considerations of intensional equivalence
to only modal terms which are themselves part of the simply typed fragment of ν

%
. In other words,

we introduce new categories of simple types and simple terms as follows:

1. a type A is simple iff A = b, or A = A1 → A2 or A = A1 9 A2 where A1, A2 are simple types

2. a term e is simple if it does not contain the modal constructs box and let box.

Then we only allow modal types �CA if A is simple, and modal terms box e if e is simple.
We justify this restriction by a desire to avoid impredicativity arising in a language that can
intensionally analyse the whole set of its expressions. In fact, it seems rather improbable that a
language with such strong intensional capabilities can be designed at all. 3 Indeed, we added names
and modal constructs in order to represent syntax with free variables. But, the modal constructs
can also bind variables, so a new category of names and modalities seems to be required in order
to analyze these new bindings, and then a new category of names and modalities is required for the
bindings by the previous class of modalities, etc. Thus, here we limit the intensional equivalence to
the simply-typed fragment, and leave the possible extensions to larger fragments for future work.

The next step in the development is to formally define the notion of extensional equivalence. As
already mentioned before, the idea is that two expressions are considered extensionally equivalent,
if and only if they evaluate to the same value. The values that we will consider for comparison are
the values at base type b of natural numbers, and values at modal types �CA which are closed
simple terms of type A and support C, which we compare for intensional equivalence.

A standard approach in the development of logical relations starts with a bit different premise.
Rather than evaluate two expressions and check if their values are the same, we need to check if the
values are extensionally equivalent themselves. The later notion is much more permissive, which
is particularly important when comparing values of functional types. Indeed, two functions ought
to be equivalent not only if they are the same, but also if they map related arguments to related
results.

Thus, we need to define two mutually recursive judgments: one for the extensional equiva-
lence of (closed) expressions, and another for extensional equivalence of values. Our judgment for
extensional equivalence of expressions has the form

Σ ` Σ1. e1
∼= Σ2. e2 : A [C]

and the judgment for extensional equivalence of values has the form

Σ ` Σ1. v1 ∼ Σ2. v2 : A

The first is defined by induction on the structure of A and C, by appealing to the second
judgment when the support C is empty. The second is defined by induction on the structure of the
type A.

Σ ` Σ1. e1
∼= Σ2. e2 : A [] iff (Σ,Σ1), e1 7−→

∗ (Σ,Σ′
1), v1, and (Σ,Σ2), e2 7−→

∗

(Σ,Σ′
2), v2, and Σ ` Σ′

1. v1 ∼ Σ′
2. v2 : A

Σ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ ` Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 : A [] for any Σ′
i ⊇ Σi,

such that Σ ` Σ′
1. σ1

∼= Σ′
2. σ2 [C]

Σ ` Σ1. v1 ∼ Σ2. v2 : b iff v1 = v2 ∈ N

3here I’m talking about pattern matching, but if only equality is required, that may be possible

98

CHAPTER 3. META PROGRAMMING 3.5. LOGICAL RELATIONS

Σ ` Σ1. v1 ∼ Σ2. v2 : A→ B iff vi = λx:A. ei and Σ ` Σ′
1. [v′1/x]e1

∼= Σ′
2. [v2/x]e2 : B,

for any Σ′
i ⊇ Σi, such that Σ ` Σ′

1. v′1 ∼ Σ′
2. v′2 : A

Σ ` Σ1. v1 ∼ Σ2. v2 : �CA iff vi = box ei and e1 ≡α e2 and Σ ` Σ1. e1
∼= Σ2. e2 :

A [C]
Σ ` Σ1. v1 ∼ Σ2. v2 : A 9 B iff vi = νX:A. ei and Σ ` (Σ1, X:A). e1

∼= (Σ2, X:A). e2 :
B [], where X is a fresh name.

Here we abbreviated:

Σ ` Σ1. σ1
∼= Σ2. σ2 [C] iff σ1, σ2 are explicit substitutions for the names in C,

such that Σ ` Σ1. σ1(X) ∼= Σ2. σ2(X) : B [] for any
name X ∈ C such that X:B ∈ Σ.

The most important parts of the above definition are the cases defining the relation for values
at functional, modal types and 9 types. The definition for values at functional types formalizes
the intuition that we outlined before: two functions are related if they map related arguments to
related results. The definition for values at modal types contrasts the notions of intensional vs.
extensional. We consider two values box e1 and box e2 extensionally related iff the expressions e1

and e2 are intensionally related. Observe, however, that in the definition we actually insist on the
additional requirement that e1 and e2 be extensionally related as well. This extra clause is added
because, at this stage of development, it is not obvious that intensional equivalence of expressions
implies their extensional equivalence. For that matter, it is not obvious at this point that that
the two new relations are indeed equivalences at all. We will prove both of these properties in due
time, but we need to start the development with a sufficiently strong definition. The definition for
values νX. e1 and νX. e2 at the A 9 B type generates a fresh name X, and then tests e1 and e2

for equivalence in the local contexts extended with X.
Notice that the above definitions are well-founded. In order to establish this fact, let us define

ordΣ(X) to be the position in which the name X first appears in the name context Σ. Also, given
a type A and support C, let

maxΣ(A[C]) = max{ordΣ(X) | X ∈ fn(A[C])}.

Because of the restriction that each type in Σ may only refer to the names to the left of it, it is clear
that if X:A ∈ Σ, then maxΣ(A) < ordΣ(X). We can now order the pairs of type A and support C
as follows. The pair A[C] is smaller than B[D] iff

• maxΣ(A[C]) < maxΣ(B[D]), or

• maxΣ(A[C]) = maxΣ(B[D]), but the number of type constructors of A is smaller than the
number of type constructors of B.

It is now easy to observe that each inductive step in the definitions of the relations strictly decreases
this ordering. Indeed, the relation on values preserves the number of names in the type and support,
but makes inductive references using types of strictly smaller structure. The relation on expressions
with non-empty support C relies on explicit substitutions over the names in C. But for each name
X ∈ C with X:B ∈ Σ, it is clear that maxΣ(B) < ordΣ(X) ≤ maxΣ(fnA[C]).

We next extend our relations to handle expressions with free variables. We start with expressions
of empty support.

99

3.5. LOGICAL RELATIONS CHAPTER 3. META PROGRAMMING

Σ; ·; Γ ` Σ1. e1
∼= Σ2. e2 : A [] iff Σ ` Σ′

1. [ρ1/Γ]e1
∼= Σ′

2. [ρ2/Γ]e2 : A [] for any Σ′
i ⊇ Σi,

such that Σ ` Σ′
1. ρ1 ∼ Σ′

2. ρ2 : Γ

In this definition, ρ1, ρ2 are arbitrary substitutions of values for variables in Γ, and we write:

Σ ` Σ1. ρ1 ∼ Σ2. ρ2 : Γ iff Σ ` Σ1. ρ1(x) ∼ Σ2. ρ2(x) : A whenever x:A ∈ Γ
In the next step, we consider expressions of arbitrary support.

Σ; ·; Γ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ ` Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 : A [] for any Σ′
i ⊇

Σi, such that Σ; Γ ` Σ′
1. σ1

∼= Σ′
2. σ2 [C]

where σ1, σ2 are explicit substitutions, and

Σ; Γ ` Σ1. σ1
∼= Σ2. σ2 [C] iff Σ; ·; Γ ` Σ1. σ1(X) ∼= Σ2. σ2(X) : B [] for any name

X ∈ C such that X:B ∈ Σ

Finally, the relation is extended with the context ∆ as follows.

Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ ` Σ′

1. [[δ1/∆]]e1
∼= Σ′

2. [[δ2/∆]]e2 : A [C] for any
Σ′

i ⊇ Σi, such that Σ ` Σ′
1. δ1 ≡α Σ′

2. δ2 : ∆

where δ1, δ2 are arbitrary substitutions of expressions for modal variables in ∆, and

Σ ` Σ1. δ1 ≡α Σ2. δ2 : ∆ iff δ1(u) ≡α δ2(u) and Σ ` Σ1. δ1(u) ∼= Σ2. δ2(u) : A [C]
whenever u:A[C] ∈ ∆

The above definitions are well-founded, as each one refers only to already introduced definitions.
For the sake of completeness, we also parametrize the intensional relation ≡α with the context ∆,
as this will be needed in the statement of Lemma 29.

Σ;∆ ` Σ1. e1 ≡α Σ2. e2 : A [C] iff [[δ1/∆]]e1 ≡α [[δ2/∆]]e2 for any Σ′
i ⊇ Σi, such that

Σ ` Σ′
1. δ1 ≡α Σ′

2. δ2 : ∆

Example 22 Let Σ = X:int. Then the following are valid instances of intensional equivalence.

1. Σ; · ` X + 1 ≡α X + 1 : int [X]

2. Σ;u:int[X] ` (Y :int). 〈X → 1, Y → 2〉u ≡α 〈X → 1〉u : int []

�

Example 23 Consider the simple expression e such that Σ;∆; Γ ` choose (νX:B. box e) : �int.
In such a case, it is easy to see that Σ;∆; Γ ` choose (νX:B. box e) ∼= choose (νX:B. box e) :
�int.

First notice that we can assume Γ to be empty as, by typing, e cannot contain variables from
Γ. We can assume that ∆ is empty as well; this will not result in any loss of generality because the
relation of intensional equivalence is closed with respect to modal substitutions δ.

The above relation holds if and only if the two instances of the expression choose (νX:B. box e)
evaluate to related values. But, indeed they do, as the particular choice of X in the evaluation of
the expressions does not influence e. In fact, because e is a simple expression, the only names that
may appear in box e are the ones appearing in its type. In this case, the type in question is �int,
and it does not contain any names.

100

CHAPTER 3. META PROGRAMMING 3.5. LOGICAL RELATIONS

Because of reflexivity of α-equivalence, e ≡α e. By determinacy of evaluation, it is also the case
that Σ ` e ∼= e : int. Thus, we can conclude that Σ ` box e ∼= box e : �int. �

Lemma 24 (Name permutation)
Let R1 : Σ1 → Σ′

1 and R2 : Σ2 → Σ′
2 be bijections where Σ′

1 and Σ′
2 are well-formed in Σ. Then:

1. if Σ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ ` Σ′

1. R1 e1
∼= Σ′

2. R2 e2 : A [C]

2. if Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ ` Σ′
1. R1 v1 ∼ Σ′

2. R2 v2 : A

Proof: By induction on the structure of the definition of the two judgments.

For the first induction hypothesis, we start by considering the base case when C is empty. In
this case, if (Σ,Σi), ei 7−→

∗ (Σ,Σi,Ψi), vi, then by parametricity of the evaluation judgment, we
also have (Σ,Σ′

i), ei 7−→
∗ (Σ,Σ′

i,Ψi), Ri vi. Then we appeal to the second induction hypothesis, to
derive that Σ ` (Σ′

1,Ψ1). R1 v1 ∼ (Σ′
2,Ψ2). R2 v2 : A. The result is easily extended to the case

when C is not empty.

For the second induction hypothesis, the only interesting case is when A = �DB, which is
proved by appealing to the first induction hypothesis, and the fact that name permutation does
not change the ≡α relation on simple terms. �

Lemma 25 (Name localization)
If C is a well-formed support in Σ, then the following holds:

1. (Σ,Σ′) ` Σ1. e1
∼= Σ2. e2 : A [C] if and only if Σ ` (Σ′,Σ1). e1

∼= (Σ′,Σ2). e2 : A [C]

2. (Σ,Σ′) ` Σ1. v1 ∼ Σ2. v2 : A if and only if Σ ` (Σ′,Σ1). v1 ∼ (Σ′,Σ2). v2 : A

Proof: By induction on the structure of the definition of the two judgments.

For the first induction hypothesis, we start by considerin the case when C is empty. Let
(Σ,Σ′,Σi), ei 7−→

∗ (Σ,Σ′,Ψi), vi, and (Σ,Σ′) ` Ψ1. v1 ∼ Ψ2. v2 : A. By second induction hypoth-
esis, Σ ` (Σ′,Ψ1). v1 ∼ (Σ′,Ψ2). v2 : A, and thus also Σ ` (Σ′,Ψ1). e1

∼= (Σ′,Ψ2). e2 : A. The
opposite direction is symmetric. The result is easily extended to the case of non-empty C.

For the second induction hypothesis, we present the case when A = A1 → A2, and vi =
λx:A1. ei. In this case, consider Σ′

i ⊇ Σi, such that Σ ` (Σ′,Σ′
1). v′1 ∼ (Σ′,Σ′

2). v′2 : A1. We need
to show Σ ` (Σ′,Σ′

1). [v′1/x]e1
∼= (Σ′,Σ′

2). [v′2/x]e2 : A2. By induction hypothesis at type A1, we
have that (Σ,Σ′) ` Σ′

1. v′1 ∼ Σ′
2. v′2 : A1, and therefore (Σ,Σ′) ` Σ′

1. [v′1/x]e1
∼= Σ′

2. [v′2/x]e2 : A2.
By induction hypothesis at type A2, we can push Σ′ back inside to get Σ ` (Σ′,Σ′

1). [v′1/x]e1
∼=

(Σ′,Σ′
2). [v′2/x]e2 : A2. The opposite direction is symmetric. �

Lemma 26 (Weakening)
Let Σ′ ⊇ Σ, Σ′

1 ⊇ Σ1 and Σ′
2 ⊇ Σ2, so that Σ′

1 and Σ′
2 are well-formed with respect to Σ′. Then

the following holds:

1. if Σ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ′ ` Σ′

1. e1
∼= Σ′

2. e2 : A [C]

2. if Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ′ ` Σ′
1. v1 ∼ Σ′

2. v2 : A

101

3.5. LOGICAL RELATIONS CHAPTER 3. META PROGRAMMING

Proof: By name localization (Lemma 25), it suffices to consider Σ′ = Σ. The proof is by simul-
taneous induction on the definition of the two judgments.

For the first statement, we only consider the case when C is empty, as the result is eas-
ily generalized to non-empty C. In this case, let (Σ,Σi), ei 7−→

∗ (Σ,Σi,Ψi), vi, such that Σ `
(Σ1,Ψ1). v1 ∼ (Σ2,Ψ2). v2 : A. By name permutation, we could assume that Ψ1,Ψ2 are disjoint
from Σ′

1,Σ
′
2, so that also (Σ,Σ′

i), ei 7−→
∗ (Σ,Σ′

i,Ψi), vi. Then by second induction hypothesis,
Σ ` (Σ′

1,Ψ1). v1 ∼ (Σ′
2,Ψ2). v2 : A, and therefore Σ ` Σ′

1. e1
∼= Σ′

2. e2 : A.
For the second induction hypothesis, the only interesting case is when A = A ′ → A′′, and

vi = λx:A′. ei. In this case, consider Σ′′
i ⊇ Σ′

i, such that Σ ` Σ′′
1. v′′1 ∼ Σ′′

2. v′′2 : A′. By definition,
Σ ` Σ′′

1. [v′′1/x]e1
∼= Σ′′

2. [v′′2/x]e2 : A′′, simply because Σ′′
i ⊇ Σ′

i ⊇ Σi. �

Lemma 27 (Symmetry and transitivity)
1. If Σ ` Σ1. e1

∼= Σ2. e2 : A [C], then Σ ` Σ2. e2
∼= Σ1. e1 : A [C].

2. If Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ ` Σ2. v2 ∼ Σ1. v1 : A.

3. If Σ ` Σ1. e1
∼= Σ2. e2 : A [C], and Σ ` Σ2. e2

∼= Σ3. e3 : A [C], then Σ ` Σ1. e1
∼= Σ3. e3 :

A [C]

4. If Σ ` Σ1. v1 ∼ Σ2. v2 : A, and Σ ` Σ2. v2 ∼ Σ3. v3 : A, then Σ ` Σ1. e1 ∼ Σ3. v3 : A

Proof: Symmetry is obvious, so we present the proofs for transitivity. The proofs are by induction
on the definition of the judgments. For transitivity of the relation on expressions, we only consider
the case when the supports Ci are empty, as it is easy to generalize to the case of non-empty
supports.

By assumptions, (Σ,Σ1), e1 7−→ (Σ,Ψ1), v1, and (Σ,Σ2), e2 7−→ (Σ,Ψ2), v2, such that Σ `
Ψ1. v1 ∼ Ψ2. v2 : A. Also, (Σ,Σ2), e2 7−→ (Σ,Ψ′

2), v
′
2, and, (Σ,Σ3), e3 7−→ (Σ,Ψ3), v3, such that

Σ ` Ψ′
2. v′2 ∼ Ψ3. v3 : A.

By determinacy of evaluation, we know that there is a permutation of names π such that
Ψ2 = π(Ψ′

2) and v2 = π(v′2), and thus by Lemma 24, Σ ` Ψ2. v2 ∼ Ψ3. v3 : A. Then, by the last
induction hypothesis, Σ ` Ψ1. v1 ∼ Ψ3. v3 : A, and therefore, Σ ` Σ1. e1 ∼ Σ3. e3 : A.

For the relation on values, we only present the case A = A1 → A2 and vi = λx:A1. ei. In
this case, let Σ′

1 ⊇ Σ1 and Σ′
3 ⊇ Σ3, such that Σ ` Σ′

1. v′1 ∼ Σ′
3. v′3 : A1. By name permuta-

tion, we can assume that Σ′
3 and Σ2 are disjoint; otherwise, we can just rename the conflicting

names in Σ2. By symmetry and transitivity at type A1, we obtain Σ ` Σ′
3. v′3 ∼ Σ′

3. v′3 : A1. By
weakening, Σ ` Σ′

1. v′1 ∼ Σ2,Σ
′
3. v′3 and Σ ` Σ2,Σ

′
3. v′3 ∼ Σ′

3. v′3; therefore Σ ` Σ′
1. [v′1/x]e1

∼=
(Σ2,Σ

′
3). [v′3/x]e2 : A2 and Σ ` (Σ2,Σ

′
3). [v′3/x]e2

∼= Σ′
3. [v′3/x]e3 : A2. Finally, by first induction

hypothesis at type A2, we get Σ ` Σ′
1. [v′1/x]e1

∼= Σ′
3. [v′3/x]e3 : A2. �

It is simple now to extend the above results to logical relations over expressions with free
variables. The following lemma restates the relevant properties.

Lemma 28
1. (Name permutation) Let R1 : Σ1 → Σ′

1 and R2 : Σ2 → Σ′
2 be bijections where Σ′

1 and Σ′
2 are

well-formed in Σ. If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ;∆; Γ ` Σ′

1. R1 e1
∼= Σ′

2. R2 e2 :
A [C].

2. (Name localization) Let ∆, Γ, A, C are well-formed in Σ. Then (Σ,Σ′);∆; Γ ` Σ1. e1
∼=

Σ2. e2 : A [C] if and only if Σ;∆; Γ ` (Σ′,Σ1). e1
∼= (Σ′,Σ2). e2 : A [C].

102

CHAPTER 3. META PROGRAMMING 3.5. LOGICAL RELATIONS

3. (Weakening) Let Σ′ ⊇ Σ, and Σ′
1 ⊇ Σ1, Σ′

2 ⊇ Σ2, ∆′ ⊇ ∆, Γ′ ⊇ Γ and C ′ ⊇ C, so that
Σ′

1,Σ
′
2,∆

′, Γ′ and C ′ are well-formed with respect to Σ′. If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C],

then Σ′;∆′; Γ′ ` Σ′
1. e1

∼= Σ′
2. e2 : A [C ′].

4. (Symmetry) If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ;∆; Γ ` Σ2. e2

∼= Σ1. e1 : A [C].

5. (Transitivity) If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], and Σ;∆; Γ ` Σ2. e2

∼= Σ3. e3 : A [C], then
Σ;∆; Γ ` Σ1. e1

∼= Σ3. e3 : A [C]

Proof:
The proofs proceed in a straighforward manner, following the definition of the judgment on

open expressions. First we consider the case when Γ is non-empty, but both C and ∆ are empty.
Then we generalize to the case of non-empty C, before finally a non-empty context ∆ is considered.
Just as in the definition of the logical relations, it is easy to check that in each step of the proof we
only rely on the previously established results. �

To complete the logical relations argument, we need to define the notion of extensional relation
on the remaining syntactic category of ν

&
– the category of explicit substitutions. This definition

will be utilized in the statement and the proof of Lemma 29 to establish that term constructors of
ν

&
(in particular, the constructs for explicit substitutions and modal variables) preserve extensional

equivalence.
The judgment for logical relation of extensional equivalence between two explicit substitutions

Θ1 and Θ2 has the form

Σ;∆; Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [C]⇒ [D]

and is defined by the following clauses:

Σ; ·; Γ ` Σ1. 〈Θ1〉 ∼=
Σ2. 〈Θ2〉 : [C]⇒ [D]

iff Σ; ·; Γ ` Σ′
1. {Θ1}e1

∼= Σ′
2. {Θ2}e2 : A [D], for any

Σ′
i ⊇ Σi, such that Σ; ·; Γ ` Σ′

1. e1
∼= Σ′

2. e2 : A [C]
Σ;∆; Γ ` Σ1. 〈Θ1〉 ∼=

Σ2. 〈Θ2〉 : [C]⇒ [D]
iff Σ; ·; Γ ` Σ′

1. 〈[δ1/∆]Θ1〉 ∼= Σ′
2. 〈[δ2/∆]Θ2〉 : [C] ⇒ [D]

for any Σ′
i ⊇ Σi, such that Σ ` Σ′

1. δ1 ≡α Σ′
2. δ2 : ∆

As in the case of previous judgments, the relation ∼= on explicit substitutions satisfies the
properties of name permutation, name localization, weakening, symmetry and transitivity.

Lemma 29
Logical relation is preserved by all the expression constructors of ν

&
. More precisely:

1. (Σ, X:A);∆; Γ ` Σ1. X ∼= Σ2. X : A [X,C]

2. Σ;∆; (Γ, x:A) ` Σ1. x ∼= Σ2. x : A [C]

3. if Σ; (∆, u:A[D]); Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [D]⇒ [C], then
Σ; (∆, u:A[D]); Γ ` Σ1. 〈Θ1〉u ∼= Σ2. 〈Θ2〉u : A [C]

4. if Σ;∆; (Γ, x:A) ` Σ1. e1
∼= Σ2. e2 : B [C], then Σ;∆; Γ ` Σ1. λx:A. e1

∼= Σ2. λx:A. e2 : A →
B [C]

5. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A → B [C] and Σ;∆; Γ ` Σ1. e′1

∼= Σ2. e′2 : A [C], then
Σ;∆; Γ ` Σ1. e1 e′1

∼= Σ2. e2 e′2 : B [C]

103

3.5. LOGICAL RELATIONS CHAPTER 3. META PROGRAMMING

6. If Σ;∆ ` Σ1. e1 ≡α Σ2. e2 : A [C], and Σ;∆; · ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ;∆; Γ `

Σ1. box e1
∼= Σ2. box e2 : �CA [D]

7. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : �DA [C] and Σ; (∆, u:A[D]); Γ ` Σ1. e′1

∼= Σ2. e′2 : B [C], then
Σ;∆; Γ ` Σ1. let box u = e1 in e′1

∼= Σ2. let box u = e2 in e′2 : B [C]

8. if Σ;∆; Γ ` (Σ1, X:A). e1
∼= (Σ2, X:A). e2 : B [C], then Σ;∆; Γ ` Σ1. νX:A. e1

∼= Σ2. νX:A. e2 :
A 9 B [C]

9. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A 9 B [C] then Σ;∆; Γ ` Σ1. choose e1

∼= Σ2. choose e2 :
B [C]

10. Σ;∆; Γ ` Σ1. 〈 〉 ∼= Σ2. 〈 〉 : [C]⇒ [D] if C ⊆ D

11. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [D], and Σ;∆; Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [C \X] ⇒ [D], and

X:A ∈ Σ, then Σ;∆; Γ ` Σ1. 〈X → e1,Θ1〉 ∼= Σ2. 〈X → e2,Θ2〉 : [C]⇒ [D]

Proof: To reduce clutter, we just present the selected cases as if the contexts ∆, Γ and the
support C were empty. The general results are recovered by considering the interaction between
value substitutions ρ, explicit substitutions σ and modal substitutions δ, which is well-behaved in
all the cases of the lemma.

In case of (3), consider Σ′
i ⊇ Σi such that e1 ≡α e2, and Σ ` Σ′

1. e1
∼= Σ′

2. e2 : A [D]. We need
to show that Σ; ·; · ` Σ′

1. {[[e1/u]]Θ1}e1
∼= Σ′

2. {[[e2/u]]Θ2}e2 : A []. From the assumption, we have
Σ; ·; · ` Σ′

1. 〈[[e1/u]]Θ1〉 ∼= Σ′
2. 〈[[e2/u]]Θ2〉 : [D] ⇒ [], and then the required equality follows by

definition of extensional equivalence for explicit substitutions

In case of (7), by equivalence of e1 and e2, there exist name sets Ψ1,Ψ2, such that (Σ,Σ1), e1 7−→
∗

(Σ,Ψ1),box t1 and (Σ,Σ2), e2 7−→
∗ (Σ,Ψ2),box t2, where t1 ≡α t2 : A [D], and Σ ` Ψ1. t1 ∼=

Ψ2. t2 : A [D]. Then it suffices to show that Σ; ·; · ` Ψ1. [[t1/u]]e′1
∼= Ψ2. [[t2/u]]e′2 : B []. But this

follows from the second assumption, by definition of extensional equivalence.

In case of (11), again consider Σ′
i ⊇ Σi, such that Σ′; ·; · ` Σ′

1. e′1
∼= Σ′

2. e′2 : B [C]. To be
consistent with the notation, in this case we assume that D, rather than C, is empty. To reduce
clutter, denote by σ1, σ2 the explicit substitutions σ1 = 〈X → e1,Θ1〉 and and σ2 = 〈X → e2,Θ2〉.
Then we need to show that Σ; ·; · ` Σ′

1. {σ1}e
′
1
∼= Σ′

2. {σ2}e
′
2 : B []. To establish this, it suffices

to prove that Σ; · ` Σ′
1. σ1

∼= Σ′
2. σ2 [C], i.e. that Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A′ [] for any

name Z ∈ C such that Z:A′ ∈ Σ. Then the result would follow from the extensional equivalence
of e′1 and e′2. We consider two cases: Z = X, and Z ∈ C \ X. If Z = X, then A′ = A and
σi(Z) = ei and by first assumption, Σ; ·; · ` Σ1. σ1(Z) ∼= Σ2. σ2(Z) : A. By weakening, this implies
Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A. If Z ∈ C \X, then σi(Z) = {Θi}Z, and also obviously Σ; ·; · `

Σ′
1. Z ∼= Σ′

2. Z : A′ [C \X]. Then by the second assumption, Σ; ·; · ` Σ′
1. σ1(Z) ∼= Σ′

2. σ2(Z) : A′ [].
The two cases combined demonstrate Σ; · ` Σ′

1. σ1
∼= Σ′

2. σ2 [C], and this completes the proof. �

Now we can prove that our logical relations are reflexive, and thus indeed equivalences.

Lemma 30 (Reflexivity)
1. If Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e ∼= e : A [C]

2. If Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D], then Σ;∆; Γ ` 〈Θ〉 ∼= 〈Θ〉 : [C]⇒ [D]

Proof: By induction on the structure of e and Θ, using Lemma 29. �

104

CHAPTER 3. META PROGRAMMING 3.5. LOGICAL RELATIONS

The lemma has several more interesting consequences. As a first observation, it shows that
the ν

'
-calculus, as considered in this section (i.e. with no recursion), is terminating. Indeed, our

definition of logical relations on expressions required that related expressions evaluate to related
values. Thus, if a well-typed expressions of the calculus is related to itself, than it must have a
value.

The second consequence of the lemma is that intensionally related expressions are at the same
time extensionally related as well. In other words, if Σ;∆ ` Σ1. e1 ≡α Σ2. e2 : A [C], where e
is a simple term, then Σ;∆; · ` Σ1. e1

∼= Σ2. e2 : A [C]. This property trivially follows from the
reflexivity, simply because the intensional equivalence, as defined on closed simple terms equates
two terms if and only if they are the same (up to α-renaming) and – more importantly – well-
typed. Then the reflexivity lemma can be applied to extensionally relate these two terms. As
a result, extensional equivalence of modal expressions box e1 and box e2 need not compare e1

and e2 for extensional equivalence (as it is required by the definition), but can only rely on their
intensional equivalence. This is important, as intensional equivalence, contrary to the extensional
one, is defined inductively, and can be carried out as an algorithm.

Lemma 31 (Fundamental property of logical relations)
If Σ;∆; Γ ` Σ1. e1

∼= Σ2. e2 : A [C], then

1. if Σ;∆; (Γ, x:A) ` e : B [C], then Σ;∆; Γ ` Σ1. [e1/x]e ∼= Σ2. [e2/x]e : B [C]

2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C1]⇒ [C], then
Σ;∆; Γ ` Σ1. 〈[e1/x]Θ〉 ∼= Σ2. 〈[e2/x]Θ〉 : [C1]⇒ [C]

Proof: By straightforward simultaneous induction on the structure of the two typing derivations,
using the fact that the term constructors of the language preserve the logical relation. �

After developing the theory of the two relations, we will use it to prove some interesting equiv-
alences in the calculus. But before we do that in the next lemma, let us remark on an important
property of the our presentation. If we dropped the requirement of intensional equivalence when
comparing values of modal types that would correspond to treating modal values extensionally,
rather than intensionally. In fact, that may be a more relevant approach for this paper, as in
the current presentation of ν

'
we do not consider any constructs for structural analysis of modal

expressions. In this case, we do not have to limit the modal expressions to only simple expressions.

Finally, the next lemma lists some equivalences which hold in ν
'

(irrespective of the treatment
of modal values as intensional or extensional entities). Observe that the list includes all the β-
reductions and η-expansions of ν

'
. In this sense, we can claim that the calculus presented in this

paper is purely functional.

Lemma 32
In the logical equivalences below we assume that all the judgments are well-formed and that the
terms are well-typed in appropriate contexts.

1. Σ;∆; Γ ` (λx. e1) e2
∼= [e2/x]e1 : A [C]

2. Σ;∆; Γ ` e ∼= λx. (e x) : A→ B [C]

3. Σ;∆; Γ ` let box u = box e1 in e2
∼= [[e1/u]]e2 : B [C]

4. Σ;∆; Γ ` e ∼= let box u = e in box u : �DB [C]

105

3.5. LOGICAL RELATIONS CHAPTER 3. META PROGRAMMING

5. Σ;∆; Γ ` choose (νX:A. e) ∼= (X:A). e : B [C]

6. Σ;∆; Γ ` (X:A). e ∼= νX:A. choose e : A 9 B [C]

7. Σ;∆; Γ ` λz:A. choose (νX:A1. e) ∼= choose (νX:A1. λz:A. e) : A→ B [C]

8. Σ;∆; Γ ` νX. νY. e ∼= νY. νX. e : A 9 A 9 B [C]

9. Σ;∆; Γ ` e1 (choose (νX:A. e2)) ∼= choose (νX:A. (e1 e2)) : B [C]

10. Σ;∆; Γ ` (choose (νX:A. e1)) e2
∼= choose (νX:A. (e1 e2)) : B [C]

Proof: Again, in order to reduce clutter, we present the proofs of these statements in the case
when ∆, Γ, C are empty. In the general cases, we need to consider interactions between value
substitutions ρ, explicit substitutions σ and modal substitutions δ, but these pose no problems.

In the case ∆, Γ and C are empty, the statements (3) and (4) are trivial, as the two expressions
evaluate to the same value. In (5), the expressions evaluate to the same value, modulo the choice
of a local name Y to stand for X in choose (νX:A. e). But this choice is irrelevant, by the name
permutation property. The statement (10) is completely symmetric to (9).

To establish (1), let Σ; ·;x:B ` e1 : A, and Σ; ·; · ` e2 : B. As the calculus is termination, there
exist Ψ and v2 such that Σ, e2 7−→

∗ (Σ,Ψ), v2, and therefore also Σ ` e2
∼= Ψ. v2 : B. By the

fundamental property of logical relations (Lemma 31), Σ ` [e2/x]e1
∼= Ψ. [v2/x]e1 : A. But it is

also the case that Σ ` (λx. e1) e2
∼= Ψ. [v2/x]e1 : A, simply because the two expressions evaluate

to the same value. Then by transitivity, we get Σ ` (λx. e1) e2
∼= [e2/x]e1 : A.

To establish (2), let Σ, e 7−→∗ (Σ,Ψ), (λx. e′), so that Σ; ·; · ` e ∼= Ψ. (λx. e′) : A → B. By
transitivity, this holds if Σ ` Ψ. λx. e′ ∼ λx. (e x) : A→ B. In order to prove this, consider Σ′

1,Σ
′
2

such that Σ ` Ψ,Σ′
1. v1 ∼ Σ′

2. v2 : A. It suffices to show Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B. By
the name permutation property (Lemma 24), we can assume that Ψ and Σ2 are disjoint. By the
properties of evaluation, (Σ′,Σ′

2), (e v2) 7−→
∗ (Σ′,Σ′

2,Ψ), [v2/x]e′, and thus

Σ ` Σ′
2. (e v2) ∼= (Ψ,Σ′

2). [v2/x]e′ (*)

By type preservation, (Σ,Ψ); ·;x:A ` e′ : B [], and thus by reflexivity Σ; ·;x:A ` Ψ. e′ ∼= Ψ. e′ : B [].
Then by definition,

Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= (Ψ,Σ′

2). [v2/x]e′ : B (**)

Finally, from (*) and (**), by transitivity, we obtain the required

Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B.

To establish (6), let (Σ, X:A), e 7−→ (Σ, X:A,Ψ), (νY :A. e′). Then, by definition, we have
Σ ` (X:A). e ∼= (X:A,Ψ). (νY :A. e′) : A 9 B. By transitivity, it suffices to show that Σ `
(X:A,Ψ). νY :A. e′ ∼ νX:A. choose e : A 9 B

By definition of the logical relation for values at the type A 9 B, this holds if and only if
Σ ` (X:A,Ψ, Y :A). e′ ∼= X:A. choose e : B. Indeed, we could chose X:A in the local context of
the second argument by the name permutation property. But the last equation is obviously true,
as (Σ, X:A), choose e 7−→∗ (Σ, X:A,Ψ), choose (νY :A. e′) 7−→ (Σ, X:A,Ψ, Y :A), e′.

For (7), the considered equivalence holds iff Σ ` λz:A. choose (νX:A1. e) ∼= (X:A1). λz:A. e :
A→ B, iff Σ; ·; z:A ` choose (νX:A1. e) ∼= (X:A1). e : B. But this is true by (6).

106

CHAPTER 3. META PROGRAMMING 3.6. NOTES

To establish (8), notice that by definition, the required equivalence holds if and only if Σ `
(X:A, Y :A). e ∼= (Y :A,X:A). e : B. In this equation, we are justified in choosing the same
names X and Y in both sides, by the name permutation property (Lemma 24). But the contexts
(X:A, Y :A) and (Y :A,X:A) are same, because the type A does not depend on neither X nor Y .
Thus, the result follows by reflexivity of ∼=.

To establish (9), it suffices to show that Σ ` e1
∼= (X:A). e1 : B′ → B and that Σ `

choose (νX:A. e2) ∼= (X:A). e2 : B′. Then the result would be implied by the fact that term
constructors preserve the equivalence. The first of the above equivalences follows by reflexivity and
weakening. The second has already been established as the β-reduction for the type A 9 B ′. �

3.6 Notes

Related work on staged computation and run-time code generation

An early reference to staged computation is [Ers77] which introduces staged computation under
the name of “generating extensions”. Generating extensions for purposes of partial evaluation were
also foreseen by [Fut71], and the concept is later explored and eventually expanded into multi-level
generating extensions by [JSS85, GJ95, GJ97]. Most of this work is done in an untyped setting.

The typed calculus that provided the direct motivation and foundation for our system is the
λ

(
-calculus. It evolved as a type theoretic explanation of staged computation [DP01, WLPD98],

and run-time code-generation [LL96, WLP98], and we described it in Section 3.1.

Related work on meta programming

Most of the work on functional meta programming today is related to the development of MetaML
[TS97, MTBS99, Tah99, Tah00].

The core fragment of MetaML is based on the λ©-calculus. Formulated by [Dav96], λ© is the
proof-term calculus for discrete temporal logic, and it provides a notion of open object code where
the free variables of the object expressions are represented by meta variables on a subsequent tem-
poral level. The original motivation of λ© was to develop a type system for binding-time analysis
in the setup of partial evaluation, but it was quickly adopted for meta-programming through the
development of MetaML.

MetaML builds upon the open code type constructor of λ© and generalizes the language with
several features. The most important one is the addition of a type refinement for closed code.
Values classified by the closed code types are those open code expressions that do not contain any
free meta variables. If an expression is typed as a closed code, then it may be evaluated at run
time.

It might be of interest here to point out a certain similarity between our concept of supports
and the dead-code annotations used in MetaML with references [CMT00, CMS01]. MetaML cannot
naively allow references to open code, in order to avoid the extrusion of scope of bound variables.
At the same time, limiting references to closed code types is too restrictive, as it rules out some
programs that are well-typed in ML. Scope extrusion has to be allowed, but only if the extruding
variables are never encountered during evaluation. As a solution, MetaML with references annotates
terms with the list of free variables that the term is allowed to contain in dead-code positions.

In contrast to MetaML, in the ν
(
-calculus, free variables are represented by names, and they are

built into the calculus from the beginning. As a consequence, only one modal constructor suffices
to classify both closed code and code with free variables, leading to a conceptually simpler type

107

3.6. NOTES CHAPTER 3. META PROGRAMMING

system. Furthermore, we do not foresee that any significant problems will appear in the extension
of ν

)
with references.

Taha and Nielsen present another system for combining closed and open code in [NT03]. The
system can explicitly name the object stages of computation through the notion of environment
classifiers. Because the stages are explicitly named, each stage can be revisited multiple times
and variables declared in previous visits can be reused. This feature provides the functionality of
open code. The environment classifiers are related to our support variables in the sense that they
both are bound by universal quantifiers and they both abstract over sets. Indeed, our support
polymorphism explicitly abstracts over sets of names, while environment classifiers are used to
name parts of the variable context, and thus implicitly abstract over sets of variables.

Related work on higher-order abstract syntax

Coming from the direction of higher-order abstract syntax, probably the first work pointing to
the importance of a non-parametric binder like our ν-abstraction is [Mil90]. The connection of
higher-order abstract syntax to modal logic has been recognized by Despeyroux, Pfenning and
Schürmann in the system presented in [DPS97], which was later simplified into a two-level system in
Schürmann’s dissertation [Sch00]. The system presented in [Bjø99] is capable of pattern matching
against object-level programs, but is not concerned with their evaluation. There is also [Hof99]
which discusses various presheaf models for higher-order abstract syntax, then [FPT99] which
explores untyped abstract syntax in a categorical setup, and an extension to arbitrary types [Fio02].

Related work on logic

The representation of syntactic expressions has been investigated in terms of modal logic of prov-
ability for quite some time. The connection between the two arises from Gödel’s Incompleteness
theorems, as for example described by Smorynski in [Smo85]. Montague’s work [Mon63] is an early
reference towards the impossibilty of a formal system that can reason about its own syntax and at
the same time reflect the syntactically obtained results and treat them as true.

108

Chapter 4

Modal theory of effects

4.1 Propositional lax logic

4.1.1 Judgments and propositions

Lax logic [FM97] is a logic for reasoning about truth of propositions under certain constraints.
Unlike in modal logic of partial judgments (Section 2), where the partiality conditions are explicitly
specified by the support of the judgment and can be manipulated using the reflection principle, in
lax logic the constraints are left abstract and unspecified.

Following closely Pfenning and Davies [PD01], we start the judgmental formulation of lax logic
with the hypothetical judgments, one for the unconstrained truth and one for lax truth:

A1 true, . . . , An true ` A true

and

A1 true, . . . , An true ` A lax

In the development of lax logic, we use ∆, rather than Γ to vary over sets of true hypotheses. The
reasons for this change of notation will become clear subsequently, when we present the embedding
of propositional lax logic into the propositional modal logic. With this notational convention in
mind, we write our two judgments as ∆ ` A true and ∆ ` A lax.

Just as usual, the hypothetical truth is internalized using implication, except that in this case
we denote the constructor as ⇒, to differentiate the lax implication from the implication used in
modal logic. Thus, we will have the following standard rules for implication

∆, A true ` B true

∆ ` A⇒ B true

∆ ` A⇒ B true ∆ ` A true

∆ ` B true

On the other hand, A lax is supposed to hold if, intuitively, the proposition A is true under
some, unspecified constraints. The following two statements formally capture this intuition and
can be taken as definitional clauses for A lax.

Definition of lax truth

1. If ∆ ` A true then ∆ ` A lax.

2. If ∆ ` A lax and ∆, A true ` B lax, then ∆ ` B lax.

109

4.1. LAX LOGIC CHAPTER 4. EFFECTS

The first clause states that if A is true, then A is certainly true under some constraint (namely,
the trivial constraint that is always satisfied). In the second clause, if A is true under some
constraint, then any consequence of the unconditional truth of A will itself be constrained by the
original conditions imposed on A.

Internalizing lax truth into the unconstrained truth judgment proceeds along the familiar lines.
We introduce a new unary connective © on propositions, with the formation rule

A prop

©A prop

and with the introduction rule that relates the new connective to the lax judgment.

∆ ` A lax

∆ ` ©A true

As customary, here we assume that each proposition A appearing in the judgments is well-formed.
The elimination rule for© follows the second definitional principle above, but combines it with

the introduction rule for ©.

∆ ` ©A true ∆, A true ` B lax

∆ ` B lax

We also need a rule to realize the first definitional principle and provide a coercion from true
to lax propositions.

∆ ` A true

∆ ` A lax

This axiomatization is locally sound and complete, as witnessed by local reduction and expansion.
The local reduction is justified by the definitional property (2) above, from the premises ∆ ` A lax
and ∆, A true ` B lax.

∆ ` A lax

∆ ` ©A true ∆, A true ` B lax

∆ ` B lax

=⇒R ∆ ` B lax

∆ ` ©A true =⇒E
∆ ` ©A true

∆, A true ` A true

∆, A true ` A lax

∆ ` A lax

∆ ` ©A true

Example 24 The following are some judgments derivable in lax logic.

1. ` A⇒©A true

2. ` ©©A⇒©A true

3. ` (A⇒ B)⇒©A⇒©B true

The derivations proceed as follows.

110

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

1. ` A⇒©A true

A true ` A true

A true ` A lax

A true ` ©A true

` A⇒©A true

2. ` ©©A⇒©A true

To reduce cluter, here we abbreviate by ∆ the context consisting of a single hypothesis
∆ =©©A true.

∆ ` ©© A true

∆,©A true ` ©A true

∆, A true ` A true

∆, A true ` A lax

∆,©A true ` A lax

∆ ` A lax

∆ ` ©A true

` ©©A⇒©A true

3. ` (A⇒ B)⇒©A⇒©B true.

In this case, we introduce the following context abbreviations: ∆1 = (A ⇒ B) true, ∆2 =
∆1,©A true, and ∆3 = ∆2, A true.

∆2 ` ©A true

∆3 ` A⇒ B true ∆3 ` A true

∆3 ` B true

∆3 ` B lax

∆2 ` B lax

∆2 ` ©B true

∆1 ` ©A⇒©B true

` (A⇒ B)⇒©A⇒©B true

�

Lax logic and modalities

From the logical standpoint, one can imagine that each possible world of modal logic represents
a certain – abstract – constraint from the lax logic. Then the judgment A lax expresses that
there exists a world (i.e. a constraint) in which A is true. Thus, the judgment for lax truth is
semantically very similar to the judgment for possibility, because both represent a form of existential
quantification.

Indeed, the two judgments share very similar typing rules and substitutions principles. In fact,
upon inspection of the typing rules, there appears only one distinction: the judgment for lax truth
has only one context of hypotheses ∆, while the judgment for modal possibility has two contexts

111

4.1. LAX LOGIC CHAPTER 4. EFFECTS

∆ and Γ, distinguishing between necessary and true hypotheses. Intuitive reasoning then leads
to the following conclusion: if truth and necessity of modal logic are equated, that will have as a
consequence the equating of lax truth with modal possibility, and respectively, © with 3. Note
that conflating truth and necessity does not conflate these two with possibility. If a proposition A
is possible, then it is true at some accessible world (and hence necessary at that world). But it
need not be true and necessary at the current world.

A precise statement of this observation involves embedding lax logic into modal logic. In
particular, if A true and A nec are equated on the modal side, then the propositions A and
�A become logically equivalent. Henceforth, a lax proof depending on a hypothesis A true, will
correspond to a modal proof that depends on �A true. Similarly, a lax proof depending on A lax,
will correspond to a modal proof that depends on �A poss. Because the judgments for lax truth
and for possibility are not used as hypotheses, the embedding has to manipulate the internalized
forms of the two judgments. Thus a lax proof depending on©A true should correspond to a modal
proof depending on 3�A true.

More formally, consider the translation (−)+ of lax propositions into modal propositions, dis-
covered by Pfenning and Davies in [PD01]:

(A⇒ B)+ = �A+ → B+

(©A)+ = 3�A+

P+ = P for atomic P

(·)+ = ·

(∆, A true)+ = ∆+, A+ nec

Then the following lemmas establishes the formal correspondence between the two logics.

Lemma 33
1. If ∆ ` A true then ∆+; · ` A+ true in modal logic.

2. If ∆ ` A lax then ∆+; · ` �A+ poss.

Proof: By simultaneous induction on the derivations of the first judgments [PD01]. �

For the opposite direction, we need an inverse translation (−)−, mapping modal propositions
into lax propositions.

(A→ B)− = A− ⇒ B−

(�A)− = A−

(3A)− = ©A−

P− = P for atomic P

(∆, A nec)− = ∆−, A− true

(Γ, A true)− = Γ−, A− true

Notice that (A+)− = A.

Lemma 34
1. If ∆;Γ ` A true in modal logic, then (∆−,Γ−) ` A− true in lax logic.

112

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

2. If ∆;Γ ` A poss, then (∆−,Γ−) ` A− lax.

Proof: By simultaneous induction on the given derivation. �

Theorem 35
1. ∆ ` A true in lax logic if and only if ∆+; · ` A+ true in modal logic.

2. ∆ ` A lax if and only if ∆+; · ` A+ poss

Proof: The left-to-right direction is Lemma 33. For the right-to-left direction of the first state-
ment, if ∆+; · ` A+ true in modal logic, then by Lemma 34, (∆+)− ` (A+)− true, and therefore
∆ ` A true in lax logic. Similar reasoning proves the second statement as well. �

From the axiomatic standpoint, the identification of truth and necessity in constructive S4
modal logic can be accomplished by addition of the single axiom scheme (or inference rule)

A→ �A true

Indeed, because constructive S4 already proves �A→ A true, adjoining A→ �A true annihilates
the logical distinction between A and �A, and correspondingly, between truth and necessity. Notice
that if A and �A are equivalent in modal logic, then instead of the translation (−)+ we could use
the translation (−)∗ (defined below), as A+ and A∗ are equivalent for any A.

(A⇒ B)∗ = A∗ → B∗

(©A)∗ = 3A∗

P ∗ = P for atomic P

(·)∗ = ·

(∆, A true)∗ = (∆∗, A∗ nec)

Moreover, the equivalence between A+ and A∗ leads to the following theorem.

Theorem 36
1. If ∆ ` A true in lax logic, then ∆∗; · ` A∗ true in modal logic with A→ �A.

2. If ∆ ` A lax in lax logic, then ∆∗; · ` A∗ poss in modal logic with A→ �A.

3. If ∆;Γ ` A true in modal logic with A→ �A, then (∆−,Γ−) ` A− true in lax logic.

4. If ∆;Γ ` A poss in modal logic with A→ �A, then (∆−,Γ−) ` A− lax in lax logic.

Proof: The first two statements trivially follow from Lemma 33 by the equivalence of the trans-
lations (−)+ and (−)∗. For the third statement, assume that ∆; Γ ` A true in modal logic ex-
tended with B → �B. Then by Lemma 34, (∆−,Γ−) ` A− true in lax logic extended with
(B → �B)−. But, (B → �B)− is equal to B− ⇒ B−, which is already derivable in lax logic.
Thus, (∆−,Γ−) ` A− true in lax logic with no additions. The proof of the fourth statement is
similar. �

As a consequence, ∆ ` A true and ∆ ` A lax are derivable in lax logic if and only if ∆∗; · `
A∗ true and ∆∗; · ` A∗ poss, are derivable in modal logic with A → �A, respectively. Notice,

113

4.1. LAX LOGIC CHAPTER 4. EFFECTS

however, that the translation (−)∗ simply renames the lax connectives into modal connectives. In
other words, the intuituionistic lax logic is obtained when the constructive modal S4 is extended
with the axiom scheme A→ �A. In that case, modal possibility attains the properties of lax truth,
and correspondingly, the operator 3 becomes ©.

The described embedding also explains why lax logic has only one modal constructor, corre-
sponding to 3, and lacks a constructor corresponding to �.

4.1.2 Lax λ-calculus

In this section, we decorate the judgments of lax logic with proof terms. The obtained proof
term system, called lax λ-calculus, extends the ordinary λ-calculus with new syntactic categories
to account for the specifics of lax logic. Again, we follow Pfenning and Davies [PD01] in the
presentation. The judgments ∆ ` A true and ∆ ` A lax are now changed into ∆ ` e : A and
∆ ` f :∼A, where e and f are proof terms witnessing the judgments. The syntax of the calculus is
summarized below.

Types A,B ::= P | A⇒ B | ©A
Expressions e ::= x | λx:A. e | e1 e2 | val f
Phrases f ::= e | let val x = e in f
Variable contexts ∆ ::= · | ∆, x:A

As can be noticed, the syntactic categories of expressions and phrases are slightly different from
the categories of expressions and phrases used in the modal λ- and ν-calculi. We retain the same
terminology, however, in order emphasize the relationship between the modal and lax calculi.

As customary in the transition from logic to λ-calculus, the the context ∆ now contains propo-
sitions labeled with variables, so that instead of A true we write x:A. We present the type system
below.

∆, x:A ` x : A

∆, x:A ` e : B

∆ ` λx:A. e : A⇒ B

∆ ` e1 : A⇒ B ∆ ` e2 : A

∆ ` e1 e2 : B

∆ ` e : A

∆ ` e :∼A

∆ ` f :∼A

∆ ` val f :©A

∆ ` e :©A ∆, x:A ` f :∼B

∆ ` let val x = e in f :∼B

As can be seen, the proof terms constructors and the typing rules for unconstrained truth
define a fragment of the system that corresponds to the ordinary λ-calculus. On the other hand,
the constructors and the rules for lax truth are similar to the rules for the possibility fragment of
the modal λ-calculus from Section 1.2.

114

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

Example 25 The following are well-typed terms in the lax λ-calculus.

1. ` λx. val x : A⇒©A

2. ` λx. val (let val y = x in let val z = y in z) :©©A⇒©A

3. ` λf. λx. val (let val y = x in f y) : (A⇒ B)⇒©A⇒©B

�

We now restate the definitional properties for the lax modalities using the newly introduced
proof terms of the lax λ-calculus.

1. If ∆ ` e : A, then ∆ ` e :∼A.

2. If ∆ ` f1 :∼A and ∆, x:A ` f2 :∼B, then ∆ ` 〈〈f1/x〉〉f2 :∼B.

The definitional property (1) simply expresses that each expression can be coerced into a phrase.
The property (2) is a substitution principle for phrases. It uses a similar form of phrase substitution
〈〈f ′/x〉〉f as the one defined in the case of modal possibility (Section 1.2).

〈〈e/x〉〉f = [e/x]f

〈〈let val y = e in f ′/x〉〉f = let val y = e in 〈〈f ′/x〉〉f

The local reductions and expansions of the calculus are

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A⇒ B =⇒E λx:A. e x

let val x = val f1 in f2 =⇒R 〈〈f1/x〉〉f2

e :©A =⇒E val (let val x = e in x)

4.1.3 Values and computations

In this section we review the main results on a monadic treatment of effects. The idea, originally
proposed by Moggi [Mog89, Mog91] for structuring denotational semantics, and then adopted by
Wadler [Wad92, Wad95, Wad98] for functional programming, is to use a unary type constructor
© (called monad), to distinguish in the type system between values and effectful computations.
We deliberately use the notation © from lax logic, to emphasize the connection between the lax
λ-calculus and effectful computations. We will make this connection more explicit subsequently.

For example, if A is a type of values, then ©A classifies computations of type A. The reason
for this distinction is that computations do not need to pure. In the course of its evaluation, a
computation is not limited to only compute a value – in fact, it is not even required to – it may be
evaluated in order to perform an effect. For example, a computation may update the global store,
raise an exception, perform I/O, or perhaps diverge. As argued by many works on type-and-effect
systems ([GL86, LG88, Mog91, Wad92, Wad95, Wad98, JG91, TJ94, TT97] among others), and
explored in the context of the programming language Haskell [Pey03], it may be beneficial for the
programming practice to make explicit in the type system that a certain program expression may
perform an effect. Such a type system restricts the class of environments that an expression may

115

4.1. LAX LOGIC CHAPTER 4. EFFECTS

interact with and makes the reasoning about effectful programs much more modular, and hence
simpler. This in turn facilitates the compile-time discovery of programming errors related to effects,
and enables more agressive optimization.

The exact effects that a computation may perform may vary. However, independently of the
nature of particular effects, there are two generic operations applicable to any notion of computa-
tion:

1. Every value e can be coerced into an effectful computation that trivially returns that value.

2. Two effectful computations f1 and f2 can be composed as follows: first f1 is evaluated, and
its value (if it exists) is supplied as an input to f2. The result is a computation “inheriting”
the effects of both f1 and f2.

It is no accident that the description of these two generic operations relates so closely to the
definitional principles of lax logic and the lax λ-calculus from the previous section. In fact, the
lax λ-calculus perfectly embodies the described distinction between values and computations, as
witnessed by the following interpretation of its syntactic categories.

1. An expression e : A describes a pure computations, which evaluates with no side effects, and
therefore produces a value of type A. From the operational standpoint, an expression e is
observationally equivalent to its value.

2. The phrase f :∼A describes an effectful computation of type A. Two effectful computations
can be combined, as described by the phrase substitution principle from the previous section.

3. An effectful computation f :∼A can be internalized as an expression val f :©A.

4. An expression e : A (or more precisely, its value), can be coerced into an effectful computation
e :∼A and then internalized into an expression val e :©A.

In the original papers on monadic treatment of effects [Mog89, Mog91], Moggi has proposed a
monadic meta language as a general framework for describing operations on effectful computations.
The monadic meta language is very similar to the lax λ-calculus, but it does not make a judgmental
separation between pure and effectful computations. Rather, it conflates the notions of expressions
and phrases, and contains only one judgment ∆ ` e : A, with the following typing rules.

∆, x:A ` x : A

∆, x:A ` e : B

∆ ` A⇒ B

∆ ` e1 : A⇒ B ∆ ` e2 : A

∆ ` e1 e2 : B

∆ ` e : A

∆ ` comp e :©A

∆ ` e1 :©A ∆, x:A ` e2 :©B

∆ ` let comp x = e1 in e2 :©B

In fact, Moggi’s formulation of the monadic meta language uses proof terms val and let val, which
we rename here into comp and let comp, to avoid confusion with the constructors of the lax

116

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

λ-calculus.
The local reductions and expansions of the monadic meta language are given as follows.

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A⇒ B =⇒E λx:A. e x

let comp x = comp e1 in e2 =⇒R [e1/x]f2

e :©A =⇒E let comp x = e in comp x

These reductions and expansions, however, are not sufficient to explain all the interactions between
effectful expressions. Because of the unusual elimination rule for ©, expressions of monadic type
may be introduced using both comp and let comp forms, but the local reduction for © only
accounts for the first possibility. Thus, the monadic meta language requires an additional equational
rule to treat the commuting conversions between nested let comp expressions.

let comp x = (let comp y = e1 in e2) in e =⇒

let comp y = e1 in (let comp x = e2 in e)

Example 26 In the monadic meta language, the particular notions of effects are usually specified
by a notational definition of the type ©A and its corresponding expressions, in terms of already
available language constructs.

For example, if we want a language capable of raising an exception of type E, we use disjoint
sums to define the exception monad © and its corresponding monadic term constructors [Mog91,
Wad95].

©A = A + E

comp e = inl e

let comp x = e1 in e2 = case e1 of inl x⇒ e2 | inr y ⇒ inr y

There are also additional term constructors used to raise and handle the exception associated with
the monad ©.

raise : E ⇒©A

raise e = inr e

handle : ©A⇒ (E ⇒ A)⇒ A

handle e h = case e of inl v ⇒ v | inr exn⇒ h exn

The constructor raise takes an expression e : E and coerces it into inr e. This way, it implements
exception raising, passing the value of e along. The constructor handle takes an expression e :©A
and a function h representing an exception handler. If e evaluates to a value v : A, the result of
handling is v. If e raises the exception with a value exn : E, then the result of handling is h exn.

The operational semantics follows the standard operational semantics associated with disjoint
sums. For example, let us assume that ©A = A + E is an exception monad, and that f : int ⇒
©int. The following program adds the results of f 1 and f 2. If the evaluation of any of the two
function applications raises an exception, the overall computed result is zero.

117

4.1. LAX LOGIC CHAPTER 4. EFFECTS

handle (let comp x1 = f 1

comp x2 = f 2

in

comp (x1 + x2)

end) (λexn. 0)

�

Example 27 In this example, we present the monad of side effects. The monad of side effects
defines computations that execute in a state. The computation can read from the state, and modify
it. Let S be a set of possible states. A stateful computation of type A is a computation that may
read from the current state, before returning a value of type A, and a new state. Hence, stateful
computations are classified by the the monad defined as follows.

©A = S ⇒ (A× S)

comp e = λs:S. 〈e, s〉

let comp x = e1 in e2 = λs:S. let 〈x, s′〉 = (e1 s) in (e2 s′)

The type ©A = S ⇒ (A×S) expresses the fact that a stateful computation is a function: it reads
from a state before returning a value and a new state. The constructor comp coerces a value e into
a trivial stateful computation that returns e and the unchanged state. The constructor let comp
evaluates e1 in the current state, before passing the obtained value x and the new state s ′ to e2.

The type S and the notion of state associated with this monad may be defined in many different
ways, depending on the wanted side effects. For example, S may represent memory store in which
mutable references may be allocated, read from and written into [LP95, BHM02]. For simplicity,
in this example we assume that the state consists of a single integer location which can be read
and written. Correspondingly, we set S = int, and adjoin the following specific constructors to the
state monad ©.

read : ©int

read = λs:int. 〈s, s〉

write : int⇒©unit

write e = λs:int. 〈(), e〉

init : int⇒©A⇒ A

init e1 e2 = fst (e2 e1)

The stateful computation read returns the value of the integer location from the state s; s remains
unchanged. The computation write e changes s so that the value of e is now stored into it. This
computation is not evaluated for its value, so that it returns the trivial value ():unit. The construc-
tor init initializes the state location with the value of e1, then executes the stateful computation
e2 and returns the computed value.

As an example of the constructors for stateful computations, consider the program below. In
this program, we assume a function add : int⇒©int which adds its argument to the value of the
state location, while returning the old state value as a result.

118

CHAPTER 4. EFFECTS 4.2. MODALITIES

init 1 (let comp x = read

comp y = add (x)

comp dummy = write (y + 1)

in

read

end)

The program first initializes the state with 1, and then increments it by means of the function add.
The value bound to y is 1, which is the old value of the state. Then y + 1 = 2 is re-written into
the state, and it is this value that is finally computed by the program. �

As established by Pfenning and Davies in [PD01] and Benton, Bierman, de Paiva in [BBdP98]
and Kobayashi [Kob97], both the lax λ-calculus and the monadic meta language are computa-
tionally adequate. However, because the lax λ-calculus does not require any special treatment for
commuting conversions, it has a bit simpler and more pleasant proof-theoretic properties.

4.2 Modalities for effectful computation

As summarized and illustrated in the previous section, monads and lax logic can be used to dif-
ferentiate in the type system between values and effectful computations. Having in mind that
the monadic meta language and the lax λ-calculus very closely correspond to modal possibility, a
natural question arises: does a dual development to modal possibility and monads have any com-
putational import to the treatment of effects? In other words, can we employ modal necessity to
capture some invariants of effectful computations, and if so, which invariants does modal necessity
represent?

We start our analysis of this question by making a distinction similar to the one made in the
monadic meta language and the lax λ-calculus in Section 4.1.3. We assume that the non-modal type
A corresponds to values, and that the modal types �A and 3A stand for some kind of computations
of type A. But, what kind of computations exactly do the two different modalities represent?

Let us first consider modal possibility, because it is related to lax logic and monads from
Section 4.1, and these have been extensively studied in the literature. We recall the relevant
typing rules and the substitution principle, in a version decorated with the calculus of proof terms
(Section 1.1.4).

∆; Γ ` e : A

∆;Γ ` e ÷ A

∆;Γ ` f ÷ A

∆;Γ ` dia f : 3A

∆;Γ ` e : 3A ∆;x:A ` f ÷ B

∆;Γ ` let dia x = e in f ÷ B

Substitution principle for possibility

If ∆; Γ ` f1 ÷ A and ∆;x:A ` f2 ÷ B, then ∆; Γ ` 〈〈f1/x〉〉f2 ÷ B.

In the substitution principle for possibility, the operation of phrase substitution 〈〈f ′/x〉〉f is defined

119

4.2. MODALITIES CHAPTER 4. EFFECTS

as

〈〈e/x〉〉f = [e/x]f

〈〈let dia y = e in f ′/x〉〉f = let dia y = e in 〈〈f ′/x〉〉f

The important observation about modal possibility is that it enforces a programming style by
which the computations (and therefore, the corresponding effects) are serialized, i.e. totally ordered.
Indeed, each phrase witnessing a possibility judgment is a nested list of let dia clauses. Thus, for
any two computations of types 3A and 3B respectively, it is always evident from the program
which of the two takes precedence. For example, let e1 : 3A and e2 : 3B be two computations,
and consider the phrase

F = let dia x1 = e1 in (let dia x2 = e2 in f)

It is clear from the form of F that e1 takes precedence over e2, and that any sound operational
semantics for phrases will have to evaluate e1 first, before attempting e2. Moreover, the definition
of modal possibility prohibits writing phrases in which this ordering is not immediately evident. In
particular, let F1 ÷ A→ B and F2 ÷ A be two phrases defined as follows:

F1 = let dia x1 = e1 in f1 and F2 = let dia x2 = e2 in f2

Then it is impossible to put F1 and F2 together into an application like (F1 F2) where it is unclear
which of two phrases – and which of the two computations e1 and e2 – comes first. Indeed, F1 F2

is not a well-formed element of the category of phrases, as defined in Section 1.1.4.

The operation of phrase substitution 〈〈f/x〉〉f ′ combines the substituted phrases by giving prece-
dence to the effects of f over the effects of f ′. As an illustration, let F ′ be another phrase with
its own computational effects, and consider the phrase substitution 〈〈F/x〉〉F ′, where F is defined
above.

〈〈F/x〉〉F ′ = (let dia x1 = e1 in let dia x2 = e2 in 〈〈f/x〉〉F ′)

Notice that the effectful computations e1 and e2 are the first two computations in the result of
the substitution, and therefore take precedence over the computations of F ′. As a conclusion, any
operational semantics based on the substitution principle for possibility will respect the serializa-
tion specified by the phrase constructors and appropriately order the computational effects of the
program.

It is this property, shared by both monads and modal possibility, that makes them very appro-
priate for representing persistent effectful computations where an effect may change the environment
in which the program executes. A change inflicted upon the environment may influence the sub-
sequent computations. Therefore, in order to have a well-defined semantics, it is important that
the program effects are always performed in a strictly specified order. A typical example of the
persistent kind of effects is writing into a memory location. And indeed, as it is well-known from
many practical algorithmic and systems applications, writing into memory locations must typically
be serialized, so that the value stored in the location is always well-defined.

Of course, another way to specify the ordering of program effects is to define it by the oper-
ational semantics. This strategy is adopted by many programming languages, a typical example
being Standard ML [MTHM97]. But, a type system – like that associated with monads or modal

120

CHAPTER 4. EFFECTS 4.2. MODALITIES

possibility – that makes it explicit which expressions are effectful and which are not, has a cer-
tain advantage. It not only specifies the ordering of effects, but it provides the compiler with the
knowledge of effectful properties of program expressions. This knowledge can be utilized to perform
better optimizations. For example, if an expression is effectful, then it should be evaluated in the
serialized order given by the program. But if an expression is pure, then its subterms may freely
be rearranged, optimized, and evaluated out of order.

Let us now inspect the possible use of modal necessity for representation of effects. We recall
the relevant typing rules and the substitution principle for necessity, in its version decorated with
proof terms, as presented in Section 1.1.3.

(∆, u::A); Γ ` u : A

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

Substitution principle for necessity
If ∆; Γ ` e1 : A and (∆, u::A); Γ ` e2 : B, then ∆; Γ ` [e1/u]e2 : B.

Unlike modal possibility, notice that modal necessity does not prescribe any particular ordering
among effects. To contrast this with our previous discussion of possibility, let e1 : �A and e2 : �B
be two computations, and consider the expressions E1 : A→ B and E2 : A, defined as follows:

E1 = let box u1 = e1 in e′1 and E2 = let box u2 = e2 in e′2

Then it is perfectly well-defined to put together E1 and E2 into an application like (E1 E2) : B.
Observe that the language constructs used in this expression do not specify which of the expressions
E1 and E2 – and therefore which of the computations e1 and e2 – takes precedence over the other. It
must be left to the operational semantics of the language to determine the evaluation order between
the two, but any strategy is sound. Furthermore, unlike the phrase substitution principle, the
substitution principle for necessity relies on ordinary substitution [e1/u]e2 — it freely propagates
and even duplicates effectful computations, without any concern for the ordering of the effects
involved.

As a consequence, if modal necessity is to represent effectful computations, these could only
be computations that do not change the run-time environment of the program. The computations
may depend on the environment, but they should not change it — they are benign. Examples of
benign effects abound: non-termination, memory reads and control-flow effects like exceptions, to
mention but a few.

The simple modal type system in itself, however, is not strong enough to represent benign
effects. In many cases of benign effects, results of benign computations depend on the evaluation
environment. It is of paramount importance, therefore, to prevent evaluating effectful expressions
within environments that cannot deal with the effect in question. For example, an expression that
reads from a memory location X should only be evaluated when a memory location X is actually
allocated and initialized. An expression raising the exception X should only be evaluated when
a handler for X is active. Thus, it is necessary for soundness purposes that the type of a benign
computation captures the relevant aspects of the environment on which the computation depends
on.

121

4.2. MODALITIES CHAPTER 4. EFFECTS

This is where names and supports, as developed in Section 2.2, become important. Henceforth,
rather than using a simple modal type system, we will consider a modal type system with names
and indexed modalities. For example, if a computation of type A needs to read from the memory
location X, or may raise the exception X, we will ascribe it the type �XA. Names and supports
provide yet further possibilities. Using indexed necessity types, we can encode in the type system
the notion of handling, i.e. restoring the purity of an impure computation by means of some action.
Handling will be related to the principle of reflection from Section 2.1. When the effect X in a
computation of type �XA is handled, we obtain a pure computation of type �A, and then a value
of type A.

A following logical analogy can be made about modal types for effects. A computation of type
A with a benign effect identified by the name X is, in a sense, a partial computation. In order
to produce a value of type A, it needs to be evaluated in an environment capable of dealing with
X. But it can be successfully evaluated in all such environments — hence we can ascribe it the
the bounded universal type �XA. On the other hand, a persistent computation of type A that
changes the aspect of the run-time environment associated with the name X (for example, writes
into the memory location X), will be ascribed the bounded existential type 3XA. Indeed, such a
computation is a witness that there exists an environment – the one obtained after changing X –
in which a value of type A can be computed.

To summarize, we can use the modal type system with names to distinguish between following
computational categories: (1) values, which are associated with non-modal types A, (2) compu-
tations with benign effects, which are associated with necessitation types �CA, and (3) persistent
computations, which are associated with possibility types 3CA. In a modal type system with
names, we can also make a characterization of pure computations. A pure computation of type A
is a computation with no effects. In particular, it does not depend on any aspects of the run-time
environment, and can therefore be ascribed a type �A, where the index support on the modal
operator is empty. A pure computation is not necessarily a value itself, but it may be evaluated to
produce a value. This property is logically characterized by the axiom �A→ A of constructive S4
modal logic.

Just as in the case of the monadic meta language, we will also want to coerce values into
computations. But in the modal system, we can actually express that a computation obtained by
coercing a value is, in fact, pure. An appropriate logical analog of this coercion is the proposition

A→ �A

As already discussed in Section 4.1, adjoining this proposition to CS4 modal logic results in two
things: (1) modal possibility becomes lax truth, and correspondingly, 3 becomes a strong monad
in the sense of Moggi [Mog91], and (2) the logical distinction between A and �A is annihilated. In
lax logic, this resulted in removing the operator � from considerations. If this axiom is adjoined to
modal logic with names, it again makes the types A and �A logically equivalent. However, this does
not remove the need for the operator � and its associated proof terms. In modal logic with names,
there is a whole family of necessitation operators �C , indexed by supports C. Identifying A and �A
certainly does not collapse this whole indexed family. The operator � can still make distinctions
between propositions. For example, one proposition that does not become derivable after equating
A and �A is the implication �XA→ A. The computational content of this proposition states that
every computation with a benign effect X evaluates to a value. But this is obviously false. For
example, a computation of type A that may raise the exception X, certainly need not evaluate to
a value. Indeed, it may actually raise the exception.

Before we proceed with the technical details of a modal type system for effectful computations,

122

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

we need to answer the following important question: do benign computations indeed present a
separate category and require their own type constructor? Is it possible to perhaps treat benign
computations using monads or modal possibility, or to simply ignore their effects and consider them
pure?

Of course, every benign computation may be considered as trivially persistent, and represented
using the same mechanism of monads or modal possibility. But that representation would fail to
capture the important invariant that benign computations do not change the run-time environment,
and therefore do not need to be serialized. Indeed, why serialize two computations that both read
from a memory location X, when they could easily be evaluated out of order.

On the other hand, perhaps benign computations may be considered pure? After all, this is ex-
actly how non-termination is often treated in practice. Because diverging expressions do not change
the run-time environment (in fact, they do not even depend on the environment), non-termination
in most cases is not even considered an effect. Unlike non-termination, however, not all benign
effects are independent of the run-time environment in which they are evaluated. For example,
a computation that reads from the memory location X will produce a different result, depending
on the content of X at the time of evaluation. Such a computation may therefore be optimized,
rearranged, memoized, evaluated out of order, or in parallel with many other computations reading
from X, but only as long as the content of X is unchanged. In particular, this evaluation cannot be
postponed beyond the first subsequent write into X. This is very different from pure computations
which can be postponed indefinitely, and only evaluated when their result is needed.

As a conclusion then, it is sensible to employ a modal type system to distinguish between values,
pure computations, computations with benign effects, and computations with persistent effects. We
proceed in the following section with a description of the technical details of such a type system.

4.3 A modal type system for benign effects

The main judgment of the modal type system for benign effects is a variant of the partial truth
judgment for modal logic from Sections 2.1 and 2.2:

Σ;∆ ` e : A [C]

We recall here the relevant syntactic conventions. For example, the typing ascriptions in the context
∆ are of the form u:A [C], assigning the type A and support C to the variable u. The name context
Σ consists of type assignments X1:A1, . . . , Xn:An, associating names X1, . . . , Xn with types A1,
. . . , An, respectively. All the names used in the typing judgment are required to be declared and
typed in Σ. It is assumed that all the names X1, . . . , Xn are distinct, and the set {X1, . . . , Xn} is
denoted by dom(Σ). The context Σ is dependently typed, because each type Ai may depend on
names. Thus, each Xi may be used only to the right of its declaration in Σ.

In the modal system for benign effects, names stand for the particular notion of effects, and
this notion may differ from application to application. For example, if we want to design a type
system that tracks location reads in order to prevent reading from uninitialized locations, we will
use names to declare memory locations. If we want to design a type system that tracks raising and
handling of exceptions, we will use names to declare individual exceptions.

In the modal system for benign effects, the support C associated with the expression e lists the
effects that may be enacted during the evaluation of e. For example, if the expression e may read
from a location X:A, then the name X will be in the support of e. If the expression e may raise
the exception X:A, then the name X will be in the support of e. Support C will typically be a

123

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

finite set of names, but we will also consider an application in Section 4.8, where C is a finite list
of names. What is important, however, is that supports come equipped with a partial ordering

C v D

whose minimal element is the empty support (be it a set or a list). This is analogous to the
development of partial judgments in Chapter 2. The idea behind the partial ordering of supports
is the following: if the expression e has support C, then all the effects that may arise during the
evaluation of e are listed in C. But then, trivially, all these effects are listed in D w C, and thus
e could be ascribed a support D as well. Thus, one of the important structural properties of the
type system is the support weakening principle phrased as follows.

Principle (Support weakening for expressions)

If Σ;∆ ` e : A [C] and C v D, then Σ;∆ ` e : A [D].

By declaring which effects may be enacted by the expression e, the support C also determines
in which run-time environments the expression e may be evaluated. For example, if e may read
from the location X, then e must be evaluated in an environment in which X is initialized. Or, if
e may raise an exception X, then e must be evaluated in an environment with an active handler
for X. Thus, our type system will have a judgment for typing environments, in order to determine
when an environment Θ matches a support C. The general form of the judgment for environments1

is:

Σ;∆ ` 〈Θ〉 : [C]⇒ [D]

An expression e of support C may only appear in a context of an environment Θ that is typed as
[C]⇒ [D] (for some D). Thus, the typing 〈Θ〉 : [C]⇒ [D] declares that Θ can appropriately deal
with the effects C. We will keep the environment judgment undefined for a moment, and provide
definitions for each particular notion of effect that we consider in the subsequent sections. Obviously,
the environment judgment corresponds to the support judgment C holds [D] from Section 2.1 and
the judgment of explicit substitutions 〈Θ〉 : [C] ⇒ [D] from Section 2.2. The environments are
subject to the similar support weakening principles as explicit substitutions and C holds [D].

Principle (Support weakening for environments)

If Σ;∆ ` 〈Θ〉 : [C]⇒ [D] and D v D′, then Σ;∆ ` 〈Θ〉 : [C]⇒ [D′].

The relationship between expressions and environments is established in the type system via the
following rule corresponding to the rule for reflection in Section 2.1.

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]⇒ [D]

Σ;∆ ` 〈Θ〉e : A [D]

This rule ensures that an expression e is always evaluated in a context of an environment Θ that
can deal with the effects of e. In this sense, the type system of benign effects may be seen as a
particular version of modal logic of partial truth from Section 2, in which the process of reflection
is defined as evaluation.

There is one notable distinction, however, between benign effects and partial truth. As the
reader may have already noticed, none of the judgments for benign effects uses the context Γ, which

1Although, in specific cases we will deviate slightly from this form in order to provide more information relevant
to the environments.

124

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

is pervasive in modal logic of partial truth. There is a reason for this omission. When expressions
are treated as effectful computations, then values naturally must be considered as pure, i.e. effect
free. Indeed, values can never enact any effects, simply because their evaluation is already finished.
Because a pure computation returning a value of type A is itself typed as �A, treating values like
pure computations logically corresponds to extending the modal type system with the axiom

A→ �A

This move is identical to the way lax logic and the lax λ-calculus are obtained from modal logic
and the modal λ-calculus (Section 4.1.2), where we used the above axiom to identify truth and
necessity. It is only that in the system for benign effects, we start with a modal logic for partial
judgments (Chapter 2), rather than the propositional modal logic (Chapter 1). But if truth and
necessity are identified, then the context of truth hypotheses Γ is subsumed by the context of
necessity hypotheses ∆, as part of ∆ that declares variables of empty support. Correspondingly,
in our notation we will use x, y and variants to range over variables with empty support, and we
write x:A, instead of x:A [], when a variable x with empty support is declared in ∆.

We immediately put this this notational convention to use in our formulation of the typing rules
for function types A→ B.

Σ; (∆, x:A) ` e : B []

Σ;∆ ` λx:A. e : A→ B [C]

Σ;∆ ` e1 : A→ B [C] Σ;∆ ` e2 : A [C]

Σ;∆ ` e1 e2 : B [C]

The typing rules follow the customary formulations for λ-abstraction and application, but there are
several important observations to be made about the support C in these rules. First of all, notice
that the abstraction λx:A. e requires the body e to be typed with empty support. The motivation
for this typing is purely computational. In the usual formulation of operational semantics for
functional programming languages, λ-abstractions are always considered to be values. Because we
want to identify values and pure computations, we must require that function bodies be pure. The
whole λ-abstraction itself may be ascribed an arbitrary support C, which is a formulation required
by the support weakening principle.

Example 28 Anticipating section 4.6, suppose that our language contains a constructor raise,
such that raiseX e raises an exception X, passing the value of e along (assuming that both X and
e have the same type). Expressions that may potentially raise the exception X, will be ascribed
a support X by the type system. That way, the type system keeps track of the effects that an
expression may cause. Assuming that X is an exception of integer type, the following expression
F is not well-typed.

F = λy:int. 1 + raiseX y

The body 1 + raiseX y of F is effectful and has support X. But then F itself cannot be typed,
because of the restriction on the rules for λ-abstraction, as explained above.

Notice that the restriction on the typing of F is necessary. Even if F is a value, and does not
immediately perform an effect, it still cannot be considered pure. Indeed, F has the potential to
perform an effect, once it is applied to an argument. If F is typed as pure, the type system will
not be able to account for the effect of F . This is not to say that function bodies in our calculus
cannot contain effectful terms. They can, but the effects have to be encapsulated by the constructs
for modal necessity. For example, the term F ′ below is a well-typed counterpart to F .

F ′ = λy:int. box (1 + raiseX y) : int→ �X int

125

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

The typing of F ′ will be explained in detail in the forthcoming developments. �

A further observation about the typing rules for functions concerns the seeming mismatch
between the support of the argument e2 in the application rule, and the support with which the
variables are introduced in the context ∆ in the λ-abstraction rule. Indeed, λ-bound variables are
declared in ∆ with empty support, but e2 may have an arbitrary support C. This mismatch is
resolved by requiring that e2 must always be evaluated under the current environment before its
value is passed to e1. Because the value of e2 is pure (just like any value), it matches the empty
support used to declare bound variables in ∆. As a consequence, the calculi that we design in
this section will inherently be call-by-value. To make our operational semantics concrete, we will
also impose a left-to-right evaluation strategy. Notice however, that we deal with benign effects,
and therefore the evaluations of the function and the evaluation of function arguments do not
interfere with each other. The type system may in fact be soundly ascribed right-to-left or any
other call-by-value evaluation order.

From the logical standpoint, the described mismatch in supports is justified by the observation
that our type system identifies truth and necessity, in the same ways it is done in the formulation of
lax logic (Section 4.1). Because of this identification, all of our expressions are actually categorical,
and are therefore subject to reflection. We are free to reflect the argument e2 before substituting into
e1. As already discussed, in the type system for benign effects reflection corresponds to evaluation,
so we simply rely on the operational semantics to specify that e2 should be reflected before we pass
it to e1.

The notion of computation with benign effects is internalized into the calculus by using the
modal type constructor for necessity �. For example, given a type A, the type �CA will classify
the computations of type A, whose evaluation may cause the benign effects determined by the
support C. The appropriate typing rules are obtained by erasing the context Γ from the standard
formulation of the typing rules for � (Section 2.2.1).

Σ;∆ ` e : A [C]

Σ;∆ ` box e : �CA [D]

Σ;∆ ` e1 : �CA [D] Σ; (∆, u:A[C]) ` e2 : B [D]

Σ;∆ ` let box u = e1 in e2 : B [D]

We also have the following hypothesis rule

C v D

Σ; (∆, u:A[C]) ` u : A [D]

The term box e : �CA is a value that encapsulates an effectful computation e. As already ex-
plained, when e is evaluated, it may enact the effects whose names are listed in C. Because box e
is a value, and therefore pure, it may be weakened to an arbitrary support D. From the opera-
tional standpoint, boxing an expression e suspends its evaluation. On the other hand, performing
let box u = box e in e′ binds e to u, but does not necessarily evaluate e itself. The expression e
will be evaluated only if u appears in e′ outside of boxed expressions.

It is interesting here to draw a parallel between the operational behavior of modal construc-
tors with the behavior of λ-abstraction in impure functional languages. Suspending an effectful
expression e in an impure functional language is usually achieved by creating a λ-abstraction λx. e
(where x 6∈ fv(e)). For example, in a typical type-and-effect system [GL86, LG88, JG91, TJ94], a
computation is represented as a λ-abstractions whose type is annotated with a list of effects. The
characteristic typing rules are usually a variation on the following.

Σ; (∆, x:A) ` e : B [C]
(∗)

Σ;∆ ` λx:A. e : A
C
→ B []

Σ;∆ ` e1 : A
C
→ B [D1] Σ;∆ ` e2 : A [D2]

(∗∗)
Σ;∆ ` e1 e2 : B [C,D1, D2]

126

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

Does this similarity indicate that modal constructs are perhaps superfluous and may be removed
in favor of functional abstraction?

The answer to the above question is negative, as the import of the modal constructors in the
language of effects is not solely operational. Their main role is not to suspend the evaluation of
expressions, but to internalize the notion of effectful computation. For example, note that the rules
(*) and (**) are not locally complete, and therefore are not logically justified. The local expansion

of e : A
C
→ B [D] is given as

e : A
C
→ B [D] =⇒E λx. e x : A

C,D
→ B

and the expression e has a different type and support from its expansion. To contrast this, local
expansion in the calculus of benign effects preserves types and supports, as can easily be checked
from the equation below.

e : �CA [D] =⇒E let box u = e in box u

In fact, when effectful computations are internalized as a separate semantic category which is
different from functions, then functions and function types are fred from the responsibility to track
effects. Moreover, in such situations functions are usually required to be pure. This is not only the
case in our calculus of benign effects, but is also true of the monadic meta language [Mog91, Wad92].
In both our calculus and the monadic meta language, a function body may contain an effect only
if the effect is encapsulated by a computation-forming construct. And in both languages, the
range type of such a function will be a computation type (monadic type ©A in the monadic meta
language, and a modal type �CA in the calculus of benign effects).

Finally, our type system needs constructs for introduction of fresh effect instances into the
computation. Again, we adopt the approach from the modal calculus of Section 2.2 with certain
modifications.

(Σ, X:A);∆ ` e : B []

Σ;∆ ` νX:A. e : B [C]

Σ;∆ ` e : A 9 B [C]

Σ;∆ ` choose e : B [C]

The term constructor νX:A. e is the introduction form for the new type A 9 B. It declares a fresh
effect instance under the name X and introduces X into the context of names Σ. Any unused name
X 6∈ dom(Σ) would produce the same result, as justified by the renaming principle below. As a
consequence, the form νX:A. e actually binds the name X, which can therefore be α-renamed into
any other unused name of type A. The elimination form choose e allocates a new effect instance
of an appropriate type, and uses it instead of the name bound by e. The abstraction νX:A. e is
a value in our calculus, just like all the other type introduction forms that we introduced so far.
For the same reason as in the case of λ-abstraction, we require that the body of ν-abstraction has
empty support, in order to preserve the purity of values.

Principle (Renaming)
If (Σ, X:A,Σ1);∆ ` e : B [C] and Y :A is a fresh name, i.e. Y does not appear anywhere in this

judgments, then

(Σ, Y :A, [Y/X]Σ1); [Y/X]∆ ` [Y/X]e : ([Y/X]B) [[Y/X]C].

To summarize, the calculus of benign effects is very similar to the fragment of the ν-calculus
from Section 2 containing the � operator, with several important distinctions. First of all, the

127

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

calculus of benign effects admits the axiom A→ �A, which is not realized in the ν-calculus. The
operational import of this axiom is to coerce values into pure computations. As a consequence, the
context Γ of value variables, which is characteristic of the judgmental formulations of modal logic
and modal calculi, is subsumed by the context ∆ in the calculus of benign effects. Second, bodies
of λ- and ν-abstractions in the calculus of benign effects must have empty support, while in the
ν-calculus this support may be arbitrary. Third, and probably the most important is that reflection
in the ν-calculus is performed eagerly, upon modal substitution, and is defined on expressions that
may contain free modal variables. In the calculus of benign effects, reflection of the expression e
under the environment Θ is specified by a separate term constructor 〈Θ〉e. It is not tied to modal
variables and modal substitution.

Before we conclude this section, we summarize the syntax, typing and operational semantics of
the modal calculus for benign effects. Just as in Section 2.1, this will not be a complete system, but
rather only the common core fragment that we extend in future section with constructs defining
particular effects. In each of these cases we will provide the appropriate proofs of progress and type
preservation.

Names X,Y ∈ N
Supports C,D ::= · | C,X
Types A,B ::= P | A→ B | �A | A 9 B | . . .
Expressions e ::= u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2

νX:A. e | choose e | . . .
Variable contexts ∆ ::= · | ∆, u:A[C]
Name contexts Σ ::= · | Σ, X:A

The type system consists of the following three judgments: Σ ` C supp, Σ ` A type and Σ;∆ `
e : A [C]. The first two judgments deal with formation of supports and types. The third judgment
Σ;∆ ` e : A [C] checks the expression e against the type A and support C. In this judgment, it is
assumed that A and C are well-formed.

Definition of Σ ` C supp.

Σ ` · supp

Σ ` C supp X ∈ dom(Σ)

Σ ` C, X supp

Definition of Σ ` A type.

Σ ` P type

Σ ` A type Σ ` B type

Σ ` A → B type

Σ ` A type Σ ` B type

Σ ` A * B type

Σ ` A type Σ ` C supp

Σ ` + CA type

Definition of Σ;∆ ` e : A [C].

128

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

C v D

Σ; (∆, u:A[C]) ` u : A [D]

Σ; (∆, x:A) ` e : B []

Σ; ∆ ` λx:A. e : A → B [C]

Σ; ∆ ` e1 : A → B [C] Σ; ∆ ` e2 : A [C]

Σ; ∆ ` e1 e2 : B [C]

Σ; ∆ ` e : A [D]

Σ; ∆ ` box e : , DA [C]

Σ; ∆ ` e1 : , DA [C] Σ; (∆, u::A[D]) ` e2 : B [C]

Σ; ∆ ` let box u = e1 in e2 : B [C]

(Σ, X:A);∆ ` e : B []

Σ; ∆ ` νX:A. e : A - B [C]

Σ; ∆ ` e : A - B [C]

Σ; ∆ ` choose e : B [C]

Example 29 If C,C1, C2 and D are well-formed supports, then the following are derivable typing
judgments in the calculus of benign effects.

1. ` λx. box x : A→ �DA

2. ` λx. let box u = x in u : �A→ A [−]

3. ` λx. let box u = x in box u : �C1
A→ �CA, where C1 v C

4. ` λx. let box u = x in box box u : �C1
A→ �D�CA, where C1 v C

5. ` λx. λy. let box u = x in let box v = y in box u v
: �C1

(A→ B)→ �C2
A→ �CB, where C1, C2 v C

Notice that the judgment (2) requires that the type of the abstraction argument is �A, where
the index on the modal operator is empty. Indeed, the following generalization of (2) to non-empty
supports is not derivable in the calculus of bening effects, because of the previously discussed
restriction that bodies of λ-abstractions must be pure.

6` λx. let box u = x in u : �C1
A→ A [C]

However, the hypothetical judgment corresponding to this implication is derivable, as shown below.

x:�C1
A ` let box u = x in u : A [C], where C1 v C

�

Example 30 To abbreviate notation and reduce clutter, we introduce into the calculus the term
constructor unbox e as a syntactic abbreviation for let box u = e in u. The new term constructor
has the following derived typing rule

Σ;∆ ` e : �CA [D] C v D

Σ;∆ ` unbox e : A [D]

129

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

We also define let val x = e1 in e2 to stand for unbox ((λx. box e2) e1), rather than the usual
(λx. e2) e1. The additional complication arises because we have to box e2 and make it pure before
we can put it under a λ-abstraction. The derived typing rule for let val is

Σ;∆ ` e1 : A [C] Σ; (∆, x:A) ` e2 : B [C]

Σ;∆ ` let val x = e1 in e2 : B [C]

Similarly, the term constructor let name X:A in e is an abbreviation for

unbox (choose (νX:A. box e)),

with the typing rule below. It is assumed that X is a fresh name which does not appear in dom(Σ).

(Σ, X:A);∆ ` e : B [C]

Σ;∆ ` let name X:A in e : B [C]

�

The operational semantics of this core fragment of the modal calculus of benign effects is defined
through the judgment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The expressions e and e′ must not contain
any free variables. However, both e and e′ may contain effects, whose names are declared in Σ
and Σ′, respectively. The name context Σ′ is always an extension of Σ, as the reduction step may
introduce new names to stand for new effect instances.

The operational semantics is a call-by-value, left-to-right, evaluation context semantics in the
style of Wright and Felleisen [WF94]. In order to perform one evaluation step, the expression e is
decomposed uniquely as e = E[r], where r is a redex, and E is an evaluation context, capturing
the environment in which r is reduced. Then it suffices to define primitive reduction relation for
redexes (which we denote by −→), and let the evaluation of expressions (which we denote by 7−→)
always first reduce the redex identified by the unique decomposition.

Values v ::= λx:A. e | box e | νX:A. e | . . .
Redexes r ::= (λx. e) v | let box u = box e in e | choose (νX. e)
Evaluation contexts E ::= [] | E e1 | v1 E | let box u = E in e | choose E

Σ, (λx. e) v −→ Σ, [v/x]e Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Y 6∈ dom(Σ)

Σ, choose (νX:A. e) −→ (Σ, Y :A), [Y/X]e

Σ, r −→ Σ′, e′

Σ, E[r] 7−→ Σ′, E[e′]

130

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

4.4 Dynamic binding

Syntax and typing

The type system that we develop in this section is intended to model memory allocation, lookup and
non-destructive update. The idea is to view names as memory locations of arbitrary type, and track
their dereferencing through the mechanism of supports. Looking up a name in a given environment
will be an effect, and substituting a name with a term by means of an explicit substitution will
handle this effect. The operational semantics evaluates expressions with empty support, and hence
permits dereferencing of only those names that are captured by some explicit substitution. Thus,
we can only dereference initialized names.

In a sense, this system is a middle way between a calculus with local variables and let-definitions
on one side, and a calculus of state on the other side. Names are really allocated memory locations,
but at the same time, assigning values to names via explicit substitutions is not a destructive
operation. Each name can be assigned a value an arbitrary number of times (including zero), but
the assignment only have local scope, and dereferencing a name will use the nearest assignment.
Thus, the obtained calculus is really a type-safe version of dynamic binding, much in the style of
LISP and Scheme. We will build on this system in Section 4.5 to obtain a more general calculus
of state with destructive update. The previous work related to dynamic binding is discussed in at
the end of this chapter in Section 4.9.

The syntax of the calculus for dynamic binding extends the core fragment with new constructs
for name lookup and substitution. The modal constructor � is used to internalize effectful com-
putations. An expression of type �CA is a computation that produces a value of type A when
executed, but in the course of evaluation may need to dereference the names listed in the support
C. In the case of dynamic binding, supports are sets of names, and the partial ordering on supports
is defined as the subset ordering on sets. In other words, C v D if and only if C ⊆ D. Obviously,
the empty set is the minimal element of this ordering. The resulting language is very similar to
the ν-calculus from Section 2.2. However, dynamic binding is an example of a calculus of benign
effects, and it inherits the distinctive features of the core calculus for benign effects (summarized
in Section 4.3).

In dynamic binding, the environment in which expressions are evaluated is a store, consisisting
of a set of names (i.e., memory locations) each of which is associated with a value. We represent
stores using explicit substitutions. An explicit substitution Θ is syntactically defined as a set of
assignments of expressions to names. A name X is referenced by simply using it in some term. The
construct 〈Θ〉e applies Θ over the expression e, or alternatively, evaluates e in the store represented
by Θ.

Explicit substitutions Θ ::= · | X → e,Θ
Expressions e ::= . . . | X | 〈Θ〉e

Example 31 Let us assume that X and Y are integer names. The code segment below defines a
benign computation u that reads from X and Y to return X 2 + Y 2. Then X and Y are initialized
to 1 and 2, respectivelly, before u + 2XY is evaluated.

- let box u = box (X2 + Y2)

in

<X->1, Y->2> (u + 2XY)

end;

val it = 9 : int

131

4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

�

The semantics of explicit substitutions is defined as in Section 2.2.3, subject to some minor
modification. We repeat the definition here in a more compact form, and point out the differences
from the previous sections.

Explicit substitutions are partial functions from names to terms. In other words, an explicit
substitution never assigns an expression to a name more than once, and there is no ordering between
the substitution assignments. Given a substitution Θ, the domain and range of Θ are the sets

dom(Θ) = {X | X → e ∈ Θ}

and

range(Θ) = {e | X → e ∈ Θ}

The set fn(Θ) of free variables of Θ is defined as the set of free variables of expressions in range(Θ).
The set fn(Θ) of free names of Θ is the set of names in the domain and range of Θ. We denote the
empty substitution simply by 〈 〉.

Every substitution Θ defines a unique function of substitution application {Θ} on expressions.
Substitution application {Θ}e is capture-avoiding and is defined by induction of the structure of e
as follows.

{Θ} X = Θ(X)
{Θ} u = 〈Θ〉u
{Θ} (〈Θ′〉e) = 〈Θ ◦Θ′〉e
{Θ} (λx:A. e) = λx:A. e x 6∈ fv(Θ)
{Θ} (e1 e2) = {Θ}e1 {Θ}e2

{Θ} (box e) = box e
{Θ} (let box u = e1 in e2) = let box u = {Θ}e1 in {Θ}e2 u 6∈ fv(Θ)
{Θ} (νX:A. e) = νX:A. e X 6∈ fn(Θ)
{Θ} (choose e) = choose {Θ}e

As usual, substitution application does not descend under box. Names appearing in a internalized
computations need not be initialized because an internalized computation is suspended, and hence
its names are not dereferenced. However, when a computation is actually unboxed and executed,
this has to be done in a scope of a substitution that initializes the relevant names, as illustrated in
Example 31. This aspect of explicit substitutions emphasizes and illustrates our observation from
Section 4.3 that modal constructors do not simply serve to suspend computations. As the above
definition shows, the construct box e, in addition to suspending the evaluation of e, also “protects”
the expression e from the surrounding explicit substitutions.

To outline some further aspects of the above definition, notice that substitution application over
a variable u is explicitly remembered, resulting in a term 〈Θ〉u. When the variable u is substituted
by a certain expression, the names appearing in this expression will be initialized by Θ. On the
other hand, substitution application does not descend into λ- and ν-abstractions, because the type
system guarantees that abstraction bodies are pure, and therefore name-free.

The operation of substitution application depends upon the operation of substitution composi-
tion Θ1 ◦Θ2, which is defined as in Section 2.2.3.

Θ1 ◦Θ2 = {X → {Θ1}([[Θ2]](X)) | X ∈ dom(Θ1) ∪ dom(Θ2)}

132

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

The operation is well-founded – computing Θ1 ◦ Θ2 only requires applying Θ1 to subterms in
range(Θ2). On the other hand, substitution application is defined inductively, so the size of terms
on which it operates is always decreasing.

The type system for dynamic binding extends the core system for benign effects with rules that
describe the specific aspects of name dereference and substitution. In particular, the judgment for
expressions is extended with the rules

X:A ∈ Σ

Σ;∆ ` X : A [C,X]

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]⇒ [D]

Σ;∆ ` 〈Θ〉e : A [D]

where the judgment Σ;∆ ` 〈Θ〉 : [C] ⇒ [D] types explicit substitutions, and is axiomatized as
follows.

C v D

Σ;∆ ` 〈 〉 : [C]⇒ [D]

Σ;∆ ` e : A [D] Σ;∆ ` 〈Θ〉 : [C \X]⇒ [D] X:A ∈ Σ

Σ;∆ ` 〈X → e,Θ〉 : [C]⇒ [D]

Support of an expression describes which names the expression may dereference. In line with this
semantics, the rule for name dereferencing allows X to be used only if it is present in the support
set C,X. Substitutions initialize the names in the expression over which they are applied, and
so the rule for substitution application requires that the domain support C of the substitution Θ
matches the support of the argument expression e.

Example 32 Consider the ML-like program below.

let val xref = ref 0

fun f (y) = !xref + y

val z = f 1

in

((x:=1; f 1), z)

end

A similar program can be written in the calculus of dynamic binding as follows.

- let name X : int

in

<X -> 0>

let fun f(y : int) : �Xint = box (X + y)

box u = f 1

val z = u

in

(<X -> 1>u, z)

end

end;

val it = (2, 1) : int * int

The variable u is bound to the computation (X + 1), and thus X must be initialized before u is
used. In this particular example, the first unsuspended reference to u (and therefore to X as well)
is in the scope of the substitution <X -> 0> and the second one is in the scope of <X -> 1>. �

133

4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

Operational semantics

The evaluation judgment for dynamic binding extends the core fragment with the new construct
for substitution application. The judgment still has the form

Σ, e 7−→ Σ′, e′

where Σ and Σ′ are run-time contexts of currently allocated, but not necessarily initialized, names.
And we still only consider evaluation of expressions e which have empty support.

We adopt a call-by-value strategy for evaluating substitutions; that is, all the assignments in
a substitutions are first reduced to values, before the substitution itself is applied. To formalize
this policy, we define the notion of value substitutions, and use it to extend the evaluation contexts
and redexes of the calculus of benign effects. The definition of the syntactic categories that are
immediately relevant to the operational semantics of the calculus are sumarized below.

Values v ::= λx:A. e | box e | νX:A. e
Value substitutions σ ::= · | X → v, σ
Evaluation contexts E ::= [] | E e1 | v1 E | let box u = E in e | choose E |

〈σ,X → E,Θ〉e
Redexes r ::= (λx. e) v | let box u = box e in e | choose (νX. e) | 〈σ〉e

Σ, (λx. e) v −→ Σ, [v/x]e Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Y 6∈ dom(Σ)

Σ, choose (νX:A. e) −→ (Σ, Y :A), [Y/X]e Σ, 〈σ〉e −→ Σ, {σ}e

Σ, r −→ Σ′, e′

Σ, E[r] 7−→ Σ′, E[e′]

Note that the operational semantics does not evaluate under explicit substitutions, and thus
uninitialized names will never be encountered during the evaluation. Rather, the expression 〈σ〉e is
reduced by first employing the meta operation {σ}e to carry out the substitution σ over e, before
the evaluation can proceed.

Structural properties and type soundness

The structural properties and the main substitution principles of the calculus for dynamic binding
follow closely the presentation from Section 2.2.3. This is not surprising, as the calculus of dynamic
binding differs very slightly from the � fragment of the modal ν-calculus. As already argued in
the previous sections of this chapter, the main distinctions between the two calculi involve: (1) the
context Γ is ommitted in the calculus of dynamic binding; (2) functional and ν-abstractions are
restricted to bodies with empty support, and (3) explicit substitutions are not restricted to appear
only around modal variables. These distintions, however, do not seriously influence the proofs of
the main properties.

134

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

For example, the explicit substitution principle is a straightforward adaptation of the corre-
sponding explicit substitution principle from Section 2.2.3.

Lemma 37 (Explicit substitution principle)
Let Σ;∆ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds

1. if Σ;∆ ` e : A [C], then Σ;∆ ` {Θ}e : A [D]

2. if Σ;∆ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

Proof:
The proof is by simultaneous induction on the structure of the derivations. The interesting part

is the second induction hypothesis, whose proof utlizies the splitting of Ψ = Θ◦Θ ′ into two disjoint
sets

Ψ′
1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}

Ψ′
2 = {X → {Θ}(Θ′(X)) | X ∈ dom(Θ′)}

The argument proceeds in an identical as in Section 2.2.3. �

The calculus of benign effects (and thus, the calculus of dynamic bindin as well), does not contain
a notion of ordinary value variables, so the Value substitution principle of the modal ν-calculus
(Theorem 12) does not have an equivalent in dynamic binding. However, the Modal substitution
principle (Theorem 14) does, because the variables in calculus of dynamic binding really correspond
to the modal variables of the modal ν-calculus. Because these are the only variables in dynamic
binding, we emphasize this fact by renaming the principle into Expressions substitution principle.

Lemma 38 (Expression substitution principle)
Let Σ;∆ ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D]

2. if Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]⇒ [D], then Σ;∆ ` 〈[e1/u]Θ〉 : [D′]⇒ [D]

Proof: By simultaneous induction on the two derivations. Selected cases are presented below.

case e2 = box e′, where B = �D′B′.

By derivation, Σ; (∆, u:A[C]) ` e′ : B′ [D′]. By the first induction hypothesis, Σ;∆ ` [e1/u]e′ :
B′ [D′]. Now the result follows by the definition of substitution, and the typing rule for box.

case e2 = let box u′ = e′ in e′′.

By derivation, Σ; (∆, u:A[C]) ` e′ : �D′B′ [D] and also Σ; (∆, u:A[C], u′:B′[D′]) ` e′′ : B [D].
By induction hypothesis, Σ;∆ ` [e1/u]e′ : �D′B′ [D] and Σ; (∆, u′:B′[D′]) ` [e1/u]e′′ : B [D].
This immediately leads to the result, by the typing rule for let box.

�

The next lemma allows for exchanging expressions in context, as long as their types agree. It
will be used later in the proofs of Preservation (Lemma 42) and Progress (Lemma 44).

Lemma 39 (Replacement)
If Σ; · ` E[e] : A [−], then there exist a type B such that

135

4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

1. Σ; · ` e : B [−], and

2. if Σ′ extend Σ, and Σ′; · ` e′ : B [−], then Σ′; · ` E[e′] : A [−]

Proof:

By induction on the structure of E. The base case when E = [] is obvious. For a more
complicated case, consider E = 〈σ,X → E1,Θ〉e1, where X:B ′ ∈ Σ. By derivation, Σ; · ` E1[e] :
B′ [−], and the first statement of the lemma follows immediately by the induction hypothesis.

For the second statement of the lemma, consider Σ′ ⊇ Σ and e′ such that Σ′; · ` e′ : B [−]. By
induction hypothesis, Σ′; · ` E1[e

′] : B′ [−]. The result now follows by the typing rules for explicit
substitutions.

�

Lemma 40 (Canonical forms)
Let v be a value such that Σ; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 []

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 []

As a consequence, the support of v is empty, and can be weakened arbitrarily.

Proof: By a straightforward case analysis. �

Primitive reduction in the calculus of dynamic binding preserves types, as the Subject reduction
lemma shows.

Lemma 41 (Subject reduction)
If Σ; · ` e : A [−] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [−].

Proof: The cases when e = (λx. e′) v or e = let box u = box e1 in e2 follow by the expression
substitution principle. If e = choose νX. e1 follows by the definition of primitive reduction, and
the typing rules.

The only mildly interesting case is when e = 〈σ〉e1. In this case, by derivation, Σ; · ` e1 : A [C1],
and Σ; · ` 〈σ〉 : [C1]⇒ [−]. By the explicit substitution principle, Σ; · ` {σ}e1 : A [−]. But, by defi-
nition of the primitive reductions, it is exactly Σ′ = Σ and e′ = {σ}e1; this concludes the proof. �

Lemma 42 (Preservation)
If Σ; · ` e : A [−] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [−].

Proof: By evaluation rules, there exists an evaluation context E such that e = E[r], Σ, r −→ Σ ′, r′

and e′ = E[r′]. By replacement, there exists B such that Σ; ·; · ` r : B [−].

By subject reduction, Σ′ extends Σ, and Σ′; · ` r′ : B [−]. By relacement again, Σ′; · ` E[r′] :
A [−]. Since e′ = E[r′], this proves the lemma.

�

136

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

Lemma 43 (Unique decomposition)
If e is a closed expression (i.e., e does not contain any free variables, but may contain free names)
then either:

1. e is a value, or

2. e = E[X], for a unique evaluation context E and a name X, or

3. e = E[r] for a unique evaluation context E and a redex r.

Proof: By induction on the stucture of e. A representative case is when e is an application of an
explicit substitution. In this case we distinguish three possibilites:

1. e = 〈σ,X → E1[Y],Θ〉e2. In this case, just pick E = 〈σ,X → E1,Θ〉e2, and the second
statement of the lemma holds.

2. e = 〈σ,X → e1,Θ〉e2, where e1 is not a name in context (this case was considered above), nor
a value. In this case, by induction hypothesis, e1 = E1[r]. We pick E = 〈σ,X → E1,Θ〉e2,
and the third statement of the lemma holds.

3. e = 〈σ〉e2. In this case, pick E = [], r = e, and the third statement of the lemma holds.

�

Finally, we can now show that the calculus of dynamic binding satisfies the the usual progress
properties, i.e., that the evaluation of well typed closed expressions do not get stuck.

Lemma 44 (Progress)
If Σ; · ` e : A [], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof: Because e has empty support, by unique decomposition, e is either a value, or there exists
unique E and r such that e = E[r]. In case e is not a value, by replacement lemma, there exists B
such that Σ; · ` r : B [−]. By case analysis of the structure of r, it is clear that there exists Σ ′ and
e1 such that Σ, r −→ Σ′, e1. By the rules for evaluation, Σ, E[r] 7−→ Σ′, E[e1], so we simply pick
e′ = E[e1]. �

The progress lemma proves that a well typed term can always be reduced, but does not say
anything about the uniqueness of this reduct. And indeed, just as in the modal ν-calculus, this
reduct is not unique, but the only difference between reducts is due to the different choices of fresh
names that may be allocated during the reduction.

Lemma 45 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names π : N → N ,
fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: Analogous to the proof of determinacy for the modal ν-calculus (Theorem 19). �

137

4.5. STATE CHAPTER 4. EFFECTS

4.5 State

Syntax and typing

In the calculus of dynamic binding from Section 4.4, names stand for (possibly uninitialized) mem-
ory locations and explicit substitutions assign values to locations. In this sense, dereferencing a
name corresponds to a read, and substituting for a name corresponds to an update. But, as the
following dynamic binding program illustrates, explicit substitutions may not perform the update
destructively.

let name X : int

in

<X -> 0>

let fun f(y: int) : �Xint = box (X + y)

box u = f 1

in

(<X -> 1>u, u + 1)

end

end

Indeed, the subterm <X -> 1>u cannot possibly destructively update X to 1 before evaluating u,
simply because the old value of X (in this case 0), has to be preserved for the evaluation of the
second element of the pair, u + 1. Explicit substitutions and dynamic binding alone are too weak.
This limitation, however, is only to be expected. After all, the calculus of dynamic binding is a
calculus of benign effects. The modal operator �C may only classify effectful computations that do
not change the run-time environment in which the program evaluates. Destructively writing into
memory certainly performs exactly such a change.

The solution is to serialize the explicit substitutions, so that once a substitution is attempted,
its scope extends to the rest of the program; it is never required to revert back to some previ-
ous substitutions. Thus, there would always be exactly one substitution “active” at every single
moment, and it would play the role of global store.

As we already mentioned in Section 4.2, the serialization of effectful computations is exactly
the duty of modal possibility. Thus, if we want to use explicit substitutions to model destructive
state update, we need to tie explicit substitutions to 3. Intuitively then, we should obtain a whole
family 3C of possibility operators indexed by support sets, where the type 3CA classifies an explicit
substitution for C paired up with a computation of type A. More concretely, 3CA types programs
of type A that first write destructively into locations C and then compute a value of type A in the
new state. This would pleasantly contrast the type �CA that we already used in Section 4.4 to
type programs that read from locations C before computing a value of type A.

The described typing of the calculus for destructive update will obviously be very similar to
simultaneous possibility from Sections 2.1.4 and 2.2. We start the development by defining the
following syntactic categories on top of the syntax of the calculus of dynamic binding.

Types A ::= . . . | 3CA
Phrases f ::= [Θ, e] | let dia x = e in f | let box u = e in f
Expressions e ::= . . . | dia f

As expected, the grammar of types is extended with the family 3CA, whose term constructor
is dia f , encapsulating a phrase f . Phrases are a new syntactic category intended to describe

138

CHAPTER 4. EFFECTS 4.5. STATE

computations which change the global store. The basic phrase constructor is the form [Θ, e] which
ties a substitution Θ and a term e together; this is a computation which first writes into the
locations determined by Θ before evaluating e in the new store. When Θ is the empty substitution,
we will simply write e instead of [·, e]. The changes to the global store are actually enacted by
the elimination form let dia. This form takes an expression e which evaluates to a phrase, thus
carrying a substitution Θ and an expression e1. The substitution Θ is then promoted into a global
store, after which e1 is evaluated and bound to x, before the evaluation of f is undertaken. The
phrase form let box u = e in f takes a computation internalized by the expression e and binds it
to u to be used in the phrase f .

Example 33 Assuming that X and Y are integer names, the expression

let dia z = dia [<X->1, Y->2>, 2XY]

in

X2 + Y2 + z

end

writes 1 and 2 into the locations X and Y respectively, then binds 4 to the local variable z, before
the evaluation steps to the phrase [<X->1, Y->2>, X2 + Y2 + 4]. �

The type system for state with destructive update consists of two mutually recursive judgments:
one for typing expressions, and another one for typing phrases. The expression judgment extends
the system from Section 4.3, and has the form

Σ;∆ ` e : A [C]

establishing that e may possibly read from locations listed in the support set C. The phrase
judgment has the form

Σ;∆ ` f ÷C A [D]

This judgment establishes that the phrase f consists of a substitution of type [C] ⇒ [D], and an
expression of type A. The expression may dereference the names from the support C, because they
are initialized by the substitution. We present the type system below, and comment on the rules.

Definition of Σ;∆ ` f ÷C A [D].

Σ;∆ ` 〈Θ〉 : [C]⇒ [D] Σ;∆ ` e : A [C]

Σ;∆ ` [Θ, e] ÷C A [D]

Σ;∆ ` e : 3C1
A [D] Σ; (∆, x:A) ` f ÷C2

B [C1]

Σ;∆ ` let dia x = e in f ÷C2
B [D]

Σ;∆ ` e : �CA [D] Σ; (∆, u:A[C]) ` f ÷C2
B [D]

Σ;∆ ` let box u = e in f ÷C2
B [D]

139

4.5. STATE CHAPTER 4. EFFECTS

Definition of Σ;∆ ` e : A [C].
Σ;∆ ` f ÷D A [C]

Σ;∆ ` dia f : 3DA [C]

The phrase [Θ, e] is a computation that, when executed, changes the global store according to
Θ, and then evaluates e in the changed store. Thus, the typing rule for [Θ, e] requires that the
names used in e are all defined by Θ. In other words, the support of e must match the domain type
of Θ. In this respect, the phrase constructor [Θ, e] is similar, somewhat curiosly, to the constructor
for substitution application 〈Θ〉e, as indeed witnessed by their typing rules (see Section 4.4). The
two constructors, however, have very different operational meanings. The explicit substitution 〈Θ〉e
carries out Θ over the expression e. In the phrase [Θ, e], the substitution Θ is not applied over e;
rather, it is composed with the current global store to affect a change of the environment. The
first construct provides non-destructive location update, while the second is used when destructive
update is required. What is interesting is that both capabilities harmoniously coexist within the
system.

The typing rule for dia is a judgmental coercion from phrases to expressions. It internalizes
persistent computations, so that they can be used as ordinary expressions. To justify the typing
rule for let dia x = e in f on the grounds of its intended operational behavior, observe that
e : �C1

A [D], and therefore e internalizes a phrase consisting of substitution Θ : [C1] ⇒ [D] and
expression e′ : A [C1]. The role of let dia is to institute the substitution Θ as a new global store
providing definitions for names in the support C1, then evaluate e′ to a value, bind it to x and
proceed with the evaluation of f . Following this semantics, we can allow f to be supported by C1,
because the new global store in which f is evaluated defines the names from C1. We are also free
to declare x as being of empty support in the typing of f , because x will always be bound to a
value.

Example 34 We will use some further syntactic abbreviations as well. Recall that in the calculus
of benign effects, we abbreviated:

let val x = e1 in e2 = unbox ((λx. box e2) e1)

let name X:A in e = unbox (choose (νX:A. box e))

We need similar constructs in the syntactic category of phrases; we define them in terms of let val
and let name for expressions.

let val x = e in f = let dia y = (let val x = e in dia f) in y

let name X:A in f = let dia y = (let name X:A in dia f) in y

In contrast to the let box construct for phrases, which is primitive in the calculus, and must be
present in order to ensure the subformula property, let val and let name do not eliminate any
type and hence do not have any proof theoretic significance. The typing rules for the two are easily
derived as

Σ;∆ ` e : A [C] Σ; (∆, x:A) ` f ÷D B [C]

Σ;∆ ` let val x = e in f ÷D B [C]

(Σ, X:A);∆ ` f ÷D B [C]

Σ;∆ ` let name X:A in f ÷D B [C]140

CHAPTER 4. EFFECTS 4.5. STATE

�

Example 35 If C and D are well-formed supports, then the following are derivable judgments in
the calculus of state.

1. ` λx. dia (let dia y = x in [·, y]) : 3DA→ 3CA, where C ⊆ D

2. ` λx. dia [·, x] : A→ 3A

3. ` λx. dia (let dia y = x in let dia z = y in [·, z]) : 3C3DA→ 3DA

4. ` λx. λy. let box u = x in dia (let dia z = y in [·, u z])
: �C(A→ B)→ 3DA→ 3DB, where C ⊆ D

As an illustration, we present the derivation of the judgment (1).

x:3DA ` x : 3DA

C ⊆ D

x:3DA, y:A ` 〈·〉 : [C]⇒ [D]

∅ ⊆ C

x:3DA, y:A ` y : A [C]

x:3DA, y:A ` [·, y] ÷C A [D]

x:3DA ` let dia y = x in [·, y] ÷C A

x:3DA ` dia (let dia y = x in [·, y]) : 3CA

` λx. dia (let dia y = x in [·, y]) : 3DA→ 3CA

As can be noticed, the function (1) simply η-expands its argument x. It illustrates that strength-
ening at the index supports of 3 types is derivable. This is not surprising, as strenghtenning only
involves forgetting some entries from the substitution associated with the phrase x. The rest of the
expressions generalize the characteristic axioms of the constructive S4 modal possibility introduced
in Section 1.1.4. For example, function (2) is a coercion from expressions into phrases with empty
substitution; notice that the range type is 3A with empty index support. Coercions from A to
3CA with non-empty C are not generally available as they require providing definitions for each
name in C. In other words,

6` λx. dia [·, x] : A→ 3CA

However, the following hypothetical judgment is derivable:

x:A ` dia [·, x] : 3CA [D] if C ⊆ D,

as witnessed by the derivation below.

C ⊆ D

x:A ` 〈·〉 : [C]⇒ [D]

∅ ⊆ C

x:A ` x : C

x:A ` [·, x] ÷C A [D]

x:A ` dia [·, x] : 3CA [D]

Function (3) illustrates that it is only the last layer of 3’s that matter; all the additional ones
can be ignored. Function (4) takes x:�C(A→ B) and y:3CA as arguments. The argument x
embodies a computation u:A → B[C] which depends on names C in order to generate a function
of type A → B. The argument y is a computation that provides a term v:A and definitions for

141

4.5. STATE CHAPTER 4. EFFECTS

names in C (and possibly some more, since its index support is D ⊇ C). The definitions from y
are then placed into the global store and used as an environment for evaluating u v. �

Example 36 We can use the new type and term constructors for possibility to serialize the
example given at the beginning of the section.

let name X : int

dia dummy = dia [<X->0>, ()]

fun f(y : int) : �Xint = box (X + y)

box u = f 1

val z = u + 1

let dia w = dia [<X->1>, u]

in

(w, z)

end

end

In the last line of this program, we abbreviated, and instead of [<>, (w, z)], simply wrote (w, z).
The program is well-typed in the judgment of phrases, and has the type int× int.

We next informally describe the evaluation of this program, with the goal of suplying the
intutition for the next section, where we present the operational semantics of the calculus. The
evaluation starts by allocating an integer name X, which promply becomes part of the global
store, initialized to 0. Then the function f is defined. Notice that we assume recursive function
definitions, which are easily added to the language without any technical problems. The evaluation
proceeds by computing f 1, which evaluates to box (X +1), so that u is bound to X + 1. Because
global store declares that X → 0, the variable z is bound to 2, which is the value of u + 1 relative
to the current global store. Subsequently, however, the global store is changed into X → 1, and
the variable w is bound to the value of the expression u, as computed in this new version of the
store. As u is bound to X +1, w is assigned the value 2. Thus, the final outcome of the evaluation
is the pair (2, 2). Observe that the final result does not depend on the name X; this is enforced
by the typing rules for let name. As a consequence, X can silently be ommitted from the store at
the end of the evaluation. �

Operational semantics

In this section we develop a call-by-value left-to-right operational semantics for the calculus of
state with both the modal constructors � and 3. We ignore the phrase constructors let val and
let name as they are only syntactic sugar and do not influence the properties we explore here.

The first step is to extend the meta operation of substitution application to account for the new
constructs.

{Θ} dia f = dia {Θ}f

{Θ} [Θ′, e] = [Θ ◦Θ′]e
{Θ} let dia x = e in f = let dia x = {Θ}e in f
{Θ} let box u = e in f = let box u = {Θ}e in {Θ}f

Note that the substitution application is carried out only over the branch e, but not over the body
f of a let dia construct. This is justified because f is evaluated under a substitution determined
by e; any influence that Θ might have over f has to be via e.

142

CHAPTER 4. EFFECTS 4.5. STATE

The operational semantics is defined by means of two evaluation judgments: one for expressions
and one for phrases. We adopt a particular formulation of these judgments which emphasizes the
relationship between the simultaneous modal possibility and global state. The expression evaluation
judgment has the form

Σ, e
σ
7−→ Σ′, e′

and reads: in a context of declared locations Σ and a store σ assigning values to these locations
(and some locations may remain uninitialized), the term e steps into e′ and possibly introduces
new locations Σ′. The evaluation steps cannot change the store σ, as expressions can only read
from the store but not write into it. The definition is a straightforward extension of the operational
semantics of dynamic binding (Section 4.4).

The judgment for evaluating phrases prescribes evaluation of stateful constructs. It has the
form

(Σ, σ), f 7−→ (Σ′, σ′), f ′

where f steps into f ′, changing in the process the set of allocated locations from Σ into Σ′ and
the global store from σ into σ′. The evaluation strategy that we consider will evaluate under the
constructor dia only if it is found in a let-branch of a let dia. This way, the changes to the global
store prescribed under dia will take place only when they are serialized by a let dia. Note that this
is not the only possible evaluation strategy, but it is the one that relates simultaneous possibility
to global state and destructive update. Following this idea, we extend the categories of values,
evaluation contexts and redexes from Section 4.3 as summarized below.

Values v ::= λx:A. e | box e | νX:A. e | dia f
Value substitutions σ ::= · | X → v, σ
Evaluation contexts E ::= [] | E e1 | v1 E | let box u = E in e | choose E | 〈σ,X → E,Θ〉e
Redexes r ::= (λx. e) v | let box u = box e in e | choose (νX. e) | 〈σ〉e | X
Phrase contexts F ::= [] | let dia x = E in f | let dia x = dia F in f |

let dia x = dia [〈σ,X → E,Θ〉, e] in f |
let dia x = dia [·, E] in f |
let box u = E in f

Phrase redexes c ::= let dia x = dia [σ, e] in f | let dia x = dia [·, v] in f |
let box u = box e in f

The two evaluation judgments require two primitive reduction relations: a primitive reduction for
expressions

σ
−→, and a primitive reduction for phrases −→.

Primitive reductions for expressions.

Σ, (λx. e) v
σ
−→ Σ, [v/x]e Σ, let box u = box e1 in e2

σ
−→ Σ, [e1/u]e2

Σ, choose (νX:A. e)
σ
−→ (Σ, X:A), e Σ, 〈σ′〉e

σ
−→ Σ, {σ′}e Σ, X

σ
−→ Σ, σ(X)

Primitive reductions for phrases.

143

4.5. STATE CHAPTER 4. EFFECTS

σ′ 6= (·)

(Σ, σ), let dia x = dia [σ′, e] in f −→ (Σ, σ ◦ σ′), let dia x = dia [·, e] in f

(Σ, σ), let dia x = dia [·, v] in f −→ (Σ, σ), [v/x]f

(Σ, σ), let box u = box e in f −→ (Σ, σ), [e/u]f

Evaluation for expressions.

Σ, r
σ
−→ Σ′, e′

Σ, E[r]
σ
7−→ Σ′, E[e′]

Evaluation for phrases.

Σ, r
σ
−→ Σ′, e′

(Σ, σ), F [r] 7−→ (Σ′, σ), F [e′]

(Σ, σ), c −→ (Σ′, σ′), f ′

(Σ, σ), F [c] 7−→ (Σ′, σ′), F [f ′]

All the rules are fairly straightforward, except the one for primitive reduction of phrases with
nonempty substitution. The meaning of this rule is to change the global store according to the
phrase substitution and continue evaluating in the new store. Thus, the substitution σ ′ is moved
out of the phrase and composed with σ which is the current global store. Observe that this
rule is required in order to preserve the soundness of the operational semantics. In the phrase
let dia x = dia [σ, e] in f , the type system assumes that the variable x has empty support. Thus,
the expression e has to be reduced to a value (as values have empty support), before it can be
bound to x.

Structural properties and type soundness

The calculus of state is an extension of the calculus of dynamic binding from Section 4.4 with the
possibility judgment and the language constructs corresponding to possibility. It’s structural prop-
erties and substitution principles, thus, extend the properties of the calculus of dynamic binding,
and are also straighforward adaptations of the properties of the modal ν-calculus from 2.2.3. We
list the main properties below, and comment on their proofs.

The support weakening lemma is standard, and will be used further in this section in the proof
of the Replacement lemma (Lemma 50).

Lemma 46 (Support weakening)
1. if Σ;∆ ` e : A [C] and C v D, then Σ;∆ ` e : A [D]

2. if Σ;∆ ` 〈Θ〉 : [C1]⇒ [C] and C v D, then Σ;∆ ` 〈Θ〉 : [C1]⇒ [D]

144

CHAPTER 4. EFFECTS 4.5. STATE

3. if Σ;∆ ` f ÷C1
A [C] and C v D, then Σ;∆ ` f ÷C1

A [D]

Proof: By a simultaneous induction on the stricture of the three main derivations. �

The expression substitution principle corresponds to the modal substitution principle from
Section 2.2.3.

Lemma 47 (Expression substitution principle)
Let Σ;∆ ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D]

2. if Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]⇒ [D], then Σ;∆ ` 〈[e1/u]Θ〉 : [D′]⇒ [D]

3. if Σ; (∆, u:A[C]) ` f ÷C1
B [D], then Σ;∆ ` [e1/u]f ÷C1

B [D]

Proof: By simultaneous induction on the structure of the three derivations. We present the
case f = let dia x = e in f ′ in the proof of the third statement. In thise case, by derivation,
Σ; (∆, u:A[C]) ` e : 3C′A′ [D], and Σ; (∆, u:A[C], x:A′) ` f ′ ÷C1

B [C ′], for some support C ′ and
type A′. By the first first induction hypothesis, Σ;∆ ` [e1/u]e : 3C′A′ [D]. By the third induction
hypothesis, Σ; (∆, x:A′) ` [e1/u]f ′ ÷C1

B [C ′]. Now the result follows by the typing rule for let dia.
�

The explicit substitution principle is also a straightforward adaptation.

Lemma 48 (Explicit substitution principle)
Let Σ;∆ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ;∆ ` e : A [C] then Σ;∆ ` {Θ}e : A [D]

2. if Σ;∆ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

3. if Σ;∆ ` f ÷C1
A [C], then Σ;∆ ` {Θ}f ÷C1

A [D]

Proof: The proof is by simultaneous induction on the three judgments. It is analogous to the
proof of the explicit substitution principle for the modal ν-calculus from Section 2.2.3. We present
the case when f = [Θ′, e], in the proof of the third statement.

In this case, by derivation, Σ;∆ ` e : A [C1] and Σ;∆ ` 〈Θ′〉 : [C1] ⇒ [C]. By the second
induction hypothesis, Σ;∆ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]. Now, result follows by typing rule for phrases.

�

Lemma 49 (Canonical forms)
Let v be a value such that Σ; ·;` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 []

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 []

4. if A = 3DB, then v = dia f and Σ; · ` f ÷D B [C]

As a consequence, the support of v is empty, and can be weakened arbitrarily.

145

4.5. STATE CHAPTER 4. EFFECTS

Proof: By a straightforward case analysis. �

The next Replacement lemma allows expressions and phrases to be exchanged in an expression
and phrase contexts respectively. Of course, the replacement expressions and phrases have to
match the type of the expression or the phrase that is being replaced. Notice that the Replacement
lemma in this section, unlike the Replacement lemma of the calculus for dynamic binding, considers
non-empty supports in the typing judgments. The reason is that, unlike in dynamic binding, the
calculus of state allows evaluation of expressions and phrases with non-empty support C, as long
as the names from C are initialized by the global store.

Lemma 50 (Replacement)
1. If Σ; · ` E[e] : A [C], then there exists a type B such that

(a) Σ; · ` e : B [C], and

(b) if Σ′ extends Σ, and Σ′; · ` e′ : B [C], then Σ′; · ` E[e′] : A [C]

2. If Σ; · ` F [e] ÷C A [D], then there exists a type B such that

(a) Σ; · ` e : B [D], and

(b) if Σ′ extends Σ and Σ′; · ` e′ : B [D], then Σ′; · ` F [e′] ÷C A [D]

3. If Σ; · ` F [f] ÷C A [D], then there exists a type B and support C1 such that

(a) Σ; · ` f ÷C1
B [D], and

(b) if Σ′ extends Σ and D1 is a support set such that Σ′; · ` f ′ ÷C1
B [D1], then Σ′; · `

F [f ′] ÷C A [D1]

Proof: By simultaneous induction on the structure of the contexts E and F . We present the
proofs for induction hypotheses (2) and (3), as the case (1) is similar to the proof of Replacement
for dynamic binding (Lemma 39).

For the induction hypothesis (2), the following cases may appear.

case F = let dia x = E1 in f . By derivation, Σ; · ` E1[e] : 3C1
A1 [D], and Σ;x:A1 ` f ÷C A [C1].

By first induction hypothesis, there exists B such that Σ; · ` e : B [D]. Also, if Σ ′; · ` e′ :
B [D], then Σ′; · ` E1[e

′] : 3C1
A1 [D]. Conclusion now follows by typing rule for let dia.

case F = let dia x = dia F1 in f . By derivation, Σ; · ` F1[e] ÷C1
A1 [D], and Σ;x:A1 ` f ÷C

A [C1]. By second induction hypothesis, there exists B such that Σ; · ` e : B [D]. Also, if
Σ′; · ` e′ : B [D], then Σ′; · ` F1[e

′] ÷C1
A1 [D]. The result again follows by typing for let dia.

case F = let dia x = dia [〈σ,X → E1,Θ〉, e] in f , where X:B1 ∈ Σ. By derivation, Σ; · ` E1[e] :
B1 [D], and Σ;x:A1 ` f ÷C A [C1]. By first induction hypothesis, there exists B such that
Σ; · ` e : B [D]. Also, if Σ′; · ` e′ : B [D], then Σ′; · ` E1[e

′] : B1 [D]. Once again, the typing
for let dia lead to the required conclusion.

case F = let dia x = dia [·, E1] in f . By derivation, Σ; · ` E1[e] : A1 [C1], where C1 ⊆ D, and
Σ;x:A1 ` f ÷C A [C1]. By support weakening, Σ; · ` E1[e] : A1 [D] and Σ;x:A1 ` f ÷C

A [D]. By first induction hypothesis, there exists B such that Σ; · ` e : B [D]. Also, if
Σ′; · ` e′ : B [D], then Σ′; · ` E1[e

′] : A1 [D]. Finally, use the typing rule for let dia again to
conclude the proof.

146

CHAPTER 4. EFFECTS 4.5. STATE

For the induction hypothesis (3), the following cases may appear.

case F = []. In this case, obviously, pick B = A, and C1 = C to finish the proof.

case F = let dia x = dia F1 in f1. By derivation, Σ; · ` F1[f] ÷C′ A′ [D], and Σ;x:A′ ` f1 ÷C

A [C ′]. By third induction hypothesis, there exist B and C1 such that Σ; · ` f ÷C1
B [D].

Also, if Σ′; · ` f ′ ÷C1
B [D1], then Σ′; · ` F1[f

′] ÷C′ A′ [D1]. The result again follows by
typing rules for let dia.

�

The Subject reduction lemma establishes that primitive reductions preserve types nad supports.
Notice that in the calculus of state, the evaluation is always undertaken relative to a global store
σ : [C]⇒ [], which provides definitions for a certain set of names C that the evaluated expressions
and phrases are allowed to dereference. Notice that the evaluation of expressions may only depend
on the global store σ, but the evaluation of phrases may change σ into some new σ ′ : [C ′]⇒ []. Of
course, in the typing of the new global store, C ′ will always be a well-formed support set, as the
lemma below postulates.

Lemma 51 (Subject reduction)
Let Σ; · ` 〈σ〉 : [C]⇒ []. Then the following holds:

1. if Σ; · ` e : A [C] and Σ, e
σ
−→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C]

2. if Σ; · ` f ÷D A [C] and (Σ, σ), f −→ (Σ′, σ′), f ′, then Σ′ extends Σ and Σ′; · ` 〈σ′〉 : [C ′]⇒ []
and Σ′; · ` f ′ ÷D A [C ′] for some support set C ′ ⊆ dom(Σ′)

Proof: By case analysis of the possible reductions. We present the selected cases.

case e = 〈σ′〉e1. By derivation, Σ; · ` e1 : A [C ′], and Σ; · ` 〈σ′〉 : [C ′] ⇒ []. By explicit
substitution principle, Σ; · ` {σ′}e1 : A []. By definition, e′ = {σ}e1, which finishes the proof.

case e = X, where X:A ∈ Σ. By derivation, X ∈ C, and thus by typing for substitutions Σ; · `
σ(X) : A []. Furthermore, because σ is a value substitution, σ(X) is a value, so by cannonical
forms lemma, its support can be arbitrarily weakend; in particular Σ; · ` σ(X) : A [C].

case f = let dia x = dia [σ1, e] in f1. By definition, Σ′ = Σ and σ′ = σ ◦ σ1. By derivation,
Σ; · ` e : B [C ′], and Σ; · ` 〈σ1〉 : [C ′] ⇒ [C], and Σ;x:B ` f1 ÷D A [C ′]. By explicit
substitution principle, Σ; · ` 〈σ ◦ σ1〉 : [C ′]⇒ []. Result follows by typing rule for let dia.

case f = let dia x = dia [·, v] in f1. By definition, Σ′ = Σ and σ′ = σ and C1 = C. By derivation,
Σ; · ` v : B [C1] for some C1 v C, and Σ;x:B ` f1 ÷D A [C ′]. By cannonical forms lemma,
Σ; · ` v ÷B []. By support weakening, Σ;x:B ` f1 ÷D A [C]. Finally, by the expression
substitution principle, Σ; · ` [v/x]f1 ÷D A [C].

�

The Preservation lemma extends the result of Subject reduction, which was valid only on
primitive reductions, to the evaluation relation.

Lemma 52 (Preservation)
Let Σ; ·;` 〈σ〉 : [C]⇒ []. Then the following holds:

147

4.5. STATE CHAPTER 4. EFFECTS

1. if Σ; · ` e : A [C] and Σ, e
σ
7−→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C]

2. if Σ; · ` f ÷D A [C] and (Σ, σ), f 7−→ (Σ′, σ′), f ′, then Σ′ extends Σ and Σ′; · ` 〈σ′〉 : [C ′]⇒ []
and Σ′; · ` f ′ ÷D A [C ′] for some support set C ′ ⊆ dom(Σ′)

Proof: The proof of statement (1), proceeds as follows. By evaluation rules, there exists an
evaluation context E such that e = E[r], Σ, r

σ
−→ Σ′, r′ and e′ = E[r′]. By the replacement lemma,

there exists B such that Σ; · ` r : B [C]. By subject reduction, Σ′ extends Σ, and Σ′; · ` r′ : B [C].
By relacement again, Σ′; · ` E[r′] : A [C]. Since e′ = E[r′] this proves statement (1).

To prove the statement (2), observe that by the evaluation rules, it is either f = F [r] for some
closure context F and term redex r, or f = F [c] for some closure redex c.

If f = F [r], then Σ, r
σ
−→ Σ′, e′ and f ′ = F [e′], and σ′ = σ and C1 = C. By the replacement

lemma, there exists B such that Σ; · ` r : B [C]. By subject reduction, Σ′ extends Σ, and Σ′; · `
e′ : B [C]. By replacement lemma, Σ′; · ` F [e′] : A [C].

On the other hand, if f = F [c], then (Σ, σ), c −→ (Σ′, σ′), c′ and f ′ = F [c′]. By replace-
ment lemma, there exists B and D1 such that Σ; · ` c ÷D1

B [C]. By subject reduction, Σ′

extends Σ, and Σ′; · ` 〈σ′〉 : [C ′] ⇒ [], and Σ′; · ` c′ ÷D1
B [C ′]. By replacement lemma again,

Σ′; · ` F [c′] ÷D A [C ′]. �

Lemma 53 (Progress for −→)
Let σ be an arbitrary value substitution. Then the following holds:

1. if Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that Σ, r
σ
−→ Σ′, e′.

2. if Σ; · ` c ÷D A [C], then there exist a phrase f ′, a value substitution σ′ and a context Σ′,
such that (Σ, σ), c −→ (Σ′, σ′), f ′.

Proof: By case analysis over possible redexes. For example, in the statement (1), when r = X,
for some name X, we can pick Σ′ = Σ and e = σ(X). The other cases of statement (1), as well as
the statement (2) are also easy to establish. �

Lemma 54 (Unique decomposition)
1. If e is a closed expression (i.e., e does not contain any free variables, but it may contain free

names), then either:

(a) e is a value, or

(b) e = E[r] for a unique evaluation context E and a redex r.

2. If f is a closed phrase, then either:

(a) f = [Θ, e] for some substitution Θ and expression e, or

(b) f = F [r] for a unique phrase context F and term redex r, or

(c) f = F [c] for a unique phrase context F and phrase redex c.

Proof: Straightforwaed, by induction on the structure of e and f . �

As customary by now, we proceed to prove that in the calculus of state, well-typed closed
expressions and phrases do not get stuck, and that reductions from one and the same expression or
a phrase differ only in the choice of new names. These claims are formalized by the Progress and
Determinacy lemmas below.

148

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

Lemma 55 (Progress)
Let Σ; · ` 〈σ〉 : [C]⇒ []. Then the following holds:

1. if Σ; · ` e : A [C], then either

(a) e is a value, or

(b) there exists a term e′ and a context Σ′, such that Σ, e
σ
7−→ Σ′, e′.

2. if Σ; · ` f ÷D A [C], then either

(a) f = [Θ, e] for some substitution Θ and an expression e, or

(b) there exists a phrase f ′, a context Σ′, and a value substitution σ′, such that (Σ, σ), f 7−→
(Σ′, σ′), f ′

Proof: The proof of statement (1) proceeds as follows. By unique decomposition lemma, e is
either a value, or there exists unique E and r such that e = E[r]. If e is not a value, by replacement
lemma, there exists B such that Σ; · ` r : B [C]. By progress for −→, there exists Σ ′ and e1 such
that Σ, r

σ
−→ Σ′, e1. By evaluation rules, Σ, E[r]

σ
7−→ Σ′, E[e1]. Now, we can pick e′ = E[e1], to

finish the proof.
To prove statement (2), notice that, by the unique decomposition lemma, f is either equal

to [Θ, e], or there exists unique F and r such that f = F [r], or there exists unique F and
c such that f = F [c]. In the second case, by replacement lemma, there exists B such that
Σ; · ` r : B [C]. By progress for −→, there exists Σ′ and e1 such that Σ, r

σ
−→ Σ′, e1. Then

we can pick f ′ = F [e1]. In the third case, by replacement lemma, there exists a type B and support
C1 such that Σ; · ` c ÷C1

B [C]. By progress for −→, there exists a phrase f1, a context Σ′ and a
substitution σ′, such that (Σ, σ), c 7−→ (Σ′, σ′), f1. In this case, we can pick f ′ = F [f1]. �

Lemma 56 (Determinacy)
1. If e, e1, e2 are terms such that Σ, e

σ
−→

n
Σ1, e1 and Σ, e

σ
−→

n
Σ2, e2, then there exists a

permutation of names π : N → N , fixing the domain of Σ, such that Σ2 = π(Σ1) and
e2 = π(e1).

2. If f , f1, f2 are phrases such that (Σ, σ), f 7−→n (Σ1, σ1), f1 and (Σ, σ), f 7−→n (Σ2, σ2), f2,
then there exists a permutation of names π : N → N , fixing the domain of Σ, such that
Σ2 = π(Σ1) and σ2 = π(σ1), and f2 = π(f1).

Proof: The proof of the first statement is analogous to the proof of determinacy for dynamic
binding, so we omit it here. The second lemma statement is trivial, because there are no primitive
phrase constructors that introduce fresh names. �

4.6 Exceptions

Syntax and typing

Raising an exception is a control-flow effect – it causes the execution of the program to make a
jump and continue from another point. Along the jump, the exception passes a value, to be used
by the program at the destination point of the jump. Exactly where and how the execution of the
program resumes, is determined by the exception handler. The handler takes as argument the value

149

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

that is passed by the exception, and then proceeds with execution. Thus, a computation that may
raise an exception is, in a sense, partial. It must be executed in an environment in which a handler
for the exception is specified, or else it may not produce a result. Notice, however, that exceptions
are benign effects. Unlike writing into memory, raising an exception does not cause a permanent
change in the environemnt.

In this section we develop a calculus of exceptions, based on the core fragment of the calculus
for benign effects from Section 4.3. The idea is to assign a name to each exception, which could
then be propagated and tracked by the type system. To be able to raise and handle exceptions,
we need further constructs specific only to exceptions, so we extend the syntax of our language as
follows.

Exception handlers Θ ::= · | Xz → e,Θ
Expressions e ::= . . . | raiseX e | e handle 〈Θ〉

Informally, the role of raiseX e is to evaluate e and then raise the exception X, passing the value
of e along. On the other hand, e handle 〈Θ〉 evaluates e (which may raise exceptions), so that any
exception possibly raised by e is handled by the exception handler Θ.

An exception handler is defined as a finite set of exception patterns. A pattern Xz → e associates
the exception X with the expression e; the variable z is bound in the pattern. Whenever X is raised
with some value v, it will be handled by evaluating the expression [v/z]e. Given a handler Θ, its
domain dom(Θ) is defined as the set

dom(Θ) = {X ∈ N | Xz → e ∈ Θ}

Every exception X ∈ dom(Θ) must be associated with a unique pattern of Θ.
An exception handler Θ defines a unique map [[Θ]] : N → Values→ Expressions as follows.

[[Θ]](X)(v) =

{
[v/z]e if Xz → e ∈ Θ
raiseX v otherwise

We will frequently identify the handler Θ with the function [[Θ]], and write Θ(X)(v) instead of
[[Θ]](X)(v). According to the above definition, if X is an exception such that X 6∈ dom(Θ), then Θ
simply propagates X further.

Example 37 Assuming X and Y are integer names, the following are well-formed expressions.

1. (1− raiseX raiseY 10) handle 〈Xx→ x + 2, Y y → y + 3〉

2. (1− raiseX 0) handle 〈Xx→ (2− raiseY x)〉 handle 〈Y y → y〉

3. (1− raiseX 0) handle 〈Y y → (2− raiseX y)〉 handle 〈Xx→ x + 1〉

The expressions evaluate to 13, 0 and 1, respectively. Expression (1) raises the exception Y , passing
10 along. This is handled by the pattern Y y → y + 3, to produce 13. Expression (2) raises X
with value 0, but while handling X it raises Y with value 0, which is finally handled by the outside
handler 〈Y y → y〉, to produce 0. Expression (3) raises X with 0, which is propagated by the inside
handler, and then handled by the outside handler 〈Xx→ x + 1〉, to return 1. �

The type system of the calculus of exceptions consists of two judgments: one for typing ex-
pressions, and another one for typing exception handlers. The judgment for expressions has the
form

Σ;∆ ` e : A [C]

150

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

and it simply extends the judgment from the core fragment presented in Section 4.3 with the
new rules for raise and handle. The specific characteristic of the calculus is that the support C
represents sets, collecting the exceptions that e is allowed to raise. Thus, C v D is defined as
C ⊆ D when C and D are viewed as sets (i.e., when the ordering and repetition of elements in
these supports are ignored). By support weakening, e need not raise all the exceptions from its
support C, but if an exception can be raised, then it must be in C. The judgment for exception
handlers has the form

Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D]

and the handler Θ will be given the type [C]
A
⇒ [D] if: (1) Θ can handle exceptions from the

support set C arising in a term of type A, and (2) during the handling, Θ is allowed to itself raise
exceptions only from the support set D. The typing rules of both judgments are presented below,
and we briefly comment on them.

Definition of Σ;∆ ` e : A [C].

Σ;∆ ` e : A [C] X ∈ C X:A ∈ Σ

Σ;∆ ` raiseX e : B [C]

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D]

Σ;∆ ` e handle 〈Θ〉 : A [D]

Definition of Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D].

C v D

Σ;∆ ` 〈 〉 : [C]
A
⇒ [D]

Σ; (∆, z:A) ` e : B [D] Σ;∆ ` 〈Θ〉 : [C \X]
B
⇒ [D] X:A ∈ Σ

Σ;∆ ` 〈Xz → e,Θ〉 : [C]
B
⇒ [D]

An exception X can be raised only if it is accounted for in the support. Thus the rule for
raise requires X ∈ C. The term raiseX e changes the flow of control, by passing e to the nearest
handler. Because of that, the context in which this term is encountered does not matter; we can
type raiseX e by any arbitrary type B. In the rule for handle, the type and the support of the
expression e must match the type and the domain support of the handler Θ. The empty exception
handler 〈 〉 only propagates whichever exceptions it encounters. If it is supplied an expression of
support C it will produce an expression of the same support. To maintain the support weakening
property, we allow the range support D of an empty handler to be a superset of C. Notice that
the empty support handler may be assigned an arbitrary type A. The rule for nonempty exception
handlers simply inductively checks each of the exception patterns in the handler. The type of each
pattern variable z must match the type of the corresponding exception; this is the type of the value
that the exception will be raised with. The handling terms e must all have the same type B, which
would also be the type assigned to the handler itself.

151

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

Example 38 The function tail below computes a tail of the argument integer list, raising an
exception EMPTY:unit if the argument list is empty. The function length uses tail to compute
the length of a list. Note that the range type of tail is � EMPTYintlist. This is required because
the body of tail raises an exception, and, as explained in Section 4.3, all the effects in function
bodies must be boxed.

- let name EMPTY: unit

fun tail (xs : intlist) : � EMPTYintlist =

(case xs

of nil => box (raise EMPTY ())

| x::xs => box xs)

fun length (xs : intlist) : int =

(1 + length (unbox (tail xs)))

handle <EMPTY z -> 0>

in

length [1,2,3,4]

end;

val it = 4;

�

Before we proceed to describe the operational semantics of the exception calculus, let us outline
some of its properties and how they relate to other treatments of exceptions in functional languages.

First of all, exceptions in our calculus are second class. They are not values and cannot be bound
to variables. Correspondingly, exceptions must be explicitly raised; raising a variable exception is
not possible. Aside from this fact, when local exceptions are concerned (i.e., exceptions which do
not originate from a function call, but are raised and handled in the body of the one and the same
function), our calculus very much resembles Standard ML [MTHM97]. In particular, exceptions
can be raised, and then handled, without forcing any changes to the type of the function. It is only
when we want the function to propagate an exception so that it is handled by the caller, that we
need to specifically mark the range type of that function with a �-type.

It is also instructive to compare our calculus with the monadic formulation of exceptions from
Section 4.1.3. To that end, we recall Example 26, where the exception monad © provides for a
unique exception of type E. The definition of the monad © and its related term constructors is
given as follows.

©A = A + E

comp e = inl e

let comp x = e1 in e2 = case e1 of inl x⇒ e2 | inr y ⇒ inr y

raise : E ⇒©A

raise e = inr e

handle : ©A⇒ (E ⇒ B)⇒ B

handle e h = case e of inl v ⇒ v | inr exn⇒ h exn

In this definition, the operational semantics given to all the constructs relies on the standard
operational semantics associated with disjoint sums. For example, is we assume that f : int ⇒

152

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

©int, then the following program adds the results of f 1 and f 2. If the evaluation of any of the
two function applications raises an exception, the overall computed result is zero.

handle (let comp x1 = f 1

comp x2 = f 2

in

comp (x1 + x2)

end) (λexn. 0)

In our calculus of exceptions, the equivalent of the above program may be written in several
ways, depending on the evaluation order that the programmer may wish to specify. For example,
let us assume that X:E is an exception name, and that f : int → �X int. Then the operational
behavior of the previous monadic program is exhibited by the following program in the calculus of
exceptions.

(let val x1 = unbox (f 1)

val x2 = unbox (f 2)

in

x1 + x2

end) handle <X exn -> 0>

However, because exceptions are benign effects, the computations internalized by f 1 and f 2
are independent of each other. There is no need to first evaluate and unbox f 1 and then evaluate
and unbox f 2. For example, we could write the following program that computes the same results.

let box u1 = f 1

box u2 = f 2

in

(u1 + u2) handle <X exn -> 0>

end

The first two let box branches of this program evaluate the expressions f 1 and f 2 in that
order to obtain boxed computations box e1 and box e2, but they do not evaluate e1 and e2. The
computations e1 and e2 are substituted for u1 and u2, and only then is the execution of (e1 + e2)
attempted, in the order specified by the operational semantics of addition. Following a similar idea,
an even more compact way to compute the sum of f 1 and f 2 is given simply as

(unbox (f 1) + unbox (f 2)) handle <X exn -> 0>

As a conclusion, the calculus of exceptions – and more generally, the calculus of benign effects
based on modal necessity – allows programs that are uncommitted about the evaluation order of
its effects. The evaluation order is eventually determined by the operational semantics, but it is
not necessary to make this order explicit in the program. This is the major difference between the
treatment of benign effects and persistent effects. It is also the major difference between the modal
operator � on one hand, and the monad © and the modal operator 3 on the other hand.

Note that this distinction may potentially have consequences for the efficiency of exceptional
programs. In the monadic case, an expression e : ©A either evaluates to a value, or raises an
exception. The outcome of the evaluation of e has to be tagged (with inl or inr) in order to

153

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

distinguish between the two cases, and this tag has to be checked at run time whenever e is used2.
In the modal case, the effectful computation boxed in the expression e : �XA will only be evaluated
within the scope of some handler for X. This evaluation can only produce a value, and cannot
result with an unhandled exception. In the modal case, there cannot exists a raised exceptions that
is not handled, so there is no need for tagging and tag checking.

Operational semantics

The operational semantics of the exception calculus is a simple extension of the semantics of the
core fragment. The evaluation judgment has the same form

Σ, e 7−→ Σ′, e′

We only need to extend the syntactic categories of evaluation contexts and redexes, and define
primitive reductions for the new redexes. First, we define new evaluation contexts.

Evaluation contexts E ::= . . . | raiseX E | E handle 〈Θ〉

We have already explained that each exception handler can handle all exceptions. It is only that
some exceptions are handled in a specified way, while others are handled by simple propagation.
This will simplify the operational semantics somewhat, because in order to find the handler capable
of handling a particular raise we only need to find the nearest, or inner-most handler enclosing this
raise. For that purpose, we define a special subclass of evaluation contexts, called pure evaluation
contexts.

Definition 57 (Pure evaluation contexts)
An evaluation context E is pure if it does not contain any exception-handling constructs acting
on the hole of the context. In other words, the syntactic category of pure evaluation contexts is
defined as

Pure contexts P ::= [] | P e1 | v1 P | let box u = P in e | choose P | raiseX P

The idea of this definition is to identify, within each evaluation context E, the handling construct
(if any) that is closest to the hole of E, as stated by the following lemma.

Lemma 58 (Evaluation context decomposition)
If E is an evaluation context, then either:

1. E is a pure context, or

2. there exist unique evaluation context E ′ and pure context P ′ such that

E = E′[P ′ handle 〈Θ〉].

Proof: By induction on the structure of E. We present selected cases.

case E = raiseX E1. By induction hypothesis, E1 is either pure, in which case pick E is pure as
well, or E1 = E′

1[P
′ handle Θ] in which case pick E ′ = raiseX E′

1.

2Strictly speaking, if the call-by-name evaluation strategy is used, then exceptional computations are only eval-
uated when explicitly forced by let comp. In other words, the tagged values never appear as intermediate results,
except immediately before handling. However, if any other evaluation strategy is used, the definition of the exception
monad will insist on tagging and tag checking.

154

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

case E = E1 handle Θ. By induction hypothesis, E1 is either pure, in which case pick E ′ = [] and
P ′ = E1, or E1 = E′

2[P
′
2 handle Θ2], in which case pick E ′ = E′

2 handle Θ and P ′ = P ′
2.

�

This definition and lemma provide us with enough notions to define the new redexes and the
primitive reductions on them.

Redexes r ::= . . . | v handle 〈Θ〉 | P [raiseX v] handle 〈Θ〉

Σ, v handle 〈Θ〉 −→ Σ, v Σ, P [raiseX v] handle 〈Θ〉 −→ Σ,Θ(X)(v)

The first reduction exploits the fact that values are exception free, and therefore simply fall
through any handler. The second reduction chooses the closest handler for any particular raise.
It also requires that only values be passed along with the exceptions; the operational semantics
demands that before an exception is raised, its argument must be evaluated. If it so happens that
the evaluation of the argument raises another exception, this later one will take precedence and
actually be raised. This is already illustrated in the first term from Example 37, where it is the
exception Y which is raised and eventually handled.

Structural properties and type soundness

Before proceeding to prove the basic properties of the calculus of exceptions, we first summarize
its basic syntactic constructs.

Expressions e ::= u | λx:A. e | e1 e2 | box e | let box u = e1 in e2 |
νX:A. e | choose e |
raiseX e | e handle 〈Θ〉

Exception handlers Θ ::= · | Xz → e,Θ
Values v ::= λx:A. e | box e | νX:A. e
Evaluation contexts E ::= [] | E e1 | v1 E | let box u = E in e | choose E |

raiseX E | E handle 〈Θ〉
Pure contexts P ::= [] | P e1 | v1 P | let box u = P in e | choose P |

raiseX P
Redexes r ::= (λx. e) v | let box u = box e in e | choose (νX. e) |

v handle 〈Θ〉 | P [raiseX v] handle 〈Θ〉

The Expression substitution principle for the exception calculus is similar to the Expression
substitution principle from the calculus of dynamic binding and state, except that it now includes
a statement about exception handlers, rather than a statement about explicit substitutions.

Lemma 59 (Expression substitution principle)
If Σ;∆ ` e1 : A [C], then the following holds:

1. if Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D]

155

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

2. if Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]
B
⇒ [D], then Σ;∆ ` 〈[e1/u]Θ〉 : [D′]

B
⇒ [D]

Proof: By simultaneous induction on the structure of e and Θ. We just present the cases that
are specific to exceptions.

case e2 = raiseX e′, where X:B ′ ∈ Σ, and X ∈ D. By derivation, Σ; (∆, u:A[C]) ` e′ : B′ [D]. By
induction hypothesis, Σ;∆ ` [e1/u]e′ : B′ [D]. The result follows by the typing for raise.

case e2 = e′ handle Θ. By derivation, Σ; (∆, u:A[C]) ` e′ : B [D′], and Σ; (∆, u:A[C]) ` 〈Θ〉 :

[D′]
B
⇒ [D]. By first induction hypothesis, Σ;∆ ` [e1/u]e′ : B [D′]. By second induction

hypothesis, Σ;∆ ` 〈[e1/u]Θ〉 : [D′]
B
⇒ [D]. The case is now proved, by using the typing rules

for handle.

case Θ = (·). Obvious.

case Θ = (Xz → e,Θ′), where X:B ′ ∈ Σ. By derivation, Σ; (∆, u:A[C], z:B ′) ` e : B [D], and

Σ; (∆, u:A[C]) ` 〈Θ′〉 : [D′ \X]
B
⇒ [D]. By the first induction hypothesis, Σ; (∆, z:B ′) `

[e1/u]e : B [D]. By the second induction hypothesis, Σ;∆ ` 〈[e1/u]Θ′〉 : [D′ \X]
B
⇒ [D]. The

result follows by the typing rule for composite handlers.

�

The replacement lemma now has to account for both pure and impure contexts. Because pure
contexts do not allow a handler acting on the hole of the context, placing an expression within
a pure context preserve the expression’s support. That is not necessarily the case with ordinary
evaluation contexts.

Lemma 60 (Replacement)
1. If Σ; · ` P [e] : A [C], then there exist a type B such that

(a) Σ; · ` e : B [C], and

(b) if Σ′ extends Σ, and Σ′; · ` e′ : B [C], then Σ′; · ` P [e′] : A [C]

2. If Σ; · ` E[e] : A [C], then there exist a type B and a support D such that

(a) Σ; · ` e : B [D], and

(b) if Σ′ extends Σ and Σ′; · ` e′ : B [D], then Σ′; · ` E[e′] : A [C]

Proof: The first statement is proved by induction on the structure of the pure context P . For
an example, consider the case when P = raiseX P1, for X:B′ ∈ Σ, and X ∈ C. In this case, by
derivation, Σ; · ` P1[e] : B′ [C]. By induction hypothesis, there exist B such that Σ; · ` e : B [C].
Again by induction hypothesis, for every e′ such that Σ′; · ` e′ : B [C], we have Σ′; · ` P1[e

′] : B′ [C].
Now the conclusion follows by the typing rule for raise.

To prove the second statement, by Evaluation context decomposition lemma (Lemma 58, we
need only consider two cases.

case E = P . This case follows from the already proved replacement for pure contexts.

156

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

case E = E1[P handle Θ]. In this case, by induction hypothesis, there exist B ′ and D′ such that

Σ; · ` P [e] handle Θ : B ′ [D′]. By typing, Σ; · ` P [e] : B ′ [D′′], and Σ; · ` 〈Θ〉 : [D′′]
B′

⇒ [D′].
By replacement for pure contexts, there exists B such that Σ; · ` e : B [D ′′]. Also, for every
e′ such that Σ′; · ` e′ : B [D], we have Σ′; · ` P [e′] : B′ [D′′]. The result now follows by typing
for handle.

�

Lemma 61 (Canonical forms)
Let v be a value such that Σ; ·; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 []

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 []

As a consequence, the support of v is empty, and can be weakened arbitrarily.

Proof: By case analysis on the structure of values. �

The next step of the development is the Subject reduction lemma. Notice that the subject
reduction for exceptions differs from the subject reduction of dynamic binding. The semantics
of dynamic binding only reduces expressions of empty support, while with exceptions we need to
reduce under an exception handler. This is reflected in the subject reduction lemma, where we now
allow arbitrary supports C.

Lemma 62 (Subject reduction)
If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C].

Proof: By simple case analysis over possible redexes. We consider two cases in detail.

case e = v handle Θ. By derivation, Σ; · ` v : A [C ′], and Σ; · ` 〈Θ〉 : [C ′]
A
⇒ [C]. By canonical

forms lemma, the support of v can be arbitrary, and in particular Σ; · ` v : A [C].

case e = P [raiseX v] handle Θ, where X:B ′ ∈ Σ. By derivation, Σ; · ` P [raiseX v] : A [C ′],

and Σ; · ` 〈Θ〉 : [C ′]
A
⇒ [C]. By replacement lemma, there exists a type B such that Σ; · `

raiseX v : B [C ′]. By typing rules, there must be X ∈ C ′, and Σ; · ` v : B ′ [C ′]. By canonical
forms lemma, support of a value is empty, i.e., Σ; · ` v : B ′ [−]. Now, by the well-typing of
the handler Θ, Σ; · ` Θ(X)(v) : A [C]. Since Σ, e −→ Σ,Θ(X)(v), this finishes the proof.

�

The Preservation lemma now generalizes Subject reduction to the evaluation judgment. For
purposes of generality, we follow the statement of the Subject reduction, and allow arbitrary sup-
ports C in the statement of Preservation.

Lemma 63 (Preservation)
If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [C].

157

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

Proof: By evaluation rules, there exists an evaluation context E such that e = E[r], Σ, r −→ Σ ′, r′

and e′ = E[r′]. By replacement lemma, there exist B and D such that Σ; ·; · ` r : B [D]. By subject
reduction, Σ′ extends Σ, and Σ′; ·; · ` r′ : B [D]. By relacement lemma, Σ′; · ` E[r′] : A [C]. Since
e′ = E[r′], this proves the lemma. Notice how the proof appeals in an essential way to the subject
reduction lemma with non-empty supports. �

The following lemma shows that a closed well typed redex can always be reduced. Again, as in
the case of Subject reduction and Preservation, we consider redexes with a general (not necessarily
empty) support C. This will be used in an essential way in the proof of the Progress lemma below
(Lemma 66).

Lemma 64 (Progress for −→)
If Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that Σ, r −→ Σ′, e′.

Proof: By straightforward case analysis. We only present two cases.

case r = v handle Θ. By reduction rules, Σ, v handle Θ −→ Σ, v. Pick Σ′ = Σ and e′ = v.

case r = P [raiseX v] handle Θ, where X:B ∈ Σ. By derivation, Σ; · ` P [raiseX v] : A [C ′], and

Σ; · ` 〈Θ〉 : [C ′]
A
⇒ [C]. By replacement lemma, there exists B ′ such that Σ; · ` raiseX v :

B′ [C ′]. By typing rules, it must be X ∈ C ′, and thus Θ(X)(v) is well-defined. Now pick
Σ′ = Σ and e′ = Θ(X)(v).

�

The unique decomposition lemma is standard.

Lemma 65 (Unique decomposition)
For every expression e, either:

1. e is a value, or

2. e = P [raiseX v], for a unique pure context P , or

3. e = E[r] for a unique evaluation context E and a redex r.

Proof: By induction on the structure of the expression e. �

Finally, we can establish the Progress and Determinacy lemmas below.

Lemma 66 (Progress)
If Σ; · ` e : A [], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof: Because e has empty support, by unique decomposition lemma, e is either a value, or
there exists unique E and r such that e = E[r]. If e is not a value, by replacement lemma, there
exists B and C such that Σ; · ` r : B [C]. By progress for −→, there exists Σ′ and e1 such that
Σ, r −→ Σ′, e1. By evaluation rules, Σ, E[r] 7−→ Σ′, E[e1]. Now, we can pick e′ = E[e1], to complete
the proof. �

158

CHAPTER 4. EFFECTS 4.7. CATCH AND THROW

Lemma 67 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names π : N → N ,
fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: The most important case is when n = 1, the rest follows by induction on n, using the
property that if Σ, e 7−→n Σ′, e′, then π(Σ), π(e) 7−→n π(Σ′), π(e′). In case n = 1, we analyse the
possible reduction cases.

1. If r = (λx. e) v, or r = let box u = box e1 in e2, or r = resetX v, or r = v handle Θ, or
r = P [raiseX v] handle Θ, the reducts are unique, i.e. e′1 = e′2, and thus e1 = e2, so the
identity permutation satisfies the conditions.

2. If r = choose νX:A. e, then it must be e′1 = [X1/X]e, e′2 = [X2/X]e, and Σ1 = (Σ, X1:A),
Σ2 = (Σ, X2:A), where X1 and X2 are fresh names. Obviously, the involution (X1 X2) which
swaps these two names has the required properties.

�

4.7 Catch and throw

Syntax and typing

The catch-and-throw calculus is a simplification of the calculus of exceptions. We consider it
here in its own right in order to illustrate a different notion of handling. It will also provide some
intuition for the calculus of composable continuation in Section 4.8. In the catch-and-throw calculus,
names are associated with labels to which the program can jump. Informally, catch establishes a
destination point for a jump and assigns a name to it, and throw jumps to the established point.

Expressions e ::= . . . | throwX e | catchX e

The throw and catch can be viewed as restrictions of raise and handle; catch handles a throw
by immediately returning the value associated with the throw.

Because the notion of handling in the catch-and-throw calculus is so simple when compared to
exceptions, we only need the typing judgment for expressions Σ;∆ ` e : A [C]. It is not necessary

to define the judgment for handlers Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D]. The meaning of Σ;∆ ` e : A [C] is

that e has type A and may throw to destination points whose names are listed in the support C.
The supports are sets, just like in the calculus of exceptions. The typing rules of the calculus are
presented below.

Definition of Σ;∆ ` e : A [C].

Σ;∆ ` e : A [C] X ∈ C X:A ∈ Σ

Σ;∆ ` throwX e : B [C]

Σ;∆ ` e : A [C,X] X:A ∈ Σ

Σ;∆ ` catchX e : A [C]

A throw to a destination point is allowed only if the destination point is present in the support
set. A catch establishes a destination point by placing it in the support against which the argument
expression is checked.

159

4.7. CATCH AND THROW CHAPTER 4. EFFECTS

Example 39 The following terms (adapted from [Kam00a]) are well-typed in our catch-and-throw
calculus.

choose (νX:int.
(λf:int->�Xint.

let box u = f 0

in

catchX (1 + u)

end) (λy:int. box (throwX y)))

choose (νX:int.
(λf:int->�Xint.

let box u = f 0

in

1 + catchX u

end) (λy:int. box (throwX y)))

The first term evaluates to 0, because the addition with 1 is skipped over by a throw. In the second
term, the catch is pushed further inside, to preserve this addition, and so the term evaluates to 1.

�

Example 40 The program segment below defines a recursive function for multiplying elements of
an integer list. If an element is found to be equal to 0, then the whole product will be 0, so rather
than uselessly performing the remaining computation, we terminate by an explicit throw outside
of the recursive function.

- let name EXIT : int

fun mult (xs : intlist) : �EXITint =

case xs

of nil => box 1

| x::xs =>

if x = 0 then box (throw EXIT 0)

else

let box u = mult xs in box(x * u)

in

catchEXIT (unbox (mult [3, 2, 1, 0]) * unbox (mult [1, 2, 3]))

end;

val it = 0 : int

�

Operational semantics

The evaluation judgment of the catch-and-throw calculus is again a straightforward extension of
the evaluation judgment Σ, e 7−→ Σ′, e′ of the core fragment from Section 4.3. We first need to

160

CHAPTER 4. EFFECTS 4.7. CATCH AND THROW

define the new redexes, corresponding to the new catch and throw constructs, and extend the
syntactic category of evaluation contexts of the core calculus of benign effects from Section 4.3.

Redexes r ::= (λx. e) v | let box u = box e in e | choose (νX. e) |
| catchX v | catchX E[throwX v]

Evaluation contexts E ::= [] | E e1 | v1 E | let box u = E in e | choose E |
throwX E | catchX E

In the redex catchX E[throwX v] it is assumed that the context E is X-pure, i.e., E does not
contain a catchX construct acting on the hole of E, altough E is allowed to catch names other
than X. The relation of primitive reductions from Section 4.3 is extended with the following new
cases.

Σ, catchX v −→ Σ, v

Σ, (catchX E[throwX v]) −→ Σ, v, E is X-pure

Similar to the exception calculus, values simply fall through the catch, and every throw is caught
by the closes surrounding catch with the appropriate name. The operational semantics of catch-
and-throw requires that only values be passed along a throw. Thus, of possibly nested throws,
only the last one will actually be subject to catching.

Structural properties and type soundness

We start the exploration of the basic structural properties of the catch and throw calculus by
considering the appropriate expression substitution principle. The principle is standard, and anal-
ogous to the expression substitution principles already proved for the calculi of dynamic binding
and exceptions.

Lemma 68 (Expression substitution principle)
If Σ;∆ ` e1 : A [C] and Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D].

Proof: By induction on the derivation of e2.

case e2 = throwX e′, where X:B ′ ∈ Σ, and X ∈ D. By derivation, Σ; (∆, u:A[C]) ` e′ : B′ [D].
By induction hypothesis, Σ;∆ ` [e1/u]e′ : B′ [D]. The conclusion now follows by the typing
rule for throw.

case e2 = catchX e′, where X:B ∈ Σ. By derivation, Σ; (∆, u:A[C]) ` e′ : B [D,X]. By induction
hypothesis, Σ;∆ ` [e1/u]e′ : B [D,X]. The last step of the proof now applies the typing rule
for catch.

�

The replacement lemma needs to take into account that catch expressions may be acting on
the hole of the context E, thus changing the support of enclosed expression.

Lemma 69 (Replacement)
If Σ; · ` E[e] : A [C], then there exist a type B and a support D such that

1. Σ; · ` e : B [D], and

2. if Σ′ extends Σ and Σ′; · ` e′ : B [D], then Σ′; · ` E[e′] : A [C]

161

4.7. CATCH AND THROW CHAPTER 4. EFFECTS

Proof: By induction on the structure of E.

case E = throwX E1, where X:B ′ ∈ Σ, and X ∈ C. By derivation, Σ; · ` E1[e] : B′ [C]. By
induction hypothesis, there exist B and D such that Σ; · ` e : B [D]. Again by induction
hypothesis, for every e′ such that Σ′; · ` e′ : B [D], we have Σ′; · ` E1[e

′] : B′ [C]. Now the
conclusion follows by the typing rules.

case E = catchX E1, and X:A ∈ Σ. By derivation, Σ; · ` E1[e] : A [C,X]. By induction
hypothesis, there exist B and D such that Σ; · ` e : B [D]. Again by induction hypothesis,
for every e′ such that Σ′; · ` e′ : B [D], we have Σ′; · ` E1[e

′] : A [C,X]. Conclude the proof
by using the typing rule for catch.

�

Lemma 70 (Canonical forms)
Let v be a value such that Σ; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 []

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 []

As a consequence, the support of v is empty and can be weakened arbitrarily.

Proof: By a straghtforward analysis of the structure of values. �

Similar to the calculus of exceptions, the catch and throw calculus considers for evaluation
expressions that may appear within the scope of a number of catch constructs. Since catch
shrinks the support set of an expression, the subject reduction lemma for catch and throw has to
consider primitive reductions over expressions with arbitrary, non-empty, support C.

Lemma 71 (Subject reduction)
If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C].

Proof: By case analysis over possible redexes. We present below some representative cases.

case e = catchX v, where X:A ∈ Σ. By derivation, Σ; · ` v : A [C,X]. By canonical forms lemma,
the support of v can be arbitrary, and in particular Σ; · ` v : A [C].

case e = catchX E[throwX v], where X:A ∈ Σ. By derivation, Σ; · ` E[throwX v] : A [C,X].
By replacement lemma, there exist B and D such that Σ; · ` throwX v : B [D]. By typing
rules, there must be X ∈ D, and Σ; · ` v : A [D]. By canonical forms lemma, support of a
value can be arbitrary; in particular, Σ; · ` v : A [C]. Since Σ, e −→ Σ, v, this finishes the
proof.

�

The Preservation lemma follows the same patter as Subject reduction, and considers expressions
with arbitrary support C.

162

CHAPTER 4. EFFECTS 4.7. CATCH AND THROW

Lemma 72 (Preservation)
If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [C].

Proof: By evaluation rules, there exists an evaluation context E such that e = E[r], Σ, r −→ Σ ′, r′

and e′ = E[r′]. By replacement lemma, there exist B and D such that Σ; ·; · ` r : B [D]. By subject
reduction, Σ′ extends Σ, and Σ′; ·; · ` r′ : B [D]. By replacement lemma, Σ′; · ` E[r′] : A [C]. Since
e′ = E[r′] this proves the lemma. �

Lemma 73 (Progress for −→)
If Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that Σ, r −→ Σ′, e′.

Proof: By case analysis on the structure of redexes.

case r = catchX v, where X:A ∈ Σ. By reduction rules, Σ, catchX v −→ Σ, v. Then we can pick,
Σ′ = Σ and e′ = v.

case r = catchX E[throwX v], where X:A ∈ Σ. By derivation, Σ; · ` E[throwX ke1] : A [C,X].
By replacement lemma, there exist B and D such that Σ; · ` throwX v : B [D]. By typing
rules, it must be B = A and X ∈ D and Σ; · ` v : A [D]. By cannonical forms lemma, v has
empty support, and can be arbitrary weakened; in particular Σ; · ` v : A [C]. We can thus
pick Σ′ = Σ and e′ = v.

�

The Unique decomposition lemma takes the usual form, as do the Progress and Determinacy
lemmas.

Lemma 74 (Unique decomposition)
For every closed expression e, either:

1. e is a value, or

2. e = E[throwX v], for a unique context E which does not catch X, or

3. e = E[r] for a unique evaluation context E and a redex r.

Proof: Straighforward, by induction on the structure of e. �

Lemma 75 (Progress)
If Σ; · ` e : A [], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof:
�

Lemma 76 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names π : N → N ,
fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

163

4.8. CONTINUATIONS CHAPTER 4. EFFECTS

4.8 Composable continuations

Syntax and typing

Similar to the catch-and-throw calculus, composable continuations use names to label destination
points to which a program can jump. A destination point for a jump is established with the
construct mark which also assigns a name to it; thus, it is similar to catch from the previous
section. The jump itself is performed by recall, which corresponds to throw from the catch-and-
throw calculus. The exact syntax of the calculus is defined as follows.

Expressions e ::= . . . | recallX k. e |markX e

The differences from the catch-and-throw calculus, however, arise from the following property,
which is characteristic for continuation calculi: unlike throw, when the construct recallX k. e is
evaluated, it captures into the variable k the part of the surrounding environment between this
recall and corresponding mark which precedes it; k may then be used to compute the value of
e that is passed along with the jump. It is important that the evaluation of e is undertaken in
the changed environment from which the part captured in k has been removed. More specifically,
e itself will not be able to recall to mark points which were defined in the captured and removed
part.

The explained operational intuition is formalized by the following definitions of evaluation
contexts, redexes and primitive reductions. Because each recall is handled by the nearest mark,
we need to identify within each evaluation context E that mark (if any) that is closest to the hole
of E. Thus, we define a specific subclass of evaluation contexts that are pure, in the sense that
they do not contain a mark acting on their hole.

Evaluation contexts E ::= . . . |markX E
Pure contexts P ::= [] | P e1 | v1 P | let box u = P in e | choose P
Redexes r ::= . . . |markX v |markX P [recallY k. e]

Σ,markX v −→ Σ, v

Σ, (markX P [recallX k. e]) −→ Σ, [K/k]e,

where K = λx. let box u = x in box P [u]

Example 41 The following expressions (adapted from [DF89, Wad94]), are well formed examples
from the calculus of composable continuations.

e1 = 1 + markX (10 + recallX f:�Xint->�Xint.

let box u = f (f (box 100))

in

markX u

end)

e2 = 1 + markX (10 + recallX f. 100)

164

CHAPTER 4. EFFECTS 4.8. CONTINUATIONS

e3 = 1 + markX (10 + recallX f.

let box u1 = f (box 100)

box u2 = f (box 1000)

in

markX (u1 + u2)

end)

The expressions evaluate to 121, 101 and 1121, respectively. In each of these examples, the contin-
uation variable f : �X int → �X int is bound to λx. let box v = x in box (10 + v). It captures
and internalizes the evaluation environment (10+−), which is enclosed between mark and recall.
Notice that upon capturing of the environment into f , the delimiting mark is removed from the
reduct. As an illustration of the operational semantics, we show in full the evaluation of e1.

1 + markX (10 + recallX f.

let box u = f (f (box 100))

in

markX u

end)

7−→ 1 + (let box u = f (f (box 100))

in

markX u

end), where f = λx. let box v = x in box (10 + v)

7−→ 1 + (let box u = f (box (10 + 100))

in

markX u

end)

7−→ 1 + (let box u = box (10 + (10 + 100))

in

markX u

end)

7−→ 1 + markX (10 + (10 + 100))

7−→ 1 + markX (10 + 110)

7−→ 1 + markX 120

7−→ 1 + 120

7−→ 121

�

It is the expression bound to k that is actually referred to as a composable continuation (and
other names in use are: partial continuation, delimited continuation and subcontinuation). Ordi-
nary calculus of continuations [Lan65, SW74, Rey72, SF90b, Fil89, Gri90, DHM91, FFKD86, Thi97]
can be viewed as a calculus of composable continuations in which all the jumps have a unique des-
tination point, predefined to be at the beginning of the program. In both calculi, continuations are
functions whose range type is equal to the type of the destination point. But, in the special case of
ordinary continuations, this type is necessarily ⊥, and that is why ordinary continuations cannot
be composed in any non-trivial way.

165

4.8. CONTINUATIONS CHAPTER 4. EFFECTS

The typing judgment of the calculus for composable continuations is again

Σ;∆ ` e : A [C].

It establishes that the expression e has type A and may recall the destination points whose names
are listed in the support C. The typing rules for composable continuations are presented below.

Definition of Σ;∆ ` e : A [C].

Σ; (∆, k:�C,XB → �C,XA) ` e : A [C] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Σ;∆ ` e : A [C,X] C v D X:A ∈ Σ

Σ;∆ `markX e : A [D]

In the case of composable continuations, it is a recall to a name that is the notion of effect,
and mark-ing a name as a destination point is the notion of handling. Therefore, the type system
should enable a recall to X only if X appears at the support C, placed there by a corresponding
mark. The situation, however, is a bit more involved. As already mentioned, recallX k. e evaluates
e in a changed environment from which the part enclosed between markX and recallX has been
removed. Correspondingly, e has to be checked against a support from which X has been removed.

The above argument indicates that in the calculus of composable continuations, the ordering of
names in the support of a term is important. Unlike in the previous effect calculi where supports
were simply sets, here we actually must endow supports with a list-like structure. For example, we
allow a recall to a certain name only if that name is at the end of the support. This is illustrated
in the typing rule for recallX k. e, where we demand that X is the rightmost name in the support
(C,X). If a recall is required to a name which is deeper to the left in C, it can still be done by
performing a sequence of nested recalls in a last-in-first-out manner to all the names in between. In
this sense, the supports of the calculus of composable continuations may be seen as stacks, where
the top of the stack is at the rightmost end of the support.

There are yet further important aspects of the typing rule for recall that need to be explained.
The expression e computes the value to be passed along with the jump, so it must have the same
type as the destination point X. Because the jump changes the flow of control, the immediate
environment of the recall does not matter; we can type recall by an arbitrary type B. The
domain and the range of the continuation k must match the source and the destination points of
the jump, which in this rule have types B and A, respectively. The recall appears in the context
of a support (C,X) and that is why the domain type of k is �C,XB. The range type of k is �C,XA,
meaning that the environment captured in k will not include the delimiting markX .

The typing rule for mark is much simpler. The construct markX e establishes a destination
point X and allows the expression e to recall to X by placing X in the support. If e is a value, it
immediately falls through to the destination point X, and thus e and X must have same types. We
further allow an arbitrary weakening of supports in the conclusion of this rule, in order to satisfy
the support weakening principle.

The partial ordering imposed on the family of supports is the trivial partial ordering with the
empty stack as the smallest element: C v D holds iff C = (·) or C = D as sequences.

166

CHAPTER 4. EFFECTS 4.8. CONTINUATIONS

Example 42 The program below is a particularly convoluted way of reversing a list, adapted from
[DF89].

fun reverse (l : intlist) : intlist =

let name X : intlist

fun rev’ (l : intlist) : �Xintlist =

case l

of nil => box nil

| (x::xs) =>

let val y = rev’ xs

in

box (recallX c:�Xintlint -> �Xintlist.

markX x :: unbox (c y))

end

box v = rev’ l

in

markX v

end

To understand reverse, it is instructive to view a particular evaluation of the helper function rev’.
For example, rev’ [2, 1, 0] produces

box (recallX c3.

markX 2 :: unbox c3 (box recallX c2.

markX 1 :: unbox c2 (box recallX c1.

markX 0 :: unbox c1 (box nil))))

When prepended by a markX , unboxed and evaluated, this code uses the continuations ci to accumu-
late the reversed prefix of the list. For example, the variable c3 is bound to λx. let box u = x in box u
corresponding to the initial empty prefix; c2 is bound to λx. let box u = x in box (2 :: u); c1 is
bound to λx. let box u = x in box (1 :: 2 :: u), until finally the reversed list [0,1,2] is produced.

�

There is actually a bit of a leeway in defining the static and dynamic semantics for composable
continuations, which has to do with whether the continuation captured by recall should include
the delimiting mark and/or remove it from the environment. The primitive reduction that we have
used in our formulation is

Σ, (markX P [recallX k. e]) −→ Σ, [K/k]e,

where K = λx. let box u = x in box P [u]

As can be seen, this reduction removes mark both from the captured continuation K, and from
the evaluation context of the reduced term. But either of the following rules is a possible choice,
and we discuss them informally below.

167

4.8. CONTINUATIONS CHAPTER 4. EFFECTS

Σ, (markX P [recallX k. e]) −→ Σ, [K/k]e, (4.1)

where K = λx. let box u = x in box (markX P [u])

Σ, (markX P [recallX k. e]) −→ Σ,markX [K/k]e, (4.2)

where K = λx. let box u = x in box P [u]

Σ, (markX P [recallX k. e]) −→ Σ,markX [K/k]e, (4.3)

where K = λx. let box u = x in box (markX P [u])

The rule (4.1) captures markX into K, but removes it from the evaluation environment of e.
The typing rule matching this operational semantics is

Σ; (∆, k:�C,XB → �CA) ` e : A [C] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Because the mark X is removed from the environment, it becomes impossible for e to recall to
X. This is why X does not appear in the support of the premise of this typing rule. Because the
mark X is captured into the continuation, the result of applying the continuation does not require
a mark for X in its evaluation environment, and so X is also dropped from the range type of k.

The rule (4.2) omits the mark from the continuation K, but leaves it in the evaluation environ-
ment of e. The corresponding typing rule leaves X in the support of the premise and in the range
type of k.

Σ; (∆, k:�C,XB → �C,XA) ` e : A [C,X] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Because the mark is left in the evaluation environment, it becomes impossible to jump in sequence
to names that are further down in the support stack. In this setting, it becomes necessary to
consider semantics that allow jumps arbitrarily deep into the support stack. This is very related
to the behavior of Felleisen’s F operator [Fel88]. If we label by D the top of the support stack, up
to but not including the target mark, then a recall which would jump over the names in D will be
typed as follows.

Σ; (∆, k:�C,X,DB → �C,XA) ` e : A [C,X] X:A ∈ Σ X 6∈ D

Σ;∆ ` recallX k. e : B [C,X,D]

Indeed, because the names from D are captured into the continuation, they must be removed from
the range type of k. Support D is also removed from the evaluation environment, and hence must
be omitted from the support of the premise.

The rule (4.3) leaves the mark into both the continuation K and the evaluation environment of
e, and the typing rule for it is thus

Σ; (∆, k:�C,XB → �CA) ` e : A [C,X] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

168

CHAPTER 4. EFFECTS 4.8. CONTINUATIONS

This choice of semantics corresponds to Danvy and Filinski’s shift operator [DF89, DF90]. If only
jumps to the last established mark are allowed (as is the case in [DF89, DF90]), then it may be
possible to simplify the typing rules so that the modal types only record the top-most name in the
support.

Our choice of operational semantics for composable continuations is similar to the one for the
set/cupto operators of Gunter, Rémy and Riecke [GRR95]. We have decided on this choice of
operational semantics for composable continuations because all the other choices can be encoded
within it. Obviously, if the mark is discarded during reduction, it can always be placed back; if
it is retained, it can never be eliminated. We do not know if the other operational semantics can
match this expressiveness.

Example 43 Composable continuations have been used to conveniently express “nondeterministic
computation”; that is, computation which can return many results [DF89, DF90]. The following
example is a program for finding all the partitions of a natural number n, i.e. all the lists of natural
numbers that add up to n. The main function partition is very effectively phrased in terms of
a primitive function choice. The idea is to use choice to non-deterministically pick a number
between 1 and n, and not worry about backtracking and exploring other options. Backtracking is
automatically handled by choice.

fun partition n =

if n = 0 then box (nil)

else

box (let val i = unbox (choice n)

box l = partition (n - i)

in

(i::l)

end)

The important point is that choice itself can be implemented using composable continuations.
The way choice is implemented will determine the ordering in which partition considers the
candidate lists for partitioning n.

The process of generating partitions for n may be seen as a traversal of a tree with labeled
nodes and edges – a partition tree. Paths in the partition tree emanating from a node labeled by n
represent the partitions of n. An inductive definition of the partition tree for n is given as follows:

(i) if n = 0, then the tree consists of a single node labeled 0.

(ii) if n > 0, then the root of the tree is labeled with n, and edges labeled with n, n − 1, . . . , 1
connect the root to partition trees for 0, 1, . . . , n− 1, respectively.

An example partition tree for n = 4 is presented below.

169

4.8. CONTINUATIONS CHAPTER 4. EFFECTS

4

0 1

0

2

0 1

0

3

0 1

0

2

0 1

0

1234

123121

1211

1

Of course, just as with any tree, various traversal strategies may be employed to generate the
partitions for n. For example, a depth-first strategy may employ a stack k to store the nodes that
remain to be traversed. After putting the root node on the stack, the depth-first strategy repeats
the following algorithm: remove the top node t from k, and expand it, i.e. determine all the children
of t (if any), and put them onto the top of k; if k is empty, then exit.

On the other hand, a breadth-first strategy may employ a queue k to store the nodes that remain
to be traversed. After putting the root node on the queue, the breadth-first strategy repeats the
following: remove the top node t from k, and expand it, i.e. determine all the children of t (if any),
and put them at the bottom of k; if k is empty, then exit.

In our implementation of the partition algorithm, the partition tree for n is never explicitly
built, but is implicitly described by the execution of the partition function. For example, we
present below a version of choice which facilitates a depth-first traversal of the tree. It assumes a
name X of unit type.

(* choice : int -> �Xint *)

fun choice n =

box (recallX t : �Xint -> �Xunit.

let fun loop (s : int) : unit =

if s = 0 then ()

else

let box u = t (box s)

in

(markX u);

loop (s - 1)

end

in

loop (n)

end)

The program works by viewing the current global program continuation as an implicit stack k
of nodes to be expanded in order. Each node has its own composable continuation, all of which
compose to create k. The function choice simply captures into t the composable continuation for
the first node in the sequence. The captured node is removed, and t is applied to generate all of
its children – one child for each possible value of the variable s. The children nodes are added in

170

CHAPTER 4. EFFECTS 4.8. CONTINUATIONS

place of the parent node at the top of the global program continuation k. Because the new nodes
are added to the beginning, they will be the the first to expand in the subsequent execution. As a
consequence, this implementation of choice uses depth-first traversal strategy.

With this version of choice, partition has the type int -> �Xintlist. To compute the
partitions for 4, we run markX print (unbox partition 4). The result consists of the lists [4],
[3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]. Because depth-first traversal is employed,
the lists are sorted in lexicographical order.

In our calculus, it is also possible to implement choice so that it facilitates breadth-first strategy.
When generating the children of some node, we only need to attach them at the end, rather than
at the beginning of the queue k that the global continuation represents. One possible breadth-first
implementation of choice is given below.

(* choice : int -> �Y,Xint *)

fun choice n =

box (recallX t : �Y,Xint -> �Y,Xunit.

recallY k : �Y unit -> �Y unit.

markY

let fun loop (s : int) : �Y unit =

if s = 0 then box ()

else

let box u = t (box s)

box u’ = loop (s - 1)

in

box (markX u; u’)

end

box v = k (box markX ())

box v’ = loop n

in

v; v’

end)

How does this function work? First, we must assume that the queue is marked by a new name Y
of unit type, so that it can be captured into a continuation itself. The function choice captures
the topmost node into t, and then captures the rest of the queue into k. It is important that the
continuation k will not contain the delimiting markY . Then choice expands the topmost node
t, adds the obtained children nodes to the bottom of k, and puts markY back, so that its scope
includes the children nodes. Again, it is crucial for this application that the captured continuations
omit the target mark (unlike, for example, in the calculi from [DF89, DF90]), as this mark will get
in the way of adding new nodes at the bottom of k.

With this implementation of choice, the appropriate type for the function partition is
int->�Y,Xintlist. To compute the partitions for 4, we run

markY markX print (unbox partition 4)

to obtain the lists [4], [3, 1], [2, 2], [1, 3], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]. Because we used
breadth-first traversal strategy, we first explored all the partitions of size 1, then all the partitions
of size 2, etc. Thus, the lists will be sorted first by size, rather than lexicographically, as was the
case with depth-first traversal.

�

171

4.8. CONTINUATIONS CHAPTER 4. EFFECTS

Structural properties and type soundness

Lemma 77 (Expression substitution principle)
If Σ;∆ ` e1 : A [C] and Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D].

Lemma 78 (Replacement)
1. If Σ;∆ ` P [e] : A [C], then there exists a type B such that

(a) Σ;∆ ` e : B [C], and

(b) if Σ′,∆′ extend Σ,∆ and Σ′;∆′ ` e′ : B [C], then Σ′;∆′ ` P [e′] : A [C]

2. if Σ;∆; Γ ` E[e] : A [C], then there exist a type B and a support D such that

(a) Σ;∆ ` e : B [D], and

(b) if Σ′,∆′ extend Σ,∆ and Σ′;∆′ ` e′ : B [D], then Σ′;∆′ ` E[e′] : A [C]

Lemma 79 (Canonical forms)
Let v be a closed value such that Σ; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 []

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 []

As a consequence, the support of v can be arbitrarily weakened, i.e. Σ; · ` v : A [D], for any support
D.

Lemma 80 (Subject reduction)
If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C].

Lemma 81 (Preservation)
If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [C].

Lemma 82 (Progress for −→)
If Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that Σ, r −→ Σ′, e′.

Lemma 83 (Unique decomposition)
For every expression e, either:

1. e is a value, or

2. e = P [recallX k. e′], for a unique pure context P , or

3. e = E[r] for a unique evaluation context E and a redex r.

Lemma 84 (Progress)
If Σ; · ` e : A [], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Lemma 85 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names π : N → N ,
fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

172

CHAPTER 4. EFFECTS 4.9. NOTES

4.9 Notes

Related work on type-and-effect systems

Integrating effects into typed functional calculi has quite a long history, and this section is bound
to be very incomplete. Numerous systems have been proposed, treating various effects and with
various levels of precision and verbosity of typing. As a representative example of these type-and-
effect systems, we simply list the works of Gifford, Lucassen, Jouvelot, Talpin and Tofte [GL86,
LG88, JG89, JG91, TJ92, TJ94, TT97]. The approach usually taken by type-and-effect systems is

to extend the language with a type of effectful functions A
C
→ B. Here, C is a set of effects that

the evaluation of the function body may cause.

Coming from the side of logic and type theory, type-and-effect systems are directly related to
monads. A monad© is a type constructor which is used to differentiate between values and effectful
computations. In monadic calculi, the type ©A is ascribed to expressions which may evaluate to
a value of type A, but may cause some effect in the course of evaluation. Monads were invented
for use in denotational semantics by Moggi [Mog89, Mog91], and were later adopted for functional
programming by Wadler [Wad92, Wad95].

The connection between monads and effect systems is described by Wadler in [Wad98]. Briefly,

the effectful function type A
C
→ B in the type-and-effect systems corresponds to the monadic type

A → ©CB. One advantage of monads over type-and-effect systems is that monads encapsulate
effects, so that effects can be added to the language in a modular way, without changing the already
existing language constructs. This is opposite to the type-and-effect systems, which require that

the function types A→ B be extended into effectful function types A
C
→ B.

The modal effect calculi described in this dissertation also encapsulate effects and add them
to the language in a modular way, without changing the underlying function types. However, the
modal framework allows more than one type operator for effects, and thus allows more precise
distinctions between different effectful computations.

Related work on dynamic binding

Dynamic binding has been inadvertantly introduced in the first versions of LISP, but then became
a feature, rather than a bug, in the subsequent implementations and dialects. For semantical
treatment of dynamic binding we refer to [Mor97]. A typed calculus for dynamic binding, called
λN , is developed in [Dam96, Dam98]. The λN -calculus is related to our system in that both use
names, but in a slightly different way. The dynamic variables of λN are introduced as ordinary
λ-bound variables, but are then indexed by names to distinguish the various values that can be
assigned to them. However, the type system does not have a notion of support, so it cannot prevent
reading from uninitialized dynamic variables.

Related work on exceptions

A treatment of exceptions in Haskell is considered by Peyton Jones at al. in [PRH+99]. It is
interesting that this paper does not the exception monad to add exceptions to the underlying
language, but rather implements imprecise exceptions. The idea is to keep track of all the possible
exceptions that a given expression may raise, and then for handling purposes return only one of
the possibilities, non-deterministically.

Another exception calculi is presented by de Groote in [dG95]. It is a call-by-value calculus
which uses separate binding mechanisms to introduce exceptions into the computation. However,

173

4.9. NOTES CHAPTER 4. EFFECTS

because of the lack of modal or monadic types, it has to specifically require that values of the
language are effect-free, in which case it implements the Standard ML exception mechanism. This
paper also discuses the logical content of exceptions, and relationship with classical logic. Exception
mechanism of Java relates to our calculus as well, as Java methods must be labeled by the exceptions
they can raise [GJS97]. Catch-and-throw calculus is a specific simplifications of exceptions, and
we refer to the following theoretical works on catch-and-throw [Nak92, Kam00a, KS02]. These
calculi also lack the type constructor for exceptional computations, and thus have to restrict the
way exceptions are introduced, propagated and handled.

Related work on composable continuations

Composable continuations were probably first considered by Felleisen in [Fel88], in an untyped
setting and with recalling (or shifting) to only the nearest mark (or reset, or prompt). A general-
ization to a whole family of control operators for recalling, each of which is indexed by a numeral
proscribing how many closest marks should be jumped over, appeared in [SF90a]. Also in untyped
setting, Hieb, Dybvig and Anderson in [HDA94] introduce labels insted of numerals to describe the
destination points for a hierarchy of recalls.

In a typed setting, Danvy and Filinski in [DF89] develop a calculus for composable continuations
with a single recall operator. The marks are not labeled. In the Appendix C, they also briefly discuss
the idea which we have employed here: upon capturing, remove the marks from the environment, so
that jumps can be made to the marks further down in the context stack. Danvy and Filinski further
relate composable continuations to the CPS transformation in [DF90, DF92]. These papers also
contain extensive commentary on the related work regarding composable continuations. Gunther,
Rémi and Riecke in [GRR95] develop a calculus whose operational semantics is very similar to
the one used for the calculus of composable continuation in this dissertation. In particular, this
calculus removes the delimiting mark upon capture, from both the environment and the reduct.
Most recently, Kameyama in [Kam00a, Kam00b] works with labels instead of numerals to provide
a hierarchy of recall operators. The mentioned typed calculi lack a type constructor for effectful
computations, so they must impose restrictions on expressiveness and type safety in order to avoid
the extrusion of effect scope.

Logical content of composable continuations is studied by Murthy in [Mur92]. This paper
develops a type system for composable continuation with a hierarchy of recall operators, which is
based on monads indexed by sets of types, but has to restrict the marks to only implication-free
types in order to preserve soundness. Wadler in [Wad94] further analyses the above type systems for
composable continuations with a single recall operator, and with a hierarchy of recall operators, and
presents them in terms of indexed monads. All these calculi are characterized by the serialization
of effects inherent in the monadic programming.

Monadic reflection and reification

One of the main features of the monadic calculi is the programming style in which the program
itself must specify a total ordering on the compitational effects. But sometimes, most notably in the
case of benign effects, effectful computations may be independent and therefore may be evaluated
out of order.

This problem with excessive serialization of monadic programs has been addressed previously by
Filinski, using monadic reflection and reification [Fil94, Fil96, Fil99]. Reflection and reification are
translations between an effectful source language and a monadic meta language. The effectful source
language provides the syntax for programming (which avoids the burden of excessive serialization),

174

CHAPTER 4. EFFECTS 4.9. NOTES

while the monadic meta language defines the semantics for the program. The modal approach to
effects addresses the same problem of excessive serialization, but it does so directly, using only
natural deduction, and without any translations.

A futher advantage of modal calculi over monads concerns efficiency. Monads may sometimes
impose efficiency penalties (depending on the evaluation strategy), which come in the form of
tagging and run-time tag checking of monadic values. This was particularly evident in the case of
exceptions (Section 4.6). Monadic reflection and reification do not resolve this issue; as concluded
in [Fil94], reflection and reification still incur the operational penalties of tag checking. In contrast,
tagging is not required in the modal calculus for exceptions.

Kripke semantics for the lax logic

As described in Section 4.1, the identification of truth and necessity in CS4 leads to the formulation
of lax logic, in the sense that the modal operator 3 translates into the lax operator ©. This
identification is achieved by extending the CS4 logic with the axiom A→ �A.

In the Kripke semantics of CS4, truth and necessity are identified if the Kripke model satisfies
the following monotonicity property:

for every world w and proposition A, if w |= A and w → w ′ then w′ |= A.

Indeed, in this class of models, if A is true at the current world, then A is true at all accessible worlds,
and is therefore necessary. Then, as established by Alechina at al. in [AMdPR01], a Kripke model
for propositional lax logic consists of a Kripke model for CS4 that satisfies the above monotonicity
property.

Logical meaning of dynamic binding and exceptions

In this note we describe a possible logical interpretation for the calculi of dynamic binding and
exceptions (Sections 4.4 and 4.6). The main idea is to involve two levels of interpretation. The
judgment from the calculi of dynamic binding and for exceptions form the object level. The meta
level, or the meta logic, defines the reasoning about the derivability in the calculi from the object
level. The modal operators may be seen as internalizing properties of the meta logic for reasoning
about categorical derivations from the object level. This note will necessarily be very informal, and
making the presented intuition precise is left for future work.

The types from the object level should be contrasted to meta propositions, which belong to the
meta logic. For example, the atomic propositions of this meta logic are of the form A true where
A is an arbitrary the object types. For each object type operator, the meta logic ought to contain
a corresponding connective on propositions, and appropriately relate the two. For example, in the
meta logic we have

A true ⊃ B true

if and only if we may also derive A→ B true.

Memory locations X1:A1, . . . , Xn:An may be treated as labels for the meta propositions A1 true, . . . , An true.
Then, we require that

�X1,... ,XnA true

if and only if the conclusion A true may be derived in the meta logic from the hypotheses X1, . . . ,
Xn. In the calculus of dynamic binding, the reflection principle is realized by means of explicit
substitutions, and it simply allows that meta logic derivations to be translated into the object logic.

175

4.9. NOTES CHAPTER 4. EFFECTS

The meta logic for dynamic binding pretty closely follows the object calculus, in the sense that
the meta logic only contains the connectives corresponding to the object type operators. But this
need not be the case. For example, the meta logic for exceptions should contain a propositional
operator ¬ for negation, while negation is not a type operator on the object level.

Exceptions X1:A1, . . . , Xn:An may be considered as labels for the meta logical propositions
¬(A1 true), . . . , ¬(An true). Then in the meta logic, we require that

�X1,... ,XnA true

if and only if the conclusion A true may be derived in the meta logic from the hypotheses
X1, . . . , Xn.

For example, let us assume that A true can be proved in the meta logic, and let the name X
be a label for the proposition ¬(A true). Then we can use X to reason by contradiction and prove
B true, where B is an arbirary object type. In other words, given A true, we can derive �XB true.
This reasoning directly corresponds to the following derivation in the calculus of exceptions:

if ` e : A then ` box (raiseX e) : �XB.

In the calculus of exceptions, the reflection principle corresponds to exception handling, and it
allows the meta logical derivations to be coerced into object logic. Let us assume that we are given
the meta logic propositions �XB true and A true ⊃ B true. Because �XB true corresponds to
¬(A true) ⊃ B true, we can employ the law of excluded middle and derive B true. This reasoning
directly corresponds to the following derivation in the calculus of excluded middle.

if ` e : �XB and ` 〈Θ〉 : [X]
B
⇒ [], then (unbox e) handle Θ : B.

From the standpoint of Kripke semantics, it seems a plausible that the indexed modalities may
be introduced by the following redefinition of the |= relation.

1. w |= �CA iff for all w′ w w and u′ ← w′, u′ |= C implies u′ |= A.

2. w |= 3CA iff for all w′ w w there exists u′ ← w′ such that u′ |= C and u′ |= A

In this definition, C is the set of names C = {X1, . . . , Xn}, where the name Xi has the type
Ai. In the case of dynamic binding, we set w |= C if and only w |= A1, . . . , w |= An. On the other
hand, in the case of exceptions we set w |= C if and only if w 6|= A1, . . . , w 6|= An.

Recursive names and future work on dynamic binding and state

It is a well known property of functional languages, that in the presence of state and higher-
order functions, recursion becomes admissible. For example, we can define a recursive function
fact:int->int for computing factorials, without explicitly using the constructs for recursion. Be-
low is an example in ML-like notation.

let val fact : int -> int =

let val F = ref (λx. x) (* a dummy value *)

val g = λx. if x = 0 then 1

else x * (!F)(x - 1)

in

(F := g); g

end

176

CHAPTER 4. EFFECTS 4.9. NOTES

The admissibility of recursion is a slightly concerning property of stateful computations, because
it shows that state destroys the connection with logic which is otherwise enjoyed by the pure
λ-calculus.

We may attempt to translate the above program into the calculus of dynamic binding from
Sections 4.4, by declaring F as a name of type int -> int. This translation, however, will not
result in a well-typed program. Indeed, the function g must be typed as int -> �Fint, because
g references F in its body. But then, it is not possible to assign g to F because of a type mismatch.
The type of F cannot simply be int -> int, but rather must be int -> �Fint. When the type
of F depends on F itself, as it is the case here, we say that F is a recursive name. With an explicit
construct for recursive names, the recursive factorial function can be defined in the calculus of
dynamic binding.

let val fact : int -> int

let recname F : int -> �Fint (* no need for a dummy value *)

val g = λx. if x = 0 then box 1

else box (x * unbox (F (x - 1)))

in

λn. <F -> g> unbox (g n)

end

Incidentally, the fact that recursion does not seem possible unless enabled by a separate language
construct, provides a compeling evidence that the modal calculi for dynamic binding and state from
Sections 4.4 and 4.5 are actually strongly normalizing. This is another conjecture left for future
work.

Many other features, in addition to recursive names, need to be considered if the modal calculus
is to be extended into a full-fledged language with state. It seems important, for example, to
consier first-class names (as suggested in Section 2.3), support polymorphism (Section 3.3), explicit
substitutions of variable names, etc. The design space is rather large, and each of these extensions
may be interesting in its own right.

Related work on the comonadic formulation of effects

In category theory, the operator � of CS4 modal logic is usually modeled by a comonad, and the
fact that comonads may represent effects have previosly been noticed by Brookes and Geva [BG92],
Kieburtz [Kie99] and Pardo [Par00].

It is interesting that Brookes and Geva consider a particular family of comonads, called compu-
tational comonads. The comonad (�, ε, δ) is computational, if in addition to the comonadic laws
listed in Section 1.3 it admits a natural transformation γ : A→ �A, such that

• εA ◦ γA = idA

• δA ◦ γA = γ . A ◦ γA

The naturality of γ guarantees that for every morphism f : A→ B,

• �f ◦ γA = γB ◦ f

As evident from its type, the natural transformation γ corresponds to the extension of the modal
CS4 calculus with the axiom A→ �A, and thus provides a way to coerce values into computations.

Kieburtz in [Kie99] proposes comonads for those effectful computations that may depend on the
run-time environment, but do not change it. Needless to say, this is exactly how the the operator

177

4.9. NOTES CHAPTER 4. EFFECTS

� in used in this dissertation. It is interesting that the comonads in [Kie99] are not computational
in the sense defined by Brookes and Geva, and do not readily admit the coercion of values into
computations.

Neither of the cited papers on comonads make the connection with effect handling and with
modal logic.

Modal types for diverging computations

Consider a purely functional language with a fixpoint construct, defined by the following typing
rule and operational semantics.

∆, x:A ` e : A

∆ ` fix x:A. e : A

fix x:A. e 7−→ [fix x:A. e/x]e

Expressions in this language either evaluate to a value, or never terminate. Such expressions
are partial, because they may diverge. A typical example is the expression fix x:A. x, which
reduces to itself. Notice however, that the evaluation of a non-terminating expression does not
perform any changes to the run-time environment. Depending on the operational semantics of the
language, divergence may prevent some expressions from being evaluated, but it does not influence
the outcome of those evaluations that do take place. Divergence is a benign effect.

In fact, divergence is such a simple effect, that non-terminating computations do not even
depend on the run-time environment; if the computation does not terminate in one environment, it
will not terminate in any other environment either. This is in fact one of the reasons that divergence
is frequently not even considered an effect.

However, if we do want to treat diverging computations as effectful, the benign nature of
divergence suggests that we should use the type system for benign effects (Section 4.3). How? The
idea comes from the operational semantics. Observe that the reduction of fix x. e substitutes the
variable x by fix x. e. The fact that x is substituted by an effectful computation, should be made
explicit in the variable context.

With that in mind, we introduce a name N to serve as a marker for non-termination. If an
expression is possibly diverging, its support will contain the name N . In fact, because we assumed
that our language is pure except for divergence, our supports will either be empty, or contain the
single name N . Given the name N , we may now redefine the typing rule for fix, as follows.

∆, x:A [N] ` e : A [C]

∆ ` fix x:A. e : A [C]

Notice that the support set C of the expression fix x. e may equal the singleton {N}, but may
also be empty, depending on how x is used in e. Of course, if fix x. e has empty support, than
by the support weakening principle, it may be considered as having support {N} as well. As a
consequence, the operational semantics that substitutes x : A [N] by fix x. e obeys the prescribed
supports, and will be type safe.

It is interesting that non-termination does not admit any obvious notions of handling, by which
we could remove the name N from the support of a possibly non-terminating computation, and
therefore restore the purity of such a computation. In fact, it may be appropriate to view non-
termination as an effect that is handled by some entity outside of the language (e.g. the operating
system). Of course, then we should allow that expressions with non-empty support be evaluated.
This contrasts Chapter 4, where we only evaluate expressions with empty support.

178

CHAPTER 4. EFFECTS 4.9. NOTES

To illustrate the above ideas, we present the code for a factorial function which uses fix-points
and is therefore conservatively labeled as non-terminating.

- fix fact : int -> �Nint.

λn:int. if n = 0 then box 1

else box (n * unbox (fact (n - 1)));

val fact = [fn] : int -> �Nint

- unbox (fact 2) + unbox (fact 3);

val it = 8 : int

Notice that the fix-point expression may not be typed simply as int -> int, but must be given a
more complicated type int -> �Nint. Indeed, the recursive reference to fact in the λ-abstraction
must be boxed. Otherwise, the body of the λ-abstraction would have had non-empty support, which
is not allowed by the type system for benign effects (Section 4.3). In this example, the function
fact has empty support, but the result 8 is obtained with support N . We may suppress this
information, however, because expressions with both empty and non-empty supports are admitted
for evaluation.

179

4.9. NOTES CHAPTER 4. EFFECTS

180

Bibliography

[AM03] D. Ancona and E. Moggi. A calculus for symbolic names management. Personal
communication, October 2003.

[AMdPR01] Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. Categorical
and Kripke semantics for Constructive S4 modal logic. In Laurent Fribourg, editor,
International Workshop on Computer Science Logic, CSL’01, volume 2142 of Lecture
Notes in Computer Science, pages 292–307, Paris, 2001. Springer.

[AS95] Giuseppe Attardi and Maria Simi. A formalization of viewpoints. Fundamenta Infor-
maticae, 23(3):149–173, 1995.

[BBdP98] P. N. Benton, G. M. Bierman, and V.C.V de Paiva. Computational types from a
logical perspective. Journal of Functional Programming, 8(2):177–193, March 1998.

[BdP00] G. M. Bierman and V. C. V. de Paiva. On an intuitionistic modal logic. Studia Logica,
65(3):383–416, 2000.

[BES98] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization by evalu-
ation. In Bernhard Möller and John V. Tucker, editors, Prospects for Hardware Foun-
dations, volume 1546 of Lecture Notes in Computer Science, pages 117–137. Springer,
1998.

[BG92] Stephen Brookes and Shai Geva. Computational comonads and intensional semantics.
In M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors, Application of Categories
in Computer Science, volume 177 of London Mathematical Society Lecture Notes, pages
1–44. Cambridge University Press, Cambridge, 1992.

[BHM02] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. In Gilles Barthe,
Peter Dybjer, Luis Pinto, and Joao Saraiva, editors, Applied Semantics, volume 2395
of Lecture Notes in Computer Science, pages 42–122. Springer, 2002.

[Bjø99] Nikolaj Bjørner. Type checking meta programs. In Workshop on Logical Frameworks
and Meta-languages, Paris, 1999.

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for
typed lambda-calculus. In Symposium on Logic in Computer Science, LICS’91, pages
203–211, Amsterdam, 1991.

[CMS01] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types for a safe imper-
ative MetaML. Journal of Functional Programming, 2001. To appear.

181

BIBLIOGRAPHY BIBLIOGRAPHY

[CMT00] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closed types as a simple ap-
proach to safe imperative multi-stage programming. In Ugo Montanari, José D. P.
Rolim, and Emo Welzl, editors, Automata, Languages and Programming, volume 1853
of Lecture Notes in Computer Science, pages 25–36. Springer, 2000.

[Dam96] Laurent Dami. Functional programming with dynamic binding. In Dennis Tsichritzis,
editor, Object Applications, pages 155–172. Technical Report, University of Geneva,
1996.

[Dam98] Laurent Dami. A lambda-calculus for dynamic binding. Theoretical Computer Science,
192(2):201–231, 1998.

[Dan96] Olivier Danvy. Type-directed partial evaluation. In Symposium on Principles of
Programming Languages, POPL’96, pages 242–257, St. Petersburg Beach, Florida,
1996.

[Dav96] Rowan Davies. A temporal logic approach to binding-time analysis. In Symposium
on Logic in Computer Science, LICS’96, pages 184–195, New Brunswick, New Jersey,
1996.

[DF89] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Tech-
nical Report 89/12, DIKU - Computer Science Department, University of Copenhagen,
1989.

[DF90] Olivier Danvy and Andrzej Filinski. Abstracting control. In Conference on LISP and
Functional Programming, pages 151–160, Nice, France, 1990.

[DF92] O. Danvy and A. Filinski. Representing Control: a Study of the CPS Transformation.
Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[dG95] Philippe de Groote. A simple calculus of exception handling. In Mariangiola Dezani-
Ciancaglini and Gordon Plotkin, editors, Typed Lambda Calculi and Applications,
volume 902 of Lecture Notes in Computer Science, pages 201–215. Springer, 1995.

[DHM91] Bruce F. Duba, Robert Harper, and David MacQueen. Typing first-class continuations
in ML. In Symposium on Principles of Programming Languages, POPL’91, pages 163–
173, Orlando, Florida, 1991.

[DP01] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal
of the ACM, 48(3):555–604, 2001.

[dP03] Valeria de Paiva. Natural deduction and context as (constructive) modality. In Patrick
Blackburn, Chiara Ghidini, Roy M. Turner, and Fausto Giunchiglia, editors, Modelling
and Using Context, volume 2680 of Lecture Notes in Artificial Inteligence, pages 116–
129. Springer, 2003.

[DPS97] Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recursion for
higher-order abstract syntax. In Philippe de Groote and J. Roger Hindley, editors,
Typed Lambda Calculi and Applications, volume 1210 of Lecture Notes in Computer
Science, pages 147–163. Springer, 1997.

182

BIBLIOGRAPHY BIBLIOGRAPHY

[Ers77] A. P. Ershov. On the partial computation principle. Information Processing Letters,
6(2):38–41, April 1977.

[Fel88] Matthias Felleisen. The theory and practice of first-class prompts. In Symposium on
Principles of Programming Languages, POPL’88, pages 180–190, San Diego, Califor-
nia, 1988.

[FFKD86] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba.
Reasoning with continuations. In Symposium on Logic in Computer Science, LICS’86,
pages 131–141, Cambridge, Massachusetts, 1986.

[Fil89] Andrzej Filinski. Declarative continuations and categorical duality. Master’s thesis,
University of Copenhagen, Copenhagen, Denmark, 1989. DIKU Report 89/11.

[Fil94] Andrzej Filinski. Representing monads. In Symposium on Principles of Programming
Languages, POPL’94, pages 446–457, Portland, Oregon, 1994.

[Fil96] Andrzej Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University, 1996.

[Fil99] Andrzej Filinski. Representing layered monads. In Symposium on Principles of Pro-
gramming Languages, POPL’99, pages 175–188, San Antonio, Texas, 1999.

[Fio02] Marcelo Fiore. Semantic analysis of normalization by evaluation for typed lambda
calculus. In International Conference on Principles and Practice of Declarative Pro-
gramming, PPDP’02, pages 26–37, Pittsburgh, Pennsylvania, 2002.

[FM97] Matt Fairtlough and Michael Mendler. Propositional lax logic. Information and Com-
putation, 137(1):1–33, 1997.

[FM99] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic. Kluwer, 1999.

[FPT99] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable bind-
ing. In Symposium on Logic in Computer Science, LICS’99, pages 193–202, Trento,
Italy, 1999.

[Fut71] Yoshihiko Futamura. Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

[Gab00] Murdoch J. Gabbay. A Theory of Inductive Definitions with α-Equivalence. PhD
thesis, Cambridge University, August 2000.

[Gir86] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical
Computer Science, 45(2):159–192, 1986.

[GJ95] Robert Glück and Jesper Jørgensen. Efficient multi-level generating extensions for
program specialization. In Manuel Hermenegildo and S. Doaitse Swierstra, editors,
Programming Languages: Implementations, Logics and Programs, volume 982 of Lec-
ture Notes in Computer Science, pages 259–278. Springer, 1995.

[GJ97] Robert Glück and Jesper Jørgensen. An automatic program generator for multi-level
specialization. Lisp and Symbolic Computation, 10(2):113–158, 1997.

183

BIBLIOGRAPHY BIBLIOGRAPHY

[GJS97] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, 1997.

[GL86] David K. Gifford and John M. Lucassen. Integrating functional and imperative pro-
gramming. In Conference on LISP and Functional Programming, pages 28–38, Cam-
bridge, Massachusetts, 1986.

[GP02] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2002.

[Gri90] Timothy G. Griffin. A formulae-as-types notion of control. In Symposium on Principles
of Programming Languages, POPL’90, pages 47–58, San Francisco, California, 1990.

[GRR95] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and
control in ML-like languages. In International Conference on Functional Programming
Languages and Computer Architecture, FPCA’95, pages 12–23, La Jolla, California,
1995.

[Har99] Robert Harper. Proof-directed debugging. Journal of Functional Programming,
9(4):463–470, 1999.

[HDA94] Robert Hieb, Kent Dybvig, and Claude W. Anderson, III. Subcontinuations. Lisp and
Symbolic Computation, 7(1):83–110, 1994.

[Hof99] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Symposium
on Logic in Computer Science, LICS’99, pages 204–213, Trento, Italy, 1999.

[JG89] Pierre Jouvelot and David K. Gifford. Reasoning about continuations with control ef-
fects. In Conference on Programming Language Design and Implementation, PLDI’89,
pages 218–226, Portland, Oregon, 1989.

[JG91] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects.
In Symposium on Principles of Programming Languages, POPL’91, pages 303–310,
Orlando, Florida, 1991.

[JSS85] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. An experiment in partial eval-
uation: the generation of a compiler generator. In Jean-Pierre Jouannaud, editor,
Rewriting techniques and applications, volume 202 of Lecture Notes in Computer Sci-
ence, pages 124–140. Springer, 1985.

[Kam00a] Yukiyoshi Kameyama. Towards logical understanding of delimited continuations. In
Amr Sabry, editor, Proceedings of the Third ACM SIGPLAN Workshop on Contin-
uations, CW’01, pages 27–33, 2000. Technical Report No. 545, Computer Science
Department, Indiana University.

[Kam00b] Yukiyoshi Kameyama. A type-theoretic study on partial continuations. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors, Theoretical
Computer Science: Exploring New Frontiers of Theoretical Informatics, volume 1872
of Lecture Notes in Computer Science, pages 489–504. Springer, 2000.

[Kie99] Richard B. Kieburtz. Codata and comonads in Haskell. Unpublished. Available from
http://www.cse.ogi.edu/~dick, 1999.

184

BIBLIOGRAPHY BIBLIOGRAPHY

[Kob97] Satoshi Kobayashi. Monad as modality. Theoretical Computer Science, 175(1):29–74,
1997.

[Kri63] Saul Kripke. Semantic analysis of modal logic i. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 9:67–96, 1963.

[Kri80] Saul A. Kripke. Naming and Necessity. Harvard University Press, 1980.

[KS02] Yukiyoshi Kameyama and Masahiko Sato. Strong normalizability of the non-
deterministic catch/throw calculi. Theoretical Computer Science, 272(1–2):223–245,
2002.

[Lan65] Peter J. Landin. A correspondence between ALGOL-60 and Church’s lambda notation.
Communications of the ACM, 8:89–101, 1965.

[LG88] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Symposium on
Principles of Programming Languages, POPL’88, pages 47–57, San Diego, California,
1988.

[LL96] Peter Lee and Mark Leone. Optimizing ML with run-time code generation. In Confer-
ence on Programming Language Design and Implementation, PLDI’96, pages 137–148,
1996.

[LP95] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and Symbolic
Computation, 8(4):293–341, 1995.

[McC93] John McCarthy. Notes on formalizing context. In International Joint Conference on
Artificial Intelligence, IJCAI’93, pages 555–560, Chambery, France, 1993.

[Mil90] Dale Miller. An extension to ML to handle bound variables in data structures. In
Proceedings of the First Esprit BRA Workshop on Logical Frameworks, pages 323–335,
Antibes, France, 1990.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the justifications of the
logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Symposium on Logic
in Computer Science, LICS’89, pages 14–23, Asilomar, California, 1989.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[Mon63] Richard Montague. Syntactical treatment of modalities, with corollaries on reflexion
principles and finite axiomatizability. Acta Philosophica Fennica, 16:153–167, 1963.

[Mor97] Luc Moreau. A syntactic theory of dynamic binding. In Michel Bidoit and Max
Dauchet, editors, TAPSOFT’97: Theory and Practice of Software Development, vol-
ume 1214 of Lecture Notes in Computer Science, pages 727–741. Springer, 1997.

[MTBS99] Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. An idealized
MetaML: Simpler, and more expressive. In European Symposium on Programming,
ESOP’99, pages 193–207, Amsterdam, 1999.

185

BIBLIOGRAPHY BIBLIOGRAPHY

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[Mur92] Chetan R. Murthy. Control operators, hierarchies, and pseudo-classical type systems:
A-translation at work. In Olivier Danvy and Carolyn Talcott, editors, Proceedings of
the ACM SIGPLAN Workshop on Continuations, CW’92, pages 49–71, 1992. Tech-
nical Report STAN-CS-92-1426, Stanford University.

[Nak92] Hiroshi Nakano. A constructive formalization of the catch and throw mechanism.
In Symposium on Logic in Computer Science, LICS’92, pages 82–89, Santa Cruz,
California, 1992.

[NPP03] Aleksandar Nanevski, Brigitte Pientka, and Frank Pfenning. A modal foundation for
meta variables. In Proceedings of MERλIN’03, Uppsala, Sweden, 2003.

[NT03] Michael Florentin Nielsen and Walid Taha. Environment classifiers. In Sympo-
sium on Principles of Programming Languages, POPL’03, pages 26–37, New Orleans,
Louisiana, 2003.

[Ode94] Martin Odersky. A functional theory of local names. In Symposium on Principles of
Programming Languages, POPL’94, pages 48–59, Portland, Oregon, 1994.

[Par00] Alberto Pardo. Towards merging recursion and comonads. In Proceedings of the 2nd
Workshop on Generic Programming, WGP’00, pages 50–68, Ponte de Lima, Portugal,
2000.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, 2001.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Conference on
Programming Language Design and Implementation, PLDI’88, pages 199–208, At-
lanta, Georgia, 1988.

[Pey03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, April 2003.

[PG00] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In Roland Backhouse and José Nuno Oliveira, editors,
Mathematics of Program Construction, volume 1837 of Lecture Notes in Computer
Science, pages 230–255. Springer, 2000.

[Pit01] Andrew M. Pitts. Nominal logic: A first order theory of names and binding. In Naoki
Kobayashi and Benjamin C. Pierce, editors, Theoretical Aspects of Computer Software,
volume 2215 of Lecture Notes in Computer Science, pages 219–242. Springer, 2001.

[Pra65] Dag Prawitz. Natural Deduction: a Proof-Theoretical Study. Number 3 in Stockholm
Studies in Philosophy. Almquist and Wiskell, 1965.

[PRH+99] Simon Peyton Jones, Alastair Reid, Tony Hoare, Simon Marlow, and Fergus Hender-
son. A semantics for imprecise exceptions. In Conference on Programming Language
Design and Implementation, PLDI’99, pages 25–36, Atlanta, Georgia, 1999.

186

BIBLIOGRAPHY BIBLIOGRAPHY

[PS93] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that
dynamically create local names, or: What’s new? In Mathematical Foundations of
Computer Science, Proc. 18th Int. Symp., Gdańsk, 1993, volume 711 of Lecture Notes
in Computer Science, pages 122–141. Springer-Verlag, Berlin, 1993.

[Rey72] John C. Reynolds. Definitional interpreters for higher-order programming languages.
In 25th National ACM Conference, pages 717–740, Boston, Massachusetts, 1972.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing ’83, pages 513–523. Elsevier, 1983.

[Sch00] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD thesis,
Carnegie Mellon University, 2000.

[Sco70] Dana Scott. Advice on modal logic. In Karel Lambert, editor, Philosophical Problems
in Logic, pages 143–173. Dordrecht: Reidel, 1970.

[Sco79] Dana Scott. Identity and existence in intuitionistic logic. In Michael Fourman, Chris
Mulvey, and Dana Scott, editors, Applications of Sheaves, volume 753 of Lecture Notes
in Mathematics, pages 660–696. Springer, 1979.

[SF90a] Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp
and Symbolic Computation, 3(1):67–99, 1990.

[SF90b] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: Full abstrac-
tion for models of control. In Conference on LISP and Functional Programming, pages
161–175, Nice, France, 1990.

[Sim94] Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis, University of Edinburgh, 1994.

[Smo85] C. Smoryński. Self-Reference and Modal Logic. Springer, 1985.

[SW74] Christopher Strachey and Christopher Wadsworth. A mathematical semantics for
handling full jumps. Technical Monograph PRG-11, Oxford University Computing
Laboratory, 1974.

[Tah99] Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999.

[Tah00] Walid Taha. A sound reduction semantics for untyped CBN multi-stage computa-
tion. Or, the theory of MetaML is non-trival. In Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, PEPM’00, pages 34–43, Boston, Mas-
sachusetts, 2000.

[Thi97] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,
University of Edinburgh, 1997.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference.
Journal of Functional Programming, 2(3):245–271, 1992.

[TJ94] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information
and Computation, 111(2):245–296, 1994.

187

BIBLIOGRAPHY BIBLIOGRAPHY

[TS97] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In Workshop on Partial Evaluation and Semantics-Based Program Manipulation,
PEPM’97, pages 203–217, Amsterdam, 1997.

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[Wad92] Philip Wadler. The essence of functional programming. In Symposium on Principles
of Programming Languages, POPL’92, pages 1–14, Albequerque, New Mexico, 1992.

[Wad94] Philip Wadler. Monads and composable continuations. Lisp and Symbolic Computa-
tion, 7(1):39–56, 1994.

[Wad95] Philip Wadler. Monads for functional programming. In Johan Jeuring and Erik Meijer,
editors, Advanced Functional Programming, volume 925 of Lecture Notes in Computer
Science, pages 24–52. Springer, 1995.

[Wad98] Philip Wadler. The marriage of effects and monads. In International Conference on
Functional Programming, ICFP’98, pages 63–74, Baltimore, Maryland, 1998.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

[WLP98] Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code generation and Modal-
ML. In Conference on Programming Language Design and Implementation, PLDI’98,
pages 224–235, Montreal, Canada, 1998.

[WLPD98] Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies. Modal types as staging
specifications for run-time code generation. ACM Computing Surveys, 30(3es), 1998.

188

