CARNEGIE MELLON UNIVERSITY
SENIOR THESIS

Streaming Algorithms for
Approximate Convex Hulls

Ananya Kumar

Advised by:
Avrim BLum

Collaborated with:
Lin YANG, Harry LANG, Vova BRAVERMAN

Abstract

Given a finite set of points P C RY, an approximate convex hull is a subset of points
in P that approximately covers the original set. More formally, every point in P is
within distance € from the convex closure of the subset. The optimal approximate
convex hull is the smallest such subset. Approximate convex hulls are intimately
tied to the notion of coresets (which are used in computational geometry, machine
learning, and approximation algorithms) and non-negative matrix factorization (an
unsupervised learning approach).

In many cases, the set P is too large to fit in memory. In these cases we need a stream-
ing (one-pass) algorithm that stores much less memory than P. Existing streaming
algorithms for this problem give bounds that only depend on e but that ignore the
structure of the data. A natural question is whether we can do better than state-of-
the-art when the data is well structured, in particular, when the optimal approximate
convex hull is small.

We show lower bounds for this problem to justify that it is hard. We then propose
two interesting relaxations of the problem. In the first relaxation we assume the data
is randomly permuted before the algorithm runs (which is true if the data points
are from arbitrary independent identical distributions). In the second relaxation our
approximation only needs to be correct in most directions. We come up with new
streaming algorithms and theorems for these relaxations.

Acknowledgements

Avrim, you have been a wonderful research advisor for the last year and a half. You
introduced me to lots of interesting concepts in machine learning and algorithms.
When I worked on some really hard problems, and did not make progress for weeks,
you gave me words of encouragement. Lin, Harry, and Vova, I've really treasure our
collaboration.

Guy, I have leant so much from doing research with you. You walked me through how
to approach research problems, introduced me to exciting concepts in parallel data
structures, and taught me how to write a research paper. I like that you encouraged
me to drop by and talk about research unscheduled. Bob, you introduced me to
the beauty of programming languages, and spent hours going through my proofs and
presentations, suggesting how I can improve them. Red, thank you for putting up
with me when I worked with you, you taught me to ask for help when I am stuck.

Carnegie Mellon is an amazing place because of my peers. I am indebted to my won-
derful friends, Noah, Dominick, David, Will, Taehoon, Victor, Ray, for supporting
me and talking about cool ideas in computer science. Sunny, my first 3 years at CMU
would not have been the same without you. Maya, thank you for always being there
for me over the last 4 years. Bojian, thank you for visiting me so often, and for some
of the most interesting conversations I've ever had. Peijin, you are probably one of
the most smartest and most helpful people I've ever met. Satya Prateek, thank you
for listening to me ramble about ideas for the last 10 years. Rachel, thanks for being
a wonderful girlfriend, being so helpful, and inspiring me with your work ethic.

Most of all, I want to thank my parents for loving me, supporting me, and educating
me for the last 22 years. You are always so interested in hearing about what I'm
doing, and are so selfless in your love for me. I would not be where I am without you.

Contents

1 Introduction and Definitions

1.1 Convex Hulls
1.2 Approximate Convex Hulls
1.3 Batch vs Streamingo
1.4 Contributions

2 Background and Related Work
2.1 Coresets

21.1 ekernelso
2.1.2 Batch Algorithms for e-kernels
2.1.3 Streaming Algorithms for e-kernels
2.2 Matrix Factorization L
2.2.1 Non-Negative Matrix Factorization (NMF)
2.2.2 Algorithms for NMF
2.2.3 Sparse Codingo
2.2.4 The Approximate Convex Hull Approach
3 Streaming Model and Lower Bounds
3.1 Streaming Model
3.2 Always OPT Lower Bounds
3.3 MAX-OPT Lower Bound
3.4 Almost Always OPT,
3.5 Limitations

4 Random Order Algorithm
4.1 Algorithm Description
4.2 Proof Outline

5 € — 0 Hull Algorithms
5.1 Definition of (¢,0) hull o oo

5.2 Core Lemmas 32

5.3 2D-Algorithm 33
5.4 Generalizing to higher dimensions 35
5.4.1 Algorithm 35

5.4.2 3D Proof Outline 36

5.4.3 Arbitrary Dimension Proof Sketch 38

6 Discussion 39

Chapter 1

Introduction and Definitions

Approximate convex hulls approximate the boundary of a set of points using less
space than the convex hull. The points are not necessarily in 2D space, and might be
in arbitrary d dimensional space.

Finding approximate convex hulls forms a core part of algorithms for e-kernels [AHPV05]
which are used in approximation algorithms [AHPV04], computer graphics [BHPO01],

and data analysis [AKSS17]. Non-negative matrix factorization, which is used in a
wide range of applications from text mining [BB05] to speech denoising [SLHO7], is

also often transformed into a problem of finding a good approximate convex hull [AGKM12].
We explain these connections in more detail in Chapter 2.

We begin by defining convex hulls, approximate convex hulls, streaming algorithms,
and give an outline of our contributions.

1.1 Convex Hulls

We use a slight modification of the regular notion of convex hulls. In our definitions,
a convex hull of P is a subset S of P such that the convex closure of S contains all
points in P. In particular, P is always a convex hull of P. Typically we are interested
in an optimal convex hull, which is a convex hull of minimal size.

Definition 1.1.1. Given points pq,...,p, € R", we say p = ayp1 + ... + a,p, is a
convex combination iff a; + ... + a,, = 1 and for all 7, a; > 0.

Definition 1.1.2. The convex closure of P is the set of all points p that can be
written as a convex combination of P. This is the smallest convex set containing P.

Definition 1.1.3. Given a set of points P C R", S C P is a convex hull of P if every
p € P can be represented as a convex combination of points in S.

Definition 1.1.4. A convex hull is optimal if it is of minimal size.

(c) Approx convex hull in red

Figure 1.1: Convex hull and approximate convex hull of a set of points.

Intuitively, an optimal convex hull captures the boundary of a set of points. Fig-
ure 1.1a shows a set of points, and figure 1.1b shows an optimal convex hull of the
points.

1.2 Approximate Convex Hulls

In many cases, we do not need to capture the boundary of a point set exactly - it
suffices to have an approximation. For example, figure 1.1c¢ highlights a smaller set
of points that approximately captures the set of points. In particular, every point is
either inside the approximate convex hull, or almost inside (within some distance ¢)
the approximate convex hull. In these cases it is wasteful to store the entire convex
hull, we can often store far fewer points and achieve a good enough approximation.
We formalize these ideas with some definitions.

Definition 1.2.1. Given a set of points S C R", we say that p is an e-approximate
convex combination of S if there exists some convex combination ¢ of points in .S with
p—ql2 < e

Definition 1.2.2. Given a set of points P C R", S C P is an e-approzrimate convex
hull of P if every p € P can be represented as an e-approximate convex combination
of points in S. Importantly, an approrimate convex hull of P is made up of points in

P.

If we don’t restrict the approximate convex hull S to come from the points in P,
we can always choose 3 points that form a large triangle containing the points in P.
However, this will typically not approximate the boundary of the original point set
P. In Chapter 2 we examine some related problems where the approximate convex
hull does not have to be made up of points in P.

E < 4
[)
.H |
. ® M
[)
o o ‘
.L
.S 'N T oQ
() R
[]
(a) Set of points (b) Triangle containing set of points

Definition 1.2.3. Let OPT(P, ¢) denote the size of a (not necessarily unique) smallest
e-approximate convex hull of P.

1.3 Batch vs Streaming

A batch algorithm for the e-approximate convex hull problem takes a point set P,
performs some sequence of operations, and outputs an e-approximate convex hull that
is close in size to OPT(P, ¢). In many cases, however, P is too large to fit in memory.

To address this, a streaming algorithm is only allowed to see each point once. After
it sees the entire point set P, it outputs an e-approximate convex hull that is close
in size to OPT(P, €). Streaming algorithms are used in contexts where P is too large
to fit in memory, and are therefore assessed on the amount of memory that they
use. Ideally, a streaming algorithm would use space close to OPT(P,¢€), where P
is the set of points it has processed so far. Although the runtime of streaming al-
gorithms is also important, we focus on the space complexity of streaming algorithms.

We often distinguish between a set of points and a stream of points. A set of points
is unordered, while a stream of points is ordered and might even contain duplicates
of the same point (at different locations in the ordering).

1.4 Contributions

The main aim of this thesis is to come up with good streaming algorithms for finding
e-approximate convex hulls. We show some lower bounds to justify that this is a hard
problem. In particular, we show that under a reasonable streaming model it is not
possible for a streaming algorithm to be competitive with OPT (in fact, an arbtirary
function of OPT) in 3D or higher. This implies that we need to relax the problem
or the streaming model, or the space bound needs to include some function of € or n
(the size of the point set).

We devise and prove streaming algorithms for two relaxations of the problem. In
the first relaxation, the points are on a 2D plane and come in a random order. Our
algorithm maintains an initially empty point set .S. When our algorithm sees a new
point p, it adds p to S if p is at least distance € away from the convex closure of S.
Additionally, our algorithm keeps removing points p € S where p is contained inside
the convex hull of S\ {p}, that is, removing p does not change the convex hull of
S. Surprisingly, for any point stream P, with high probability this algorithm keeps
OPT(P, €) logn points, where n is the size of P.

In the second relaxation, the points come in an arbitrary order in d-dimensional space,
but we only need to be correct in “most” directions (all but a d fraction of directions).
Our algorithm picks O(’g—i log £) random unit vectors, where k = OPT(P, €). For each
of these vectors v, we keep the point in the stream that has maximal dot product
with v. We give a proof based on VC-dimension to show that this algorithm achieves
the desired bound. For 2D we achieve an even stronger bound.

Both our algorithms are simple, and we find the fact that they achieve these bounds
to be surprising. These algorithms and their proofs are the core contributions of this
work.

Another contribution of our work is to explain some of the connections between core-
sets, non-negative matrix factorization, and e-approximate convex hulls, and their
limitations. We give some experimental evidence for the connection between non-
negative matrix factorization and our notion of approximate convex hulls.

There has been lots of recent work on e-approximate convex hulls, and even stream-
ing e-approximate convex hulls. However, to our knowledge, this is the first work
that examines streaming algorithms for e-approximate convex hulls in relation to the
optimal, that is, OPT(P,¢).

Chapter 2
Background and Related Work

Approximate convex hulls are very useful because they give a good estimate of the
boundary of a set of points, often using much less space than the true convex hull.
In most cases where the true convex hull is used, we can tolerate some error, and so
we can use an approximation instead. Direct applications of such boundary approx-
imations include surface simplification [HG97], but they also play an important role
in coresets and non-negative matrix factorization.

2.1 Coresets

Given a set of points P C R™, we might be interested in some property of the set, p(P).
For example, we might want to know the volume of the smallest sphere containing P.
More precisely, is a map from R™ to RT U {0}, and is monotone, that is, if P, C P,
then pu(Pr) < p(Fs).

Definition 2.1.1. An e-coreset [AHPV04, AHPVO05], S C P gives us an approxima-
tion of p(P), where ¢ > 0. In particular, (1 — e)u(P) < u(S) < u(P).

The general principles behind coresets are used in machine learning [TKC05, HPRZ07,
FFK11, FSS13, BLK15], robotics [PFRN14], clustering [HPMO04], and many other
areas of research.

2.1.1 e-kernels

One of the most important types of coresets is the e-kernel [AHPV04, AHPVO05],
because it is a coreset for many properties pu.

10

Definition 2.1.2. Given a set of points P C R% and u € R? with |ul, = 1, the
directional width of P in direction w is given by,

P) = — mi
w(u, P) = max(p, v) — min(p, v)

Definition 2.1.3. A subset @ of P is called an e-kernel of P if for all u with |u|s = 1,
(1 - 6)&]('&7 P) < W(U, Q)

In both the batch and streaming setting, algorithms to find an e-kernel almost al-
ways reduce to finding an e-approximate convex hull of a set of points contained
in the unit sphere. Most of these algorithms also assume that the dimension d is a
constant (so even a d? multiplicative term in the time or space complexity is ignored).

e-kernels are used in a wide range of applications. For example, Barequet and Har-
Peled [BHPO1] explain how e-kernels can be used to efficiently approximate the min-
imum volume bounding box containing a set of points. Minimum volume bounding
boxes are used in computer graphics (for fast scene rendering and collision detec-
tion), and statistics (for range queries on samples) [BHPO1]. Agarwal, Har-Peled,
and Varadarajan [AHPV04] explain how e-kernels can also be used to find the min-
imum width cylinderical shell, and the minimum width sphere, containing a set of
points. e-kernels can also be used to approximate k-regret minimizing sets [AKSS17].

2.1.2 Batch Algorithms for e-kernels

In the batch setting, Bentley, Preparata, and Faust [BPF82] give a 1/e?~! space algo-
rithm for computing an e-approximate convex hull of a set of points. Agarwal, Har-
Peled, and Varadarajan [AHPV04] use this to give a 1/¢4! space algorithm for com-
puting an e-kernel. This was improved to a 1/ T space algorithm [YAPV04, Cha06]
for computing an e-kernel. The time bounds on these algorithms were further im-
proved [Chal7, SA17]. All of these methods involve computing the e-approximate
convex hull.

Ignoring specific details about the point set P, the space usage of 1/ T s optimal:
there exists some set of points P where the e-approximate convex hull (and the e-
kernel) must store 1/e“z" points.

However, in many cases, the e-approximate convex hull is much smaller than 1/e = .

For example, suppose we have points py, ps, p3 in high dimensional space. We generate
data points by taking convex combinations of pi,ps,ps, and then perturbing the

11

generated point by e. Suppose we give the algorithm a set of points P containing
p1, P2, p3 and the generated data points. The e-approximate convex hull of this set
has size at most 3 (it suffices to keep pi, p2,ps3), and it would be wasteful to store
1/ T points especially when d is large. Blum, Har-Peled, and Raichel [BHPR16]
give the only known algorithms for e-approximate convex hulls that are competitive
with the optimal of the given point set.

2.1.3 Streaming Algorithms for e-kernels

In many cases, the point set might be much larger than the amount of memory avail-
able (for example in financial markets, packet flow monitors, sensor networks) [HS04].
In these cases we want a streaming (one pass) algorithm that sees each point exactly
once, and has low memory consumption.

Hershberger and Suri give a 2D streaming algorithm for e-approximate convex hulls
that uses 1/y/e space [HS04]. Agarwal, Har-Peled, and Varadarajan [AHPV04]
give a streaming algorithm for e-kernels that uses (1/ 6%) log?n space. Chan re-
moves the dependency on n and gives a streaming algorithm for e-kernels that uses
(1/e4-3/2)10g? 1 /€ space [Cha06]. This was then improved to (1/e“z")log1/e [ZZ11]
and the time complexity was further improved by Arya and Chan [AC14]. Chan
also gives a streamling algorithm based on polynomial methods [Chal6]. All of these
methods involve clever tricks and transformations, but a core part of these methods
is a streaming algorithm to maintain an e-approximate convex hull of a set of points.

Like in the batch case, if we ignore the particular point set P we are dealing with,
a space usage of ﬁ is optimal. However, in many cases we can do much better.
In this work our aim is to come up with streaming algorithms that are competitive
with the optimal e-approximate convex hull of the given point set. To our knowledge
there is no existing work of this kind.

2.2 Matrix Factorization

Matrix factorization is a popular technique in unsupervised machine learning.

2.2.1 Non-Negative Matrix Factorization (NMF)

In classical non-negative matrix factorization (NMF) we are given n data points, with
non-negative coordinates, in d dimensional space. We want to find a minimal col-
lection T of topics with non-negative coordinates such that every data point can be

12

represented as a non-negative linear combination of the topics in T'. In approximate
non-negative matrix factorization the data points should be approximately repre-
sentable (based on some distance metric) as a non-negative linear combination of the
topics in 7.

Non-negative matrix factorization decomposes objects into parts comprising those
objects. For example, Lee and Seung use NMF [LS99] to represent images of faces
as combinations of parts in those faces, as shown in figure 2.1.

Original
NMF

1° 0> 0= =0
"'4" 1 "i = ‘

i N
el ot
S B

1'4. 1
—_— (L ey | 1 1
P it vt bl il sl sl
- - oo 1 1 =4
olaaiedl he o 1.
bt — b

e R
o e B L e O

N

Figure 2.1: The boxes on the left represent parts of the face that are summed together
to approximate the face

Lee and Seung also used NMF to find out what topics encyclopedic articles are about
[LS99]. For example, the encyclopedic entry ‘constitution of the United States’ was
decomposed into a topic represented by the words (‘court’, ‘government’, ‘council’,
‘culture’, ‘supreme’; ...) and a topic represented by the words (‘president’; ‘served’,
‘governer’, ‘secretary’, ‘senate’; ...). NMF has a wide range of applications. For ex-
ample, NMF is used for text mining [BB05, MTM12], speech de-noising [SLH07], and
energy disaggregation [KBN10].

Related matrix factorization methods, like PCA, allow negative weights. While PCA
has many important uses, NMF gives a better parts based decomposition [LS99]. This
is because a lot of data, like audio signals, is built up from a non-negative sum of of
signals, for example we might add the sound of birds chirping to the sound of leaves
rustling in the wind. Allowing negative weights could lead to complex cancellations
which lead to a less intuitive representation. For example, natural audio signals do
not typically involve subtracting the sound of birds chirping, and images of faces do
not involve subtracting a nose from a face.

13

2.2.2 Algorithms for NMF

Stated more formally, in NMF we are given a d—by—n matrix A where the columns
are data points. We want to find the smallest d—by—t topic matrix 7" where the
columns represent topics, and a t—by—n weights matrix W where the columns rep-
resent weights s.t. A = TW. In some formulations [LS99|, entries of A, T', and
W are non-negative, in some formulations only the weights matrix W is required to
be non-negatvie [LLR16]. In approximate NMF, we are given a distance metric d
and a distance € and want to find the smallest T s.t. d(A,TW) < e. Alternatively,
we are given k and a norm |-|, and want to minimize |A—TW/|, where T" has k columns.

NMEF is NP-complete [Vav10], so most approaches focus on finding approximation
algorithms or solving NMF for certain classes of problems. Lee and Seung use a
multiplicative update rule and show that their approach converges to a local opti-
mum [LS00]. Alternatively, it can be shown for common distance metrics that the
optimization problem is convex if we fix T" or W. Lin uses this to alternate between
optimizing T" and W using gradient descent, and shows that this converges to a local
optimum [Lin07].

Donoho and Stodden introduce a condition called separability [DS04]: A is separable
if each column contains some row which is 1 only in that column. For example, if
each article in a collection has an ‘anchor’ word that is unique to the article then
the collection is separable. Arora et al prove an efficient polynomial time algorithm
for separable NMF [AGKM11] and show that separable NMF works well in prac-
tice [AGH'12]. More recent research focuses on near separability [GL14].

2.2.3 Sparse Coding

The number of topics is often large. Instead of simply finding the smallest topic
matrix T such that A = TW, we might want to find 7" so that every data point
can be represented (or approximately represented) as the sum of a small number of
topics (for example, at most k topics). This problem is known as sparse NMF or
non-negative sparse coding. Clustering requires every data point to be approximately
represented by exactly one topic in 7.

Intuitively, sparsity is appealing because objects tend to be made up of a small num-
ber of parts. Another way of looking at this is that without sparsity, we might overfit
the topics to the data. In particular, if we have n >> d points in d dimensional space,
we can simply pick a unit vector along each axis as our topics. Every data point can
be represented as a non-negative combination of these vectors, but this representation

14

does not reveal any structure about the data.

In some cases, NMF naturally gives a sparse representation. Lee and Seung show
that NMF learns a sparse representation of facial images [LS99]. A combinatorial
analogy for this is: suppose a human face is built up from a sum of 5 different types
of noses, 5 different types of eyes, and 5 different types of mouths. There are 125
possible faces, which represent combinations of these parts. A non-negative matrix
factorization with 15 topics is forced to learn the 5 noses, 5 eyes, and 5 mouths that
add up to the face in order to give a compact representation.

However, in some cases NMF does not give a meaningful or sparse representation,
and the degree of sparsity in NMF cannot be tuned [Hoy04]. Sparse NMF, which is
related to sparse coding, adds additional constraints to incentivize sparsity. Many
algorithms for sparse NMF simply use Ly or Ly regularization on the weights matrix
W [LS97, BB05, MBPS10, MTM12]. There has been a lot of research on sparse
NMEF. Hoyer gives an algorithm for sparse NMF and shows that it performs well on
an image database [Hoy04]. Schmidt, Larsen, and Hsiao use sparse NMF to separate
wind noise from audio tracks [SLHOT].

2.2.4 The Approximate Convex Hull Approach

It turns out that e-approximate convex hulls can be used for sparse NMF [BHPR16].
In particular, suppose we normalize the columns of A so that they lie in the unit
sphere (for example by normalizing the Ly or Ly norm of each column to be 1). Let
T be a matrix where the columns correspond to an e-approximate convex hull (of the
columns of A) of minimal size. Then, for all columns A; in A, there exists a convex
combination w such that |A; — Tw|s < €. So this gives us a non-negative matrix
factorization (on a different norm).

Furthermore, we get a sparsity guarantee. In particular, for all culumns A; in A,
there exists a convex combination w with at most 1/¢* non-zero elements such that
|A; — Twl|s < 2¢ [HPKMR16, BHPR16].

The hyperspectral unmixing literature often works with non-negative matrix factor-
izations where the data points are scaled to have the same L; norm, and the weights
are restricted to be convex. However, the topics are usually not restricted to come
from the data points, their algorithms typically ensure that the topics form a simplex,
and they use different error measures and regularization functions [BDPD*12, Gill4].
More experiments would need to be done to see if our approch can be used for hy-
perspectral unmixing.

15

Arora, Ge, Kannan, and Moitra, also scale the data points to have the unit L
norm. They explain that if we do this scaling then without loss of generality we
can assume the weights are convex [AGKM12, Moil4]. Lee and Seung suggest using
convex weights and show that this gives better results in a USPS digit classification
dataset, however in reality they use Lo regularization to approximate the convexity
constraint [LS97]. The main difference between these models and ours is that they
use the Frobenius norm, whereas we ensure that all data points are within distance ¢
from the approximate convex hull. We might get more provable guarantees because
of our stronger requirement, but our algorithms might be more sensitive to noise or
might need a preprocessing step to get rid of noise. Additionally, we restrict our
topics to be data points (that is, each column of 7" is a column of A).

We follow the experimental setup in [LS97] to test the assumptions of our model.
We use the MNIST classification task. Our preliminary experiments (see Appendix
A) show that for large topic matrices, using an approximation algorithm to find an
e-approximate convex hull (described in [BHPR16]) outperforms using Matlab’s non-
negative matrix factorization method. While these experiments are not thorough,
they suggest that our modeling differences from other papers in the NMF literature
might be reasonable.

16

Chapter 3

Streaming Model and Lower
Bounds

We prove lower bounds to show that coming up with good streaming algorithms for
approximate convex hulls is difficult.

3.1 Streaming Model

Given a stream/sequence of points P. A streaming algorithm A is given € in advance
but is not given the size of the point stream P. As A processes P it maintains a
subset S of the points it has seen so far.

The streaming algorithm A is given the points in P sequentially. Each time A is
given a point p € P, A can choose to add p to S (remembering p) or ignore p (and
permanently forget p). A can also choose to delete points in S, in which case these
points are permanently lost. The important part is that A cannot go back in time
and access points it did not keep.

Typically we want S to be an e-approximate convex hull of the points seen so far. A
trivial streaming algorithm could just keep all points it has seen so far. However, this
is very wasteful since the assumption is that P is too large to fit in memory. Our aim
is for A to be competitive with OPT.

3.2 Always OPT Lower Bounds

Consider a set of points P, and S C P. We begin by noting that OPT(S, €) could be
a lot larger than OPT(P, ¢€). For example, setting ¢ = 0, figure la shows the convex

17

hull of a set of points, and figure 1b shows the convex hull of a subset of points. In
particular, the number of points a streaming algorithm stores is not monotone. This
simple fact gives us a trivial lower bound. Given a point stream P, it is impossible
for a streaming algorithm to always maintain an e-approximate convex hull of the
points it has seen so far, that is competitive in size with OPT(P, €). This is because
the e-approximate convex hull of the first half of stream P can be arbitrarily larger
than OPT(P, ¢). We now move on to proving a much more interesting lower bound.

Definition 3.2.1. For r € Z", we say a streaming algorithm A is always-r-OPT if
there exists a function f : ZT — Z* such that: if A is run on an arbitrary point
stream P, then after processing all points in P, A keeps an re-approximate convex
hull of P with size at most f(OPT(P,¢)).

Note that since the size of P was not given to A in advance, this property holds
for all prefixes of P as well. In particular, for every prefix T" of P, the size of
the re-approximate convex hull A stores after seeing all the points in 7T is at most
f(OPT(T,¢)). Intuitively, when an always-r-OPT algorithm is run on a stream, it
always maintains an re-approximate convex hull that is competitive with the optimal
of the points seen so far.

Definition 3.2.2. We say a point p is interior to P if p is in the convex hull of P\ {p}.

Definition 3.2.3. We say a set of points P is meaningful if P has no interior points.
Alternatively, the optimal convex hull of P is P.

Definition 3.2.4. For € > 0, we say a set of points P is e-meaningful if the optimal
e-convex hull of P is P. This means the distance from point p € P to the convex hull
of P\ {p} is at least e.

Lemma 3.2.1. If P is e-meaningful then P is meaningful. In the other direction, if
P is meaningful then there exists € > 0 such that P is e-meaningful.

Theorem 3.2.1. There does not exist an always-1-OPT streaming algorithm in 3D.

Proof. Assume for the sake of contradiction that there exists some always-1-OPT
streaming algorithm A and corresponding function f : Z* — Z*. Without loss of
generality, we can assume that f is increasing.

The high level idea is that we will construct 3 sequences of points Py, P, Pj.
Let P,QP, denote sequence P; followed by sequence P,. We will show that if
A keeps an e-approximate convex hull of size at most f(OPT(P,QP,,€)) after re-
ceiving P,@QP,, then it cannot keep an e-approximate convex hull of size at most

18

f(OPT(P,@QP,QP;, €)) after receiving P,QP,QP;.

All points in P; will have z-coordinate 0, all points in P, will have z-coordinate ¢, all
points in P53 will have z-coordinate 2¢, where € will be specified later. Geometrically,
one can visualize three planes perpendicular to the z axis with points in Py, P, P
on their respective planes. We now treat P;, P,, P3 as point sets in 2D and specify
the x and y coordinates of points in the sets.

(a) PLat z=0 (b) P at z =€ (¢) Pi, Py projected

Figure 3.1: 2D depiction of points in P, and P, ignoring 2z coordinates

P, contains 4 points that form a square, with coordinates, (0,0), (0,1), (1,0), (1,1),
as shown in figure 3.1a. P, has n = 10f(4) points, forming a regular polygon that
is centered around (0.5,0.5) with z,y coordinates between 0 and 1, as shown in
figure 3.1b. So if we ignore the z coordinates, P is contained inside P;, as shown in
figure 3.1c. Order the points in P, anti-clockwise, aq,...,a,. Group the points into
disjoint sets of 5 consecutive points. So the first group will have the points aq, ..., as,
the second group has the points ag, ..., a1g, etc. For each group of 5 points in P, we
will construct m = 10f(n +4) = 10f(10f(4) + 4) points in Ps.

Figure 3.2: Red points are in P3, blue in P,

WLOG consider aq, ...,as in P,. For each such group, we will add points by, ..., b, to
Pj. Ignoring z coordinates, we set by = as, b,, = a4. All the points by, ..., b,, will be

19

contained in the triangle defined by as, as, a4. The points by, ..., b, are equally spaced,
and form equal angles that are less than 180 degrees. We illustrate this construction
in figure 3.2. We note that by our construction Py, P», P53 are meaningful. We choose
the smallest € such that Py, P5, P are € meaningful. Now, we will prove the theorem.

Suppose we run A on P{@QP,. Ignoring z coordinates, P, is contained inside P;.
Since the z coordinates of points in P; and P, are 0 and e respectively, P, is an
e-approximate convex hull for PLQP,. So OPT(P,@QPF,,¢) < 4. Since A is always-
1-OPT, it can keep at most f(4) points in P,@QP,. P, has a total of 10f(4) points,
which we divided into 2f(4) groups of 5 points. So A did not store any points in at
least f(4) of these groups, call these the unselected groups in Ps.

Now suppose we run A on P,QP,QP;. For each of the f(4) unselected groups in P,
we selected m = 10f(n + 4) points in P3. A has to select all the corresponding m
points in P;. To prove this, suppose for the sake of contradiction we don’t have to
select some corresponding point p in P;. p cannot be written as an e-approximate
convex combination of selected points in P,, because the z coordinate of p and points
in P, differ by € and if we ignore z coordinates (projecting to the plane z = 0) p
corresponds to an unselected group and so does not lie inside the convex hull of se-
lected points in P,. Furthermore, since we selected P; to be e-meaningful, p cannot
be written as an e-approximate convex combination of other points in Ps.

Summing over unselected groups, this means that A must keep f(4)m = 10f(4) f(n+
4) points in P3. The optimal approximate hull of PyQP,@QP; is much smaller: we
can simply store all the points in P, and P, giving us a total of n + 4 points. So
OPT(P,QP,QP;,¢) < n + 4, which means A is allowed to keep at most f(n + 4)
points. 10f(4)f(n+4) > f(n+4) so we have a contradiction.

O

Theorem 3.2.2. For all r € Z*, there does not exist an always-r-OPT streaming
algorithm in R3.

Proof. The construction is similar to theorem 3.2.1, with a few differences. Instead of
constructing 3 sets of points Py, P, P3, we construct r + 1 sets of points P, ..., Py1.
All points in P; will have z coordinate (i — 1)e. For the z,y coordinates, the construc-
tion of P, for ¢ > 2 is similar to the construction of P; in theorem 3.2.1. We group
P; into disjoint groups of 5 points. Let n; be the total number of points in P, ..., P;.
For each group in P; we add 10f(n;) points in P;,;. We then choose € so that P; is
re meaningful for all i.

20

The proof of the construction is also similar to theorem 3.2.1, except we apply the
argument inductively. We can show that for each i, there exists an unselected group
of 5 points in P;, and further if we project onto z = 0 the unselected group would be
at least distance re outside the convex hull of points we select in P, ..., P_1. At P.yq,
this will give us an unselected point that is not an re-approximate convex combination
of selected points. n

Corollary 3.2.1. The above proof holds for both deterministic and randomized algo-
rithms since it first presents a construction, and then cases on a particular run of the
algorithm. It does not assume the algorithm runs the same way each time.

Corollary 3.2.2. For all v € Z* and n > 3, there does not exist an always-r-OPT
streaming algorithm in R™.

Proof. If n > 3, R™ contains a 3D subspace so we can use the previous construction.
m

3.3 MAX-OPT Lower Bound

We now show that even using a weaker notion of OPT, MAX-OPT, does not trivialize
our problem.

Definition 3.3.1. Suppose that points in a point stream P are ordered from 1 to n.
Let P;.; denote a point stream containing the points from index ¢ to index j, inclusive
of both index 7 and j. In particular, P;., is the entire point stream P.

Definition 3.3.2. We define MAX-OPT(P,¢€) as maxj<;<, OPT(P,,, €), that is, the
max of OPT taken over all prefixes of P.

MAX-OPT is at least as large as OPT. Moreover, when we run an always-OPT
algorithm A on a stream P, at some point its memory usage must be a function
of MAX-OPT. This is because MAX-OPT is OPT for some prefix P’ of P, and
A would have received the prefix P’ at some point. This is not too different from
an algorithm that uses MAX-OPT space while processing the entire stream. The
total (maximum) amount of memory we need to allocate to both algorithms is the
same. So a natural question is whether a streaming algorithm can be competitive
with MAX-OPT (independent of the number of points received so far). We define
an always-MAX-OPT algorithm like an always-OPT algorithm, replacing OPT with
MAX-OPT.

Definition 3.3.3. We say a streaming algorithm A is always-MAX-OPT if there
exists r € Z* and a function f : Z* — Z7 such that: if A is run on an arbitrary point

stream P, then after processing all points in P, A keeps an re-approximate convex
hull of P with size at most f(MAX-OPT(P,¢)).

21

Theorem 3.3.1. For all n > 3, there does not exist an always-MAX-OPT streaming
algorithm in R™.

Proof. The same construction and proof in theorem 3.2.2 works.]

3.4 Almost Always OPT

The algorithm we give in chapter 5 is of a slightly different nature.

Definition 3.4.1. A streaming algorithm A is almost always OPT if there exists a
function f : Z* — Z% such that the following holds. Suppose A is given k € Z*
in advance, and is run on an arbitrary point stream P with OPT(P,¢) < k. At any
point, A is allowed to keep at most f(k) points. After processing all points in P, A
keeps an e-approximate convex hull of P.

Theorem 3.4.1. There does not exist an almost always OPT streaming algorithm in
R3.

Proof. We first prove this for a deterministic algorithm and then sketch out how to
extend the proof to a randomized algorithm. Assume for the sake of contradiction
that there exists a deterministic almost always OPT streaming algorithm in R3.

We modify the construction in theorem 3.2.1. We construct 3 points sets P, P, Ps.
Points in Py, P,, P3 have z-coordinates 0, €, 2¢ respectively, so we describe their z,y
coordinates. P; contains 4 points (0,0), (0,1), (1,0), (1,1) like in theorem 3.2.1. P; is
a regular polygon centered around (0.5,0.5) with z,y coordinates between 0 and 1.
However, P, contains n = 10f(7) points. We group the points in P, into consecutive
groups of 5 like in theorem 3.2.1.

We will set £k =7 and run A on P,@QP,. A is allowed to keep at most f(7) points, so
it can keep at most f(7) points in P,. However, P, had 2f(7) groups of 5 points. So
at least one of the groups is unselected, suppose the points in one of these groups are
ai, ...,as. For this group of 5 points, we use the construction we used in theorem 3.2.1
shown in figure 3.2, except we add 2f(7) (instead of 10f(10f(4) 4+ 4)) points to Ps.
If we project all points onto the plane at z = 0 then P; will be contained inside the
triangle defined by as, as, ay.

We define € to be the smallest value such that P, P5, P3 are e-meaningful. Note
that the choice of € is independent of which group was unselected, since P; is a reg-
ular polygon and is therefore symmetric. Now, suppose we run A on the stream
P@QP,QP;. P; U {ay,as, a4} forms an e-approximate convex hull of PyQP,@QP; so

22

OPT(P,@QP,QP;3,¢) < 7. Since A is almost always OPT, it must find a way to keep
an e-approximate convex hull of PLQP,QP; of size < f(7). However, A must choose
all points in Pj, because their distance from selected points in P; and P, is greater
than ¢, and Pj is e-meaningful. So A must store 2f(7) points, a contradiction.

This proof can be extended to show that there does not exist a randomized almost
always OPT streaming algorithm in R3. O

Note that even if we use MOX-OPT instead of OPT, theorem 3.4.1 still holds.

3.5 Limitations

We believe that lower bounds should be treated as specific hardness results that guide
research but that should not be generalized out of context or discourage work on a
problem. The lower bounds we gave in this chapter have limitations, some of which
are given below.

1. None of our lower bounds hold for 2D. Empirically, finding an always OPT or
almost always OPT algorithm in 2D is a difficult problem, however it might not
be impossible.

2. There might exist algorithms in higher dimensions that have a dependency on
log% or logn. For example we could be competitive with OPT - log %, which
would still be a very useful result.

3. We could add reasonable assumptions, for example the assumption that the
points come in a random order, which we do in chapter 4.

4. We might be able to relax the problem in useful ways and find solutions to those
relaxations, like the relaxation we discuss in chapter 5.

23

Chapter 4

Random Order Algorithm

In this section we assume that the points are in 2D and come in a random order. In
particular, for all sets of points P, every permutation of P must have equal probabil-
ity density.

A special case of this is if the data points are generated from independent identical
distributions. In this case, the probability density of a particular ordered point stream
P occuring can be factored into the product of the probability densities of each indi-
vidual point occuring. Since multiplications can be reordered, this total probability
is independent of the order in which the points occur.

What makes the model powerful is that we are not making any assumptions about
the distribution from which each individual point is generated, but simply that they
are i.i.d. So this assumption would hold if the data points were generated from a
mixture model, LDA, or even generalizations of these.

4.1 Algorithm Description

Recall the definition of an interior point.
Definition 4.1.1. We say a point p is interior to P if p is in the convex hull of P\ {p}.

Our algorithm is simple. We begin by keeping a set S = {}. For each point p € P
that the algorithm sees, if the distance from p to the convex hull of S is at most e,
we discard p. Otherwise, we add p to S. This is illustrated in figure 1: if the point
p is inside (figure 4.1a) or near S (figure 4.1b) we discard p. Otherwise (figure 4.1c)
we add p to S.

24

(a) Discard: p inside hull (b) Discard: p near hull

(c) Keep: p far from hull
Figure 4.1: Our algorithm keeps point p only if it is far from the current hull.
We then repeatedly delete interior points in S until S has no interior points. Fig-

ure 4.2a shows a point set with 2 interior points, and figure 4.2b shows the point set
after removing all the interior points.

A D
° i o o
E F
° °
B
° o o &
(a) Interior points in red (b) No interior points

Figure 4.2: Our algorithm iteratively removes interior points from .S.

The algorithm, which we call ROA, is summarized below.

25

1 s=¢
2 for p € P:

while S has an interior point p:

3 if dist(p, 8) < e:
4 // Discard p

5} else:

6 S =s U {p}

7

8

Delete p from S

Figure 4.3: Pseudocode for random order algorithm.

4.2 Proof Outline

Theorem 4.2.1. (Correctness) After processing point stream P, ROA keeps an e-
approximate convexr hull S of P.

Proof. Let S; be S after the it iteration of the “for’ loop on line 2. We show by
induction that S; is an e-approximate convex hull of the first ¢ points in P. The base
case for i = 0, Sy = {} holds because {} is an e-approximate convex hull of {}.

For the inductive step, suppose that S; is an e-approximate convex hull of the first
1 points in P. Because we only remove interior points in S, the convex closure of
S;41 contains the convex closure of S;. This means that S;,; is an e-approximate
convex hull of the first ¢ points in P. Furthermore, we keep the (i + 1)th point p iff
dist(p, S) > e. This ensures that p is within distance € from S;;.]

We use 2 simple results in our 2D proof, that we sketch out for completeness.

Lemma 4.2.1. (1D Space) Suppose we run ROA on P C R. After processing P,
ROA keeps at most 2 points in S.

Proof. S will contain the minimum and maximum point. m

Lemma 4.2.2. (1D Insertion Only Space) Suppose we run ROA, except we do not
run lines 7 and 8, which involve deleting interior points from S. In other words, the
size of S is non-decreasing. Then there exists m, s.t. for all point streams P C R
containing n points, with probability at least 1 —1/n® ROA keeps at most m(1+logn)
points in S. In other words, with high probability, the size of S is O(logn).

Proof. We order the points/numbers in increasing order. We might have multiple
copies of the same point, in which case we break ties in our ordering arbitrarily. This
means that if ¢ and b are points in stream P at indices ¢ and j with ¢ # j, then a < b
or a > b in our ordering, even if a and b are the same real number in R.

26

Consider the first ¢ points received. By the random order assumption, all permu-
tations of the first ¢ points are equally likely. We only keep the ith point if it is
strictly less than, or strictly greater than, the first ¢ — 1 points received. Because of
the special ordering we constructed, this happens with probability 2/i (except when
i =1 in which case it is 1) and is independent for each i.

By an integral bound, we can show that,
1+ Zn: 2 <2logn+1
i °

Then, applying a Chernoff bound we get the desired result. O]
We will, perhaps surprisingly, reduce the 2D case to the 1D insertion only case.

Theorem 4.2.2. (2D Space) There exists m € R, such that for all point streams
P C R? containing n points, with probability at least 1 — 1/n*, ROA keeps at most
mOPT(P,¢)(1+ logn) points in S. In other words, with high probability, the size of
S is O(OPT(P,€)logn).

Proof. Consider an optimal e-approximate convex hull (of P) O. Let A be the set of
all points in R? that are contained inside the convex closure of O, but within distance
€ of the boundary of the convex closure of O. We call A the “inner” set of O. Let
B be the set of all points in R? that are outside of the convex closure of O, but
within distance € of the boundary of the convex closure of O. Let the “deep interior”
be all points in R? that are inside the convex closure of O but not in the “inner” set A.

For example, in figure 1(a), the convex closure of O defines a rectangular region. The
original set of points P is not shown. A is the region shaded in green in figure 1(b).
Intuitively, all points that are inside the rectangular region defined by O, but not
too far inside, are in A. In figure 1(b) we also marked the deep interior, the set of
points contained in O but not in A. B is the region shaded in blue in figure 1(c).
Intuitively, all points that are outside the rectangular region defined by O, but not
too far outside, are in B.

Lemma 4.2.3. The boundary U of the convex closure of S must be contained in the
union of A and B.

Proof. First, we show that U cannot intersect with the deep interior. To see this,
suppose we choose the origin to be contained inside the deep interior (if the deep
interior is empty then the claim is vacuously true). S is an e-approximate convex hull

27

i g i s Deep Interior q g

(a) Original shape (b) Inner set A in green

E F

K D h C H

A ' 4

(¢) Outer set B in blue

Figure 4.4: Ilustration of inner and outer sets for approximate convex hull

of Pand O C P, so S is an e-approximate convex hull of O. Then for all unit vectors
v, —MaX,c0(0,v) - maxseg(s,v)| < €. That is, in every direction, U must be within
distance € from the boundary of the convex closure of O. But in every direction, the
deep interior is greater than distance € from the boundary of the convex closure of O.

Next, we need to show that all points in the convex closure of S are within distance ¢
from the convex closure of O. But this is true because O is an e-approximate convex
hull of P and S C P, so O is an e-approximate convex hull of S. O

By lemma 4.2.3, since we delete all interior points in S (lines 7 and 8), every point in
the deep interior will be eventually discarded. Now, examine figure 2, which shows
the top half of the original rectangle defined by O, along with corresponding parts of
A and B. Regions C'1,C2, E are part of the outer set B, and [is part of the inner set
A. In regions C'1 and C'2 we will select at most a constant number of points, because
it is contained in a circle of radius €. There are OPT such regions.

28

c1 | @ E co

Figure 4.5: Important regions around approximate convex hull

In region E, we can use an argument similar to the 1D case to show that we will
select, with high probability, at most O(logn) points. This is because the height of
E is €. The idea is that we can view the line AB as the x-axis, and consider the
x-coordinate of each point in O. We will discard every new point in F unless it has
x-coordinate greater than all the current points we have seen in F, or x-coordinate
lesser than all the current points we have seen in . This reduces the problem to the
1D insertion only problem, so with probability 1 — 1/n? we keep O(logn) points.

The same argument applies to I. Note that there are OPT regions like I and OPT
regions like E, so by union bound, the total number of points we keep is O(OPT-log n)
with high probability. O]

Note that theorem 4.2.2 gives us a high probability bound so:

1. Since ROA never keeps more than n points (the entire set), we can use the high
probability bound to show that the expected number of points ROA keeps is
O(OPTlogn).

2. We can show that with high probability, when ROA has processed a prefix P’
containing the first ¢ out of n points of P, ROA keeps an e-approximate convex
hull of size O(OPT(P’,¢)logn). Importantly, with high probability, this holds
for all prefizes, that is, throughout the entire stream.

Unfortunately, this algorithm does not give good gaurantees in 3D. The 3D case
reduces to the 2D intertion only case, where we run ROA without removing interior
points. However, in the worst case we might end up choosing a large number of
points.

29

Chapter 5
e — 0 Hull Algorithms

In this chapter we give an algorithm for a relaxation of e-approximate hulls, called
(¢,9) hulls. Our results hold for arbitrary point sets P C R

Intuitively, an (e,9) hull of P is within distance e from the boundary of the convex
closure of P in at least 1 — ¢ directions. We begin by giving an equivalent definition
for an e-approximate convex hull, and then define (¢,) hulls.

5.1 Definition of (¢,0) hull

Definition 5.1.1. Given a vector v and a point set P, we define the directional
extent as

wy(P) = maxp - v

Definition 5.1.2. If p is a point we define w,(p) =p-v = w,({p})
It is easy to see that if S C P then for all v, w,(S) < w,(P).
Definition 5.1.3. We say S maximizes P in v if
wy(P) = wy ()
Note that as per definition 5.1.1, S can be either a single vector or a set of vectors.
Figure 5.1 shows a point p that maximizes a set of points in direction w.

Definition 5.1.4. A convex hull is a subset S C P such that S maximizes P in all
(unit) directions v.

30

Figure 5.1: Point p maximizes the set of points in direction u because its projection
onto w is the highest.

Definition 5.1.5. We say S e-maximizes P in direction v if v is a unit vector and
jwy (P) — wy(S)] < e
Note that as per definition 5.1.1, S can be either a single vector or a set of vectors.

Definition 5.1.6. An e-approximate convex hull is a subset S C P such that S
e-maximizes P in all (unit) directions v. As before, OPT(P, €) is the size of a smallest
e-approximate convex hull.

Intuitively, an e-approximate convex hull approximates the original point set in all
directions. Coming up with a streaming algorithm that is competitive within a con-
stant factor of OPT for this problem appears to be difficult. An interesting relaxation
is to have a good approximation in most directions. In the sections that follow, we
will assume that the algorithm has access to OPT and sets k = OPT. In practice, we
do not know OPT so we would simply set k to be the largest value our computational
resources permit. We would then have an (¢, d)-approximation for all point sets where
OPT < k. This is similar to the form of the lower bound we gave in theorem 3.4.1 in
chapter 3.

Definition 5.1.7. An (¢,6)-hull is the minimal sized set S C P such that if we
pick a vector v uniformly at random from the surface of the unit sphere, S¥1, S
e-maximizes P in direction v with probability at least 1 — ¢, that is,

Pr(jw,(P) — wy(S)] > €) < 4§

Our goal is to come up with streaming algorithms for (¢, §)-hulls that are competitive
with OPT (the batch optimal for e-approximate convex hulls).

31

5.2 Core Lemmas

Definition 5.2.1. Define E? to be the set of all vectors v in R? (not just unit vectors)
such that s maximizes S in v, that is,

Ef:{v|v-s:wv(5)}

Figure 5.2: All vectors between u and v (not just unit vectors) are in E7)

Figure 5.2 shows a set, of points S. All vectors between u and v (not just unit vectors),
in the range indicated by the angle, are in E5. Note that u is perpendicular to line
segment C'D and v is perpendicular to line segment DFE. Only points s € S that lie
on the boundary of the convex closure of S have non-empty E¥.

Lemma 5.2.1 (e-Maximization Lemma). Suppose S C P is an e-approximate convex
hull of P, and fix s € S. Then s e-maximizes P for all unit vectors v € E?.

Proof. This is because for all unit vectors v, |w,(S) — w,(P)| < € and for all vectors
v € E? v-5=w,(S), so for all unit vectors v € E?, both properties hold. O

Lemma 5.2.2 (Covering Lemma). For all vectors v € R?,
vE U ES
ses

Proof. Given any vector v, set s = argmax s’ -v. Then v € EY. n
s'eS

Lemma 5.2.3 (Conic Lemma). E? is a cone, that is,

32

1. 0e E?
2. If v € EY and a € RT then av € E?.
8. Ifv,w € E? thenv+w € E?.

Proof. We prove each item,

1. 0- s =maxyeg0-s =0

2. (aw)-s=a(v-s) = a(maxgesv - ') = maxgeg(av) - &

3. (v+w)-s=(v-s)+(w-$) =maxyesv s +maxgecsw s > maxges(v+w)-s
O

Lemma 5.2.4 (Cutting Lemma). Given any 2 pointsa #b € RY, let H = {v |v-a >
v-b}. Then H is a closed halfspace cutting through the origin.

Proof. Writing this in another way, H = {v | v - (a — b) > 0}, which, if a — b # 0,
is precisely the equation of a closed halfspace. The plane defining the boundary of
the halfspace is defined by P = {v | v- (a — b) = 0} (that is, the set of all vectors
perpendicular to a — b) which cuts through the origin.]

Lemma 5.2.5 (Bounded Maximization Lemma). Suppose S has at least 2 distinct
points. Then if s € S, E? is contained inside a closed halfspace passing through the
oTLgin.

Proof. Choose s’ € S with s’ # s. Then, let H = {v|v-s>v-s'}. ES C H but by
the cutting lemma, H is a closed halfspace passing through the origin. O]

5.3 2D-Algorithm

We give a deterministic algorithm that stores O(%) points and gives us an (e, §)-hull
of a point set P, where k is the batch optimal for the e-approximate convex hull of

P.

Choose O(%) equally separated unit vectors (like in figure 5.3) on the boundary of the
unit circle. Going counter-clockwise by angle, the angle formed by any 2 consecutive
vectors will be less than 2%5. For each chosen vector v we store the point p € P s.t.
p v = w,(P) (p maximizes P in v). This can be done in streaming - for a vector v,
we keep an incoming point p iff v - p is greater than v - p’ for the point p’ we currently
stored in direction v (or if we have not stored any point for direction v). Call the set

of points our algorithm chooses T'.

33

"
—

Figure 5.3: 6 equally separated directions.

Theorem 5.3.1. T is an (€,9)-hull of P.

Proof. WLOG suppose that P has at least 2 distinct points (otherwise we can trivially
solve the problem by storing the only point in P). Consider an optimal e-approximate
convex hull § C P. WLOG suppose that S contains at least 2 points (otherwise we
can simply add some point in P to S and our bounds will only change by a constant
factor).

Partitioning: Pick a vector v uniformly at random on the boundary of the unit
circle. By the covering lemma, v € E¥ for some s € S. Fix s € S. It suffices to show
the probability that v € E? and T does not e-maximize P in direction v is < %. Then,
since there are k choices for s, the probability T does not e-approximate P is < k:% = 4.

Angular setup: Fix s € S. S has at least 2 distinct points, so by the cutting lemma,
E? is contained in a half-space. So we can rotate space such that E does not contain
the positive x axis. We measure angles counter-clockwise from the positive x-axis.
From the conic lemma, we know that E¥ is the set of all vectors with angles between
0, and 6, with 8, < 6,. Out of the O(%) vectors we chose, consider the subset of
vectors that are in £%. Call them vy, vy, ..., v,,, and suppose they have corresponding
angles 6 < 6, < ... < 0,,. We also have that 0, < 6; and 6,, < 6,,.

Lemma 5.3.1. Consider some v;. We choose a point p; s.t. p;-v; = w,, (P) (that
is, p; is maximal in direction v;). We will show that p; e-mazximizes either all unit
vectors with angles in the range [0,,0;] or in [0;,0))

Proof. If p; = s, then p; e-maximizes all unit directions in E¥, so we are done. Oth-
erwise, suppose p; # s. By the cutting lemma, there exists a closed half-space H

34

passing through the origin, such that p-v > s-v iff v € H. By the e-maximization
lemma, for all unit vectors v € Fy, 0 < w,(P) — s-v < e. This implies that for all
unit vectors v € EsN H, 0 < w,(P) —p-v < wy(P) —s-v < e. In other words, p
e-maximizes all unit vectors v € £, N H.

Since Ej is itself contained in some halfspace passing through the origin, s N H is
either the set of vectors with angles in range [0, 6,] or in range [0,,6]. We note that
v; € EsN H and has angle 6;, so in either case the range contains #;. This proves the
lemma. O

We say that v; is down if p; e-maximizes P in all directions with angles in the range
[0,,0;] and up if p; e-maximizes P in all directions with angles in the range [6;, 6;].
If vy is up, then p; e-maximizes P in all directions with angles in [0;,6;]. The angle
between 6, and 6, is < 2%5 because we chose vectors that were 2,%5 apart, so we are
done. A similar argument applies if vy, is down, and if m = 0 (we did not choose any
vectors between 6, and 0,. Otherwise, we consider the smallest 7 s.t. v; is down but
vip1 is up. Then, p; e-maximizes P in all directions with angles in [6,,6;] and p;4
e-maximizes P in all directions with angles in [0;11,6;]. We might not e-maximize P

in directions with angles in the range [0;,6;11], but this angle is < QLk‘S. O]

5.4 Generalizing to higher dimensions

5.4.1 Algorithm

Suppose we fix the dimension d. We give a randomized algorithm that uses n points
and with probability at least 1 — p gives us an (¢, d)-hull of a point set P, where k is
the batch optimal for the e-approximate convex hull of P and n satisfies,

k2 1 1
— (1 log = + log —
n60<52 (ogk‘+ og5+ ogp))

Note that the given complexity hides the dependency on d, so the actual complexity
will be O(f(d)’g—z <logl<: + log % + log %)) for some function f: N — N

The algorithm is simple: Choose n random vectors on the unit sphere. For each chosen

vector v we store the point p that maximizes P in direction v, that is, p - v = w,(P).
As in the 2D algorithm, this can be done in streaming.

35

5.4.2 3D Proof Outline

As before, WLOG suppose that P has at least 2 distinct points (otherwise we can
trivially solve the problem by storing the only point in P). Consider an optimal
e-approximate convex hull S € P. WLOG suppose that S contains at least 2 points
(otherwise we can simply add some point in P to S and our bounds will only change
by a constant factor).

Constructing small triangular cones: A triangular cone is a cone defined by the
non-negative sums of 3 vectors. First, we choose ¢ “small” triangular cones, where ¢
is a large constant. Consider a triangle cone defined by unit vectors vy, vg, v3. More
precisely, we choose the cones so that max(|v; — vas, |va — vs]a, [v1 — v3]2) < 0.01. We
choose the cones so that they are disjoint, and they span RY, that is, every vector
is in some cone.. Intuitively, we can construct these cones as follows: we start out
with 2¢ triangular cones that span R?. Then we can keep making the cones smaller
(we can select a vector in the middle of each cone to split it up into 3 cones) until
the cones satisfy the required condition. The number of cones is some function of the
dimension d.

Cutting cones: Consider a cone C'N E?. Intuitively, we are going to show that
each time we choose a vector v, we cut away part of C' N E? (for the part we cut off,
we have an e-maximization). Consider each unit vector v we choose in cone C' N E?
and corresponding point p that maximizes P in v. If p = s, then p e-maximizes
the whole cone E? so we are done. Otherwise, by the cutting lemma, there ex-
ists a closed half-space H passing through the origin, such that p - v > s- o iff
v’ € H. As in the 2D proof, p then e-maximizes all vectors in E¥ N H and therefore
in CNEYN H. So the region of C' N E? that we might not have e-maximized is
CNESNHS. CNESNH®C CNESN(H U{0}). (H°U{0}) is a cone, and the
intersection of cones is a cone, so C N E? N (H°U{0}) is also a cone. Note that v € H
and v #0,s0 v € CNESN(H U{0}).

Projection: After choosing many vectors v € C' N E?, we end up with a cone
C' C C' N E? where ' does not contain any of the selected vectors v. We want to
show that the area of ¢’ N'S? is less than % fraction of the unit sphere’s area. Then,
adding over the ck cones, the proportion of unit vectors we don’t e-maximize in P
is at most 0. The main trick will be to project this into a 2-dimensional problem.
Suppose that (triangular) cone C' was defined by vectors vy, v, v3. Consider the plane
P containing the endpoints of v;, vy, v3. We project CNESNS? onto P, and similarly
project all unit vectors we chose that are in C'N EY N'S? onto P, and project ¢’ N'S?
onto P.

36

Reduced problem: This gives us a simpler problem. Suppose we have convex poly-
gon C' with area A, where we choose points in C' from a nearly uniform distribution
m. More formally, the ratio between the max and min of the PDF of 7 is at most
2. Call a convex polygon respectful if it does not contain any selected points. How
many points do we need to choose so that with high probability, all respectful convex
polygons contained in C' must have area < %? The reason this reduction holds is
because we chose cone C' to be small, so C' N S? is quite flat. In particular, if we
rotate space so that plane P is perpendicular to the z axis, the norm of the gradient
of C'N'§? is bounded by 2. So when a set of measure v in C N EY N'S? is projected

to P it has measure between 75’ and v.

Lemma 5.4.1. Given a convex polygon C', there exists 3 points in C' such that the
triangle formed between them has area at least l the area of C.

Lemma 5.4.2. The pdf of m must be between 55 and % everywhere.

A

Uniform Bound Outline Let 7" be the set of triangles contained in polygon C' with
area > -2-. Given t € T, let P(t) denote the probability that a point selected from
lies in ¢. Smce 7 is almost uniform, P(t) > g A - We will use uniform bounds and VC
dimension, to show that if we select enough points in C' then with high probability
every triangle in T will contain a point. This is sufficient to solve the problem: con-
sider arbitrary convex polygon G contained in C' with area > 5 . By lemma 5.4.1, it
contains a triangle of area > ;7. But all such triangles contaln a point, so G contains
a point. Therefore every Convex polygon in C' that does not contain a point must
have area < Cik.

Sampling Process Select n points in C' from distribution 7. For ¢ € T, let C,(t)
be the number of selected points that lie in ¢, and let P,(t) be C”T(t) Intuitively,
we are estimating the cumulative density of 7 in a region by sampling points and
computing the proportion of points that fall in the region. Suppose that for all
t €T, |P,(t) — P(t)] < g (this means that P, approximates P well). Then, for all
t, since P(t) > g4, Pa(t) > 0. This means that every triangle ¢ € T contains a point.
vC Dimension We want to show that with probability at least 1—352, sup, e | Py (t)—

P(t)] < 3 A - The VC dimension of T'is 7. Letting e = we apply a VC-dimension
based uniform bound to get that,

P(sup |P,(t) — P(t)] > €) < 8(n + 1)Te /32
teT

8A k7

We set n € O(* (Ack)? (log 2% + log %))

37

Finishing up: Consider a cone C'N E¥. Suppose that the intersection C' N £ N S?

has area A. The projection has area < A, so it suffices to choose n & O(A;é€2 (log % +

log g)) unit vectors in C' N E¥ N'S?2. When we choose a unit vector at random, it

lies in C'N E¥ N'S? with probability ¢ = ﬁ. We want to choose m points, so that

with probability at least 1 — 52 we have n points inside the cone. From a standard

Chernoff bound argument, m € O(%(logn +log %)) works. Simplifying, this becomes,

=0 ([(5 (e 5w)) ()] Josn el
~O([(5 (oe el) o ove))

We note that A < 4n. Furthermore, logn actually simplifies to

k k k k k
O(log 5 + log(log 5 + log 5)) C O(log 5 + log E)

So in the worst case m reduces to

k2 1 1
m € O <§ (logk—i-logg—i-logz—?))

We can apply union bounds over the cones to get a < p chance of failure.

5.4.3 Arbitrary Dimension Proof Sketch
A few parts of the proof need to be modified to deal with higher dimensions.

1. The section where we construct small triangular cones. In d dimensional space,
the cones will be defined by d vectors (so the endpoints of the vectors form a
simplex instead of a triangle) such that the pairwise distance between any 2
vectors is at most 0.1. The construction is as described above.

2. We need to modify lemma 5.4.1. In particular instead of triangles, we will use
ellipsoids. Given any convex body C with area A, there exists an ellipsoid
contained inside C' with area at least A/d¢ [HP11].

3. The VC dimension of an ellipsoid in d-dimensional space is O(d?) (we used the
factor that the VC dimension of a triangle in 2D space is 7).

The rest of the proof outline is the same, so this gives us the desired result.

38

Chapter 6

Discussion

The aim of this undergraduate thesis was to examine streaming algorithms for e-
approximate convex hulls in relation to OPT. We proved some lower bounds for this
empirically difficult problem, which should guide future research into related prob-
lems. We also devised and proved algorithms for 2 relaxations of the problem: when
the points are in 2D and come in a random order, and for (¢, §)-hulls.

There is lots of exciting work to be done on this topic. We list some interesting
research directions.

1. Examine the connections between e-approximate convex hulls, (¢, d)-hulls, and
matrix factorization in more detail, in particular with experiments to check if the
factorizations produced by finding an approximate convex hull are meaningful.

2. Our random order algorithm does not work in 3D (or higher dimensions). Come
up with an algorithm that works in higher dimensions, assuming the points come
in random order. Alternatively, come up with a lower bound when the points
come in random order.

3. Our algorithm for (e, d)-hulls works in arbitrary dimensions, however it does
not scale well with d. Our algorithm can only be used when the dimension is
low. In fact, all provable streaming algorithms for e-approximate convex hulls,
or related problems, do not scale well with d. Come up with algorithms for
(€,0)-hulls, or other interesting relaxations, that work in high dimensions.

4. We do not have any lower bounds for the 2D e-approximate convex hull problem.
We were not able to devise an algorithm that is competitive with OPT for this
problem after extensive effort, however there might exist a clever algorithm that
solves this problem. Alternatively, we could try proving lower bounds for the
2D problem.

39

5. Coming up with algorithms for e-kernels that are competitive with the optimally
sized e-kernel of a point set. While e-approximate convex hulls play a key role in
finding e-kernels, an algorithm that is competitive with OPT for e-approximate
convex hulls might not immediately give an algorithm that is competitive with
OPT for e-kernels.

40

Appendix A: Experiments with
NMF

The MNIST database contains labeled images of handwritten digits [LBBH98]. Each
image is represented by a 28-by-28 grid of black-white intensity values. The training
set has 60,000 samples and the testing set has 10,000 samples. A variety of algorithms
have been tested for supervised classification on the MNIST database.

Our approach for using NMF for supervised classification is similar to Lee and Se-
ung’s [LS97]. For the training set, we separate the images which are associated with
each digit (to get 10 sets of images). We find the NMF for each of these separated
sets. Then for each test image, we try to reconstruct it using the NMF topic matrix
for each digit. We output the digit whose topic matrix best reconstructs the image.
Intuitively, we are finding the parts that comprise each handwritten digit, and given
a new image we are finding the parts that best represent the new image.

We normalize each image before running the algorithms so that each image has Fu-
clidean norm 1. We test a variety of different NMF algorithms. We first use two-fold
cross-validation on the training set to find good sizes for the NMF topics matrices.
In this stage we randomly split the training set into two parts A and B. We train the
NMEF algorithm on A and check its accuracy on B for various sizes of topic matrices.
We repeat the cross-validation process 5 times for each NMF algorithm and each
topic matrix size in (10, 20, 30, ..., 90). We did not touch the test set in this stage so
that the runs on the test set would be independent of the optimization process and
could be used to get generalization guarantees for them.

In the next stage, we trained the NMF algorithms on the training set, and used them
to classify images in the test set. Let the topic matrix size be t. We tested 4 different

algorithms:

Matlab NMF Uses the Matlab library functions for (non-sparse, non-convex) non-

41

negative matrix factorization and quadratic programming for reconstructing a test
image from the NMF topic matrix.

Simple Hull We pick the first ¢t samples of each digit as our topics. Given a new
image, we used convex quadratic programming to find the distance of the image to
the convex hull of the topic matrix. The digit with the lowest distance is selected.

Gonz Hull We use a variant of the Gonzales algorithm to select the ¢ topics [BHPR16].
In the Gonzales algorithm, at each step we look for the point that is farthest away
from the current convex hull. This is exceedingly slow (at least on the order of days)
on the MNIST database because there are up to 50,000% calls to a quadratic pro-
gramming subroutine. Instead, in each iteration we sample 15 random points and
choose the point (out of the 15) that is farthest from the current convex hull. The
reconstruction process is the same as in the Simple Hull method.

Push Gonz Hull This is an extension we propose to the Gonzales algorithm for
spherical convex hull NMF. In the Gonzales algorithm, after selecting each point, we
‘push’ the point to the boundary of the non-negative region of the unit sphere.

Method NMF Size | Error (%)

Matlab NMF 60 8.6
Simple Hull 60 10.7
Gonz Hull 60 9.7
Push Gonz Hull 60 9.4
Matlab NMF 100 9.1
Simple Hull 100 10.0
Gonz Hull 100 6.6
Push Gonz Hull 100 7.2
Simple Hull 5000 2.1

Table 6.1: Supervised classification error of NMF algorithms

The results of our tests are shown in table 6.1. We used the first 2000 of the 10,000
samples in the testing set. Given the number of samples we used, the 95% standard
error of the difference in errors (which can be used when making comparisons across
different methods) was 2%.

Besides performing better than regular NMF, the simple hull method with a topic
matrix size of 5,000 performed better than K-nearest neighbors, 2 layered neural nets,

42

3 layered neural nets [LBBH98], and boosted stumps [KBF09]. Note that the perfor-
mance of Matlab’s NMF peaked at a topic matrix of size 60, and performed badly on
large sizes since it overfit the data, so the comparison between the Simple Hull and
Matlab NMF method is fair even though the topic sizes are different.

The convex NMF algorithms outperformed the regular NMF algorithm across sizes,
which provides some validation for our theoretical models. Gonz Hull did better
than our Push Gonz Hull which suggests that the algorithm we developed did not
accurately capture the region represented by the digits but overextended itself to a
larger region. However, the following table shows the classification error rate of the
algorithms for smaller topic matrices. In this experiment, the first 5000 of the 60,000
training samples were used.

Method/Size 10 20
Matlab NMF 11.1% | 9.5%
Simple Hull 30.1% | 21.4%
Gonz Hull 24.2% | 15.5%
Push Gonz Hull | 23.2% | 14.6%

Table 6.2: Supervised classification error of NMF algorithms

For smaller topic matrices (shown in table 6.2), Push Gonz Hull does better than
Gonz Hull. Although the difference in error rates is not statistically significant, it
suggests that Push Gonz Hull might perform well on smaller training sets and when
we want to use a small number of topics. More experiments should be done to verify
this conjecture. The advantage of having a smaller topic matrix is that training and
testing are significantly faster. Training and testing for a topic matrix 5 times smaller
was at least 10 times faster in our (crude) initial experiments.

43

Appendix B: Collaboration Detalils

This work was done in collaboration with Lin Yang, Harry Lang, and Vladimir Braver-
man. Since Lin, Harry, and Vova were external collaborators, I will briefly document
the benefits I received from this external collaboration.

1.

7.

Working with such wonderful collaborators was really useful for my research.
Lin and Harry read up drafts of parts of this thesis that I sent them, checked my
proofs, and gave me valuable feedback. We also bounced ideas off each other
fairly often, and talked about papers we read.

The idea of working on streaming algorithms competitive with OPT was not
mine.

It was Lin’s idea to work on (¢, d)-hulls when e-approximate convex hulls were
difficult to deal with.

Lin came up with an initial randomized 2D algorithm for (¢, d)-hulls that used
O(klogk) points, where k is OPT(P, €), and gives a (1/€,1/2)-hull

I suggested the deterministic 2D algorithm that uses O(k/§) points and gives an
(€,9)-hull. However, my original proof was more complicated, and Lin suggested
a really clever idea for a simpler proof, which I used in the writeup.

I suggested and proved the higher dimensional algorithm, but used Lin’s clever
idea in part of my proof for the higher dimensional algorithm.

Note that all writing in this document is mine.

Of course, Avrim provided invaluable advice throughout the course of this research.

44

Bibliography

[AC14]

[AGH*12]

[AGKM11]

[AGKM12

[AHPV04]

[AHPV05]

[AKSS17]

Sunil Arya and Timothy M. Chan. Better epsilon-dependencies for of-
fline approximate nearest neighbor search, euclidean minimum spanning
trees, and epsilon-kernels. In Proceedings of the Thirtieth Annual Sym-
posium on Computational Geometry, SOCG’14, pages 416:416-416:425,
New York, NY, USA, 2014. ACM.

Sanjeev Arora, Rong Ge, Yoni Halpern, David M. Mimno, Ankur
Moitra, David Sontag, Yichen Wu, and Michael Zhu. A practi-
cal algorithm for topic modeling with provable guarantees. CoRR,
abs/1212.4777, 2012.

Sanjeev Arora, Rong Ge, Ravi Kannan, and Ankur Moitra. Computing
a nonnegative matrix factorization — provably. CoRR, abs/1111.0952,
2011.

Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Com-
puting a nonnegative matrix factorization — provably. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing,
STOC 12, pages 145-162, New York, NY, USA, 2012. ACM.

Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Ap-
proximating extent measures of points. J. ACM, 51(4):606-635, July
2004.

Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geo-
metric approximation via coresets. In COMBINATORIAL AND COM-
PUTATIONAL GEOMETRY, MSRI, pages 1-30. University Press,
2005.

Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash
Suri. Efficient algorithms for k-regret minimizing sets. CoRR,
abs/1702.01446, 2017.

45

[BBO5]

[BDPD*12)

[BHPO1]

[BHPR16]

[BLK15]

[BPF82]

[Cha06]

[Chal6]

[Chal7]

[DS04

Michael W. Berry and Murray Browne. Email surveillance using non-
negative matrix factorization. volume 11, pages 249-264, 2005.

J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du,
P. Gader, and J. Chanussot. Hyperspectral unmixing overview: Ge-
ometrical, statistical, and sparse regression-based approaches. I[EFE
Journal of Selected Topics in Applied Farth Observations and Remote

Sensing, 5(2):354-379, April 2012.

Gill Barequet and Sariel Har-Peled. Efficiently approximating the
minimum-volume bounding box of a point set in three dimensions. Jour-
nal of Algorithms, 38(1):91 — 109, 2001.

Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse approxi-
mation via generating point sets. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 548-557,
2016.

Olivier Bachem, Mario Lucic, and Andreas Krause. Coresets for non-
parametric estimation - the case of dp-means. In David Blei and Fran-
cis Bach, editors, Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 209-217. JMLR Workshop and
Conference Proceedings, 2015.

Jon Louis Bentley, Franco P. Preparata, and Mark G. Faust. Approxi-
mation algorithms for convex hulls. Commun. ACM, 25(1):64-68, Jan-
uary 1982.

Timothy M. Chan. Faster core-set constructions and data-stream al-
gorithms in fixed dimensions. Computational Geometry, 35(1):20 — 35,
2006.

Timothy M. Chan. Dynamic streaming algorithms for -kernels. In Proc.
32nd Annu. Sympos. Comput. Geom. (SoCG), 2016.

Timothy M. Chan. Applications of chebyshev polynomials to low-
dimensional computational geometry. In Proc. 33rd Annu. Sympos.
Comput. Geom. (SoCG), 2017.

David Donoho and Victoria Stodden. When does non-negative matrix
factorization give a correct decomposition into parts? In S. Thrun,
L. K. Saul, and P. B. Scholkopf, editors, Advances in Neural Information
Processing Systems 16, pages 1141-1148. MIT Press, 2004.

46

[FFK11]

[FSS13]

[Gil14]

[GL14]

[HG97]

[Hoy04]

[HP11]

[HPKMR16]

[HPMO04]

[HPRZ07]

Dan Feldman, Matthew Faulkner, and Andreas Krause. Scalable train-
ing of mixture models via coresets. In Proceedings of the 24th Interna-
tional Conference on Neural Information Processing Systems, NIPS'11,
pages 2142-2150, USA, 2011. Curran Associates Inc.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big
data into tiny data: Constant-size coresets for k-means, pca and pro-
jective clustering. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’13, pages 1434—1453,
Philadelphia, PA, USA, 2013. Society for Industrial and Applied Math-
ematics.

Nicolas Gillis. The why and how of nonnegative matrix factorization.
Regularization, Optimization, Kernels, and Support Vector Machines,
2014.

Nicolas Gillis and Robert Luce. Robust near-separable nonnegative
matrix factorization using linear optimization. J. Mach. Learn. Res.,
15(1):1249-1280, January 2014.

Paul S. Heckbert and Michael Garland. Survey of polygonal surface
simplification algorithms, 1997.

Patrik O. Hoyer. Non-negative matrix factorization with sparseness
constraints. J. Mach. Learn. Res., 5:1457-1469, December 2004.

Sariel Har-Peled. Geometric Approximation Algorithms. American
Mathematical Society, 2011.

Sariel Har-Peled, Nirman Kumar, David M. Mount, and Benjamin
Raichel. Space exploration via proximity search. Discrete Comput.
Geom., 56(2):357-376, September 2016.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and
k-median clustering. In Proceedings of the Thirty-sizth Annual ACM
Symposium on Theory of Computing, STOC 04, pages 291-300, New
York, NY, USA, 2004. ACM.

Sariel Har-Peled, Dan Roth, and Dav Zimak. Maximum margin coresets
for active and noise tolerant learning. In Proceedings of the 20th In-
ternational Joint Conference on Artifical Intelligence, IJCAI’07, pages

836-841, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers
Inc.

47

[HS04]

[KBFO09]

[KBN10]

[LBBHYS]

[Lin07]

[LLR16]

[LS97]

[LS99]

[LS00]

IMBPS10]

[Moil4]

John Hershberger and Subhash Suri. Adaptive sampling for geometric
problems over data streams. In Proceedings of the Twenty-third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’04, pages 252262, New York, NY, USA, 2004. ACM.

Balazs Kégl and Rébert Busa-Fekete. Boosting products of base clas-
sifiers. In Proceedings of the 26th Annual International Conference on
Machine Learning, ICML 09, pages 497-504, New York, NY, USA,
2009. ACM.

J. Zico Kolter, Siddarth Batra, and Andrew Y. Ng. Energy disaggrega-
tion via discriminative sparse coding. In Proceedings of the 23rd Interna-
tional Conference on Neural Information Processing Systems, NIPS’10,
pages 1153-1161, USA, 2010. Curran Associates Inc.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, Nov 1998.

Chih-Jen Lin. Projected gradient methods for nonnegative matrix fac-
torization. Neural Comput., 19(10):2756-2779, October 2007.

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee
of non-negative matrix factorization via alternating updates. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 4987—
4995. Curran Associates, Inc., 2016.

D. D. Lee and H.S. Seung. Unsupervised learning by convex and conic
coding. In Advances in Neural Information Processing Systems 9, pages
515-521. MIT Press, 1997.

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects
by non-negative matrix factorization. In Nature, pages 788-791, 1999.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative
matrix factorization. In In NIPS, pages 556-562. MIT Press, 2000.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online
learning for matrix factorization and sparse coding. J. Mach. Learn.
Res., 11:19-60, March 2010.

Ankur Moitra. Algorithmic Aspects of Machine Learning. 2014.

48

[MTM12]

[PFRN14]

[SA17]

[SLHO7]

[TKCO5]

[Vav10]

[YAPVO04]

Z711]

Brian Murphy, Partha Pratim Talukdar, and Tom M. Mitchell. Learning
effective and interpretable semantic models using non-negative sparse
embedding. In COLING, 2012.

R. Paul, D. Feldman, D. Rus, and P. Newman. Visual precis generation
using coresets. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 1304-1311, May 2014.

David M. Mount Sunil Arya, Guilherme D. da Fonseca. Near-optimal
-kernel construction and related problems. In Proc. 33rd Annu. Sympos.

Comput. Geom. (SoCG), 2017.

M. N. Schmidt, J. Larsen, and F. T. Hsiao. Wind noise reduction
using non-negative sparse coding. In 2007 IEEE Workshop on Machine
Learning for Signal Processing, pages 431-436, Aug 2007.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector
machines: Fast svm training on very large data sets. J. Mach. Learn.
Res., 6:363-392, December 2005.

Stephen A. Vavasis. On the complexity of nonnegative matrix factor-
ization. SIAM Journal on Optimization, 20(3):1364-1377, 2010.

Hai Yu, Pankaj K. Agarwal, Raghunath Poreddy, and Kasturi R.
Varadarajan. Practical methods for shape fitting and kinetic data struc-
tures using core sets. In Proceedings of the Twentieth Annual Symposium
on Computational Geometry, SCG 04, pages 263-272, New York, NY,
USA, 2004. ACM.

Hamid Zarrabi-Zadeh. An almost space-optimal streaming algorithm
for coresets in fixed dimensions. Algorithmica, 60(1):46-59, May 2011.

49

