
Semantics-based parallel cost models and their use in

provably e�cient implementations

John Greiner

April 26, 1997

CMU-CS-97-113

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Thesis committee:

Guy Blelloch, Chair
Robert Harper
Gary Miller

Guy Steele, Jr., Sun Microsystems

Copyright 1997 c
 John Greiner

This research was sponsored in part by the Wright Laboratory, Aeronautical Systmes Center, Air Force

Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grand number

F33615-93-1-1330 and contract number F19628-91-C-0168. It was also supported in part by an NSF Young
Investigator Award and by Finmeccanica.

The views and conclusions contained in this document are those of the author and should not be interpreted as

necessarily representing the o�cial policies or endorsements, either expressed or implied, of Wright Laboratory
or the U.S. Government.



Keywords: Functional languages, parallel algorithms, lambda calculus, models of com-

putation, computer architecture





Abstract

Understanding the performance issues of modern programming language execution can be

di�cult. These languages have abstract features, such as higher-order functions, laziness,

and objects, that ease programming, but which make their mapping to the underlying ma-

chine more di�cult. Understanding parallel languages is further complicated by the need

to describe what computations are performed in parallel and how they are a�ected by com-

munication and latency in the machine. This lack of understanding can obscure even the

asymptotic performance of a program and can also hide performance bugs in the language

implementation.

The dissertation introduces a framework of provably e�cient implementations in which

performance issues of a language can be de�ned and analyzed. We de�ne several language

models, each consisting of an operational semantics augmented with the costs of execution.

In particular, the dissertation examines three functional languages based on fork-and-join

parallelism, speculative parallelism, and data-parallelism, and it examines their time and

space costs. We then de�ne implementations of each language model onto several common

machine models, prove these implementations correct, and derive their costs.

Each of these implementations uses an intermediate model based on an abstract ma-

chine to stage the overall implementation. The abstract machine executes a series of steps

transforming a stack of active states and store into new states and store. The dissertation

proves the e�ciency of the implementation by relating the steps to the parallel traversal of a

computation graph de�ned in the augmented operational semantics.

Provably e�cient implementations are useful for programmers, language implementors,

and language designers. For example, they provide a formal de�nition of language and

implementation costs for program analysis, compiler speci�cation, and language comparisons.

The dissertation describes performance problems in existing implementations of Id and NESL

and gives provably more e�cient alternatives for each. It also compares the example language

models, �rst using several speci�c algorithms, and also in more generality, for example,

quantifying the speedup obtainable in the data-parallel language relative to the fork-and-join

language.

1



2



Acknowledgements

I'd like to acknowledge and thank all the people that helped make this dissertation. In

particular, kudos to my advisors, Guy Blelloch and Bob Harper, for goading and guiding

me, and to the rest of my thesis committee, Gary Miller and Guy Steele, for their patience.

Pseudo-o�cemates Mark and Mark helped provide ideas and feedback on just about anything.

Without my friends I'd never have stuck around so long, so special thanks to o�cemates

Dave, Sing Bing, and Chris; my previously mentioned pseudo-o�cemates, who were probably

sick of me always dropping by; the \Rubber Ducky" classmates; my roommates; and the

whole volleyball gang.

Boos and hisses to Usenet and the Web for forcing me to spend so much time away from

real work. It couldn't have been my fault, could it?

3



4



Contents

I Introduction 13

1 Introduction 15

1.1 Background and Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

1.2 Provably E�cient Implementations : : : : : : : : : : : : : : : : : : : : : : : : 16

1.2.1 Uses of provably e�cient implementations : : : : : : : : : : : : : : : : 17

1.2.2 Limiting our scope : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.2.3 Models of parallelism : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.2.4 Costs of parallelism : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

1.2.5 Formalizing the cost models : : : : : : : : : : : : : : : : : : : : : : : : 24

1.2.6 Implementations and their cost mappings : : : : : : : : : : : : : : : : 24

1.2.7 Relating cost models of languages : : : : : : : : : : : : : : : : : : : : 29

1.3 Outline : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

2 Related Work 31

2.1 Cost models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

2.2 Relating cost models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

2.3 Implementations of dynamically parallel languages : : : : : : : : : : : : : : : 33

2.4 Language models and their uses : : : : : : : : : : : : : : : : : : : : : : : : : : 34

2.4.1 Automatic complexity analysis : : : : : : : : : : : : : : : : : : : : : : 35

2.4.2 Compiler analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.4.3 Pro�ling tools : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.5 Provably correct implementations : : : : : : : : : : : : : : : : : : : : : : : : : 36

2.6 Other mixes of language theory and algorithmic theory : : : : : : : : : : : : : 36

2.7 Expressiveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3 Notation 39

II Methodology 45

4 Language 47

5



6 CONTENTS

4.1 �-calculus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

4.2 Extended �-calculus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

5 Pro�ling semantics 51

5.1 Call-by-value �-calculus semantics : : : : : : : : : : : : : : : : : : : : : : : : 52

5.2 Computation graphs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

5.3 Simple parallel applicative semantics : : : : : : : : : : : : : : : : : : : : : : : 58

5.4 Semantics accounting for space : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5.5 Equivalence of �-calculus and extended �-calculus : : : : : : : : : : : : : : : 65

5.5.1 Semantics for the extended �-calculus : : : : : : : : : : : : : : : : : : 66

5.5.2 Equivalence of the PAL and PAL' models : : : : : : : : : : : : : : : : 67

6 Intermediate model 81

6.1 Parallel Graph Traversals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

6.2 P-CEK
q
PAL machine : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

6.3 Equivalence of language and intermediate models : : : : : : : : : : : : : : : : 96

7 Machine models 103

7.1 Machine models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

7.2 Representation of the active states multi-stack : : : : : : : : : : : : : : : : : 106

7.3 Implementation of steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

III Other Models 113

8 Speculative models 115

8.1 Language and Pro�ling semantics : : : : : : : : : : : : : : : : : : : : : : : : : 117

8.1.1 Computation graphs : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

8.1.2 Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

8.1.3 Recursion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 129

8.2 Fully speculative intermediate model : : : : : : : : : : : : : : : : : : : : : : : 130

8.3 Representation of the sets of suspended states : : : : : : : : : : : : : : : : : : 144

8.4 Fully speculative machine models : : : : : : : : : : : : : : : : : : : : : : : : : 148

8.5 Partially speculative implementations : : : : : : : : : : : : : : : : : : : : : : 149

8.5.1 Prioritizing threads : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 150

8.5.2 Aborting threads : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 151

8.5.3 Cost bene�ts of partial speculation : : : : : : : : : : : : : : : : : : : : 152

9 Basic data-parallel models 155

9.1 Computation graphs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156

9.2 Pro�ling semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156

9.3 Array language : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162



CONTENTS 7

9.4 Intermediate model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 170

9.4.1 Equivalence of language and intermediate models : : : : : : : : : : : : 178

9.5 Machine models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 187

10 Algorithms and Comparing models 191

10.1 Analyzing Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 191

10.2 Speci�c Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 192

10.2.1 Parallel Quicksort : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193

10.2.2 Parallel Mergesort : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 196

10.2.3 Fast Fourier Transform : : : : : : : : : : : : : : : : : : : : : : : : : : 197

10.3 Comparing models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202

10.3.1 PAL and PSL : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202

10.3.2 NESL and PAL : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 203

10.3.3 Simulation of traditional models : : : : : : : : : : : : : : : : : : : : : 204

10.3.4 Cost-expressiveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 206

IV Conclusions 209

11 Conclusions 211

11.1 Summary of contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 211

11.2 Future work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 212

11.2.1 Practicality of implementations : : : : : : : : : : : : : : : : : : : : : : 212

11.2.2 Additional models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 213

11.2.3 More detailed models : : : : : : : : : : : : : : : : : : : : : : : : : : : 215

11.2.4 Additional and more detailed comparisons of models : : : : : : : : : : 215

11.2.5 Automated use of models : : : : : : : : : : : : : : : : : : : : : : : : : 215

A Glossary 229

B Simple Parallel Garbage Collection 231



8 CONTENTS



List of Figures

1.1 The implementation maps values and costs. : : : : : : : : : : : : : : : : : : : 17

1.2 Example computation graph. : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

1.3 Illustration of parallelism in the PAL, PSL, and NESL models. : : : : : : : : 21

1.4 Parallel quicksort pseudo-code. : : : : : : : : : : : : : : : : : : : : : : : : : : 22

1.5 Illustrations of the butter
y, hypercube, and Parallel Random Access Machine. 25

1.6 Summary of cost mappings of three language models on several parallel ma-

chine models. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

1.7 Each implementation is staged using an abstract machine of the P-CEK family. 27

1.8 Illustration of intermediate machine P-CEK step. : : : : : : : : : : : : : : : : 28

1.9 Summary of time-expressiveness of models on a CRCW PRAM. : : : : : : : : 29

4.1 Basic �-calculus expressions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

4.2 Basic �-calculus constants. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

4.3 Extended �-calculus. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

5.1 Call-by-value �-calculus run-time domains. : : : : : : : : : : : : : : : : : : : 52

5.2 Call-by-value operational semantics with basic �-calculus. : : : : : : : : : : : 53

5.3 PAL constant application. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

5.4 Call-by-value �-calculus operational semantics derivation for Example 5.1. : : 54

5.5 PAL computation graphs, work, and depth. : : : : : : : : : : : : : : : : : : : 56

5.6 PAL computation graphs, work, and depth combining operators. : : : : : : : 58

5.7 PAL pro�ling semantics with basic �-calculus. : : : : : : : : : : : : : : : : : : 59

5.8 PAL constant application. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5.9 PAL pro�ling semantics derivation for Example 5.2. : : : : : : : : : : : : : : 61

5.10 PAL computation graph for Example 5.2. : : : : : : : : : : : : : : : : : : : : 61

5.11 PAL domains when tracking space. : : : : : : : : : : : : : : : : : : : : : : : : 62

5.12 PAL pro�ling semantics tracking space. : : : : : : : : : : : : : : : : : : : : : 63

5.13 PAL constant application tracking space. : : : : : : : : : : : : : : : : : : : : 63

5.14 PAL reachable space. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

5.15 PAL pro�ling semantics derivation for Example 5.3. : : : : : : : : : : : : : : 65

5.16 PAL' run-time domains. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5.17 PAL' pro�ling semantics. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

9



10 LIST OF FIGURES

5.18 PAL' constant application. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

5.19 Semantics functions used for de�ning reachable space in the PAL' model. : : 69

5.20 Translation from the PAL' model to the PAL model. : : : : : : : : : : : : : : 70

5.21 Initial PAL environment and store when translating from PAL' model. : : : : 71

5.22 PAL' derivation with LETREC, excluding space costs. : : : : : : : : : : : : : 72

5.23 PAL derivation with Y-combinator, excluding space costs. : : : : : : : : : : : 73

5.24 PAL computation graphs corresponding to PAL' APP and APPC rules. : : : 77

5.25 PAL computation graphs corresponding to PAL' PAIR, LETREC, and IF-

TRUE rules. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

6.1 Example q-DFT. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

6.2 Illustration of P-CEKqPAL active states during an evaluation. : : : : : : : : : : 86

6.3 Illustration of a P-CEKqPAL step. : : : : : : : : : : : : : : : : : : : : : : : : : 87

6.4 P-CEKqPAL domains. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

6.5 P-CEKqPAL abstract machine step. : : : : : : : : : : : : : : : : : : : : : : : : 90

6.6 P-CEK
q
PAL root values. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

6.7 P-CEKqPAL evaluations for Example 6.1. : : : : : : : : : : : : : : : : : : : : : 93

6.8 PAL computation graph for Example 6.1. : : : : : : : : : : : : : : : : : : : : 94

7.1 Illustration of butter
y network. : : : : : : : : : : : : : : : : : : : : : : : : : 104

7.2 Illustration of hypercube network. : : : : : : : : : : : : : : : : : : : : : : : : 104

7.3 Illustration of Parallel Random Access Machine (PRAM). : : : : : : : : : : : 104

7.4 Time bounds TS(p) for implementing scans and reductions on machines with

p processors. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

7.5 Step 2 of SDGA push operation. : : : : : : : : : : : : : : : : : : : : : : : : : 107

7.6 Step 3 of SDGA push operation. : : : : : : : : : : : : : : : : : : : : : : : : : 108

8.1 Time bounds TF (p) for implementing fetch-and-add on machines with p pro-

cessors. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

8.2 PSL computation graphs. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

8.3 PSL computation graphs may have multiple edges from nodes. : : : : : : : : 120

8.4 Illustration of PSL computation graph when accessing list elements in order. 121

8.5 PSL computation graph of nested applications. : : : : : : : : : : : : : : : : : 123

8.6 PSL computation graph for Example 8.2. : : : : : : : : : : : : : : : : : : : : 124

8.7 PSL computation graph combining operators. : : : : : : : : : : : : : : : : : : 125

8.8 Illustration of a case where combined computation graphs share edges from

the same node. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

8.9 PSL run-time domains. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

8.10 PSL pro�ling semantics. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 127

8.11 PSL computation graph for Example 8.2. : : : : : : : : : : : : : : : : : : : : 128

8.12 Potential PSL rule for creating circular pairs. : : : : : : : : : : : : : : : : : : 130

8.13 Illustration of P-CEKqPSLf active states during an evaluation. : : : : : : : : : 131



LIST OF FIGURES 11

8.14 Illustration of a P-CEKqPSLf step. : : : : : : : : : : : : : : : : : : : : : : : : : 133

8.15 P-CEK
q
PSLf domains. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134

8.16 P-CEK
q
PSLf abstract machine step. : : : : : : : : : : : : : : : : : : : : : : : : 136

8.17 P-CEKqPSLf evaluations for Example 8.3. : : : : : : : : : : : : : : : : : : : : : 138

8.18 PSL computation graph for Example 8.3. : : : : : : : : : : : : : : : : : : : : 139

8.19 PSL computation graph for Example 8.4. : : : : : : : : : : : : : : : : : : : : 140

8.20 PSL computation graph dominated by a chain of dependencies. : : : : : : : : 141

8.21 Step 2 of MDGA push operation. : : : : : : : : : : : : : : : : : : : : : : : : : 145

8.22 Step 3 of MDGA push operation. : : : : : : : : : : : : : : : : : : : : : : : : : 147

9.1 NESL expressions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 155

9.2 NESL computation graphs, part 1. : : : : : : : : : : : : : : : : : : : : : : : : 157

9.3 NESL computation graphs, part 2. : : : : : : : : : : : : : : : : : : : : : : : : 158

9.4 NESL computation graph, work, and depth combining operators. : : : : : : : 159

9.5 NESL run-time domains. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 159

9.6 NESL pro�ling semantics. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 160

9.7 NESL constant application. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 161

9.8 NESL reachable space. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 161

9.9 ArrL expressions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163

9.10 ArrL pro�ling semantics. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163

9.11 Translation from NESL expressions to those of ArrL. : : : : : : : : : : : : : : 165

9.12 Translation from NESL values and store-values to those of ArrL. : : : : : : : 165

9.13 Initial ArrL environment and store when translating from NESL. : : : : : : : 166

9.14 ArrL computation graph corresponding to NESL EACH rules. : : : : : : : : : 169

9.15 Illustration of P-CEKqArrL active states during an evaluation. : : : : : : : : : 171

9.16 P-CEKqArrL domains. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173

9.17 P-CEKqArrL abstract machine step. : : : : : : : : : : : : : : : : : : : : : : : : 175

9.18 Selecting P-CEKqArrL active states in the presence of stub states. : : : : : : : 176

9.19 Illustration of a P-CEKqArrL step. : : : : : : : : : : : : : : : : : : : : : : : : : 177

9.20 ArrL computation graph for Example 9.2. : : : : : : : : : : : : : : : : : : : : 179

9.21 P-CEKqPAL root values. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 180

10.1 Representing sequences as balanced binary trees. : : : : : : : : : : : : : : : : 192

10.2 Quicksort pivoting. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193

10.3 PAL/PSL quicksort algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : 194

10.4 NESL quicksort algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

10.5 PAL/PSL mergesort algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : 198

10.6 PAL/PSL FFT algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 199

10.7 NESL FFT algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 199

10.8 Time-stamps during PSL FFT algorithm. : : : : : : : : : : : : : : : : : : : : 201

10.9 Summary of PAL, PSL, and NESL cost-expressiveness. : : : : : : : : : : : : : 207



12 LIST OF FIGURES

B.1 Basic structure of stop-and-copy garbage collection. : : : : : : : : : : : : : : 232



Part I

Introduction

13





Chapter 1

Introduction

The primary goal of this dissertation is to understand the performance issues of modern

programming languages. To achieve part of this overall goal, we show a framework for

de�ning and analyzing the asymptotic performance issues of programming models. Using

this framework, we give provably e�cient implementations of several languages, each on

several machines. In particular, for each language we

1. de�ne an abstract notion of computation in the language, including not only what result

is computed for a program, but also an abstract model of how it is computed;

2. use standard de�nitions of machines and their notions of computation; and

3. provide implementations of the language on these machines, with proofs that the im-

plementation preserves correctness and mappings between a program's costs of compu-

tation in the language and in the machines.

We discuss three parallel functional languages, each with a di�erent model of parallelism,

and their time and space costs for program execution. We implement each of these on three

standard parallel machines. However, the framework generalizes beyond these speci�cs to

other languages, cost models, and machines.

1.1 Background and Problems

A semantics de�nes a programming language. A traditional extensional semantics de�nes

a program's results, including any input/output behavior, and its termination properties.

Extensional semantics are well-understood for a wide variety of languages. On the other hand,

an intensional semantics de�nes an abstract model of how a computation is performed, such as

how long a computation takes or the resources needed during a computation. An intensional

semantics that tracks run-time cost information is called a pro�ling semantics [108, 110].

A semantics can also be considered a simple abstract implementation of a language. This

is especially true for operational styles of semantics, which are of primary interest here. These

15



16 CHAPTER 1. INTRODUCTION

simple implementations do not necessarily embody the intensional properties expected of a

realistic implementation.

Implicitly or explicitly, some intensional properties are considered to be part of the lan-

guage itself and not to depend on the implementation. Many implicit implementation re-

quirements are considered common sense and obvious, e.g., that adding two integers should

take constant time. This example assumption is reasonable for �xed-precision arithmetic, but

not for the arbitrary-precision arithmetic available in some languages, such as Scheme [27]

and Mathematica. Since many intensional properties really are \obvious" in most commonly

used languages, such as C or Fortran, explicitly de�ning these properties is not considered a

priority. But not all intensional properties are \obvious", especially in modern programming

languages that are more abstract than C, Fortran, etc.

Many constraints on languages can be considered required \optimizations". The best

example of this is Scheme's explicit requirement for tail recursion [27], i.e., tail calls in a

function are implemented with a jump rather than a function call. The execution of a tail-

recursive function reuses the current stack frame so that a sequence of tail calls requires

only one stack frame. Thus, the requirement a�ects the space used by a program in an

asymptotically signi�cant way. This is a common optimization in functional languages, that

is, by de�nition, required in Scheme.

Thus, some implementation decisions may be considered essential to a given language, es-

pecially if they signi�cantly a�ect the run-time costs of the language. The following examples

hint at the range of languages and properties that are of interest:

� In languages with more complicated numbers than �xed-size integers or 
oating point

numbers, especially those with arbitrary-precision arithmetic, how long do basic arith-

metic functions take?

� In parallel languages, what is or can be executed in parallel, and how many processors

can be kept busy?

� In parallel languages, how does the space usage depend on the number of processors

available? (Using more processors generally means that at any given moment, more

control information is used and more live data is accessible.)

1.2 Provably E�cient Implementations

This dissertation introduces provably e�cient implementations to specify the intensional

properties and implementations of languages and prove e�ciency results about these im-

plementations. The pro�ling semantics is an abstract speci�cation of the intensional costs.

Cost mappings then relate these to the costs on more concrete machine models. We must

prove the use of the cost mappings is feasible by providing an abstract implementation that

obtains the desired bounds, as in Figure 1.1. While we are primarily concerned with inten-

tional properties, we also specify and prove results about the models' extensional properties.

However, the extensional results shown in this dissertation are not surprising.



1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 17

Language Model

Machine Model

Values

Costs
Implementation}

Figure 1.1: The implementation maps values and costs of the pro�ling semantics to those of

the machine. Its e�ects on costs are summarized by cost mappings.

1.2.1 Uses of provably e�cient implementations

To describe some uses of a provably e�cient implementation and its components, we con-

sider three di�erent perspectives: the language designer, the language implementor and tool

developer, and the language user (i.e., programmer).

The designer creates the pro�ling semantics and proves the cost mappings. These in-

tensional formalisms allow the designer to specify run-time properties such as Scheme's tail

recursion in a formal and well-de�ned way.

The implementor uses the cost mapping and its feasibility proof as an abstract speci�ca-

tion of the compiler. He can use the cost mapping to verify an implementation's compliance

with the speci�cation. Furthermore, he uses the pro�ling semantics as an abstract de�nition

of costs for analyses within the compiler, pro�lers, and automatic complexity analyzers.

The programmer uses the pro�ling semantics as the formal de�nition of understanding a

program's behavior, results, and execution costs. The programmer uses the cost mapping to

summarize whatever he is expected to know about the compiler. He can use the cost mapping

to compare the pro�ling semantics' abstract notion of costs to what happens on various

machines. Thus, he would perform a single cost analysis in the abstract language model,

even if the program is targeted for multiple machine models. In particular, this dissertation is

concerned with using the pro�ling semantics to analyze asymptotic performance and compare

algorithms, such as whether to use quicksort or insertion sort.

1.2.2 Limiting our scope

To limit the scope of the thesis, we restrict our attention to parallel models based on functional

languages and their asymptotic costs.

� We use purely functional languages because of their simple semantics, which can be

described with relatively few and simple rules.



18 CHAPTER 1. INTRODUCTION

� We use parallel models because the run-time costs are much less understood than those

of serial models. Frequently, it is unclear which subcomputations are executed in serial

or in parallel, as this can be dependent on how long certain subcomputations take, how

many processors the machine has, how long communication delays are in the machine,

etc. Furthermore, unlike serial machines, which are almost all relatively similar, parallel

machine architectures can be radically di�erent from each other.

Here, by \parallel" we mean that programs are to be executed on multiprocessor (\par-

allel") machines. The languages we use are not semantically parallel, but sequential,

i.e., they do not include constructs such as parallel-or1. Thus, these languages are

deterministic and not concurrent.

Side-e�ect-free applicative languages are a natural candidate for modeling parallelism

since it is always safe to evaluate subexpressions in parallel in these languages [39, 40].

� We examine asymptotic costs because this allows us to simplify many issues by ignoring

constant factors. Even the asymptotic cost bounds of languages and their implementa-

tions are not well understood, and many implementation decisions a�ect the run-time

costs in an asymptotically signi�cant manner. For example,

{ tail recursion asymptotically a�ects stack space;

{ an optimization in some versions of Standard ML of New Jersey to share the space

for function environments keeps data accessible for too long, increasing space usage

asymptotically[5]; and

{ the implementations of some parallel languages needlessly serialize the synchro-

nization of threads, asymptotically reducing the parallelization of some programs

(cf. Chapter 8).

While we restrict ourselves to such languages in this dissertation, the framework of provably

e�cient implementations is applicable to any language and its implementation. Also, while

we could include more details to account for constant cost factors, that would obscure the

ideas of primary interest here.

1.2.3 Models of parallelism

This dissertation describes three basic models of parallelism. Each is based on the pure

(i.e., no side-e�ects) �-calculus, where an expression e is one of the following: a constant

c, a variable x, a function of one argument �x:e0, or application e1 e2 of function e1 and

argument e2. Additional constructs such as data structures, conditionals, and recursion can

be included easily, or they may be simulated with the core using standard techniques. The

�-calculus, though powerful, o�ers a simplicity that makes it easy to reason about. It is

1Parallel-or takes two argument expressions and returns true if either argument returns true, even if the
other argument never terminates. Implementing this requires some form of concurrency.



1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 19

the direct ancestor of functional languages such as Scheme, ML, and Haskell, and it is also

commonly used as a meta-language for de�ning the semantics of imperative, object-oriented,

logic-based, and other languages.

The models of parallelism we examine are as follows:

� Fork-and-join parallelism allows a bounded number of threads to be forked (spawned)

and later joined (synchronized) at a speci�ed point in the control 
ow. These threads

can, in turn, fork and join additional threads in a strictly nested fashion, and each

thread can be evaluated in parallel. The Parallel Applicative �-calculus (PAL) allows

two threads to be forked, and later joined, by an application expression: one each for

e1 and e2. The PAL uses call-by-value application, so e2 is fully evaluated before being

applied to the result of evaluating e1.

We also show how using an extended syntax instead results in a model (PAL') that is

equivalent up to constant factors of their asymptotic costs.

All data structures are pointer-based, so all data must be stored in tree- or list-like

structures. In many programs, a balanced binary tree leads to the most e�cient algo-

rithm.

� Speculative parallelism (or call-by-speculation [53]), as used here, also allows a bounded

number of threads to be spawned at once. However, it synchronizes only as necessary

for data dependencies, i.e., arguments are evaluated in parallel with function appli-

cation and evaluation of its body. This allows \pipelined" and \producer-consumer"

parallelism to be expressed.

Since synchronization is more relaxed than in fork-and-join parallelism, this can allow

faster programs, but since synchronization is data-dependent, it is more di�cult to

formally de�ne and implement. This style of parallelism is closely related to the fu-

tures of Multilisp [50] (also known as promises [40])|Multilisp applies an application's

function to futures which represent the arguments and which eventually receive the ar-

guments' �nal values. Speculative parallelism also forms the core of languages such as

Id and pH [87, 2, 88]. The Parallel Speculative �-calculus (PSL) allows two threads to

be spawned by an application expression, as in the PAL. Synchronization occurs only

when looking up a variable's value.

The basic form of full speculation (PSLf) eventually evaluates all spawned threads, and

thus requires the same amount of computation as the PAL model. The alternative of

partial speculation (PSLp) allows irrelevant computations to be aborted and discarded,

potentially reducing the amount of computation. Partial speculation is a family of mod-

els di�ering in how we detect and abort irrelevant computations, generally prioritizing

computations so as to reduce the amount of computation spent on irrelevant ones.

Note that call-by-need is one extreme of partial speculation, where computations are

prioritized to ensure that we do not evaluate any irrelevant computations.



20 CHAPTER 1. INTRODUCTION

� Data-parallelism allows the forking and joining of an unbounded number of copies of an

expression, where we give each copy a di�erent piece of data. The NESL model uses call-

by-value application, although unlike the PAL model, applications are not parallelized.

Instead, we introduce sequences as a datatype and an expression fe00 : x in e0g which
evaluates e00 in parallel for each binding of x to a value in the sequence resulting from e0.

This forms the core of languages such as Nesl [14], HPF, and C* [107]. NESL provides

a very 
exible model of data-parallelism, where e00 may be any general expression. In

particular we allow nested data-parallelism, i.e., forked threads can fork additional

threads (as in Nesl, but not HPF and C*).

We show that in quicksort, for example, NESL allows more e�cient data access and

thus more e�cient algorithms than the PAL or PSL models.

We do not use any call-by-name or call-by-need (lazy) languages, because they inherently

do not o�er signi�cant parallelism [64, 121]. In fact, parallel graph reduction, a form of

partial speculation, is generally o�ered as a compromise of laziness to obtain parallelism.

1.2.4 Costs of parallelism

This dissertation describes and proves results about the time costs of each of the PAL, PSL,

and NESL models and the space costs of the PAL and NESL models. This section outlines

how we de�ne and use the abstract costs of time and space. The following two sections then

outline how we incorporate these de�nitions in the models and relate them to the machine

models' costs, respectively.

We are interested in how these costs depend upon the size of the input. Furthermore,

since we use parallel machine models, we are also interested in how these costs depend upon

the number of machine processors, as discussed when we relate them to the machine model's

costs.

Computation graphs

Computation graphs are directed acyclic graphs, where nodes represent units of computation,

and edges represent data and control dependences. Computation graphs provide an intuitive

visual summary of computation; formally generalize work and depth, to be described; and

describe the computation scheduling. Figure 1.2 gives an example. Each of our models'

pro�ling semantics de�nes the computation graph of programs, and Figure 1.3 illustrates the

di�erent models of parallelism that they represent.

Work and Depth

To describe the time costs, we use two cost measures, work and depth. The work is the number

of units of computation executed in an evaluation, independent of whether the computation

is performed in serial or parallel. The depth is the one plus the total length of the longest



1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 21

Figure 1.2: Example computation graph. Nodes represent units of computation, and edges

represent data and control dependences.

e1 e2

PAL application

e1
e2

PSL application

e'0
e'm 1–

e

...

NESL for-each

e1 e2 e1 e2

@

@

Figure 1.3: Simpli�ed illustration of parallelism in the PAL, PSL, and NESL models, where

diamonds and triangles represent subgraphs for subexpression computation. The dashed line

represents synchronization for a potential data-dependency. The \@" nodes each represent

the application of a function value. Additional details are provided in later chapters.



22 CHAPTER 1. INTRODUCTION

fun quicksort xs =

if size of xs is less than 2 then xs

else let pivot = median element of xs

lts = elements in xs less than pivot

eqs = elements in xs equal to pivot

gts = elements in xs greater than pivot

s_lts = quicksort lts

s_gts = quicksort gts

in append s_lts eqs s_gts

Figure 1.4: Quicksort pseudo-code. The three selections of elements less than, equal, and

greater than the pivot are each independent and can be parallelized with respect to each

other. The two recursive calls can be parallelized. Each of the subtasks of choosing the pivot

and selecting elements can be parallelized.

path through the computation, viewing the computation as a graph of data and control

dependencies. As an example, refer to Figure 1.2. Its work is the number of nodes (w = 11),

its depth is the length of the longest path, plus one for the initial node (d = 8).

In serial models, having a total order on the control dependencies results in program

execution time being equivalent to each of work and depth. In parallel models, a program's

execution time is dependent on (at least) its work and depth and the number of processors

available. Work and depth are frequently used to describe parallelism, especially in teaching

parallel algorithms [63, 59, 17, 15] and implementing various applications [46, 11, 10].

Let's examine the work and depth of quicksort on m data elements. Figure 1.4 gives

pseudo-code for a parallel quicksort. First, recall that a serial quicksort algorithm requires

O(m logm) time in the expected case. For any of our language models, the parallel quicksort

requires O(m logm) work (expected), just as for the serial quicksort. Each recursive iteration

is dominated by the O(m) work to examine each of the elements, and there are two recursive

calls each on half (on average) of the elements, thus the W (m) = O(m) + 2W (m=2) =

O(m logm) (expected) total. Chapter 10 discusses quicksort more formally.

The depth of quicksort depends on the data structure to store the elements. In the PAL

model, we can choose between lists and trees as data structures. Using lists, splitting the

elements on the pivot and appending the sorted lists each requires linear depth, resulting

in a total of D(m) = O(m) + D(m=2) = O(m) depth (expected). Using balanced binary

trees, splitting and appending the elements requires logarithmic depth, resulting in a total

of D(m) = O(logm) +D(m=2) = O(log2m) depth (expected), as shown in Corollary 10.1.

These same bounds also hold for the PSL model, as the algorithm has no signi�cant amount

of pipelining available.

For comparison, it is possible to sort in O(logm) depth in the PAL model. In the counting

sort, each element �rst compares itself to all other elements and counts how many of those



1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 23

are less than itself. Next, each element then places itself in the position indicated by its

count. Assuming the elements are kept in a balanced binary tree, this requires O(logm)

depth, an O(logm) factor less than than quicksort. However, it requires O(m2) work for

the comparisons. When this work and depth are mapped to the costs of the machine, as in

Section 1.2.6, we see that this is only e�cient for relatively small values of m, i.e., small data

sets. In general, we want algorithms that are work-e�cient and have low computation depth

bounds.

An e�cient NESL quicksort algorithm uses sequences to store the data. Choosing a pivot

then requires constant depth. Furthermore, the selection of elements less, equal, and greater

than the pivot then requires three constant-depth uses of for-each. Appending the sorted

sequences also requires constant depth. As a result, the algorithm requires only D(m) =

O(1) +D(m=2) = O(logm) depth.

Space

The pro�ling semantics de�nes the space cost for serial evaluation, and the cost mappings

relate this to the space required for parallel evaluation, given the number of machine pro-

cessors. We formally bound the parallel space in terms of the serial space by relating the

machine execution to parallel traversals of the pro�ling semantics' computation graph and

then using previous results about space usage of parallel traversals.

In quicksort, each model only requires reachable space linear in the number of data

elements. At any time, only a constant number of copies of the original data is live, for a

total of linear space. That dominates the polylogarithmic space needed for the recursion

stack of any reasonable choice of data structure.

The semantics do not need to model garbage collection, the automatic reclamation of

unaccessible memory. Instead, we measure the maximum amount of space during the evalu-

ation required for all reachable, or live, data and any overhead such as a control stack. Our

implementations do not include garbage collection either, because that would require extra

details obscuring other features. However, Appendix B outlines how we can add garbage

collection and how this a�ects the implementations' cost bounds.

Other issues

Modeling time and space costs allows us to examine many issues of implementation e�-

ciency. In particular, this dissertation addresses two problems of previous parallel language

implementations. One is the time delay incurred by some serial bottlenecks in speculative

languages. Another is the space overhead when there is \too much" parallelism. I.e., if many

more threads are spawned than there are processors, the space for storing these delayed

computations may dominate.



24 CHAPTER 1. INTRODUCTION

1.2.5 Formalizing the cost models

We provide a formal cost model to specify the intensional properties (here, the computation

graph and maximum reachable space) of a language. This cost model is incorporated into

the semantics of the language, augmenting an extensional semantics with cost de�nitions,

resulting in a pro�ling semantics. It is from this formal de�nition that we can derive bounds

such as described for quicksort.

The pro�ling semantics by itself does not re
ect the implementation costs of the language.

Since the implementation costs depend on the underlying machine, and since we want a

single pro�ling semantics for the language, we also need to formally relate the costs of the

language model to those incurred in the machine model. This relation re
ects the essential

details of the implementation, and is described further in the next section. Together, the

pro�ling semantics and this cost mapping provide the essential intensional information about

a language.

The underlying extensional semantics we use is operational, rather than denotational.

An operational-style semantics de�nes the result of evaluating an expression to a value in a

way that, at least abstractly, matches the evaluation process. A denotational-style semantics

de�nes the \meaning" of an expression as a value in a compositional manner, with no direct

appeal to the evaluation process. The operational style matches our needs better, since we

are interested in the costs of the evaluation process.

1.2.6 Implementations and their cost mappings

This dissertation uses three standard parallel machine models: the butter
y, the hypercube,

and the Parallel Random-Access Machine (PRAM) [38]. Each of these uses a collection of pro-

cessors connected by a di�erent style of communication network, as illustrated in Figure 1.5.

The butter
y and hypercube are commonly used in practical networks, while the PRAM is

a common abstraction of parallel machine models. We use three kinds of PRAM, di�ering in

how they access memory: the exclusive-read, exclusive-write (EREW); the concurrent-read,

exclusive-write (CREW); and the concurrent-read, concurrent-write (CRCW).

In each model we assume memory access and allocation requires constant time. For the

butter
y we assume that for p processors we have p log2 p switches and p memory banks, and

that memory references can be pipelined through the switches. We also assume the butter
y

network has simple integer adders in the switches, such that scan and reduce operations (see

Appendix A for de�nitions) can execute in O(log p) time. For the hypercube we assume a

multiport hypercube in which messages can cross all wires on each time step, and for which

there are separate queues for each wire.

The time costs of the implementations are parameterized by the overhead of communica-

tion through the communication networks, as modeled by scan and fetch-and-add operations

(see Appendix A for de�nition). In the PAL model, the overhead is bounded asymptotically

by the time TS(p) for a scan on p processors, whereas in the PSL and NESL model, it is

bounded asymptotically by the time TF (p) for the more general fetch-and-add. As a result,



1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 25

Butter
y
Hypercube

Shared Memory

Parallel Random Access Machine (PRAM)

Figure 1.5: Illustrations of the butter
y, hypercube, and Parallel Random Access Machine

(PRAM), respectively. The squares represent processors, and the edges represent communi-

cation links between them.



26 CHAPTER 1. INTRODUCTION

TS(p) TF (p)

Machine Model Randomized? Time for scan Time for fetch-and-add

Butter
y Yes O(log p) O(log p)

Hypercube Yes O(log p) O(log p)

EREW PRAM Yes O((log p)3=2=
p
log log p) O((log p)3=2=

p
log log p)

CREW PRAM Yes O(log p log log p) O(log p log log p)

CRCW PRAM No O(log p= log log p) O(log p log log p)

CRCW PRAM Yes O(log p= log log p) O(log p= log log p)

Language Time Space

PAL O(w=p+ d � TS(p)) O(s+ d � p � TS(p))
PSLf O(w=p+ d � TF (p)) no bounds shown

NESL O(w=p+ d � TF (p)) O(s+ d � p � TF (p))

Figure 1.6: Summary of cost mappings of three language models on several parallel machine

models. These bounds are parameterized by the time TS(p) or TF (p) for a scan or fetch-

and-add operation, respectively, on a p-processor machine. Tighter bounds are shown for

some of these machine models.

TS(p) and TF (p) bound the latency through the network, and thus the amount of multi-

threading needed to hide latency. Figure 1.6 summarizes some of the cost mappings obtained

in the various models. Note that to provide an e�cient fetch-and-add operation, we generally

consider only randomized machine models, so these bounds hold with high probability.2

We can plug the work and depth bounds of our quicksort example into these mappings.

For example, quicksort requires O(m logm) work, O(log2m) depth, and O(m) maximum

reachable serial space in the PAL model, as previously mentioned. Thus, on the hypercube,

this version would take O((m logm)=p+log2m log p) time and O(m+log2m � p � logp) space,
with high probability. Implementing algorithms, such as quicksort, directly onto the hy-

percube results in the same bounds, but is more complicated. Furthermore, we can easily

plug the language cost bounds into the cost mappings for other machine models, rather than

performing a completely separate analysis.

The central concept of these implementations is executing parallel traversals of the pro-

�ling semantics' computation graphs. Previous work showed how to schedule some parallel

computation graphs e�ciently with respect to time and space [18, 8]. However, this work did

not show how these graphs were obtained from or related to more concrete representations

of computation, such as a programming language. Our implementations are built directly on

this work, but also provide the missing link of showing how our language models relate to

their graphs.

2This means that these asymptotic bounds hold with arbitrarily high probability|increasing the probability
that the bounds hold requires increasing the constant factors of the costs of algorithms.



1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 27

PAL

Hypercube

Values

Costs

Butterfly PRAM

PCEKPAL

Figure 1.7: Each implementation is staged using an abstract machine of the P-CEK family.

For convenience, we stage each of these implementations by introducing a family of inter-

mediate machine models, one for each of the PAL, PSL, and NESL, as shown in Figure 1.7.

The intermediate machine is more abstract than the hypercube, butter
y, and PRAM, as it

does not describe the communication network, and it introduces extra control structure. A

stack stores states that may each be evaluated in parallel and initially contains a single state

representing the entire program before execution. The machine executes a series of steps,

where each step

� evaluates states each for unit work and depth;

� creates new states, placing them on the top of the stack; and

� performs any necessary synchronization,

as Figure 1.8 illustrates, and completes when all states have been evaluated. We limit the

number of states evaluated per step, so that we can bound the number of states left to

evaluate, and thus the space needed for the stack of states. At most q states are evaluated

per step, where this number is related to the number of processors, but is su�ciently large

to hide communication latency on each of the machine models.

For the PAL and NESL models, we prove that the implementations execute the parallel

generalization of depth-�rst traversals, where each state corresponds to a graph node. Previ-

ous results then provide time and space bounds. For the PSL model, the implementations do

not execute depth-�rst q-traversals, but only greedy q-traversals. We can still use previous

results to provide bounds for time, but not space.



28 CHAPTER 1. INTRODUCTION

i

i+1

i+2

...
...

ψ

0

States Step

Figure 1.8: Illustration of intermediate machine P-CEK step. It starts with one active state

representing the entire program and ends with one active state representing the result value.

The states are kept in a stack. At most q states are selected each step. Here, q = 5, and

these selected states are shaded. These can create zero or more new states (solid arrows).

Unselected states are still active in the next step (dashed arrows).



1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 29

Relation Notation

NESL is strictly more time-expressive than PAL NESL >PRAM;t
ce PAL

PSLp is strictly more time-expressive than PAL PSLp >PRAM;t
ce PSLf

PSLf is at least as time-expressive as PAL PSLf �PRAM;t
ce PAL

Figure 1.9: Summary of time-expressiveness of models on a CRCW PRAM. Additional rela-

tions are shown in Chapter 10.

The PSL and NESL implementations are asymptotic improvements over their respective

existing counterparts:

� Existing implementations of speculative languages all serialize both the suspension and

reawakening of sets of threads. Individual sets of suspended threads tend to be small,

so that serialization not be a signi�cant problem for many programs. However, it is

easy to give examples where this can unnecessarily serialize the bulk of the program

computation. So we show how to parallelize these operations, making extensive use of

the fetch-and-add operation.

� Our NESL implementation is also an improvement over the existing one in that it is

space e�cient. The existing implementation executes a level-order traversal of the com-

putation graph, rather than a depth-�rst q-traversal. That may lead to \too much"

parallelism, in that it allows the multi-stack of delayed computations to grow asymp-

totically larger than for the implementation given here.

1.2.7 Relating cost models of languages

Once we obtain cost models for languages, this gives a tool for comparing languages on

the basis of costs. We �rst compare some individual algorithms|mergesort, quicksort, and

Fast Fourier Transform|in the three models of parallelism. Next, we prove some simulation

results between the speci�c models of interest. Then we generalize these results and de�ne

a general notion of cost-expressiveness for language models, that relates when one language

allows more e�cient programs than another. Since language costs are only meaningful in

conjunction with its cost mapping to a machine model, cost-expressiveness is also relative

to some common machine model. As a simple example, it should not be surprising that

the data-parallel model allows asymptotically more e�cient programs than the fork-and-join

model for most machine models, since the former allows forking of an unbounded number

of threads per step. Figure 1.9 summarizes the relative time-expressiveness of the language

models used here, assuming the CRCW PRAM as the underlying machine model.



30 CHAPTER 1. INTRODUCTION

1.3 Outline

The remainder of Part I describes the primary areas of related work (Chapter 2) and gives

an overview of the notation used (Chapter 3).

Part II describes the methodology of this research using parallel applicative language mod-

els (PAL and PAL'). These are the simplest of the models we consider and are appropriate for

introducing the framework. Chapters 4 and 5 de�ne the language and its pro�ling semantics,

respectively. Syntactically, the language is based on the �-calculus and thus most resembles

languages such as Scheme, ML, Haskell, and Id [27, 81, 56, 87]. Chapters 6 and 7 relate

the language model to traditional machine models of computation (hypercube, butter
y, and

PRAM), staging this via an intermediate model for convenience (P-CEK).

Part III uses this methodology for some other parallel language models. Chapter 8 gives

fully and partially speculative models (PSLf and PSLp) for the language. The speculative

implementation eliminates a communication bottleneck of existing implementations which

can serialize the computation. Chapter 9 extends and modi�es the applicative model with

sequences and related constructs, using them as the only source of parallelism (NESL). Chap-

ter 10 compares programming in the various models and the asymptotic bounds obtainable

in them and introduces the idea of cost-expressiveness.

Finally, Part IV concludes with a summary of the contributions provided.



Chapter 2

Related Work

This work lies in the sparsely populated intersection of programming language and complexity

theory. Overall, there has been little communication of ideas between these communities,

and a meta-goal of this work is to try to build a bridge between these groups. This section

discusses not only the work directly related to this research, but outlines some of the other

work in this intersection between groups.

2.1 Cost models

There has been some work in developing cost models related to those of interest here. How-

ever, none of this previous work has been targeted to or fully addresses our goals. Here we

present a general overview of the related work|further details are included as relevant in the

remainder of the dissertation.

Hudak and Anderson [53] suggested modeling parallelism in functional languages using

an extended operational semantics based on partially ordered multi-sets (pomsets). The

semantics can be thought of as keeping a trace of the computation as a partial order specifying

what had to be computed before what else. Thus, these pomsets correspond closely with

computation graphs. Although signi�cantly more complicated, they present semantics (or

parts thereof) corresponding to the PAL and PSLf models. However, they did not provide

implementations or otherwise relate their model to other models of parallelism or describe

how it would e�ect algorithms.

Roe [105, 106], Flanagan and Felleisen [37], and Moreau [83, 84, 85] provided cost models

of speculative evaluation. Roe tracks only the depth of the computation, whereas Flanagan

and Felleisen and Moreau track only the work. Roe used his model to analyze algorithms, but

did not relate his model to more concrete models. On the other hand, Flanagan and Felleisen

and Moreau related their semantics to very abstract machines, but provided no algorithmic

analysis.

Blelloch [13, 14] presented Nesl with an informal cost model of work and depth, but

not space, that is used for algorithmic analysis. Also he did not give a formal cost mapping

31



32 CHAPTER 2. RELATED WORK

for Nesl's implementation, although he did outline the costs of its mapping to the VRAM

model.

Zimmerman [128, 130] introduced a pro�ling semantics for a data-parallel language for

the purpose of automatically analyzing PRAM algorithms. The language therefore almost

directly modeled the PRAM by adding a set of PRAM-like primitive operations. Complexity

was measured in terms of time and number of processors, as measured for the PRAM. It was

not shown, however, whether the model exactly modeled the PRAM. In particular since it

is not known until execution how many processors are needed, it is not clear whether the

scheduling could be done on the 
y.

Goodrich and Kosaraju [44] introduced a parallel pointer machine (PPM), but this is

quite di�erent from our models since it assumes a �xed number of processors and allows side

e�ecting of pointers. Abramsky and Sykes [1] introduced the Secd-m machine, which shares

a similar basis as our intermediate machines, but is non-deterministic and uses fair merge.

2.2 Relating cost models

Previous work on formally relating language-based models (languages with cost-augmented

semantics) to machine models is sparse. Jones [60] related the time-augmented semantics of

simple while-loop language to that of an equivalent machine language in order to study the

e�ect of constant factors in time complexity. Seidl and Wilhelm [114] provide complexity

bounds for an implementation of graph reduction on the PRAM. However, their implemen-

tation only considers a single step and requires that you know which graph nodes to execute

in parallel in that step and that the graph has constant in-degree. Under these conditions

they show how to process n nodes in O(n=p+ p log p) time (which is a factor of p worse than

our bounds in the second term).

Riely, Prins, and Iyer [104] de�ned a data-parallel language model based on Proteus [80]

and related it to the VRAM model. The structure of their work is very similar since it is

based on earlier versions of this work. Also, their Proteus-based model is similar to the Nesl-

based model shown here since these two languages are fundamentally similar. However, there

is a fundamental di�erence in implementations and machine models. Here we introduce a

machine model with separate domains from that of the language model, whereas they used

the same domains for the models. Rather than a cost mapping to relate models, they used a

preorder on programs (both uncompiled and compiled programs, since they are in the same

domain) based on how e�ciently they compute the same function.

Relating cost or complexity models is common in traditional algorithmic and complexity

theory. The most widely known examples are probably the comparisons of the many variants

of the Turing Machine. One central purpose of such comparisons is to understand what

computational constructs add computational power or e�ciency to a model. Or viewed from

a language perspective, what language features add to a model. Two subclasses of these

comparisons are most closely related to this work: those using models of functional language

constructs and those using models of parallelism as outlined below. Unlike all of this work,



2.3. IMPLEMENTATIONS OF DYNAMICALLY PARALLEL LANGUAGES 33

which is driven simply to compare a few models, we also provide a general framework for

comparisons of language-based models.

Ben-Amram and Galil [7] described a serial computation model based on pointer-based

access to memory (indirect addressing) rather than the usual representation of memory as a

giant array (direct addressing). It was to model the core of functional languages such as Lisp,

as it included operations such as car, cdr, set�car!, and set�cdr! to access and modify

the memory. They showed that such models su�ered a logarithmic slowdown as compared

to traditional direct addressing models in the worst case, as logarithmic time is needed to

simulate direct addressing. The models we use follow in this tradition, although we also use

arrays in the NESL model. However, our model is based on a high-level language and also

incorporate parallelism. But we �nd the PAL model su�ers a corresponding slowdown from

the NESL model. Paige [91] also compares models similar to those used by Ben-Amram and

Gali, although using the set-based language SETL.

Pippenger [97] also worked with serial pointer-based models, but compared a call-by-value

model without side-e�ects (i.e., without set�car! and set�cdr!) to a model with these. He

found that in general the purely functional model su�ers a polylogarithmic slowdown relative

to the imperative model. Bird, Jones, and de Moor [103] showed that Pippenger's results

extended to also show that the same call-by-value model su�ers the same slowdown relative to

a purely functional call-by-need model. The implicit side-e�ect in implementing call-by-need

substitutes for the explicit side-e�ects used by Pippenger.

Other parallel work used the PRAM [38]. While the PRAM is often considered a general

model of parallelism useful for designing algorithms, it is also acknowledged as an abstract

model which doesn't correspond to an actual machine. It abstractness stems from the un-

realistic assumption of constant time communication between arbitrary processors. But the

PRAM has been related to other more realistic parallel models, such as those for the butter
y

and hypercube [62, 101]. These relations depend entirely on simulating the more realistic

communication networks, and for the butter
y and hypercube, these work-e�cient simula-

tions entail a slowdown logarithmic in the number of processors. Our cost mappings show a

similar di�erence in bounds between these models, although our bounds on the butter
y and

hypercube are not quite the logarithmic factor more needed for the general solution. Other

such comparisons of machine models are common, e.g., the implementation of a CRCW

or CREW PRAM on an EREW PRAM. This work provides a general framework for such

comparisons, although mainly targeted towards the use of more abstract language models of

computation.

2.3 Implementations of dynamically parallel languages

This section brie
y overviews some related work in implementing languages with dynamic

parallelism.

Parallel implementations of Id and pH, e.g. [4, 86, 94, 93], are generally based on assigning

tasks to processors and minimizing the movement of tasks between processors. Each processor



34 CHAPTER 2. RELATED WORK

has a queue of tasks waiting for a processor. When a processor is not busy, it tries to get a

task|it �rst looks in its own queue, and if its busy, it steals a task from another processor's

queue. The processor then runs this task until it �nishes or it blocks. If it �nishes, it

reactivates tasks blocked on this one, adding them to appropriate queues of waiting tasks. If

it blocks, it adds itself to the appropriate queue of suspended tasks. These implementations

attempt to minimize communication, so queues are not implemented in a parallel fashion.

This can serialize the entire computation.

The current implementation of Nesl is based on 
attening nested parallelism to increase

granularity. Code using nested sequences compiles to code which only uses sequences of ba-

sic datatypes. This creates larger sequences, thus increasing granularity, but at the cost of

increasing the cost of some operations. The language is primarily intended for scienti�c com-

puting where sequences are large. Thus the limitation that only sequence-based operations

are parallelized is su�cient. We examine only models of Nesl which do not 
atten nested

parallelism. A 
attening model would be somewhat more complicated than the model of

Chapter 9 because of the extra compilation step for 
attening.

Sisal [34] is an applicative language designed for use on serial and parallel computers.

It includes data-parallelism based on a 
exible for construct combining looping and data

reduction on streams of data. It also includes task-parallelism. Streams are non-strict and

single-assignment, similar to the I-structures of Id and pH1. However, everything else is

strict, making synchronization less data-dependent than Id/pH and avoiding overhead such

as queues of suspended tasks. Its implementation is based on compiling into a data
ow model

and discovering parallelism|what is evaluated in data- or task-parallel depends on a data

dependency analysis which may vary between compilers.

Theoretical work by Blumofe and Leiserson [18] and Blelloch, Gibbons, and Matias [8]

shows how to e�ciently schedule some parallel computations as described by computation

graphs. Our implementations and e�ciency proofs are built directly on this work, but also

provide the missing link of showing how our language models relate to their graphs. Work by

Burton [23] and Burton and Simpson [22] also described the space of deterministic parallel

models. In particular, for series-parallel computation graphs with constant fan-in and fan-

out, they presented a scheduling algorithm using O(s �p) space and within a constant factor of

optimal in time for programs with su�cient parallelism. For their work, s is maximum space

required by any serial DFT of the graph, rather than the space required by the standard

DFT that traverses the ready nodes in left-to-right order.

2.4 Language models and their uses

Formally or informally, models of language run-time costs have been used in a number of

areas. This section describes some of these areas where a language model is particularly

important.

1An I-structure is an array of single-assignment locations.



2.4. LANGUAGE MODELS AND THEIR USES 35

2.4.1 Automatic complexity analysis

There have been several approaches to automatically deriving complexity bounds for pro-

grams. The basic idea of these is to convert a program into a set of recurrence equations

de�ning the costs, and then solve the recurrence equations. Both steps depend on identifying

some ad hoc collection of general recurrence patterns. To create these equations involves

identifying appropriate size abstractions of the data, such as the length of a list or the depth

of a tree. Most of this work has been restricted to worst-case analysis of serial functional

languages [124, 76, 77, 78, 109, 110, 111, 115, 108, 35, 126, 128, 127, 129] to simplify the anal-

ysis of recurrences. However, there has also been some work on worst-case analysis of for a

PRAM-like parallel language [130], de�ning the depth of the computation and the maximum

number of processes that the computation can employ. Also there has been some work on

worst-case analysis of imperative languages [28] and average-case analysis of serial functional

languages [36].

Converting the program into cost recurrence equations requires at least an informal de�-

nition of a language's costs, although some used formal de�nitions. The framework presented

here provides formal de�nitions of costs which could be used for automatic complexity anal-

ysis, plus a cost mapping to relate the analyzed bounds to more realistic machine models or

to traditional complexity theory.

2.4.2 Compiler analysis

Any compiler optimization technique which analyzes the cost of code uses at least an informal

cost model. Any such technique should be based on a formal model, such as provided by

this work, so that the resulting optimization can be veri�ed and quanti�ed. For example,

Knopp [67, 68] and Flanagan and Felleisen [37] both used language models somewhat similar

to the PAL model in analyses to avoid runtime checks.

2.4.3 Pro�ling tools

A pro�ling tool (or pro�ler) instruments source or object code to keep track of run-time

costs. It is used for run-time debugging and performance analysis and for guiding optimiza-

tion. Any pro�ler requires at least an informal de�nition of a language's costs, but frequently

these de�nitions are ad hoc or special purpose. Some recent pro�ling tools have been based

on the language semantics and a more formal notion of the costs [66, 65, 112, 113]. Since pro-

�lers generally need to produce highly accurate resource pro�les, they require more detailed

semantics than the abstract semantics provided here. But our framework allows detailed se-

mantics and provides a formalism which could be used as the basis for these semantics-based

pro�lers.



36 CHAPTER 2. RELATED WORK

2.5 Provably correct implementations

The general goal in provably correct implementation is obtaining compilers which produce

e�cient and provably correct code, e.g. [95, 71, 98, 24, 19]. At the core, this work provides

a relatively abstract source code semantics, a very detailed object code semantics, and a

provably correct compiler mapping between the two. These correspond to our language

model, machine model, and mapping. Since most are interested in obtaining realistically

e�cient compilers, they use more complicated machine models and mappings. But they do

not give any bounds on compiler e�ciency.

2.6 Other mixes of language theory and algorithmic theory

The following work is also in a broadly de�ned intersection between programming language

theory and algorithmic theory, although not directly related to this work.

This dissertation is an example of intensional semantics, as it formally describes not only

in what a computation results, but also how the computation proceeds. But most of the work

in intensional semantics concentrated on areas such as full abstraction (proving denotational

and operational semantics equivalent) or traces of concurrent processes [21]. However, Gurr

gave a categorical framework for de�ning language cost models and generalizing these to

asymptotic complexity models [49]. While powerful, his framework does not correspond to

typical programmers' intuition because of its use of category theory. And while very intrigu-

ing, the generalization to complexities is only partially successful. Also, Talcott provided an

intensional theory similar to those used for automatic cost analysis [119].

Jones, e.g., [60] has been exploring traditional complexity theory from a programming

language perspective. This includes re-examining how certain complexity classes arise from

di�erent language idioms. This perspective results in some novel results, including a theoret-

ical equivalent of the intuition that constant factors in performance really do matter in what

can be computed.

Skeletons are parameterized complexity functions obtained using traditional algorithm

analysis techniques, e.g., for a general-purpose divide-and-conquer algorithm [118]. Work

in this area also uses functional languages for simplicity. We use the same basic idea to

parameterize our bounds with respect to the load-balancing and latency costs in various

machine models. Note that one general technique used with skeletons is shape analysis which

is a generalization of the size abstraction in automatic complexity analysis. Also, the work

of Skillicorn, et al. overlaps with that of automatic complexity analysis [25, 116, 117]. In

addition, their work also overlaps greatly with that in algorithm analysis using high-level

functional data parallel languages, which also includes work using Nesl, e.g., [11, 10, 46],

and other work in the Bird-Meertens formalism.

There has been some work on obtaining asymptotically e�cient data structures using

functional languages, e.g. [52, 30, 89]. These each approached traditional algorithmic anal-

ysis problems, but from the perspective of modern programming languages, using language



2.7. EXPRESSIVENESS 37

features such as higher-order functions and laziness. Many problems of interest here involve

persistent data structures, where updates do not destroy the original data structure. We use

some simple persistent data structures, e.g., for environments. So far, all of this work has

been for serial languages, but such work could serve as prime examples for analysis in our

framework, given the appropriate language models.

2.7 Expressiveness

Discussions of programming languages often include informal discussions of how they are more

expressive than previous languages. However, there is no single formal notion of what this

means. For example, Felleisen [32] and Mitchell [82] compared languages based on di�erent

criteria|Felleisen observed when language features could equivalently be de�ned as macros,

whereas Mitchell observed when features can be used as abstraction contexts. Both also

discussed additional previous work on comparing languages.

Much of this work starts with the basic realization that the most fundamental comparison,

that of what functions the languages can compute, is not a �ne enough distinction. Most

useful languages are Turing-equivalent, and thus equivalent under that comparison. The

notion of cost-expressiveness de�ned here is another way to compare languages. Since it is

based on intensional aspects of the language, whereas previous comparisons are based on

extensional aspects, it is an orthogonal comparison that can be combined with any of the

previous ones.



38 CHAPTER 2. RELATED WORK



Chapter 3

Notation

This chapter serves as a reference chart of the notation used here. The notation will be

explained further as introduced in the following chapters.

Note that some notation, especially the semantic domain meta-variables, is overloaded

between the various language models. The general purpose meta-variable X represents nota-

tion that varies between the language and machine models. Which de�nition is appropriate

should always be clear from context. Also, notationally we do not distinguish arrays, ordered

sets, stacks, and queues. Some additional symbols are used for purely local de�nitions.

This notation is not identical to that used in earlier presentations of this work, as many

details have been reworked for consistency between models and for overall clarity.

39



40 CHAPTER 3. NOTATION

Meta-variables: Primes and subscripts are used to obtain additional meta-variables in a

given domain. Numerical subscripts are also used to denote indexing of array components.

b Boolean constant

c Syntactic constant

C Control information of a state

D Semantics derivation

d Depth cost

e Syntactic expression

E Set of computation graph edges

g Computation graph

gc Number of garbage collections during evaluation

i; j; k;m Integer

I Intermediate state

l Location

n Computation graph node

ns Computation graph source node

nt Computation graph sink node

N Set of computation graph nodes

NE Mapping from nodes to their children (ordered set of nodes)

in a computation graph

p Total number of processors

P Computation graph traversal pre�x

q Maximum number of selected states each step

Q Number of states processed

R Set of root values

s Space cost

st State

St, StA Array, multi-stack, etc. of states or active states

sv Store-value

t Time cost

T Computation graph traversal

v Value

V Set of visited nodes in computation graph traversal

w Work cost

x; y; z; Variable

� Environment (mapping from variables to values)

� Store (mapping from locations to store-values)

� Thread

 Number of evaluation steps

� Wildcard in meta-syntactic pattern matching



41

Expressions: Not all of these expressions are used in each model.

�x:e Abstraction (user-de�ned function) with bound variable x and

body e

e1 e2 Application of function e1 and argument e2
(e1;e2) Pair

let x = e1 in e2 Non-recursive local binding of the value of e1 to variable x

letrec x y = e1 in e2 Recursive local binding of a function named x with argument

y and body e1
if e1 then e2 else e3 Conditional

fe0 : x in eg \For-each" expression evaluating e0 for each binding of x to

an element of e

@ v1 v2 Application of function v1 and argument v2
done v End of computation with result v

� l1 l2 l
0 i Add ith element of sequence at l1 into result sequence at l2

with current running total at l0

FV (e) Set of free variables of expression e

Values and Store-values: Not all of these are used in each model.

cl(�;x;e) Closure (function) with argument x

cl(�;x;y;e) Recursive closure named x with argument y

hv1;v2i Pair

Continuations: Not all of these are used in each abstract machine.

� Empty or initial continuation

funhX �i Continuation marking function branch of application

arghX �i Continuation marking argument branch of application

endhl �i Continuation marking each branch of for-each

throw(v; �) Throw value v to continuation �



42 CHAPTER 3. NOTATION

Mappings:

� Empty mapping

X [Xd 7! Xr] Mapping X extended with the binding of Xd to Xr. Xd may

occur in X

X(Xd) Item bound to domain element Xd in the mapping X , or set

of items bound to set of domain elements in the mapping

X [X 0,
Sm�1
i=0 Xi Union of mappings (disjoint domains)

X tX 0 Union and update of mappings (X 0 may replace bindings in

X)

X ]X 0 Union of computation graph adjacency lists

dom(X) Domain of mapping X

rng(X) Range of mapping X

Arrays and other data structures: We use the same notation for arrays, ordered sets,

queues, and multi-stacks.

[X0; : : : ; Xn�1] A homogeneous data structure

X [X 0=i] New data structure replacing ith element of X with X 0

~X A homogeneous data structure [X0; : : : ; Xj ~Xj
]

jX j Number of elements in data structure X
~X++ ~X 0,++

m�1
i=0 Xi Combining (e.g., appending, pushing, enqueuing) of data

structures

Evaluation:

Xc ` e X�! v;Xo Evaluation in semantics X starting in context Xc with e re-

sults in v and cost information Xo. The forms of Xc and Xo

depend on the semantics.
X
,!X 0 Transition X 0 used on each applicable state in a substep of

intermediate machine X .

StA; �
X;q
,!k StA

0; �0;Xo k steps of the intermediate machine X , selecting at most q

states per step. The machine starts with active states StA

and store � and ends with active states StA0, store �0, and

cost information Xo.

e ` e X;q
=) v;Xo Evaluation in intermediate machine X , selecting at most q

states per step, of expression e results in v and cost informa-

tion Xo.

�(c; v), �(Xc; c; v) Application of c to v, possibly requiring a context Xc.



43

Costs of evaluation:

1 Singleton node computation graph

1 g Singleton node and edge from the minimum sink of g

g1 � g2 Serial combination of computation graphs

g1 
 g2 Parallel fork-and-join combination of computation graphsNm�1
i=0 ~g Parallel fork-and-join combination of computation graphs

g1 ^ g2 Forking of computation graphs

Sn(n) Net space allocation of node n that is independent of traversal

D(g) (Minimum) Depth cost of a computation graph g

D0(g) Maximum depth cost of a PSL computation graph g

S(R; �) Space reachable in store � from roots R

Sn(n) Space of computation graph node n

SP (P ) Space of traversal pre�x P

ST (T ) Space complexity of traversal T

TF (p) Time cost of fetch-and-add operation on p processors

TS(p) Time cost of scan and reduce operations on p processors

W (g) Work cost of a computation graph g

States: Not all of these are used in each abstract machine.

(e; �; �) State

@stubhl i k �i Stub state representing the k�i states having expressions @ l i

through @ l (k � 1), an empty environment, and continuation

�

�stubhl1 l2 l0 i k �i Stub state representing the k � i states having expressions

� l1 l2 l
0 i through � l1 l2 l

0 (k � 1), an empty environment,

and continuation �

Intermediate states: Not all of these are used in each abstract machine.

FinhX X 0i State �nishing this step

�hl1; l2; l0; i; �i Add ith element of sequence at l1 into result sequence at l2
with current running total at l0, continuing with the continu-

ation � if this is the last element

Other functions and relations:

TX [[X
0]], TX [[X

00]]�0 [[X
0]]� Translations to model X

X1 �X;cce X2 Language model X1 is at least as cost-expressive as X2, when

both are implemented on machine model X , for implementa-

tion cost measure c.



44 CHAPTER 3. NOTATION



Part II

Methodology

45





Chapter 4

Language

In this dissertation we are interested in parallel languages with �rst-class higher-order func-

tions. As discussed in Section 1.1, these languages are

� abstract, and thus easy to analyze extensionally, but generally not well understood

intensionally; and

� general, and thus representative of many characteristics of realistic languages.

This part of the dissertation uses a simple model called the Parallel Applicative �-Calculus

(PAL) as an introductory example. While this chapter is primarily concerned with the syntax

of the language, which uses standard �-calculus notation, it also anticipates the formal se-

mantics and implementation with some informal discussion of the parallelism in the model. In

particular, its semantics is based on the standard call-by-value (applicative-order) evaluation

strategy.

Many features of modern languages (e.g., data structures, conditionals, recursion, and

local variables) can be simulated in the standard �-calculus with constant overhead, therefore

not a�ecting asymptotic performance. Thus, we use relatively small and simple languages,

especially in this overview of the methodology. This eases the description of the languages and

the proofs of simulation results (e.g., Chapter 7). In particular, Section 4.1 de�nes the PAL

model with just the basic �-calculus with a few constants, a minimal language for the �rst

examples. Since that language is too sparse for reasonable examples, Section 4.2 introduces

an extended �-calculus that includes a representative sample of features of modern languages:

pairs, explicit recursion, conditionals, and a larger selection of constants. Chapter 5 shows

that for the purpose of asymptotic performance bounds, these two languages are equivalent,

i.e., that simulating the extensions in the smaller �-calculus requires only constant overhead.

All of the languages presented in this dissertation are untyped. We de�ne the costs

of evaluation only for those programs which correctly execute, independent of the static

checking that types would provide. And while types are useful for optimizing the program

implementation, this information does not provide the asymptotic bene�ts we are looking

for.

47



48 CHAPTER 4. LANGUAGE

c 2 Constants

x; y; z 2 Variables

e 2 Expressions ::= c j x j
�x:e j abstraction
e1 e2 application

Figure 4.1: Basic �-calculus expressions.

4.1 �-calculus

The basic �-calculus consists of the following kinds of expressions:

� constants c, such as numbers or primitive functions like addition;

� variables x;

� abstractions �x:e, which represent user-de�ned functions with bound variable x and

body e; and

� applications e1 e2, i.e., function calls with function e1 and argument e2.

All functions are �rst-class, which means that they can be passed as arguments or returned

from functions like any other value. Furthermore, the function of an application expres-

sion can be any expression, not just an identi�er, with the assumption that it evaluates to

something appropriate.

The core syntax of the �-calculus is given in Figure 4.1, where the set of constants is

de�ned later, and the set of variables is countably in�nite. The free variables of an expression,

FV (e), are de�ned as usual, where abstraction is the only variable binding construct.

For an application expression e1 e2 in the call-by-value (applicative-order) �-calculus,

the function e1 and argument e2 can always be evaluated in parallel, since the argument is

always evaluated anyway and there are no side-e�ects to make the relative order of evaluation

noticeable. There is a choice of how to synchronize these parallel computations. The PAL

model of Chapter 5 synchronizes after both the function and argument �nish evaluating,

whereas the PSL model of Chapter 8 synchronizes only when the argument's value is needed.

Arithmetic constants

Without arithmetic constants, the �-calculus is not a practical model of realistic languages.

Numerous schemes exist for encoding numerals in the �-calculus. At best, these allow con-

stant time successor, predecessor, and zero-test operations and polylogarithmic time for other



4.2. EXTENDED �-CALCULUS 49

i 2 Integers

c 2 Constants ::= i j add j sub jmul j lt j numeric constants

addi j subi jmuli j divi j lti

Figure 4.2: Basic �-calculus constants.

operations [92]. But since most machines use a �xed-precision arithmetic, they provide con-

stant time operations for multiplication, division, equality, etc. To model this, we include

such operations as constants.

There exist encoding schemes to encode groups (e.g., arrays) of integers as a single integer

and operations on such groups as functions on their encodings. However, if we include

division along with a standard set of operations on arbitrary-precision integers, the integers

are compressible [7], which means that such encodings can be asymptotically faster than the

operations on the raw groups of data. To avoid this we restrict the set of integers operations

to include, e.g., division by two, rather than full division.1

To keep the number of syntactic forms, and thus the number of semantic rules and the

number of proof cases, to a minimum, we do not syntactically distinguish unary and binary

functions. Instead, a binary function such as addition takes its arguments one at a time,

i.e., add 1 2 � (add 1) 2. Thus the core language uses the constants de�ned in Figure 4.2.

For example, add represents binary addition, and addi represents the unary addition of the

number i. While the unary functions are redundant with the corresponding binary functions,

we include them in the syntax of expressions to simplify the presentation of the semantics

(the unary functions are the result of applying the corresponding binary functions to their

�rst argument) and for syntactic consistency with the extended �-calculus.

4.2 Extended �-calculus

The basic �-calculus of the previous section is too sparse for even small examples, so we

introduce a language with some extensions. We add pairs to have a better way to allow n-ary

constant functions. We add boolean constants, conditional branching, and explicit recursive

function bindings as other typical extensions. Our extended language syntax is then de�ned

in Figure 4.3. The expression letrec x y = e1 in e2 creates a possibly recursive function x

with bound variable y and function body e1. Since this is a recursive binding, this binds both

x and y in the function body. The entire function de�nition is bound in the program body

e2. Again, each of the constants has the obvious intended meaning. Also the free variables

of an expression are de�ned as usual, where abstraction and letrec are the only binding

constructs.

1Another option would be to bound the range of the integers, as in most languages. This would be a better
solution for a more detailed and accurate semantics.



50 CHAPTER 4. LANGUAGE

i 2 Integers

b 2 Booleans ::= true j false
c 2 Constants ::= i j add j sub jmul j divi j numeric constants

lt j eq j gt j
b j and j or j not j boolean constants

fst j snd pair constants

x; y; z 2 Variables

e 2 Expressions ::= c j x j
�x:e j abstraction

e1 e2 j application

(e1;e2) j pairing

letrec x y = e1 in e2 j recursive function binding

if e1 then e2 else e3 conditional branching

Figure 4.3: Extended �-calculus.

These extensions are only representative of what a realistic language would include. For

example, other local binding expressions, data structures, and pattern matching can be simu-

lated with letrec, pairing, and conditionals. This syntax is su�cient for reasonable examples

while still simple enough for small semantic de�nitions of the language models. For readabil-

ity, we will assume such further extension in Chapter 10.

As we show, the encoding of pairs in the �-calculus allows the two expressions to be

evaluated in parallel in the PAL model, so the intension is to have applications and pairs

be the only sources of parallelism in this model. Furthermore, the encoding of conditionals

respects the usual serialization of the test and branch.

Note that we overload notation, e.g., reusing meta-variables between the languages, so as

not to clutter the notation. This is common throughout the dissertation. Which de�nition

is intended should always be clear from context.



Chapter 5

Pro�ling semantics

Recall that most semantics de�ne only the extensional properties of a language: a program's

results and termination properties. A pro�ling semantics augments such an extensional se-

mantics with de�nitions of the intensional information, the costs of evaluating the expres-

sion [108, 110]. In particular we are interested in the time and space costs of evaluation,

where parallel time is modeled by work and depth, or more generally, computation graphs.

We add these costs to operational semantics in a natural deduction, \big-step", opera-

tional style of semantics. Any style of semantics, including denotational, could be used, but

we use this style because we �nd it more convenient. In particular, an operational style is

more suited to

� de�ning the costs incurred during evaluation, because it describes the process of eval-

uation;

� de�ning machine models traditionally de�ned by a state transition relation; and

� proving equivalences with such machine models.

A \big-step" semantics directly de�nes the value of an expression, as opposed to a \small-

step" semantics which �rst de�nes what an expression reduces to in one step, and then

de�nes the value of the expression to be the transitive closure of this reduction. A \big-step"

semantics hides evaluation details which are irrelevant for the language models we use here.

Section 5.1 reviews the call-by-value operational semantics of the basic �-calculus. Sec-

tion 5.2 explains computation graphs and de�nes their form for the PAL model. Section 5.3

then extends this operational semantics to a pro�ling semantics de�ning the computation

graphs for the PAL model. Section 5.4 further extends the pro�ling semantics to de�ne the

space usage of evaluation. These semantics use the basic �-calculus for simplicity. But Sec-

tion 5.5 shows that basing the PAL model on the extended �-calculus instead a�ects time

and space bounds by only a constant factor.

51



52 CHAPTER 5. PROFILING SEMANTICS

� 2 Environments = Variables
fin! Values

v 2 Values ::= c j
cl(�;x;e) closure

Figure 5.1: The de�nition of call-by-value �-calculus run-time domains.

5.1 Call-by-value �-calculus semantics

This section provides a brief review of a standard way to de�ne the call-by-value �-calculus

semantics.

An operational semantics de�nes the result value of evaluating an expression. In the form

of operational semantics used throughout this dissertation, evaluation is performed in the

context of an environment, a mapping from a �nite set of variables to their values. (See

Chapter 3 for notation used with mappings.) The values resulting from the basic �-calculus

are the constants we have included and closures, the representation of functions. Thus,

environments and values are de�ned mutually recursively as in Figure 5.1.

Semantics are de�ned recursively in terms of a judgment, or relation, describing the eval-

uation of expression e to value v. A standard call-by-value semantics is often de�ned as in

De�nition 5.1. In each semantics, we annotate the arrow with the semantics name for clarity.

We are primarily interested in the \top level" case where the evaluation starts with an empty

environment, i.e., � ` e ��! v represents the evaluation of program e to its result value v.

De�nition 5.1 (Call-by-value �-calculus semantics) In the call-by-value �-calculus, in

the environment �, the expression e evaluates to value v, or

� ` e ��! v;

if it is derivable from the rules1 of Figure 5.2. Figure 5.3 de�nes the � function for the

application of constants.

As usual, a constant evaluates to itself, an abstraction evaluates to a closure containing

the current environment, and a variable evaluates to the value found for that variable in the

current environment. An application evaluates each of the function and argument and

� if the function value is a closure, it evaluates the closure body using the closure's de�ning

environment; or

� if the function value is a constant, it evaluates the constant application as de�ned by �.

1Items above each horizontal line are assumptions needed for the judgment below the line to hold. Rules
without a horizontal line are axioms.



5.1. CALL-BY-VALUE �-CALCULUS SEMANTICS 53

� ` c
�
�! c (CONST)

� ` �x:e
�
�! cl(�;x;e) (LAM)

�(x) = v

� ` v
�
�! v

(VAR)

� ` e1
�
�! cl(�0;x;e3) � ` e2

�
�! v2 �0[x 7! v2] ` e3

�
�! v

� ` e1 e2
�
�! v

(APP)

� ` e1
�
�! c � ` e2

�
�! v2 �(c; v2) = v; g3

� ` e1 e2
�
�! v

(APPC)

Figure 5.2: Call-by-value operational semantics using the basic �-calculus and the de�nition

of � in Figure 5.3.

c v �(c; v) if/where

add i1 addi1
addi1 i2 i1 + i2
sub i1 subi1
subi1 i2 i1 � i2
mul i1 muli1
muli1 i2 i1 � i2
divi1 i2 bi1=i2c
lt i1 lti1
lti1 i2 cl(�;x;�y:x) i1 < i2
lti1 i2 cl(�;x;�y:y) i1 � i2

Figure 5.3: The � function de�ning constant application for the call-by-value �-calculus.



54 CHAPTER 5. PROFILING SEMANTICS

[x 7! cl(�;y;1)](x) = cl(�;y;1)

[x 7! cl(�;y;1)] ` x
�
�! cl(�;y;1)

(VAR) = D2

� ` �x:x
�
�! cl(�;x;x)

(LAM)
� ` �y:1

�
�! cl(�;y;1)

(LAM)
D2

� ` (�x:x) (�y:1)
�
�! cl(�;y;1)

(APP) = D1

D1 � ` 2
�
�! 2

(CONST)
[y 7! 2] ` 1

�
�! 1

(CONST)

� ` (�x:x) (�y:1) 2
�
�! 1

(APP)

Figure 5.4: Call-by-value �-calculus operational semantics derivation for Example 5.1. For

readability, the derivation tree is broken into three subtrees.

Using the APPC rule with the � function is a convenient way to de�ne the application of

most constants|in particular, those that do not depend on the general evaluation relation.

Alternatively, we could de�ne a separate semantic application rule for each constant.

Since this simple language does not include explicit booleans for the result of the less-

than test, a programmer would use standard encodings of booleans instead. Section 5.5 uses

a �-calculus with additional constructs, including explicit booleans and also reviews how the

encodings used here represent booleans.

Division by zero does not cause an error here since, for simplicity, we do not include errors

in the semantics. Instead, we have two choices:

� to have a \not a number" value as in the IEEE standard; or

� to leave division by zero, and any program evaluation causing it, unde�ned.

Example 5.1 As a small example of a operational semantics derivation, observe the evalu-

ation of (�x:x) (�y:1) 2. The derivation forms a tree, as Figure 5.4 shows.

The semantics can be read as a simple interpreter for the language. For better e�ciency,

many compilation techniques have been developed over the years for the �-calculus and

related languages. The implementations used here are in the tradition of the SECD state

machine of Landin [70] and its descendants, as further described in Chapter 6.

5.2 Computation graphs

We use directed acyclic graphs (DAGs) to represent the process of computation, generalizing

the computation's work and depth. As usual, a directed graph consists of a set of nodes

and a set of directed edges. Each node of a computation graph represents a single unit of



5.2. COMPUTATION GRAPHS 55

computation: unit work and unit depth. An edge represents a control or data dependency,

where the child depends on the parent. Additionally, we place a total order on the children

of each node to distinguish the scheduling order on the nodes. Thus, more accurately, these

are ordered DAGs.

We use computation graphs for several related purposes:

� They provide a way to visualize computation and to gain an intuitive understanding

about these models.

� They formally generalize the work and depth costs of a computation in that the work

and depth can be easily de�ned in terms of the computation graph g. The work W (g),

is the number of nodes in graph g, and the depth D(g) is the number of levels, or

equivalently, one more than the length of the longest path, in graph g.

� They are useful to describe the scheduling of computation on machine models (cf.

Chapters 6 and 7). For example, we describe how to schedule nodes with the constraint

that all parents must be scheduled prior to their children.

We will use computation graphs for all models in this dissertation, although the more detailed

structure of the graphs varies among models.

Figure 5.5 illustrates the computation graphs for the PAL model. We can distinguish

two nodes (potentially the same node) in the subgraph for any subexpression's evaluation:

its source ns and sink nt. The source represents the start of a computation, and the sink

represents its end. We draw graphs as a diamond with its source at the top and its sink at

the bottom. Evaluating a constant, variable, abstraction, etc., requires only constant work

and depth, and the computation graph is a single node. Evaluating an application e1 e2
introduces parallelism|nodes before and after the parallel branches represent the initiation

and synchronization associated with this parallelism.

We choose a consistent ordering on the evaluation of subexpressions, arbitrarily placing

the function's subgraph before that of the argument. This choice makes the branching in

computation graphs resemble that of the corresponding syntax tree. As explained later, this

ordering will re
ect the execution ordering when there are not enough processors to parallelize

all computation. Within the context of the example languages presented here, the choice of

ordering is irrelevant.

The reader may be concerned over the form of these graphs. First, the nodes may repre-

sent signi�cantly di�erent amounts of real work, as for example, synchronization would take

signi�cantly more time than evaluating a constant. Second, either or both of variable lookup

or closure creation (i.e., evaluating a variable or a function) could take non-constant time, but

they are both represented by single nodes. But the computation graphs represent the time

costs as de�ned abstractly in the language model, and these costs must still be mapped to

the machine model. For example, later chapters show that in the given implementations, the

latency of communication for synchronization and variable lookup requires up to logarithmic



56 CHAPTER 5. PROFILING SEMANTICS

Expression e: c, x, or �x:e e1 e2

Graph g:

e1 e2

e1 e2

@

where the last subgraph is that for ei-

ther the body of the user-de�ned func-

tion (closure) or the application of the

constant to which e1 evaluates

Figure 5.5: Illustration of computation graphs for the PAL model.



5.2. COMPUTATION GRAPHS 57

(in number of processors) time, in the machines of interest. The model here represents the

following ideas:

� the programmer does not need to know why this logarithmic factor is necessary, but

that it is part of the overhead of the implementation; and

� the implementor is not constrained to where to introduce this overhead.

PAL computation graphs formalized

The computation graphs of the PAL model and its variants are all single-source, single-sink

computation graphs, as de�ned in De�nition 5.2.

De�nition 5.2 A single-source, single-sink computation graph is a triple (ns; nt; NE) of the

source, the sink, and the mapping of nodes to their children, such that the mapping induces

an acyclic partial ordering. This mapping represents the edges of the graph in the form of

adjacency lists, and the nodes of the graph are implicitly represented in these edges.

Mappings representing sets of adjacency lists are combined with ]:

NE1 ]NE2 =
S
n2N

8><
>:

[n 7! NE1(n)] n 2 dom(NE1); n 62 dom(NE2)

[n 7! NE2(n)] n 62 dom(NE1); n 2 dom(NE2)

[n 7! NE1(n)++NE2(n)] n 2 dom(NE1) \ dom(NE2)

where N = dom(NE1)[dom(NE2). When NE1 and NE2 are guaranteed not to contain any

of the same sources, i.e., they have disjoint domains, NE1 ]NE2 = NE1 [NE2.

In the PAL model, all computation graphs are of serial-parallel form, as de�ned in De�-

nition 5.3.

De�nition 5.3 A series-parallel graph g is a single-source, single-sink graph formed by any

combination of the following:

� A singleton node is both source and sink of the unit graph g.

� Two series-parallel subgraphs g1 and g2 are joined in series by adding an edge from the

sink of g1 to the source of g2, such that g's source is that of g1, and its sink is that of

g2.

� Series-parallel subgraphs g0, : : : , gk�1 are joined in parallel by adding a source node

which links only to the source of each of the subgraphs and a sink node which links only

from the sink of each of the subgraphs.

The particular graphs used in the PAL model are de�ned as part of the pro�ling semantics

of the models. Figure 5.6 illustrates these and the notation used for de�ning them:



58 CHAPTER 5. PROFILING SEMANTICS

Graph g: 1 g1 � g2 g1 
 g2
(ns; nt; NE) (n; n; �) (ns1; nt2;

(NE1 [NE2)

[nt1 7! [ns2]])

(ns; nt;

(NE1 [NE2)

[ns 7! [ns1; ns2]]

[nt1 7! [nt]][nt2 7! [nt]])
unique n unique ns and nt

g

ns

nt

n

g1

g2

ns1

ns2

nt1

nt2

ns

nt

ns2

nt2

ns1

nt1

g2g1

W (g): 1 W (g1) +W (g2) W (g1) +W (g2) + 2

D(g): 1 D(g1) +D(g2) + 1 max(D(g1); D(g2)) + 2

Figure 5.6: The de�nition of combining operators for PAL computation graphs, work, and

depth. The informal \unique"-ness side conditions re
ect the need to distinguish the nodes

in a graph and could be replaced by a counter to generate unique node names.

� A singleton node is represented by 1.

� Pairs of graphs are combined in series by g1 � g2.

� Pairs of graphs are combined in parallel by g1 
 g2. PAL graphs are limited to having

binary branching.

The precedence of 
 is higher than that of �. The de�nitions of these operators are somewhat
informal in the use of the \unique"-ness side conditions. These re
ect the need to be able

to distinguish the nodes in a graph, i.e., that each node is unique. They could be replaced

by having a counter used to generate unique node names, but that would clutter each of the

pro�ling semantics.

5.3 Simple parallel applicative semantics

This section de�nes the PAL model based on the basic �-calculus of Chapter 4 and its call-

by-value semantics of Section 5.1. In this section, the semantics track only the time costs



5.3. SIMPLE PARALLEL APPLICATIVE SEMANTICS 59

� ` c
PAL
�! c;1 (CONST)

� ` �x:e
PAL
�! cl(�;x;e);1 (LAM)

�(x) = v

� ` v
PAL
�! v;1

(VAR)

� ` e1
PAL
�! cl(�0;x;e3); g1 � ` e2

PAL
�! v2; g2 �0[x 7! v2] ` e3

PAL
�! v; g3

� ` e1 e2
PAL
�! v; (g1 
 g2)� g3

(APP)

� ` e1
PAL
�! c; g1 � ` e2

PAL
�! v2; g2 �(c; v2) = v

� ` e1 e2
PAL
�! v; (g1 
 g2)� g3

(APPC)

Figure 5.7: The pro�ling semantics of the PAL model (without space) using the basic �-

calculus and the de�nition of � in Figure 5.8.

as described by computation graphs. This serves as the introductory example of a pro�ling

semantics, and Section 5.4 de�nes a pro�ling semantics to also de�ne space costs.

The PAL model pro�ling semantics judgment � ` e PAL�! v; g adds the result computation

graph to the operational semantics judgment. De�nition 5.4 de�nes this relation.

De�nition 5.4 (PAL pro�ling semantics) In the PAL model, in the environment �, the

expression e evaluates to value v with computation graph g, or

� ` e PAL�! v; g;

if it is derivable from the rules of Figure 5.7. Figure 5.8 de�nes the � function for the

application of constants.

Program constants, abstractions, and variables are assumed to evaluate with constant

work and depth, i.e., with unit cost 1. As previously described, an application evaluates the

function and argument in parallel. This is followed in serial by evaluation of the function

body or constant application, as appropriate.

For each of the numeric constants used here, constant application is assumed to require

constant work and depth. However, the semantics allows for a more general cost (the graph

returned by �). E.g., Chapter 9 uses constant functions whose application's work and depth

are functions of the argument. Within the context of this model, the constant costs for

constant application, or the uniform cost criterion, is a reasonable assumption for imple-

mentation of these numeric functions on most real machines, assuming we ignore arbitrary

precision arithmetic. The semantics could also accommodate the more precise logarithmic

cost criterion [3].



60 CHAPTER 5. PROFILING SEMANTICS

�(c; v)

c v v0 g0 if/where

add i1 addi1 1

addi1 i2 i1 + i2 1

sub i1 subi1 1

subi1 i2 i1 � i2 1

mul i1 muli1 1

muli1 i2 i1 � i2 1

divi i0 bi0=ic 1

lt i1 lti1 1

lti1 i2 cl(�;x;�y:x) 1 i1 < i2
lti1 i2 cl(�;x;�y:y) 1 i1 � i2

Figure 5.8: The � function de�ning constant application for the PAL model.

Example 5.2 As a small example of a pro�ling semantics derivation, observe the evaluation

of (�x:x) (�y:1) 2. The derivation forms a tree, as Figure 5.9 shows. This is the same as the

derivation of Figure 5.4, except that the computation graphs are added. Figure 5.10 shows

the overall computation graph.

5.4 Semantics accounting for space

To track space usage we need to model memory more accurately. We must be able to express

what data is being shared, so that we do not count its space multiple times. For this we add

stores which describe a particular state of memory. A store maps a �nite set of individual

memory locations to their contents. Locations are e�ectively pointers to data structures kept

in memory. Together, environments and store provide a level of indirection that allows us to

describe sharing.

Introducing stores and locations changes the de�nitions of values and evaluation some-

what. Following common practice, we do not place constants in the store. For simplicity, we

assume that constants are of bounded size2 (and frequently the same size as a location), the

inability to share their storage does not a�ect space bounds. Thus we distinguish between

values in the environment, which are constants or locations, and store-values in the store,

which are just closures here. These domains are de�ned in Figure 5.11, where the set of

locations is countably in�nite.3

2This assumption is accurate for �xed-precision arithmetic. But to accurately track the space of the

arbitrary-precision numbers allowed in this semantics, this assumption would have to be dropped, and at least

some constants would have to be placed in the store like Scheme's \bignums".
3This ensures that we have enough locations, and that we can name them (e.g., with the integers).



5.4. SEMANTICS ACCOUNTING FOR SPACE 61

[x 7! cl(�;y;1)](x) = cl(�;y;1)

[x 7! cl(�;y;1)] ` x
PAL
�! cl(�;y;1); 1

(VAR) = D2

� ` �x:x
PAL
�! cl(�;x;x);1

(LAM)
� ` �y:1

PAL
�! cl(�;y;1);1

(LAM)
D2

� ` (�x:x) (�y:1)
PAL
�! cl(�;y;1); (1
 1)� 1

(APP) = D1

D1 � ` 2
PAL
�! 2;1

(CONST)
[y 7! 2] ` 1

PAL
�! 1;1

(CONST)

� ` (�x:x) (�y:1) 2
PAL
�! 1; (((1
 1)� 1)
 1)� 1

(APP)

Figure 5.9: PAL pro�ling semantics (without space) derivation for Example 5.2. For read-

ability, the derivation tree is broken into three subtrees.

(λx.x) (λy.1) 2

(λx.x) (λy.1) 2

λx.x λy.1

x

1

@

@

Figure 5.10: PAL computation graph (((1
 1)� 1)
 1)� 1 for Example 5.2. Labeled nodes
indicate the expressions evaluated. The \@" nodes each represent the synchronization and

application of a function value and its argument.



62 CHAPTER 5. PROFILING SEMANTICS

l 2 Locations

v 2 Values ::= c j l
� 2 Environments = Variables

fin! Values

sv 2 StoreValues ::= cl(�;x;e) closure

� 2 Stores = Locations
fin! StoreValues

R 2 Roots = ValueSets

Figure 5.11: The de�nition of PAL run-time domains when tracking space.

The semantics does not need to model garbage collection, but instead, measures the

maximum space reachable from a set of roots during the evaluation. Our implementation

does not include garbage collection either, because that would require extra details obscuring

other features. However, Appendix B outlines how garbage collection can be added to ensure

that the total space is within a constant factor of the reachable space.

The evaluation relation must now account for these stores and roots. The context of

an evaluation is the current environment, store, and roots, and an evaluation results in a

value and a new store. De�nition 5.5 re
ects these changes. Note that the de�nitions of

the two costs|the computation graphs and the reachable space|are independent. We also

extend the de�nition of constant application to use stores, where �(�; c; v) now also returns

any modi�cations to the store4 and also the computation graph of the application (but not

the space cost, as we explain later). For the sake of generality, it also returns a computation

graph, even though for these constants the graph is always 1|we take advantage of this

generality beginning in Chapter 9. Again, we are primarily interested in evaluations starting

at the \top level", where the environment, store, and roots are all empty.

De�nition 5.5 (PAL pro�ling semantics with space) In the PAL model, starting with

the environment �, store �, and roots R, the expression e evaluates to value v and the new

store �0 with computation graph g and space s, or

�; �; R ` e PAL�! v; �; g; s;

if it is derivable from the rules of Figure 5.12. Figure 5.13 de�nes the � function for the

application of constants. Figure 5.14 de�nes additional functions the reachable space of a

computation.

The space s returned by the semantics represents the maximum reachable space during

the computation, assuming a serial evaluation. In particular, in the application rules the store

4It returns the modi�cations to the store, rather than the new store, because that is what the abstract
machine uses in Chapter 6.



5.4. SEMANTICS ACCOUNTING FOR SPACE 63

�; �;R ` c
PAL
�! c; �;1; S(R; �) (CONST)

�; �;R ` �x:e
PAL
�! l; �0;1; S(R [ flg; �0) where �0 = �[l 7! cl(�;x;e)], l 62 � (LAM)

�(x) = v

�; �;R ` v
PAL
�! v; �;1; S(R [ fvg; �)

(VAR)

�; �;R [ �(FV (e2)) ` e1
PAL
�! l; �1; g1; s1 �; �1;R [ flg ` e2

PAL
�! v2; �2; g2; s2

�2(l) = cl(�0;x;e3) �0[x 7! v2]; �2;R ` e3
PAL
�! v; �3; g3; s3

�; �;R ` e1 e2
PAL
�! v; �3; (g1 
 g2)� g3;max(s1 + 1; s2 + 1; s3)

(APP)

�; �;R [ �(FV (e2)) ` e1
PAL
�! c; �1; g1; s1 �; �1;R ` e2

PAL
�! v2; �2; g2; s2

�(�2; c; v2) = v; �3; g3

�; �;R ` e1 e2
PAL
�! v; �2 [ �3; (g1 
 g2)� g3;max(s1 + 1; s2 + 1; S(�; R [ fvg))

(APPC)

Figure 5.12: The pro�ling semantics of the PAL model that also accounts for space using the

de�nitions of � and S(�;R) in Figures 5.13 and 5.14, respectively.

�(�; c; v)

c v v0 �0 g0 if/where

add i1 addi1 ; � 1

addi1 i2 i1 + i2; � 1

sub i1 subi1 ; � 1

subi1 i2 i1 � i2; � 1

mul i1 muli1 ; � 1

muli1 i2 i1 � i2; � 1

divi i0 bi0=ic; � 1

lt i1 lti1 ; � 1

lti1 i2 l; [l 7! cl(�;x;�y:x)] 1 i1 < i2; l 62 �
lti1 i2 l; [l 7! cl(�;x;�y:y)] 1 i1 � i2; l 62 �

Figure 5.13: The � function de�ning constant application for the PAL model that also ac-

counts for space.



64 CHAPTER 5. PROFILING SEMANTICS

S(R; �) =
P
l2L jFV (e)� fxgj+ 2 where �(l) = cl(�;x;e)

where L =
S
l2R locs(l; �)

locs(c; �) = fg
locs(l; �) = flg [ locs(�(l); �)

locs(cl(�;x;e); �) =
S
l2L locs(l; �)

where L = �(FV (e)� fxg)

Figure 5.14: Semantics functions used for de�ning reachable space in the PAL model.

is threaded through the sub-evaluations. Since it re
ects a serial evaluation, rather than the

PAL model's parallel evaluation, its de�nition may seem out of place in the same semantics,

but we present them together for convenience. Chapters 6 and 7 relate this serial space to

the space required during parallel evaluation, which depends on the number of processors

used. The semantics accounts for the reachable space by tracking all the values that might

be needed in the continuation. These are kept as a set of labels R into the store. For example,

in a function application e1 e2 when executing e1, the semantics adds the labels for the free

variables in e2 to the current set of labels. Given a set of root labels, the space required by

the data is measured by �nding all the locations reachable from the root locations R, and

summing the space for each object stored at these labels (see Figure 5.14). Space is measured

only at the leaves of the evaluation tree (in the rules CONST, LAM, VAR, and APPC). The

addition of 1 to the space in the two application rules represents the space needed for control

information. I.e., during the execution of the function, we need to store a pointer to e2, and

during the execution of the argument, we need to store l.

Example 5.3 We return to our previous example program, and show the pro�ling semantics

derivation for the expression (�x:x) (�y:1) 2. Figure 5.15 shows the derivation tree, which

mirrors that of Figure 5.9.

Observations

The � function doesn't return a space cost like the pro�ling semantics judgments. The

function is like a special base case of the semantics since it does not use the semantics

recursively, and the semantics measures space at the base cases with the function S(R; �).

The semantics could pass the roots to � and calculate the space there, rather than in APPC.

But since in all of our constant functions, the space of the application is bounded by that of

the result value, we use a simpler notation.



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 65

�0(x) = l0

[x 7! l0]; �0; fg ` x
PAL
�! l0; �0;1; 2

(VAR) = D2

�; �; fg ` �x:x
PAL
�! l; �;1; 3

(LAM)
�; �; flg ` �y:1

PAL
�! l0; �0;1; 6

(LAM)
D2

�; �0; fg ` (�x:x) (�y:1)
PAL
�! l0; �0; (1
 1)� 1; 7

(APP) = D1

D1 �; �0; fl0g ` 2
PAL
�! 2; �0;1; 2

(CONST)
[y 7! 2]; �0; fg ` 1

PAL
�! 1; �0;1; 0

(CONST)

�; �; fg ` (�x:x) (�y:1) 2
PAL
�! 1; �0; (((1
 1)� 1)
 1)� 1; 8

(APP)

where � = [l 7! cl(�;x;x)]

�0 = �[l0 7! cl(�;y;1)]

Figure 5.15: PAL pro�ling semantics derivation for Example 5.3. For readability, the deriva-

tion tree is broken into three subtrees.

The resulting store of an evaluation �; � ` e PAL�! v; �0; g; s, can be factored into the original

store plus some new bindings:

�0 = � [ �new ;

where �new refers only to new locations.5 This observation is used in Lemma 5.1. We could

have de�ned the semantics to return �new instead of �0, like the de�nition of �, but the style

used is standard.

5.5 Equivalence of �-calculus and extended �-calculus

This section shows that a PAL model based on the extended �-calculus (the PAL' model)

shares the same asymptotic bounds as the previous PAL model. To prove this, we give a

syntactic translation from the PAL' model to the PAL model, and prove that the translation

introduces only constant overheads in time and space. This shows that is it su�cient for us to

use only the core of the �-calculus and that any asymptotic cost bounds we prove later for the

PAL model also hold for the richer PAL' model. The converse holds almost trivially. Similar

results would also hold for the addition of many other standard features of programming

languages, including general data-structures, pattern matching as in ML or Haskell, and loop

constructs.

Section 5.5.1 de�nes the semantics of the PAL' model. Then Section 5.5.2 de�nes the

translation between the models and proves their asymptotic equivalence.

5In general, the semantics could reuse old locations, but that doesn't make sense for the constant functions
of the PAL model.



66 CHAPTER 5. PROFILING SEMANTICS

l 2 Locations

v 2 Values ::= c j l
� 2 Environments = Variables

fin! Values

sv 2 StoreValues ::= cl(�;x;y;e) j recursive closure

hv1;v2i pair

� 2 Stores = Locations
fin! StoreValues

R 2 Roots = ValueSets

Figure 5.16: The de�nition of PAL' run-time domains.

5.5.1 Semantics for the extended �-calculus

The store-values of the PAL' model are somewhat di�erent for those of the basic PAL model,

although they still include constants and closures. Recall, however, that a di�erent set of

constants is used for the extended language. Also, to accommodate the explicit recursion of

letrec, closures are now named|this allows us to avoid using recursive environments, which

allows simpler proofs. In addition, the store-values also include pairs. So, values are de�ned

as in Figure 5.16, where in the closure, x is its name, and y is its bound variable.

The semantic rules for de�ning evaluation and its costs are similar to before, and given

by De�nition 5.6. The di�erences from the PAL model are as follows:

� The LAM rule results in a closure with the special name , a dummy variable.

� The appropriate PAIR, LETREC, and IF rules are added:

The PAIR rule creates a new pair in the store. It evaluates the subexpressions in

parallel, and then creates the pair puts into a new location in the store.

The LETREC rule creates a new recursive closure in the store for the evaluation of the

body e2. Note that the closure's environment does not include this closure.

The IF rules evaluate in serial the test expression e1 and the appropriate branch e2 or

e3. The live data during the condition test expression includes the data that may be

used in either branch.

� The APP rule uses a potentially recursive closure, unrolling the recursion in the envi-

ronment once per application.

� The � rules use the new set of constants. In particular, the binary constant functions

are now uncurried, i.e., they take pairs of arguments, rather than arguments one at a

time.



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 67

De�nition 5.6 (PAL' pro�ling semantics) In the PAL' model, starting with the environ-

ment �, store �, and roots R, the expression e evaluates to value v and the new store �0 with

computation graph g and space s, or

�; �; R ` e PAL0�! x; �0; g; s;

if it derivable from the rules of Figure 5.17. Figure 5.18 de�nes the � function for the

application of constants. Figure 5.19 de�nes additional functions for the reachable space of

a computation.

5.5.2 Equivalence of the PAL and PAL' models

The PAL and PAL' models are essentially equivalent in that they can simulate each other

with only a constant factor of overhead:

� The PAL' model is an extension of the PAL model, except for the di�erence between

curried and uncurried constant functions. The PAL' simulation of the PAL introduces

overhead for pairs of arguments to these uncurried functions, but these correspond to

the closures created in the PAL curried applications. Thus this does not introduce more

than a constant factor of overhead.

� The PAL simulation of the PAL' model requires translating the extensions of the PAL'

into PAL. The remainder of this section gives such a translation TPAL[[]], proves that

TPAL[[]] is correct, and proves that TPAL[[]] introduces only a constant factor of overhead.

De�nition 5.7 de�nes a translation from the semantic domains of the PAL' model to

those of the PAL model, and Theorem 5.1 shows that the translated evaluation derivation is

correct and incurs at most a constant factor of overhead. The PAL derivation uses an initial

environment and store de�ning the PAL' model's extra constants. Then for the most part,

the proof follows directly from induction on the structure of the PAL' derivation, although

extra complications arise for the simulation of explicit recursion.

De�nition 5.7 Figure 5.20 shows the translation TPAL[[]] of PAL' expressions, values, and

store-values to those of the PAL model. The translations of environments and stores are

de�ned point-wise on the values and store-values in their ranges, respectively, except that the

translation of the environment omits any bindings for the dummy variable .6 The translation

of root sets of values is de�ned point-wise on the contents.

The translation uses standard encodings, but introduces three novel di�erences:

6This omission corresponds to the lack of a binding for the dummy variable in the translation of a
non-recursive PAL' closure.



68 CHAPTER 5. PROFILING SEMANTICS

�; �;R ` c
PAL

0

�! c;�;1; S(R; �) (CONST)

�; �;R ` �x:e
PAL

0

�! l; �0;1; S(R [ flg; �0) where �0 = �[l 7! cl(�; ;x;e)], l 62 � (LAM)

�(x) = v

�; �;R ` v
PAL

0

�! v; �;1; S(R [ f�(x)g; �)
(VAR)

�; �;R [ �(FV (e2)) ` e1
PAL

0

�! l; �1; g1; s1 �; �1;R [ flg ` e2
PAL

0

�! v2; �2; g2; s2

�2(l) = cl(�0;x;y;e3) �0[x 7! l][y 7! v2]; �2;R ` e3
PAL

0

�! v3; �3; g3; s3

�; � ` e1 e2
PAL0

�! v3; �3; (g1 
 g2)� g3;max(s1 + 1; s2 + 1; s3)

(APP)

�; �;R [ �(FV (e2)) ` e1
PAL0

�! c;�1; g1; s1 �;�1;R ` e2
PAL0

�! v2; �2; g2; s2
�(�2; c; v2) = v3; �3; g3

�; �;R ` e1 e2
PAL0

�! v3; �2 [ �3; (g1 
 g2)� g3;max(s1 + 1; s2 + 1; S(R [ fvg; �3))

(APPC)

�; �;R [ �(FV (e2)) ` e1
PAL0

�! v1; �1; g1; s1

�; �1;R [ fv1g ` e2
PAL0

�! v2; �2; g2; s2

�; �;R ` (e1;e2)
PAL

0

�! l; �2[l 7! hv1;v2i]; (g1 
 g2)� 1;max(s1 + 1; s2)

where l 62 � (PAIR)

�[x 7! l]; �[l 7! cl(�;x;y;e1)];R ` e2
PAL

0

�! v; �0; g2; s

�; �;R ` letrec x y = e1 in e2
PAL

0

�! v; �0; 1� g2; s+ 1

where l 62 � (LETREC)

�; �;R [ �(FV (e2)) [ �(FV (e3)) ` e1
PAL

0

�! true; �1; g1; s1

�;�1;R ` e2
PAL

0

�! v2; �2; g2; s2

�; �;R ` if e1 then e2 else e3
PAL0

�! v2; �2;1� g1 � g2;max(s1 + 1; s2)

(IF-TRUE)

�; �;R [ �(FV (e2)) [ �(FV (e3)) ` e1
PAL0

�! false; �1; g1; s1

�;�1;R ` e3
PAL0

�! v3; �3; g3; s3

�; �;R ` if e1 then e2 else e3
PAL

0

�! v3; �3;1� g1 � g3;max(s1 + 1; s3)

(IF-FALSE)

Figure 5.17: The pro�ling semantics of the PAL' model using the extended �-calculus and

the de�nitions of � and S(�;R) in Figures 5.18 and 5.19, respectively.



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 69

�(�; c; v)

c v v0 �0 g0 if/where

add l i1 + i2 � 1 �(l) = hi1;i2i
sub l i1 � i2 � 1 �(l) = hi1;i2i
mul l i1 � i2 � 1 �(l) = hi1;i2i
divi i0 bi0=ic; � 1

lt l true � 1 �(l) = hi1;i2i; i1 < i2
lt l false � 1 �(l) = hi1;i2i; i1 � i2
eq l true � 1 �(l) = hi1;i2i; i1 = i2
eq l false � 1 �(l) = hi1;i2i; i1 6= i2
gt l true � 1 �(l) = hi1;i2i; i1 > i2
gt l false � 1 �(l) = hi1;i2i; i1 � i2
not b false � 1 b = true

not b true � 1 b = false

and l b2 � 1 �(l) = htrue;b2i
and l false � 1 �(l) = hfalse;b2i
or l true � 1 �(l) = htrue;b2i
or l b2 � 1 �(l) = hfalse;b2i
fst l v1 � 1 �(l) = hv1;v2i
snd l v2 � 1 �(l) = hv1;v2i

Figure 5.18: The � function de�ning constant application for the PAL' model with the ex-

tended �-calculus.

S(R; �) =
P
l2L

(
jFV (e)� fx; ygj+ 2 if �(l) = cl(�;x;y;e)
2 if �(l) = h�;�i

where L =
S
l2R locs(l; �)

locs(c; �) = fg
locs(l; �) = flg [ locs(�(l); �)

locs(cl(�;x;y;e); �) =
S
l2L locs(l; �)

where L = �(FV (e)� fx; yg)
locs(hv1;v2i; �) = locs(v1; �)[ locs(v2; �)

Figure 5.19: Semantics functions used for de�ning reachable space in the PAL' model.



70 CHAPTER 5. PROFILING SEMANTICS

Expressions:

TPAL[[i]] = i

TPAL[[divi]] = divi
TPAL[[c]] = xc, if c 62 fi;divig
TPAL[[x]] = x

TPAL[[�x:e]] = �x:TPAL[[e]]

TPAL[[e1 e2]] = TPAL[[e1]] TPAL[[e2]]

TPAL[[letrec x y = e1 in e2]] = (�x:TPAL[[e2]]) (xY (�x:�y:TPAL[[e1]]))

TPAL[[(e1;e2)]] = xP TPAL[[e1]] TPAL[[e2]]

TPAL[[if e1 then e2 else e3]] = TPAL[[e1]] (�x:TPAL[[e2]]) (�x:TPAL[[e3]]) 0

Values:

TPAL[[i]]�0 [[i]]�
TPAL[[c]]�0 [[lc]]� if lc 2 �
TPAL[[l

0]]�0 [[l]]� if TPAL[[l
0(�0)]]�0 [[l(�)]]�

Store-Values:

TPAL[[cl(�
0; ;x;e)]]�0

[[cl(�;x;TPAL[[e]])]]�

if TPAL[[�
0]]�0 [[�]]�

TPAL[[cl(�
0;x;y;e)]]�0

[[cl(�[x 7! lY 1];y;TPAL[[e]])]]�

if x 6= , TPAL[[�
0]]�0 [[�]]� ,

�(lY 1) = cl(�[y0 7! lY 2];z
0;y0 y0 z0),

�(lY 2) = cl(�Y ;y
0;x0 (�z0:y0 y0 z0)),

�Y = �[x0 7! cl(�;x;�y:TPAL[[e]])]

TPAL[[cl(�
0;x;y;e)]]�0

[[cl(�[y0 7! lY 2];z
0;y0 y0 z0)]]�

if x 6= , TPAL[[�
0]]�0 [[�]]� ,

�(lY 2) = cl(�Y ;y
0;x0 (�z0:y0 y0 z0)),

�Y = �[x0 7! cl(�;x;�y:TPAL[[e]])]

TPAL[[hv01;v02i]]�0
[[cl([x 7! v1][y 7! v2];z;z x y)]]�

if TPAL[[v
0
1]]�0 [[v1]]� , TPAL[[v

0
2]]�0 [[v2]]�

Figure 5.20: Translation TPAL[[]] from the PAL' model expressions, values, and store-values to

those of the PAL model. The translation on expressions is presented as a function. Any new

variables (xc, xP , xY , or those primed) are assumed to be distinct from the free variables of

the expression or closure being translated. The variables xc, xP , and xY are de�ned in the

initial environment (Figure 5.21).



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 71

�I
xc 7! lc; for each c 62 fi;divig
xP 7! lP
xY 7! lY

�I
lc 7! cl(�;x;ec); for each c 2 fadd; sub;mul; lt; eq; gt;

true; false;not; and; or; fst; sndg
lP 7! cl(�;x;eP )
lY 7! cl(�;x;eY )

ec = uncurry [[c]]; for each c 2 fadd; sub;mul; ltg
eeq = uncurry [[�x:�y:TPAL[[not (or (lt x y) (lt x y))]]]]

egt = uncurry [[�x:�y:TPAL[[lt y x]]]]

etrue = �y:x

efalse = �y:y

enot = TPAL[[if x then false else true]]

eand = uncurry [[�x:�y:TPAL[[if x then y else false]]]]

eor = uncurry [[�x:�y:TPAL[[if x then true else y]]]]

efst = x (�y:�z:y)

esnd = x (�y:�z:z)

eP = �y:�z:z x y

eY = (�y:x (�z:y y z)) (�y0:x (�z:y y z))

where uncurry [[e]] = e (TPAL[[fst]] x) (TPAL[[snd]] x)

Figure 5.21: Initial environment �I and store �I of the PAL model when translating from

the PAL' model with TPAL[[]]. Note the correspondence of xP and xY to the translations of

store-values for pairs and recursive closures, respectively.



72 CHAPTER 5. PROFILING SEMANTICS

�0[x 7! l]; �0[l 7! cl(�0;x;y;e1)] ` e2
PAL

0

�! v0; �0new; g2

�0; �0 ` letrec x y = e1 in e2
PAL

0

�! v0; �0new;1� g2

(LETREC)

Figure 5.22: PAL' derivation with LETREC, excluding space costs.

� It translates letrec expressions and recursive closures using the call-by-value version

of the Y -combinator, a standard way of encoding recursion. The basic property of the

Y -combinator is that, given a function F of the appropriate form, the application Y F

behaves the same as F (Y F ), i.e., Y F is the �xed point of F .

This behavioral equivalence complicates the translation of values because of the di�er-

ence between the APP rules of the PAL and PAL' models. Let's examine what happens

when we apply a translated PAL' recursive function in the PAL model. Figure 5.22

shows the derivation for a PAL' letrec, and Figure 5.23 shows the derivation for its

PAL translation.

Observe that the translation of letrec introduces an expression of the form Y F . For

this analogy, Y corresponds to xY , and F to �x:�y:TPAL[[e1]]. Thus the resulting value

of this application, which is eventually stored at location l6, corresponds to the value

of Y F .

Now assume that the recursive function x is applied within the letrec body e2. Initially,

x is bound to l6, or intuitively, Y F . During the application, the body TPAL[[e1]] of

the recursive function is evaluated in the environment where the x is bound to l5, or

intuitively, F (Y F ). Thus, during the PAL evaluation, x is bound to two di�erent,

but equivalent, values. However, in the PAL' model, x is only bound to the same value,

the location containing the recursive closure.

While the two PAL values behave similarly, they are not identical, and a straightforward

translation does not accommodate the di�erence. Thus we provide a translation which

is not a function, but a relation, and which maps PAL' recursive closures to both of these

PAL closures.7 Observe that the closures stored in l6 and l5 in Figure 5.23 correspond

to the second and third lines, respectively, of the de�nition of TPAL[[]] on store-values.

Furthermore, by comparing contents, not names, of locations, this relation also ac-

commodates the fact that each unrolling of a recursive function generates a separate

location containing a copy of the F (Y F )-like closure. This extra generality allows a

simpler proof of model equivalence than otherwise possible.

� It translates constants to variables, which are initially bound to the appropriate function

closures of Figure 5.21. The exceptions are i and divi as they are the same in both

models.

7The translation on expressions is still a function.



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 73

�3; �5 ` �y:TPAL[[e1]]
PAL
�! l6; �6;1

(LAM) = D4

�2(x
0) = l2

�2; �4 ` x
0
PAL
�! l2; �4;1

(VAR)
�2; �4 ` �z

0:x0 x0 z0
PAL
�! l5; �5;1

(LAM)
D4

�2; �4 ` e0
PAL
�! l6; �6; g

0

(APP) = D3

�1; �2 ` �y
0:e0

PAL
�! l3; �3;1

(LAM)
�1; �3 ` �y

0:e0
PAL
�! l4; �4;1

(LAM)
D3

�1; �2 ` (�y
0:e0) (�y0:e0)

PAL
�! l6; �6; g

0

(APP) = D2

�0(xY ) = lY

�0; �1 ` xY
PAL
�! lY ; �0;1

(VAR)
�0; �1 ` �x:�y:TPAL[[e1]]

PAL
�! l2; �2;1

(LAM)
D2

�0; �1 ` xY (�x:�y:TPAL[[e1]])
PAL
�! l6; �6; g

00

(APP) = D1

�I [ �; �0 ` �x:TPAL[[e2]]
PAL
�! l1; �1;1

(LAM)
D1 �0[x 7! l6]; �6 ` TPAL[[e2]]

PAL
�! v; �new; g2

�0; �0 ` (�x:TPAL[[e2]]) (xY (�x:�y:TPAL[[e1]]))
PAL
�! v; �new; (1
 g00)� g2

(APP)

where �0 = �I [ � �0 = �I [ � g0 = (1
 1)� 1

�1 = [x0 7! l2] �1 = �0[l1 7! cl(�0;x;TPAL[[e2]])] g00 = (1
 1)� g0

�2 = �1[y
0 7! l4] �2 = �1[l2 7! cl(�0;x;�x:TPAL[[e1]])] g000 = (1
 1)� g00

�3 = �0[x 7! l5] �3 = �2[l3 7! cl(�1;y
0;e0)]

�4 = �3[l4 7! cl(�1;y
0;e0)]

�5 = �4[l5 7! cl(�2;z
0;y0 y0 z0)]

�6 = �5[l6 7! cl(�3;y;TPAL[[e1]])] e0 = x0 (�z0:y0 y0 z0)

Figure 5.23: PAL derivation with Y-combinator. For readability, space costs are omitted,

and the derivation tree is broken into �ve subtrees.



74 CHAPTER 5. PROFILING SEMANTICS

Usually, such constants are translated to abstractions. But this introduces a problem in

an environment-based semantics: the translation on values picks an arbitrary environ-

ment, here the empty environment. If the PAL' constants are replaced by abstractions,

evaluating the translated expression results in these abstractions \capturing" the local

environment during evaluation, which in general cannot agree with the arbitrary choice

for the values. Rather than providing a su�ciently general equivalence relation on clo-

sures, we avoid the problem by ensuring that our arbitrary choice of environment is the

correct one.

Using a relation for the translation (as motivated for recursion) is e�ectively like having

an equivalence relation on values, and we could take advantage of that here. But the

given solution is simpler for this problem.

� It translates environments, values, and store-values relative to the appropriate store.

Aside from the recursion issue, using a relation also simpli�es the translation on locations by

allowing it to be independent of location names.

Theorem 5.1 now shows that the PAL model can simulate the PAL' model with only a

constant factor of overhead. To prove this, Lemma 5.1 shows that the simulation holds for

all contexts.

Lemma 5.1 (Equivalence of PAL' and PAL) If e evaluates in the PAL' model:

�0; �0; R0 ` e PAL0�! v0; �0 [ �0new ; g0; s0

and for any context of �, �, and R for the corresponding PAL derivation such that

� its initial context is the translation of that of the PAL' derivation: TPAL[[�
0]]�0 [[�]]�,

TPAL[[�
0]][[�]], TPAL[[R

0]]�0 [[R]]�, S(R; �)� k � S(R0; �0), and

� it uses the initial environment and initial store de�ned in Figure 5.21: �I [ � and

�I [ �,

then e's translation evaluates in the PAL model:

�I [ �; �I [ �;R ` TPAL[[e]] PAL�! v; � [ �new ; g; s

such that

� it results in the translated value: TPAL[[v
0]]�0 [ �0new [[v]]� [ �new , and

� its costs are at most a constant factor more than those of the PAL' evaluation: W (g) �
k �W (g0), D(g) � k �D(g0), and s � k � s0, for some constant k.



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 75

Proof: We prove this by induction on the structure of the PAL' evaluation derivation. We

assume that the PAL' derivation holds and prove the PAL derivation and side conditions

hold, using a case analysis on the last rule used in the PAL' derivation. The de�nition of the

translation TPAL[[]] on environments and stores make most cases entirely straightforward.

The second condition on the PAL context holds inductively since, by de�nition, the do-

mains of the initial environment and store are distinct from any other variables or locations.

In most cases, the �rst conclusion holds by simple observation of the de�nition of the trans-

lation. The second conclusion holds by showing the translation introduces only a constant

factor larger computation graph and a constant factor of extra closures.

case CONST, e = c: If the constant is an integer or divi, then TPAL[[c]] = c, and the con-

clusion holds since the PAL' constant rule corresponds to the PAL constant rule.

Otherwise, TPAL[[c]] = lc, and the conclusion follows from the de�nition of the bindings

of the initial environment and store. It holds since the PAL' constant rule corresponds

to a PAL variable lookup, so g0 = g and s < k � s0 for some constant k determined by

the size of the closures in �I .

case LAM, e = �x:e0: The conclusion holds since the PAL' abstraction rule corresponds to

the PAL abstraction rule.

case VAR, e = x: This follows from the de�nition of the translation of an environment,

since by de�nition TPAL[[�
0(x)]]�0 [[�(x)]]� holds if TPAL[[�

0]]�0 [[�]]� holds. The conclusion

follows since the PAL' variable lookup corresponds exactly to a PAL variable lookup,

of a value that is at most a constant factor larger than the PAL' value.

case APP, e = e1 e2: By induction, the lemma holds for the two sub-derivations for e1 and

e2. By assumption, the function e1 evaluates to a closure, so there are three subcases,

depending on whether this closure is recursive or not and which translation we use for

a recursive closure.

If it is not recursive, we use the simplest closure translation, which does not introduce

a binding for the dummy variable . Recall that we omit bindings for this dummy

variable in the translation of the environment. So, we can use induction on the body

of the closure since the body of the PAL closure is the translation of the body of the

PAL' closure. Thus, the conclusion holds since the PAL' application corresponds to a

PAL application.

If it is recursive, in both cases we obtain a PAL closure that contains the translation

of the body of the PAL' closure. We need this closure in the context during the eval-

uation of the function body to use induction. With the simpler closure translation, we

immediately have such a closure, and the conclusion holds. With the complex closure

translation, there are �rst four VAR, two LAM, and three APP steps before we obtain

such a closure, as in Figure 5.24. But this still introduces only constant work, depth,

and space overhead.



76 CHAPTER 5. PROFILING SEMANTICS

case APPC, e = e1 e2: By assumption, the function e1 evaluates to a constant c. By in-

duction, the conclusion holds for both subexpressions, and in particular, we obtain the

corresponding graphs g1 and g2. The exact structure of the PAL evaluation depends

upon the constant c. Here we examine one of the simpler subcases, where c = fst. Thus,

by assumption, the argument evaluates to a pair. The PAL application of TPAL[[c]] in-

volves a constant amount of overhead|for fst, the overhead introduced by �ve VAR,

two LAM, and three APP rules (cf. the binding for lfst and the translation of pair

store-values)|resulting in the graph in Figure 5.24. Similar results hold for each of the

other constants. The exact structure of subgraph g3 depends on the constant, but it is

always of constant size.

case PAIR, e = (e1;e2): By induction, the conclusion holds for the sub-derivations for e1
and e2. In the PAL model, TPAL[[e]] evaluates to the translation of the pair hv1;v2i. This
evaluation takes one VAR, two LAM, and two APP steps (cf. the translation of pair

expressions and the binding for lP ) in addition to the computation for the translated

subexpressions, resulting in the graph in Figure 5.25. Thus it has only a constant factor

more nodes and levels than the corresponding PAL' graph created by PAIR.

case LETREC, e = letrec x y = e1 in e2: By induction, the conclusion holds for the sub-

derivation. In the PAL model, TPAL[[e]] evaluates to the translation of the appropriate

recursive closure. Use of the Y-combinator represented by xY encodes the recursion.

This evaluation takes two VAR, six LAM, and four APP steps (cf. the translation of

letrec as detailed in Figure 5.23) in addition to the computation for TPAL[[e2]], resulting

in the graph in Figure 5.25. Thus it introduces only a constant factor extra work, depth,

and space. Note that neither e1 nor its translation is evaluated until the function is

used.

cases IF-TRUE and IF-FALSE, e = if e1 then e2 else e3: We show only the IF-TRUE

case, as the IF-FALSE case is trivially di�erent. For this case, e1 evaluates to true.

By induction, the conclusion holds for both e1 and e2, and in particular, we obtain the

corresponding graphs g1 and g2. In the PAL model, TPAL[[e]] evaluates to the result of

TPAL[[e2]]. This evaluation takes one CONST, one VAR, three LAM, and three APP

steps (cf. the translations for if expressions and the binding for ltrue) in addition to

the computation for TPAL[[e1]] and TPAL[[e2]], resulting in the graph in Figure 5.25. Thus

it introduces only a constant factor more work, depth, and space.

2

Theorem 5.1 (Equivalence of PAL' and PAL) If e0 evaluates in the PAL' model:

�; �; fg ` e0 PAL
0

�! v0; �0; g0; s0;



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 77

g'1

g'3

g'2

APPg'

+

g1

APP

APP VAR

VAR VAR

APP

VAR LAM

LAM

g3

g2

APP

g

g'1

g'3

g'2

APPCg'

+

g1 g2

g3

APP

APP

VAR LAM

APP

APP VAR

VAR VAR

LAM

VAR

g

Figure 5.24: Left: The PAL computation graph g corresponding to that produced by the

PAL' APP rule, assumes the second translation of a recursive closure. Right: The PAL

computation graph g corresponding to that produced by the PAL' APPC rule. This example

assumes c = fst.



78 CHAPTER 5. PROFILING SEMANTICS

g'1 g'2

PAIRg'

+

g1

g2

APP

APP

VAR

LAM

LAM

g

g'2

g' LETREC

+

APP

APPLAM

VAR LAM

APP

LAM LAM

APP

VAR LAM

LAM

g2

g

g'1

g'2

g' IFTRUE

+

g1

APP

APP

APP

LAM

VAR

g2

CONST

LAM

LAM

g

Figure 5.25: Left: The PAL computation graph g corresponding to that produced by the

PAL' PAIR rule. Middle: The PAL computation graph g corresponding to that produced by

the PAL' LETREC rule (as detailed by Figures 5.23 and 5.22). Right: The PAL computation

graph g corresponding to that produced by the PAL' IF-TRUE rule.



5.5. EQUIVALENCE OF �-CALCULUS AND EXTENDED �-CALCULUS 79

and the corresponding PAL derivation uses the appropriately translated expression:

e = (�xadd:: : :�xY :TPAL[[e
0]]) (�x:eadd) : : :(�x:eY )

using the subexpressions de�ned in Figure 5.21, then the translation of e0 evaluates in the

PAL model:

�; �; fg ` e PAL�! v; �; g; s

such that

� it results in the translated value: TPAL[[v
0]]�0 [[v]]�, and

� its costs are at most a constant factor more than those of the PAL' model: W (g) �
k �W (g0), D(g) � k �D(g0), and s � k � s0, for some constant k.

Proof: This follows from Lemma 5.1. The initial applications in e set up the initial environ-

ment and store for that lemma. 2



80 CHAPTER 5. PROFILING SEMANTICS



Chapter 6

Intermediate model

The previous chapter shows how to de�ne a simple language cost model, the PAL model, by

de�ning its syntax and pro�ling semantics. Alone, however, a language model is limited in

usefulness because it de�nes an abstract notion of evaluation costs. What we need is a relation

between these abstract costs to the costs incurred in an implementation on a machine.

We now begin de�ning an implementation for the PAL model. As in a compiler, staging

the implementation via an intermediate language or model frequently simpli�es the prob-

lem. Here we stage the implementation using a parallel abstract machine model called the

P-CEKqPAL, loosely based on the serial CESK abstract machine [33].1 It is relatively abstract

since it uses many of the same semantic domains as the high-level language model, but it is

more machine-like since it is based on a state transition relation. It also shows, at an abstract

level, details such as how computation is scheduled onto processors.

The implementation e�ectively traverses the computation graph of the pro�ling semantics.

An obvious idea is to make a level-order traversal, so that each level of the graph is executed

in parallel on each step of the machine. However, this idea is not space-e�cient: the space

to store data corresponding to the graph nodes of a single wide level may dominate the

computation. Instead, the machine implements a parallel generalization of a depth-�rst

traversal, scheduling q nodes at a time, where we relate q to the number of processors p on

the machine.

Section 6.1 de�nes parallel traversals of graphs and reviews some previous results for them.

Section 6.2 de�nes and explains the P-CEKq
PAL machine. Section 6.3 shows the equivalence

of the PAL model and the P-CEKqPAL machine. Later, Chapter 7 relates the P-CEKq
PAL to

less abstract machine models to complete the implementation.

1The CESK is one of many variants of the original SECD machine for implementing the �-calculus [70].

The names of these machines are formed by the names of the meta-variables representing the elements of

each state: the CESK uses a control string, environment, store, and continuation; the SECD uses a stack,
environment, control string, and dump (a form of continuation).

81



82 CHAPTER 6. INTERMEDIATE MODEL

6.1 Parallel Graph Traversals

Since we represent the computation as a graph of computation units, a speci�c traversal

of the graph represents a scheduling of these computation units. The following de�nitions

and theorems about traversals are either standard graph terminology or are from Blumofe

and Leiserson [18] or Blelloch, Gibbons, and Matias [8]. Note that the de�nition of a graph

traversal is somewhat di�erent than is standard in that it requires all nodes to be visited.

Graph traversals and schedules

De�nition 6.1 (Serial graph traversal) A serial traversal of a graph is a total ordering

of the nodes such that, for each edge of the graph, the edge's source occurs earlier in the

ordering than the edge's target. I.e., the ordering respects the dependencies of the graph, such

that we can traverse a node only after all of its parents have been traversed.

De�nition 6.2 (Parallel graph traversal) A parallel traversal of a graph g is a sequence

of k � 1 steps, where each step i, for i = 0; : : : ; k � 1, de�nes a set of nodes, Vi (that are

visited, or scheduled, at this step), such that the following two properties hold:

1. Each node appears exactly once in the schedule: the sets V0; : : : ; Vk�1 partition the nodes

of g.

2. A node is scheduled only after all its ancestors have been: if n0 2 Vi and n is an ancestor

of n0, then n 2 Vk for some k < i.

De�nition 6.3 (q-traversal) A q-traversal of a graph g, for q � 1, is a parallel traversal

such that each step schedules at most q nodes.

Note that a serial traversal is simply a 1-traversal.

Consider a traversal T = V0; : : : ; Vk�1 of g. A node n of g is scheduled prior to a step i

in T if it appears in the traversal prior to step i, i.e., n 2 V0 [ � � � [ Vi�1. An unscheduled

node n is ready at step i in T if all its ancestors (equivalently, all its parents) are scheduled

prior to step i. The greedy q-traversal, Tq of a graph g, based on a 1-traversal of g, T1, is

the traversal that on each step i, schedules the q earliest nodes in T1 that are ready (or all

the ready nodes in T1 if there are fewer than q). In other words, for all ready nodes n and

n0, if n precedes n0 in T1, then either both are scheduled, neither are scheduled, or only n is

scheduled. Any sequence P = V0; : : : ; Vi, for i < k is a pre�x of T .

Let Tq be the greedy q-traversal based on a 1-traversal T1. For each pre�x, Pq, of Tq,

consider the longest pre�x, P1, of T1 that includes only nodes in Pq. We say a node is

premature with respect to Pq if it is in Pq but not in P1.

Computation graphs are dynamically unfolding in that

� initially, only the root node is revealed;



6.1. PARALLEL GRAPH TRAVERSALS 83

� when a node is scheduled, its outgoing edges are revealed; and

� when all of the incoming edges of a node are revealed, the node is revealed and available

for scheduling.

We consider only online scheduling algorithms for these graphs, i.e., each step's scheduling

decision is based on only the revealed graph nodes and edges. In other words, computation

is scheduled at run time, not compile time.

De�nition 6.4 (Level-order traversal) A level-order traversal of a graph g is an 1-DFT

based on a 1-DFT of the graph.

Costs of scheduling

Theorem 6.1 (Premature nodes of greedy traversal [8]) For any graph g and any 1-

traversal T of the graph, the maximum number of premature nodes in the greedy q-traversal

based on T is at most (D(g)� 1)(q � 1).

Theorem 6.2 (Steps of greedy traversal [18]) For any graph g, a greedy q-traversal of

g takes at most W (g)=q +D(g) steps.

Note that Brent's Theorem [20] is a special case of Theorem 6.2 for level-order traversals.

De�nition 6.5 (Depth-�rst traversal) A depth-�rst traversal (DFT or 1-DFT) is ob-

tained by maintaining a stack of ready nodes: the stack contains the root nodes in any order

initially, and at each step, the top node is popped from the stack and scheduled. Then any

newly ready nodes are pushed on the stack.

De�nition 6.6 (Depth-�rst q-traversal) A depth-�rst q-traversal (q-DFT) is a greedy

q-traversal based on a 1-DFT.

Theorem 6.3 (q-DFT [8]) For any series-parallel graph g, the following algorithm makes

the q-DFT of g:

Let StA be an array initially containing the root node of g. Repeat the following

two steps until all nodes in g have been scheduled:

1. Schedule the �rst min(q; jStAj) nodes from StA.

2. Replace each newly scheduled node by its ready children, in left-to-right order,

in place in the array StA.



84 CHAPTER 6. INTERMEDIATE MODEL

1

2 3

4

5 6 7

8

9

10

11

12 13

14

15

16

17 1

2

3

4

5

6

77

6644

32 2

1 1

Figure 6.1: Example q-DFT. Left: Graph with 1-DFT ordering. Right: Same graph with

3-DFT ordering.

Space costs

Assume that each node n of a graph g is associated with an integer Sn(n) representing

the net amount of space it allocates, or deallocates if the integer is negative. We assume

that the amount of memory to allocate for each node is independent of the traversal. This

includes memory for program variables and any temporary results of the computation. For

deallocation, this assumption is too restrictive in languages with

� dynamic scheduling, when the deallocation of thread control information depends on

which is the last to �nish; or

� garbage collection, when the deallocation of a value depends on which thread references

it last.

So we assume that the amount to deallocate is dependent on the traversal, e.g., the memory

for a value can be deallocated only after the last referencing thread �nishes. Thus, the last

node referencing the memory is credited for its deallocation.

De�nition 6.7 (Space of traversal pre�x [8]) For any pre�x P = V0; : : : ; Vi�1 of a q-

traversal, the space of the traversal, written SP (P ), is the size of the program input plus the

space allocated by the nodes in the traversal,
Pi�1
j=0

P
n2Vj Sn(n).

De�nition 6.8 (Space complexity of traversal [8]) For a q-traversal T = V0; : : : ; Vk�1,

the space complexity of the traversal, written ST (T ), is the maximum reachable space in use

after any step of the traversal, maxk�1j=0 SP (V0; : : : ; Vj).

Theorem 6.4 (Space of q-traversal [8]) If s is the space complexity of the 1-traversal

of graph g, then the space complexity of any q-DFT of the graph is bounded above by s +

O(D(g)q), including all bookkeeping space.



6.2. P-CEK
Q
PAL MACHINE 85

6.2 P-CEK
q
PAL machine

This section de�nes the intermediate abstract machine for implementing the PAL model. We

start with a general overview of the abstract machine, which is also applicable to variants to

be introduced for other language models. We then give a formal de�nition of this speci�c

abstract machine.

The machine performs a series of steps, each transforming a group of active states and a

store into a new group of active states and new store for the next step. Figure 6.2 illustrates

this process. Each of the currently active states represents a thread of computation which

can be performed in parallel. The machine starts with a single active state representing the

entire computation, and it ends when there is one active state left with the result value.

Each state is used for computation on only one step|that step creates new states to perform

any successive computation. I.e., we think of creating new states and discarding old states

rather than modifying states. Each step also uses a global store to not only keep track of the

program's store contents, but also to record partial results of the computation.

Since the intermediate model is machine-like, di�erent costs are of interest. Here we

track three costs: the total number of states processed Q, the number of parallel steps  ,

and the maximum reachable space s. We will relate these costs to the computation graphs

and maximum reachable space of the pro�ling semantics.

The currently active states represent those states whose computation can be performed

now, i.e., the ready nodes. But to maintain space-e�ciency, on each step we select and use

at most q active states. In e�ect, there may be \too much" parallelism in a program, and we

need to bound the number of active states, as the space to store them on a given step may

dominate the space requirements of the program. In particular, we select the most recently

created states so as to produce a q-DFT.2 Thus, the active states are kept in a multi-stack

(stack, for short), which allows pushes and pops of multiple states at once. Theorem 6.1 then

allows us to bound the number of active states relative to the number that would be used

on a serial implementation. We later relate q to the number of processors available on the

machine.

Each P-CEKqPAL step consists of one substep for computation and two substeps for com-

munication and synchronization, as illustrated in Figure 6.3. The computation substep con-

sists of a transition on each selected state, resulting in intermediate states, and the communi-

cation and synchronization substeps each consist of a transition on these intermediate states.

The transitions of the computation substep resemble the corresponding rules of the pro�ling

semantics. Each transition results in a bounded number (zero, one, or two) of new states

to be active on the next step, as well as any updates to the global store. For example, an

application state creates two states for evaluating the subexpressions. If a state's computa-

tion leads to no new states, that state's branch of the computation is �nishing and needs to

synchronize. Transitions on each of these states are independent and are to occur in parallel.

2An earlier presentation of this implementation was not concerned with space-e�ciency, and so selected all
active states on each step, producing a level-order traversal [9].



86 CHAPTER 6. INTERMEDIATE MODEL

StAi

StAi+1

StAi+2

...
...

StAψ

StA0

Figure 6.2: Illustration of P-CEKqPAL active states during an evaluation. It starts with one

active state representing the entire program and ends with one active state representing the

result value. The states are kept in a stack. At most q states are selected each step. Here,

q = 5, and these selected states are shaded. These can create zero or more new states (solid

arrows). Unselected states are still active in the next step (dashed arrows).



6.2. P-CEK
Q
PAL MACHINE 87

x

ρ[x→2]

e1 e2add

e1 e2

arg‹l5 κ1› κfun‹l2 κ2›

@ add 3

κ2 arg‹l9 κ›fun‹l9 κ›

ρ’

ρ’

x

ρ[x→2]

fun‹l6 κ3›

λy.e

.

arg‹l7 κ4›

ρ from StAi

from StAi+1ρ ρ

C

ρ

κ

C

ρ

κ

where �i(l2) = Val 3

l8; l9 62 �i
�i+1 = (�i [ [l8 7! cl(�;y;e)][l9 7! Noval])t [l5 7! Val 2][l6 7! Val 2][l7 7! Val l8]

Figure 6.3: Illustration of a P-CEK
q
PAL step. States with constants, variables, and abstrac-

tions �nish evaluation immediately, but may synchronize with another computation and

create a new state for the appropriate function body or constant function application. States

with applications create two new states. The step may create and update synchronization

locations.

The communication substeps synchronize the two parallel branches of an application when

they �nish. While such synchronization of states is clearly not independent, we parallelize

each of these substeps.

Later chapters also de�ne P-CEK variants for the implementation of the PSL and NESL

models. Each has this basic structure of a series of steps, each selecting at most q states to use

in substeps for computation and then communications and synchronization. But these have

signi�cantly di�erent substeps, especially for synchronization, and these di�erences a�ect

most other parts of the machine, including the de�nition of a state. The following formal

de�nition of the P-CEKqPAL is in a form that maximizes the similarity with these variants.

Formal de�nition

A state st of the machine consists of a control string C, environment �, and continuation

� (elsewhere, environments are sometimes denoted by E, and continuations by K, thus the



88 CHAPTER 6. INTERMEDIATE MODEL

e 2 Expressions ::= : : : j @ v1 v2 j application

done v �nal result

C 2 Controls ::= e

� 2 Environments = Variables
fin! Values

� 2 Continuations ::= � j program �nishing

funhl �i j function �nishing

arghl �i argument �nishing

st 2 States ::= (C; �; �)

St; StA 2 StateArrays ::= ~st

I 2 IntermediateObject ::= St j new states

Finhv �i �nishing state

ValueOpts ::= Noval j Val v
� 2 Stores = Locations

fin! (StoreValues+

ValueOpts)

Figure 6.4: P-CEKqPAL domains. The ellipses represent the expressions of Figure 4.1.

name \CEK"). The P-CEK
q
PAL does not include a store in the state, as does the CESK

machine, but instead shares a single store for all states. This allows tracking the overall max-

imum reachable space, including any sharing among the states. The control string represents

what is to be evaluated, the environment and store represent the context of the evaluation,

and the continuation represents what to do after evaluation. In the P-CEKqPAL, the control

string is simply an expression, and the continuation records with which computations this

one eventually synchronizes. Since the only synchronization is for pairs of states representing

the evaluation of application function and arguments, the continuation keeps track of which

application function or argument the state represents. Since applications may be nested,

the continuation is e�ectively a stack. So, a state and its components are de�ned in Fig-

ure 6.4 where the ellipses represent the same expressions as in the PAL pro�ling semantics

(cf. Figure 4.1).

We introduce two additional expressions beyond what is used in the pro�ling semantics.

The expression @ v1 v2 represents the synchronization point after the function and argument

evaluations and just before the function body evaluation. The expression done v represents

the result value of the computation.

As previously stated, each step of the machine starts with a group of active states and a

store and produces a new group of active states and new store. Furthermore, these states are

kept in a stack. De�nition 6.9 de�nes this step relation. (See Chapter 3 for notation used

with the stack of active states.)



6.2. P-CEK
Q
PAL MACHINE 89

De�nition 6.9 (P-CEK
q
PAL step) A step i of the P-CEKqPAL machine, written

StAi; �i
PAL;q
,! StAi+1; �i+1;Qi; si;

is de�ned in Figure 6.5. It starts with a stack of active states StAi and a store �i and produces

a new stack and store for the next step. This step processes Qi states and uses si maximum

reachable space.

De�nition 6.10 (P-CEK
q
PAL evaluation) In the P-CEKq

PAL machine, the evaluation of

expression e to value v starting in the environment � and store �0, ends with store � and

processes Q states in  parallel steps, using s maximum reachable space, or

�; �0 ` e
PAL;q
=) v; � ;Q; ; s:

For each of these i 2 f0; : : : ;  � 1g steps,

StAi; �i
PAL;q
,! StAi+1; �i+1;Qi; si;

such that

� the machine starts with one active state for the whole program: StA0 = [(e; �; �)],
�0 = �,

� the machine ends with one active state with the result value: StA = [(done v; �; �)],
and

� the total number of states processed and maximum reachable space are Q =
Pm�1
i=0 Qi

and s = maxm�1
i=0 si.

At the beginning of each step, the machine selects at most q active states to evaluate

on this step. Then the step uses three substeps in serial, one for computation using the
PAL
,! comp transition, and two for communication and synchronization, using the

PAL
,! syncf and

PAL
,! synca transitions. For each selected state, the �rst transition results in either an array

(of length at most two) of new states to be active on the next step, or it creates a special

intermediate states Finhv �i to indicate that a branch of an application has terminated with

value v and is ready for synchronization. The latter two substeps use the intermediate states

for synchronization while passing through any regular states.

As shorthand, we say that the machine processes a state if the state is selected on some

step of the machine. We assume that each state is unique, e.g., by assuming that each

expression has a unique label.

In the �rst substep, each of the selected states evaluates for one unit of computation:



90 CHAPTER 6. INTERMEDIATE MODEL

st I if/where

(c; �; �) �
PAL

,! comp throw(c;�) �

(x; �; �) �
PAL

,! comp throw(�(x); �) �

(�x:e; �; �) �
PAL

,! comp throw(l; �) [l 7! cl(�0;x;e)] �0 = restr(�; �x:e); l 62 �

(e1 e2; �; �) �
PAL

,! comp [(e1; �; funhl �i);

(e2; �; arghl �i)]

[l 7! Noval] l 62 �

(@ l v; �; �) �
PAL

,! comp [(e; �[x 7! v]; �)] � �(l) = cl(�;x;e)

(@ c v; �; �) �
PAL

,! comp throw(v0; �) �0 �(�; c; v) = v0; �0;�

where throw(v; �) = [(done v; �; �)]

throw(v; �) = Finhv �i

restr( �; e) = the environment � restricted to the free variables in e

I I 0 if/where

Finhv1 funhl �ii �
PAL

,! syncf [ ] [l 7! Val v1] �(l) = Noval

Finhv1 funhl �ii �
PAL

,! syncf [(@ v1 v2; �; �)] � �(l) = Val v2

I �
PAL

,! syncf I � I 6= Finh� funh� �ii

Finhv2 arghl �ii �
PAL

,! synca [ ] [l 7! Val v2] �(l) = Noval

Finhv2 arghl �ii �
PAL

,! synca [(@ v1 v2; �; �)] � �(l) = Val v1

I �
PAL

,! synca I � I 6= Finh� argh� �ii

StA; �
PAL;q

,! (++ ~St)++[stq0 ; : : : ; stk�1]; �
000; q0; Sr(StA; �)

if StA = [st0; : : : ; stk�1]

q0 = min(q; k) select at most q states per step

sti; �
PAL

,! comp Ii; �i for each i 2 f0; : : : ; q0 � 1g �0 = � [ (
S

~�i)

Ii; �0
PAL

,! syncf I 0i; �0i for each i 2 f0; : : : ; q0 � 1g �00 = �0 t (
S

~�0i)

I 0i; �00
PAL

,! synca Sti; �
00

i for each i 2 f0; : : : ; q0 � 1g �000 = �00 t (
S

~�00i )

Figure 6.5: De�nition of the P-CEKqPAL abstract machine step. Assume all new locations of

the computation step are chosen or renamed to be distinct.



6.2. P-CEK
Q
PAL MACHINE 91

� The cases for constants, variables, and abstractions correspond to those in the pro�ling

semantics. Evaluating an abstraction creates a closure with an environment restricted

to those variables free in the function body. This ensures that no extraneous data is

live, so that we can prove our space bounds.

� Evaluating an application e1 e2 creates two states, one to evaluate the function e1 and

one to evaluate argument e2, which later steps can evaluate in parallel. The continuation

of each new state indicates which branch it is: the function (funhl �i) or argument

(arghl �i).
The transition also creates this new location l placed in these continuations. The

location is used for synchronizing the two branches and to store the value of whichever

branch �nishes �rst. The location initially contains Noval to indicate that neither

branch has �nished.

� Evaluating an expression @ v1 v2 initiates evaluation of the function body or performs

a constant application, as appropriate.

There is no transition for the expression done v, since the abstract machine stops after a

state with that expression is created. This substep uses an auxiliary function throw (v; �) to

use the value v with continuation �|if the continuation is empty, the entire computation is

�nished, otherwise this state needs to synchronize.

The synchronization substeps coordinate the function and arguments branches of an eval-

uation. When the �rst branch �nishes, the machine updates the synchronization location to

contain the result value of that branch. When the second �nishes, the machine creates a state

to evaluate the function body. These substeps have transitions for each case of whether the

function or argument �nishes �rst or second. These transitions are grouped into two substeps,

rather than one, to handle the case where both branches �nish on the same step. To avoid

both determining that they are each the �rst to �nish, one branch, that of the function, has

priority and checks �rst. (Given an atomic test and set operation, we could combine these

substeps.) Since these substeps can update store location bindings, the stores are combined

with t. Note that only the synchronization location bindings are ever updated, and those at

most once (from Noval to Val �).
Note that we do not de�ne the abstract machine in the same style as the pro�ling se-

mantics. State transition functions, such as the P-CEK
q
PAL machine, are a small-step style

semantics and do not lend themselves to a concise big-step style semantics as do the language

models.

Costs of a step

As in the pro�ling semantics, the space cost is the maximum reachable space during the

entire computation. De�nition 6.11 de�nes the reachable space of each step, measuring all

the values reachable from some set of roots, as before. Section 6.3 relates these costs to those

of the pro�ling semantics.



92 CHAPTER 6. INTERMEDIATE MODEL

L(StA) =
[

(e;�;�)2StA

(L�(�)[ L�(�))

L�(�) = rng(�)

L�(�) = fg

Figure 6.6: De�nitions for the root values L(StA) of a step of the P-CEKq
PAL machine. This

is a set of values, where labels act as roots into the store.

To formally de�ne the reachable space during evaluation, we consider its two components:

the control space, for the control information such as the active states and their continuation

stacks, and the store space, for the elements in the store. We include the space for the

synchronization locations in the control space (e.g., L�(funhl �i) does not add l to the labels)
even though they are are kept in the store so that the locations in the pro�ling semantics

correspond exactly to those in the serial P-CEK1
PAL machine.

De�nition 6.11 (Reachable space of P-CEK
q
PAL step) The reachable space of a step i

of the P-CEKqPAL machine, written Sr(StAi; �i), is the sum of

� the active states space SA(StAi) for the active states, including their environments and

continuations: the sum of (1 + jdom(�)j+ j�j) for those states (e; �; �) in StAi, where

j�j is the length of the continuation stack �; and

� the store space S�(StAi; �i) for program variables and all temporary values: equals the

space in the store reachable from the active states used as roots, S(L(StAi); �i), where

S(�;�) and L(�) are de�ned in Figures 5.14 and 6.6, respectively.

Example 6.1 As an example of the execution of the P-CEKq
PAL, Figure 6.7 shows the active

states at the beginning of each step of evaluating the expression add (add 1 2) (add 3 4).

For lower values of q, the evaluation may take more steps, but it processes the same total

number of states. For comparison, Figure 6.8 shows the computation graph of the correspond-

ing pro�ling semantics evaluation, using the appropriate states' expressions as node labels.

Observe that each of these executions is a q-DFT of the graph, and thus for q � 4, it is also

a level-order traversal.



6.2. P-CEK
Q
PAL MACHINE 93

q � 4

Step i expressions in StAi q0

1 add (add 1 2) (add 3 4) 1

2 add (add 1 2), add 3 4 2

3 add, add 1 2, add 3, 4 4

4 add 1, 2, add, 3 4

5 add, 1, @ add 3 3

6 @ add 1, @ add3 4 2

7 @ add1 2 1

8 @ add 3 1

9 @ add3 7 1

done 10

States processed: 19

q = 2

Step i expressions in StAi q0

1 add (add 1 2) (add 3 4) 1

2 add (add 1 2), add 3 4 2

3 add, add 1 2, add 3, 4 2

4 add 1, 2, add 3, 4 2

5 add, 1, add 3, 4 2

6 @ add 1, add 3, 4 2

7 @ add1 2, add, 3, 4 2

8 @ add 3, 3, 4 2

9 @ add 3, 4 2

10 @ add3 4 1

11 @ add3 7 1

done 10

States processed: 19

Figure 6.7: P-CEKqPAL evaluations for Example 6.1. The underlined expressions correspond

to the selected states of each step.



94 CHAPTER 6. INTERMEDIATE MODEL

add (add 1 2) (add 3 4)

add (add 1 2) add 3 4

add add 1 2 add 3 4

add 3add 1 2

add 1 @ add 3

@ add 1 @ add3 4

@ add1 2

@ add 3

@ add3 7

Figure 6.8: PAL computation graph for Example 6.1.



6.2. P-CEK
Q
PAL MACHINE 95

Representation of environments

For any given program, the environments during its evaluation are of constant size (relative

to the program size), bounded by the number of variables in the program. As a result, we

treat the size of all environments as bounded by a constant. Since all values (constants and

locations) are of constant size, any reasonable representation has constant time access and

updates of environments.

In general, most environments are small, and treating them as of constant size is not

unreasonable. In particular, the abstract machine restricts environments to a set of relevant

free variables, and most functions use few variables.

In this implementation, any representation of environments must support the following

operations:

� access of a variable's binding,

� extension with a new binding, possibly with a new variable, and

� restriction to a set of variables.

We could avoid the restriction operation by using a standard functional language compilation

technique called closure conversion in the mapping to the intermediate model, but that would

complicate the equivalence of Section 6.3. When examining the constant factors, or when not

treating environments as having constant size, there is a e�ciency tradeo� between di�erent

implementations for the costs of these operations. Some implementations use an array to

make access constant time and restriction constant time per restricting variable, while making

extension linear time (although lambda-lifting and compiler analysis can reduce the number

of uses of extension). Alternatively, a list makes extension constant time extension, but access

and restriction linear time. Balanced trees o�er a middle ground.

Without the assumption that environments are of constant size, our time bounds need

to be generalized to account for the time for environment accesses and updates. E.g., repre-

senting environments as balanced binary trees, this adds a factor logarithmic in the number

of distinct variables in the program [9]. We can then assume that the variables are renamed

(e.g., via deBruijn indices) so as to minimize the number of variables. Moreover, translating

other language features into the basic �-calculus syntax adds at most a constant number of

variables (e.g., Figure 5.20).

Without the assumption, our space bounds do not hold, since a computation node that

updates an environment may allocate more than constant space. At worst, this multiplies the

space bounds by the number of program variables, but a tighter bound may be possible by

representing environments e�ciently. For example, assuming environments are implemented

as balanced binary trees that share bindings when possible, an update may allocate space log-

arithmic in the number of variables, duplicating some bindings so that the new environment

is balanced. Naturally, each occurrence of any duplicated binding is eventually unreachable.



96 CHAPTER 6. INTERMEDIATE MODEL

6.3 Equivalence of language and intermediate models

This section relates the P-CEKqPAL to the PAL pro�ling semantics. In addition to proving

its extensional correctness, we also prove bounds on the costs of the P-CEK
q
PAL model as a

function of those of the PAL model. In particular, we show the following:

Serial: The work, depth, and space required by the PAL model are within a constant factor

of the number of states processed, steps, and space, respectively, of the P-CEK1
PAL (the

machine that only selects one state per step).

Parallel: There is a one-to-one correspondence between states processed by the P-CEKqPAL
machine and nodes of the graph (i.e., work) returned by the pro�ling semantics. Fur-

thermore, we show that the P-CEKq
PAL machine executes a q-DFT of the graph. This

allows us to use previous results on graph scheduling to show that the P-CEKq
PAL ma-

chine never schedules too many states prematurely relative to the P-CEK1
PAL machine.

This, in turn, allows us to bound the extra reachable space required by the P-CEK
q
PAL

machine. It also allows us to bound the number of steps taken by the P-CEKqPAL as a

function of thePAL depth.

Serial equivalence

To understand the space that is required to implement the P-CEKqPAL machine we need to

consider on each step both the space for any store values reachable via some label in the

active states as well as space for the active states themselves. For each state we include the

following space: for the control C, constant space; for the environment �, space proportional

to the size of its domain; and for the stack of continuations �, space proportional to the

number of entries in the stack (here we are just accounting for space required by the active

states stack itself and not for any values that are in the store). To �nd the root labels into

the store we consider all labels accessible either though an environment or continuation of

any of the substates.

Theorem 6.5 (PAL serial evaluation) If e evaluates in the pro�ling semantics:

�; �; fg ` e PAL�! v; �; g; s;

then it evaluates to the same result in the serial abstract machine:

�; � ` e PAL;1
=) v; �0;Q; ; s0;

such that s0 � k � s, for some constant k.

Proof Outline: To prove this we �rst generalize the statement to that of Lemma 6.1. There we

consider the steps of P-CEK1
PAL required to evaluate an expression in some general context

and bound the reachable space during those steps by the space speci�ed by the pro�ling



6.3. EQUIVALENCE OF LANGUAGE AND INTERMEDIATE MODELS 97

semantics plus the control space at the beginning of the evaluation. The theorem then holds

by specializing the lemma to start with an empty environment, store, and roots, and one

active state. 2

Lemma 6.1 If e evaluates in the pro�ling semantics:

�; �; R ` e PAL�! v; �0; g; s;

and for any step i of the serial abstract machine P-CEK1
PAL,

� the machine starts with a state at the front of the active states stack that corresponds

to this evaluation: StAi = [(e; �; �)]++StA, for some stack StA and continuation �;

� the semantics and machine can access the same locations: L(StAi) = R [ �(FV (e));

and

� these locations have the same values: 8l2locs(L(StAi);�i)
�(l) = �i(l),

then

� on some future step m � i, the machine calls throw (v; �);

� the maximum reachable space is bounded by the space for the original active states, plus

a constant factor more than the space of the pro�ling semantics: maxmj=i Sr(StAj ; �j) �
SA(StAi) + k � s for some constant k.

Proof: We prove this by structural induction on the language evaluation derivation and

show a representative set of the cases. The remaining cases are similar.

case VAR, e = x: By the de�nition of the P-CEKqPAL machine, throw (v; �) is called on step

i, so m = i. And by VAR, s = S(R[ f�(x)g; �), so

maxmj=i Sr(StAj ; �j)

= SA(StAi) + S(L(StAi); �i) (De�nition 6.11)

= SA(StAi) + S(L(StAi); �) (3rd assumption)

= SA(StAi) + s (2nd assumption)

The other base cases, CONST and ABSTR, are similar.

case APP, e = e1 e2: Alternately inspecting the machine rules and using induction, we ob-

tain the following results about the executions of the subexpressions e1 and e2 and on

the appropriate function body e3. The steps of the P-CEK
1
PAL corresponding to these

three sub-evaluations are numbered i1 to m1, etc., where i1 = i+ 1, i2 = m1 + 1, and



98 CHAPTER 6. INTERMEDIATE MODEL

i3 = m2 + 2, and step m2 + 1 is the appropriate function call transition. The active

states at these important steps are

StAi = [(e1 e2; �; �)]++StA

StAi1 = [(e1; �; arghl �i)]++StA
StAi2 = [(e2; �; funhl �i)]++StA

StAm2+1 = [(@ l v2; �; �)]++StA
StAi3 = [(e3; �[x 7! v2]; �)]++StA

Furthermore, these three sub-evaluations result in the appropriate values:

� l is the value of e1, where �m1
(l) = cl(�0;x;e0) and �0 = restr(�; e0);

� v2 is the value of e2; and
� v is the result of the function body, and thus of the entire application.

We now look at the reachable space during the evaluation. First look at the steps not

in the inductive sub-evaluations, i.e., steps i1 and m2 + 1. Examining the de�nition of

the P-CEKqPAL machine and using De�nition 6.11, we have

Sr(StAi; �i) = Sr(StAi1 ; �i1)

Sr(StAm2+1; �m2+1) � Sr(StAi; �i):

So the reachable space in these steps is not greater than in the others.

Now we look at the reachable space in the inductive sub-evaluations. Using induction

we have

max
j2fij0 ;:::;mj0g;j

02f1;2;3g
Sr(StAj ; �j) � max

j02f1;2;3g
(SA(StAij0 ) + k � sj0):

So we relate the control space at the beginning of these sub-evaluations, i.e., SA(StAij),

j 2 f1; 2; 3g, to the control space of the starting step, SA(StAi). For the �rst two sub-
evaluations, j 2 f2; 3g, we see that

SA(StAi1) = SA(StAi2) = SA(StAi) + 1:

For the space during the evaluation of the function body, SA(StAi3), �rst observe that

j�0j + 2 � s1 by the de�nition of the store space since the closure with �0 must have

been the result of a sub-derivation of e1. Thus,

SA(StAi3) + k � s3 � SA(StAi) + k � s

and the conclusion holds.

The APPC case is similar, but somewhat simpler, since it does not involve induction

for the function body.

2



6.3. EQUIVALENCE OF LANGUAGE AND INTERMEDIATE MODELS 99

Parallel equivalence

Given the costs of serial execution in the abstract machine P-CEK1
PAL, we are now concerned

with the costs of parallel execution, for P-CEK
q
PAL with any q. Parallel execution can require

more space because it can create many more simultaneous parallel threads (i.e., the active

states stack can become much larger) and because it can have simultaneous access to many

more locations in the store. We place bounds on how much extra space is needed.

As mentioned, the idea behind the proof is to show that the P-CEKqPAL executes a q-

DFT traversal of the computation graph returned by the semantics, then use the previous

results on the number of nodes scheduled prematurely in a q-DFT [8] (cf. Section 6.1), and

�nally use these results to bound the space. By the machine traversing the graph we mean

that there is a one-to-one correspondence between nodes in the graph and sets of a single

step's computation, communication, and synchronization transitions for a given state. This

implies that each parallel step of the P-CEKqPAL selects q0 nodes of the graph, and the total

number of states processed is equal to the size of the graph (i.e., the work). The following

lemma and theorem show that the machine evaluation corresponds to the speci�cation of the

computation graph.

We also state that the pro�ling semantics and abstract machine compute the same value.

The proofs concentrate on intensional aspects|we could add details of the extensional equiv-

alence, as in the proof of serial equivalence.

Lemma 6.2 (P-CEK
q
PAL executes traversal) If e evaluates in the pro�ling semantics:

�; �; fg ` e PAL�! v; �; g; s;

then it evaluates to the same result in the abstract machine:

�; � ` e PAL;q
=) v; �0;Q; ; s0

such that the machine executes a q-traversal of the pro�ling semantics' graph g. I.e.,

� the selected states and visited nodes correspond at each step, and

� the active states and ready nodes correspond at each step.

Proof Outline: We prove this by induction on the steps of the machine. We could fully

formalize this as in Lemma 6.1.

For brevity, we refer to states being visited or ready, rather than corresponding to nodes

which are visited or ready, respectively. Clearly the initial state is ready, as it corresponds

to the source of g.

Inductively, we need to show that any states added to the active states stack are ready on

the next step|the non-selected states left in the stack remain ready. By a case analysis on

the expression of each of the selected states, we see that the computation substep generates

states corresponding to the graph.



100 CHAPTER 6. INTERMEDIATE MODEL

Constants, variables, and abstractions �nish immediately, thus this state corresponds to

the unit graph speci�ed for these expressions in the pro�ling semantics.

Applications generate two new states to start evaluating the subexpressions. These cor-

respond to the two parallel children of the application node and are ready on the next step.

Once both branches are scheduled and eventually �nish, inductively, the machine generates

a state for @ v1 v2 that is immediately ready, corresponding to the node before the function

body. When selected, the machine starts evaluating the function body, inductively (for a

user-de�ned function) or via � (for a constant function). Thus the evaluation corresponds to

the graph. 2

Corollary 6.1 If e evaluates in the pro�ling semantics:

�; �; fg ` e PAL�! v; �; g; s;

then it also evaluates in the abstract machine:

�; � ` e PAL;q
=) v; �0;Q; ; s0

such that the number of states processed by the machine is the pro�ling semantics' work:

Q = W (g).

Proof: This follows from the one-to-one correspondence of active states processed and nodes

in the graph. 2

Theorem 6.6 (P-CEK
q
PAL evaluates q-DFT) If e evaluates in the pro�ling semantics:

�; �; fg ` e PAL�! v; �; g; s;

then it also evaluates in the abstract machine:

�; � ` e PAL;q
=) v; �0;Q; ; s0

such that the machine executes a q-DFT of the pro�ling semantics' graph g.

Proof: This follows since the machine selects min(q; jStAj) nodes per step and since g is

series-parallel, together with Theorem 6.3 and Lemma 6.2. 2

Corollary 6.2 If e evaluates in the pro�ling semantics:

�; � ` e PAL�! v; �; g; s;

then it also evaluates in the abstract machine:

�; � ` e PAL;q
=) v; �0;Q; ; s0

such that the number of machine steps are bounded as a function of the pro�ling semantics'

work and depth:  � W (g)=q +D(g).

Proof: This follows by Theorem 6.2. 2



6.3. EQUIVALENCE OF LANGUAGE AND INTERMEDIATE MODELS 101

Equivalence of space

Since the P-CEKqPAL executes a traversal of the corresponding computation graph, we can

use the machine to de�ne the space costs of the graph nodes. Then using Theorem 6.4 we

can bound the number of premature nodes on any given step of the P-CEKq
PAL and bound

the memory used by these nodes, as Theorem 6.8 shows.

Theorem 6.7 Each step of a P-CEK
q
PAL execution allocates at most k space or deallocates

at most k space for each selected state, for some constant k.

Proof: In the �rst substep, the cases calling throw create either one new state or one

intermediate state (which is deallocated later in the same step and can be ignored). The

abstraction case may also create a new restricted environment, which we assume to be of

constant size, as discussed in Section 6.2. The other cases create at most two new states,

one new environment binding, and two new continuations. Note that the @ l v case need

not create an entirely new environment, as environments can be shared, as discussed in

Section 6.2. The substep may also allocate at most one new store binding.

For each selected state, the second and third substeps deallocate any intermediate state

created in the �rst substep. They may also allocate at most one new state or store binding.

Note that which states create new states in this substep depends on the traversal.

Each selected state may also be credited with the deallocation of memory if this is the last

state to reference it. This is a constant amount since each state refers to at most a constant

amount of space. Note that we allow the crediting of a deallocation of a location even if it is

still accessible, i.e., in an environment. 2

Since each step for a given selected state corresponds to a node (Lemma 6.2), each node

allocates between k and �k space. By Theorem 6.5, the pro�ling semantics space is within

a constant factor of the space complexity of the serial traversal. Thus as constant factors

can be ignored, the pro�ling semantics space can be used in the context of Theorem 6.4 to

provide a bound for the space of parallel execution.

Theorem 6.8 (PAL parallel space) If

� program e evaluates in the pro�ling semantics: �; �; fg ` e PAL�! v; �; g; s; and

� thus the program computes in the abstract machine: �; � ` e PAL;q
=) v; �0;Q; ; s0,

then the maximum reachable space in the abstract machine is bounded by the maximum reach-

able space of the pro�ling semantics plus a function of the parallelism: s0 � k(s+D(g)q).

Proof: Since the P-CEKq
PAL machine executes a q-DFT of g, then by Theorem 6.1, on any

step of the P-CEKqPAL there can be at most D(g)q nodes executed prematurely relative to

the P-CEK1
PAL. Since each state transition in step i of a P-CEKqPAL machine adds at most



102 CHAPTER 6. INTERMEDIATE MODEL

constant space to the next state of the machine, then the proof is easy. In particular since the

maximum reachable space taken by any step of the P-CEK1
PAL is k � s, and on any step of the

P-CEKqPAL machine there are at mostD(g)q state transitions that were executed prematurely

relative to some step of the P-CEK1
PAL machine, each of which allocated at most constant

space (Theorem 6.7), so the total space is k(s+D(g)q). 2



Chapter 7

Machine models

The previous chapter related the PAL pro�ling semantics to the P-CEKqPAL intermediate

model. Now we need to complete the implementation of the language model by implementing

the abstract machine on more standard machine models. Combining these two pieces results

in the full implementation of the language.

Section 7.1 outlines the targeted parallel machine models. Section 7.2 discusses the im-

plementation of the active state stack. These are then used in the overall implementation

of the P-CEKqPAL abstract machine in Section 7.3. Throughout, the chapter uses standard

sequence operations such as scans and reductions, which are summarized in Appendix A.

7.1 Machine models

Here we are most interested in implementing our parallel language models onto three speci�c

traditional parallel machine models: the butter
y, hypercube, and Parallel Random-Access

Machine (PRAM), as pictured in Figures 7.1, 7.2, and 7.3, respectively. Each consists of a

set of processors connected by a communication network. The butter
y and hypercube are

each based on speci�c network architectures used in practice, such that in each, any two

processors are within O(log p) distance of each other. The PRAM is based on the unre-

alistic network architecture assumption that all processors are within constant distance of

each other, i.e., that communication is within a constant factor as fast as computation. But

the PRAM is commonly used to describe algorithms so that computation issues are not ob-

scured by communication issues|a common problem in more realistic models. These simpler

PRAM algorithms can then be mapped to other models using standard implementation tech-

niques [101, 123, 72]. We discuss several variants of the PRAM: primarily the concurrent-

read concurrent-write (CRCW), but also the exclusive-read exclusive-write (EREW) and

concurrent-read exclusive-write (CREW), which di�er in what memory accesses are allowed,

as their names imply.

We assume that in each model allocating an arbitrary-sized chunk of memory or accessing

a memory location requires constant time. For the butter
y we assume that for p processors

103



104 CHAPTER 7. MACHINE MODELS

Figure 7.1: Illustration of butter
y network.

Figure 7.2: Illustration of hypercube network.

Shared Memory

Figure 7.3: Illustration of Parallel Random Access Machine (PRAM).



7.1. MACHINE MODELS 105

TS(p)

Machine Randomized? Time for scan

Butter
y Yes O(log p)

Hypercube Yes O(log p)

EREW PRAM Yes O((log p)3=2=
p
log log p)

CREW PRAM Yes O(log p log log p)

CRCW PRAM No O(log p= log log p)

Figure 7.4: Time bounds TS(p) for implementing scans and reductions on machines with p

processors.

we have p log2 p switches and p memory banks, and that memory references can be pipelined

through the switches. On such a machine, each of the p processors can access (read or write)

n elements in O(n + log p) time, with high probability [75, 101].1 The O(log p) time is due

to latency through the network. We also assume the butter
y network has simple integer

adders in the switches, such that scan and reduce operations can execute in O(log p) time. A

separate pre�x tree, such as on the Connection Machine 5, would also be adequate. For the

hypercube we assume a multiport hypercube in which messages can cross all wires on each

time step, and for which there are separate queues for each wire. This model is quite similar

to butter
y and has the same bounds for simulating shared memory. However, we do not

need to assume that the switches have integer adders. We assume that primitive function

calls can be implemented in the indicated amount of work (for the PAL, constant) on a single

processor.

Our simulation uses the scan and reduce operations (cf. Appendix A), and our cost

bounds are parameterized by their cost. We denote this time overhead TS(p), as shown in

Figure 7.4 [29, 100, 73, 41, 74]. Some of these bounds use randomized routing to avoid network

congestion [122], and thus those bounds hold with high probability (w.h.p., for short).

We show that each step of a P-CEKp log pPAL machine can be implemented in O(TS(p)) amor-

tized time. These bounds hold with high probability (w.h.p.) on the randomized machines.

The amortization comes from how we grow the active state stack. Since we have a bound on

the number of steps required by the machine, this allows us to bound the total running time

for these machines.

Note that in each model, TS(p) dominates the latency for communication. Because of

this, we do not have to separately parameterize our results by the latency.

1In this context, we mean that the time for network communication is within the speci�ed bound with
probability at least 1� 1

nk
for any constant k and n data to be transmitted across the network.



106 CHAPTER 7. MACHINE MODELS

7.2 Representation of the active states multi-stack

The multi-stack (stack, for short) of active states requires three operations:

� creating a new stack at the beginning of an evaluation,

� pushing states onto the stack in parallel, and

� popping states from the stack in parallel.

We do not have a bound on the maximum size of the stack, so its representation must be

able to grow.

We use an array-based representation of the stack for its constant-time lookup and update

per element. To grow the stack, we create a new larger array when necessary, and copy the

old elements into the new array. The key to e�ciency is to copy infrequently, so that copying

doesn't dominate the cost of using the stack. The standard technique for this is to double

the size of the array each time it grows. The copying is su�ciently infrequent that its cost

is amortized to constant time per step. Alternatively, for the PAL model, we can bound the

number of states pushed or popped each step in terms of the number of states q selected each

step.

A stack of active states StA is implemented by a single-threaded dynamically growing

array (SDGA). A SDGA of states is a pair (m; ~st) of its length m and an array of states ~St

such that

� the array is at least as large as the speci�ed length: m � j~stj; and

� the rear of the array stores the SDGA's contents, so that it can grow at the front: data

element i of StA is st
j~stj�m+i, for each i 2 f0; : : : ; m� 1g.

Each operation returns a new pair of the length and a new or modi�ed array.

To initially create a stack of one state, create the pair (m; ~st) where m = 1, j~stj � 1, and

the state is in the last element of the array. A larger initial array would delay the need for

creating a larger array as the stack grows. This clearly requires constant time and space.

We add elements to the stack at the end of each step. Each processor i 2 f0; : : : ; p� 1g
has states in an array Sti to push onto the stack. In the PAL model, jStij � 2, but in the

NESL model, the upper bound on the number of states is run-time dependent.

1. Compute (via an add-reduce operation) the number of states k being pushed: k =Pp�1
i=0 jStij.

This requires TS(p) time and O(p) temporary space for the reduce operation.

2. If the array is not large enough for these new states (k +m � j~stj), create an array
~st0 twice as big as the total number of states, i.e., of size 2(k + m). This is large

enough to hold all of the states and is also at least double the size of the original array.

Then copy the contents of ~st into ~st0 in parallel, such that each processor i copies



7.2. REPRESENTATION OF THE ACTIVE STATES MULTI-STACK 107

0 st m–

0 2k m+ 2 k m+( ) 1–

⇐
{

⇐
{m p⁄ m p⁄...copy

st′

st

st 1–

Figure 7.5: Step 2 of push operation on single-threaded dynamically growing array (SDGA).

a proportional share, e.g., states idm=pe; : : : ; (i + 1)dm=pe � 1, (stored in locations

j~stj �m+ idm=pe; : : : ; j~stj �m+ (i+ 1)dm=pe � 1) as shown in Figure 7.5. From now

on, ignore the old array and use the new array, i.e., let the name ~st now refer to the

array ~st0.

The time for copying each of the m elements is counted against the time for initially

writing the elements that will be written into the array until the next time it grows.

There are at leastm such elements, since the array doubles in size each time it grows. If

the array doesn't grow again, the cost of this copy operation is counted instead against

the initial writing of these elements. Thus, the time for copying data is at most twice

that of initially writing data. This requires O(k=p) amortized time and O(k) space.

3. Move the new states into the array ~st such that the load is evenly distributed among

the processors, as shown in Figure 7.6.

(a) Each processor computes the starting point in array St for its new states, and

stores this in ~i0. This can be accomplished by an add-scan, where each processor

i adds jStij and gets the o�set from the new top of the stack for its �rst state.

This requires O(TS(p)) time and O(p) temporary space for the scan operation and

its result.

(b) For each location in array ~st that receives a new state, i.e., location i 2 fj~stj�k�
m; : : :; j~stj �m � 1g, record the source of the state to be stored in the location.

For example, the source for one location may be the 0th element of St3. Thus

the sources are stored in an array ~i00 of processor numbers (here, 3) and an array



108 CHAPTER 7. MACHINE MODELS

st 1–

⇐
{

⇐
{k p⁄ k p⁄...copy

...

0 p 1–

0 Sti
i 0=

p 2–

∑...

0

0

k 1–

k 1–

0 0 p 1–... p 1– ......

0... 0... ...

St0 … Stp 1–, ,

i′′

i′′′ Stp 1– 1–St0 1–

i′

st

0 st m–st m– 1–st k– m–

Figure 7.6: Step 3 of push operation on single-threaded dynamically growing array (SDGA).

The cross-hatched section of ~st has its previous contents.



7.3. IMPLEMENTATION OF STEPS 109

~i000 of indices within the corresponding processor's states (here, 0). These can be

computed by a segmented distribute of ~i0 and a segmented index, respectively.

This requires O(k=p+ TS(p)) time and O(k) temporary space.

(c) Copy the states into array ~st. Each processor i copies a proportional share of the

array, e.g., states idk=pe; : : : ; (i+ 1)dk=pe � 1 (to be stored in locations j~stj � k �
m+ idk=pe; : : : ; j~stj � k�m+ (i+ 1)dk=pe� 1), using ~i00 and ~i000 to index into the

appropriate arrays Stj .

This requires constant time per element, or O(k=p) total time and no space.

So this step requires O(k=p+ TS(p)) time and O(k) temporary space.

Note that for the PAL model, the simpler alternative of each processor moving its array

Sti would evenly distribute the load since jStij is bounded by a constant. But Chapter 9
uses SDGAs for models where that bound doesn't hold.

So in total, this requires O(k=p + TS(p)) amortized time and O(k) space for the data, plus

O(p) temporary space. This temporary space can be reused in each step.

We remove elements from the stack when selecting (at most) q states for each step. To

pop k states, each processor indexes into the array and grabs the appropriate k=p states.

We use a scan operation to assign tasks to processors and ensure that they are assigned to

processors in order (i.e., lower numbered processors get lower numbered states). Finally, the

stack length is decremented by k. This requires O(1) time and O(k) space.

7.3 Implementation of steps

The stores of the abstract machine are all implemented with one global store that is mutated.

The small stores resulting from the substeps of the abstract machine represent updates per-

formed on the global store.

Theorem 7.1 (Cost of P-CEK
q
PAL step) Each step of the P-CEKq

PAL machine can be

processed on a p processor machine in O(q=p+ TS(p)) amortized time (w.h.p., where appro-

priate) and O(q) maximum reachable space on the butter
y, hypercube, and PRAM models.

Proof: Each processor is responsible for at most dq=pe of the current selected states, i.e.,

processor i is responsible for the states [idq0=pe; : : : ; (i+1)dq0=pe�1], where q0 = min(q; jStAj).
We assume each processor knows its own processor number, so it can calculate a pointer to

its section of the array.

The simulation of a step consists of the following phases, each of which we show can be

executed with the given bounds:

1. Select the q0 states for this step, popping them from the stack.

This requires O(q0=p) time and q0 temporary space to copy the states.



110 CHAPTER 7. MACHINE MODELS

2. Locally evaluate the states using the
PAL
,! c transition. This requires accessing shared

memory for reading but requires no communication among the states. Each transition

requires constant time, returns an intermediate state of constant size, and allocates a

constant amount of space. More precisely, the transition can be broken down so that all

of the allocation is performed at once by using a add-scan operation to both determine

how much space is needed and give each processor an index into a global array.

Each processor makes a total of O(q0=p) memory requests. The time for this on the

CREW and CRCW PRAM is therefore O(q0=p) (w.h.p., on the CREW). The time

on the butter
y and hypercube is O(q0=p+ log p) w.h.p. since the memory references

require a log2 p latency through the network. On any of these machines, this is bounded

by O(q0=p+TS(p)) time. Since at most two new states and one new location are created

per selected state, this requires O(q0) space: O(q0) control space and O(q0) temporary

space for the intermediate states.

3. Locally evaluate the
PAL
,! s1 and

PAL
,! s2 substeps, synchronizing all processors between the

two transitions. The \returned" stores are implemented as updates. Each processor can

perform an update independently since each location appears in at most one function

continuation and one argument continuation.

Again, each transition accesses constant memory and allocates constant space. In

fact, allocation can be eliminated by reusing the state that just ended this application's

function or argument branch. If we avoid allocation, this phase requires O(q0=p+TS(p))

time (w.h.p., where appropriate) and constant temporary space.

4. Push the states created during this step onto the active state stack. This requires

O(q0=p+ TS(p)) amortized time (w.h.p., where appropriate) and O(q0) control space.

Adding the bounds for the three phases, we get the stated bounds for each of the machines.

2

To account for memory latency in the butter
y and hypercube, and for the latency in the

scan operation for all three machines, we process p �TS(p) states on each step instead of just

p (i.e., we use a P-CEK
p�TS(p)
PAL machine).

Corollary 7.1 Each step of the P-CEK
p�TS(p)
PAL machine can be simulated within O(TS(p))

amortized time on the p processor butter
y, hypercube, and PRAM machine models (w.h.p.,

where appropriate).

Corollary 7.2 If e evaluates in the pro�ling semantics:

�; �; fg ` e PAL�! v; �; g; s;

then the abstract machine evaluation

�; � ` e PAL;p�TS(p)
=) v; �0;Q; ; s0



7.3. IMPLEMENTATION OF STEPS 111

can be simulated within O(W (g)=p+D(g)TS(p)) amortized time and O(s + p �D(g)TS(p))
maximum reachable space on the p processor butter
y, hypercube, and PRAM machine models

(w.h.p., where appropriate).

Proof: Theorem 6.6 relates the graph g to the P-CEKqPAL computation, where q = p �TS(p).
Theorem 6.2 bounds the number of steps of the graph traversal. There are O(w=q+d) steps,

and each step takes O(TS(p)) amortized time (w.h.p., where appropriate). Theorem 6.4

provides the space bound. 2

An improvement

These time results can be slightly improved on the CRCW PRAM. If we change the repre-

sentation of the active state stack to allow a constant factor of holes in the array, we can

replace the scan operations with linear approximate compaction: given an array of m cells,

m0 of which contain an object, place the m0 objects in distinct cells of an array of size k �m0

for some constant k > 1 [73]. Gil, Matias, and Vishkin [42] have shown that the linear ap-

proximate compaction problem can be solved on a p processor CRCW PRAM (arbitrary)

in O(m=p + log� p) expected time, using a randomized solution. Goldberg and Zwick [43]

have shown that the problem can be solved deterministically in O(m=p+ log log p) time.

Since each selected state leads to at most two new states, the idea is to �rst allocate two

new positions for each state, mark the states that will remain and then do an approximate

compaction. This means that each processor is responsible for at most k � q=p states. The

scan operations used for allocating space are also replaced by linear approximate compaction.

This breaks the lock-step simulation of the abstract machine. Each machine step selects

at most q elements of the array, but since the array has holes in it, this probably results in

less than q states (on average, q=k). Rather than requiring exactly D(g) steps, the simulation

takes at most k �D(g) steps.
Thus the time bounds for the overall simulation on the CRCW PRAM are O(w=p +

D(g) log� p) amortized w.h.p., if randomized, or O(w=p + D(g) log log p) amortized, if not.

The space bounds are unchanged, as a constant factor extra space is used throughout the

simulation.



112 CHAPTER 7. MACHINE MODELS



Part III

Other Models

113





Chapter 8

Speculative models

This chapter discusses a di�erent model of parallelism, the Parallel Speculative �-Calculus

(PSL) model. It shares the same extensional semantics as that of the PAL model, but paral-

lelizes computation di�erently. Like the PAL model, it evaluates the function and argument

of an application in parallel. But it relaxes the synchronization constraint prior to evaluating

the body, allowing more parallelism. If the function expression evaluates to a closure, evalua-

tion of the function body starts immediately even if the argument expression has not �nished

evaluating. If the argument's value is needed and not yet computed, the lookup blocks until

the value is computed.

For example, consider the evaluation of (�x:1) e. The function �nishes evaluating im-

mediately, so the application proceeds while e might be still evaluating. Thus the program

quickly returns the value 1, even though the argument e might still be evaluating. In the

PSL model, an expression might result in a value before the expression �nishes evaluating.

If the program evaluates without ever needing a subexpression's value, as is the case with

e in previous example, that subexpression is irrelevant [40, 48]. Here we describe two variants

of the model: full speculation, which evaluates all expressions, even if irrelevant, and partial

speculation, which can abort and discard irrelevant computations. The latter o�ers a wide

spectrum of implementations, depending on which computations it aborts and when.

Speculative evaluation is most closely related to the futures of Multilisp and its many

descendant languages [50, 51, 26, 31, 79, 69, 58, 125], the lenient evaluation of Id and pH [120,

87, 88], and parallel graph reduction, e.g., [55, 96, 61].

� In Multilisp, any expression can be designated as a future that spawns a thread which

may be executed in parallel. If its value is needed and not yet computed, the thread

requesting the future's value blocks until the value is available. A future can be explic-

itly touched to force its evaluation and its synchronization with the touching thread.

It can also be explicitly aborted|if its value is relevant, this leads to an error. Specu-

lative evaluation is equivalent to designating all expressions as futures and disallowing

touching. Full speculation also disallows aborting futures, whereas partial speculation

allows aborting them, but in a safe manner not in the programmer's control.

115



116 CHAPTER 8. SPECULATIVE MODELS

� Full speculation and leniency are essentially the same thing, although the term \le-

niency" originally implied a speci�c lack of evaluation ordering [120]. Id and pH evalu-

ate all subexpressions fully because they may contain side-e�ects, although a compiler

might optimize cases when this is not necessary.

� Graph reduction is one technique for implementing lazy (call-by-need) functional lan-

guages. But since lazy evaluation entails an inherent lack of parallelism [64, 121], par-

allel versions of these languages have incorporated partial speculation, compromising

on the laziness of the language.

The PSL model is \speculative" in two senses. First, it is speculatively parallel relative to

the PAL model, as it allows a function body and argument to be evaluated in parallel when

possible. This is consistent with Hudak and Anderson's call-by-speculation [53] terminology,

which they contrasted with call-by-value and call-by-need. Second, it is speculative relative

to a call-by-need evaluation, as it at least starts the evaluation of an argument even if it is

irrelevant.

This contrasts with some descriptions of speculativeness [90, 37, 83] that are speculative

relative to a call-by-value evaluation. By de�nition of those descriptions, the parallel exe-

cution of a program must be extensionally equivalent to the serial execution, even in the

presence of control escapes or side-e�ects. E.g., when evaluating let x = e1 in e2, if e1 has

an error or escapes, then any escapes or side-e�ects of e2's evaluation must be ignored. Thus,

e1 is considered mandatory, while e2 is speculative. Similarly, any side-e�ects in e1 must occur

before any con
icting side-e�ects in e2. Computation of e1 and e2 may still be parallelized

within these constraints. Our results are still applicable to this alternate view of speculation

by simply reversing which evaluations are considered mandatory or speculative.

The implementation of speculation is based on the idea of suspending threads. If one

thread �1 requests the value of another thread �2 before the value is available, the machine

suspends �1. When �2 �nishes with a result value, �1 reactivates and then accesses the value.

We implement suspension using a queue per thread of the threads suspended on it. I.e.,

the above �1 would be on �2's queue. Previous implementations, e.g., [90, 87, 88], serialized

the operations on these queues. Thus if other threads also suspend on �2 at the same step

of the machine that �1 does, it would take steps proportional to the number of these threads

to enqueue them. Similarly, it would take steps proportional to the number of all threads in

the queue to reactivate them when �2 �nishes. However, the implementation here parallelizes

these operations so that enqueuing and dequeuing multiple threads at once requires constant

steps.

Whereas the PAL implementation is based on the scan and reduce operations, the PSL

implementation uses a generalization, called fetch-and-add (cf. Appendix A). This operation

allows e�cient implementation of the queuing operations on multiple queues at once. Our

cost bounds are parameterized by the time cost of this operation, TF (p), as Figure 8.1 shows

for the same machine models as in Section 7.1. These bounds hold with high probability

(w.h.p., for short) [100, 73, 41, 74].



8.1. LANGUAGE AND PROFILING SEMANTICS 117

TF (p)

Machine Randomized? Time for fetch-and-add

Butter
y Yes O(log p)

Hypercube Yes O(log p)

EREW PRAM Yes O((log p)3=2=
p
log log p)

CREW PRAM Yes O(log p log log p)

CRCW PRAM Yes O(log p= log log p)

Figure 8.1: Time bounds TF (p) for implementing fetch-and-add on machines with p proces-

sors.

We show that each step of a P-CEK
p logp
PSLf machine can be implemented in O(TF (p))

amortized time, w.h.p. The amortization comes from how we grow the active state stack.

Since we have a bound on the number of steps required by the machine, this allows us to

bound the total running time for these machines.

Section 8.1 de�nes the PSL model, including its computation graphs and pro�ling se-

mantics. Section 8.3 de�nes a generalization of the dynamically growing array to implement

collections of threads. Sections 8.2 and 8.4 describe a fully speculative implementation and its

costs. And �nally Section 8.5 describes a partially speculative implementation and its costs.

Neither of these implementations make a DFT of the computation graph, so we present

no results on the space required by the implementations. However, it does make a greedy

traversal, which we use in showing time bounds.

8.1 Language and Pro�ling semantics

Again for the sake of simplicity, we use the basic �-calculus syntax of Chapter 4. We claim

without proof that the translation of Section 5.5.2 preserves the equivalent of Theorem 5.1

for this model as well. I.e., basing the PSL model on the extended �-calculus results in the

same asymptotic bounds. This holds for the work cost since it is equivalent to that of the

PAL model, as Theorem 10.9 shows. Like for the PAL, it holds for the depth cost since the

translation adds only a constant factor work overhead, and thus can only add a constant

factor depth overhead. However, note that the depth overhead might be di�erent than that

for the PAL model.

This equivalence means that standard translations preserves speculativeness. For exam-

ple, de�ning

TPSL[[let x = e1 in e2]] = (�x:e2) e1

results in the two subexpressions e1 and e2 being evaluated in parallel. Data structures such

as lists would be based on pairing|e.g., a cons-cell would be a triple (nested pair) of a tag



118 CHAPTER 8. SPECULATIVE MODELS

and the cell's contents. Using the encoding for pairs in Section 5.5.2 results in each pair being

built speculatively in parallel. Thus any data structure using pairs is also built speculatively.

Since we include no basic serialization construct in the core of PSL, providing a serializing

binding construct, for example, is more di�cult. But it can be encoded using a continuation

passing style (CPS) transformation (e.g., [99]):

TPSL[[slet x = e1 in e2]] = CPS [[e1]] (�x:e2):

Traditionally used for serial computation, CPS makes the standard serial path of evaluation

control explicit. The transformation to CPS introduces additional dependences, so that no

signi�cant computation can be performed in parallel under speculative evaluation. Alterna-

tively, we could simply add a special expression with a serial semantics.

Section 8.1.1 de�nes the computation graphs of the model. Then Section 8.1.2 de�nes its

pro�ling semantics. Section 8.1.3 discusses using implicit recursion (as in the basic �-calculus)

versus explicit recursion (as in the extended �-calculus) for the model.

8.1.1 Computation graphs

Relaxing the synchronization constraint during an application signi�cantly a�ects the forms of

computation graphs. To model that a computation may result in a value before its terminates,

we distinguish a graph's minimum sink, when it results in a value, and its maximum sink,

when it terminates (if it does). The depth of the minimum sink is denoted D(g) and that of

the maximum sink is D0(g). Clearly by de�nition, the maximum sink is at a depth at least

as great as that of the minimum sink, as the names imply. Since we now distinguish a source

and two sinks, we draw a graph as a triangle, as illustrated in Figure 8.2.

It can be intuitively helpful to distinguish two classes of edges. The edges for applications

are \control" edges, and the edges for variable lookups are \data" edges. These names are

meant only for intuition since each edge represents a control dependence and allows for the


ow of data. Each control edge corresponds exactly to an edge in the PAL computation

graph for an application.

The form of an application's graph di�ers from that of the PAL model in several ways.

There is still a single node to start the application, with edges to the subcomputations, but

there is no single node for synchronization. There is also still an edge from the function's

graph to that of the function body, but the existence of edges from the argument's graph

depends on whether its value is accessed. In an application, edges may connect the interior

nodes of the subgraphs, from either the function or argument subgraph to the function body

subgraph. What edges exist depend on the expressions:

� Edges from the argument value (i.e., the argument's minimum sink) connect to each

of its uses within the function body. Note that there may be multiple such edges, as

Figure 8.3 illustrates, although other �gures in the chapter show only one edge to avoid

clutter.



8.1. LANGUAGE AND PROFILING SEMANTICS 119

Expression e: c or �x:e x

Graph g:
e'

x
where e0 is the expression com-

puting the value of x

Expression e: e1 e2 e1 e2

Graph g:

e1
e2

@

e1 e2

e1
e2

@

e1 e2

where the last subgraph is that

for the body of the user-de�ned

function (closure) to which e1
evaluates

where the last subgraph is that

for the application of the con-

stant to which e1 evaluates

Figure 8.2: Illustration of computation graphs for the PSL model. The dashed lines represent

possible dependencies.



120 CHAPTER 8. SPECULATIVE MODELS

e1
e2

e3

@

e1 e2

Figure 8.3: PSL computation graphs may have multiple edges from nodes.

� If the argument's value is a closure (or with the extended �-calculus, also a data struc-

ture), it may communicate the name of another value being computed within the ar-

gument's subgraph. If that value is used in the function body, there is an edge from

within the argument subgraph to its use, somewhere below the node linked to the argu-

ment's value. For example, if the argument constructs what represents a list, its value

represents the �rst cons-cell. Edges would exist for each accessed element and cons-cell

of the list, as illustrated in Figure 8.4.

� Similarly, the edge from the function to the function body may also communicate

names of other values being computed within the function. These names are in the

environment of the closure to which the function evaluates.

� Unlike PAL computation graphs, those of the PSL model are not compositional in terms

of their subgraphs. This complicates the operators for de�ning graphs.

For an application expression, the node between the function and the function body is in-

cluded only for consistency with the PAL model. It represents the application of the function

value and a placeholder for its argument. It could be omitted with a resulting constant factor

di�erence in the work and depth.1

1This extra node was not included in the previous version of this work [47]. Thus, the costs of this
presentation are a constant factor greater than those of that earlier presentation.



8.1. LANGUAGE AND PROFILING SEMANTICS 121

1

2

3

nil

cons

cons

cons

...
...

...
...

...
...

...

Figure 8.4: Illustration of PSL computation graph where the function branch accesses a list's

elements in order and the argument branch creates the list. To access each element, the

function must �rst access the cons-cell containing the element. The graph is simpli�ed, with

some nodes consolidated, but still representing constant amounts of computation.



122 CHAPTER 8. SPECULATIVE MODELS

The asymmetric nature of these graphs leads to a useful notion of threads, which is

formally de�ned in the abstract machine. The thread evaluating an application expression

� spawns a new thread to evaluate the argument,

� evaluates the function, and

� evaluates the function body.

Recursively, the evaluation of both the function and function body generally use additional

threads. For example in Figure 8.5, evaluating (e1 e2) e3, the initial thread spawns a new

thread for e3, then evaluates the inner application, spawning a new thread for e2, and then

evaluates e1. The same thread then evaluates the function bodies e01 and e
0
12. Although not

shown, additional data edges may come into the graph for the inner application body e01 from

outside the graph for the application e1 e2. As in the following example, threads follow the

leftmost control edges until encountering a parent thread or the thread simply ends.

Example 8.1 Consider the evaluation of the following expression:

(�x:1) ((�y:e) 2):

The computation graph for this expression is given in Figure 8.6. The leftmost edges including

the root represent the main thread; the middle branch, another thread; and the right-most

node, another. The evaluation of e may use additional threads. No thread synchronizes with

the main thread, but the right-most thread might need to synchronize with the evaluation of

e.

One general pattern of graphs possible arises from a consumer-producer relationship. In

an application (�x:e3) e2, execution of the trivial function is immediately followed by that

of the function body e3. This occurs in parallel with the execution of the argument e2.

Examining the graph from Figure 8.2, we see that the argument can act as a producer of

some arbitrarily large data structure, and the body acts as a consumer of that data.

PSL computation graphs formalized

As Figure 8.2 shows, graphs are always built with edges leading from the minimum, not the

maximum, sink. Thus maximum sinks are not part of the formal de�nition of the computation

graphs, but are only a descriptive tool. For example, no computation can simply \stall",

delaying with no work, until all of a list is built, where the tail of the list is computed at the

maximum sink of a subgraph. Instead, the computation would need to perform work such as

counting down the list to delay until the list was built.

De�nition 8.1 A speculative (or PSL) computation graph is a triple (ns; nt; NE) of its

source, minimum sink, and a mapping representing adjacency lists as before.



8.1. LANGUAGE AND PROFILING SEMANTICS 123

e'12

e2

e'1

e1

e3

e1 e2

@

(e1 e2) e3

@

Figure 8.5: PSL computation graph of nested applications (e1 e2) e3, where e1 evaluates to

�x:e01, and e1 e2 evaluates to �y:e
0
12.



124 CHAPTER 8. SPECULATIVE MODELS

(λx.1) ((λy.e) 2)

λx.1

2λy.e

1

(λy.e) 2

e

@

@

Figure 8.6: PSL computation graph for Example 8.2.

Figure 8.7 shows the de�nition of the combining operators for these computation graphs.

Because of the cross links in the graph for an application, this de�nition is not compositional.

Similarly, the minimum and maximum depths (the depths of the corresponding sink nodes)

cannot be computed compositionally, although the work of a graph can be.

The major di�erences from the operators for PAL graphs are as follows:

� The operator 1 g creates a new singleton node and also creates an edge to this node

from the minimum sink of g. This represents the synchronization at a variable in a

function body. Alone, this does not form a valid graph, but must be used in conjunction

with the other operators. In particular, this is never the only edge to the node.

� A new parallel operator g1 ^ g2 is introduced to fork graphs. Note that we can de�ne

a fork-and-join parallel operator by g1 
 g2 = (g1 ^ g2)� (1 g2).

� Both the serial and parallel operators use ] to combine mappings representing sets of

adjacency lists. The domains of their adjacency lists may overlap if they each contain

an edge from the same node, which may occur if either graph joined by an operator

includes a data edge created by 1 g, for some g. Figure 8.8 illustrates one case where

this arises. Combining adjacency lists with potentially overlapping domains uses ].

8.1.2 Semantics

We now de�ne the PSL model using a pro�ling semantics. Since the language is the same

as before, its space under serial evaluation is the same, and we omit it from this pro�ling



8.1. LANGUAGE AND PROFILING SEMANTICS 125

Graph g: 1 1 g1 g1 � g2
(ns; nt; NE) (n; n; �) (n; n; [nt1 7! [n]]) (ns1; nt2

(NE1 ]NE2)[nt1 7! [ns2]])
unique n unique n

g ns

nt n

n

g1
nt1

nt2

g1
nt1

g2

ns1

ns2

W (g): 1 1 W (g1) +W (g2)

Graph g: g1 ^ g2
(ns; nt1; (NE1]NE2)[ns 7! [ns1; ns2]])

unique ns

g1
nt1

g2
ns1

ns2

ns

W (g): W (g1) + W (g2) + 1

Figure 8.7: The de�nition of combining operators for PSL computation graphs and work.



126 CHAPTER 8. SPECULATIVE MODELS

g1 g2

g3

g4

Figure 8.8: Illustration of a case where combined computation graphs share edges from the

same node. This shows the graph (g1 ^ g2)� 1� g3 � 1� g4, where each of g3 and g4 contains
a subgraph 1 g2.

semantics. However, we still explicitly manage the memory via stores, since we use a store

in the implementation as well.

A signi�cant di�erence from the PAL semantics is needed to describe synchronization.

In this model, environments maps each variable to both a value and the computation graph

describing the evaluation to that value, as in Figure 8.9. This is used to describe when that

value has been computed and can be looked up in the environment. The pro�ling semantics

is then given by De�nition 8.2.

De�nition 8.2 (PSL pro�ling semantics) In the PSL model, starting with the environ-

ment � and store �, the expression e evaluates to value v and the new store �0 with compu-

l 2 Locations

v 2 Values ::= c j l
sv 2 StoreValues ::= cl(�;x;e) closure

� 2 Environments = Variables
fin! Values �Graphs

� 2 Stores = Locations
fin! StoreValues

Figure 8.9: PSL run-time domains.



8.1. LANGUAGE AND PROFILING SEMANTICS 127

�; � ` c
PSL
�! c; �;1 (CONST)

�; � ` �x:e
PSL
�! l; �[l 7! cl(�;x;e)];1 where l 62 � (LAM)

�(x) = v; g

�; � ` v
PSL
�! v; �;1 g

(VAR)

�; � ` e1
PSL
�! l; �1; g1 �; �1 ` e2

PSL
�! v2; �2; g2

�2(l) = cl(�0;x;e3) �0[x 7! v2; g2]; �2 ` e3
PSL
�! v3; �3; g3

�; � ` e1 e2
PSL
�! v3; �3; (g1 ^ g2)� 1� g3

(APP)

�; � ` e1
PSL
�! c;�1; g1 �; �1 ` e2

PSL
�! v2; �2; g2 �(�2; c; v2) = v3; �3; g3

�;� ` e1 e2
PSL
�! v3; �2 [ �3; (g1 ^ g2)� (1 g2)� g3

(APPC)

Figure 8.10: The pro�ling semantics of the PSL model using the de�nition of � in Figure 5.13.

tation graph g, or

�; � ` e PSL�! v; �0; g;

if it is derivable from the rules of Figure 8.10. The � function for the application of constants

is given in Figure 5.13.

Aside from the inclusion of graphs in the environment, the PSL pro�ling semantics is much

like that of the PAL semantics. The constant, abstraction, and constant application rules are

the same. To see that for APPC, remember that g1 
 g2 = (g1 ^ g2)� (1 g2). The variable

rule is basically the same, except that the singleton node adds an edge from the minimum

sink of the graph computing the value. The application of a general function is similar, except

that its graph has no synchronization point, as that occurs in the variable rule. Note that its

cost (g1 ^ g2)� 1� g3 is equivalent to ((g1 � 1) ^ g2)� g3 and ((g1 � 1� g3) ^ g2).

Example 8.2 As a small example of a PSL pro�ling semantics derivation, observe the eval-

uation of (�x:x) (�y:1) 2 and compare to the PAL derivation and graph for the same expres-

sion, as given in Example 5.2. The derivation tree is the same as that for the PAL evaluation,

except for the costs. Figure 8.11 shows the overall computation graph. The left spine includ-

ing the root represents the main thread; the other two nodes are separate threads, only one of

which synchronizes.

Comparisons to similar semantics

By using computation graphs as our costs, we have been able to simplify the semantics as

compared to those by Roe [105, 106] and by the author and Blelloch [47]. Similar to here, they



128 CHAPTER 8. SPECULATIVE MODELS

(λx.x) (λy.1) 2

(λx.x) (λy.1) 2

λx.x λy.1

x

1

@

@

Figure 8.11: PSL computation graph for Example 8.2.



8.1. LANGUAGE AND PROFILING SEMANTICS 129

included depths in an environment to describe when values had been computed. But they

also required the context of a judgment to contain a depth at which the evaluation begins,

like threading clocks through the evaluation. Here we accomplish this result by building

computation graphs which contain the same information in the connections.

Roe's semantics su�ers from an additional complication resulting from his use of some se-

rial expressions. Each expression results in two depths2: when the value becomes \available"

(i.e., the minimum depth) and when the evaluation has �nished traversing the expression.

This latter is just the minimum depth in our model, but to explain the di�erence in his,

consider a pairing expression, (e1;e2). The most natural rule for the PSL would express that

the two subexpressions start evaluating at the same depth. But using its translation as in

Section 5.5, the second subexpression starts at a constant lower depth than the �rst. This

happens in Roe's model, despite there being a rule speci�cally for pairing expressions. De-

scribed operationally, �rst evaluation of the �rst component is started, then the second, then

the pair is created where the component values eventually reside.

Another di�erence from Roe's semantics is that he tags every value with the depth at

which it becomes available. This is a result of his inclusion of explicit data structures (cons-

cells). These tags are subsumed here by

� tagging values in environments with their computation graphs (recall that the encoding

of a data structure is a closure, which contains an environment), together with

� the evaluation judgment resulting in a value and its graph.

Flanagan and Felleisen [37] and Moreau [83, 84, 85] also provided semantics for speculative

languages that were augmented with costs. Both used small-step contextual-style operational

semantics and included continuations or escapes in the language. Moreau also included side-

e�ects. Each described two measures of the work cost of evaluation: the total and the

mandatory, i.e., non-speculative, work. Note that in an expression let x = e1 in e2, they

considered e2, not e1, to be speculative since e1 could abort, so that the result of e2 would

not be needed. Neither measured depth, or any related cost, even though both described

parallel computation.

8.1.3 Recursion

This section outlines some issues about recursion in the PSL model and suggest one possible

extension to incorporate explicit data recursion.

In the PAL model, it is unimportant for asymptotic bounds whether recursion was ex-

plicitly included or not. Here, that is not the case, but the problem is harder to describe.

If we consider only recursive functions, the translation of Section 5.5 again introduces only

constant work and depth overhead to each unrolling of a recursive function.

2Roe uses the word \time".



130 CHAPTER 8. SPECULATIVE MODELS

�0; � ` e1
PSL
�! v1; �1; g1

�0; �1[l 7! v0; g1] ` e2
PSL
�! v; �2; g2

�; � ` letrec x = cons e1 in e2
PSL
�! v; �2;1 � g2

where l 62 �, �0 = �[x 7! l; g1] (LETREC-pair)

Figure 8.12: Potential PSL rule for creating circular pairs. This assumes that the de�nition

of expressions is suitably extended.

However, in a speculative semantics it might also make sense to create a subclass of recur-

sive data structures|those that are circular. For example, consider the following recursive

de�nition in an extended speculative language:

letrec x = (e1;x) in e2:

The semantics rule of Figure 8.12 would result in a circular pair. In this example, the

de�nition returns a location for the pair value in constant work and depth and binds it to x

while the pair's components are still evaluating. The pair's second component returns having

the value of the pair itself, circularly.

This form of a letrec expression can also be encoded in the basic �-calculus, but its

evaluation results in an in�nitely long chain of pairs being created. Each pair in this chain

is created by a separate thread in �nite work and depth, but the overall computation never

stops creating new threads for the rest of the chain. In full speculation without explicit

recursion, the only way to terminate with circular data structures is to rewrite the program

to delay and force the structures' components. In partial speculation without explicit recur-

sion, any irrelevant threads should be eventually aborted, assuming the particular variant of

partial speculation allows thread aborting to catch up with thread spawning, as discussed in

Section 8.5.2.

8.2 Fully speculative intermediate model

This section de�nes the intermediate abstract machine for implementing the fully speculative

version of the PSL model, PSLf. The basic structure of the P-CEKqPSLf is similar to that of

the P-CEKqPAL. It consists of a series of steps, each

� selecting at most q active states from a stack, where we guarantee that these active

states correspond to ready nodes in a graph traversal (cf. Section 6.1);

� executing computation and communication substeps on these states; and

� pushing any newly active states back onto the active state stack.

But while the basic structure is the same, the less structured synchronization pattern of

speculation results in several di�erences.



8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 131

StAi

StAi+1

StAi+2

...
...

StAψ

StA0

Figure 8.13: Illustration of P-CEKqPSLf active states during an evaluation. It starts with one

active state representing the entire program and ends with no active states. The states are

kept in a stack. At most q states are selected each step. Here, q = 5 and these states are

shaded. These can create zero or more new states (solid arrows). Unselected states are still

active in the next step (dashed arrows).



132 CHAPTER 8. SPECULATIVE MODELS

Each step consists of one substep for computation and two substeps for communication

and synchronization, as illustrated in Figure 8.14. The computation substep is much like that

for the PAL model, except that instead of creating a new continuation for the argument of

an application, we create a new thread for it. Note that the variable lookups are guaranteed

not to block because active states correspond to ready nodes.3 The two communication

substeps manage sets of suspended states that have blocked. For each state that is �nishing

this step (Finhv � )i, the second substep reactivates the states that were blocked on the state.

Reactivated states correspond to ready nodes since the value that they need is now available.

Each of the states created by this step might block. These are suspended and placed in the

appropriate sets in the �nal substep. Synchronization is required between the communication

substeps to ensure that a thread's result value is found in the last substep if stored in the

second substep.

We formalize the intuitive notion of a thread as a central data structure of the imple-

mentation. A thread represents a series of states over time computing the same value, as

described previously. A thread � is a pair of locations that contain the information common

to these states:

� The �rst location contains either the resulting value of the thread or a marker Noval

indicating the value has not been computed yet. Since a thread provides a pointer to

its result value, environments now map variables to the threads evaluating them, rather

than to their values. Of course, a more realistic implementation would also cache the

value in the environment once computed, to avoid the extra indirection.

� The second location contains a set of states suspended on this thread, waiting for its

value. When this thread �nishes, these threads are reactivated so that they can continue

with the value.

A thread's two components are selected with �1 and �2.

Each state records of which thread it is part by including the thread in its control string.

This information is passed from state to state, for example, from application state to the

state representing the function branch, and eventually to the state representing the function

body. Only one state of a thread is accessible (i.e., active or suspended) in the machine

at any given time. Thus, while we describe the machine in terms of states for the sake of

consistency, we could describe it equivalently in terms of threads.

Synchronization in an application happens on demand by the function body. Since it is

out of the control of the argument, the argument can simply die when it is done, as long as

the machine saves its result. By this we mean that the argument does not result in some

intermediate state used for communication, as it does in the PAL model. Thus we do not

3In the previous presentation of this work [47], states blocked in the computation substep, rather than in a
\pre-fetching"-like suspension substep. Thus active states did not correspond to ready nodes, and each state

could be active on two steps|once when blocking and once when reactivated. As a result, the machine did

not make a traversal of the computation graph, and the equivalence of the abstract machine and the pro�ling
semantics was awkward.



8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 133

x, τ1

ρ[x→2]

e1 e2, τ5add, τ2

e1, τ5 e2, τ6

• κfun‹τ7 κ2›

@ add τ7, τ2

κ2 •fun‹τ6 κ›

ρ’

ρ’

x, τ3

ρ[x→2]

•

λy.e, τ4

. ρ from StAi

from StAi+1

@ l τ8, τ4

.

κ3

ρ ρ

fun‹τ8 κ3›

st

C

ρ

κ

C

ρ

κ

where �i(�2(�3)) = [st]

l 62 �i
�i+1(l) = cl(�;y;e)

Figure 8.14: Illustration of a P-CEKqPSLf step. States with constants and variables �nish

evaluation on this step and either reactivate any suspended threads or create a state for the

appropriate function body. States with abstractions create a state to evaluate their bodies.

Applications create two new states. New states may immediately block.



134 CHAPTER 8. SPECULATIVE MODELS

� 2 Threads ::= (l; l)

ValueOpts ::= Noval j Val v
e 2 Expressions ::= : : : j @ v � application

C 2 Controls ::= (e; �)

� 2 Environments = Variables
fin! Threads

� 2 Continuations ::= � j thread �nishing

funh� �i function �nishing

st 2 States ::= (C; �; �)

St 2 StateArrays ::= ~st

I 2 IntermediateStates ::= St j new/reactivated states

Finhv �i �nishing state

� 2 Stores = Locations
fin! (StoreValues+

ValueOpts+

ThreadSets)

Figure 8.15: P-CEKq
PSLf domains. The ellipsis represents the expressions of Figure 4.1.

need a continuation for arguments. The function continuation is used simply to record the

thread of its argument so that this information can be passed to the function body.

The initial state and thread of the computation uses a location lres for the thread's

eventual result. When the machine �nishes, the result value v is in that location; thus the

special state with done v is not needed. So this machine ends when there are no active states

left.

The above descriptions lead us to the de�nition of domains for the intermediate ma-

chine given in Figure 8.15, where the ellipsis represents the basic �-calculus expressions of

Figure 4.1.

De�nition 8.3 (P-CEK
q
PSLf step) A step i of the P-CEKq

PSLf machine, written

StAi; �i
PSLf;q
,! StAi+1; �i+1;Qi;

is de�ned in Figure 6.5. It starts with a stack of active states StAi and a store �i and produces

a new stack and store for the next step. This step processes Qi states.

De�nition 8.4 (P-CEK
q
PSLf evaluation) In the P-CEKqPSLf machine, the evaluation of

expression e to value v, starting in the environment � and store �0, ends with store � and

processes Q states, in  steps using s reachable space, or

�; �0 ` e
PSLf;q
=) v; � ;Q; ; s:



8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 135

For each of these i 2 f0; : : : ;  � 1g steps,

StAi; �i
PSLf;q
,! StAi+1; �i+1;Qi;

such that

� the machine starts with one active state and one thread for the whole program: StA0 =

[((e; �); �; �)], �0 = [lres 7! Noval][l0res 7! [ ]];

� the machine ends with zero active states and the result value: StA = [ ], � (lres) = v;

and

� the total number of states processed is Q =
P �1
i=0 Qi.

The computation substep's transition
PSL
,! comp corresponds to that of the P-CEKq

PAL in

that it performs a case analysis on the state's expression and generates up to two new states

or a special intermediate state for use in the following substeps. The main di�erences are as

follows:

� A variable lookup must get the value from the appropriate thread. A previous step's

use of the third substep guarantees this value is available when requested.

� All expressions are tagged with a thread identi�er. An application creates a new thread

for the argument.

The step uses this transition in parallel for each of the selected active states.

The communication substeps �nish and suspend states, respectively. For each interme-

diate state Finhv �i, the second substep uses the
PSL
,! react transition to reactivate the states

suspended on thread � and store its result value v. For each newly created state, the third

substep uses the
PSL
,! block transition to check whether it would block and if so, add it to the

set of suspended states owned by the thread on which it would block. The blocked thread

reactivates in a later instance of the second substep once the value is available. While Fig-

ure 8.16 describes the semantics sequentially for simplicity, the following section shows that

the instances of this transition can be parallelized so that all these states suspend at once.

The step ends by adding the new states that haven't blocked and the reactivated states

to the active states stack. In the P-CEKqPSLf , the active states do not need to be treated as

a stack|since states block and reactivate in arbitrary patterns, a stack does not obtain a

q-DFT ordering of the computation graph. Maintaining them in a stack is one way to ensure

determinacy. Obtaining the q-DFT ordering would require sorting the new and reactivated

states based on their 1-DFT ordering and merging them into the non-selected active states,

which cannot be done in the time bounds we show.

Since each transition represents constant work, the total work for the step is de�ned as

q0. The space cost is the reachable space at the beginning of the step, which is within a



136 CHAPTER 8. SPECULATIVE MODELS

st I if/where

((c; �); �; �) �
PSL

,! comp throw(c; � ; �) �

((x; �); �; �) �
PSL

,! comp throw(v; � ; �) � �(�1(�(x))) = Val v

((�x:e; �); �; �) �
PSL

,! comp throw(l; � ; �) [l 7! cl(�0;x;e)] �0 = restr(�; �x:e); l 62 �

((e1 e2; �); �; �) �
PSL

,! comp [((e1; �); �; funh�
0 �i);

((e2; �
0); �; �)]

[l 7! Noval;

l0 7! [ ]]

� 0 = (l; l0); l; l0 62 �

((@ l � 0; �); �; �) �
PSL

,! comp [((e; �); �[x 7! � 0]; �)] � �(l) = cl(�;x;e)

((@ c � 0; �); �; �) �
PSL

,! comp throw(v0; � ; �) �0 �(�1�
0) = Val v;

�(�; c; v) = v0; �0;�

where throw(v; �; �) = Finhv �i
throw(v; �; funh� 0 �i) = [((@ v � 0; �); �; �)]

restr( �; e) = the environment � restricted to the free variables in e

I St

Finhv �i �
PSL

,! react �(�2�) [�1� 7! Val v]

~st �
PSL

,! react [ ] �

st St if=where

((x; �);�;�) �
PSL

,! block [ ] �[�2(�(x)) 7! [st]++�(�2(�(x)))] �(�1(�(x))) = Noval

((@ c � 0;�);�; �) �
PSL

,! block [ ] �[�2�
0 7! [st]++�(�2�

0)] �(�1�
0) = Noval

st �
PSL

,! block [st] � otherwise

StA; �
PSLf;q
,! (++ ~St)++(++ ~St0)++[stq0 ; : : : ; stk�1]; �

000; q0; Sr(StA; �)

if StA = [st0; : : : ; stk�1]

q0 = min(q; k) select at most q states per step

sti; �
PSL

,! comp Ii; �i for each i 2 f0; : : : ; q0 � 1g �0 = � [ (
S

~�)

Ii; �0
PSL

,! react Sti; �
0

i for each i 2 f0; : : : ; q0 � 1g �000 = �0 [ (
S

~�0)
~st0 = [stjst 2 I0; : : : ; Iq0�1] collect newly created states

k = j ~st0j

st0j; �
00

j

PSL

,! block St0j; �
00

j+1 \sequentially" for each j 2 f0; : : : ; k � 1g �000 = �00k

Figure 8.16: De�nition of the P-CEKqPSLf abstract machine step. Assume all new locations

of the computation step are chosen or renamed to be distinct.



8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 137

constant of that reachable at the end of the step. This would be de�ned in a similar manner

to De�nition 6.11, but also account for threads. But we omit the corresponding de�nition

here, as we show no space bounds for the PSL implementations.

Example 8.3 As an example of execution in the P-CEKqPSLf, Figure 8.17 shows the active

states at the beginning of each step of evaluating the expression (�x:�y:x) ((�z:z) (add 1 2)).

For lower values of q, the evaluation might take more steps, but it processes the same total

number of states. The computation graph of the corresponding pro�ling semantics evaluation

is shows for comparison in Figure 8.18, using the appropriate states' expressions as node

labels. Observe that each of these executions is a greedy q-traversal of the graph. Also observe

that the program's maximum depth is greater than its minimum depth, i.e., its value (a

closure) is computed before the machine �nishes.

Example 8.4 If we apply the previous example program to another argument, the main

thread must then wait for the computation of the value 3, as Figure 8.19 shows. The minimum

and maximum sinks are then the same node.

In these examples, the machine's executions are also q-DFTs because, for each thread,

there as at most one thread that blocks on it. If more than one thread blocks on a given

thread, the traversal depends on which blocks �rst. This results in a q-DFT if the reactivated

threads are added to the active states in their 1-DFT order. Thus, the P-CEKqPSLf executes

a q-DFT if threads blocking on a given thread block in their 1-DFT order.

Comparisons to similar machines. Moreau [84, 85] uses two similar, but more abstract,

machines for speculative computation. The more detailed of the two is similar in form, as

it is also based on the CEKS serial machine and consists of a series of steps transforming a

collection of states and a store, such that each state contains a control string, environment,

and continuation. It has three primary di�erences from ours:

� it includes side-e�ects and continuations;

� it does not explain how to schedule threads; and

� it uses one giant set of suspended threads, rather than a queue per thread.

Pragmatics. One way to reduce communication is to cache in the environment the results

of fetching values from other threads. This is simple since the value of a thread never changes

once computed.

We could reduce overhead by a constant factor by mutating the state of each thread,

rather than creating a series of states over time. This would improve memory management

on a real machine.



138 CHAPTER 8. SPECULATIVE MODELS

q � 4

Step i expressions in StAi q0

0 (�x:�y:x) ((�z:z) (add 1 2)) 1

1 �x:�y:x, (�z:z) (add 1 2) 2

2 @ l0 �1, �z:z, add 1 2 3

3 �y:x, @ l1 �2, add 1, 2 4

4 add, 1 2

5 @ add �3 1

6 @ add1 �4 1

7 z 1

States processed: 15

q = 2

Step i expressions in StAi q0

0 (�x:�y:x) ((�z:z) (add 1 2)) 1

1 �x:�y:x, (�z:z) (add 1 2) 2

2 @ l0 �1, �z:z, add 1 2 2

3 �y:x, @ l1 �2, add 1 2 2

4 add 1 2 1

5 add 1, 2 2

6 add, 1 2

7 @ add �3 1

8 @ add1 �4 1

9 z 1

States processed: 15

where l0 contains cl(�;x;�y:x),
l1 contains cl(�;z;z), and
�1 and �2 are de�ned in Figure 8.18.

Figure 8.17: P-CEKqPSLf evaluations for Example 8.3. The underlined expressions correspond

to the selected states of each step.



8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 139

(λx.λy.x) ((λz.z) (add 1 2))

λx.λy.x (λz.z) (add 1 2)

λz.z add 1 2

λy.x add 1 2

add 1

@ add1

z

@

@

@ add

Figure 8.18: PSL computation graph for Example 8.3. The threads are numbered left-to-

right, i.e., the leftmost spine is �0, the next leftmost is �1, etc. Note that this is not the order

of creation of the threads in this example.



140 CHAPTER 8. SPECULATIVE MODELS

(λx.λy.x) ((λz.z) (add 1 2))

λx.λy.x (λz.z) (add 1 2)

λz.z add 1 2

λy.x

z

add 1 2

add 1

@ add1

(λx.λy.x) ((λz.z) (add 1 2)) 4

4

x

@

@

@

@ add

Figure 8.19: PSL computation graph for Example 8.4.



8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 141

Figure 8.20: PSL computation graph dominated by a chain of dependencies.

The machine can build chains of suspended threads. For example, evaluation of the

following expression:

(�x:(�y:(�z:z) y) x) e

can have z blocked waiting for the value of y, which is blocked on x, which is blocked on e.

When e �nishes, it takes three steps for x3 to get the value. The steps to follow this chain

may dominate the computation. Consider the computation graph that Figure 8.20 displays.

The �rst log2m levels spawn m = 3 threads which then form a chain of dependencies. The

next m� 1 levels are needed to follow the chain. The following expression:

let x = let y = let z = 1

in z
in let z = y

in z
in let y = let z = 1

in z
in let z = y

in z

creates a graph similar to this, except that it requires 3 log2m levels, m = 3, to build the

chain (assuming let expressions are translated as in Section 5.5.2.

Successively halving the length of such chains would reduce the height of the computation

graph to O(logm), but this probably cannot be implemented e�ciently. This could be

accomplished by having each thread �1 that was blocked on a thread �2 that was, in turn,

blocked on a thread �3 move itself from �2's suspended set onto �3's. We would also need



142 CHAPTER 8. SPECULATIVE MODELS

to check that each of these threads has an empty continuation, so that they do not need to

perform more computation when reactivated. But identifying such threads probably cannot

be done e�ciently, and the data structure used to implement suspended sets does not support

an e�cient delete operation.

Equivalence of the language and intermediate models

This section relates the PSL pro�ling semantics to the P-CEKq
PSLf abstract machine. We show

that the machine executes a greedy q-traversal of the computation graph. This provides a

bound on the total states processed and steps taken by the machine. This also shows that

the models compute the same result, although details of the extensional equivalence are

omitted|they could be shown as for the equivalence of the PAL models. Since the machine

does not execute a q-DFT, in general, we provide no bound on the total space. Thus we do

not need to separately prove serial equivalence to obtain the serial space bound.

Lemma 8.1 (P-CEK
q
PSLf executes traversal) If e evaluates in the pro�ling semantics:

�; � ` e PSL�! v; �; g;

then it evaluates in the abstract machine:

�; � ` e PSLf;q
=) v; �0;Q; 

such that the machine executes a traversal of g. I.e.,

� the selected states and visited nodes correspond at each step, and

� the active states and ready nodes correspond at each step.

Proof Outline: We prove this by induction on the steps of the machine. We could fully

formalize this as in Lemma 6.1.

For brevity, we refer to states being visited or ready, rather than corresponding to nodes

which are visited or ready, respectively. Clearly the initial state is ready, as it corresponds

to the source of g.

Inductively, we need to show that any states added to the active states stack are ready on

the next step|the non-selected states left in the stack remain ready. By a case analysis on

the expression of each of the selected states, we see that the computation substep generates

states corresponding to the graph.

Constants, variables, and abstractions �nish immediately, thus this state corresponds

to the unit graph speci�ed for these expressions in the pro�ling semantics. Furthermore,

a variable's lookup is the data dependency corresponding to the extra edge added by the

pro�ling semantics.

Applications generate two new states to start evaluating the subexpressions. These cor-

respond to the two parallel children of the application node. They are ready on the next step



8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 143

unless they are lookups of variables which do not have values yet, in which case it is sus-

pended until ready. Both the function and argument evaluate inductively. Once the function

�nishes, the machine generates a state for @ v � that is immediately ready, corresponding to

the node before the function body. When selected, the machine starts evaluating the function

body, inductively (for a user-de�ned function) or via � (for a constant function). Thus the

evaluation corresponds to the graph. 2

Corollary 8.1 If e evaluates in the pro�ling semantics:

�; � ` e PSL�! v; �; g;

then it also evaluates in the abstract machine:

�; � ` e PSLf;q
=) v; �0;Q; 

such that the number of states processed by the machine equals the work of the pro�ling

semantics: Q = W (g).

Proof: This follows from the one-to-one correspondence of active states processed and nodes

in the graph. 2

Theorem 8.1 (PSLf executes greedy q-traversal) If e evaluates in the pro�ling seman-

tics:

�; �; fg ` e PSLf�! v; �; g; s;

then it also evaluates in the abstract machine:

�; � ` e PSLf;q
=) v; �0;Q; ; s0

such that the machine executes a greedy q-traversal of g.

Proof: This follows since the machine selects min(q; jStAj) nodes per step together with

Lemma 8.1. 2

Corollary 8.2 If e evaluates in the pro�ling semantics:

�; � ` e PSL�! v; �; g;

then it also evaluates in the abstract machine:

�; � ` e PSLf;q
=) v; �0;Q; 

such that the number of steps in the machine is bounded by a function of the work and depth

of the pro�ling semantics:  � W (g)=q +D(g).

Proof: This follows by Theorem 6.2. 2



144 CHAPTER 8. SPECULATIVE MODELS

8.3 Representation of the sets of suspended states

The speculative implementation represents the active states the same as in the PAL im-

plementation, with a SDGA. However, the sets of suspended states require a generalization

of the single-threaded dynamically growing array (SDGA) used there. The SDGA opera-

tions assume that appending to multiple SDGAs does not need to be properly parallelized.

However, in the speculative implementation, the machine must parallelize the suspension

of threads onto multiple queues. To support that we introduce multi-threaded dynamically

growing arrays (MDGAs). Two changes are made from the implementation of SDGAs:

� Uses of add-scan are replaced with uses of fetch-and-add (cf. Appendix A).

� We add an additional operation that pushes items onto multiple arrays in parallel.

We show that each step of a P-CEK
p�TF (p)
PSLf machine can be implemented in O(TF (p))

amortized time, with high probability. Thus the cost bounds of the implementation are are

parameterized by the cost of fetch-and-add. The amortization comes from how we grow the

active state stack. Since we have a bound on the number of steps required by the machine,

this allows us to bound the total running time for these machines.

In the new push operation, m MDGAs of arbitrary size may need to grow at the same

time, and we must parallelize the allocation and copying of all of the relevant data in these

arrays. Each processor i 2 f0; : : : ; p� 1g has states in an array Sti to add to some MDGA

mi. Clearly there are at most p MDGAs relevant to any given instance of this operation, so

m � p. The state array of MDGA j is labeled St0j , for j 2 f0; : : : ; m� 1g. The operation is

implemented as follows:

1. Compute (via a fetch-and-add) the number of states being added to each MDGA j and

the total number of states: kj = sum of jStij such that mi = j, k =
Pp�1
i=0 jStij.

This requires O(TF (p)) time andO(p) temporary space for the fetch-and-add operation.

2. Increase the size of MDGA arrays, where necessary, as Figure 8.21 illustrates.

(a) Determine which MDGAs need larger arrays, and consider only these for the re-

mainder of this step,

This requires constant time to check the new length of each of the m � pMDGAs,

and O(m) temporary space to store these lengths.

(b) Create a single array St such that each MDGAwill use a sub-array of it. As before,

each MDGA allocates twice as much space as its new total number of states. The

length of St is then the sum of the total space needed for each of the MDGAs and

is computed with an add-reduce.

This requires O(TS(p)) time, at most O(k) control space, and O(m) temporary

space.



8.3. REPRESENTATION OF THE SETS OF SUSPENDED STATES 145

m 1–

⇐
{

⇐
{...copy

...

0

0 St'i
i 0=

p 2–

∑...
0

0

k 1–

k 1–

0 0 m 1–... m 1– ......

0... 0... ...

i′

St'0 … St'm 1–, ,

St

i′′

i′′′ St'm 1– 1–St'0 1–

...

0 k 1–

0 0... ......i′′′′ i′m 1– i′m 1–

Figure 8.21: Step 2 of push operation on multi-threaded dynamically growing array (MDGA).



146 CHAPTER 8. SPECULATIVE MODELS

(c) Each MDGA computes (via a add-scan) the starting point within St for its array,

and stores this in ~i0.

This requires O(TS(p)) time and O(m) temporary space.

(d) For each location in array St that receives an old state, record the source of its

states. For example, the source for one location might be the 0th element of St03.

Thus the sources are stored in an array ~i00 of MDGA numbers (here, 3) and an

array ~i000 of indices within the corresponding MDGA's states (here, 0). These is

computed by a segmented distribute of ~m and a segmented index, respectively.

This requires O(k=p+ TS(p)) time and O(k) temporary space.

(e) For each location in array St that receives an old state, record the destination of

its states. The destinations are stored in an array ~i0000 of o�sets into St marking

where the new MDGA arrays start and in array ~i000. The former is computed by

using ~i00 to index into ~i0.

This requires O(k=p) time and O(k) temporary space.

(f) Copy the current contents of these arrays into St. Each processor copies a pro-

portional share of the array, using ~i00 and ~i000 to index into the appropriate arrays

St0j .

For each MDGA j, the time for copying each of its jSt0jj elements is counted against
the time for initially writing the elements that will be written into the array until

the next time it grows. There are at least jSt0j j such elements, since the array

doubles in size each time it grows. If the array doesn't grow again, the cost of

this copy operation is counted instead against the initial writing of these elements.

Thus, the time for copying data is at most twice that of initially writing data.

This requires O(k=p) amortized time and O(k) space.

From now on, ignore the old arrays for these MDGAs and use the new ones.

Thus this step requires O(k=p+TS(p)) amortized time, O(k) space, and O(k) temporary

space.

3. Move the new states into the MDGA arrays such that the load is evenly distributed

among the processors, Figure 8.22 illustrates.

(a) For each location in the arrays St0j that receives a new state, record the source of

its state. The sources are stored in an array ~i0 of processor numbers and an array
~i00 of indices within the corresponding processor's states. These are computed by

a segmented distribute of the processor numbers and a segmented index of the

lengths of Sti, respectively.

This requires O(k=p+ TS(p)) time and O(k) temporary space.

(b) For each location in the arrays St0j that receives a new state, record this destina-

tion. The destinations are stored in an array ~i000 of MDGA numbers and an array



8.3. REPRESENTATION OF THE SETS OF SUSPENDED STATES 147

Stm0

⇐
copy

...

0

0

k 1–

k 1–

0 0 p 1–... p 1– ......

0 ... 0... ...

St0 … Stp 1–, ,

St

i′

i′′ Stp 1– 1–St0 1–

...

0 k 1–

m0 m0
... ......i′′′ mp 1– mp 1–

0 k 1–

... ...i′′′′
Stm0

St0 1–

+
Stmp 1–

Stmp 1–

Stp 1– 1–

+
...

... ...

Figure 8.22: Step 3 of push operation on multi-threaded dynamically growing array (MDGA).



148 CHAPTER 8. SPECULATIVE MODELS

~i0000 of indices within the corresponding MDGA's states. The former computed by

using ~i0 to index into ~m, and the latter by segment distributing the MDGA lengths

and adding them to ~i00.

This requires O(k=p+ TS(p)) time and O(k) temporary space.

(c) Copy the states into arrays St0j . Each processor copies a proportional share of

the data, using the sources and destinations just computed to control the indirect

reads and writes, respectively.

This requires constant time per element, or O(k=p) total time and no space.

Thus this step requires O(k=p+ TS(p)) time and O(k) temporary space.

So in total, this requires O(k=p+ TF (p)) amortized time and O(k) space for the data, plus

O(p) temporary space. This temporary space can be reused in each step.

8.4 Fully speculative machine models

Using the basic data structures just described, we now simulate the P-CEK
q
PSLf on our

machine models. First we examine the time required for each step of the P-CEKqPSLf , then

total this for all steps.

Theorem 8.2 (Cost of P-CEK
q
PSLf step) Each P-CEKq

PSLf step can be simulated within

O(q=p+TF (p)) amortized time on the p processor butter
y, hypercube, and PRAM machine

models, w.h.p.

Proof: Each processor is responsible for up to q=p elements, i.e., processor i is responsible for

the elements idq0=pe; : : : ; (i+ 1)dq0=pe � 1, for q0 = min(q; jStAj). We assume each processor

knows its own processor number, so it can calculate a pointer to its section of the array.

The simulation of a step consists of the following:

1. locally evaluating the states (
PSL
,! comp), and synchronize all processors;

2. saving the result value, reactivating the queued states of all �nishing states (
PSL
,! block),

and synchronizing all processors;

3. suspending all states requesting to do so (
PSL
,! react); and

4. create a new active state stack for the next step.

We now show each of these is executed in the given bounds.

Locally evaluating the states requires the time it takes to process k = dq0=pe states. The
implementation of

PSL
,! comp is straightforward and requires constant time for environment

access and other operations. Thus the total time for locally evaluating the states on the



8.5. PARTIALLY SPECULATIVE IMPLEMENTATIONS 149

machine models of interest is O(k + TF (p)), where TF (p) provides an upper bound on any

memory latency or space allocations.

In the second substep, each processor has up to k states to �nish. Each processor writes

its states' results, then returns pointers to their suspended sets. This requires O(k+ TF (p))

time, including memory latency.

In the third substep, each processor has up to 2k states that suspend. The states suspend

with a single push operation, requiring O(k + TF (p)) amortized time.

The new active state stack is the appending of the newly created and reactivated states

to the unselected original active states. There are at most 2q new states. On average, there

are at most 2q reactivated states, since each state is blocked and later reactivated at most

once. Thus we amortize over all steps, the number of states being added to the active states

stack. We can push these elements onto the stack in O(q=p+ TF (p)) amortized time. 2

To account for memory latency in the butter
y and hypercube, and for the latency in

the fetch-and-add operation for all three machines, we process p � TF (p) states on each step

instead of just p. I.e., we use a P-CEK
p�TF (p)
PAL machine.

Corollary 8.3 Each step of the P-CEK
p�TF (p)
PSLf machine can be simulated within O(TF (p))

amortized time on the p processor butter
y, hypercube, and PRAM machine models, w.h.p.

Corollary 8.4 If e evaluates in the pro�ling semantics:

�; � ` e PSL�! v; �; g;

then its evaluation in the abstract machine,

�; � ` e PSLf;p�TF (p)
=) v; �0;Q; ;

can be simulated within O(W (g)=p+D(g)TF (p)) amortized time on the p processor butter
y,

hypercube, and PRAM machine models, w.h.p.

8.5 Partially speculative implementations

A partially speculative implementation can abort and discard any irrelevant computation.

We consider two de�nitions of relevance, varying in what program's result is treated.

1. If the result of the computation is only the semantic value obtained, i.e., a constant or

location, the de�nition is as follows:

A node n of a computation is relevant if there is a path from n to the minimum sink

nt of the overall graph, i.e., the �nal value depends on n.



150 CHAPTER 8. SPECULATIVE MODELS

2. If the result of the computation is either a constant or the entire data structure refer-

enced from a location, the de�nition is as follows:

A node n of a computation is relevant if there is a path from n to the minimum sink

nt of the overall graph, i.e., the �nal value depends on n, or if n is reachable from the

value computed in nt, i.e., it is part of the �nal result data structure.

Note that both of these de�nitions are stronger than saying that an application's argument

is relevant if its value is used in its function body, since that function body (or that part of

it) might not be relevant.

The simplest appropriate modi�cation to the fully speculative implementation is to end

on the �rst iteration that the main thread is done, i.e., when lres has a value. But since

the fully speculative implementation does not maintain the states in any particular order, we

might be unlucky and schedule all irrelevant computation before the relevant computation.

Thus it might make sense to prioritize computations to minimize the amount of irrelevant

computation. This might also allow us to detect and discard irrelevant threads during eval-

uation.

Sections 8.5.1 and 8.5.2 discuss some strategies and implementations for prioritizing and

aborting threads. Then Section 8.5.3 discusses the bene�ts of partial speculation.

8.5.1 Prioritizing threads

On each step, we select the (up to) q active states with the highest priority. The goal of

prioritizing threads is to minimize the number of irrelevant states used during a computation,

so as to reduce the cost of the computation. Since we do not know whether a thread is relevant

or not until the computation is done, any priority scheme is either very restricted or based on

heuristics. Furthermore, more involved prioritization methods introduce more complicated

data structures to store the active states. The cost of prioritizing threads has the potential

for overwhelming the cost of evaluation.

The most basic priority scheme distinguishes necessary threads, those known to be rele-

vant, from speculative threads, those not yet known to be relevant or irrelevant. Necessary

threads are given higher priority than speculative threads. The initial thread is immediately

necessary, as is any thread spawned from a necessary thread by APPC, or any thread that a

necessary thread blocks on. To implement this scheme, we can use two active state stacks,

one for each priority, with only a constant factor of overhead (e.g., each newly created or

reactivated state checks to which of the two stacks it should be added). This priority scheme

was proposed by Baker and Hewitt [6].

More general priority schemes can be based on the distinguishing degrees of \speculative-

ness":

� Threads created by APPC have the same priority as the original parent thread, because

they are relevant (or irrelevant) if and only if the original thread is.



8.5. PARTIALLY SPECULATIVE IMPLEMENTATIONS 151

� Threads created by APP are more speculative than the original thread, because the

original parent thread must be used to communicate this one's name for it to be used.

The prioritization used by Partridge [94, 93] is an example of this. If we assume that each

speculative child has equal probability to be relevant, then the active states should be kept

as a tree, where each node represents active states of equal priority, and each edge represents

a speculative child relationship. Selecting the highest priority threads is removing them from

the top of the tree, which seems unlikely to be e�cient. But adding new threads can be easily

done by adding them in the appropriate places of the tree. Adding reactivated threads is also

easy if we remember where they would have been placed when they blocked. Blocking also

requires updating the priority of the thread blocked on to the higher of its current priority

and the blocking thread's priority, but comparing two priorities is also unlikely to be faster

than logarithmic in the depth of the priority tree.

Further generalizing the scheme to allow arbitrary probabilities of relevance would likely

be even more ine�cient. Maintaining the accurate thread ordering can dominate the cost

of computation since it can involve touching many additional threads per step. As a simple

example, consider storing the threads in order of relevance in an array. Inserting threads

involves a sorted merge operation, requiring work linear in the number of currently active

threads.

8.5.2 Aborting threads

To distinguish unnecessary threads, those known to be irrelevant, requires a form of garbage

collection on threads. For example, consider the evaluation of an application e1 e2 resulting

in a closure. Even if the function body does not use the argument e2, the closure can contain

a reference to the argument which is then used by the enclosing context. Only following all

the relevant pointers can tell us which threads are no longer accessible, and thus unnecessary.

Several methods of garbage collection of processes has been previously described. Baker

and Hewitt [6] and Hudak and Keller [54] used a mark-and-sweep approach, which is not

asymptotically e�cient since it traverses pointers too many times. Grit and Page [48] and

Partridge [94, 93] used a reference counting approach which can be e�cient if we don't spend

too much e�ort garbage collecting on each step. We discuss this option in more detail.

For each thread we maintain a count of the references to this thread from environments.

The count is one when the thread is created. Counts are incremented when environments

are extended, creating a new copy of the environment.4 And the appropriate counts are

decremented when environments are restricted or threads �nish.

When a state is selected at the beginning of a step, we check the count of its thread. If

its count is zero, we abort this thread, including decrementing all counts of threads reach-

able from its environment. But these environments contains values, which in turn contain

environments, etc., and we cannot e�ciently traverse the entire environment and decrement

4If environments are partially shared to minimize space as described in Section 6.2, the counts should
appropriately re
ect the sharing.



152 CHAPTER 8. SPECULATIVE MODELS

all these counts at once. So, we use a queue (implemented with a SDGA, but with queue

operations) of environment bindings, decrementing k � q reference counts each step, for some

constant k.

We can augment this scheme further by observing that all threads spawned by an ir-

relevant thread (i.e., its children) are themselves irrelevant. When a thread is aborted, we

also abort its children. To implement this, each thread also keeps a set of pointers to its

children. When aborting a thread, the machine sets the counts of its descendants to zero and

aborts them. While a given thread can have many more than q descendants, the machine

can amortize the cost of aborting them over all the steps, accounting this cost against the

cost of creating the threads. Alternatively, we can use a queue (implemented with a SDGA5)

of threads to abort, and abort k � q of these on each step, adding the children of any aborted

thread onto the queue.

Reference counting is asymptotically e�cient since we only need to change counts for

threads that the machine is touching anyway. Thus it involves only a constant factor overhead.

The standard problem with reference counting in garbage collection is accounting for

recursive data. Here it works with recursive functions because a recursive closure cl(�;x;y;e)

would not be represented recursively (cf. the PAL' model). The key to that representation

is explicitly naming the closure x and unrolling the recursion only when necessary. The

same technique could be applied to circular data structures. E.g., the semantics suggested

in Section 8.1.3 could be altered so that it created a named pair value, similar to the named

closure, that is unrolled when applied to the selectors fst or snd.6

8.5.3 Cost bene�ts of partial speculation

When a priority scheme schedules computation well, for some computations it can greatly

reduce the number of states processed or steps an evaluation. Clearly any partially specu-

lative implementation should quickly detect that the potentially large computation e in the

expression (�x:1) e can be aborted.

Consider the subgraph gr consisting of only the relevant nodes of a computation graph

g. Note that a serial call-by-need implementation executes a 1-DFT of gr and thus requires

W (gr) time to evaluate the computation. Unlike the PSLf, any partially speculative abstract

machine correctly prioritizing necessary computation processes at most q �W (gr) states and

W (gr) steps, since at least one relevant node is traversed on each step. This implies that it

terminates if the call-by-need implementation does. But we conjecture that it is possible to

construct, for any priority scheme, example computation graphs that the priority scheme does

not signi�cantly parallelize even if its relevant subgraph has signi�cant parallelism. I.e., no

5Grit and Page used a less e�cient binary tree data structure for this.
6There are two alternatives as to what the \name" would be in this pair value. If we use lazy pairing, so

that the pair component expressions are evaluated only as needed, the \names" are variables. Then the named

value pair also includes an environment to perform the unrolling e�ciently, i.e., without substitution. If we

retain eager pairing, the \names" need to be a new construct, and the named value pair includes a mapping
from these names to values for unrolling e�ciently.



8.5. PARTIALLY SPECULATIVE IMPLEMENTATIONS 153

priority scheme can correctly guess su�ciently often which speculative computation becomes

necessary.

Garbage collecting threads obviously bene�ts the space cost of evaluation. But it is

unclear whether it can improve the worst case asymptotic space bounds of an evaluation

strategy. Consider an irrelevant subcomputation that generates many threads before the

main thread of this subcomputation is known to be irrelevant. As the machine aborts these

threads, their descendants, since they are not yet known to be irrelevant, can generate new

irrelevant threads. The aborting of threads will eventually catch up with the spawning of

new irrelevant threads if the machine does both of the following:

� It aborts more threads per step than it creates, e.g., it aborts up to k � q threads per
step, for some constant k > 1.

� It aborts on at least two levels of the graph each step. E.g., its aborts some threads,

which adds those threads' children to the abort queue and then aborts some of these

children.

Without the latter condition, spawning could always be a level ahead of aborting, as in Grit

and Page's description.



154 CHAPTER 8. SPECULATIVE MODELS



Chapter 9

Basic data-parallel models

This chapter presents a model of nested data-parallelism. Here we add sequences and parallel

operations on sequences to the extended �-calculus.1 This models the core of the Nesl

language. As Figure 9.1 shows, the NESL model adds several constant functions on sequences

and a sequence-based expression to the extended �-calculus (Figure 4.3). These constants

are described in the glossary of Appendix A. The \for-each" expression fe0 : x in eg �rst
evaluates e, which should result in a sequence. Then for each binding of x to an element

of this sequence, it evaluates e0. Each of these evaluations in done in parallel, and all of

these synchronize before the rest of the computation continues. Only these new operations

parallelize|applications and pairs do not, unlike the previous models.

c 2 Constants ::= : : : j elt j # j sequence observers

index j dist j ++ j sequence constructors

pack j put sequence mutators

addscan jmaxscan j sequence scans
e 2 Expressions ::= : : : j fe0 : x in eg for-each

Figure 9.1: NESL expressions. The ellipses represent the constants and expressions of Fig-

ure 4.3.

For brevity, we do not include explicit constant sequences as expressions. E.g., the se-

quence [e0; : : : ; ek�1] can be encoded so its components evaluate in parallel:

fif eq (x;0) then e0 else : : : : x in index kg

or in serial:

++ (dist (e0;1);: : :)

1As in the PAL' model, translating pairs, conditionals, etc., to the basic �-calculus would introduce only
constant overhead in work, depth, and space, but here we include these language constructs for convenience.

155



156 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Sections 9.1 and 9.2 de�ne the computation graphs and pro�ling semantics, respectively,

for the NESL model. Then Section 9.3 translates NESL to the ArrL model to make allocation

more explicit, simplifying further implementation. Finally, Sections 9.4 and 9.5 implement

the machine in an abstract machine and then in machine models, respectively, proving the

time and space cost mappings of each stage of the implementation.

9.1 Computation graphs

Like the PAL model, the NESL model uses only series-parallel graphs, which allows us to use

the same techniques as before to prove both time and space bounds on our implementation.

But here, the unbounded parallelism of the for-each expression and other sequence constructs

results in graph nodes of unbounded fan-out and fan-in. There are two main di�erences from

those of the PAL model:

� Application and pairing are serialized, not parallelized.

� The for-each expression allows unbounded parallelism (as do some constant applica-

tions, to be shown). Its graph also contains m \extra" parallelized nodes, where m is

the number of parallel branches of the body to execute. This ensures that we perform

m work before we allocation m space for the result of the for-each.

Figures 9.2 and 9.3 illustrate these graphs.

As before, the computation graphs are formally de�ned in the pro�ling semantics. They

use essentially the same set of combining operators as for PAL computation graphs, except

that here we generalize the parallel operator, as Figure ?? shows.

9.2 Pro�ling semantics

The pro�ling semantics for this model is essentially an extension of that of the PAL model,

except that it serializes applications. A key extension is the addition of sequences as store

values. Since we allow nested data-parallelism, sequences can contain locations, e.g., to other

sequences.

De�nition 9.1 (NESL pro�ling semantics) In the NESL model, starting with the envi-

ronment �, store �, and roots R, the expression e evaluates to value v and new store �0 with

computation graph g and s reachable space, or

�; �; R ` e NESL�! v; �0; g; s;

if it is derivable from the rules of Figure 9.6. The � function for the application of constants

is given in Figure 9.7. Additional functions for de�ning the space of a computation are given

in Figure 9.8.



9.2. PROFILING SEMANTICS 157

Expression e: c, x, or �x:e (e1;e2) letrec x y = e1 in e2

Graph g:

e1

e2

(e1,e2)

e2

letrec x

Figure 9.2: Illustration of computation graphs for the NESL model, part 1.



158 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Expression e: e1 e2 if e1 then e2 else e3 fe0 : x in eg

Graph g:

e1

e2

e1 e2

e1

e'

if

e'0
e'm 1–

e

...

...m

where the last sub-
graph is that for ei-

ther the body of the
user-de�ned function
(closure) or the appli-
cation of the constant
to which e1 evaluates

where e0 is either e2
or e3 depending on

the value of e1

where there are m (the length
of the value of e) evaluations of

e0

Figure 9.3: Illustration of computation graphs for the NESL model, part 2. The \extra" m

parallel nodes in the graph for fe0 : x in eg account for allocation of the result.



9.2. PROFILING SEMANTICS 159

Graph g: 1 g1 � g2
Nm�1

i=0 gi
(ns; nt; NE) (n; n; �) (ns1; nt2;

(NE1 [NE2)

[nt1 7! [ns2]])

(ns; nt;

(
Sm�1
i=0 NEi[nti 7! [nt]])[ns 7! ~ns])

unique n unique ns and nt

g

ns

nt

n

g1

g2

ns1

ns2

nt1

nt2

g0

...

ns

nt

ns0

nt0

nsm 1–

ntm 1–

gm 1–

W (g): 1 W (g1) +W (g2) 2 +
Pm�1
i=0 W (gi)

D(g): 1 D(g1) +D(g2) + 1 2 + maxm�1
i=0 D(gi)

Figure 9.4: The de�nition of combining operators for NESL computation graphs, work, and

depth.

l 2 Locations

v 2 Values ::= c j l
sv 2 StoreValues ::= cl(�;x;y;e) j closure

hv1;v2i j pair

~v sequence

� 2 Environments = Variables
fin! Values

� 2 Stores = Locations
fin! StoreValues

R 2 Roots = ValueSets

Figure 9.5: NESL run-time domains.



160 CHAPTER 9. BASIC DATA-PARALLEL MODELS

�; �;R ` c
NESL
�! c;�;1; S(R; �) (CONST)

�; �;R ` x
NESL
�! �(x); �; 1; S(R [ f�(x)g; �) (VAR)

�; �;R ` �x:e
NESL
�! l; �0;1; S(R [ flg; �0) where �0 = �[l 7! cl(�; ;x;e)], l 62 dom(�) (ABSTR)

�; �;R [ �(FV (e2)) ` e1
NESL
�! l; �1; g1; s1 �; �1;R [ flg ` e2

NESL
�! v2; �2; g2; s2

�2(l) = cl(�0;x;y;e3) �0[x 7! l][y 7! v2]; �2;R ` e3
NESL
�! v; �3; g; s

�; �;R ` e1 e2
NESL
�! v; �3;1� g1 � g2 � 1� g;max(s1 + 1; s2 + 1; s)

(APP)

�;�; R [ �(FV (e2)) ` e1
NESL
�! c; �1; g1; s1 �; �1;R ` e2

NESL
�! v2; �2; g2; s2

�(c; v2; �2) = v3; �3; g3

�; �;R ` e1 e2
NESL
�! v3; �2 [ �3;1� g1 � g2 � g3;max(s1 + 1; s2 + 1; S(R [ fvg; �3))

(APPC)

�; �;R [ �(FV (e2)) ` e1
NESL
�! v1; �1; g1; s1

�; �1; R [ fv1g ` e2
NESL
�! v2; �2; g2; s2

�; �;R ` (e1;e2)
NESL
�! l; �2[l 7! hv1;v2i];1� g1 � g2 � 1;max(s1 + 1; s2)

where l 62 � (PAIR)

�[x 7! l]; �[l 7! cl(�;x;y;e1)];R ` e2
NESL
�! v; �0; g2; s

�; �;R ` letrec x y = e1 in e2
NESL
�! v; �0;1� g2; s+ 1

where l 62 � (LETREC)

�; �;R [ �(FV (e2)) [ �(FV (e3)) ` e1
NESL
�! true; �1; g1; s1

�;�1;R ` e2
NESL
�! v2; �2; g2; s2

�; �;R ` if e1 then e2 else e3
NESL
�! v2; �2;1� g1 � g2;max(s1 + 1; s2)

(IF-TRUE)

�; �;R [ �(FV (e2)) [ �(FV (e3)) ` e1
NESL
�! false; �1; g1; s1

�;�1;R ` e3
NESL
�! v3; �3; g3; s3

�; �;R ` if e1 then e2 else e3
NESL
�! v3; �3;1� g1 � g3;max(s1 + 1; s3)

(IF-FALSE)

�; �;R [ �(FV (e0)) ` e
NESL
�! l; �0; g; s �0(l) = ~v m = j~vj

�[x 7! vj]; �j ; R [ �(FV (e0)� fxg) ` e0
NESL
�! v0j; �j+1; gj; s

0

j 8j 2 f0; : : : ; m� 1g

�; �;R ` fe0 : x in eg
NESL
�! l0; �m[l

0 7! ~v0]; g � (
Nm�1

j=0
1)� (

N
~g);max(s;m+max(~s0))

(EACH)

where l0 62 dom(�)

Figure 9.6: The pro�ling semantics of the NESL model using the de�nitions of � and S(�;R)

in Figures 9.7 and 9.8, respectively.



9.2. PROFILING SEMANTICS 161

�(c; v; �)

c v v0 �0 g0 if/where

Include the de�nitions of Figure 5.18.
: : :

elt l vj � 1 �(l) = hl0;ji; �(l0) = ~v

# l j~vj � 1 �(l) = ~v

index i l0 [l0 7! [0; : : : ; i� 1]]
Ni�1

j=0
1 l0 62 dom(�)

dist l l0 [l0 7!

iz }| {
[v; : : : ; v]]

Ni

i=0
1 �(l) = hv;ii; l0 62 dom(�)

++ l l0 [l0 7! �(l1)++�(l2)]
Nm�1

j=0
1 �(l) = hl1;l2i; l0 62 dom(�);

m = j�(l1)j+ j�(l2)j

pack l l0 [l0 7! [vi0 ; : : : ;

vim�1
]]

Nm�1

j=0
1 �(l) = ~l; m = j~lj; �(lj) = hvj;cji;

fi0; : : : ; im0
�1g = fijci = trueg;

i0 < � � � < im0
�1; l0 62 dom(�)

put l l0 [l0 7! ~v[v00=i0; : : : ;

v0m0
�1=im0

�1]]

(
Nm�1

j=0
1)�

(
Nm0

�1

j=0
1)

�(l) = hl1;l2i; �(l1) = ~v; m = j~vj;

�(l2) = ~l0; m0 = j~l0j; �(l0j) = hij;v
0

ji;

0 � ij < m; l0 62 dom(�)

addscan l l0 [l0 7! [
P0

j=0
ij; : : : ;Pm�1

j=0
ij]]

Nm�1

j=0
1 �(l) =~i; m = j~ij; l0 62 dom(�)

maxscan l l0 [l0 7! [max0j=0 ij; : : : ;

maxm�1

j=0 ij ]]

Nm�1

j=0
1 �(l) =~i; m = j~ij; l0 62 dom(�)

Figure 9.7: The � function de�ning constant application for the NESL model. The substitu-

tion in the de�nition of put gives priority to the last occurrence of any duplicate indices.

S(R; �) =
P
l2L

8><
>:
jFV (e)j+ 2 if �(l) = cl(�;x;y;e)

2 if �(l) = hv1;v2i
j~vj if �(l) = ~v

where L =
S
l2R locs(l; �)

locs(c; �) = fg
locs(l; �) = flg [ locs(�(l); �)

locs(cl(�;x;y;e); �) =
S
l2L locs(l; �) where L = �(FV (e)� fx; yg)

locs(hv1;v2i; �) = locs(v1; �)[ locs(v2; �)
locs(~v; �) =

Sm�1
i=0 locs(vi; �) where m = j~vj

Figure 9.8: Semantics functions used in the NESL pro�ling semantics for de�ning reachable

space.



162 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Most of these rules are similar to those of the PAL' model, di�ering only in the serialization

of application and pairing. The only totally new semantic rule is the EACH rule. For the

expression fe0 : x in eg we �rst evaluate the binding expression e, which should result in a

sequence ~v. We then evaluate the body e0 in parallel for each element of the sequence, with

each parallel branch binding x to the corresponding element of the sequence.

9.3 Array language

To present a relatively straightforward abstract machine (Section 9.4) we �rst introduce the

array language, ArrL. The sequence instructions of NESL translate to a similar set which

allocates memory more explicitly and uses constant functions which are more primitive. ArrL

includes explicit side-e�ects to atomically update array elements. Note that we say that

NESL sequences are represented as ArrL arrays. These two data structures are semantically

equivalent, but this corresponds to a common terminology distinction between data structures

without and with side-e�ects, respectively.

The syntax of ArrL is the same as that of NESL, except that we replace the for-each

expression and the constants index, ++, pack, put, addscan, and maxscanwith the con-

stants store, new, fork, addS, and maxS, as in Figure 9.9:

� Applying store to an array, an index, and a value writes the value into the indexed

location of the array.

� Applying new to an integer creates and returns a new array of that length.

� Applying fork to an integer i and a function applies the function in parallel to each of

0; : : : ; i � 1 and returns a dummy value 0. Since the fork function returns a dummy

value, it is useful only for any side-e�ects of the applications.

� The new scan operations addS and maxS compute the same as their counterparts,

but they perform no allocation and thus require an additional array argument in which

to store their results.

De�nition 9.2 de�nes the pro�ling semantics of ArrL, which is like that of NESL, except

that it adds de�nitions for these constants.

De�nition 9.2 (ArrL pro�ling semantics) In the ArrL model, starting with the environ-

ment �, store �, and roots R, the expression e evaluates to value v and new store �0 with

computation graph g and s reachable space, or

�; �; R ` e ArrL�! v; �0; g; s;

if it is derivable from the rules of Figure 9.10. The � function for the application of constants

is given in Figure 9.7. Additional functions for the space of a computation are given in

Figure 9.8.



9.3. ARRAY LANGUAGE 163

c 2 Constants ::= : : : j elt j # j sequence observers

store j sequence update

new j sequence constructor

fork j
addS jmaxS sequence scans

e 2 Expressions ::= : : :

Figure 9.9: ArrL expressions. The ellipses represent the constants and expressions of Fig-

ure 4.3.

�; �;R [ �(FV (e2)) ` e1
ArrL
�! fork; �0; g1; s1 �; �0;R ` e2

ArrL
�! l; �0; g2; s2

�0(l) = hi;l
0i i � 0 �0(l

0) = cl(�0; ;x;e3)

�[x 7! j]; �j;R [ fl
0g ` e3

ArrL
�! v0j; �j+1; g

0

j ; s
0

j 8j 2 f0; : : : ; i� 1g

�; �;R ` e1 e2
ArrL
�! 0; �n;1� g1 � g2 � (

Ni�1

j=0
(1� g0j));max(s1; s2; ~s

0)

(FORK)

�(c; v; �)

c v v0 �0 g0 if/where

store l v0 �[l1 7! ~v[v0=i]] 1 �(l) = hl1;l2i; �(l1) = ~v; �(l2) = hi;v
0i

new i l �[l 7!

iz }| {
[0; : : : ; 0]]

Ni�1

j=0
1 l 62 dom(�)

addS l l00 [l0 7! [
P0

j=0
ij; : : : ;Pm�1

j=0
ij ]]

Nm�1

j=0
1 �(l) = hl1;l2i; �(l1) =~i; �(l2) = ~�; m = j~ij

maxS l l00 [l0 7! [max0j=0 ij ; : : : ;

maxm�1

j=0 ij ]]

Nm�1

j=0
1 �(l) = hl1;l2i; �(l1) =~i; �(l2) = ~�; m = j~ij

Figure 9.10: The semantics rules for the constants added to ArrL.



164 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Since all uses of fork are introduced by the translation, the value of the argument e2 is

guaranteed to be a non-recursive closure with the environment �. The FORK rule evaluates

the function, the argument, and then the parallelized branches. Note that there is unit

overhead prior to each parallel branch|this will correspond with unit work in the abstract

machine to set up the evaluation of each branch.

Equivalence of the NESL and ArrL models

The NESL and ArrL models, where the latter is restricted to using the expressions in the

image of a translation, are essentially equivalent in that they can simulate each other with only

a constant factor of overhead. Here we show only that the restricted ArrL model can simulate

the NESL model. This simulation requires translating NESL into ArrL. The remainder of

this section gives such a translation TArrL[[]], proves that TArrL[[]] is correct, and proves that

TArrL[[]] introduces only a constant factor of overhead. This follows the same structure as in

Section 5.5.2.

De�nition 9.3 de�nes a translation from the semantic domains of the NESL model to

those of the ArrL model, and Theorem 9.1 shows that the translated evaluation derivation is

correct and incurs at most a constant factor of overhead. The ArrL derivation uses an initial

environment and store de�ning NESL's extra constants. The translation is a relation except

on expressions, like TPAL[[]], as that allows it to be independent of location names.

De�nition 9.3 Figures 9.11 and 9.12 show the translation TArrL[[e]] of NESL expressions,

values, and store-values to those of the ArrL model. The translations of environments and

stores are de�ned point-wise on the values and store-values in their ranges, respectively, and

the translation of root set of values is de�ned point-wise on the contents.

For example, the translation of the for-each fe0 : x in eg evaluates the binding expression
e, allocates a result array, and forks i threads to evaluate the body e0 and writes the result in

the appropriate element of the result array. The motivation for separately allocating space

with new in the translation is to account for the allocation of k space with k work prior to

the allocation. This allows us to bound memory use (see the proof of Theorem 9.5). Note

that side-e�ects are used only in a single-assignment manner|each location is assigned a

value exactly once.

Example 9.1 Consider the NESL expression

fadd (x;1) : x in index 4g:

Its translation under TArrL[[]] is

let x = xindex 4

z = new (# x)

= fork (# x;�y:z[y] := (�x:add (x;1)) x[y])

in z

where we use same syntactic shorthand as in the translation.



9.3. ARRAY LANGUAGE 165

TArrL[[index]] = xindex
TArrL[[dist]] = xdist
TArrL[[++]] = x++
TArrL[[pack]] = xpack
TArrL[[put]] = xput
TArrL[[addscan]] = xaddscan
TArrL[[maxscan]] = xmaxscan

TArrL[[fe
0 : x in eg]] = let x = TArrL[[e]]

z = new (# x)

= fork (# x;�y:z[y] := (�x:TArrL[[e
0]]) x[y])

in z

where e1[e2] abbreviates elt (e1;e2)
e1[e2] := e3 abbreviates store (e1;(e2;e3))

Figure 9.11: Translation TArrL[[]] from NESL expressions to those of ArrL. The translation

simply translates any subexpressions, i.e., is homomorphic, where not shown. The variables

xc are assumed to be distinct from the free variables of the expression or closure being

translated and are de�ned in the initial environment (Figure 9.13). For convenience, we use

a multi-assignment let statement that executes the assignments in sequential order, which is

also translated into NESL.

Values:

TArrL[[c]]
�
0 [[c]]

�
if c 62 findex;dist;++;pack;put; addscan;maxscang

TArrL[[c]]
�
0 [[lc]]

�
if c 2 findex;dist;++;pack;put; addscan;maxscang, lc 2 �

TArrL[[l
0]]
�
0 [[l]]

�
if TArrL[[l

0(�0)]]
�
0 [[l(�)]]

�

Store-Values:

TArrL[[cl(�
0;x;y;e)]]

�
0 [[cl(�;x;y;TArrL[[e]])]]� if TArrL[[�

0]]
�
0 [[�]]

�

TArrL[[hv
0

1
;v0
2
i]]
�
0 [[hv1;v2i]]

�
if TArrL[[v

0

1
]]
�
0 [[v1]]

�
, TArrL[[v

0

2
]]
�
0 [[v2]]

�

TArrL[[~v0]]
�
0 [[~v]]

�
if TArrL[[v

0

0
]]
�
0 [[v0]]

�
, : : : , TArrL[[v

0

k�1
]]
�
0
[[vk�1]]

�

where k = j~v0j = j~vj

Figure 9.12: Translation TArrL[[]] from NESL values and store-values to those of ArrL, using

the translation on expressions.



166 CHAPTER 9. BASIC DATA-PARALLEL MODELS

�I
xc 7! lc; for each c 2 findex;dist;++;pack;put; addscan;maxscang

�I
lc 7! cl(�; ;x;ec); for each c 2 findex;dist;++;pack;put; addscan;maxscang

eindex = let z = new x

= fork (x;�y:z[y] := y)
in z

edist = let x1 = fst x

x2 = snd x

z = new x2
= fork (x2;�y:z[y] := x1)

in z
e++ = let x1 = fst x

x2 = snd x

z = new (add (# x1;# x2))

= fork (x2;�y:z[y] := (if lt (y;# x1) then x1[y] else x2[sub (y;# x1)]))
in z

epack = let x1 = fst x

x2 = snd x

x0 = TArrL[[addscan]] TArrL[[fif x
0 then 1 else 0 : x0 in x2g]]

z = new x0[sub (# x) 1]

= fork (# x;�y:if snd (x1[y]) then z[x0[y]] := fst x1[y] else 0)
in z

eput = let x1 = fst x

x2 = snd x

z = new (# x1)
= fork (# x1;�y:z[y] := x1[y]) (copy destination array)
= fork (# x2;�y:z[fst x2[y]] := snd x2[y])

in z
eaddscan = addS (x;new (# x))
emaxscan = maxS (x;new (# x))

where e1[e2] abbreviates elt (e1;e2)
e1[e2] := e3 abbreviates store (e1;(e2;e3))

Figure 9.13: Initial ArrL environment �I and store �I when translating from NESL with

TArrL[[]]. For convenience, we use a multi-assignment let statement that executes the assign-

ments in sequential order, which is also translated into NESL.



9.3. ARRAY LANGUAGE 167

Theorem 9.1 now shows that the PAL model can simulate the PAL' model with only a

constant factor of overhead. To prove this, Lemma 9.1 shows that the simulation holds for

all contexts. These are very similar to Theorem 5.1 and Lemma 5.1, so we do not provide as

many details in these proofs.

Lemma 9.1 (Equivalence of NESL and ArrL) If e evaluates in the NESL model:

�0; �0; R0 ` e NESL�! v0; �0 [ �0new ; g0; s0;

then for any context of �, �, and R for the corresponding ArrL derivation such that

� its initial context is the translation of that of the NESL derivation: TArrL[[�
0]]�0 [[�]]�,

TArrL[[�
0]][[�]], TArrL[[R

0]]�0 [[R]]�, S(R; �)� k � S(R0; �0), and

� it uses the initial environment and initial store de�ned in Figure 9.13: �I [ � and

�I [ �,

then e's translation evaluates in the ArrL model:

�I [ �; �I [ �;R ` TArrL[[e]] ArrL�! v; � [ �new ; g; s

such that

� it results in the translated value: TArrL[[v
0]]�0 [ �0new [[v]]� [ �new , and

� its costs are at most a constant factor more than those of the NESL evaluation: W (g0) �
k �W (g), D(g0) � k �D(g), and s0 � k � s, for some constant k.

Proof Outline: We prove this by induction on the structure of the NESL evaluation deriva-

tion. We assume that the NESL derivation holds and prove the ArrL derivation and side

conditions hold, using a case analysis on the last rule used in the NESL derivation. The

de�nition of the translation TArrL[[]] on environments and stores make most cases entirely

straightforward.

The second condition on the ArrL context holds inductively since, by de�nition, the do-

mains of the initial environment and store are distinct from any other variables or locations.

In most cases, the �rst conclusion holds by simple observation of the de�nition of the trans-

lation. The second conclusion holds by showing the translation introduces only a constant

factor larger computation graph and a constant factor of extra closures.

case CONST, e = c: If TArrL[[c]] = c, then the conclusion holds since the NESL constant

rule corresponds to the ArrL constant rule.

Otherwise, TArrL[[c]] = lc, and the conclusion follows from the de�nition of the bindings

of the initial environment and store. It holds since the NESL constant rule corresponds

to an ArrL variable lookup, so g0 = g and s < k � s0 for some constant k determined by

the size of the closures in �I .



168 CHAPTER 9. BASIC DATA-PARALLEL MODELS

case LAM, e = �x:e0: The conclusion holds since the NESL abstraction rule corresponds

to the ArrL abstraction rule.

case VAR, e = x: This follows from the de�nition of the translation of an environment,

since by de�nition TArrL[[�
0(x)]]�0 [[�(x)]]� holds if TArrL[[�

0]]�0 [[�]]� holds. The conclusion

follows since the NESL variable lookup corresponds exactly to an ArrL variable lookup,

of a value that is at most a constant factor larger than the NESL value.

case APPC, e = e1 e2: By assumption, the function e1 evaluates to a constant c. By in-

duction, the conclusion holds for both subexpressions, and in particular, we obtain the

corresponding graphs g1 and g2. The exact structure of the ArrL evaluation depends

upon the constant c. If TArrL[[c]] = c, this last step of the NESL and ArrL derivations

correspond exactly. Otherwise, TArrL[[c]] is an abstraction, and in each case the ArrL

application involves a constant amount of overhead.

cases APP, PAIR, LETREC, IF-TRUE, and IF-FALSE: Since the translation is ho-

momorphic on applications, pairs, recursive de�nitions, and conditional branches,

� the conclusion holds inductively on each subexpression, and

� this last step of the NESL and ArrL derivations correspond exactly.

case EACH, e = fe00 : x in e0g: By assumption, e00 evaluates to a location that contains

an array. By induction, the conclusion holds for e0 and for each of the m evaluations

of e00, and in particular, we obtain the graphs g0 and g000 ; : : : ; g
00
m�1. The translation

introduces a constant factor of overhead, as illustrated by Figure 9.14. This includes

several applications, including those of new and fork.

2

Theorem 9.1 (Equivalence of NESL and ArrL) If e evaluates in the NESL model:

�; �; fg ` e0 NESL�! v0; �0; g0; s0;

and the corresponding ArrL derivation uses the appropriately translated expression:

e = (�xindex:: : :�xmaxscan:TArrL[[e
0]]) (�x:eindex) : : :(�x:emaxscan)

using the subexpressions de�ned in Figure 9.13, then the translation of e0 evaluates in the

ArrL model:

�; �; fg ` e ArrL�! v; �; g; s

such that

� it results in the translated value: TArrL[[v
0]]�0 [[v]]�, and



9.3. ARRAY LANGUAGE 169

g'0 g'm 1–

g'

...

...m

EACH

)

g''0 g''m 1–

g''

...

...m

APP

...
...

g

Figure 9.14: The ArrL computation graph g corresponding to that produced by the NESL

EACH rule.



170 CHAPTER 9. BASIC DATA-PARALLEL MODELS

� its costs are at most a constant factor more than those of the NESL model: W (g0) �
k �W (g), D(g0) � k �D(g), and s0 � k � s, for some constant k.

Proof: This follows from Lemma 9.1. The initial applications in e set up the initial environ-

ment and store for that lemma. 2

We are only interested in ArrL expressions obtained via this translation. This places two

constraints of interest on expressions:

� Since each translation rule introduces side-e�ects only on local variables introduced

by the translation, not including the function parameters, these side-e�ects cannot

interfere with each other. Again note that the side-e�ects are single-assignment. Thus

the translation does not introduce nondeterminism. Therefore the constraint ensures

that the expressions are deterministic, despite the presence of side-e�ects.

� It ensures that the second argument of fork is an abstraction. Thus its value uses the

current de�ning environment, simplifying the FORK case of the proof of Lemma 9.2.

9.4 Intermediate model

The P-CEK
q
ArrL abstract machine is similar to the P-CEK

q
PAL machine. It executes a series

of steps, each transforming a group of active states and a store into a new group of active

states and new store for the next step. Figure 9.15 illustrates this process. It starts with

with one active state for the entire computation, selects up to q active states per step, and

ends with one active state with the �nal value. Bounds on execution costs hold for the same

reason as before: the machine executes a q-DFT of the computation graph returned by the

pro�ling semantics, and its reachable space is bounded by the serial space returned by the

pro�ling semantics.

For brevity, we omit maxS, pairing, conditionals, and recursive bindings from our def-

initions and proofs. The primitive maxS would be treated similarly to addS. Pairing,

conditionals, and recursive bindings are all serialized in this model, and thus are relatively

uninteresting. We present further details of this omission as relevant.

Like the P-CEKqPAL, the machine uses the expressions @ v1 v2 and done v to represent the

function body and the end of the entire computation, respectively. The additional expression

� l1 l2 l
0 i represents part of a addS computation: the addition of the ith element of the

array at l1 to the result array at l2, where the current total is stored at l
0. A similar expression

would be included for the omitted maxS.

The primary di�erence between the P-CEKq
ArrL and the previous abstract machines is

that it can create an unbounded number of threads in a single step. But allocating the space

for an unbounded number of active states all at once would break our space bounds. So we

must ensure that we allocate space for no more than O(q) active states on each step. The

constructs which can allocate unbounded number of computations are addS and fork (and



9.4. INTERMEDIATE MODEL 171

StAi

StAi+1

StAi+2

...
...

StAψ

StA0

{

Figure 9.15: Illustration of P-CEKqArrL active states during an evaluation. It starts with one

active states representing the entire program and ends with one active states representing the

result value. The states are kept in a stack. At most q states are selected each step. Here,

q = 5, and these selected states are shaded. These can create zero or one new state, including

the possibility of a stub representing multiple states (solid arrows). Unselected states are still

active in the next step (dashed arrows).



172 CHAPTER 9. BASIC DATA-PARALLEL MODELS

the omitted maxS). Rather than immediately creating an active state per created thread,

we create a single stub state. When selecting active states for a step, we expand the stubs to

the relevant states; if the step does not need all of a stub's representative states, it places a

new stub on the active states stack to represent the remaining states. The stub @stubhl i k �i
represents states of a fork call, where l is a pointer to the function value (closure) to be called

on each of the remaining numbers i; : : : ; k � 1, and � is the continuation to be used after

these operations. The stub �stubhl1 l2 l0 i k �i represents states of an addS call, where l1 is

a pointer to the source array to be added, l2 is a pointer to the result array, l
0 is a pointer to

the running summation total, and i; : : : ; k� 1 are the remaining indices of data to sum.

Each step consists of selecting these states, and then one substep for computation and

one substep for communication and synchronization.

This machine uses four forms of continuation. The empty continuation � represents the
end the entire computation. The continuation arghe � �i represents the need to evaluate the

argument e of an application after evaluating the corresponding function. The continuation

funhv �i represents the need to apply the function value v to what is currently being evaluated.
And, �nally, the continuation endhl �i represents the need to synchronize threads (originally

spawned by fork) on the counter in l. Additional continuation forms are needed to serialize

the omitted pairing, conditional, and recursive binding expressions.

We implement the semantics' nested sequences as nested sequences in the abstract ma-

chine, unlike in the current implementation of Nesl [14]. During compilation, Nesl 
attens

nested sequences and any code building or using nested sequences. As a result, Nesl's

implementation (i.e., VCODE) uses only larger, one-dimensional sequences. This has the

advantage of increasing the granularity for parallelism, which is very important in practice.

But it has the disadvantages of increasing sequence sizes, and thus the cost of applying most

constant functions, and of not allowing subsequences to be shared.

Given the domains just described, as de�ned in Figure 9.16, De�nitions 9.4 and 9.5 then

de�ne a P-CEKqArrL step and the abstract machine. Remember that this omitsmaxS, pairing,

conditionals, and recursive bindings.

De�nition 9.4 (P-CEK
q
ArrL step) A step i of the P-CEKq

ArrL machine, written

StAi; �i
ArrL;q
,! StAi+1; �i+1;Qi; si;

is de�ned in Figure 9.17. It starts with a stack of active states StAi and a store �i and

produces a new stack and store for the next step. This step requires processes Qi (non-stub)

states and uses si maximum reachable space.

Note that we do not count stubs in the number of states processed by the machine. We

are only interested in the count of non-stub states because they will correspond to the nodes

of the computation graph. The stubs are only important for the e�cient storage of the active

state stack.



9.4. INTERMEDIATE MODEL 173

e 2 Expressions ::= : : : j @ v1 v2 j application

done v j �nal result

� l1 l2 l
0 i addscan element

C 2 Controls ::= e

� 2 Environments = Variables
fin! Values

� 2 Continuations ::= � j program �nishing

funhv �i j function �nishing

arghe � �i j argument �nishing

endhl �i for-each branch �nishing

st 2 States ::= (e; �; �) j
@stubhl i k �i j for-each stub

�stubhl1 l2 l0 i k �i addscan stub

St 2 StateArrays ::= ~st

I 2 IntermediateStates ::= St j new states

Finhl �i j �nishing state

�hl1; l2; l0; i; �i addscan

� 2 Stores = Locations
fin! (StoreValues+

Integers)

Figure 9.16: P-CEKqArrL domains. The ellipsis represents the expressions of Figure 4.3.



174 CHAPTER 9. BASIC DATA-PARALLEL MODELS

De�nition 9.5 (P-CEK
q
ArrL evaluation) In the P-CEKqArrL machine, the evaluation of

expression e to value v, starting in the environment � and store �0, ends with store � ,

processing Q states in  parallel steps using s maximum reachable space, or

�; �0 ` e
ArrL;q
=) v; � ;Q; ; s:

For each of these i 2 f0; : : : ;  � 1g steps,

StAi; �i
ArrL;q
,! StAi+1; �i+1;Qi; si;

such that

� the machine starts with one active state for the whole program: StA0 = [(e; �; �)],
�0 = �;

� the machine ends with one active state with the result value: StA = [(done v; �; �)];
and

� the total number of states processed and maximum reachable space are Q =
P �1
i=0 Qi

and s = max �1i=0 si.

As in the other models, each step begins by selecting at most q states. But here we must

allow the stubs to expand to the ordered set of states they represent. If the step does not

need all of a stub's states, the machine puts a stub representing the extra states back on the

active states stack. The stub expansion is de�ned by Figure 9.18. When selected, a for-each

stub sets up the application of the closure at location l to the dummy value in the stub2, and

an addscan stub sets up the addition of the next element. While de�ned sequentially, the

machine parallelizes the selection of multiple elements.

This abstract machine uses only two substeps per step: one for computation and one

for communication and synchronization, as illustrated in Figure 9.19. The computation step

parallelizes the
ArrL
,! comp transition. This transition corresponds to that of the PAL model,

with two main di�erences:

� the fork and addS primitive function calls create stub states, and

� the expression � l1 l2 l
0 i leads to the addition of the ith element of an addS applica-

tion.

The communication substep parallelizes the
ArrL
,! sync transition. This transition synchronizes

the results of the fork and scan applications. Each branch of a fork ends with a Finhl �i
intermediate state. These branches may complete any arbitrary order; l is a synchronization

counter that indicates how many branches have yet to �nish. The transition decrements the

2We know it is a closure by de�nition of the translation.



9.4. INTERMEDIATE MODEL 175

st I if/where

(c; �; �) �
ArrL

,! comp throw(c; �) �

(x; �; �) �
ArrL

,! comp throw(�(x); �) �

(�x:e; �; �) �
ArrL

,! comp throw(l; �) [l 7! cl(�0; ;x;e)] �0 = restr(�; �x:e);

l 62 dom(�)

(e1 e2; �; �) �
ArrL

,! comp [(e1; �; arghe2 �0 �i)] � �0 = restr(�; e2)

(@ l v; �; �) �
ArrL

,! comp [(e; �0[x 7! l][y 7! v]; �)] � l(�) = cl(�0;x;y;e)

(@ fork l; �; �) �
ArrL

,! comp [@stubhl0 0 i endhl00 �ii] [l00 7! i� 1] �(l) = hi;l0i; i � 0;
l00 62 dom(�)

(@ addS l; �; �) �
ArrL

,! comp [�stubhl1 l2 l0 0 m �i] [l0 7! 0] �(l) = hl1;l2i;

m = j�(l1)j;
l0 62 dom(�)

(@ c v; �; �) �
ArrL

,! comp throw(v0; �) �0 �(c; v; �) = v0; �0;�

(� l1 l2 l0 i; �; �) �
ArrL

,! comp �hl1; l2; l
0; i; �i �

where throw(v; �) = [(done v; �; �)]
throw(v; arghe � �i) = [(e; �; funhv �i)]

throw(v2; funhv1 �i) = [(@ v1 v2; �; �)]

throw(v; endhl �i) = Finhl �i

restr( �; e) = the environment � restricted to the free variables in e

I st

Finhl �i �
ArrL

,! sync [(0; �; �)] � if �(l) = 0 last thread alive of fork
[ ] �[l 7! �(l)� 1] if �(l) 6= 0

�hl1; l2; l
0; i; �i �

ArrL

,! sync [(x; [x 7! l2]; �)] �0 if i = j~ij � 1 last element to sum

[ ] �0 if i 6= j~ij � 1

where �(l1) =~i; �(l0) = j; �0 = �[l2 7! �(l2)[j=i]][l
0 7! j + ii]

st �
ArrL

,! sync st �

StA; �
ArrL;q
,! (++ ~St)++StA0; �0q0 ; q

0; Sr(StA; �)

if ~st; StA0 = select(q; StA) select at most q active states

q0 = j~stj

sti; �
ArrL

,! comp Ii; �i for each i 2 f0; : : : ; q0 � 1g

Ii; �0i
ArrL

,! sync Sti; �0i+1 for each i 2 f0; : : : ; q0 � 1g �00 = � [ (
S

~�)

Figure 9.17: De�nition of the P-CEKq
ArrL abstract machine step, omitting some transitions.

Assume all new locations of the computation step are chosen or renamed to be distinct.



176 CHAPTER 9. BASIC DATA-PARALLEL MODELS

q StA select(q; StA)

0 � [ ]; [ ]

1 [@stubhl k k �i]++St select(1; St)

1 [@stubhl i k �i]++St [(@ l i; �; �)]; [@stubhl (i+ 1) k �i]++St
if i < k

1 [�stubh� � � k k �i]++St select(1; St)

1 [�stubhl1 l2 l0 i k �i]++St [(� l1 l2 l
0 i; �; �)]; [�stubhl1 l2 l0 (i+ 1) k �i]++St

if i < k

1 [st]++St [st]; St

if st not a stub

i St St1++St2; St
0
2

if i > 1; select(1; St) = St1; St
0
1;

select(i� 1; St01) = St2; St
0
2

Figure 9.18: Selecting P-CEKq
ArrL active states in the presence of stub states.

counter that was initially set to the number of branches of the fork call. The counter reaches

zero on the last branch to �nish, which generates a state to use the continuation. This state

corresponds to the for-each's sink node in Figure ??. The machine generates an intermediate

state �hl1; l2; l0; i; �i for each ith array element of the scan operation. The transition adds

the ith element of the array in l1 to the running total in l
0 and stores the current total in the

ith element of the array in l2. When the machine reaches the last element, it creates a state

to pass the result to the continuation. The machine does not need a synchronization location

to determine which is the last element of the scan because its adds the elements in sequential

order. While described serially, this substep parallelizes over all of the intermediate states

generated by the �rst substep.

Example 9.2 As an example of the execution of the P-CEKqArrL, we describe the active

states at the beginning of each step of evaluation the following expression:

let z = new 4

= fork (4;�y:store (z;(y;add (y;1))))

in z

We do not show the active states for each step because of the size of the example. Note that

this expression is an optimization of that from Example 9.1.

Figure 9.20 shows the computation graph of the corresponding pro�ling semantics evalu-

ation for comparison, using the appropriate states' expressions as node labels. For any value

of q, the machine processes 85 states. For q = 2, this requires 51 steps, while for q � 4, it

requires 34 steps. Each of these executions is a q-DFT of the graph, and thus for q � 4, it

is also a level-order traversal. Also, in this example which has no conditionals, each parallel

branch executes the same instructions.



9.4. INTERMEDIATE MODEL 177

x

ρ[x→2]

e1 e2 @ addS l

e1

end‹l5 κ1› κ

Σstub‹l1 l2 l’ 0 m κ2›

arg‹e2 ρ κ›

ρ’

λy.e

arg‹e4 [] κ4›

ρ from StAi

from StAi+1ρ

3

ρ[x→2]

end‹l5 κ1›

e4

κ2

fun‹l6 κ4›

0

κ1

. .

.

C

ρ

κ

C

ρ

κ

where �i(l) = hl1;l2i
m = j�i(l1)j
l0; l6 62 dom(�i)

�i+1 = �i[l6 7! cl(�; ;y;e)][l0 7! 0]

Figure 9.19: Illustration of a P-CEKqArrL step. States with constants, variables, and abstrac-

tions create zero or one new state depending on their continuation and whether they are the

last one of a fork or scan operation. States with applications create one new state to evaluate

their functions �rst.



178 CHAPTER 9. BASIC DATA-PARALLEL MODELS

To formally de�ne the reachable space during evaluation, we again consider its two com-

ponents: the control space, for the control information of the active states, and the store

space, for the elements in the store. We include the space for the synchronization locations

in the control space (e.g., L�(funhl �i) does not add l to the labels) even though they are

are kept in the store so that the locations in in the pro�ling semantics correspond exactly to

those in the P-CEK1
ArrL machine.

De�nition 9.6 (Reachable space of P-CEK
q
ArrL step) The reachable space of a step i

of the P-CEK
q
ArrL machine, written Sr(StAi; �i), is the sum of

� the active states space SA(StAi) for the active states, including any environments and

continuations: the sum of, for each state in StAi,

{ 1 + jdom(�)j+ j�j for a state (e; �; �), where j�j is the length of the continuation

stack �; or

{ 1 + j�j for a stub @stubh� � � �i or �stubh� � � � � �i

and

� the store space S�(StAi; �i) for program variables and all temporary values: equals the

space in the store reachable from the active states used as roots, S(L(StAi); �i), where

S(�;�) and L(�) are de�ned in Figures 5.14 and 9.21, respectively.

9.4.1 Equivalence of language and intermediate models

In this section we relate the P-CEKqArrL to the ArrL pro�ling semantics. In addition to prov-

ing its extensional correctness, we also prove bounds on the time and space taken by the

P-CEKqArrL machine as a function of the work, depth, and space given by the pro�ling se-

mantics. As before, we prove both serial and parallel equivalence, including that the abstract

machine executes a q-DFT of the pro�ling semantics' computation graph.

Serial equivalence

Theorem 9.2 (ArrL serial evaluation) If e evaluates in the pro�ling semantics:

�; �; fg ` e ArrL�! v; �0; g; s;

then it also evaluates in the serial abstract machine:

�; � ` e ArrL;1
=) v; � ;Q; ; s

0;

such that s0 � k � s, for some constant k.



9.4. INTERMEDIATE MODEL 179

(\z.(\_.z)(fork (4,\y.store (z,(y,add (y,1)))))) (new 4)

\z.(\_.z)(fork (4,\y.store (z,(y,add (y,1)))))

new 4

new

4

@ new 4

@ l0 l1

\_.z

fork (4,\y.store (z,(y,add (y,1))))

fork

(4,\y.store (z,(y,add (y,1))))

4

\y.store (z,(y,add (y,1)))

mkpair (4,l2)

@ fork l3

@ l2 0 @ l2 1 @ l2 2 @ l2 3

store (z,(y,add (y,1))) store (z,(y,add (y,1))) store (z,(y,add (y,1))) store (z,(y,add (y,1)))

store store store store

(z,(y,add (y,1)))) (z,(y,add (y,1)))) (z,(y,add (y,1)))) (z,(y,add (y,1))))

z z z z

(y,add (y,1)) (y,add (y,1)) (y,add (y,1)) (y,add (y,1))

y y y y

add (y,1) add (y,1) add (y,1) add (y,1)

(y,1) (y,1) (y,1) (y,1)

y y y y

1 1 1 1

mkpair (0,1) mkpair (1,1) mkpair (2,1) mkpair (3,1)

@ add l4 @ add l5 @ add l6 @ add l7

mkpair (0,1) mkpair (1,2) mkpair (2,3) mkpair (3,4)

mkpair (l1,l8) mkpair (l1,l9) mkpair (l1,l10) mkpair (l1,l11)

@ store l12 @ store l13 @ store l14 @ store l15

where l0 contains cl(�; ;z;�) l8 contains h0;1i
l1 contains [0; 0; 0; 0] l9 contains h1;2i
l2 contains cl(�; ; ;z) l10 contains h2;3i
l3 contains h4;l2i l11 contains h3;4i
l4 contains h0;1i l12 contains hl1;l8i
l5 contains h1;1i l13 contains hl1;l9i
l6 contains h2;1i l14 contains hl1;l10i
l7 contains h3;1i l15 contains hl1;l11i

and mkpair (v1; v2) is the omitted machine expression that creates a pair

Figure 9.20: ArrL computation graph for Example 9.2.



180 CHAPTER 9. BASIC DATA-PARALLEL MODELS

L(StA) =
[

st2StA

8><
>:
L�(�)[ L�(�) if st = (�; �; �)
flg [ L�(�) if st = @stubhl � � �i
fl1; l2; l0g [ L�(�) if st = �stubhl1 l2 l0 � � �i

L�(�) = rng(�)

L�(�) = fg
L�(funhv �i) = fvg [ L�(�)

L�(argh� � �i) = rng(�)[ L�(�)
L�(endh� �i) = L�(�)

Figure 9.21: De�nitions for the root values L(StA) of a step of the P-CEK
q
NESL machine.

This is a set of values, where labels act as roots into the store.

Proof Outline: To prove this we �rst generalize the statement to that of Lemma 9.2. There we

consider the steps of P-CEK1
ArrL required to evaluate an expression in some general context

and bound the reachable space during those steps by the space speci�ed by the pro�ling

semantics plus the control space at the beginning of the evaluation. The theorem then holds

by specializing the lemma to start with an empty environment, store, and roots, and one

active state. 2

Lemma 9.2 If e evaluates in the pro�ling semantics:

�; �; R ` e ArrL�! v; �0; g; s;

e is a subexpression of an expression in the image of translation TArrL[[]], and for a step i of

the P-CEK1
ArrL,

� the machine starts with a state or stub at the front of the active states stack that

corresponds to this evaluation: select(1; StAi) = [(e; �; �)]; StA, for some stack StA

and continuation �,

� the semantics and machine can access the same locations: L(StAi) = R [ �(FV (e)),

and

� these locations have the same values: 8l2locs(L(StAi);�i)
�(l) = �i(l),

then



9.4. INTERMEDIATE MODEL 181

� on some future step m � i, the machine �nishes this evaluation and calls throw(v; �),

� the maximum reachable space during this evaluation is bounded by the space for the

original active states, plus a constant factor more than the space given by the pro�ling

semantics: maxmj=i Sr(StAj ; �j) � SA(StAi) + k � s, for some constant k.

Proof: We prove this by structural induction on the language evaluation derivation and

show a representative set of the cases. The remaining cases are similar.

case VAR, e = x: By the de�nition of the P-CEKqArrL machine, throw(v; �) is called on step

i, so m = i. And by VAR, s = S(R[ f�(x)g; �), so

maxmj=i Sr(StAj ; �j)

= SA(StAi) + S(L(StAi); �i) (De�nition 6.11)

= SA(StAi) + S(L(StAi); �) (3rd assumption)

= SA(StAi) + s (2nd assumption)

The other base cases, CONST and ABSTR, are similar.

case APP, e = e1 e2: Alternately inspecting the machine rules and using induction, we ob-

tain the following results about the executions of the subexpressions e1 and e2 and on

the appropriate function body e3. The steps of the P-CEK
1
ArrL corresponding to these

three sub-evaluations are numbered i1 to m1, etc., where i1 = i+ 1, i2 = m1 + 1, and

i3 = m2 + 2, and step m2 + 1 is the appropriate function call transition.

The active states at these important steps are as follows:

StAi = [(e1 e2; �; �)]++StA

StAi1 = [(e1; �; arghe2 �0 �i)]++StA
StAi2 = [(e2; �; funhl �i)]++StA

StAm2+1 = [(@ l v2; �; �)]++StA
StAi3 = [(e3; �

0[x 7! l][y 7! v2]; �)]++StA

Furthermore, these three sub-evaluations result in the appropriate values:

� l is the value of e1, where �m1
(l) = cl(�0;x;y;e0) and �0 = restr(�; e0);

� v2 is the value of e2; and
� v is the result of the function body, and thus of the entire application.

We now look at the reachable space during the evaluation. First look at the steps not

in the inductive sub-evaluations, i.e., steps i and m2 + 1. Examining the de�nition of

the P-CEKqArrL machine and using De�nition 6.11, we have

Sr(StAi; �i) = Sr(StAi1 ; �i1)

Sr(StAm2+1; �m2+1) � Sr(StAi; �i):



182 CHAPTER 9. BASIC DATA-PARALLEL MODELS

So the reachable space in these steps is not greater than in the others.

Now we look at the reachable space in the inductive sub-evaluations. Using induction

we have

max
j2fij0 ;:::;mj0g;j

02f1;2;3g
Sr(StAj ; �j) � max

j02f1;2;3g
(SA(StAij0 ) + k � sj0):

So we relate the control space at the beginning of these sub-evaluations, i.e., SA(StAij),

j 2 f1; 2; 3g, to the control space of the starting step, SA(StAi). For the �rst two sub-
evaluations, j 2 f1; 2g, we see that

SA(StAi1) = SA(StAi2) = SA(StAi) + 1:

For the space during the evaluation of the function body, SA(StAi3), �rst observe that

j�0j + 2 � s1 by the de�nition of the store space since the closure with �0 must have

been the result of a sub-derivation of e1. Thus,

SA(StAi3) + k � s3 � SA(StAi) + k � s

and the conclusion holds.

The APPC case, other than that for addS, is similar, but somewhat simpler, since it

does not involve induction for the function body.

case FORK, e = e1 e2 As in the APP case, we �rst use induction on the derivations of the

two subexpressions e1 and e2. Then we use induction each of the k forked branches of the

body e3. The steps of the P-CEK
1
ArrL corresponding to these k+ 2 sub-evaluations are

numbered i1 tom1, etc., where i1 = i+1, i2 = m1+1, i3 = m2+2, and ik0+3 = mk0+2+1,

for each branch k0 2 f1; : : : ; k � 1g.
The active states at these important steps are as follows:

StAi = [(e1 e2; �; �)]++StA

StAi1 = [(e1; �; arghe2 �0 �i)]++StA
StAi2 = [(e2; �; funhfork �i)]++StA

StAm2+1 = [(@ fork l2; �; �)]++StA

StAik0+3�1 = [@stubhl k0 (k � 1) endhl0 �ii]++StA

for each branch k0 2 f0; : : : ; k� 1g. Note that this is just like the APP case for the �rst

two uses of induction, except for the value of the function e1:

� fork is the value of e1, and

� l2 is the value of e2, where �m2
(l2) = hk;l0i, �m2

(l0) = cl(�; ;x;e3) (the closure is

guaranteed to use � by de�nition of the translation TArrL[[]]).



9.4. INTERMEDIATE MODEL 183

We now look at the reachable space during the evaluation. First look at the steps not

in the inductive sub-evaluations, i.e., steps i and ik0+3 � 1, for k0 2 f0; : : : ; k � 1g.
Examining the de�nition of the P-CEKqPAL machine and using De�nition 6.11, we have

Sr(StAi; �i) = Sr(StAi1 ; �i1)

Sr(StAik0+3�1; �ik0+3�1) � Sr(StAik0+3 ; �ik0+3)

for each k0 2 f0; : : : ; k � 1g. So the reachable space in these steps is not greater than

in the others.

Now we look at the reachable space in the inductive sub-evaluations. Using induction

we have

max
j2fij0 ;:::;mj0g;j

02f1;:::;k+2g
Sr(StAj ; �j) � max

j02f1;:::;k+2g
(SA(StAij0 ) + k � sj0):

So we relate the control space at the beginning of these sub-evaluations, i.e., SA(StAij),

j 2 f1; 2; k0 + 3g for k0 2 f0; : : : ; k � 1g, to the control space of the starting step,

SA(StAi). Since all sub-evaluations start with the same environment,

SA(StAi1) = SA(StAi) + 1

SA(StAi2) = SA(StAi) + 1

SA(StAik0+3) = SA(StAi) + 2

and the conclusion holds.

The APPC case for addS is similar.

2

Parallel equivalence

Given the costs of serial execution in the abstract machine P-CEK1
PAL, we are now concerned

the costs of parallel execution, for P-CEKq
PAL with any q. Parallel execution can require

more space because it can create many more simultaneous parallel threads (the active states

stack can become much larger) and because it can have simultaneous access to many more

locations in the store. We place bounds on how much extra space is needed.

As before, we show that the P-CEK
q
ArrL executes a q-DFT traversal of the computation

graph returned by the semantics, then use previous results on graph scheduling to bound

the space. The following lemma and theorem provide bounds on the costs of the machine

execution by showing that it corresponds to the speci�cation of the computation graph

We also state that the pro�ling semantics and abstract machine compute the same value.

The proofs concentrate on intensional aspects|we could add details of the extensional equiv-

alence, as in the proof of serial equivalence.



184 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Lemma 9.3 (P-CEK
q
ArrL executes traversal) If e evaluates in the pro�ling semantics:

�; �; fg ` e ArrL�! v; �; g; s;

and e is a subexpression of an expression in the image of translation TArrL[[]], then it also

evaluates in the abstract machine:

�; � ` e ArrL;q
=) v; �0;Q; ; s0;

such that the machine executes a q-traversal of the pro�ling semantics' graph g. I.e.,

� the selected states and visited nodes correspond at each step, and

� the active states (or in the case of stubs, the states represented by those stubs) and ready

nodes correspond at each step.

Proof Outline: We prove this by induction on the steps of the machine. We could fully

formalize this as in Lemma 9.2.

For brevity, we refer to states being visited or ready, rather than corresponding to nodes

which are visited or ready, respectively. Clearly the initial state is ready, as it corresponds

to the source of g.

Inductively, we need to show that any states added to the active states stack are ready on

the next step|the non-selected states left in the stack remain ready. By a case analysis on

the expression of each of the selected states, we see that the computation substep generates

states corresponding to the graph.

Constants, variables, and abstractions �nish immediately, thus this state corresponds to

the unit graph from the pro�ling semantics.

Applications generate one new state to start evaluating the function subexpression. This

corresponds to the one child of the application node and is ready on the next step. Once

it �nishes, inductively, the machine has an active state which is ready and, when selected,

starts the evaluation of the argument. Once the argument �nishes, inductively, the machine

generates a state for @ v1 v2 that is immediately ready, corresponding to the node before the

function body. When the state is selected, the machine starts evaluating the function body,

inductively (for a user-de�ned function, via � (for a constant function other than fork),

or as follows (for fork). For v1 = fork, then the function body is the parallel branching

of the argument's body. The state generated by the @ v1 v2 is a stub representing states

corresponding to the the source node of each parallel branch. When selected, each inductively

evaluates its branch. The last one to �nish generates the state (0; �; �) corresponding to the

sink node of this parallel branching, which is immediately ready.

Pairs and conditionals similarly evaluate serially in the machine, as speci�ed by the graph.

2



9.4. INTERMEDIATE MODEL 185

Corollary 9.1 If e evaluates in the pro�ling semantics:

�; �; fg ` e ArrL�! v; �; g; s;

then it also evaluates in the abstract machine:

�; � ` e ArrL;q
=) v; �0;Q; ; s0;

such that the number of states processed by the machine is the pro�ling semantics' work:

Q = W (g).

Proof: This follows from the one-to-one correspondence of active states processed and nodes

in the graph. 2

Theorem 9.3 (ArrL executes q-DFT) If e evaluates in the pro�ling semantics:

�; �; fg ` e ArrL�! v; �; g; s;

then it also evaluates in the abstract machine:

�; � ` e ArrL;q
=) v; �0;Q; ; s0;

such that the machine executes a q-DFT of pro�ling semantics' graph g.

Proof: This follows since the machine selects min(q; jStAj) nodes per step and since g is

series-parallel, together with Theorem 6.3 and Lemma 9.3. 2

Corollary 9.2 If e evaluates in the pro�ling semantics:

�; � ` e ArrL�! v; �; g; s;

then it also evaluates in the abstract machine:

�; � ` e ArrL;q
=) v; �0;Q; ; s0

such that the number of machine steps are bounded as a function of the pro�ling semantics'

work and depth:  � W (g)=q +D(g).

Proof: This follows by Theorem 6.2. 2



186 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Equivalence of space

Since the P-CEKqArrL executes a traversal of the corresponding computation graph, we can

use the machine to de�ne the space costs of the graph nodes. Then using Theorem 6.4 we

can bound the number of premature nodes on any given step of the P-CEKqArrL and bound

the memory used by these nodes, as Theorem 9.5 shows.

Theorem 9.4 Each step of a P-CEK
q
ArrL execution allocates at most k space or deallocates

at most k space for each selected state, for some constant k.

Proof: In the �rst substep, the cases calling throw create at most one new state, one new

continuation, and one new intermediate state (which is deallocated later in the same step

and can be ignored). It may also create a new restricted environment, which we assume to

be of constant size, as discussed in Section 6.2. The other cases create at most one new

state, two new environment bindings, and one new continuation. Note that the @ l v case

need not create an entirely new environment, as environments can be shared, as discussed in

Section 6.2. The substep may also allocate at most one new store binding.

For each selected state, the second substep deallocates any intermediate state created in

the �rst substep. It may also allocate at most one new state or store binding. Note that

which states create new states in this substep depends on the traversal.

Each selected state may also be credited with the deallocation of memory if this is the last

state to reference it. This is a constant amount since each state refers to at most a constant

amount of space. Note that we allow the crediting of a deallocation of a location even if it is

still accessible, e.g., in an environment or an an array. 2

Since each step for a given selected state corresponds to a node (Lemma 9.3), each node

allocates between k and �k space. By Theorem 9.2, the pro�ling semantics space is within

a constant factor of the space complexity of the serial traversal. Thus as constant factors

can be ignored, the pro�ling semantics space can be used in the context of Theorem 6.4 to

provide a bound for the space of parallel execution.

Theorem 9.5 (ArrL parallel space) If

� program e evaluates in the pro�ling semantics: �; �; fg ` e ArrL�! v; �; g; s; and

� thus the program computes in the abstract machine: �; � ` e ArrL;q
=) v; �0;Q; ; s0,

then the maximum reachable space in the abstract machine is bounded by the maximum reach-

able space of the pro�ling semantics plus a function of the parallelism: s0 � k(s+D(g)q).

Proof: Since the P-CEKqArrL machine executes a q-DFT of g, then by Theorem 6.1, on

any step of the P-CEKq
ArrL there can be at most D(g)q nodes executed prematurely relative

to the P-CEK1
ArrL. Since each state transition in step i of a P-CEKqArrL machine adds at



9.5. MACHINE MODELS 187

most constant space to the next state of the machine, then the proof is easy. In particular

since the maximum reachable space taken by any step of the P-CEK1
ArrL is kqs, and on any

step of the P-CEKqArrL machine there are at most D(g)q state transitions that were executed

prematurely relative to some step of the P-CEK1
ArrL machine, each of which allocated at most

constant space, the total space is k(s +D(g)q). 2

9.5 Machine models

The implementation of this abstract machine is like that for the P-CEKq
PAL, e.g., the active

state stack is implemented with a SDGA. The two main di�erences are that the machine

expand stubs when selecting states and handles the synchronization counters for the parallel

branches of forks and scans.

Theorem 9.6 (Cost of P-CEK
q
ArrL step) Each step of the P-CEK

q
ArrL machine can be

processed on a p processor machine in O(q=p + TF (p)) amortized time, w.h.p., and O(q)

maximum reachable space on the butter
y, hypercube, and PRAM machine models.

Proof: The proof is like that for Theorem 7.1.

Each processor is responsible for at most q=p of the current selected states, i.e., processor

i is responsible for the states [iq0=p; : : : ; (i+1)q0=p�1], where q0 = min(q; jStAj). We assume

each processor knows its own processor number, so it can calculate a pointer to its section of

the array.

The simulation of a step consists of the following phases, each of which we show can be

executed with the given bounds:

1. Select the q0 states for this step, popping them from the stack and expanding the

appropriate stub states.

One way to e�ciently expand the stub states is as follows:

(a) Examine the �rst min(q + 1; jStAj) states, including stubs, in the active states

stack. This represents at least q0 states since only the �rst stub can represent zero

states.

(b) Observe to how many states each expands.

(c) Perform an add-scan to determine where the q0th stub occurs in the expansion,

and expand the states up to that point.

For practicality, the machine could cache O(q) of expanded states that were not selected.

This requires O(q0=p) time and O(q0) space.

2. Locally evaluate the states using the
ArrL
,! comp transition, as in the P-CEKqPAL.

This is bounded by O(q0=p + TS(p)) time. Since at most one new state and one new

location are created per selected state, this requires O(q0) space.



188 CHAPTER 9. BASIC DATA-PARALLEL MODELS

3. Locally evaluate the
ArrL
,! sync transition.

Here we must update the synchronization counters and merge the stores as if they were

done sequentially. To update the counters we use the fetch-and-add operation. For the

states ending a fork call, each adds �1 to the appropriate synchronization counter and

fetches the new total number of elements left alive|the last state of each call creates

a state for the dummy result and its continuation. For the states ending an addS call,

each adds the appropriate data element to the appropriate running total. The last state

of each call creates a state for the result and its continuation.

Since each processor can have at most q requests, this takes O(q) time. The fetch-

and-add can also be used for the transition on �h~i; ~l0; l00; i; �i. For merging the stores

the only operation that could con
ict is a store instruction as part of implementing

the put operation. However since the states have the same order as the processors, a

priority concurrent write (with higher numbered processors given the higher priority)

guarantees that rightmost value is written.

Again, each processor accesses constant memory and allocates constant space. As in

the P-CEKqPAL machine, allocation can be eliminated by reusing the state that just

resulted in this transition. If we avoid allocation, this phase requires O(q0=p+ TS(p))

time, w.h.p., and O(1) space.

4. Push the states created during this step onto the active state stack.

This requires O(q0=p+ TF (p)) amortized time, w.h.p., and O(q0) maximum space.

Adding the bounds for the three phases, we get the stated bounds for each of the machines.

2

To account for memory latency in the butter
y and hypercube, and for the latency in

the fetch-and-add operation for all three machines, we process p � TF (p) states on each step

instead of just p (i.e., we use a P-CEK
p�TF (p)
ArrL machine).

Corollary 9.3 Each step of the P-CEK
p�TF (p)
ArrL machine can be simulated within O(TF (p))

amortized time on the p processor butter
y, hypercube, and PRAM machine models, w.h.p.

Corollary 9.4 If e evaluates in the pro�ling semantics:

�; �; fg ` e ArrL�! v; �; g; s;

then the abstract machine evaluation

�; � ` e ArrL;p�TF (p)
=) v; �0;Q; ; s0

can be simulated within O(W (g)=p+D(g)TF (p)) amortized time and O(s+ p �D(g)TF (p))
maximum reachable space on the p processor butter
y, hypercube, or PRAM machine models,

w.h.p.



9.5. MACHINE MODELS 189

Proof: Theorem 9.3 relates the graph g to the P-CEKqArrL computation, where q = p �TF (p).
Theorem 6.2 bounds the number of steps of the graph traversal. There are O(w=q + D(g))

steps, and each step takes O(TF (p)) amortized time, w.h.p. Theorem 6.4 provides the space

bound. 2



190 CHAPTER 9. BASIC DATA-PARALLEL MODELS



Chapter 10

Algorithms and Comparing models

This chapter examines how we can use the PAL, PSL, and NESL models to analyze several

parallel algorithms. Section 10.1 starts with a general discussion of how to analyze algorithms

in these language models. As examples, Section 10.2 describes parallel versions of quicksort,

mergesort, and Fast Fourier Transform (FFT) in each of the models. These illustrate some

of the techniques necessary for programming e�cient algorithms in the models. Then Sec-

tion 10.3 de�nes a general relation of cost-expressiveness describing the relative power of

language models, restates some of the previous results in terms of cost-expressiveness, and

provides some additional general results.

10.1 Analyzing Algorithms

This section analyzes the work and depth bounds of several algorithms. Using the previous

theorems on implementing these language models then obtains time bounds on the machine

models. While not described here, space bounds could be obtained similarly.

Each pro�ling semantics de�nes a given computation's work and depth in terms of its

computation graph. Recall that we have functions W (g) and D(g) de�ning the work and

depth of a graph. For the PSL model, we also have the function D0(g) de�ning the maximum

depth. In each the algorithms discussed here, we are interested in the maximum depth for

the PSL because we wish to wait until the entire result data structure is available.

We are generally interested in the work and depth, not of a single computation, but of a

parameterized set of computations, i.e., of an algorithm. In the PAL and NESL models, we

use the pro�ling semantics to de�ne recurrence equations that result in the algorithm's costs

for any input. Recall that the computation graphs, and thus the work and depth costs, of

these models are de�ned compositionally, as re
ected in the recurrence equations. In the PSL

model, the computation graphs are not de�ned compositionally. However, as Theorem 10.9

shows, the work of the PSL model is equivalent to that of the PAL model, so we can analyze

it as such. To analyze the depth, we e�ectively \time-stamp" the data when it is created

and see when the last data is created. More precisely, we consider the computation graph

191



192 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

4

2 2 2

6 9 15 13 5 18

3

3

7

4

2 2 2

6 9 15135

18

3

3

7

Unsorted Tree Sorted Tree

Figure 10.1: Representing sequences as balanced binary trees. The values are stored at the

leaves, and each internal node stores the size of its subtree (the number of leaves below it).

where each node is labeled with its depth. Each computation node creates at most a single

data object, so we treat the computation node's depth as the object's time-stamp.1 For

convenience, we idealize these time-stamps to ignore constant factor di�erences in depth,

e.g., identifying those at the same recursion depth in an algorithm when appropriate. Since

the time-stamps correspond only to a subset of the computation nodes, we must also argue

that the remaining computation does not dominate. That is simple if all of the algorithm is

directed towards computing the single result, as in the examples here.

10.2 Speci�c Algorithms

This section describes the work and depth bounds of quicksort, mergesort, and FFT in each

of the language models. We �rst note that any algorithm that examines all of its input, such

as sorting or FFT, and represents its input as a list requires depth at least proportional to

the number of elements in the input. In fact, a simple mergesort that makes its two recursive

calls in parallel will match this lower bound for depth. To derive parallel algorithms that use

time sublinear in the number of input elements (for other than the input and output) requires

data structures other than lists. For the PAL and PSL models, we use balanced binary trees,

as in Figure 10.1, where we assume that the ordering for sorted sequences in speci�ed by a

left-to-right traversal of the tree. For the NESL model, we could use trees, but sequences are

clearly more e�cient. This section shows how we can produce and analyze e�ective parallel

versions of quicksort, mergesort, and FFT.

The complexities for the quicksort and mergesort algorithms are equivalent for the PAL

and PSL. But the PSL requires asymptotically less depth than the PAL for the FFT algo-

rithm. Furthermore, it is unclear whether a di�erent FFT algorithm allows the PAL model

to match the performance of the PSL.

For readability, the example code in this chapter uses pattern matching using the syntax

of Standard ML. As used here, pattern matching can be encoded in any of the models with

1Note that an alternative way to de�ne the PSL model is based on de�ning the depths of data objects
rather than de�ning computation graphs [47], e�ectively including these time-stamps in the semantics.



10.2. SPECIFIC ALGORITHMS 193

Pivot = 13

8

4

2 2 2 2

4

6 9 15 13 5 18 3 11

2

6 9 5

3 11

2

3

5
2

greaterless

15 18

Figure 10.2: Quicksort pivoting. The algorithm chooses a pivot, here the median element,

and then splits the tree into trees of lesser and greater elements.

only constant overheads.

10.2.1 Parallel Quicksort

The PAL and PSL code for our quicksort algorithm is given in Figure 10.3, and the code

for NESL is given in Figure 10.4. As usual, the algorithm sorts by choosing an element to

pivot on, selecting the lesser and greater elements, sorting those recursively, and appending

the sorted elements (cf. Figure 10.2). The function qsort rec returns a sorted tree, but in

the PAL/PSL version, it will generally not be perfectly balanced, so the function rebalance

rebalances it.

The function select selects all the elements of the tree matching the given predicate

function. It calls itself recursively in parallel on both branches and append the results back

together. Assuming the function f has constant work and depth, select on a tree of size m

and depth d requires O(m) work and O(d) depth. We note that the tree returned by select

is generally not going to be balanced, which is why we do not assume that d = log2m. The

append function simply puts its two arguments together in a tree node and therefore has

constant work and depth.

We �rst present a general theorem that bounds work and depth in the PAL and PSL

models for our quicksort in the expected case for any input tree, even if not balanced, and as

a corollary give the bounds for balanced input.

Theorem 10.1 (Quicksort in PAL and PSL) The quicksort algorithm quicksort shown

in Figure 10.3, when applied to a tree with m leaves and depth d, will execute in O(m logm)



194 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

datatype 'a Tree =

Empty

| Leaf of 'a

| Node of int * 'a Tree * 'a Tree

fun elt (Leaf x) 1 = x

| elt (Tree (_,xs,ys)) n = gt n (size xs) then elt ys (sub n (size xs)) else elt xs n

fun append Empty ys = ys

| append xs Empty = xs

| append xs ys = Tree (add (size xs) (size ys),xs,ys)

fun take _ 0 = Empty

| take (Leaf x) 1 = Leaf x

| take (Tree (_,xs,ys)) n =

if gt n (size xs) then append xs (take ys (sub n (size xs))) else take xs n

fun drop xs 0 = xs

| drop (Leaf x) 1 = Empty

| drop (Tree (_,xs,ys)) n =

if gt n (size ys) then drop xs (sub n (size ys)) else append xs (drop ys n)

fun select f Empty = Empty

| select f (Leaf x) = if f x then Leaf x else Empty

| select f (Tree (_,xs,ys)) = append (select f xs) (select f ys)

fun qsort_rec xs =

if lt (size x) 2 then xs

else let val pivot = elt xs (div2 (size xs))

val lts = select (\ x. lt x pivot) xs

val eqs = select (\ x. eq x pivot) xs

val gts = select (\ x. gt x pivot) xs

in append (qsort_rec lts) (append eqs (qsort_rec gts))

fun rebalance Empty = Empty

| rebalance (Leaf x) = Leaf x

| rebalance xs =

let val half = div2 (size xs)

in append (rebalance (take xs half) (rebalance (drop xs half))

fun quicksort xs = rebalance (qsort_rec xs)

Figure 10.3: PAL/PSL (tree-based) code for the parallel quicksort algorithm. This code uses

syntactic extensions easily translatable into the syntax of the PAL and PSL.



10.2. SPECIFIC ALGORITHMS 195

fun qsort_rec xs =

if lt (#xs,2) then xs

else let val pivot = elt (xs,div2 (#xs))

val lts = pack (xs,{lt (x,pivot) : x in xs})

val eqs = pack (xs,{eq (x,pivot) : x in xs})

val gts = pack (xs,{gt (x,pivot) : x in xs})

in ++ (++ (qsort_rec lts,eqs), qsort_rec gts)

fun quicksort xs = qsort_rec xs

Figure 10.4: NESL quicksort algorithm. This codes uses syntactic extensions easily translat-

able into the syntax of NESL.

work and O(d logm) depth in the PAL and PSL models, both expected case (i.e., averaged

over all possible inputs of that depth and size).

Proof: First consider qsort rec. Note that since the pivots in quicksort will not perfectly

split the data in general, some recursive paths will be longer than others. We call the

longest path of recursive calls for qsort rec on a particular input the recursion depth for

that input. We note that the worst case recursion depth is O(m) and that fewer than 1 of

the m possible inputs will lead to a recursion depth greater than k logm, for some constant

k [102]. To determine the total computational depth of qsort rec, we need to consider the

computational depth along the longest path. We claim that this computational depth is at

most O(d) times the recursion depth since each node along the recursion tree will require at

most O(d) depth. This is because elt and select will run in O(d) depth.2 Since a fraction

of only 1=m of the inputs will have a recursion depth greater than O(logm), and these cases

will have recursion depth at most O(m), the average (expected case) computation depth of

qsort rec is

D(d;m) = O(d(logm+
1

m
m))

= O(d logm)

To see that the work is expected to be O(m logm), we simply note that all steps do no more

than a constant fraction more work than a list-based sequential implementation.

We now brie
y consider the routine rebalance. We note that the depth of the tree

returned by qsort rec is at most a constant times the recursion depth. This is because the

append operation that builds the returned tree simply joins the trees with a new node, not

shu�ing any elements. The function rebalance splits the tree along the path that separates

the tree into two equal size pieces (or o� by 1), recursively calls itself on the two parts, and

2Note that although select does not return balanced trees, it will never return a tree with depth greater
than the original tree, which has depth d.



196 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

appends the results. Its costs are as follows:

W (m) = W (m2 ) +O(2(Wtake(
m
2 ) +Wdrop(

m
2 )))

= 2W (m2 ) +O(m)

= O(m logm)

D(d;m) = D(d0; m2 )) +O(max(Dtake(d;m); Ddrop(d;m))); for some d
0 < d

= D(d0; m2 ) +O(d)

� O(d logm)

For a tree of size m and depth d, it requires O(m logm) work. It also requires at most

O(d logm) depth, e.g., when the tree is a chain, and at least O(d) depth, when it is already

balanced. 2

Corollary 10.1 (Quicksort in PAL & PSL) The quicksort algorithm quicksort shown in

Figure 10.3, when applied to a balanced tree with m leaves, will execute in O(n logm) work

and O(log2m) depth on the PAL and PSL models, both expected case.

Proof: The depth of a balanced tree is O(logm). Thus, this gives an expected depth of

O(log2m). 2

Theorem 10.2 (Quicksort in NESL [15]) The quicksort algorithm quicksort shown in

Figure 10.4, when applied to a tree with m leaves, will execute in O(m logm) work and

O(logm) depth on the NESL model.

10.2.2 Parallel Mergesort

We �rst consider the problem of merging two sorted trees. We use m to refer to sum of

the sizes of the two trees. We assume that each internal node contains the number and

the maximum value of its descendants. This is clearly easy to generate in O(m) work and

O(logm) depth. The main component of the parallel algorithm is a routine select kth

which given two ordered trees a and b, returns the kth smallest value from the combination

of the two sequences (see Figure 10.5). It is implemented using a dual binary search in which

we go down a branch from one of the two sequences on each step, using the maximal element

at each node for navigation. Assuming the depths of the two trees are da and db, the work

and depth complexity of this routine is O(da + db).

To merge two trees, we use select kth to �nd their combined median element. We then

select the elements less and greater, respectively, than the median for each tree with the

functions take less and drop less. These can be implemented with O(logm) work and

depth since the trees are sorted and balanced (it just requires going down a tree splitting

along the way). Recursively merging the two trees of lesser elements and the two trees of



10.2. SPECIFIC ALGORITHMS 197

greater elements gives us two sorted trees which are guaranteed to be the same size (or o� by

one) by construction. So, joining them under a new node produces a balanced sorted tree.

As a whole, merging in this manner takes O(m) work and O(log2m) depth since we recurse

for the log2m depth of the trees.

Theorem 10.3 (Mergesort in PAL & PSL) The mergesort algorithm mergesort shown

in Figure 10.5, when applied to a balanced tree with m leaves, will execute in O(m logm)

work and O(log3m) depth on the PAL and PSL models.

Proof: We can write the following recurrences for work and depth:

W (m) = 2W (m2 ) +Wmerge(m)

= 2W (m
2 ) +O(m)

= O(m logm)

D(m) = D(m2 ) +Dmerge(m)

= D(m
2 ) +O(log2m)

= O(log3m)

2

This version of mergesort is not as e�cient as the quicksort previously described. However,

if merging uses O(m= logm) splitters, rather than just the median, the depth complexities of

merging and mergesort can each be improved by a factor of O(logm).

Theorem 10.4 (More e�cient mergesort in PAL and PSL) A mergesort algorithm on

m elements can execute in O(m logm) work and O(log2m) depth on the PAL and PSL models.

Proof: The PAL case is shown by Blelloch and the author [16]. The PSL case then holds by

Theorem 10.9. 2

Theorem 10.5 (Mergesort in NESL [17]) A mergesort algorithm on m elements can ex-

ecute in O(m logm) work and O(log2m) depth on the NESL model.

10.2.3 Fast Fourier Transform

This section presents the standard FFT algorithm, adapted to each of the models in the most

straightforward manner, as shown in Figures 10.6 and 10.7. Each version assumes all inputs

are of size 2k for some integer k, as is usual for the FFT algorithm. This ensures that all

trees are of size 2j for some j � k and are perfectly balanced. Therefore, we do not need

to include Empty trees as in the previous sections. Unlike for quicksort and mergesort, here

we show that this tree-based algorithm is more e�cient in the PSL model than in the PAL

model.



198 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

datatype 'a Tree =

Empty

| Leaf of 'a

| Node of int * 'a * 'a Tree * 'a Tree

fun select_kth k (Leaf v1) (Leaf v2) =

if gt v2 v1 then if eq k 0 then v1 else v0

else if eq k 0 then v0 else v1

| select_kth k (Leaf v1) (Node (n2,v2,l2,r2)) =

if gt v2 v1 then if gt k n2

then select_kth (sub k n2) (Leaf v1) r2

else select_kth k (Leaf v1) l2

else if gt n2 k

then select_kth k (Leaf v1) l2

else select_kth (sub k n2) (Leaf v1) r2

| select_kth k (Node (n1,v1,l1,r1)) (Leaf v2) =

select_kth k (Leaf v2) (Node (n1,v1,l1,r1)) =

| select_kth k (Node (n1,v1,l1,r1)) (Node (n2,v2,l2,r2)) =

if gt v2 v1 then if gt k (add n1 n2)

then select_kth k (Node (n1,v1,l1,r1)) l2

else select_kth (sub k n1) r1 (Node (n2,v2,l2,r2))

else if gt k (add n1 n2)

then select_kth k l1 (Node (n2,v2,l2,r2))

else select_kth (sub k n1) (Node (n1,v1,l1,r1)) r2

fun merge (Leaf x) b = insert x b

| merge a (Leaf y) = insert y a

| merge a b =

let val k = div2 (add (size a) (size b))

val median = select_kth k a b

in

append (merge (take_less a median) (take_less b median))

(merge (drop_less a median) (drop_less b median))

fun mergesort xs =

if lt (size xs) 2 then xs

else let val half = div2 (size xs)

in merge (mergesort (take xs half)) (mergesort (drop xs half))

Figure 10.5: PAL/PSL (tree-based) code of the parallel mergesort algorithm. This code uses

syntactic extensions easily translatable into the syntax of the PAL and PSL.



10.2. SPECIFIC ALGORITHMS 199

datatype 'a Tree =

Leaf of 'a

| Node of 'a * 'a Tree * 'a Tree

fun even_elts (Tree (Leaf x,Leaf y)) = Leaf y

| even_elts (Tree (left,right)) = append (even_elts left) (even_elts right)

and odd_elts (Tree (Leaf x,Leaf y)) = Leaf x

| odd_elts (Tree (left,right)) = append (odd_elts left) (odd_elts right)

fun map2 f (Leaf x) (Leaf y) = Leaf (f y w)

| map2 f (Tree (xl,xr)) (Tree (yl,yr)) = append (map2 f xl yl) (map2 f xr yr)

fun fft (Leaf x) _ = Leaf x

| fft xs ws =

let rs1 = fft (even_elts xs) (even_elts ws)

rs2 = fft (odd_elts xs) (even_elts ws)

in map2 add (append rs1 rs1) (map2 mul (append rs2 rs2) ws)

Figure 10.6: PAL/PSL (tree-based) code for the parallel FFT algorithm, assuming the input

size is a power of two. This code uses syntactic extensions easily translatable into the syntax

of the PAL and PSL.

fun even_elts xs = pack ({x : x in xs},{even i : i in index (#xs)})

fun odd_elts xs = pack ({x : x in xs},{odd i : i in index (#xs)})

fun fft xs ws =

if lt (#xs,2) then xs

else let xys = {fft xs' (even_elts ws): xs' in [even_elts xs,odd_elts xs]}

in {add x (mul y w): x in ++ (elt (xys,0),elt (xys,0))

y in ++ (elt (xys,1),elt (xys,1))

w in ws}

Figure 10.7: NESL (sequence-based) code for the parallel FFT algorithm.



200 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

Theorem 10.6 (FFT in PAL) The FFT algorithm fft shown in Figure 10.6, when applied

to balanced trees each with m leaves, will execute in O(m logm) work and O(log2m) depth

on the PAL model.

Proof: First, examine the helper functions. Each requires constant work per element and

recurses on each half of its input. Thus they require O(m0) work and O(logm0) depth on

balanced trees of with m0 leaves.

The main function, fft, also recurses on each half of its input. But before recursing, it

performs O(m0) work and O(logm0) depth, assuming its input is balanced and has m0 leaves.

Its input is balanced initially by assumption, and throughout the recursion by induction.

Thus its costs are as follows:

W (m) = 2W (m2 ) + O(m)

= O(m logm)

D(m) = 2D(m
2 ) + O(logm)

= O(log2m)

2

Theorem 10.7 (FFT in PSL) The FFT algorithm fft shown in Figure 10.6, when applied

to balanced trees each with m leaves, will execute in O(m logm) work and O(logm) depth on

the PSL model.

Proof Outline: Here we discuss only the depth bound, as the work bound holds by Theo-

rems 10.6 and 10.9. We assume the whole input tree exists when starting the algorithm, so

its time-stamps are all 1. Examining the time-stamps on the trees built during the algorithm,

we show that the time-stamps on the output tree are O(logm).

We �rst examine time-stamps as the algorithm recurses on progressively smaller trees.

Each call to even elts and odd elts creates a new tree by recursing down its input tree

and �nally selecting half of the leaves. They each build their result top-down, i.e., the nodes

at the top are created before those at the bottom. This is possible in the speculative model

since each thread spawns child threads to build each subtree while this thread creates and

returns a node. The time-stamp of each node in the result is the maximum of one more

than the time when the algorithm recurses down to this level of the input tree and one

more than the time-stamp of the needed data of the input tree. The top row of Figure 10.8

shows the time-stamps of trees during the recursive descent. This idealizes the amount of

computation in these functions to a single step per node. It also idealizes computation by

grouping function calls, such as the four calls to even elts and odd elts, into single steps

and ignores additional overhead such as calls to append. As a result of the idealization, the

time-stamps form a simple pattern down the tree. These idealized time-stamps are within a

constant factor of the corresponding depths since each recursive call of the algorithm adds



10.2. SPECIFIC ALGORITHMS 201

Time: 1

Call(s): (Start of algorithm)

Time-

stamps:

1

1 1

1 1

1 1 1 1

1 1

1 1 1 1

Time: 2 3 4 5 6 7 8

Call(s): fft * elts fft * elts fft * elts fft

Time-

stamps:

4

5 5

6 6 6 6

6

7 7

8

Time: 9 10 11

Call(s): addmult addmult addmult

Time-

stamps:

10

11 11

11

12 12

13 13 13 13

12

13 13

14 14

15 15 15 15

14 14

15 15 15 15

Figure 10.8: Time-stamps during PSL FFT algorithm. Tree nodes are labeled with their

idealized time-stamps. The trees are the the result of the given function call made at the

given idealized time.



202 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

only constant depth, i.e., at most pattern matching the input, binding a constant number of

variables, and calling a constant number of functions.

Next we examine time-stamps as the algorithm comes back up the recursion, using

addmult. Each call to addmult creates a new tree by recursing down its input and �nally

performing the arithmetic. It also builds its result top-down. The bottom row of Figure 10.8

shows the time-stamps of tree during the recursive ascent, again idealizing computation as

before.

The computation depth of the entire algorithm can now be broken into three components,

each of which is O(logm):

� the depth of the recursive descent,

� the depth of the recursive ascent, and

� the delay for the threads to create the entire tree once the main thread is done.

Thus, the entire computation is of O(logm) depth. 2

Theorem 10.8 (FFT in NESL) The FFT algorithm of Figure 10.7 when applied to bal-

anced trees each with m leaves will execute in O(m logm) work and O(logm) depth on the

NESL model [15].

10.3 Comparing models

Now that we have compared these three models on three speci�c algorithms, we make some

more general statements about how the costs of these models relate. We then de�ne and use

a general relation of cost-expressiveness.

10.3.1 PAL and PSL

The previous comparisons, along with the de�nitions of computation graphs, suggest that

the PSL model is more e�cient than the PAL model. Here we show that this is the case for

any given program, but possibly not in general. Note that we ignore the space of the PAL

computation since we do not track the space of the PSL computation.

Theorem 10.9 (Equivalence of PAL and PSL) If e evaluates in the PAL pro�ling se-

mantics:

�; �; fg ` e PAL�! v; �; g;�;

then it also evaluates in the PSL pro�ling semantics:

�; � ` e PSL�! v0; �0; g0

such that



10.3. COMPARING MODELS 203

� they compute with equal work: W (g) = W (g0),

� the PSL requires no more depth than the PAL to obtain a result: D(g) � D(g0), and

� the PSL requires no more depth than the PAL to terminate: D0(g) � D(g0).

Proof Outline: This can be proved formally by generalizing the contexts to all environments

and stores, using induction on the structure of e, which requires a case analysis on the form

of e. In each case, we inspect the graphs formed by the appropriate pairs of semantics rules.

For each kind of expression, the PSL graph has exactly as many nodes (work) and at most

as many levels (depth) as the corresponding PAL graph.

For example, examine the graphs for the application e1 e2 where e1 evaluates to a closure,

i.e., those formed by the APP rule of each model. Induction shows that the theorem holds

for the subcomputations e1, e2, and the body of the closure that e1 evaluates to. Each APP

rule creates a graph with the graphs of the subcomputations and exactly two new nodes.

Thus the work of the graphs are equal. Each APP rule also adds edges to the result graph.

The PSL adds three edges corresponding exactly to three of the PAL edges. The PSL may

also add data edges via the VAR rule, but these impose no greater constraint that the fourth

PAL edge, by the third conclusion of the e2 induction. 2

Theorem 10.10 (PSL sometimes faster than PAL) There exist algorithms which exe-

cute with asymptotically less depth in the PSL model than in the PAL model.

Proof: Follows from Theorems 10.6 and 10.7. 2

However, this does not prove that these programs cannot be rewritten in the PAL model

to be as e�cient as those in the PSL model. I.e., this does not show the PAL model to be

less e�cient than the PSL in solving problems.

10.3.2 NESL and PAL

It should be clear that the NESL model is more time-e�cient than the PAL model. First we

show that NESL can simulate PAL with only constant cost overhead. That NESL is strictly

more time-e�cient then follows from the simple example of adding one to a collection of

numbers, which requires only constant depth in the NESL model.

Theorem 10.11 (PAL and NESL) If e evaluates in the PAL pro�ling semantics:

�; �; fg ` e PAL�! v; �; g; s;

then it can be simulated in the NESL pro�ling semantics:

�; � ` T[[e]] NESL�! v0; �0; g0; s0

such that



204 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

� they compute within a constant factor of the same work: k �W (g) = W (g0), and

� NESL requires no more than an extra constant factor extra depth: k �D(g) � D(g0),

for some constant k.

Proof Outline: To show this we need to give a translation T[[]] from the PAL model to the

NESL model. This would be the identity, except for translating the PAL model's parallel

application e1 e2 in terms of the parallel NESL for-each:

fx 0 : x in [� :e1; � :e2]g

where we use constant sequences for brevity. Clearly this introduces at most constant extra

work and depth.

Note that this translation would not be typable in most type systems with homogeneous

sequences (e.g., as in existing NESL implementations). In the presence of types, a NESL

simulation of the PAL model would need to encode the PAL expressions in some NESL type

and then simulate the P-CEKqPAL or a similar machine. 2

The two models are equally space-e�cient since they require equal space overhead (cf.

Corollaries 7.2 and 9.4) and the PAL can encode any NESL sequence as a tree or list with

only a constant factor space overhead for the pointers.

10.3.3 Simulation of traditional models

This section describes the simulation of a PRAM on the PAL. The simulation we use gives the

same results for the EREW, CREW, and CRCW PRAM as well as for the multipre�x [100]

and scan models [12]. The simulation is optimal in terms of work for all the PRAM variants.

This is because it takes logarithmic work to simulate each random access into memory (this

is the same as for pointer machines [7]). Since we don't know how to do better for the

weaker models, we will base our results on the most powerful model, the CRCW PRAM with

unit-time multipre�x sums (MP PRAM).

Theorem 10.12 (PRAM simulation on PAL) A program that runs in time t on a p pro-

cessor MP PRAM using s space can be simulated on the PAL model with O(p log s) work and

O(t log s log p) depth.

Proof: We will simulate a PRAM based on state transitions on the state (C; S; P ) where C

is the code, S is the global state, and P is per-processor state (i.e., registers and program

counter). Let c = jCj, s = jSj, and p = jP j, and assume that c � s and p � s. For

e�cient access, the simulation stores C, S, and P as balanced binary trees. Each state

transition corresponds to a step of the PRAM, and the processors will be strictly synchronous.

Register-to-register instructions can be implemented with O(p) work and O(log p) depth, and

concurrent reads with O(p log s) work and O(log s) depth. This just requires traversing the



10.3. COMPARING MODELS 205

appropriate trees. The writes are the only interesting instruction to implement, and can be

implemented by sorting the write requests from the processors by address and then recursively

splitting the requests at each node of S as we insert them. We can sort the p requests in

O(p log p) work and O(log2 p) depth. We assume the sorted requests, which we call the

write-tree W , start out balanced and are sorted from left to right in the tree. To implement

a concurrent write or multipre�x, we combine nodes in the write-tree that have the same

address. Since the addresses are sorted this can be done in O(p) work and O(log p) depth.

We now consider the insertion of the sorted requests of a write-tree W into state S (i.e.,

modify(S,W)). We assume that S stores the addresses and associated values at the leaves,

ordering the addresses from left-to-right, and that the internal nodes contain the value of the

greatest address in the left branch. We assume all addresses in W are also in S, and that

each node of W stores the minimum and maximum address of its descendants, so that we

can access these in constant work and depth. To insert W into S, we �rst check if S is a

single node, in which case W must also be a single node, and we simply modify the value and

return. Otherwise, we check if all the addresses in W belong to just one of the branches of

the S tree. If so, we call modify recursively on that branch of S with the same W and put

the result back together with the other branch of S when the call returns. If not, we split W

based on the address stored at the root of S and call modify in parallel on the two children

of S and the two split parts of W . This algorithm works since all addresses in the original

write-tree will eventually �nd their way to the appropriate leaf of the S tree and modify that

leaf.

We now consider the total work and depth required. Splitting W into two trees based on

a key can be implemented in O(log p) work and depth by following down to the appropriate

leaf, splitting along the way. Since S is of depth log2 s, the total depth complexity is therefore

bound by O(log p log s). To prove the bounds on the work, we observe that it cannot take

more than O(p log p) work to split the tree into p pieces of size 1 since each split takes O(log p)

work and there are p � 1 of them. This means the total work needed to split the original

write-tree is bound by O(p log p). The only other work is the check at each node of the S

tree of whether we have to split or send all values down to one or the other branches. The

maximum work done for these checks is O(p log s) since there can be at most p separate chains

(one per leaf of the write-tree) each which is at most as deep as the S tree (O(log s)) since

c � s and p � s. The total work is therefore O(p(log p+ log s)) = O(p log s), since p � s. 2

We now relate the PAL to another common parallel complexity class. NC is the class

of problems solvable on a PRAM (any variant) in polylogarithmic time with a polynomial

number of processors.

Corollary 10.2 (PAL relation to NC) Restricting the PAL model to those expressions

that evaluate in polynomial work and polylogarithmic depth is equivalent to the NC complexity

class.

Proof: Any NC problem is solvable on a PRAM in polylogarithmic time with polynomial

processors, by de�nition. By Theorem 10.12, this is solvable on the PAL within the desired



206 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

bounds.

A PAL expression that requires polynomial work and polylogarithmic depth can be sim-

ulated on a PRAM in polylogarithmic time assuming we use as many processors as there is

work, as seen from Corollary 7.2. 2

These bounds also holds for the PSL model. If we knew how to sort faster on the PSL

model than the PAL model, we could improve upon these bounds for the PSL. A similar

simulation results in the same bounds for the NESL model.

10.3.4 Cost-expressiveness

We can generalize these comparisons by de�ning the notion of cost-expressiveness, which

describes how e�ciently models can simulate each other. E.g., intuitively we would say that

the NESL model is more time-expressive than the PAL model. This is based on extensional

ideas of expressiveness, which are concerned with how languages compare in computational

power.

Comparing two language models in isolation is meaningless because the abstract costs

of the models have no a priori relation to each other. Rather, the comparison must occur

relative to some machine model on which both language models are implemented. This

gives a common base to compare costs. E.g., an accurate restatement of the NESL/PAL

relationship is that NESL is more time-expressive than and equally space-expressive as the

PAL model, relative to any of the PRAM, hypercube, and butter
y. In contrast, the NESL

and PAL models are equally work-, depth-, and space-expressive relative to the PAL model3.

De�nition 10.1 (Cost-expressiveness) We now de�ne when model A is at least as cost-

expressive as model B, relative to implementation on model C, for implementation cost

measure c, or A �C;cce B. For some implementation of B in C, choose an implementation of

A in C. For all functions f , if some B-program computes f with c-complexity O(cB), then

some A-program computes f with c-complexity O(cA) such that O(cA) � O(cB).

Note that we can choose a di�erent implementation of A for each implementation of B.

While model B may have an optimal implementation in model C, this is not always true. For

example, while most NESL functions are faster in an implementation that uses pointer-based

nested sequences, some like 
attening and partitioning would be faster in an implementation

that uses 
attened nested sequences. The de�nition allows model A di�erent implementations

for each of these for the model to be more cost-expressive than NESL.

Having a de�nition does not make general comparisons of cost-expressiveness easy. The

following are some of the general statements that we can make:

� A non-Turing-equivalent model A cannot be as or more cost-expressive than a Turing-

equivalent model B, relative to any Turing-equivalent model, for any cost. This is

3Any model can be treated as a \machine" model!



10.3. COMPARING MODELS 207

Relation Follows from

PSLf �X;tce PAL Th. 10.9, Cor. 7.2, Cor. 8.4

PSLp >X;tce PSLf Sec. 8.5.3

NESL >X;tce PAL Sec. 10.3.2, Cor. 7.2, Cor. 9.4

NESL =X;sce PAL Sec. 10.3.2

PAL >X;tce NC Cor. 10.2

Figure 10.9: Summary of PAL, PSL, and NESL cost-expressiveness. Here, X is any of the

butter
y, hypercube, and PRAM models of Section 7.1.

because model B can compute more than A. However, B is not necessarily more

cost-expressive than A, because it may be less e�cient for what A can compute, thus

they may be incomparable. This generalizes beyond Turing-equivalence to any idea of

computability, e.g., recursive enumerability.

� No model A is more cost-expressive than model B relative to model B, for any cost.

I.e., nothing can be simulated in B any better than running native code.

� If model A strictly extends model B with additional features, then A is at least as

cost-expressive as B, relative to any other model and for any costs. The extra features

in A can be ignored for the comparison, but may give model A an advantage.

Figure 10.9 summarizes some of our previous results, put in terms of cost-expressiveness.



208 CHAPTER 10. ALGORITHMS AND COMPARING MODELS



Part IV

Conclusions

209





Chapter 11

Conclusions

We conclude with a summary of the contributions of this dissertation in Section 11.1 and a

discussion of future extensions of this work in Section 11.2.

11.1 Summary of contributions

The primary conceptual contribution of this dissertation is the idea of provably e�cient im-

plementations. This extends previous work on providing provably correct implementations

by also giving e�ciency bounds on the implementation. Each provably e�cient implemen-

tation consists of an abstract language model and a machine model, each with de�nitions of

execution costs, and an implementation of the language model in the machine model and the

cost mapping that induces.

This concept is useful for the language designers, implementors, and users (i.e., pro-

grammers) alike. The designer is able to provide more complete speci�cations by describing

intensional requirements. The implementor has a more complete speci�cation, and this for-

mal speci�cation can be used to verify the extensional and intensional correctness of the

implementation. The speci�cation can also guide language development tools such as pro�l-

ers and automatic complexity analyzers. It can also guide optimizations within the compiler.

The programmer has an abstract summary of the costs of executing a program, together

with mappings of these costs onto each target machine|the the programmer should not be

expected to know the details of each compiler.

The dissertation describes three speci�c parallel models, and variants of these, based

on fork-and-join parallelism, speculative parallelism, and data-parallelism (the PAL, PSL,

and NESL models, respectively). While many language models could be described in the

framework of provably e�cient implementations, these models o�er two core bene�ts. First,

they are purely functional, and thus have relatively simple semantics which are suitable for use

as intuitive examples. Second, they are parallel, with run-time costs of their implementations

that are not readily apparent.

For each model, we provide a pro�ling semantics that de�nes its abstract costs. All

211



212 CHAPTER 11. CONCLUSIONS

three de�ne the amount of computation and parallelism of the evaluation using computation

graphs. The PAL and NESL models also de�ne the amount of maximum reachable space

during evaluation.

The de�nition of the PSL model is simpler than Roe's similar model, while more use-

ful for describing parallelism. The PSL de�nes computation graphs, and thus the amount

of parallelism available, unlike those of Roe [105, 106], Flanagan and Felleisen [37], and

Moreau [84, 85], which only de�ne the work of a computation. Similarly, the computation

graphs in the NESL model are a more appropriate measure of parallelism than the maximum

number of useful processors as de�ned by Zimmermann [128]. And this de�nition is formal,

unlike that speci�ed for NESL [14].

For each of these language models, we give a formal implementation onto the hypercube,

butter
y, and PRAM machine models, and obtained the induced cost mapping. The spec-

ulative implementation is asymptotically faster than those used in practice, as it correctly

parallelizes the suspension and reawakening of blocked threads. It is a much more detailed

implementation that than of Moreau [84]. The data-parallel implementation is asymptotically

more space-e�cient than the current version of NESL.

We examine three examples|quicksort, mergesort, and Fast Fourier Transform|of how

to program and analyze program costs in these models. We also de�ne a general relation,

called cost-expressiveness, of cost models based on the intensional aspects of the models and

their implementations. We derive some classes of instances of the relation from its de�nition,

and show additional instances relating the PAL, PSL, and NESL, based on the previous

content of the dissertation.

In the future, we suggest that a de�nition of a language should include not only its

extensional semantics, but also a pro�ling semantics and a provably e�cient implementation.

11.2 Future work

We brie
y discuss the practicality of the implementations and three types of extensions to

this work: additional models, more detailed models, and automated use of such models.

11.2.1 Practicality of implementations

The dissertation has concentrated on asymptotic behavior at the cost of ignoring constant

overheads. In particular, while we account for communication costs, we ignore the fact that

communication is typically signi�cantly slower than computation. Throughout the disser-

tation, we have mentioned possible improvements. Here we brie
y discuss some additional

pragmatic issues about the implementations and how they could be modi�ed to reduce the

constants.

The implementations aggressively create many threads to maximize parallelism and fre-

quently synchronize all threads to guarantee load-balancing. Since most expressions are

relatively simple, and the cost of thread management is high, creating a thread for each



11.2. FUTURE WORK 213

subexpression involves too much overhead (e.g., [96]). Furthermore, each step performs little

computation between each load-balancing. Thus the ratios of computation to both overhead

and communication are relatively low.

One way to increase both ratios is grouping multiple sets of substeps between each load-

balancing. E.g., in the PAL implementation, a step could �rst evaluate each selected state

two units of work, resulting in up to four new states, and then synchronize on all of these

states. This reduces the number of load-balancing steps by half. In terms of the computation

graph, this means that on each step the machine visits some set of ready nodes and then

immediately visits the ready children of those nodes. This is the same basic idea as work

examining heuristics for building large sequential blocks of code, e.g., [57, 96]. As long as

each step performs constant work per selected state, this does not e�ect our asymptotic time

bounds, but reduces load-balancing costs and other overhead by a constant factor. Another

improvement that is easy to incorporate is to avoid load-balancing whenever the number of

active states is no greater than the number of processors.

We have also not addressed data locality. For example, one problem with the speculative

model is that it accesses a remote threads to use those threads' �nal values. One improvement

would be to cache those results in the local environment.

One way to reduce the space used is to introduce garbage collection of the various seman-

tics objects. This can be done within the given work and space bounds.

Naturally, coding these implementations is necessary for more complete pragmatic com-

parisons. The implementations should be compared to those of languages such as Id, pH,

and NESL, as appropriate.

11.2.2 Additional models

The framework of provably correct implementations could be used with any language model,

and some speci�c models o�er themselves as obvious next targets.

First, the speculative model could be adapted in two orthogonal ways:

� It could incorporate side-e�ects and/or continuations, in the style of Moreau [84, 85].

The only signi�cant change required is adding legitimacies to ensure that side-e�ects

and continuations happen in the same order as they would serially.1 An important

question is how much this serializes the implementation.

� It could be based on the more traditional implementation strategy of assigning threads

to processors and letting them run until they �nish or block. How can that strategy be

adapted to execute within the bounds shown here?

Furthermore, it would be valuable to prove some results about the space usage of specu-

lative computation and compare this to the other models. Is there a more space-e�cient

implementation of speculative computation that also adequately parallelizes?

Second, the data-parallel model could be adapted in three orthogonal ways:

1This requirement is simply an assumption made by Moreau and others.



214 CHAPTER 11. CONCLUSIONS

� It could optimize some applications of put so that if its �rst argument value is not

needed again, the application updates that sequence rather than creating a new one.

When this case occurs, the application requires work proportional only to the number

of updates rather than also to the size of the argument. It appears that a conservative

reference counting can be implemented with only a constant factor overhead that is

su�ciently accurate to detect some common cases when a sequence value is no longer

needed. This results in asymptotically less work for some programs that repeatedly

update sequences.

� It could be based on the implementation strategy of 
attening nested data-parallelism,

as in NESL. In the compilation to an ArrL-like language, nested uses of data-parallelism

are compiled into single uses of data-parallelism on larger, 
attened sequences. Its

advantage is this increases the granularity of parallelism, often dramatically. The dis-

advantage is that it can asymptotically increase the size of sequences in the ArrL-like

language, so that applications of constant functions can take asymptotically longer.

� Side-e�ects and other features could be added to model HPF, etc. As in the speculative

model, the models would need to specify how any side-e�ects interact with parallelism.

The following examples are meant to hint at the range of additional properties and lan-

guages that are of interest:

� In languages with nested lexical scoping and �rst-class functions, how much space is

required to store environments (bindings for variables) and how much time is required

to add to or lookup from an environment?

� In functional languages, when is data copied and how much space do these copies take?

This includes the question of whether tail recursion is used or not.

� In lazy languages, such as Haskell and Miranda, which expressions are executed is not

readily apparent. Which are executed, how long will they take, in what order are they

executed, and how much space does they use?

� In declarative languages such as Prolog, how long does searching for applicable rules,

unifying terms, and backtracking take?

� In parallel languages, how long does communication take, and how does this a�ect the

scheduling order of computations and thus other behaviors such as the allocation of

memory?

With signi�cantly di�erent models, such as those based on object-oriented or declarative

languages, we would use the same basic idea of de�ning an abstract semantics with cost

information and relating this to machine models. Details such as the most appropriate form

of an operational language semantics would likely need to change.



11.2. FUTURE WORK 215

11.2.3 More detailed models

The models could also incorporate more detailed costs to accurately measure run-time costs,

i.e., worrying about constant factors. I.e., provide a microanalysis, as opposed to our current

macroanalysis [28]. At the simplest level, this could be distinguishing between the various

costs here described as unit cost, e.g., assigning some constant applications to be twice as

expensive as others. More generally, this requires incorporating into the semantics anything

considered relevant that a�ects the costs. At the extreme, this would include caches and

processor pipelines. It could also include re
ecting the distinctions made by compiler opti-

mizations. While allowing more accurate de�nitions of given implementations, incorporating

that level of detail negates the advantages of having an abstract language model.

Also, we could include more a formal treatment of garbage collection. This includes incor-

porating garbage collection formally into the implementations, proving the bounds outlined

in Appendix B, and potentially improving upon these bounds.

11.2.4 Additional and more detailed comparisons of models

Within the given framework, additional comparisons of the models should be possible. In

particular, we have only conjectured that the PSLf is strictly more time-expressive than the

PAL. One way to show this would be proving that no PAL FFT algorithm requires only

logarithmic depth. We have also not addressed how the PSL and NESL models compare.

However, we conjecture that the NESL variant with the optimized put operation can simulate

the PSL with TF (p) work and depth overhead. The key is to have NESL simulate the PRAM

using one large sequence to represent the PRAM memory. The optimization avoids any

copying of this sequence.

Given more detailed models as previously described, we could also make more detailed

comparisons.

11.2.5 Automated use of models

The original motivation for this work was to extend the work of automatic complexity anal-

ysis. Thus, a logical step would be to use these models as the core of automatic complexity

analysis tools such as Metric, ACE, COMPLEXA, and ��
 [124, 77, 35, 126], Kishon's

pro�ling tool [66, 65], or compiler analyses.



216 CHAPTER 11. CONCLUSIONS



Bibliography

[1] Samson Abramsky and R. Sykes. Secd-m: A virtual machine for applicative program-

ming. In Jean-Pierre Jouannaud, editor, Proceedings 2nd International Conference on

Functional Programming Languages and Computer Architecture, number 201 in Lecture

Notes in Computer Science, pages 81{98, 1985.

[2] Shail Aditya, Arvind, Jan-Willem Maessen, Lennart Augustsson, and Rishiyur S.

Nikhil. Semantics of pH: A parallel dialect of Haskell. Technical Report Computa-

tion Structures Group Memo 377-1, Laboratory for Computer Science, Massachusetts

Institute of Technology, June 1995.

[3] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[4] Boon S. Ang, Alejandro Caro, Stephem Glim, and Andrew Shaw. An introduction to the

Id compiler. Technical Report Computation Structures Group Memo 328, Laboratory

for Computer Science, Massachusetts Institute of Technology, May 1991.

[5] Andrew W. Appel. Compiling with continuations. Cambridge University Press, 1992.

[6] Henry G. Baker, Jr. and Carl Hewitt. The incremental garbage collection of processes.

In Proceedings of Symposium on AI and Programming Languages, volume 12 of SIG-

PLAN Notices, pages 55{59, August 1977.

[7] Amir M. Ben-Amram and Zvi Galil. On pointers versus addresses. Journal of the ACM,

39(3):617{648, July 1992.

[8] Guy Blelloch, Phil Gibbons, and Yossi Matias. Provably e�cient scheduling for lan-

guages with �ne-grained parallelism. In ACM Symposium on Parallel Algorithms and

Architectures, pages 1{12, July 1995.

[9] Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In

Proceedings 7th International Conference on Functional Programming Languages and

Computer Architecture, pages 226{237, June 1995.

217



218 BIBLIOGRAPHY

[10] Guy Blelloch, Gary L. Miller, and Dafta Talmor. Developing a practical projection-

based parallel Delaunay algorithm. In Proceedings ACM Symposium on Computational

Geometry, May 1996.

[11] Guy Blelloch and Girija Narlikar. A comparison of two n-body algorithms. In DIMACS

Implementation Challenge Workshop, October 1994.

[12] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Com-

puters, C-38(11):1526{1538, November 1989.

[13] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

[14] Guy E. Blelloch. NESL: A nested data-parallel language (version 3.1). Technical Report

CMU-CS-95-170, Carnegie Mellon University, 1995.

[15] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM,

pages 85{97, March 1995.

[16] Guy E. Blelloch and John Greiner. A parallel complexity model for functional lan-

guages. Technical Report CMU-CS-94-196, Carnegie Mellon University, October 1994.

[17] Guy E. Blelloch and Jonathan C. Hardwick. Class notes: Programming parallel al-

gorithms. Technical Report CMU-CS-93-115, Carnegie Mellon University, February

1993.

[18] R. D. Blumofe and C. E. Leiserson. Space-e�cient scheduling of multithreaded compu-

tations. In Proceedings 25th ACM Symposium on Theory of Computing, pages 362{371,

May 1993.

[19] E. B�orger and I. Durdanovi�c. Correctness of compiling Occam to Transputer code. The

Computer Journal, 39(1):52{92, 1996.

[20] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of

the ACM, 21(2):201{206, 1974.

[21] Stephen Brookes and Shai Geva. Computational comonads and intensional semantics.

Technical report, Carnegie Mellon University, 1991.

[22] F. W. Burton and D. J. Simpson. Space e�cient execution of deterministic parallel

programs. August 1996.

[23] F. Warren Burton. Guaranteeing good memory bounds for parallel programs. January

1996.



BIBLIOGRAPHY 219

[24] Bettina Buth, Karl-Heinz Buth, Martin Fr�anzle, Burghard von Karger, Yassine

Lakhneche, Hans Langmaack, and Markus M�uller-Olm. Provably correct compiler de-

velopment and implementation. In U. Kastens and P. Pfahler, editors, Compiler Con-

struction, number 641 in Lecture Notes in Computer Science, pages 141{155. Springer-

Verlag, 1992.

[25] Wentong Cai and David B. Skillicorn. Calculating recurrences using the Bird-Meertens

formalism. Parallel Processing Letters, 5(2):179{190, June 1995.

[26] David Callahan and Burton Smith. A future-based parallel language for a general-

purpose highly-parallel computer. In David Galernter, Alexander Nicolau, and David

Padua, editors, Languages and Compilers for Parallel Computing, Research Mono-

graphs in Parallel and Distributed Computing, chapter 6, pages 95{113. MIT Press,

1990.

[27] William Clinger and Jonathan Rees. Revised4 report on the algorithmic language

Scheme. LISP Pointers, IV(3):1{55, July{September 1991.

[28] Jacques Cohen. Computer-assisted microanalysis of programs. Communications of the

ACM, 25(10):724{733, October 1982.

[29] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal

parallel list ranking. Information and Control, 70(1):31{53, 1986.

[30] James R. Driscoll, Neil Sarnak, Daniel D. K. Sleator, and Robert E. Tarjan. Making

data structures persistent. Journal of Computer and System Sciences, 38(1):86{124,

February 1989.

[31] Marc Feeley. An E�cient and General Implementation of Futures on Large Scale

Shared-Memory Multiprocessors. PhD thesis, Brandeis University, June 1993.

[32] Matthias Felleisen. On the expressive power of programming languages. Science of

Computer Programming, 17(1{3):35{75, December 1991.

[33] Matthias Felleisen and Daniel P. Friedman. A calculus for assignments in higher-

order languages. In Proceedings 13th ACM Symposium on Principles of Programming

Languages, pages 314{325, January 1987.

[34] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal language

project. Journal of Parallel and Distributed Computing, 10:349{366, 1990.

[35] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Lambda-Upsilon-Omega:

An assistant algorithms analayzer. Applied Algebra, Algebraic Algorithms and Error-

Correcting Codes, 357:201{212, June 1989.



220 BIBLIOGRAPHY

[36] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Automatic average-case anal-

ysis of algorithms. Theoretical Computer Science, 79(1):37{109, February 1991.

[37] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in pro-

gram optimization. In Proceedings 22nd ACM Symposium on Principles of Program-

ming Languages, pages 209{220, 1995.

[38] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceed-

ings 10th ACM Symposium on Theory of Computing, pages 114{118, 1978.

[39] Daniel P. Friedman and D. S. Wise. The impact of applicative programming on mul-

tiprocessing. In Proceedings International Conference on Parallel Processing, pages

263{272, 1976.

[40] Daniel P. Friedman and D. S. Wise. Aspects of applicative programming for parallel

processing. IEEE Transactions on Computers, 27(4):289{296, April 1978.

[41] Joseph Gil and Yossi Matias. Fast and e�cient simulations among CRCW PRAMs.

Journal of Parallel and Distributed Computing, 23(2):135{148, November 1994.

[42] Joseph Gil, Yossi Matias, and Uzi Vishkin. Towards a theory of nearly constant time

parallel algorithms. In IEEE Annual Symposium on Foundations of Computer Science,

pages 698{710, October 1991.

[43] T. Goldberg and U. Zwick. Optimal deterministic processor allocation. In Proceedings

4th ACM-SIAM Symposium on Discrete Algorithms, pages 220{228, January 1995.

[44] Michael T. Goodrich and S. Rao Kosaraju. Sorting on a parallel pointer machine with

applications to set expression evaluation. In Proceedings 30th IEEE Annual Symposium

on Foundations of Computer Science, pages 190{195, November 1989.

[45] Allan Gottlieb, B. D. Lubachevsky, and Larry Rudolph. Basic techniques for the ef-

�cient coordination of very large numbers of cooperating sequential processors. ACM

Transactions on Programming Languages and Systems, 5(2), April 1983.

[46] John Greiner. A comparison of parallel algorithms for connected components. In

Proceedings 6th ACM Symposium on Parallel Algorithms and Architectures, pages 16{

25, June 1994.

[47] John Greiner and Guy E. Blelloch. A provably time-e�cient parallel implementation of

full speculation. In Proceedings 23rd ACM Symposium on Principles of Programming

Languages, pages 309{321, January 1996.

[48] Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in an expression-oriented

multiprocessor system. ACM Transactions on Programming Languages and Systems,

3(1):49{59, January 1981.



BIBLIOGRAPHY 221

[49] Douglas J. Gurr. Semantic Frameworks for Complexity. PhD thesis, University of

Edinburgh, January 1991.

[50] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.

ACM Transactions on Programming Languages and Systems, 7(4):501{538, October

1985.

[51] Robert H. Halstead, Jr. New ideas in Parallel Lisp: Language design, implementation,

and programming tools. In T. Ito and R. H. Halstead, Jr., editors, Parallel Lisp:

Languages and Systems, US/Japan Workshop on Parallel Lisp, number 441 in Lecture

Notes in Computer Science, pages 2{51. Springer-Verlag, June 1989.

[52] Robert Hood. The E�cient Implementation of Very-High-Level Programming Language

Constructs. PhD thesis, Cornell University, 1982.

[53] Paul Hudak and Steve Anderson. Pomset interpretations of parallel functional pro-

grams. In Proceedings 3rd International Conference on Functional Programming Lan-

guages and Computer Architecture, number 274 in Lecture Notes in Computer Science,

pages 234{256. Springer-Verlag, September 1987.

[54] Paul Hudak and Robert M. Keller. Garbage collection and task deletion in distributed

applicative processing systems. In Proceedings ACM Conference on LISP and Func-

tional Programming, pages 168{178, 1982.

[55] Paul Hudak and Eric Mohr. Graphinators and the duality of SIMD and MIMD. In

Proceedings ACM Conference on LISP and Functional Programming, pages 224{234,

July 1988.

[56] Paul Hudak et al. Report on the functional programming language Haskell, version

1.2. SIGPLAN Notices, 27(5), May 1992.

[57] Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. Using the run-time sizes

of data structures to guide parallel-thread creation. In Proceedings ACM Conference

on LISP and Functional Programming, pages 79{90, July 1994.

[58] Takayasu Ito and Manabu Matsui. A parallel lisp language PaiLisp and its kernal

speci�cation. In T. Ito and R. H. Halstead, Jr., editors, Parallel Lisp: Languages

and Systems, US/Japan Workshop on Parallel Lisp, number 441 in Lecture Notes in

Computer Science, pages 58{100. Springer-Verlag, June 1989.

[59] Joseph J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA,

1992.

[60] Neil D. Jones. Constant time factors do matter (extended abstract). In Proceedings

25th ACM Symposium on Theory of Computing, pages 602{611, May 1993.



222 BIBLIOGRAPHY

[61] Mike Joy and Tom Axford. Parallel combinator reduction: Some performance bounds.

Technical Report RR210, University of Warwick, 1992.

[62] A. R. Karlin and E. Upfal. Parallel hashing: an e�cient implementation of shared

memory. Journal of the ACM, 35:876{892, 1988.

[63] R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory machines.

In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science | Volume A:

Algorithms and Complexity. MIT Press, Cambridge, MA, 1990.

[64] Richard Kennaway. A con
ict between call-by-need computation and parallelism (ex-

tended abstract). In Proceedings Conditional Term Rewriting Systems-94, pages 247{

261, February 1994.

[65] Amir Kishon. Monitoring Semantics: Theory and Practice of Semantics-directed Exe-

cution Monitoring. PhD thesis, Yale University, 1991.

[66] Amir Kishon, Paul Hudak, and Charles Consel. Monitoring semantics: A formal frame-

work for specifying, implementing, and reasoning about execution monitors. In Proceed-

ings ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 338{352, June 1991.

[67] J�urgen Knopp. Improving the performance of parallel lisp by compile time analysis.

In U. Kastnes and P. Pfahler, editors, Compiler Construction, volume 641 of Lecture

Notes in Computer Science, pages 271{277. Springer-Verlag, 1992.

[68] J�urgen Knopp. Touching analysis: Avoiding runtime checking in future-based parallel

languages. In Hesham El-Rewini, Ted Lewis, and Bruce D. Shriver, editors, 26th Pro-

ceedings Hawaii International Conference on System Sciences, volume 2, pages 407{416.

IEEE Computer Society Press, 1993.

[69] David A. Kranz, Jr. Robert H. Halstead, and Eric Mohr. Mul-T: A high-performance

parallel lisp. In Proceedings ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 81{90, June 1989.

[70] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6:308{

320, 1964.

[71] Peter Lee and Uwe Pleban. A realistic compiler generator based on high-level semantics.

In Proceedings 14th ACM Symposium on Principles of Programming Languages, pages

284{299, 1987.

[72] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing and

sorting on �xed-connection networks. Journal of Algorithms, 17(1):157{205, July 1994.



BIBLIOGRAPHY 223

[73] Yossi Matias and Uzi Vishkin. On parallel hashing and integer sorting. Journal of

Algorithms, 12(4):573{606, December 1991.

[74] Yossi Matias and Uzi Vishkin. A note on reducing parallel model simulations to integer

sorting. In Proceedings 9th International Parallel Processing Symposium, pages 208{

212, April 1995.

[75] Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic simulations of PRAMs

by parallel machines with restricted granularity of parallel memory. Acta Informatica,

21:339{374, 1984.

[76] Daniel Le M�etayer. Mechanical analysis of program complexity. In Proceedings SIG-

PLAN Symposium on Language Issues in Programming Environments, 1985.

[77] Daniel Le M�etayer. Ace: An automatic complexity evaluator. ACM Transactions on

Programming Languages and Systems, 10(2):248{266, April 1988.

[78] Daniel Le M�etayer. Analysis of functional programs by program transformation. In

J.-P. Banâtre, S. B. Jones, and D. Le M�etayer, editors, Prospects for Functional Pro-

gramming in Software Engineering, volume 1 of Research Reports, ESPRIT, Project

302, chapter 5, pages 87{120. Springer-Verlag, 1991.

[79] James S. Miller. MultiScheme: A Parallel Processing System Based on MIT Scheme.

PhD thesis, Massachusetts Institute of Technology, September 1987.

[80] Peter H. Mills, Lars S. Nyland, Jan F. Prins, John H. Reif, and Robert A. Wagner.

Prototyping parallel and distributed programs in Proteus. Technical Report UNC-CH

TR90-041, Computer Science Department, University of North Carolina, 1990.

[81] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT

Press, Cambridge, MA, 1990.

[82] John C. Mitchell. On abstraction and the expressive power of programming languages.

In Proceedings Theoretical Aspects of Computer Software, pages 290{310, September

1991.

[83] Luc Moreau. The PCKS-machine. an abstract machine for sound evaluation of parallel

functional programs with �rst-class continuations. In European Symposium on Pro-

gramming, number 788 in Lecture Notes in Computer Science, pages 424{438. Springer-

Verlag, April 1994.

[84] Luc Moreau. The semantics of Scheme with future. Technical Report M95/7, Depart-

ment of Electronics and Computer Science, University of Southampton, 1995.

[85] Luc Moreau. The semantics of Scheme with future. In Proceedings 1st ACM SIGPLAN

International Conference on Functional Programming, pages 146{156, May 1996.



224 BIBLIOGRAPHY

[86] Rishiyur S. Nikhil. The parallel programming language Id and its compilation for

parallel machines. Technical Report Computation Structures Group Memo 313, Mas-

sachusetts Institute of Technology, July 1990.

[87] Rishiyur S. Nikhil. Id version 90.1 reference manual. Technical Report Computation

Structures Group Memo 284-1, Laboratory for Computer Science, Massachusetts Insti-

tute of Technology, July 1991.

[88] Rishiyur S. Nikhil, Arvind, James Hicks, Shail Aditya, Lennart Augustsson, Jan-Willem

Maessen, and Yuli Zhou. pH language reference manual, version 1.0|preliminary.

Technical Report Computation Structures Group Memo 369, Laboratory for Computer

Science, Massachusetts Institute of Technology, January 1995.

[89] Chris Okasaki. Simple and e�cient purely functional queues and dequeues. Journal of

Functional Programming, 5(4):583{592, October 1995.

[90] Randy B. Osborne. Speculative Computation in Multilisp. PhD thesis, Massachusetts

Institute of Technology, December 1989.

[91] Robert Paige. Real-time simulation of a set machine on a RAM. In W. Koczkodaj,

editor, Proceedings International Conference on Computing and Information, volume 2,

pages 68{73, 1989.

[92] Michel Parigot. Programming with proofs: A second order type theory. In H. Ganzinger,

editor, Proceedings 2nd European Symposium on Programming, volume 300 of Lecture

Notes in Computer Science, pages 145{159. Springer-Verlag, 1988.

[93] Andrew S. Partridge. Speculative Evaluation in Parallel Implementations of Lazy Func-

tional Languages. PhD thesis, Department of Computer Science, University of Tasma-

nia, 1991.

[94] Andrew S. Partridge and Anthony H. Dekker. Speculative parallelism in a distributed

graph reduction machine. In Proceedings Hawaii International Conference on System

Sciences, volume 2, pages 771{779, 1989.

[95] Lawrence C. Paulson. A semantics-directed compiler generator. In Proceedings 9th

ACM Symposium on Principles of Programming Languages, pages 224{239, January

1982.

[96] Simon L Peyton Jones. Parallel implementations of functional programming languages.

The Computer Journal, 32(2):175{186, 1989.

[97] Nicholas Pippenger. Pure versus impure lisp. In Proceedings 23rd ACM Symposium on

Principles of Programming Languages, pages 104{109, January 1996.



BIBLIOGRAPHY 225

[98] Uwe F. Pleban and Peter Lee. An automatically generated, realistic compiler for an

imperative programming language. In Proceedings ACM SIGPLAN Conference on

Programming Language Design and Implementation, volume 23 of SIGPLAN Notices,

pages 222{227, June 1988.

[99] Gordon D. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical Com-

puter Science, 1, August 1974.

[100] Abhiram G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University, New

Haven, CT, 1989.

[101] Abhiram G. Ranade. How to emulate shared memory. Journal of Computer and System

Sciences, 42(3):307{326, June 1991.

[102] Rudiger Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM

Journal of Computing, 14(2):396{409, 1985.

[103] Oege de Moor Richard Bird, Geraint Jones. A lazy pure language versus impure lisp.

Post in comp.lang.functional newsgroup, May 1996.

[104] J. W. Riely, J. Prins, and S. P. Iyer. Provably correct vectorization of nested-parallel

programs. In Proceedings Programming Models for Massively Parallel Computers, pages

213{222. IEEE Computer Society Press, October 1995.

[105] Paul Roe. Calculating lenient programs' performance. In Simon L Peyton Jones, Gra-

ham Hutton, and Carsten Kehler Holst, editors, Proceedings Functional Programming,

Glasgow 1990, Workshops in computing, pages 227{236. Springer-Verlag, August 1990.

[106] Paul Roe. Parallel Programming using Functional Languages. PhD thesis, Department

of Computing Science, University of Glasgow, February 1991.

[107] John R. Rose and Guy L. Steele Jr. C*: An extended C language for data parallel pro-

gramming. In Proceedings 2nd International Conference on Supercomputing, volume 2,

pages 2{16, May 1987.

[108] Mads Rosendahl. Automatic complexity analysis. In Proceedings 4th International Con-

ference on Functional Programming Languages and Computer Architecture. Springer-

Verlag, September 1989.

[109] David Sands. Complexity analysis for a lazy higher-order language. In Proceedings

Functional Programming, Glasgow 1989, Workshops in Computing Series. Springer-

Verlag, 1989.

[110] David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, University

of London, Imperial College, September 1990.



226 BIBLIOGRAPHY

[111] David Sands. Time analysis, cost equivalence and program re�nement. In Proceedings

11th Conference on Foundations of Software Technology and Theoretical Computer Sci-

ence, Lecture Notes in Computer Science. Springer-Verlag, December 1991.

[112] Patrick M. Sansom. Execution Pro�ling for Non-strict Functional Languages. PhD

thesis, Department of Computing Science, University of Glasgow, 1994.

[113] Patrick M. Sansom and Simon L Peyton Jones. Time and space pro�ling for non-strict,

higher-order functional languages. In ACM Symposium on Principles of Programming

Languages, 1995.

[114] Helmut Seidl and Reinhard Wilhelm. Probabilistic load balancing for parallel graph

reduction. In Proceedings TENCON '89, 4th IEEE Region 10 International Conference,

pages 879{884, November 1989.

[115] Jon Shultis. On the complexity of higher-order programs. Technical Report CU-CS-

288-85, University of Colorado, Boulder, January 1985.

[116] David B. Skillicorn. The Bird-Meertens formalism as a parallel model. In Proceedings

Software for Parallel Computation, June 1992.

[117] David B. Skillicorn and W. Cai. A cost calculus for parallel functional programming.

Journal of Parallel and Distributed Computing, 28(1):65{83, July 1995.

[118] Dan Suciu and Val Tannen. E�cient compilation of high-level data parallel algorithms.

In Proceedings 6th ACM Symposium on Parallel Algorithms and Architectures, pages

57{66, June 1994.

[119] Carolyn Talcott. Rum: An intensional theory of function and control abstractions. In

Proceedings Workshop on Foundations of Logic and Functional Programming. Springer-

Verlag, 1986.

[120] Kenneth R. Traub. Sequential Implementation of Lenient Programming Languages.

PhD thesis, Massachusetts Institute of Technology, October 1988.

[121] Guy Tremblay and G. R. Gao. The impact of laziness on parallelism and the limits

of strictness analysis. In A. P. Wim Bohm and John T. Feo, editors, Proceedings High

Performance Functional Computing, pages 119{133, April 1995.

[122] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal of Computing,

11(2):350{361, May 1982.

[123] L. G. Valiant. General Purpose Parallel Architectures, volume A, chapter 18, pages

943{972. Elsevier Science Publishers, 1990.



BIBLIOGRAPHY 227

[124] Ben Wegbreit. Mechanical program analysis. Communications of the ACM, 18(9),

September 1975.

[125] C. K. Yuen, M. D. Feng, and J. J. Yee. Speculative parallelism in BaLinda Lisp.

Technical Report TR31/92, Department of Information Systems and Computer Science,

National University of Singapore, November 1992.

[126] Paul Zimmermann and Wolf Zimmermann. The automatic complexity analysis of

divide-and-conquer algorithms. Technical Report 1149, Institut National de R�echerche

en Informatique et en Automatique, Rocquencourt, December 1989.

[127] Paul Zimmermann and Wolf Zimmermann. The automatic complexity analysis of

divide-and-conquer algorithms. Computer and Information Sciences VI, 1:395{404,

November 1991.

[128] Wolf Zimmermann. Automatic worst case complexity analysis of parallel programs.

Technical Report TR-90-066, International Computer Science Institute, December

1990.

[129] Wolf Zimmermann. The automatic worst case analysis of parallel programs: Simple

parallel sorting and algorithms on graphs. Technical Report TR-91-045, International

Computer Science Institute, August 1991.

[130] Wolf Zimmermann. Complexity issues in the design of functional languages with explicit

parallelism. In Proceedings International Conference on Computer Languages, pages

34{43, April 1992.



228 BIBLIOGRAPHY



Appendix A

Glossary

This appendix brie
y describes several array operations which are used in the machine model

implementations and the data-parallel language. See Figure 8.1 for some time bounds on

implementing the fetch-and-add operation. See Figure 7.4 for time bounds on the other

operations.

fetch-and-add In the fetch-and-add [45] (or multipre�x [100]) operation, each processor has

an address and an integer value i.

Consider each set of processors using a given address. Each processor receives the

sum of the initial contents at the address and the values of the processors writing to

the address prior to this processor. The �nal value stored at the address is its initial

contents plus the sum of the appropriate processors' values. Here, we assume that the

fetch-and-add is stable|that lower-numbered processors access their addresses �rst.

For example, a fetch-and-add of an array of addresses [1; 0; 2; 1; 1; 2] and array of values

[3; 8; 4; 12; 5; 7], where the addresses' initial contents are zeroes, results in the new array

[0; 0; 0; 3; 15; 4] and the addresses' contents being 8, 20, and 11.

This can also be described as having each processor, in parallel, atomically fetch its

address' contents and increment it by i. The stable fetch-and-add operation can be

implemented in a butter
y or hypercube network by combining requests as they go

through the network [100], and on a PRAM by various other techniques [73, 41]. If

each processor has at most m data elements to combine, all data can be processed in

O(m+ log p) time on the butter
y and hypercube, and in O(m+ log p= log log p) time

on the CRCW PRAM, each with high probability. We parameterize these bounds to

say that a fetch-and-add on m � p elements requires O(m+ TF (p)) time. For values of

TF (p), see Figure 8.1.

In the degenerate case where all processors use the same address, this implements a

scan (pre�x sum) and reduce on the integer data values. More generally, a fetch-and-op

is de�ned and implemented in the same way for any associative binary operation.

229



230 APPENDIX A. GLOSSARY

scan A scan operation (or pre�x sum) combines each pre�x of an array with an associative

binary operation. For example, the additive scan of [2; 1; 3] is [0; 2; 3; 6].

This is equivalent to a fetch-and-add with all processors using the same address, and

the address' contents initially zero.

If each processor has at most m data elements to combine, all data can be processed

in O(m + log p) time on the butter
y and hypercube, and in O(m + log p= log log p)

time on the CRCW PRAM. We parameterize these bounds to say that a scan on m � p
elements requires O(m+ TS(p)) time. For values of TS(p), see Figure 7.4.

reduce A reduce operation combines all elements of an array. For example, the additive

reduction of [2; 1; 3] is 6.

index An index operation takes an integer i and creates an array [0; : : : ; i�1] of that length.
A segmented index of the array [2; 1; 3] performs an index operation on each element

2, 1, and 3, and combines the results into an array [[0; 1]; [0]; [0; 1; 2]].

distribute A distribute operation takes a value v and an integer i and creates an array

[v; : : : ; v] of i copies of the value.

A segmented distribute of the values [v0; v1; v2] and the array [2; 1; 3] distributes each

of the values as follows: [[v0; v0]; [v1]; [v2; v2; v2]].

pack A pack operation takes an array of values and an array of booleans of the same length

and returns an array containing the values whose corresponding 
ag is true. The

result's contents are in the same order as in the original array.

put A put operation takes an array of values ~v0 and an array of pairs, each with an index

ji and value vi. The operation creates a an array like the original one except that it

contains the values ~v at the corresponding indices. Thus, each index ji must be in

the range 0; : : : ; j~v0j. If a given index occurs multiple times, we specify that the last

corresponding value is used. So, for example. the put of [2; 1; 3] and [(1; 9); (0; 6); (1; 7)]

is [6; 7; 3].

Scans, reduces, indices, and distributes can all be implemented with a constant number of

fetch-and-op operations.



Appendix B

Simple Parallel Garbage Collection

This appendix describes a parallel version of garbage collection (GC) and its e�ects on the

machine complexity bounds for the PAL and NESL models. It maintains the space bounds,

but adds work proportional to the number of collections (gc) during the evaluation. This

algorithm is only outlined, and its details should be further explored.

The machine has a block of memory available for use (the heap) and consists of allocated

memory and unallocated memory. The heap is initially of some constant size. During an

allocation, if there is insu�cient unallocated space in the heap, the machine increases the

heap size and garbage collects the current allocated data. The heap doubles in size during

each GC to twice the size su�cient for the allocation, like a SDGA (cf. Section 7.2. The heap

never shrinks, although the allocated space within it may.

We store the continuation stacks within the heap1, and assume that each processor has

a constant number of registers. This ensures that there are at most O(p) root pointers into

the heap|the pro�ling semantics' roots are all stored in these continuations. Space for the

continuation stack is already accounted by the added space constants in the pro�ling semantic

rules, so placing it in the heap does not alter the previous space bounds.

In stop-and-copy GC, the heap consists of two sub-blocks: the allocated data and the

unallocated space. In each of languages examined here, the heap and roots form a forest

of data. On each allocation, if there is enough space available in the heap, that space is

allocated. Otherwise, the machine increases the size of the heap and copies the surviving

data into the new empty part of the heap, as illustrated in Figure B.1. The old data is copied

by a p-DFT of this forest.

Each GC clearly requires at least dm1=pe time to examine and potentially copy m1 data.

Over all GCs, this is bounded by O(w=p) time, where w is the work of the entire program,

since the heap doubles in size on each GC. In the PAL and NESL models, the data forest is

of at most d depth, where d is the computation depth of the entire program. Thus copying

can require a constant factor times d �TS(p) (for PAL model) or d �TF (p) (for NESL model)

time. So, GC requires at most

1
E.g., as in the implementation of Standard ML of New Jersey.

231



232 APPENDIX B. SIMPLE PARALLEL GARBAGE COLLECTION

0 k 1–

new alloc

0 m'1 1–

new heap

m2 1–

2 k m1+( ) 1–

0 m1 1–

heap

m'1 k 1–+

(compacted)

Figure B.1: Basic structure of stop-and-copy garbage collection. The allocated space is

marked with lines, while unallocated space is blank.



233

O(w=p+ gc � d � TS(p)) (for PAL model)

O(w=p+ gc � d � TF (p)) (for NESL model)

time, which dominates the overall evaluation time.

Since the heap doubles in size per GC and since each model ensures that we spend m

work to allocate m space, there may be at most gc = O(logW (g)) GCs. Thus, GC and the

overall computation requires at most

O(w=p+ logw � d � TS(p)) (for PAL model)

O(w=p+ logw � d � TF (p)) (for NESL model)

time.

Since the heap doubles in size on each GC, then after the �rst GC, the heap size is never

more than twice the maximum reachable space. I.e., with stop-and-copy GC, the total space

complexity is asymptotically the same as the maximum reachable space complexity without

GC for the PAL and NESL models.


