Semantics-based parallel cost models and their use in
provably efficient implementations

John Greiner
April 26, 1997
CMU-CS-97-113

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis committee:
Guy Blelloch, Chair
Robert Harper
Gary Miller
Guy Steele, Jr., Sun Microsystems

Copyright 1997 © John Greiner

This research was sponsored in part by the Wright Laboratory, Aeronautical Systmes Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grand number
F33615-93-1-1330 and contract number F19628-91-C-0168. It was also supported in part by an NSF Young
Investigator Award and by Finmeccanica.

The views and conclusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of Wright Laboratory
or the U.S. Government.

Keywords: Functional languages, parallel algorithms, lambda calculus, models of com-
putation, computer architecture

Abstract

Understanding the performance issues of modern programming language execution can be
difficult. These languages have abstract features, such as higher-order functions, laziness,
and objects, that ease programming, but which make their mapping to the underlying ma-
chine more difficult. Understanding parallel languages is further complicated by the need
to describe what computations are performed in parallel and how they are affected by com-
munication and latency in the machine. This lack of understanding can obscure even the
asymptotic performance of a program and can also hide performance bugs in the language
implementation.

The dissertation introduces a framework of provably efficient implementations in which
performance issues of a language can be defined and analyzed. We define several language
models, each consisting of an operational semantics augmented with the costs of execution.
In particular, the dissertation examines three functional languages based on fork-and-join
parallelism, speculative parallelism, and data-parallelism, and it examines their time and
space costs. We then define implementations of each language model onto several common
machine models, prove these implementations correct, and derive their costs.

Each of these implementations uses an intermediate model based on an abstract ma-
chine to stage the overall implementation. The abstract machine executes a series of steps
transforming a stack of active states and store into new states and store. The dissertation
proves the efficiency of the implementation by relating the steps to the parallel traversal of a
computation graph defined in the augmented operational semantics.

Provably efficient implementations are useful for programmers, language implementors,
and language designers. For example, they provide a formal definition of language and
implementation costs for program analysis, compiler specification, and language comparisons.
The dissertation describes performance problems in existing implementations of Id and NESL
and gives provably more efficient alternatives for each. It also compares the example language
models, first using several specific algorithms, and also in more generality, for example,
quantifying the speedup obtainable in the data-parallel language relative to the fork-and-join
language.

Acknowledgements

I'd like to acknowledge and thank all the people that helped make this dissertation. In
particular, kudos to my advisors, Guy Blelloch and Bob Harper, for goading and guiding
me, and to the rest of my thesis committee, Gary Miller and Guy Steele, for their patience.
Pseudo-officemates Mark and Mark helped provide ideas and feedback on just about anything.

Without my friends I’d never have stuck around so long, so special thanks to officemates
Dave, Sing Bing, and Chris; my previously mentioned pseudo-officemates, who were probably
sick of me always dropping by; the “Rubber Ducky” classmates; my roommates; and the
whole volleyball gang.

Boos and hisses to Usenet and the Web for forcing me to spend so much time away from
real work. It couldn’t have been my fault, could it?

Contents

I

1

I1

Introduction

Introduction

1.1 Background and Problems o oo o oo
1.2 Provably Efficient Implementations

1.2.1 Uses of provably efficient implementations

1.2.2 Limiting our scope 0o e e e e e e
1.2.3 Models of parallelism 0o o oL
1.2.4 Costs of parallelism 0 o oo

1.2.5 Formalizing the cost models L.

1.2.6 Implementations and their cost mappings

1.2.7 Relating cost models of languages

1.3 Outline

Related Work

2.1 Cost models . .

2.2 Relating cost models oL oL
2.3 Implementations of dynamically parallel languages

2.4 Language models and theiruses o 0oL,

2.4.1 Automatic complexity analysis

2.4.2 Compiler analysis o L
2.4.3 Profiling tools L
2.5 Provably correct implementationso o oo

2.6 Other mixes of language theory and algorithmic theory

2.7 Expressiveness

Notation

Methodology

Language

13

15
15
16
17
17
18
20
24
24
29
30

31
31
32
33
34
35
35
35
36
36
37

39

45

47

6 CONTENTS

4.1 A-calculus . . . oL 48
4.2 Extended A-calculuso oL 49

5 Profiling semantics 51
5.1 Call-by-value A-calculus semantics 0., 52
5.2 Computation graphs oL L Lo 54
5.3 Simple parallel applicative semantics 0. 58
5.4 Semantics accounting for space oL oL L Lo L 60
5.5 Equivalence of A-calculus and extended A-calculus 65
5.5.1 Semantics for the extended A-calculus 66

5.5.2 Equivalence of the PAL and PAL’ models 67

6 Intermediate model 81
6.1 Parallel Graph Traversals o oo 82
6.2 P-CEKp,p machine 85
6.3 Equivalence of language and intermediate models 96

7 Machine models 103
7.1 Machine models L 103
7.2 Representation of the active states multi-stack 106
7.3 Implementation of steps Lo 109
IIT Other Models 113
8 Speculative models 115
8.1 Language and Profiling semantics 0. 117
8.1.1 Computation graphs L L 118

8.1.2 Semanticso L e e e 124

8.1.3 Recursion e e 129

8.2 Fully speculative intermediate model o o000 130
8.3 Representation of the sets of suspended states 144
8.4 Fully speculative machine models oo 0oL, 148
8.5 Partially speculative implementations 0L, 149
8.5.1 Prioritizing threads L o o 150

8.5.2 Aborting threads 151

8.5.3 Cost benefits of partial speculation 152

9 Basic data-parallel models 155
9.1 Computation graphs Lo 156
9.2 Profiling semantics oL L 156

9.3 Arraylanguage L e 162

CONTENTS 7

9.4 Intermediate model oL oL 170
9.4.1 Equivalence of language and intermediate models 178

9.5 Machine models L 187

10 Algorithms and Comparing models 191
10.1 Analyzing Algorithms 191
10.2 Specific Algorithms L L 192
10.2.1 Parallel Quicksort L o 193

10.2.2 Parallel Mergesort o 196

10.2.3 Fast Fourier Transform 197

10.3 Comparing models L 202
10.3.1 PAL and PSLo 202

10.3.2 NESL and PAL o o 203

10.3.3 Simulation of traditional models o000 204

10.3.4 Cost-expressiveness v v vt e e e e e e e e e 206

IV Conclusions 209
11 Conclusions 211
11.1 Summary of contributions L o o oL 211
11.2 Future work . . . o L o o 212
11.2.1 Practicality of implementations 212

11.2.2 Additional models L L o o 213

11.2.3 More detailed models o 0oL 215

11.2.4 Additional and more detailed comparisons of models 215

11.2.5 Automated use of models o o oL 215

A Glossary 229

B Simple Parallel Garbage Collection 231

CONTENTS

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

1.7
1.8
1.9

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

The implementation maps values and costs. 17
Example computation graph. o oL 0 oo 21
Mlustration of parallelism in the PAL, PSL, and NESL models. 21
Parallel quicksort pseudo-code. 22
[Mlustrations of the butterfly, hypercube, and Parallel Random Access Machine. 25

Summary of cost mappings of three language models on several parallel ma-

chine models. L 26
Each implementation is staged using an abstract machine of the P-CEK family. 27
Mlustration of intermediate machine P-CEK step. 28
Summary of time-expressiveness of models on a CRCW PRAM. 29
Basic A-calculus expressions.o Lo 48
Basic A-calculus constants.o oL 49
Extended A-calculus.o oo 50
Call-by-value A-calculus run-time domains. 52
Call-by-value operational semantics with basic A-calculus. 53
PAL constant application. o oo oo 53
Call-by-value A-calculus operational semantics derivation for Example 5.1. . . 54
PAL computation graphs, work, and depth. 56
PAL computation graphs, work, and depth combining operators. 58
PAL profiling semantics with basic A-calculus. 59
PAL constant application. o oo oo 60
PAL profiling semantics derivation for Example 5.2. 61
PAL computation graph for Example 5.2. 61
PAL domains when tracking space. L oL oL 62
PAL profiling semantics tracking space. 63
PAL constant application tracking space. 63
PAL reachable space. L 64
PAL profiling semantics derivation for Example 5.3. 65
PAL’ run-time domains. L L L 66
PAL’ profiling semantics. 68

10

LIST OF FIGURES

5.18 PAL’ constant application. L L oo
5.19 Semantics functions used for defining reachable space in the PAL’ model.
5.20 Translation from the PAL’ model to the PAL model.
5.21 Initial PAL environment and store when translating from PAL’ model.
5.22 PAL’ derivation with LETREC, excluding space costs.
5.23 PAL derivation with Y-combinator, excluding space costs.
5.24 PAL computation graphs corresponding to PAL’ APP and APPC rules.
5.25 PAL computation graphs corresponding to PAL’ PAIR, LETREC, and IF-
TRUE rules. o e e

6.1 Example ¢-DFT. . . . 0000
6.2 Ilustration of P-CEKL,; active states during an evaluation.
6.3 Illustration of a P-CEKL, step.
6.4 P-CEK}, domains. L
6.5 P-CEK},; abstract machine step.
6.6 P-CEKp,p root values.o oottt
6.7 P-CEK},; evaluations for Example 6.1.
6.8 PAL computation graph for Example 6.1.

7.1 llustration of butterfly network. oo,
7.2 llustration of hypercube network. 0oL,
7.3 Illustration of Parallel Random Access Machine (PRAM).
7.4 Time bounds T'S(p) for implementing scans and reductions on machines with

P PIOCESSOIS. « v v v v v v v vt e e e e e e e e
7.5 Step 2 of SDGA push operation. o oo,
7.6 Step 3 of SDGA push operation. o oo,

8.1 Time bounds T'F(p) for implementing fetch-and-add on machines with p pro-
COESSOTS. v v v v v e e e e e e e e e e e e e e e
8.2 PSL computation graphs. L oL o
8.3 PSL computation graphs may have multiple edges from nodes.
8.4 lustration of PSL computation graph when accessing list elements in order.
8.5 PSL computation graph of nested applications.
8.6 PSL computation graph for Example 82. 0.
8.7 PSL computation graph combining operators.o L.
8.8 Illustration of a case where combined computation graphs share edges from
thesame node. L L
8.9 PSL run-time domains. oL L Lo
8.10 PSL profiling semantics. o o
8.11 PSL computation graph for Example 8.2.
8.12 Potential PSL rule for creating circular pairs.
8.13 Illustration of P-CEK{Lg active states during an evaluation.

69

LIST OF FIGURES 11

8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Mustration of a P-CEK}qpstep.o .o oo oo oL 133
P-CEK]q s domains. 134
P-CEK] ; abstract machine step. 136
P-CEK] g ; evaluations for Example 8.3. 138
PSL computation graph for Example 8.3. 139
PSL computation graph for Example 8.4. 140
PSL computation graph dominated by a chain of dependencies. 141
Step 2 of MDGA push operation. oo 145
Step 3 of MDGA push operation. oo 147
NESL expressions. o vt vt i it e e e e e e e 155
NESL computation graphs, part 1. oo, 157
NESL computation graphs, part 2. 0oL 158
NESL computation graph, work, and depth combining operators. 159
NESL run-time domains. o oL e 159
NESL profiling semantics. o e 160
NESL constant application. L0000 161
NESL reachable space. L e 161
ArrL expressions. . . .o Lo L oL L e 163
ArrL profiling semantics.o Lo 163
Translation from NESL expressions to those of ArrL. 165
Translation from NESL values and store-values to those of ArrL. 165
Initial Arrl, environment and store when translating from NESL. 166
ArrL, computation graph corresponding to NESL EACH rules.. 169
Mlustration of P-CEKY | active states during an evaluation. 171
P-CEKS,,p domains. 173
P-CEKY abstract machine step. 175
Selecting P-CEKY | active states in the presence of stub states. 176
Mustration of a P-CEK} [step. 177
ArrL, computation graph for Example 9.2.o o000 179
P-CEKp, g oot values.o oo 180
Representing sequences as balanced binary trees. 192
Quicksort pivoting. L e 193
PAL/PSL quicksort algorithm. 194
NESL quicksort algorithm. L oL 195
PAL/PSL mergesort algorithm. 198
PAL/PSL FFT algorithm. 199
NESL FFT algorithm. o oo 199
Time-stamps during PSL FFT algorithm. 201
Summary of PAL, PSL, and NESL cost-expressiveness. 207

12

B.1 Basic structure of stop-and-copy garbage collection.

LIST OF FIGURES

Part 1

Introduction

13

Chapter 1

Introduction

The primary goal of this dissertation is to understand the performance issues of modern
programming languages. To achieve part of this overall goal, we show a framework for
defining and analyzing the asymptotic performance issues of programming models. Using
this framework, we give provably eflicient implementations of several languages, each on
several machines. In particular, for each language we

1. define an abstract notion of computation in the language, including not only what result
is computed for a program, but also an abstract model of how it is computed;

2. use standard definitions of machines and their notions of computation; and

3. provide implementations of the language on these machines, with proofs that the im-
plementation preserves correctness and mappings between a program’s costs of compu-
tation in the language and in the machines.

We discuss three parallel functional languages, each with a different model of parallelism,
and their time and space costs for program execution. We implement each of these on three
standard parallel machines. However, the framework generalizes beyond these specifics to
other languages, cost models, and machines.

1.1 Background and Problems

A semantics defines a programming language. A traditional eztensional semantics defines
a program’s results, including any input/output behavior, and its termination properties.
Extensional semantics are well-understood for a wide variety of languages. On the other hand,
an intensional semantics defines an abstract model of how a computation is performed, such as
how long a computation takes or the resources needed during a computation. An intensional
semantics that tracks run-time cost information is called a profiling semantics [108, 110].

A semantics can also be considered a simple abstract implementation of a language. This
is especially true for operational styles of semantics, which are of primary interest here. These

15

16 CHAPTER 1. INTRODUCTION

simple implementations do not necessarily embody the intensional properties expected of a
realistic implementation.

Implicitly or explicitly, some intensional properties are considered to be part of the lan-
guage itself and not to depend on the implementation. Many implicit implementation re-
quirements are considered common sense and obvious, e.g., that adding two integers should
take constant time. This example assumption is reasonable for fixed-precision arithmetic, but
not for the arbitrary-precision arithmetic available in some languages, such as Scheme [27]
and Mathematica. Since many intensional properties really are “obvious” in most commonly
used languages, such as C or Fortran, explicitly defining these properties is not considered a
priority. But not all intensional properties are “obvious”, especially in modern programming
languages that are more abstract than C, Fortran, etc.

Many constraints on languages can be considered required “optimizations”. The best
example of this is Scheme’s explicit requirement for tail recursion [27], i.e., tail calls in a
function are implemented with a jump rather than a function call. The execution of a tail-
recursive function reuses the current stack frame so that a sequence of tail calls requires
only one stack frame. Thus, the requirement affects the space used by a program in an
asymptotically significant way. This is a common optimization in functional languages, that
is, by definition, required in Scheme.

Thus, some implementation decisions may be considered essential to a given language, es-
pecially if they significantly affect the run-time costs of the language. The following examples
hint at the range of languages and properties that are of interest:

e In languages with more complicated numbers than fixed-size integers or floating point
numbers, especially those with arbitrary-precision arithmetic, how long do basic arith-
metic functions take?

e In parallel languages, what is or can be executed in parallel, and how many processors
can be kept busy?

e In parallel languages, how does the space usage depend on the number of processors
available? (Using more processors generally means that at any given moment, more
control information is used and more live data is accessible.)

1.2 Provably Efficient Implementations

This dissertation introduces provably efficient implementations to specify the intensional
properties and implementations of languages and prove efficiency results about these im-
plementations. The profiling semantics is an abstract specification of the intensional costs.
Cost mappings then relate these to the costs on more concrete machine models. We must
prove the use of the cost mappings is feasible by providing an abstract implementation that
obtains the desired bounds, as in Figure 1.1. While we are primarily concerned with inten-
tional properties, we also specify and prove results about the models’ extensional properties.
However, the extensional results shown in this dissertation are not surprising.

1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 17

Language Model

{

Values

Costs } Implementation
Y \

Machine Model

Figure 1.1: The implementation maps values and costs of the profiling semantics to those of

the machine. Its effects on costs are summarized by cost mappings.

1.2.1 Uses of provably efficient implementations

To describe some uses of a provably efficient implementation and its components, we con-
sider three different perspectives: the language designer, the language implementor and tool
developer, and the language user (i.e., programmer).

The designer creates the profiling semantics and proves the cost mappings. These in-
tensional formalisms allow the designer to specify run-time properties such as Scheme’s tail
recursion in a formal and well-defined way.

The implementor uses the cost mapping and its feasibility proof as an abstract specifica-
tion of the compiler. He can use the cost mapping to verify an implementation’s compliance
with the specification. Furthermore, he uses the profiling semantics as an abstract definition
of costs for analyses within the compiler, profilers, and automatic complexity analyzers.

The programmer uses the profiling semantics as the formal definition of understanding a
program’s behavior, results, and execution costs. The programmer uses the cost mapping to
summarize whatever he is expected to know about the compiler. He can use the cost mapping
to compare the profiling semantics’ abstract notion of costs to what happens on various
machines. Thus, he would perform a single cost analysis in the abstract language model,
even if the program is targeted for multiple machine models. In particular, this dissertation is
concerned with using the profiling semantics to analyze asymptotic performance and compare
algorithms, such as whether to use quicksort or insertion sort.

1.2.2 Limiting our scope

To limit the scope of the thesis, we restrict our attention to parallel models based on functional
languages and their asymptotic costs.

e We use purely functional languages because of their simple semantics, which can be
described with relatively few and simple rules.

18 CHAPTER 1. INTRODUCTION

o We use parallel models because the run-time costs are much less understood than those
of serial models. Frequently, it is unclear which subcomputations are executed in serial
or in parallel, as this can be dependent on how long certain subcomputations take, how
many processors the machine has, how long communication delays are in the machine,
etc. Furthermore, unlike serial machines, which are almost all relatively similar, parallel
machine architectures can be radically different from each other.

Here, by “parallel” we mean that programs are to be executed on multiprocessor (“par-
alle]”) machines. The languages we use are not semantically parallel, but sequential,
i.e., they do not include constructs such as parallel-or'. Thus, these languages are
deterministic and not concurrent.

Side-effect-free applicative languages are a natural candidate for modeling parallelism
since it is always safe to evaluate subexpressions in parallel in these languages [39, 40].

e We examine asymptotic costs because this allows us to simplify many issues by ignoring
constant factors. Even the asymptotic cost bounds of languages and their implementa-
tions are not well understood, and many implementation decisions affect the run-time
costs in an asymptotically significant manner. For example,

— tail recursion asymptotically affects stack space;

— an optimization in some versions of Standard ML of New Jersey to share the space
for function environments keeps data accessible for too long, increasing space usage
asymptotically[5]; and

— the implementations of some parallel languages needlessly serialize the synchro-
nization of threads, asymptotically reducing the parallelization of some programs

(cf. Chapter 8).

While we restrict ourselves to such languages in this dissertation, the framework of provably
efficient implementations is applicable to any language and its implementation. Also, while
we could include more details to account for constant cost factors, that would obscure the
ideas of primary interest here.

1.2.3 Models of parallelism

This dissertation describes three basic models of parallelism. FEach is based on the pure
(i.e., no side-effects) A-calculus, where an expression e is one of the following: a constant
¢, a variable x, a function of one argument Az.e’, or application e; e; of function e; and
argument ey. Additional constructs such as data structures, conditionals, and recursion can
be included easily, or they may be simulated with the core using standard techniques. The
A-calculus, though powerful, offers a simplicity that makes it easy to reason about. It is

'Parallel-or takes two argument expressions and returns true if either argument returns true, even if the
other argument never terminates. Implementing this requires some form of concurrency.

1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 19

the direct ancestor of functional languages such as Scheme, ML, and Haskell, and it is also
commonly used as a meta-language for defining the semantics of imperative, object-oriented,
logic-based, and other languages.

The models of parallelism we examine are as follows:

e lFork-and-join parallelism allows a bounded number of threads to be forked (spawned)
and later joined (synchronized) at a specified point in the control flow. These threads
can, in turn, fork and join additional threads in a strictly nested fashion, and each
thread can be evaluated in parallel. The Parallel Applicative A-calculus (PAL) allows
two threads to be forked, and later joined, by an application expression: one each for
ey and e3. The PAL uses call-by-value application, so e; is fully evaluated before being
applied to the result of evaluating e;.

We also show how using an extended syntax instead results in a model (PAL’) that is
equivalent up to constant factors of their asymptotic costs.

All data structures are pointer-based, so all data must be stored in tree- or list-like
structures. In many programs, a balanced binary tree leads to the most efficient algo-
rithm.

e Speculative parallelism (or call-by-speculation [53]), as used here, also allows a bounded
number of threads to be spawned at once. However, it synchronizes only as necessary
for data dependencies, i.e., arguments are evaluated in parallel with function appli-
cation and evaluation of its body. This allows “pipelined” and “producer-consumer”
parallelism to be expressed.

Since synchronization is more relaxed than in fork-and-join parallelism, this can allow
faster programs, but since synchronization is data-dependent, it is more difficult to
formally define and implement. This style of parallelism is closely related to the fu-
tures of Multilisp [50] (also known as promises [40])—Multilisp applies an application’s
function to futures which represent the arguments and which eventually receive the ar-
guments’ final values. Speculative parallelism also forms the core of languages such as
Id and pH [87, 2, 88]. The Parallel Speculative A-calculus (PSL) allows two threads to
be spawned by an application expression, as in the PAL. Synchronization occurs only
when looking up a variable’s value.

The basic form of full speculation (PSLf) eventually evaluates all spawned threads, and
thus requires the same amount of computation as the PAL model. The alternative of
partial speculation (PSLp) allows irrelevant computations to be aborted and discarded,
potentially reducing the amount of computation. Partial speculation is a family of mod-
els differing in how we detect and abort irrelevant computations, generally prioritizing
computations so as to reduce the amount of computation spent on irrelevant ones.
Note that call-by-need is one extreme of partial speculation, where computations are
prioritized to ensure that we do not evaluate any irrelevant computations.

20 CHAPTER 1. INTRODUCTION

e Data-parallelism allows the forking and joining of an unbounded number of copies of an
expression, where we give each copy a different piece of data. The NESL model uses call-
by-value application, although unlike the PAL model, applications are not parallelized.
Instead, we introduce sequences as a datatype and an expression {€” : 2 in €'} which
evaluates €'’ in parallel for each binding of z to a value in the sequence resulting from ¢’.
This forms the core of languages such as NEsL [14], HPF, and C* [107]. NESL provides
a very flexible model of data-parallelism, where ¢’/ may be any general expression. In
particular we allow nested data-parallelism, i.e., forked threads can fork additional
threads (as in NESL, but not HPF and C*).

We show that in quicksort, for example, NESL allows more efficient data access and
thus more efficient algorithms than the PAL or PSL models.

We do not use any call-by-name or call-by-need (lazy) languages, because they inherently
do not offer significant parallelism [64, 121]. In fact, parallel graph reduction, a form of
partial speculation, is generally offered as a compromise of laziness to obtain parallelism.

1.2.4 Costs of parallelism

This dissertation describes and proves results about the time costs of each of the PAL, PSL,
and NESL models and the space costs of the PAL and NESL models. This section outlines
how we define and use the abstract costs of time and space. The following two sections then
outline how we incorporate these definitions in the models and relate them to the machine
models’ costs, respectively.

We are interested in how these costs depend upon the size of the input. Furthermore,
since we use parallel machine models, we are also interested in how these costs depend upon
the number of machine processors, as discussed when we relate them to the machine model’s
costs.

Computation graphs

Computation graphs are directed acyclic graphs, where nodes represent units of computation,
and edges represent data and control dependences. Computation graphs provide an intuitive
visual summary of computation; formally generalize work and depth, to be described; and
describe the computation scheduling. Figure 1.2 gives an example. FEach of our models’
profiling semantics defines the computation graph of programs, and Figure 1.3 illustrates the
different models of parallelism that they represent.

Work and Depth

To describe the time costs, we use two cost measures, work and depth. The work is the number
of units of computation executed in an evaluation, independent of whether the computation
is performed in serial or parallel. The depth is the one plus the total length of the longest

1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 21

Figure 1.2: Example computation graph. Nodes represent units of computation, and edges
represent data and control dependences.

PAL application PSL application NESL for-each

Figure 1.3: Simplified illustration of parallelism in the PAL, PSL, and NESL models, where
diamonds and triangles represent subgraphs for subexpression computation. The dashed line
represents synchronization for a potential data-dependency. The “@” nodes each represent
the application of a function value. Additional details are provided in later chapters.

22 CHAPTER 1. INTRODUCTION

fun quicksort xs =
if size of xs is less than 2 then xs
else let pivot = median element of xs

lts = elements in xs less than pivot
eqs = elements in xs equal to pivot
gts = elements in xs greater than pivot

s_lts = quicksort 1lts
s_gts = quicksort gts
in append s_lts egs s_gts

Figure 1.4: Quicksort pseudo-code. The three selections of elements less than, equal, and
greater than the pivot are each independent and can be parallelized with respect to each
other. The two recursive calls can be parallelized. Each of the subtasks of choosing the pivot
and selecting elements can be parallelized.

path through the computation, viewing the computation as a graph of data and control
dependencies. As an example, refer to Figure 1.2. Its work is the number of nodes (w = 11),
its depth is the length of the longest path, plus one for the initial node (d = 8).

In serial models, having a total order on the control dependencies results in program
execution time being equivalent to each of work and depth. In parallel models, a program’s
execution time is dependent on (at least) its work and depth and the number of processors
available. Work and depth are frequently used to describe parallelism, especially in teaching
parallel algorithms [63, 59, 17, 15] and implementing various applications [46, 11, 10].

Let’s examine the work and depth of quicksort on m data elements. Figure 1.4 gives
pseudo-code for a parallel quicksort. First, recall that a serial quicksort algorithm requires
O(mlogm) time in the expected case. For any of our language models, the parallel quicksort
requires O(m log m) work (expected), just as for the serial quicksort. Each recursive iteration
is dominated by the O(m) work to examine each of the elements, and there are two recursive
calls each on half (on average) of the elements, thus the W(m) = O(m) + 2W(m/2) =
O(mlogm) (expected) total. Chapter 10 discusses quicksort more formally.

The depth of quicksort depends on the data structure to store the elements. In the PAL
model, we can choose between lists and trees as data structures. Using lists, splitting the
elements on the pivot and appending the sorted lists each requires linear depth, resulting
in a total of D(m) = O(m) + D(m/2) = O(m) depth (expected). Using balanced binary
trees, splitting and appending the elements requires logarithmic depth, resulting in a total
of D(m) = O(logm) + D(m/2) = O(log® m) depth (expected), as shown in Corollary 10.1.
These same bounds also hold for the PSL model, as the algorithm has no significant amount
of pipelining available.

For comparison, it is possible to sort in O(log m) depth in the PAL model. In the counting
sort, each element first compares itself to all other elements and counts how many of those

1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 23

are less than itself. Next, each element then places itself in the position indicated by its
count. Assuming the elements are kept in a balanced binary tree, this requires O(logm)
depth, an O(logm) factor less than than quicksort. However, it requires O(m?) work for
the comparisons. When this work and depth are mapped to the costs of the machine, as in
Section 1.2.6, we see that this is only efficient for relatively small values of m, i.e., small data
sets. In general, we want algorithms that are work-efficient and have low computation depth
bounds.

An efficient NESL quicksort algorithm uses sequences to store the data. Choosing a pivot
then requires constant depth. Furthermore, the selection of elements less, equal, and greater
than the pivot then requires three constant-depth uses of for-each. Appending the sorted
sequences also requires constant depth. As a result, the algorithm requires only D(m) =

O(1)+ D(m/2) = O(logm) depth.

Space

The profiling semantics defines the space cost for serial evaluation, and the cost mappings
relate this to the space required for parallel evaluation, given the number of machine pro-
cessors. We formally bound the parallel space in terms of the serial space by relating the
machine execution to parallel traversals of the profiling semantics’ computation graph and
then using previous results about space usage of parallel traversals.

In quicksort, each model only requires reachable space linear in the number of data
elements. At any time, only a constant number of copies of the original data is live, for a
total of linear space. That dominates the polylogarithmic space needed for the recursion
stack of any reasonable choice of data structure.

The semantics do not need to model garbage collection, the automatic reclamation of
unaccessible memory. Instead, we measure the maximum amount of space during the evalu-
ation required for all reachable, or live, data and any overhead such as a control stack. Our
implementations do not include garbage collection either, because that would require extra
details obscuring other features. However, Appendix B outlines how we can add garbage
collection and how this affects the implementations’ cost bounds.

Other issues

Modeling time and space costs allows us to examine many issues of implementation effi-
ciency. In particular, this dissertation addresses two problems of previous parallel language
implementations. One is the time delay incurred by some serial bottlenecks in speculative
languages. Another is the space overhead when there is “too much” parallelism. [Ie., if many
more threads are spawned than there are processors, the space for storing these delayed
computations may dominate.

24 CHAPTER 1. INTRODUCTION

1.2.5 Formalizing the cost models

We provide a formal cost model to specify the intensional properties (here, the computation
graph and maximum reachable space) of a language. This cost model is incorporated into
the semantics of the language, augmenting an extensional semantics with cost definitions,
resulting in a profiling semantics. It is from this formal definition that we can derive bounds
such as described for quicksort.

The profiling semantics by itself does not reflect the implementation costs of the language.
Since the implementation costs depend on the underlying machine, and since we want a
single profiling semantics for the language, we also need to formally relate the costs of the
language model to those incurred in the machine model. This relation reflects the essential
details of the implementation, and is described further in the next section. Together, the
profiling semantics and this cost mapping provide the essential intensional information about
a language.

The underlying extensional semantics we use is operational, rather than denotational.
An operational-style semantics defines the result of evaluating an expression to a value in a
way that, at least abstractly, matches the evaluation process. A denotational-style semantics
defines the “meaning” of an expression as a value in a compositional manner, with no direct
appeal to the evaluation process. The operational style matches our needs better, since we
are interested in the costs of the evaluation process.

1.2.6 Implementations and their cost mappings

This dissertation uses three standard parallel machine models: the butterfly, the hypercube,
and the Parallel Random-Access Machine (PRAM) [38]. Each of these uses a collection of pro-
cessors connected by a different style of communication network, as illustrated in Figure 1.5.
The butterfly and hypercube are commonly used in practical networks, while the PRAM is
a common abstraction of parallel machine models. We use three kinds of PRAM, differing in
how they access memory: the exclusive-read, exclusive-write (EREW); the concurrent-read,
exclusive-write (CREW); and the concurrent-read, concurrent-write (CRCW).

In each model we assume memory access and allocation requires constant time. For the
butterfly we assume that for p processors we have plog, p switches and p memory banks, and
that memory references can be pipelined through the switches. We also assume the butterfly
network has simple integer adders in the switches, such that scan and reduce operations (see
Appendix A for definitions) can execute in O(logp) time. For the hypercube we assume a
multiport hypercube in which messages can cross all wires on each time step, and for which
there are separate queues for each wire.

The time costs of the implementations are parameterized by the overhead of communica-
tion through the communication networks, as modeled by scan and fetch-and-add operations
(see Appendix A for definition). In the PAL model, the overhead is bounded asymptotically
by the time 7'S(p) for a scan on p processors, whereas in the PSL and NESL model, it is
bounded asymptotically by the time T'F(p) for the more general fetch-and-add. As a result,

1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 25

Hypercube

Butterfly

Shared Memory

LLLboooL

Parallel Random Access Machine (PRAM)

Figure 1.5: Illustrations of the butterfly, hypercube, and Parallel Random Access Machine
(PRAM), respectively. The squares represent processors, and the edges represent communi-
cation links between them.

26 CHAPTER 1. INTRODUCTION

T5(p) TF(p)

Machine Model | Randomized? Time for scan Time for fetch-and-add
Butterfly Yes O(log p) O(log p)
Hypercube Yes O(log p) O(log p)
EREW PRAM | Yes O((log p)*'*/\/logTog p) | O((log p)*/*/\/loglog p)
CREW PRAM | Yes O(log ploglog p) O(log ploglog p)
CRCW PRAM | No O(logp/ loglog p) O(log ploglog p)
CRCW PRAM | Yes O(logp/ loglog p) O(log p/ loglog p)

Language Time Space

PAL O(w/p+d-TS(p)) | O(s+d-p-T5(p))

PSLf O(w/p+d-TF(p)) | no bounds shown

NESL O(w/p+d-TF(p)) | O(s+d-p-TF(p))

Figure 1.6: Summary of cost mappings of three language models on several parallel machine
models. These bounds are parameterized by the time T'S(p) or T'F(p) for a scan or fetch-
and-add operation, respectively, on a p-processor machine. Tighter bounds are shown for
some of these machine models.

TS(p) and TF(p) bound the latency through the network, and thus the amount of multi-
threading needed to hide latency. Figure 1.6 summarizes some of the cost mappings obtained
in the various models. Note that to provide an efficient fetch-and-add operation, we generally
consider only randomized machine models, so these bounds hold with high probability.?

We can plug the work and depth bounds of our quicksort example into these mappings.
For example, quicksort requires O(mlogm) work, O(log? m) depth, and O(m) maximum
reachable serial space in the PAL model, as previously mentioned. Thus, on the hypercube,
this version would take O((m logm)/p+log? mlogp) time and O(m +log? m - p-logp) space,
with high probability. Implementing algorithms, such as quicksort, directly onto the hy-
percube results in the same bounds, but is more complicated. Furthermore, we can easily
plug the language cost bounds into the cost mappings for other machine models, rather than
performing a completely separate analysis.

The central concept of these implementations is executing parallel traversals of the pro-
filing semantics’ computation graphs. Previous work showed how to schedule some parallel
computation graphs efficiently with respect to time and space [18, 8]. However, this work did
not show how these graphs were obtained from or related to more concrete representations
of computation, such as a programming language. Our implementations are built directly on
this work, but also provide the missing link of showing how our language models relate to
their graphs.

2This means that these asymptotic bounds hold with arbitrarily high probability—increasing the probability
that the bounds hold requires increasing the constant factors of the costs of algorithms.

1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 27

PAL

Butterfly C Hypercube) PRAM

Figure 1.7: Each implementation is staged using an abstract machine of the P-CEK family.

For convenience, we stage each of these implementations by introducing a family of inter-
mediate machine models, one for each of the PAL, PSL, and NESL, as shown in Figure 1.7.
The intermediate machine is more abstract than the hypercube, butterfly, and PRAM, as it
does not describe the communication network, and it introduces extra control structure. A
stack stores states that may each be evaluated in parallel and initially contains a single state
representing the entire program before execution. The machine executes a series of steps,
where each step

e evaluates states each for unit work and depth;
e creates new states, placing them on the top of the stack; and
e performs any necessary synchronization,

as Figure 1.8 illustrates, and completes when all states have been evaluated. We limit the
number of states evaluated per step, so that we can bound the number of states left to
evaluate, and thus the space needed for the stack of states. At most ¢ states are evaluated
per step, where this number is related to the number of processors, but is sufficiently large
to hide communication latency on each of the machine models.

For the PAL and NESL models, we prove that the implementations execute the parallel
generalization of depth-first traversals, where each state corresponds to a graph node. Previ-
ous results then provide time and space bounds. For the PSL model, the implementations do
not execute depth-first ¢g-traversals, but only greedy ¢-traversals. We can still use previous
results to provide bounds for time, but not space.

28 CHAPTER 1. INTRODUCTION

States Step

i+1

1+2

Figure 1.8: Illustration of intermediate machine P-CEK step. It starts with one active state
representing the entire program and ends with one active state representing the result value.
The states are kept in a stack. At most ¢ states are selected each step. Here, ¢ = 5, and
these selected states are shaded. These can create zero or more new states (solid arrows).
Unselected states are still active in the next step (dashed arrows).

1.2. PROVABLY EFFICIENT IMPLEMENTATIONS 29

Relation Notation
NESL is strictly more time-expressive than PAL NESL >PFRAM. PAT,
PSLp is strictly more time-expressive than PAL ~ PSLp >PRAM:t pgLf

€

PSLf is at least as time-expressive as PAL PSLf >PRAM .t pAT,

Figure 1.9: Summary of time-expressiveness of models on a CRCW PRAM. Additional rela-
tions are shown in Chapter 10.

The PSL and NESL implementations are asymptotic improvements over their respective
existing counterparts:

e Existing implementations of speculative languages all serialize both the suspension and
reawakening of sets of threads. Individual sets of suspended threads tend to be small,
so that serialization not be a significant problem for many programs. However, it is
easy to give examples where this can unnecessarily serialize the bulk of the program
computation. So we show how to parallelize these operations, making extensive use of
the fetch-and-add operation.

e Our NESL implementation is also an improvement over the existing one in that it is
space eflicient. The existing implementation executes a level-order traversal of the com-
putation graph, rather than a depth-first ¢g-traversal. That may lead to “too much”
parallelism, in that it allows the multi-stack of delayed computations to grow asymp-
totically larger than for the implementation given here.

1.2.7 Relating cost models of languages

Once we obtain cost models for languages, this gives a tool for comparing languages on
the basis of costs. We first compare some individual algorithms—mergesort, quicksort, and
Fast Fourier Transform—in the three models of parallelism. Next, we prove some simulation
results between the specific models of interest. Then we generalize these results and define
a general notion of cost-expressiveness for language models, that relates when one language
allows more efficient programs than another. Since language costs are only meaningful in
conjunction with its cost mapping to a machine model, cost-expressiveness is also relative
to some common machine model. As a simple example, it should not be surprising that
the data-parallel model allows asymptotically more efficient programs than the fork-and-join
model for most machine models, since the former allows forking of an unbounded number
of threads per step. Figure 1.9 summarizes the relative time-expressiveness of the language
models used here, assuming the CRCW PRAM as the underlying machine model.

30 CHAPTER 1. INTRODUCTION

1.3 Outline

The remainder of Part I describes the primary areas of related work (Chapter 2) and gives
an overview of the notation used (Chapter 3).

Part 11 describes the methodology of this research using parallel applicative language mod-
els (PAL and PAL’). These are the simplest of the models we consider and are appropriate for
introducing the framework. Chapters 4 and 5 define the language and its profiling semantics,
respectively. Syntactically, the language is based on the A-calculus and thus most resembles
languages such as Scheme, ML, Haskell, and Id [27, 81, 56, 87]. Chapters 6 and 7 relate
the language model to traditional machine models of computation (hypercube, butterfly, and
PRAM), staging this via an intermediate model for convenience (P-CEK).

Part 111 uses this methodology for some other parallel language models. Chapter 8 gives
fully and partially speculative models (PSLf and PSLp) for the language. The speculative
implementation eliminates a communication bottleneck of existing implementations which
can serialize the computation. Chapter 9 extends and modifies the applicative model with
sequences and related constructs, using them as the only source of parallelism (NESL). Chap-
ter 10 compares programming in the various models and the asymptotic bounds obtainable
in them and introduces the idea of cost-expressiveness.

Finally, Part IV concludes with a summary of the contributions provided.

Chapter 2

Related Work

This work lies in the sparsely populated intersection of programming language and complexity
theory. Overall, there has been little communication of ideas between these communities,
and a meta-goal of this work is to try to build a bridge between these groups. This section
discusses not only the work directly related to this research, but outlines some of the other
work in this intersection between groups.

2.1 Cost models

There has been some work in developing cost models related to those of interest here. How-
ever, none of this previous work has been targeted to or fully addresses our goals. Here we
present a general overview of the related work—further details are included as relevant in the
remainder of the dissertation.

Hudak and Anderson [53] suggested modeling parallelism in functional languages using
an extended operational semantics based on partially ordered multi-sets (pomsets). The
semantics can be thought of as keeping a trace of the computation as a partial order specifying
what had to be computed before what else. Thus, these pomsets correspond closely with
computation graphs. Although significantly more complicated, they present semantics (or
parts thereof) corresponding to the PAL and PSLf models. However, they did not provide
implementations or otherwise relate their model to other models of parallelism or describe
how it would effect algorithms.

Roe [105, 106], Flanagan and Felleisen [37], and Moreau [83, 84, 85] provided cost models
of speculative evaluation. Roe tracks only the depth of the computation, whereas Flanagan
and Felleisen and Moreau track only the work. Roe used his model to analyze algorithms, but
did not relate his model to more concrete models. On the other hand, Flanagan and Felleisen
and Moreau related their semantics to very abstract machines, but provided no algorithmic
analysis.

Blelloch [13, 14] presented NESL with an informal cost model of work and depth, but
not space, that is used for algorithmic analysis. Also he did not give a formal cost mapping

31

32 CHAPTER 2. RELATED WORK

for NESL’s implementation, although he did outline the costs of its mapping to the VRAM
model.

Zimmerman [128, 130] introduced a profiling semantics for a data-parallel language for
the purpose of automatically analyzing PRAM algorithms. The language therefore almost
directly modeled the PRAM by adding a set of PRAM-like primitive operations. Complexity
was measured in terms of time and number of processors, as measured for the PRAM. It was
not shown, however, whether the model exactly modeled the PRAM. In particular since it
is not known until execution how many processors are needed, it is not clear whether the
scheduling could be done on the fly.

Goodrich and Kosaraju [44] introduced a parallel pointer machine (PPM), but this is
quite different from our models since it assumes a fixed number of processors and allows side
effecting of pointers. Abramsky and Sykes [1] introduced the Secd-m machine, which shares
a similar basis as our intermediate machines, but is non-deterministic and uses fair merge.

2.2 Relating cost models

Previous work on formally relating language-based models (languages with cost-augmented
semantics) to machine models is sparse. Jones [60] related the time-augmented semantics of
simple while-loop language to that of an equivalent machine language in order to study the
effect of constant factors in time complexity. Seidl and Wilhelm [114] provide complexity
bounds for an implementation of graph reduction on the PRAM. However, their implemen-
tation only considers a single step and requires that you know which graph nodes to execute
in parallel in that step and that the graph has constant in-degree. Under these conditions
they show how to process n nodes in O(n/p+ plog p) time (which is a factor of p worse than
our bounds in the second term).

Riely, Prins, and Iyer [104] defined a data-parallel language model based on Proteus [80]
and related it to the VRAM model. The structure of their work is very similar since it is
based on earlier versions of this work. Also, their Proteus-based model is similar to the NESL-
based model shown here since these two languages are fundamentally similar. However, there
is a fundamental difference in implementations and machine models. Here we introduce a
machine model with separate domains from that of the language model, whereas they used
the same domains for the models. Rather than a cost mapping to relate models, they used a
preorder on programs (both uncompiled and compiled programs, since they are in the same
domain) based on how efficiently they compute the same function.

Relating cost or complexity models is common in traditional algorithmic and complexity
theory. The most widely known examples are probably the comparisons of the many variants
of the Turing Machine. One central purpose of such comparisons is to understand what
computational constructs add computational power or efficiency to a model. Or viewed from
a language perspective, what language features add to a model. Two subclasses of these
comparisons are most closely related to this work: those using models of functional language
constructs and those using models of parallelism as outlined below. Unlike all of this work,

2.3. IMPLEMENTATIONS OF DYNAMICALLY PARALLEL LANGUAGES 33

which is driven simply to compare a few models, we also provide a general framework for
comparisons of language-based models.

Ben-Amram and Galil [7] described a serial computation model based on pointer-based
access to memory (indirect addressing) rather than the usual representation of memory as a
giant array (direct addressing). It was to model the core of functional languages such as Lisp,
as it included operations such as car, cdr, set—car!, and set —cdr! to access and modify
the memory. They showed that such models suffered a logarithmic slowdown as compared
to traditional direct addressing models in the worst case, as logarithmic time is needed to
simulate direct addressing. The models we use follow in this tradition, although we also use
arrays in the NESL model. However, our model is based on a high-level language and also
incorporate parallelism. But we find the PAL model suffers a corresponding slowdown from
the NESL model. Paige [91] also compares models similar to those used by Ben-Amram and
Gali, although using the set-based language SETL.

Pippenger [97] also worked with serial pointer-based models, but compared a call-by-value
model without side-effects (i.e., without set —car! and set —ecdr!) to a model with these. He
found that in general the purely functional model suffers a polylogarithmic slowdown relative
to the imperative model. Bird, Jones, and de Moor [103] showed that Pippenger’s results
extended to also show that the same call-by-value model suffers the same slowdown relative to
a purely functional call-by-need model. The implicit side-effect in implementing call-by-need
substitutes for the explicit side-effects used by Pippenger.

Other parallel work used the PRAM [38]. While the PRAM is often considered a general
model of parallelism useful for designing algorithms, it is also acknowledged as an abstract
model which doesn’t correspond to an actual machine. It abstractness stems from the un-
realistic assumption of constant time communication between arbitrary processors. But the
PRAM has been related to other more realistic parallel models, such as those for the butterfly
and hypercube [62, 101]. These relations depend entirely on simulating the more realistic
communication networks, and for the butterfly and hypercube, these work-efficient simula-
tions entail a slowdown logarithmic in the number of processors. Our cost mappings show a
similar difference in bounds between these models, although our bounds on the butterfly and
hypercube are not quite the logarithmic factor more needed for the general solution. Other
such comparisons of machine models are common, e.g., the implementation of a CRCW
or CREW PRAM on an EREW PRAM. This work provides a general framework for such
comparisons, although mainly targeted towards the use of more abstract language models of
computation.

2.3 Implementations of dynamically parallel languages

This section briefly overviews some related work in implementing languages with dynamic
parallelism.

Parallel implementations of Id and pH, e.g. [4, 86, 94, 93], are generally based on assigning
tasks to processors and minimizing the movement of tasks between processors. Fach processor

34 CHAPTER 2. RELATED WORK

has a queue of tasks waiting for a processor. When a processor is not busy, it tries to get a
task—it first looks in its own queue, and if its busy, it steals a task from another processor’s
queue. The processor then runs this task until it finishes or it blocks. If it finishes, it
reactivates tasks blocked on this one, adding them to appropriate queues of waiting tasks. If
it blocks, it adds itself to the appropriate queue of suspended tasks. These implementations
attempt to minimize communication, so queues are not implemented in a parallel fashion.
This can serialize the entire computation.

The current implementation of NESL is based on flattening nested parallelism to increase
granularity. Code using nested sequences compiles to code which only uses sequences of ba-
sic datatypes. This creates larger sequences, thus increasing granularity, but at the cost of
increasing the cost of some operations. The language is primarily intended for scientific com-
puting where sequences are large. Thus the limitation that only sequence-based operations
are parallelized is sufficient. We examine only models of NESL which do not flatten nested
parallelism. A flattening model would be somewhat more complicated than the model of
Chapter 9 because of the extra compilation step for flattening.

Sisal [34] is an applicative language designed for use on serial and parallel computers.
It includes data-parallelism based on a flexible for construct combining looping and data
reduction on streams of data. It also includes task-parallelism. Streams are non-strict and
single-assignment, similar to the I-structures of Id and pH!. However, everything else is
strict, making synchronization less data-dependent than Id/pH and avoiding overhead such
as queues of suspended tasks. Its implementation is based on compiling into a dataflow model
and discovering parallelism—what is evaluated in data- or task-parallel depends on a data
dependency analysis which may vary between compilers.

Theoretical work by Blumofe and Leiserson [18] and Blelloch, Gibbons, and Matias [8]
shows how to efficiently schedule some parallel computations as described by computation
graphs. Our implementations and efficiency proofs are built directly on this work, but also
provide the missing link of showing how our language models relate to their graphs. Work by
Burton [23] and Burton and Simpson [22] also described the space of deterministic parallel
models. In particular, for series-parallel computation graphs with constant fan-in and fan-
out, they presented a scheduling algorithm using O(s-p) space and within a constant factor of
optimal in time for programs with sufficient parallelism. For their work, s is maximum space
required by any serial DFT of the graph, rather than the space required by the standard
DFT that traverses the ready nodes in left-to-right order.

2.4 Language models and their uses
Formally or informally, models of language run-time costs have been used in a number of

areas. This section describes some of these areas where a language model is particularly
important.

! An I-structure is an array of single-assignment locations.

24. LANGUAGE MODELS AND THEIR USES 35

2.4.1 Automatic complexity analysis

There have been several approaches to automatically deriving complexity bounds for pro-
grams. The basic idea of these is to convert a program into a set of recurrence equations
defining the costs, and then solve the recurrence equations. Both steps depend on identifying
some ad hoc collection of general recurrence patterns. To create these equations involves
identifying appropriate size abstractions of the data, such as the length of a list or the depth
of a tree. Most of this work has been restricted to worst-case analysis of serial functional
languages [124, 76, 77, 78, 109, 110, 111, 115, 108, 35, 126, 128, 127, 129] to simplify the anal-
ysis of recurrences. However, there has also been some work on worst-case analysis of for a
PRAM:-like parallel language [130], defining the depth of the computation and the maximum
number of processes that the computation can employ. Also there has been some work on
worst-case analysis of imperative languages [28] and average-case analysis of serial functional
languages [36].

Converting the program into cost recurrence equations requires at least an informal defi-
nition of a language’s costs, although some used formal definitions. The framework presented
here provides formal definitions of costs which could be used for automatic complexity anal-
ysis, plus a cost mapping to relate the analyzed bounds to more realistic machine models or
to traditional complexity theory.

2.4.2 Compiler analysis

Any compiler optimization technique which analyzes the cost of code uses at least an informal
cost model. Any such technique should be based on a formal model, such as provided by
this work, so that the resulting optimization can be verified and quantified. For example,
Knopp [67, 68] and Flanagan and Felleisen [37] both used language models somewhat similar
to the PAL model in analyses to avoid runtime checks.

2.4.3 Profiling tools

A profiling tool (or profiler) instruments source or object code to keep track of run-time
costs. It is used for run-time debugging and performance analysis and for guiding optimiza-
tion. Any profiler requires at least an informal definition of a language’s costs, but frequently
these definitions are ad hoc or special purpose. Some recent profiling tools have been based
on the language semantics and a more formal notion of the costs [66, 65, 112, 113]. Since pro-
filers generally need to produce highly accurate resource profiles, they require more detailed
semantics than the abstract semantics provided here. But our framework allows detailed se-
mantics and provides a formalism which could be used as the basis for these semantics-based
profilers.

36 CHAPTER 2. RELATED WORK

2.5 Provably correct implementations

The general goal in provably correct implementation is obtaining compilers which produce
efficient and provably correct code, e.g. [95, 71, 98, 24, 19]. At the core, this work provides
a relatively abstract source code semantics, a very detailed object code semantics, and a
provably correct compiler mapping between the two. These correspond to our language
model, machine model, and mapping. Since most are interested in obtaining realistically
efficient compilers, they use more complicated machine models and mappings. But they do
not give any bounds on compiler efficiency.

2.6 Other mixes of language theory and algorithmic theory

The following work is also in a broadly defined intersection between programming language
theory and algorithmic theory, although not directly related to this work.

This dissertation is an example of intensional semantics, as it formally describes not only
in what a computation results, but also how the computation proceeds. But most of the work
in intensional semantics concentrated on areas such as full abstraction (proving denotational
and operational semantics equivalent) or traces of concurrent processes [21]. However, Gurr
gave a categorical framework for defining language cost models and generalizing these to
asymptotic complexity models [49]. While powerful, his framework does not correspond to
typical programmers’ intuition because of its use of category theory. And while very intrigu-
ing, the generalization to complexities is only partially successful. Also, Talcott provided an
intensional theory similar to those used for automatic cost analysis [119].

Jones, e.g., [60] has been exploring traditional complexity theory from a programming
language perspective. This includes re-examining how certain complexity classes arise from
different language idioms. This perspective results in some novel results, including a theoret-
ical equivalent of the intuition that constant factors in performance really do matter in what
can be computed.

Skeletons are parameterized complexity functions obtained using traditional algorithm
analysis techniques, e.g., for a general-purpose divide-and-conquer algorithm [118]. Work
in this area also uses functional languages for simplicity. We use the same basic idea to
parameterize our bounds with respect to the load-balancing and latency costs in various
machine models. Note that one general technique used with skeletons is shape analysis which
is a generalization of the size abstraction in automatic complexity analysis. Also, the work
of Skillicorn, et al. overlaps with that of automatic complexity analysis [25, 116, 117]. In
addition, their work also overlaps greatly with that in algorithm analysis using high-level
functional data parallel languages, which also includes work using NEsL, e.g., [11, 10, 46],
and other work in the Bird-Meertens formalism.

There has been some work on obtaining asymptotically eflicient data structures using
functional languages, e.g. [52, 30, 89]. These each approached traditional algorithmic anal-
ysis problems, but from the perspective of modern programming languages, using language

2.7. EXPRESSIVENESS 37

features such as higher-order functions and laziness. Many problems of interest here involve
persistent data structures, where updates do not destroy the original data structure. We use
some simple persistent data structures, e.g., for environments. So far, all of this work has
been for serial languages, but such work could serve as prime examples for analysis in our
framework, given the appropriate language models.

2.7 Expressiveness

Discussions of programming languages often include informal discussions of how they are more
expressive than previous languages. However, there is no single formal notion of what this
means. For example, Felleisen [32] and Mitchell [82] compared languages based on different
criteria—Felleisen observed when language features could equivalently be defined as macros,
whereas Mitchell observed when features can be used as abstraction contexts. Both also
discussed additional previous work on comparing languages.

Much of this work starts with the basic realization that the most fundamental comparison,
that of what functions the languages can compute, is not a fine enough distinction. Most
useful languages are Turing-equivalent, and thus equivalent under that comparison. The
notion of cost-expressiveness defined here is another way to compare languages. Since it is
based on intensional aspects of the language, whereas previous comparisons are based on
extensional aspects, it is an orthogonal comparison that can be combined with any of the
previous ones.

38

CHAPTER 2. RELATED WORK

Chapter 3

Notation

This chapter serves as a reference chart of the notation used here. The notation will be
explained further as introduced in the following chapters.

Note that some notation, especially the semantic domain meta-variables, is overloaded
between the various language models. The general purpose meta-variable X represents nota-
tion that varies between the language and machine models. Which definition is appropriate
should always be clear from context. Also, notationally we do not distinguish arrays, ordered
sets, stacks, and queues. Some additional symbols are used for purely local definitions.

This notation is not identical to that used in earlier presentations of this work, as many
details have been reworked for consistency between models and for overall clarity.

39

40 CHAPTER 3. NOTATION

Meta-variables: Primes and subscripts are used to obtain additional meta-variables in a

given domain. Numerical subscripts are also used to denote indexing of array components.

b Boolean constant

c Syntactic constant

C Control information of a state

D Semantics derivation

d Depth cost

e Syntactic expression

E Set of computation graph edges

g Computation graph

gc Number of garbage collections during evaluation

ni, k,m Integer

1 Intermediate state

) Location

n Computation graph node

ns Computation graph source node

nt Computation graph sink node

N Set of computation graph nodes

NE Mapping from nodes to their children (ordered set of nodes)
in a computation graph

P Total number of processors

P Computation graph traversal prefix

q Maximum number of selected states each step

Q Number of states processed

R Set of root values

s Space cost

st State

St, StA Array, multi-stack, ete. of states or active states

SV Store-value

t Time cost

T Computation graph traversal

v Value

|4 Set of visited nodes in computation graph traversal

w Work cost

T, Y, 2, - Variable

p Environment (mapping from variables to values)

o Store (mapping from locations to store-values)

T Thread

W Number of evaluation steps

— Wildcard in meta-syntactic pattern matching

41

Expressions: Not all of these expressions are used in each model.

Az.e

€1 €2

(61762)

let z = e; In ey
letrec x y — e in ey

if e; then e, else e3
{¢/ 12 in €}

Q@ U1 U2

done v

Shilli

FV(e)

Abstraction (user-defined function) with bound variable z and
body e

Application of function e; and argument eg

Pair

Non-recursive local binding of the value of e; to variable z
Recursive local binding of a function named 2 with argument
y and body e

Conditional

“For-each” expression evaluating e’ for each binding of x to
an element of e

Application of function v; and argument v

End of computation with result v

Add ith element of sequence at [y into result sequence at [y
with current running total at [’

Set of free variables of expression e

Values and Store-values: Not all of these are used in each model.

cl(p,z.e)
Cl(p7$7y7€)
<U17U2>

Closure (function) with argument z
Recursive closure named z with argument y
Pair

Continuations: Not all of these are used in each abstract machine.

;un<X K)
arg(X k)
end(l x)

throw(v,)

Empty or initial continuation

Continuation marking function branch of application
Continuation marking argument branch of application
Continuation marking each branch of for-each

Throw value v to continuation s

42 CHAPTER 3. NOTATION

Mappings:

. Empty mapping

X[Xg— X,] Mapping X extended with the binding of X; to X,.. Xy may
occur in X

X(Xq) Item bound to domain element Xy in the mapping X, or set
of items bound to set of domain elements in the mapping

XUuX', Ut x; Union of mappings (disjoint domains)

XUuXx’ Union and update of mappings (X’ may replace bindings in
X)

XWX’ Union of computation graph adjacency lists

dom(X) Domain of mapping X

rng(X) Range of mapping X

queues, and multi-stacks.

Arrays and other data structures: We use the same notation for arrays, ordered sets,

[Xor- - Xt
X[X'/i]

X

xr 1
X+X, HZ X

A homogeneous data structure

New data structure replacing ith element of X with X’

A homogeneous data structure [Xp, .. '7X|X’|]

Number of elements in data structure X

Combining (e.g., appending, pushing, enqueuing) of data
structures

Evaluation:

Xcl—elHJ;Xo

X
o

X7
StA, o <%, StA' o' X,

el—egv;Xo

d(e,v), §(X,,c,v)

Evaluation in semantics X starting in context X, with e re-
sults in v and cost information X,. The forms of X, and X,
depend on the semantics.

Transition X' used on each applicable state in a substep of
intermediate machine X.

k steps of the intermediate machine X, selecting at most ¢
states per step. The machine starts with active states StA
and store o and ends with active states StA’, store ¢’, and
cost information X,.

Evaluation in intermediate machine X, selecting at most ¢
states per step, of expression e results in v and cost informa-
tion X,.

Application of ¢ to v, possibly requiring a context X..

43

Costs of evaluation:

1

1< g
g1 D 92
g1 © g2
®s' g
gL\ g2

Singleton node computation graph

Singleton node and edge from the minimum sink of ¢
Serial combination of computation graphs

Parallel fork-and-join combination of computation graphs
Parallel fork-and-join combination of computation graphs
Forking of computation graphs

Net space allocation of node n that is independent of traversal
(Minimum) Depth cost of a computation graph ¢
Maximum depth cost of a PSL computation graph g
Space reachable in store o from roots R

Space of computation graph node n

Space of traversal prefix P

Space complexity of traversal T

Time cost of fetch-and-add operation on p processors
Time cost of scan and reduce operations on p processors
Work cost of a computation graph ¢

States: Not all of these are used in each abstract machine.

(€,p,)
@stub(l ¢ k k)

Sstub{ly I I' i k k)

State

Stub state representing the k—i states having expressions @ [¢
through @ [(k — 1), an empty environment, and continuation
K

Stub state representing the k — 7 states having expressions
Y1yl U ¢ through X 0y I3 I' (k= 1), an empty environment,
and continuation s

Intermediate states: Not all of these are used in each abstract machine.

Fin(X X7)
E<llv 127 l/7 i7 H>

State finishing this step

Add ith element of sequence at [y into result sequence at [y
with current running total at I’, continuing with the continu-
ation k if this is the last element

Other functions and relations:

Tx[XT, Tx[X"],.[X'],
X, >Xe X,

ce

Translations to model X

Language model X is at least as cost-expressive as X5, when
both are implemented on machine model X, for implementa-
tion cost measure c.

44

CHAPTER 3. NOTATION

Part 11

Methodology

45

Chapter 4
Language

In this dissertation we are interested in parallel languages with first-class higher-order func-
tions. As discussed in Section 1.1, these languages are

e abstract, and thus easy to analyze extensionally, but generally not well understood
intensionally; and

e general, and thus representative of many characteristics of realistic languages.

This part of the dissertation uses a simple model called the Parallel Applicative A-Calculus
(PAL) as an introductory example. While this chapter is primarily concerned with the syntax
of the language, which uses standard A-calculus notation, it also anticipates the formal se-
mantics and implementation with some informal discussion of the parallelism in the model. In
particular, its semantics is based on the standard call-by-value (applicative-order) evaluation
strategy.

Many features of modern languages (e.g., data structures, conditionals, recursion, and
local variables) can be simulated in the standard A-calculus with constant overhead, therefore
not affecting asymptotic performance. Thus, we use relatively small and simple languages,
especially in this overview of the methodology. This eases the description of the languages and
the proofs of simulation results (e.g., Chapter 7). In particular, Section 4.1 defines the PAL
model with just the basic A-calculus with a few constants, a minimal language for the first
examples. Since that language is too sparse for reasonable examples, Section 4.2 introduces
an extended A-calculus that includes a representative sample of features of modern languages:
pairs, explicit recursion, conditionals, and a larger selection of constants. Chapter 5 shows
that for the purpose of asymptotic performance bounds, these two languages are equivalent,
i.€., that simulating the extensions in the smaller A-calculus requires only constant overhead.

All of the languages presented in this dissertation are untyped. We define the costs
of evaluation only for those programs which correctly execute, independent of the static
checking that types would provide. And while types are useful for optimizing the program
implementation, this information does not provide the asymptotic benefits we are looking
for.

47

48 CHAPTER 4. LANGUAGE

c € Constants
z,y,z € Variables
e € FExpressions = c|a|

Az.e | abstraction
ey €3 application

Figure 4.1: Basic A-calculus expressions.

4.1 A-calculus

The basic A-calculus consists of the following kinds of expressions:
e constants ¢, such as numbers or primitive functions like addition;
e variables z;

e abstractions Az.e, which represent user-defined functions with bound variable z and
body e; and

e applications ey eq, i.e., function calls with function e; and argument e,.

All functions are first-class, which means that they can be passed as arguments or returned
from functions like any other value. Furthermore, the function of an application expres-
sion can be any expression, not just an identifier, with the assumption that it evaluates to
something appropriate.

The core syntax of the A-calculus is given in Figure 4.1, where the set of constants is
defined later, and the set of variables is countably infinite. The free variables of an expression,
FV (e), are defined as usual, where abstraction is the only variable binding construct.

For an application expression e; ez in the call-by-value (applicative-order) A-calculus,
the function e; and argument ey can always be evaluated in parallel, since the argument is
always evaluated anyway and there are no side-effects to make the relative order of evaluation
noticeable. There is a choice of how to synchronize these parallel computations. The PAL
model of Chapter 5 synchronizes after both the function and argument finish evaluating,
whereas the PSL model of Chapter 8 synchronizes only when the argument’s value is needed.

Arithmetic constants

Without arithmetic constants, the A-calculus is not a practical model of realistic languages.
Numerous schemes exist for encoding numerals in the A-calculus. At best, these allow con-
stant time successor, predecessor, and zero-test operations and polylogarithmic time for other

4.2. EXTENDED A-CALCULUS 49

v € Integers
¢ € Constants == i|add|sub|mul|lt| numeric constants
add; | sub; | mul; | div; | 1t;

Figure 4.2: Basic A-calculus constants.

operations [92]. But since most machines use a fixed-precision arithmetic, they provide con-
stant time operations for multiplication, division, equality, etc. To model this, we include
such operations as constants.

There exist encoding schemes to encode groups (e.g., arrays) of integers as a single integer
and operations on such groups as functions on their encodings. However, if we include
division along with a standard set of operations on arbitrary-precision integers, the integers
are compressible [7], which means that such encodings can be asymptotically faster than the
operations on the raw groups of data. To avoid this we restrict the set of integers operations
to include, e.g., division by two, rather than full division.!

To keep the number of syntactic forms, and thus the number of semantic rules and the
number of proof cases, to a minimum, we do not syntactically distinguish unary and binary
functions. Instead, a binary function such as addition takes its arguments one at a time,
i.e., add 1 2 = (add 1) 2. Thus the core language uses the constants defined in Figure 4.2.
For example, add represents binary addition, and add; represents the unary addition of the
number ¢. While the unary functions are redundant with the corresponding binary functions,
we include them in the syntax of expressions to simplify the presentation of the semantics
(the unary functions are the result of applying the corresponding binary functions to their
first argument) and for syntactic consistency with the extended A-calculus.

4.2 Extended M-calculus

The basic A-calculus of the previous section is too sparse for even small examples, so we
introduce a language with some extensions. We add pairs to have a better way to allow n-ary
constant functions. We add boolean constants, conditional branching, and explicit recursive
function bindings as other typical extensions. Our extended language syntax is then defined
in Figure 4.3. The expression letrec z y = e; in ey creates a possibly recursive function z
with bound variable y and function body e;. Since this is a recursive binding, this binds both
2 and y in the function body. The entire function definition is bound in the program body
ez. Again, each of the constants has the obvious intended meaning. Also the free variables
of an expression are defined as usual, where abstraction and letrec are the only binding
constructs.

! Another option would be to bound the range of the integers, as in most languages. This would be a better
solution for a more detailed and accurate semantics.

50

CHAPTER 4. LANGUAGE

) € Integers
Booleans
€ Constants

m

m

Y, 2 Variables
e € Lzpressions

true | false
i | add | sub | mul | div; | numeric constants

It |eq | gt |

b| and | or | not | boolean constants

fst | snd pair constants

c|al

Az.e | abstraction

€1 €| application

(e1,€2) | pairing

letrec x y = e; in ey | recursive function binding
if e; then e, else e;3 conditional branching

Figure 4.3: Extended A-calculus.

These extensions are only representative of what a realistic language would include. For
example, other local binding expressions, data structures, and pattern matching can be simu-
lated with letrec, pairing, and conditionals. This syntax is sufficient for reasonable examples
while still simple enough for small semantic definitions of the language models. For readabil-
ity, we will assume such further extension in Chapter 10.

As we show, the encoding of pairs in the A-calculus allows the two expressions to be
evaluated in parallel in the PAL model, so the intension is to have applications and pairs
be the only sources of parallelism in this model. Furthermore, the encoding of conditionals
respects the usual serialization of the test and branch.

Note that we overload notation, e.g., reusing meta-variables between the languages, so as
not to clutter the notation. This is common throughout the dissertation. Which definition
is intended should always be clear from context.

Chapter 5

Profiling semantics

Recall that most semantics define only the extensional properties of a language: a program’s
results and termination properties. A profiling semantics augments such an extensional se-
mantics with definitions of the intensional information, the costs of evaluating the expres-
sion [108, 110]. In particular we are interested in the time and space costs of evaluation,
where parallel time is modeled by work and depth, or more generally, computation graphs.

We add these costs to operational semantics in a natural deduction, “big-step”, opera-
tional style of semantics. Any style of semantics, including denotational, could be used, but
we use this style because we find it more convenient. In particular, an operational style is
more suited to

e defining the costs incurred during evaluation, because it describes the process of eval-
uation;

e defining machine models traditionally defined by a state transition relation; and
e proving equivalences with such machine models.

A “big-step” semantics directly defines the value of an expression, as opposed to a “small-
step” semantics which first defines what an expression reduces to in one step, and then
defines the value of the expression to be the transitive closure of this reduction. A “big-step”
semantics hides evaluation details which are irrelevant for the language models we use here.

Section 5.1 reviews the call-by-value operational semantics of the basic A-calculus. Sec-
tion 5.2 explains computation graphs and defines their form for the PAL model. Section 5.3
then extends this operational semantics to a profiling semantics defining the computation
graphs for the PAL model. Section 5.4 further extends the profiling semantics to define the
space usage of evaluation. These semantics use the basic A-calculus for simplicity. But Sec-
tion 5.5 shows that basing the PAL model on the extended A-calculus instead affects time
and space bounds by only a constant factor.

51

52 CHAPTER 5. PROFILING SEMANTICS

p € FEnvironments = Variables T Values
v € Values n=
cl(p,z.e) closure

Figure 5.1: The definition of call-by-value A-calculus run-time domains.

5.1 Call-by-value \-calculus semantics

This section provides a brief review of a standard way to define the call-by-value A-calculus
semantics.

An operational semantics defines the result value of evaluating an expression. In the form
of operational semantics used throughout this dissertation, evaluation is performed in the
context of an environment, a mapping from a finite set of variables to their values. (See
Chapter 3 for notation used with mappings.) The values resulting from the basic A-calculus
are the constants we have included and closures, the representation of functions. Thus,
environments and values are defined mutually recursively as in Figure 5.1.

Semantics are defined recursively in terms of a judgment, or relation, describing the eval-
uation of expression e to value v. A standard call-by-value semantics is often defined as in
Definition 5.1. In each semantics, we annotate the arrow with the semantics name for clarity.
We are primarily interested in the “top level” case where the evaluation starts with an empty

. : A . .
environment, i.e., - - e — v represents the evaluation of program e to its result value v.

Definition 5.1 (Call-by-value A-calculus semantics) In the call-by-value \-calculus, in
the environment p, the expression e evaluates to value v, or

pl—eimj,

if it is derivable from the rules' of Figure 5.2. Figure 5.3 defines the § function for the
application of constants.

As usual, a constant evaluates to itself, an abstraction evaluates to a closure containing
the current environment, and a variable evaluates to the value found for that variable in the
current environment. An application evaluates each of the function and argument and

e if the function value is a closure, it evaluates the closure body using the closure’s defining
environment; or

e if the function value is a constant, it evaluates the constant application as defined by 6.

'Ttems above each horizontal line are assumptions needed for the judgment below the line to hold. Rules
without a horizontal line are axioms.

5.1. CALL-BY-VALUE A\-CALCULUS SEMANTICS 53
phesc (CONST)
pbAx.e 2 cl(p,z.e) (LAM)
plm)=v — (VAR)
pFv—w
p kel 2 cl(p',ze3) pk e 2 v2 plle = v]kes 20 (APP)

pFel e —X> v
p kel e p ke —X>02 d(c,v2) = v;ga (APPC)
pbel e —X> v

Figure 5.2: Call-by-value operational semantics using the basic A-calculus

of ¢ in Figure 5.3.

c v d(e,v) if /where
add 11 | add;,
addi1 iz il + iz
sub 11 | suby,
Sllbi1 iz il — iz
mul ¢ | mul;
mul; 2g | 7 * 29
diVZ'1 iz L’Ll/lzJ
It i | 1,
1t iy | cl(, @ \y.2) | i1 < iy
It iy | el \y.y) | i1 > iy

and the definition

Figure 5.3: The § function defining constant application for the call-by-value A-calculus.

54 CHAPTER 5. PROFILING SEMANTICS

[CL‘ = Cl(,y,l)](l‘) = CI('7y71)

[z cl(y)]k 2 cl(-y,1)

(VAR) = D,

(LAM) (LAM)

A A
-F Az —cl(z,x -F Ayl — cl(y,1 D
(e,2) y (1) 2 (APP) = Dy

+ (Azz) (A1) 2 el(y,1)

(CONST) —— (CONST)
Dy F2 =2 ly—2]F1 =1

b (Aza) Q1) 2 251

(APP)

Figure 5.4: Call-by-value A-calculus operational semantics derivation for Example 5.1. For
readability, the derivation tree is broken into three subtrees.

Using the APPC rule with the ¢ function is a convenient way to define the application of
most constants—in particular, those that do not depend on the general evaluation relation.
Alternatively, we could define a separate semantic application rule for each constant.

Since this simple language does not include explicit booleans for the result of the less-
than test, a programmer would use standard encodings of booleans instead. Section 5.5 uses
a A-calculus with additional constructs, including explicit booleans and also reviews how the
encodings used here represent booleans.

Division by zero does not cause an error here since, for simplicity, we do not include errors
in the semantics. Instead, we have two choices:

e to have a “not a number” value as in the IEEE standard; or

e to leave division by zero, and any program evaluation causing it, undefined.

Example 5.1 As a small example of a operational semantics derivation, observe the evalu-
ation of (Az.z) (Ay.1) 2. The derivation forms a tree, as Figure 5.4 shows.

The semantics can be read as a simple interpreter for the language. For better efficiency,
many compilation techniques have been developed over the years for the A-calculus and
related languages. The implementations used here are in the tradition of the SECD state
machine of Landin [70] and its descendants, as further described in Chapter 6.

5.2 Computation graphs

We use directed acyclic graphs (DAGs) to represent the process of computation, generalizing
the computation’s work and depth. As usual, a directed graph consists of a set of nodes
and a set of directed edges. Each node of a computation graph represents a single unit of

5.2. COMPUTATION GRAPHS 55

computation: unit work and unit depth. An edge represents a control or data dependency,
where the child depends on the parent. Additionally, we place a total order on the children
of each node to distinguish the scheduling order on the nodes. Thus, more accurately, these

are ordered DAGs.

We use computation graphs for several related purposes:

e They provide a way to visualize computation and to gain an intuitive understanding
about these models.

e They formally generalize the work and depth costs of a computation in that the work
and depth can be easily defined in terms of the computation graph g. The work W(g),
is the number of nodes in graph ¢, and the depth D(g) is the number of levels, or
equivalently, one more than the length of the longest path, in graph g.

e They are useful to describe the scheduling of computation on machine models (cf.
Chapters 6 and 7). For example, we describe how to schedule nodes with the constraint
that all parents must be scheduled prior to their children.

We will use computation graphs for all models in this dissertation, although the more detailed
structure of the graphs varies among models.

Figure 5.5 illustrates the computation graphs for the PAL model. We can distinguish
two nodes (potentially the same node) in the subgraph for any subexpression’s evaluation:
its source ns and sink nt. The source represents the start of a computation, and the sink
represents its end. We draw graphs as a diamond with its source at the top and its sink at
the bottom. Evaluating a constant, variable, abstraction, etc., requires only constant work
and depth, and the computation graph is a single node. Evaluating an application e; e
introduces parallelism—nodes before and after the parallel branches represent the initiation
and synchronization associated with this parallelism.

We choose a consistent ordering on the evaluation of subexpressions, arbitrarily placing
the function’s subgraph before that of the argument. This choice makes the branching in
computation graphs resemble that of the corresponding syntax tree. As explained later, this
ordering will reflect the execution ordering when there are not enough processors to parallelize
all computation. Within the context of the example languages presented here, the choice of
ordering is irrelevant.

The reader may be concerned over the form of these graphs. First, the nodes may repre-
sent significantly different amounts of real work, as for example, synchronization would take
significantly more time than evaluating a constant. Second, either or both of variable lookup
or closure creation (i.e., evaluating a variable or a function) could take non-constant time, but
they are both represented by single nodes. But the computation graphs represent the time
costs as defined abstractly in the language model, and these costs must still be mapped to
the machine model. For example, later chapters show that in the given implementations, the
latency of communication for synchronization and variable lookup requires up to logarithmic

56

CHAPTER 5. PROFILING SEMANTICS

Expression e:

¢, T, Or Ax.e

€1 €2

Graph g¢:

€.

where the last subgraph is that for ei-
ther the body of the user-defined func-
tion (closure) or the application of the
constant to which e; evaluates

Figure 5.5: Illustration of computation graphs for the PAL model.

5.2. COMPUTATION GRAPHS 57

(in number of processors) time, in the machines of interest. The model here represents the
following ideas:

e the programmer does not need to know why this logarithmic factor is necessary, but
that it is part of the overhead of the implementation; and

e the implementor is not constrained to where to introduce this overhead.

PAL computation graphs formalized

The computation graphs of the PAL model and its variants are all single-source, single-sink
computation graphs, as defined in Definition 5.2.

Definition 5.2 A single-source, single-sink computation graph is a triple (ns, nt, NE) of the

source, the sink, and the mapping of nodes to their children, such that the mapping induces

an acyclic partial ordering. This mapping represents the edges of the graph in the form of

adjacency lists, and the nodes of the graph are implicitly represented in these edges.
Mappings representing sets of adjacency lists are combined with 9:

[n — NEj(n)] n € dom(NEy),n ¢ dom(N E,)
NE\WNE; =, ey [n— NEj(n)] n ¢ dom(NFEy),n € dom(N FEy)
[n— NEj(n)+HNLEy(n)] n e dom(NE) N dom(N E,)

where N = dom(N Iy)Udom (N E3). When N Ey and N Iy are guaranteed not to contain any
of the same sources, i.e., they have disjoint domains, NF1 W NFy = NE; UNFs.

In the PAL model, all computation graphs are of serial-parallel form, as defined in Defi-
nition 5.3.

Definition 5.3 A series-parallel graph g is a single-source, single-sink graph formed by any
combination of the following:

o A singleton node is both source and sink of the unit graph g.

o Two series-parallel subgraphs g1 and g, are joined in series by adding an edge from the
sink of g1 to the source of go, such that g’s source is that of g1, and its sink is that of

g2-

o Series-parallel subgraphs go, ..., gx_1 are joined in parallel by adding a source node
which links only to the source of each of the subgraphs and a sink node which links only
from the sink of each of the subgraphs.

The particular graphs used in the PAL model are defined as part of the profiling semantics
of the models. Figure 5.6 illustrates these and the notation used for defining them:

58

CHAPTER 5. PROFILING SEMANTICS

Graph g: 1 91D g2 91 @ g2
(ns,nt, NE) (n,m,-) (nsy, nty, (ns,nt,
(NE, U N Ey) (NE, U N Ey)
[nty — [ns2]]) [ns — [nsy, nssy]]
[nty — [nt]][nte — [nt]])
unique n unique ns and nt
nSl ns
99
ns ns
2
ntl
g e n 9q
ns
2
nt nt2
9,
nt
nt2
W(g): 1 W(g1) + W (g2) W (g1) + W (g2) +2
D(g): 1 D(g1) + D(g2) +1 max(D(g1), D(g2)) + 2

Figure 5.6: The definition of combining operators for PAL computation graphs, work, and
depth. The informal “unique”-ness side conditions reflect the need to distinguish the nodes
in a graph and could be replaced by a counter to generate unique node names.

e A singleton node is represented by 1.
e Pairs of graphs are combined in series by g1 & gs.

e Pairs of graphs are combined in parallel by ¢; @ ¢go. PAL graphs are limited to having
binary branching.

The precedence of @ is higher than that of @. The definitions of these operators are somewhat
informal in the use of the “unique”-ness side conditions. These reflect the need to be able
to distinguish the nodes in a graph, i.e., that each node is unique. They could be replaced
by having a counter used to generate unique node names, but that would clutter each of the
profiling semantics.

5.3 Simple parallel applicative semantics

This section defines the PAL model based on the basic A-calculus of Chapter 4 and its call-
by-value semantics of Section 5.1. In this section, the semantics track only the time costs

5.3. SIMPLE PARALLEL APPLICATIVE SEMANTICS 59

phey e (CONST)
pbAx.e tak cl(p,ze);1 (LAM)
plx)=wv

(11AL (VAR)
pFv—u;1l
phe 2% cl(p’\z,ea); 1 pk e 25 oo ple > vl b es ¥ vige (APP)

pbeles tay v; (g1 ®g2) D ga

ok el ﬂc;gl pEes g v2; g2 8(c,v2) =v (APPC)

PAL
phelea == v (g1 @ g2) B ys

Figure 5.7: The profiling semantics of the PAL model (without space) using the basic A-
calculus and the definition of § in Figure 5.8.

as described by computation graphs. This serves as the introductory example of a profiling
semantics, and Section 5.4 defines a profiling semantics to also define space costs.

The PAL model profiling semantics judgment p - e AL v; g adds the result computation
graph to the operational semantics judgment. Definition 5.4 defines this relation.

Definition 5.4 (PAL profiling semantics) In the PAL model, in the environment p, the
expression e evaluates to value v with computation graph ¢, or

PAL
pFe— vy,

if it is derivable from the rules of Figure 5.7. Figure 5.8 defines the § function for the
application of constants.

Program constants, abstractions, and variables are assumed to evaluate with constant
work and depth, i.e., with unit cost 1. As previously described, an application evaluates the
function and argument in parallel. This is followed in serial by evaluation of the function
body or constant application, as appropriate.

For each of the numeric constants used here, constant application is assumed to require
constant work and depth. However, the semantics allows for a more general cost (the graph
returned by 4). F.g., Chapter 9 uses constant functions whose application’s work and depth
are functions of the argument. Within the context of this model, the constant costs for
constant application, or the uniform cost criterion, is a reasonable assumption for imple-
mentation of these numeric functions on most real machines, assuming we ignore arbitrary
precision arithmetic. The semantics could also accommodate the more precise logarithmic
cost criterion [3].

60 CHAPTER 5. PROFILING SEMANTICS

d(e,v)
c v v’ g’ | if/where
add 11 | add;, 1
addi1 iz il + iz 1
sub 11 | suby, 1
Sllbi1 iz il — iz 1
mul ¢ | mul;, 1
mul;, g | g ¥ 2 1
div, ¢ | [i/i] 1
It i | 1t 1
It;, ig | el y.x) 1 |4 <y
1t;, ig | el yy) 1 |4 >4y

Figure 5.8: The 4 function defining constant application for the PAL model.

Example 5.2 As a small example of a profiling semantics derivation, observe the evaluation
of (Az.z) (Ay.1) 2. The derivation forms a tree, as Figure 5.9 shows. This is the same as the
derivation of Figure 5./, except that the computation graphs are added. Figure 5.10 shows
the overall computation graph.

5.4 Semantics accounting for space

To track space usage we need to model memory more accurately. We must be able to express
what data is being shared, so that we do not count its space multiple times. For this we add
stores which describe a particular state of memory. A store maps a finite set of individual
memory locations to their contents. Locations are effectively pointers to data structures kept
in memory. Together, environments and store provide a level of indirection that allows us to
describe sharing.

Introducing stores and locations changes the definitions of values and evaluation some-
what. Following common practice, we do not place constants in the store. For simplicity, we
assume that constants are of bounded size? (and frequently the same size as a location), the
inability to share their storage does not affect space bounds. Thus we distinguish between
values in the environment, which are constants or locations, and store-values in the store,
which are just closures here. These domains are defined in Figure 5.11, where the set of
locations is countably infinite.®

2This assumption is accurate for fixed-precision arithmetic. But to accurately track the space of the
arbitrary-precision numbers allowed in this semantics, this assumption would have to be dropped, and at least
some constants would have to be placed in the store like Scheme’s “bignums”.

*This ensures that we have enough locations, and that we can name them (e.g., with the integers).

5.4. SEMANTICS ACCOUNTING FOR SPACE 61

[CL‘ = Cl(,y,l)](l‘) CI('7y71)
[z el)] F o 225 el(-y,1); 1

(VAR) = D,

=

(LAM) (LAM)

R w22 cl(,z,2);1 -k Ayl Pak cl(-,y,1);1

D2 ()

PAL (CONST) PAL

— (CONST)
Dy F2—2;1 [y—2]F1—=1;1

~ (APP)
Frz) (A2 =1, (1el)pl)1)e1

Figure 5.9: PAL profiling semantics (without space) derivation for Example 5.2. For read-
ability, the derivation tree is broken into three subtrees.

(Axx) (Ay.1) 2

(AxXx) (Ay.1) 2

/N

AX.X Ayl

N

< - Q)

|

Figure 5.10: PAL computation graph (((1® 1) 1) ® 1) & 1 for Example 5.2. Labeled nodes
indicate the expressions evaluated. The “@” nodes each represent the synchronization and
application of a function value and its argument.

62 CHAPTER 5. PROFILING SEMANTICS

Il € Locations

v € Values n= el

p € FDInvironments = Variables T Values

sv € StoreValues == cl(p,z,e) closure
o € Stores = Locations % Store Values

R € Roots = ValueSets

Figure 5.11: The definition of PAL run-time domains when tracking space.

The semantics does not need to model garbage collection, but instead, measures the
maximum space reachable from a set of roots during the evaluation. Our implementation
does not include garbage collection either, because that would require extra details obscuring
other features. However, Appendix B outlines how garbage collection can be added to ensure
that the total space is within a constant factor of the reachable space.

The evaluation relation must now account for these stores and roots. The context of
an evaluation is the current environment, store, and roots, and an evaluation results in a
value and a new store. Definition 5.5 reflects these changes. Note that the definitions of
the two costs—the computation graphs and the reachable space—are independent. We also
extend the definition of constant application to use stores, where §(o, ¢, v) now also returns
any modifications to the store? and also the computation graph of the application (but not
the space cost, as we explain later). For the sake of generality, it also returns a computation
graph, even though for these constants the graph is always 1—we take advantage of this
generality beginning in Chapter 9. Again, we are primarily interested in evaluations starting
at the “top level”, where the environment, store, and roots are all empty.

Definition 5.5 (PAL profiling semantics with space) In the PAL model, starting with
the environment p, store o, and roots R, the expression e evaluates to value v and the new
store ¢’ with computation graph ¢ and space s, or

PAL
p70-7R|_€ *U,0:6, S8,

if it is derivable from the rules of Figure 5.12. Figure 5.13 defines the & function for the
application of constants. Figure 5.14 defines additional functions the reachable space of a
computation.

The space s returned by the semantics represents the maximum reachable space during
the computation, assuming a serial evaluation. In particular, in the application rules the store

Tt returns the modifications to the store, rather than the new store, because that is what the abstract
machine uses in Chapter 6.

5.4. SEMANTICS ACCOUNTING FOR SPACE 63
PAL
p,0,RFc—c,0;1,5(R, 7) (CONST)
p,o, RE dz.e Tak L,o';1,S(RU{l},6') where o' =gl — cl(pz,e)],l €0 (LAM)
o) = v
PAL (VAR)
p,o,RFv—wv,0;1, S(RU{v},0)
p,0, RUp(FV(e2)) F ey Tak l,o1;01, 81 p,o1, RU{l} e Tak V2, 02; g2, $2
o2 (1) = cl(p'\z,e3) p'lv = v2],02, RFe3 Tak v, 0303, S3 (APP)
oo, RE ey e2 225 v, 0 (91 ® 92) ® g3, max(s1 + 1,52 + 1, s3)
p,0, RUp(FV(e2)) F ey PAL ¢, 01591, 81 p,o1, RE e Pak v2,02; G2, 52
6(02,¢,v2) = v, 03,93 (APPC)
p,o, RE el e PAL v,02 Uos; (91 @ g2) B gs,max(s1 + 1,52 + 1, 5(0, RU {v}))

Figure 5.12: The profiling semantics of the PAL model that also accounts for space using the
definitions of § and S(o, R) in Figures 5.13 and 5.14, respectively.

d(o, ¢, v)
c v v’ o g if /where
add ¢ | add;,, 1
add;, iy |11 + 19, 1
sub 7; | sub;, 1
Sllbi1 iz il - 7:27 1
mul ¢ | mul;, 1
mul;, 2 | 7 * 29, 1
div, ¢ | i/, 1
It 31 lti“ . 1
1t 19 | 1, el Aya)] 1 |ip<iy [¢o
1t 19 | 1, el Ayy)] 1 |ip >4 [¢o

Figure 5.13: The § function defining constant application for the PAL model that also ac-

counts for space.

64 CHAPTER 5. PROFILING SEMANTICS

S(Ra) = Sl FV(e) — {a} +2 where o(l) = el(~,z.
where L = [J;cg locs(l, o)

locs(c, o) = {}
loes(1, o) = {l}Ulocs(a(l),0)

locs(cl(p,z,e), o) = Uy locs(l, o)
where L = p(FV(e) — {2})

Figure 5.14: Semantics functions used for defining reachable space in the PAL model.

is threaded through the sub-evaluations. Since it reflects a serial evaluation, rather than the
PAL model’s parallel evaluation, its definition may seem out of place in the same semantics,
but we present them together for convenience. Chapters 6 and 7 relate this serial space to
the space required during parallel evaluation, which depends on the number of processors
used. The semantics accounts for the reachable space by tracking all the values that might
be needed in the continuation. These are kept as a set of labels R into the store. For example,
in a function application e; e3 when executing ey, the semantics adds the labels for the free
variables in e; to the current set of labels. Given a set of root labels, the space required by
the data is measured by finding all the locations reachable from the root locations R, and
summing the space for each object stored at these labels (see Figure 5.14). Space is measured
only at the leaves of the evaluation tree (in the rules CONST, LAM, VAR, and APPC). The
addition of 1 to the space in the two application rules represents the space needed for control
information. Ie., during the execution of the function, we need to store a pointer to ey, and
during the execution of the argument, we need to store [.

Example 5.3 We return to our previous example program, and show the profiling semantics
derivation for the expression (Ax.x) (Ay.1) 2. Figure 5.15 shows the derivation tree, which
mirrors that of Figure 5.9.

Observations

The § function doesn’t return a space cost like the profiling semantics judgments. The
function is like a special base case of the semantics since it does not use the semantics
recursively, and the semantics measures space at the base cases with the function S(R, o).
The semantics could pass the roots to & and calculate the space there, rather than in APPC.
But since in all of our constant functions, the space of the application is bounded by that of
the result value, we use a simpler notation.

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS 65

o(z)y=10

[xr=1],0 {}F= Pak U, 0';1,2

(VAR) = D,

(LAM) — (LAM)

~,~,{}|—)\x.xﬂl,a;1,3 o I} F Ayl —=1,0'1,6

D>
(APP) = D,

Lo (3 F Qea) () 230 6 1e) e 1,7

PAL (CONST) PAL

(CONST)
Dy Lol {UYR2 —=20":1,2 [y—2],0', {}F1—=1,0";1,0

~ (APP)

S F(Are) Ay 2 —=1,05((121)p1)® 1) 1,8

where o

[cl(-,z,x)]
oll' = cl(y,1)]

Figure 5.15: PAL profiling semantics derivation for Example 5.3. For readability, the deriva-
tion tree is broken into three subtrees.

The resulting store of an evaluation p,o - e AL v,0'; g, s, can be factored into the original
store plus some new bindings:

!
o =0U0pew,

where 0,,.,, refers only to new locations.” This observation is used in Lemma 5.1. We could
have defined the semantics to return o,.,, instead of ¢’, like the definition of §, but the style
used is standard.

5.5 Equivalence of A-calculus and extended A-calculus

This section shows that a PAL model based on the extended A-calculus (the PAL’ model)
shares the same asymptotic bounds as the previous PAL model. To prove this, we give a
syntactic translation from the PAL’ model to the PAL model, and prove that the translation
introduces only constant overheads in time and space. This shows that is it sufficient for us to
use only the core of the A-calculus and that any asymptotic cost bounds we prove later for the
PAL model also hold for the richer PAL’ model. The converse holds almost trivially. Similar
results would also hold for the addition of many other standard features of programming
languages, including general data-structures, pattern matching as in ML or Haskell, and loop
constructs.

Section 5.5.1 defines the semantics of the PAL’ model. Then Section 5.5.2 defines the
translation between the models and proves their asymptotic equivalence.

5In general, the semantics could reuse old locations, but that doesn’t make sense for the constant functions

of the PAL model.

66 CHAPTER 5. PROFILING SEMANTICS
[€ Locations
v € Values n= |l
p € FDInvironments = Variables T Values
sv € StoreValues n= cl(p,a,y.e) | recursive closure
(v1,02) pair
o € Stores = Locations JZ; Store Values
R € Roots = ValueSets
Figure 5.16: The definition of PAL’ run-time domains.
5.5.1 Semantics for the extended A-calculus

The store-values of the PAL’ model are somewhat different for those of the basic PAL model,
although they still include constants and closures. Recall, however, that a different set of
constants is used for the extended language. Also, to accommodate the explicit recursion of
letrec, closures are now named—this allows us to avoid using recursive environments, which
allows simpler proofs. In addition, the store-values also include pairs. So, values are defined
as in Figure 5.16, where in the closure, z is its name, and ¥y is its bound variable.

The semantic rules for defining evaluation and its costs are similar to before, and given

by Definition 5.6. The differences from the PAL model are as follows:

e The LAM rule results in a closure with the special name _, a dummy variable.

e The appropriate PAIR, LETREC, and IF rules are added:

The PAIR rule creates a new pair in the store. It evaluates the subexpressions in
parallel, and then creates the pair puts into a new location in the store.

The LETREC rule creates a new recursive closure in the store for the evaluation of the
body e,. Note that the closure’s environment does not include this closure.

The IF rules evaluate in serial the test expression e; and the appropriate branch es or
e3. The live data during the condition test expression includes the data that may be
used in either branch.

The APP rule uses a potentially recursive closure, unrolling the recursion in the envi-
ronment once per application.

The & rules use the new set of constants. In particular, the binary constant functions
are now uncurried, i.e., they take pairs of arguments, rather than arguments one at a
time.

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS 67

Definition 5.6 (PAL’ profiling semantics) In the PAL’ model, starting with the environ-
ment p, store o, and roots R, the expression e evaluates to value v and the new store ¢’ with
computation graph g and space s, or

PAL/’
p70-7R|_€ ;$70-/;g787

if it derivable from the rules of Figure 5.17. Figure 5.18 defines the § function for the
application of constants. Figure 5.19 defines additional functions for the reachable space of
a computation.

5.5.2 Equivalence of the PAL and PAL’ models

The PAL and PAL’ models are essentially equivalent in that they can simulate each other
with only a constant factor of overhead:

e The PAL’ model is an extension of the PAL model, except for the difference between
curried and uncurried constant functions. The PAL’ simulation of the PAL introduces
overhead for pairs of arguments to these uncurried functions, but these correspond to
the closures created in the PAL curried applications. Thus this does not introduce more
than a constant factor of overhead.

e The PAL simulation of the PAL’ model requires translating the extensions of the PAL’
into PAL. The remainder of this section gives such a translation Tpar[], proves that
Trai[] is correct, and proves that Tpay,[] introduces only a constant factor of overhead.

Definition 5.7 defines a translation from the semantic domains of the PAL’ model to
those of the PAL model, and Theorem 5.1 shows that the translated evaluation derivation is
correct and incurs at most a constant factor of overhead. The PAL derivation uses an initial
environment and store defining the PAL’ model’s extra constants. Then for the most part,
the proof follows directly from induction on the structure of the PAL’ derivation, although
extra complications arise for the simulation of explicit recursion.

Definition 5.7 Figure 5.20 shows the translation Tpar[] of PAL’ expressions, values, and
store-values to those of the PAL model. The translations of environments and stores are
defined point-wise on the values and store-values in their ranges, respectively, except that the
translation of the environment omits any bindings for the dummy variable _.5 The translation
of root sets of values is defined point-wise on the contents.

The translation uses standard encodings, but introduces three novel differences:

5This omission corresponds to the lack of a binding for the dummy variable _ in the translation of a
non-recursive PAL’ closure.

68 CHAPTER 5. PROFILING SEMANTICS

po RFe 25 ¢ 0.1, S(R, 0) (CONST)
p,o, RE dz.e PA—L; L,o';1,S(RU{l},0") where o' = o[l = cl(p,,z,e)], | €0 (LAM)
plz)=wv
PAL/ (VAR)
p,o,RFv — v,0;1,5(RU{p(z)},0)
p,0, RUp(FV(e2)) F ey PA—>LI l,o1;91,51 p,o1, RU{l} ez PA—>LI v2,02; g2, S2
o2 (1) = cl(p'\z,y,e3) p'le =y va], 02, RFe3 PAL V3,033 93, 83 (APP)
p o e ea 28 vl o (91 ® g2) ® ga, max(s1 + 1,52 + 1, s3)
p,0, RUp(FV(e2)) F ey PA—L; c, 0151, 81 p,o1, RE ez PA—L; v2,02; g2, S2
6(02,¢,v2) = vs, 03393 (APPC)
p,o, RE el e PAL vs, 02 Uds; (g1 ® g2) B g3, max(s; + 1,52 + 1, S(RU {v}, 03))
p,0, RUp(FV(e2)) F ey PA_L)I V1, 01591, $1
p,al,RU{Ul}l—eQPA—L) V2, 02; g2, $2 where | € o (PAIR)
p,o, RE (e1,e2) 2y Loo[l = (v1,02)]; (91 ® g2) B 1, max(s; + 1, s2)
plr s ol = cl(poye) RE o2 25 0,01 9o, s
- where | € o (LETREC)
p,o,Riletrec v y = €1 iney =% v,0'; 1@ go, s + 1
PAL'
p,0, RUp(FV(e2))U p(FV(es)) Fer — true,o1;91, 51
o1, RF €2 % vy 00100, 52 (IF-TRUE)
p,o, RE if e; then e; else es PA—L; v2,02;1 B g1 B g2, max(s; + 1, s2)
PAL’
p,0, RUp(FV(ez))Up(FV(es)) F ey — false, 01501,
P01, REes =% vs,03;ga, 52 (IF-FALSE)
p,o, RE if e; then e; else es PA—L; vs,03;1 B g1 B gs, max(s; + 1, s3)

Figure 5.17: The profiling semantics of the PAL’ model using the extended A-calculus and
the definitions of § and S(o, R) in Figures 5.18 and 5.19, respectively.

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS

d(o, ¢, v)

c v o o g if /where
add [il + iz 1 O'(l) = <i1722>
sub [il — iz 1 O'(l) = <i17i2>
mul [| iy %y 1 | o(l) = (i1,i)
div, | [/i], 1
1t [| true 1 | o(l) = (i1,i2), 11 < iy
It { false 1 O'(l) = <i17i2>7 il Z iz
eq [|true 1 | o(l) = (i1,i2), 11 = ig
eq [|false 1 | o(l) = (i1,i2), 1 # ig
gt [|true 1 | o(l) = (i1,i2), 11 > g
gt [| false 1 | o(l) = (i1,i2), 11 < iy
not b | false 1 |b=true
not b |true 1 | b =false
and [| by 1 | o(l) = (true,by)
and [| false 1 | o(l) = (false,bs)
or [|true 1 | o(l) = (true,by)
or [|by 1 | o(l) = (false,bs)
fst | |un 1 | o(l) = (vy,v2)
snd [| vy 1 | o(l) = (vy,v2)

Figure 5.18: The ¢ function defining constant application for the PAL’ model with the ex-
tended A-calculus.

S(R,0) = Yer |2FV(€) ~ il hf“ ZE;; : 2:1_(7_7;67%6)
where L = [Jjcp locs(l, o)
locs(c, o) = {}
loes(1, o) = {l}Ulocs(a(l),0)
locs(cl(p,x,y.e), o) = U locs(l, o)
where L = p(FV(e) — {z,y})
locs((v1,v2), o) = locs(vy,0)U locs(vg, 0)

Figure 5.19: Semantics functions used for defining reachable space in the PAL’ model.

70 CHAPTER 5. PROFILING SEMANTICS
Expressions:
TPAL[[i]] = 3
Tear[div;] = div;
Tearle] = ., if ¢ & {i,div;}
Tearz] = =
TeaL[z.e] = Az.Tpan[e]
Tearler e2] = Teavler] Tranle2]
Tear[letrec 2 y = ey in €] = (AaTparfez]) (zy (Az. Ay Tpav]er]))
Tearl(e1,e2)] = xp Teavrlei] Trar[ez]
TeaL[if €1 then e; else es] = Tpavrler] (Az.Tparfez]) (Az.Tpar]es]) 0
Values:

Store-Values:
7

Tpav[el(p',—z.€)],
[el(p,z, Tparle])],
TPAL[[CIEP'7$797€)]]UI

Tearlel(p’,z,y.€)],

TeavL[(vy,09)],

Teacld], [4],
Teavle], 1],
Tearll'l, 11,

plz = 1)y, Teanlel)],

/
[[Cl(p[y/ = lY2]72/7y/ y/ Z/)]]cr

[[Cl([$ = Ul][y = U2]727'Z € y)]]cr

ifl.e¢o
if Tear[l'(a")],/[1(2)],

if Tear[p'], 1r],

if @ # , Tparp], [0,
a(lyr) = el(ply’ = ly2],2" 3y y' 2'),
o(lyq) = el(py.,y/,a" (N\y' y 2)),
py = pla’ = cl(p,x,Ay. Tpar[e])]

if @ # _, Tparlp], [0,
o(lyz2) = cl(py.y/' 2" (A" ' 2')),
py = pla’ = cl(p,x,Ay. Tpar[e])]

it Teau [, [l » Toarlod], ez,

Figure 5.20: Translation Tpay,[] from the PAL’ model expressions, values, and store-values to
those of the PAL model. The translation on expressions is presented as a function. Any new
variables (z., zp, @y, or those primed) are assumed to be distinct from the free variables of
the expression or closure being translated. The variables z., zp, and zy are defined in the

initial environment (Figure 5.21).

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS 71

PI
. +— ., foreach ¢ ¢ {i,div;}
rp lp
ry — ly

or

le — el(-,ze.), foreach ¢ € {add, sub, mul, 1t, eq, gt,
true, false, not, and, or, fst, snd}

lp — cl(-,z,ep)

ly — cl(-z.ey)

e. = uncurry[c], for each ¢ € {add, sub, mul 1t}
ceq = uncurry[Az.Ay.Tpap[not (or (It z y) (It = y))]]
cgt = uncurry[Az. Ay Tpap[lt y z]]

Ctrue = Ay
e = Ay.y
fc}:ll(s;z = Tpau[if = then false else true]
€and = uncurry[Az. Ay TpaL[if » then y else false]]
eor = uncurry[Ax.Ay. Tpar[if 2 then true else y]]
efst = T (A\yAzy)
€spd = T (Ay.Az.2)
ep = Ay Azz oy
ey = (Ayx (Azyy2) (Wa (Azyy 2))

where uncurryle] = e (TpaL[fst] =) (Tpar[snd] z)

Figure 5.21: Initial environment pr and store o7 of the PAL model when translating from
the PAL’ model with Tpar[]. Note the correspondence of #p and zy to the translations of
store-values for pairs and recursive closures, respectively.

72

CHAPTER 5. PROFILING SEMANTICS

PAL’
plle = 1,0’ [l cl(p’ my,e1)] Fer — v’ orcw; 92

. PAL'
plo’ Fletrecry =e; ines =3 v, 05001 D g2

(LETREC)

Figure 5.22: PAL’ derivation with LETREC, excluding space costs.

e It translates letrec expressions and recursive closures using the call-by-value version

of the Y -combinator, a standard way of encoding recursion. The basic property of the
Y-combinator is that, given a function F of the appropriate form, the application ¥ F
behaves the same as F' (Y F), i.e., Y F'is the fixed point of F.

This behavioral equivalence complicates the translation of values because of the differ-
ence between the APP rules of the PAL and PAL’ models. Let’s examine what happens
when we apply a translated PAL’ recursive function in the PAL model. Figure 5.22
shows the derivation for a PAL’ letrec, and Figure 5.23 shows the derivation for its
PAL translation.

Observe that the translation of letrec introduces an expression of the form Y F. For
this analogy, Y corresponds to zy, and F to Ax.A\y.Tpap[e1]. Thus the resulting value
of this application, which is eventually stored at location lg, corresponds to the value

of Y F.

Now assume that the recursive function z is applied within the letrec body e5. Initially,
x is bound to lg, or intuitively, Y F. During the application, the body Tpar[e1] of
the recursive function is evaluated in the environment where the z is bound to [5, or
intuitively, I/ (Y F'). Thus, during the PAL evaluation, z is bound to two different,
but equivalent, values. However, in the PAL’ model, z is only bound to the same value,
the location containing the recursive closure.

While the two PAL values behave similarly, they are not identical, and a straightforward
translation does not accommodate the difference. Thus we provide a translation which
is not a function, but a relation, and which maps PAL’ recursive closures to both of these
PAL closures.” Observe that the closures stored in lg and /5 in Figure 5.23 correspond
to the second and third lines, respectively, of the definition of Tpar[] on store-values.

Furthermore, by comparing contents, not names, of locations, this relation also ac-
commodates the fact that each unrolling of a recursive function generates a separate
location containing a copy of the I (Y F')-like closure. This extra generality allows a
simpler proof of model equivalence than otherwise possible.

It translates constants to variables, which are initially bound to the appropriate function
closures of Figure 5.21. The exceptions are ¢ and div; as they are the same in both
models.

"The translation on expressions is still a function.

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS 73

— (LAM) = D,
ps, 05)\y.TpAL[[el]] — lg, 0651
2y =1
Pt (van) P g AW
p2, 04 b’ — 1o, 0451 p2, 04 B A2 B 2 — 15,0551 D4
(APP) = D3
; PAL /
p2, 00 e —ls,06;g
(LAM) (LAM)
p17a_2|_)\y/.6/@>1370-3;1 pl,asl—)\y/.elﬂl%(f%l Ds (APP) =D
= 2
prio2 b () (W) 25 b, 063 o
Uo(l‘Y) = lY
PAL (VAR) PAL (LAM)
po, 01 F oy — ly,00; 1 po, o1 = Az Ay Ipasei] — 2, 02;1 Do (APP) = D
= 1
po,o1 F oy (AxAyTeavler]) 225 I, 06; 9"
- (LAM) PAT,
prUp,o0 b Az Tparfex] — 11,0151 D polx = ls], 06 - Tear[eo] — v, onew; g2

(APP)
po, o0 F (AxTparfez]) (zy (AxAy.Traslei])) % v, Onew; (1@ 9") @ g2

where po = prUp o0 = o;Uo g = (1)l
p1 = [o' =] o1 = oolli = cl(po,z,Trarfe2])] g = (1el)ad
p2 = pily = U] o2 = o1l = cl(po,z, e Tparfei])] g" = (1eol)ysq"”
ps = polw > ls] o3 = o2ls = cl(pry’se’)]
oy = o3lla— cl(pr,ye)]
o5 = o4lls = cl(p2,z’ Yy Yy "))
0g = 05 [le — Cl(ps,y,TPAL [[61]])] e = g ()\z'.y' y/ Z/)

Figure 5.23: PAL derivation with Y-combinator. For readability, space costs are omitted,
and the derivation tree is broken into five subtrees.

74 CHAPTER 5. PROFILING SEMANTICS

Usually, such constants are translated to abstractions. But this introduces a problem in
an environment-based semantics: the translation on values picks an arbitrary environ-
ment, here the empty environment. If the PAL’ constants are replaced by abstractions,
evaluating the translated expression results in these abstractions “capturing” the local
environment during evaluation, which in general cannot agree with the arbitrary choice
for the values. Rather than providing a sufficiently general equivalence relation on clo-
sures, we avoid the problem by ensuring that our arbitrary choice of environment is the
correct one.

Using a relation for the translation (as motivated for recursion) is effectively like having
an equivalence relation on values, and we could take advantage of that here. But the
given solution is simpler for this problem.

e It translates environments, values, and store-values relative to the appropriate store.

Aside from the recursion issue, using a relation also simplifies the translation on locations by
allowing it to be independent of location names.

Theorem 5.1 now shows that the PAL model can simulate the PAL’ model with only a
constant factor of overhead. To prove this, Lemma 5.1 shows that the simulation holds for
all contexts.

Lemma 5.1 (Equivalence of PAL’ and PAL) If e evaluates in the PAL’ model:

PAL/
plo',R'-e—v o' Udl ¢,

and for any context of p, o, and R for the corresponding PAL derivation such that

e its initial context is the translation of that of the PAL’ derivation: Tear[p],.[p],
TeailoTlo], TearlR],[R],, S(R,0) < k- S(R',0'), and

e it uses the initial environment and initial store defined in Figure 5.21: prUp and
crUo,

then e’s translation evaluates in the PAL model:
PAL
prUp,orUo, RETparfe] — v,0U 0,059, s
such that

o it resulls in the translated value: Tpar[v'] 1 o [leuo,,,: and

e its costs are at most a constant factor more than those of the PAL’ evaluation: W (g) <
k-W(g"), D(g) < k-D(g"), and s < k- ', for some constant k.

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS 75

Proof: We prove this by induction on the structure of the PAL’ evaluation derivation. We
assume that the PAL’ derivation holds and prove the PAL derivation and side conditions
hold, using a case analysis on the last rule used in the PAL’ derivation. The definition of the
translation Tpar,[] on environments and stores make most cases entirely straightforward.

The second condition on the PAL context holds inductively since, by definition, the do-
mains of the initial environment and store are distinct from any other variables or locations.
In most cases, the first conclusion holds by simple observation of the definition of the trans-
lation. The second conclusion holds by showing the translation introduces only a constant
factor larger computation graph and a constant factor of extra closures.

case CONST, ¢ = ¢: If the constant is an integer or div;, then Tpar[c] = ¢, and the con-
clusion holds since the PAL’ constant rule corresponds to the PAL constant rule.

Otherwise, Tpar[c] = I, and the conclusion follows from the definition of the bindings
of the initial environment and store. It holds since the PAL’ constant rule corresponds
to a PAL variable lookup, so ¢’ = ¢ and s < k - s’ for some constant k& determined by
the size of the closures in oy.

case LAM, e = Az.¢’: The conclusion holds since the PAL’ abstraction rule corresponds to
the PAL abstraction rule.

case VAR, e = z: This follows from the definition of the translation of an environment,
since by definition Tpar[p’(2)],.[p(x)], holds if Trar[p],.[p], holds. The conclusion
follows since the PAL’ variable lookup corresponds exactly to a PAL variable lookup,
of a value that is at most a constant factor larger than the PAL’ value.

case APP, ¢ = ¢ e3: By induction, the lemma holds for the two sub-derivations for e; and
€. By assumption, the function e; evaluates to a closure, so there are three subcases,
depending on whether this closure is recursive or not and which translation we use for
a recursive closure.

If it is not recursive, we use the simplest closure translation, which does not introduce
a binding for the dummy variable _. Recall that we omit bindings for this dummy
variable in the translation of the environment. So, we can use induction on the body
of the closure since the body of the PAL closure is the translation of the body of the
PAL’ closure. Thus, the conclusion holds since the PAL’ application corresponds to a
PAL application.

If it is recursive, in both cases we obtain a PAL closure that contains the translation
of the body of the PAL’ closure. We need this closure in the context during the eval-
uation of the function body to use induction. With the simpler closure translation, we
immediately have such a closure, and the conclusion holds. With the complex closure
translation, there are first four VAR, two LAM, and three APP steps before we obtain
such a closure, as in Figure 5.24. But this still introduces only constant work, depth,
and space overhead.

76

CHAPTER 5. PROFILING SEMANTICS

case APPC, ¢ = ¢; ey: By assumption, the function e; evaluates to a constant ¢. By in-

duction, the conclusion holds for both subexpressions, and in particular, we obtain the
corresponding graphs ¢; and g3. The exact structure of the PAL evaluation depends
upon the constant ¢. Here we examine one of the simpler subcases, where ¢ = fst. Thus,
by assumption, the argument evaluates to a pair. The PAL application of Tpar,[c] in-
volves a constant amount of overhead—for fst, the overhead introduced by five VAR,
two LAM, and three APP rules (cf. the binding for /g and the translation of pair
store-values)—resulting in the graph in Figure 5.24. Similar results hold for each of the
other constants. The exact structure of subgraph g; depends on the constant, but it is
always of constant size.

case PAIR, ¢ = (e1,62): By induction, the conclusion holds for the sub-derivations for e;

and e3. In the PAL model, Tpa1[e] evaluates to the translation of the pair (vy,vz). This
evaluation takes one VAR, two LAM, and two APP steps (cf. the translation of pair
expressions and the binding for [p) in addition to the computation for the translated
subexpressions, resulting in the graph in Figure 5.25. Thus it has only a constant factor
more nodes and levels than the corresponding PAL’ graph created by PAIR.

case LETREC, ¢ — letrec @ y — ¢; in ey: By induction, the conclusion holds for the sub-

derivation. In the PAL model, Tpar[e] evaluates to the translation of the appropriate
recursive closure. Use of the Y-combinator represented by zy encodes the recursion.

This evaluation takes two VAR, six LAM, and four APP steps (cf. the translation of
letrec as detailed in Figure 5.23) in addition to the computation for Tpay,[ez], resulting
in the graph in Figure 5.25. Thus it introduces only a constant factor extra work, depth,
and space. Note that neither e; nor its translation is evaluated until the function is
used.

cases IF-TRUE and IF-FALSE, e — if e; then e; else e3: We show only the [F-TRUE

case, as the IF-FALSE case is trivially different. For this case, e; evaluates to true.

By induction, the conclusion holds for both e; and €5, and in particular, we obtain the
corresponding graphs g; and go. In the PAL model, Tpay,[e] evaluates to the result of
Trar[ez2]. This evaluation takes one CONST, one VAR, three LAM, and three APP
steps (cf. the translations for if expressions and the binding for /4,ye) in addition to
the computation for Tpay[e1] and Tpar,[e2], resulting in the graph in Figure 5.25. Thus
it introduces only a constant factor more work, depth, and space.

Theorem 5.1 (Equivalence of PAL’ and PAL) If ¢’ evaluates in the PAL’ model:

PAL/’
1 (AP N A
'7'7{}'_6 r U, 000,S5,

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS 77

g m APP
g m APPC
g,
9'1‘ ‘

Figure 5.24: Left: The PAL computation graph g corresponding to that produced by the
PAL’ APP rule, assumes the second translation of a recursive closure. Right: The PAL
computation graph g corresponding to that produced by the PAL” APPC rule. This example
assumes ¢ = fst.

78 CHAPTER 5. PROFILING SEMANTICS

d ¢ LETREC Y ¢ IFTRUE

g m PAIR

CONST

Figure 5.25: Left: The PAL computation graph g corresponding to that produced by the
PAL’ PAIR rule. Middle: The PAL computation graph g corresponding to that produced by
the PAL’ LETREC rule (as detailed by Figures 5.23 and 5.22). Right: The PAL computation
graph ¢ corresponding to that produced by the PAL’ IF-TRUE rule.

5.5. EQUIVALENCE OF A»-CALCULUS AND EXTENDED A-CALCULUS 79

and the corresponding PAL derivation uses the appropriately translated expression:

e=(Agqqd- - A2y IpaLle’]) (Az.eqqq) - - - (Av.ey)

using the subexpressions defined in Figure 5.21, then the translation of €' evaluates in the
PAL model: AL
'7'7{}|_6 — 0,0:9,S

such that
e it results in the translated value: Tpay[v'] .[v],, and

e its costs are at most a constant factor more than those of the PAL’ model: W (g) <
k-W(g"), D(g) < k-D(g"), and s < k- ', for some constant k.

Proof: This follows from Lemma 5.1. The initial applications in e set up the initial environ-
ment and store for that lemma. O

80

CHAPTER 5. PROFILING SEMANTICS

Chapter 6

Intermediate model

The previous chapter shows how to define a simple language cost model, the PAL model, by
defining its syntax and profiling semantics. Alone, however, a language model is limited in
usefulness because it defines an abstract notion of evaluation costs. What we need is a relation
between these abstract costs to the costs incurred in an implementation on a machine.

We now begin defining an implementation for the PAL model. As in a compiler, staging
the implementation via an intermediate language or model frequently simplifies the prob-
lem. Here we stage the implementation using a parallel abstract machine model called the
P-CEK},, , loosely based on the serial CESK abstract machine [33].! It is relatively abstract
since it uses many of the same semantic domains as the high-level language model, but it is
more machine-like since it is based on a state transition relation. It also shows, at an abstract
level, details such as how computation is scheduled onto processors.

The implementation effectively traverses the computation graph of the profiling semantics.
An obvious idea is to make a level-order traversal, so that each level of the graph is executed
in parallel on each step of the machine. However, this idea is not space-efficient: the space
to store data corresponding to the graph nodes of a single wide level may dominate the
computation. Instead, the machine implements a parallel generalization of a depth-first
traversal, scheduling ¢ nodes at a time, where we relate ¢ to the number of processors p on
the machine.

Section 6.1 defines parallel traversals of graphs and reviews some previous results for them.
Section 6.2 defines and explains the P-CEKY},,; machine. Section 6.3 shows the equivalence
of the PAL model and the P-CEK},; machine. Later, Chapter 7 relates the P-CEK},; to
less abstract machine models to complete the implementation.

'The CESK is one of many variants of the original SECD machine for implementing the A-calculus [70].
The names of these machines are formed by the names of the meta-variables representing the elements of
each state: the CESK uses a control string, environment, store, and continuation; the SECD uses a stack,
environment, control string, and dump (a form of continuation).

81

82 CHAPTER 6. INTERMEDIATE MODEL

6.1 Parallel Graph Traversals

Since we represent the computation as a graph of computation units, a specific traversal
of the graph represents a scheduling of these computation units. The following definitions
and theorems about traversals are either standard graph terminology or are from Blumofe
and Leiserson [18] or Blelloch, Gibbons, and Matias [8]. Note that the definition of a graph
traversal is somewhat different than is standard in that it requires all nodes to be visited.

Graph traversals and schedules

Definition 6.1 (Serial graph traversal) A serial traversal of a graph is a total ordering
of the nodes such that, for each edge of the graph, the edge’s source occurs earlier in the
ordering than the edge’s target. ILe., the ordering respects the dependencies of the graph, such
that we can traverse a node only after all of its parents have been traversed.

Definition 6.2 (Parallel graph traversal) A parallel traversal of a graph g is a sequence
of k > 1 steps, where each step i, for i = 0,...,k — 1, defines a set of nodes, V; (that are
visited, or scheduled, at this step), such that the following two properties hold:

1. FEach node appears exactly once in the schedule: the sets Vy, ..., Vi_1 partition the nodes
of g.

2. A node is scheduled only after all its ancestors have been: if n' € V; and n is an ancestor
of n', then n € Vi, for some k < i.

Definition 6.3 (¢-traversal) A g-traversal of a graph g, for ¢ > 1, is a parallel traversal
such that each step schedules at most ¢ nodes.

Note that a serial traversal is simply a 1-traversal.

Consider a traversal T = Vg, ..., Vi_1 of g. A node n of g is scheduled prior to a step
in T if it appears in the traversal prior to step 7, i.e., n € VoU ---U V;_1. An unscheduled
node n is ready at step ¢ in 7" if all its ancestors (equivalently, all its parents) are scheduled
prior to step 7. The greedy g-traversal, T, of a graph g, based on a 1-traversal of g, T, is
the traversal that on each step ¢, schedules the ¢ earliest nodes in 77 that are ready (or all
the ready nodes in T if there are fewer than ¢). In other words, for all ready nodes n and
n', if n precedes n’ in T, then either both are scheduled, neither are scheduled, or only n is
scheduled. Any sequence P = Vy,...,V;, for ¢ < k is a prefiz of T.

Let T, be the greedy g-traversal based on a 1-traversal 77. For each prefix, F,, of Ty,
consider the longest prefix, P, of T7 that includes only nodes in F,. We say a node is
premature with respect to P, if it is in P, but not in ;.

Computation graphs are dynamically unfolding in that

e initially, only the root node is revealed;

6.1. PARALLEL GRAPH TRAVERSALS 83

e when a node is scheduled, its outgoing edges are revealed; and

e when all of the incoming edges of a node are revealed, the node is revealed and available
for scheduling.

We consider only online scheduling algorithms for these graphs, i.e., each step’s scheduling
decision is based on only the revealed graph nodes and edges. In other words, computation
is scheduled at run time, not compile time.

Definition 6.4 (Level-order traversal) A level-order traversal of a graph ¢ is an co-DFT
based on a 1-DF'T of the graph.

Costs of scheduling

Theorem 6.1 (Premature nodes of greedy traversal [8]) For any graph g and any 1-
traversal T of the graph, the maximum number of premature nodes in the greedy g-traversal
based on T is at most (D(g) — 1)(¢—1).

Theorem 6.2 (Steps of greedy traversal [18]) For any graph g, a greedy q-traversal of
g takes at most W(g)/q+ D(g) steps.

Note that Brent’s Theorem [20] is a special case of Theorem 6.2 for level-order traversals.

Definition 6.5 (Depth-first traversal) A depth-first traversal (DFT or 1-DFT) is ob-
tained by maintaining a stack of ready nodes: the stack contains the root nodes in any order
initially, and at each step, the top node is popped from the stack and scheduled. Then any
newly ready nodes are pushed on the stack.

Definition 6.6 (Depth-first ¢-traversal) A depth-first g-traversal (¢-DFT) is a greedy
g-traversal based on a 1-DFT.

Theorem 6.3 (¢-DFT [8]) For any series-parallel graph g, the following algorithm makes
the ¢-DFT of g:

Let StA be an array initially containing the root node of g. Repeat the following
two steps until all nodes in g have been scheduled:

1. Schedule the first min(q, |StA|) nodes from StA.

2. Replace each newly scheduled node by its ready children, in left-to-right order,
in place in the array StA.

84 CHAPTER 6. INTERMEDIATE MODEL

® O @

Figure 6.1: Example ¢-DFT. Left: Graph with 1-DFT ordering. Right: Same graph with
3-DFT ordering.

Space costs

Assume that each node n of a graph g¢ is associated with an integer S, (n) representing
the net amount of space it allocates, or deallocates if the integer is negative. We assume
that the amount of memory to allocate for each node is independent of the traversal. This
includes memory for program variables and any temporary results of the computation. For
deallocation, this assumption is too restrictive in languages with

e dynamic scheduling, when the deallocation of thread control information depends on
which is the last to finish; or

e garbage collection, when the deallocation of a value depends on which thread references
it last.

So we assume that the amount to deallocate is dependent on the traversal, e.g., the memory
for a value can be deallocated only after the last referencing thread finishes. Thus, the last
node referencing the memory is credited for its deallocation.

Definition 6.7 (Space of traversal prefix [8]) For any prefir P = Vy,...,Vi_1 of a ¢-
traversal, the space of the traversal, written SP(P), is the size of the program input plus the
space allocated by the nodes in the traversal, Z};%) Znevj Sp(n).

Definition 6.8 (Space complexity of traversal [8]) For a g-traversal T = Vy, ..., Vi_1,
the space complexity of the traversal, written St(T'), is the mazimum reachable space in use
after any step of the traversal, maxf;é Sp(Vo, ..., V).

Theorem 6.4 (Space of ¢-traversal [8]) If s is the space complexity of the 1-traversal
of graph g, then the space complexity of any q-DFT of the graph is bounded above by s +
O(D(g)q), including all bookkeeping space.

6.2. P-CEKY,; MACHINE 85

6.2 P-CEK{,; machine

This section defines the intermediate abstract machine for implementing the PAL model. We
start with a general overview of the abstract machine, which is also applicable to variants to
be introduced for other language models. We then give a formal definition of this specific
abstract machine.

The machine performs a series of steps, each transforming a group of active states and a
store into a new group of active states and new store for the next step. Figure 6.2 illustrates
this process. Each of the currently active states represents a thread of computation which
can be performed in parallel. The machine starts with a single active state representing the
entire computation, and it ends when there is one active state left with the result value.
Each state is used for computation on only one step—that step creates new states to perform
any successive computation. [l.e., we think of creating new states and discarding old states
rather than modifying states. Each step also uses a global store to not only keep track of the
program’s store contents, but also to record partial results of the computation.

Since the intermediate model is machine-like, different costs are of interest. Here we
track three costs: the total number of states processed (), the number of parallel steps),
and the maximum reachable space s. We will relate these costs to the computation graphs
and maximum reachable space of the profiling semantics.

The currently active states represent those states whose computation can be performed
now, i.e., the ready nodes. But to maintain space-efficiency, on each step we select and use
at most ¢ active states. In effect, there may be “too much” parallelism in a program, and we
need to bound the number of active states, as the space to store them on a given step may
dominate the space requirements of the program. In particular, we select the most recently
created states so as to produce a ¢-DFT.? Thus, the active states are kept in a multi-stack
(stack, for short), which allows pushes and pops of multiple states at once. Theorem 6.1 then
allows us to bound the number of active states relative to the number that would be used
on a serial implementation. We later relate ¢ to the number of processors available on the
machine.

Each P-CEKL, step consists of one substep for computation and two substeps for com-
munication and synchronization, as illustrated in Figure 6.3. The computation substep con-
sists of a transition on each selected state, resulting in intermediate states, and the communi-
cation and synchronization substeps each consist of a transition on these intermediate states.
The transitions of the computation substep resemble the corresponding rules of the profiling
semantics. Each transition results in a bounded number (zero, one, or two) of new states
to be active on the next step, as well as any updates to the global store. For example, an
application state creates two states for evaluating the subexpressions. If a state’s computa-
tion leads to no new states, that state’s branch of the computation is finishing and needs to
synchronize. Transitions on each of these states are independent and are to occur in parallel.

2 An earlier presentation of this implementation was not concerned with space-efficiency, and so selected all
active states on each step, producing a level-order traversal [9].

86 CHAPTER 6. INTERMEDIATE MODEL

StA,
StA,
N A
StAj+1
Ay /e
StAj+2
StA,

Figure 6.2: Illustration of P-CEK], | active states during an evaluation. It starts with one
active state representing the entire program and ends with one active state representing the
result value. The states are kept in a stack. At most ¢ states are selected each step. Here,
g = b, and these selected states are shaded. These can create zero or more new states (solid
arrows). Unselected states are still active in the next step (dashed arrows).

6.2. P-CEKY,; MACHINE 87

C X add X Ay.e e e

pl plx—2] p’ p[x—2] : p from StA;

K |argls x> | fund, x> | fundg x> | argl; kp K

C @ add 3 e, e,

p p’ p p from StA;,,
K K2 fundg © | arg<ly 1©

where o;(lz) = Val3
ls,ly ¢ o
oit1 = (o;U[ls— el(-y,e)][lg — Noval]) U [I5 — Val 2][l¢ — Val 2][l; — Val [5]

Figure 6.3: Illustration of a P-CEK}, | step. States with constants, variables, and abstrac-
tions finish evaluation immediately, but may synchronize with another computation and
create a new state for the appropriate function body or constant function application. States
with applications create two new states. The step may create and update synchronization
locations.

The communication substeps synchronize the two parallel branches of an application when
they finish. While such synchronization of states is clearly not independent, we parallelize
each of these substeps.

Later chapters also define P-CEK variants for the implementation of the PSL and NESL
models. Each has this basic structure of a series of steps, each selecting at most ¢ states to use
in substeps for computation and then communications and synchronization. But these have
significantly different substeps, especially for synchronization, and these differences affect
most other parts of the machine, including the definition of a state. The following formal
definition of the P-CEK},; is in a form that maximizes the similarity with these variants.

Formal definition

A state st of the machine consists of a control string C', environment p, and continuation
K (elsewhere, environments are sometimes denoted by F, and continuations by K, thus the

88 CHAPTER 6. INTERMEDIATE MODEL

€ Expressions = ...|Qu vy | application
done v final result

C Controls = e

p Environments — Variables ™% Values

K Continuations = o] program finishing
fun(l k) | function finishing
arg(l K) argument finishing

st € States (C,p, k)

St,StA € StateArrays = st

1 € IntermediateObject == St | new states
Fin(v k) finishing state

ValueOpts = Noval | Val v
o € Stores = Locations @ (Store Values+

ValueOpts)

Figure 6.4: P-CEK},; domains. The ellipses represent the expressions of Figure 4.1.

name “CEK”). The P-CEK},; does not include a store in the state, as does the CESK
machine, but instead shares a single store for all states. This allows tracking the overall max-
imum reachable space, including any sharing among the states. The control string represents
what is to be evaluated, the environment and store represent the context of the evaluation,
and the continuation represents what to do after evaluation. In the P-CEKY,; , the control
string is simply an expression, and the continuation records with which computations this
one eventually synchronizes. Since the only synchronization is for pairs of states representing
the evaluation of application function and arguments, the continuation keeps track of which
application function or argument the state represents. Since applications may be nested,
the continuation is effectively a stack. So, a state and its components are defined in Fig-
ure 6.4 where the ellipses represent the same expressions as in the PAL profiling semantics
(cf. Figure 4.1).

We introduce two additional expressions beyond what is used in the profiling semantics.
The expression @ vy vy represents the synchronization point after the function and argument
evaluations and just before the function body evaluation. The expression done v represents
the result value of the computation.

As previously stated, each step of the machine starts with a group of active states and a
store and produces a new group of active states and new store. Furthermore, these states are
kept in a stack. Definition 6.9 defines this step relation. (See Chapter 3 for notation used
with the stack of active states.)

6.2. P-CEKY,; MACHINE 89
Definition 6.9 (P-CEK},; step) A step ¢ of the P-CEK}],; machine, written

PAL,q
StAZ', o, — StAH_l, Oi41;5 Qi7 S5,

s defined in Figure 6.5. It starts with a stack of active states StA; and a store o; and produces
a new stack and store for the next step. This step processes (); states and uses s; maximum
reachable space.

Definition 6.10 (P-CEK},; evaluation) In the P-CEK},; machine, the evaluation of
expression e to value v starting in the environment p and store g, ends with store oy and
processes () states in 1 parallel steps, using s maximum reachable space, or

PALq
P, 00 Fe = U7U¢;Q7¢7S'

For each of these i € {0,...,9 — 1} steps,

PAL,q
StAZ', o, — StAH_l, Oi41;5 Qi7 S5,
such that

e the machine starts with one active state for the whole program: StAg = [(e,p,9)],
0g = -,

o the machine ends with one active state with the result value: StAy; = [(done v, -, o)],
and

m—1

o the total number of states processed and maximum reachable space are Q = 3721 Q);

— m—1 ..
and s = max;~," ;.

At the beginning of each step, the machine selects at most ¢ active states to evaluate

on this step. Then the step uses three substeps in serial, one for computation using the

PAL PAL
— comp transition, and two for communication and synchronization, using the — 4,y and

PAL o
— synca transitions. For each selected state, the first transition results in either an array

(of length at most two) of new states to be active on the next step, or it creates a special
intermediate states Fin(v k) to indicate that a branch of an application has terminated with
value v and is ready for synchronization. The latter two substeps use the intermediate states
for synchronization while passing through any regular states.

As shorthand, we say that the machine processes a state if the state is selected on some
step of the machine. We assume that each state is unique, e.g., by assuming that each
expression has a unique label.

In the first substep, each of the selected states evaluates for one unit of computation:

90 CHAPTER 6. INTERMEDIATE MODEL

st I if/where
(c, - K) - Pgdwmp throw(c, k)
PAL
(1}7 P, K) - — comp th?"OU)(p(.T))7 K)
(Aze, p, &) o Pgdwmp throw(l, k) [l = cl(p',ze)] p' =restr(p,Aze), l¢€o
(e1 €2, p, &) © Pi)mep [(e1, p,fun({l k)), [l — Novall l¢go
T e st)
(@lv, -, K) 6 Scomp [(e,plz—0],k)] - o(l) =cl(pz,e
(@cu, -, &) o Pgdwmp throw(v', k) o' 5(o,c,v) =" 0’ —
where throw(v, ¢) = [(done v,-,)]
throw(v, k) = Fin{v k)
restr(p, e) = the environment p restricted to the free variables in e
I r if/where
- PAL -
Fin(vy fun{l £)) 6 = syner] [l = Val v1] (1) = Noval
Fin(oy fun(l 6)) 0 aymer [(@ vy 02, K)] - o(1) = Val vy
I o pner 1 : I # Fin(— fun(— —))
. PAL
Fin{vz arg{l k)) ¢ = synca [] [l — Val v2] (1) = Noval
Fin(vs arg(l £)) 0 ' synea [(@ vy 02, K)] - o(1) = Val v,
I o e 1 : I # Fin(— arg(— —))
StA, o Pé—qu (‘|‘|‘§t)—|—|—[stq/7 coysteoa], o' d' Sp(StA, o)
lf StA = [Sto,...,stk_l]
q = min(q, k) select at most ¢ states per step
sti, o chomp L, o; for each 1 € {0,...,¢' — 1} o = aU(U %)
I, o P‘i)LSyncf I, ol for each 1 € {0,...,¢' — 1} o = duly C;Z)
I, o Pgdsynca Sti, o for each 1 € {0,...,¢' — 1} " = o¢"Uu (U 02’)

Figure 6.5: Definition of the P-CEK},; abstract machine step. Assume all new locations of
the computation step are chosen or renamed to be distinct.

6.2. P-CEKY,; MACHINE 91

e The cases for constants, variables, and abstractions correspond to those in the profiling
semantics. Evaluating an abstraction creates a closure with an environment restricted
to those variables free in the function body. This ensures that no extraneous data is
live, so that we can prove our space bounds.

e Evaluating an application ey e; creates two states, one to evaluate the function e; and
one to evaluate argument e;, which later steps can evaluate in parallel. The continuation
of each new state indicates which branch it is: the function (fun{/ k)) or argument

(arg(l K)).

The transition also creates this new location [placed in these continuations. The
location is used for synchronizing the two branches and to store the value of whichever
branch finishes first. The location initially contains Noval to indicate that neither

branch has finished.

e Evaluating an expression @ v; v, initiates evaluation of the function body or performs
a constant application, as appropriate.

There is no transition for the expression done v, since the abstract machine stops after a
state with that expression is created. This substep uses an auxiliary function throw (v, k) to
use the value v with continuation x—if the continuation is empty, the entire computation is
finished, otherwise this state needs to synchronize.

The synchronization substeps coordinate the function and arguments branches of an eval-
uation. When the first branch finishes, the machine updates the synchronization location to
contain the result value of that branch. When the second finishes, the machine creates a state
to evaluate the function body. These substeps have transitions for each case of whether the
function or argument finishes first or second. These transitions are grouped into two substeps,
rather than one, to handle the case where both branches finish on the same step. To avoid
both determining that they are each the first to finish, one branch, that of the function, has
priority and checks first. (Given an atomic test and set operation, we could combine these
substeps.) Since these substeps can update store location bindings, the stores are combined
with U. Note that only the synchronization location bindings are ever updated, and those at
most once (from Noval to Val —).

Note that we do not define the abstract machine in the same style as the profiling se-
mantics. State transition functions, such as the P-CEK%Y,; machine, are a small-step style
semantics and do not lend themselves to a concise big-step style semantics as do the language
models.

Costs of a step

As in the profiling semantics, the space cost is the maximum reachable space during the
entire computation. Definition 6.11 defines the reachable space of each step, measuring all
the values reachable from some set of roots, as before. Section 6.3 relates these costs to those
of the profiling semantics.

92 CHAPTER 6. INTERMEDIATE MODEL

Figure 6.6: Definitions for the root values L(StA) of a step of the P-CEK},; machine. This
is a set of values, where labels act as roots into the store.

To formally define the reachable space during evaluation, we consider its two components:
the control space, for the control information such as the active states and their continuation
stacks, and the store space, for the elements in the store. We include the space for the
synchronization locations in the control space (e.g., L, (fun(l x)) does not add [to the labels)
even though they are are kept in the store so that the locations in the profiling semantics
correspond exactly to those in the serial P-CEK},;, machine.

Definition 6.11 (Reachable space of P-CEK},; step) The reachable space of a step i
of the P-CEK}, ; machine, written S,(StA;, 0;), is the sum of

e the active states space S4(StA;) for the active states, including their environments and
continuations: the sum of (14 |dom(p)| + |k|) for those states (e, p, k) in StA;, where
|k| is the length of the continuation stack k; and

e the store space S,(StA;, o;) for program variables and all temporary values: equals the
space in the store reachable from the active states used as roots, S(L(StA;),0;), where
S(—,—) and L(—) are defined in Figures 5.14 and 6.6, respectively.

Example 6.1 As an ezample of the execution of the P-CEKL, |, Figure 6.7 shows the active
states at the beginning of each step of evaluating the expression add (add 1 2) (add 3 4).
For lower values of q, the evaluation may take more steps, but it processes the same total
number of states. For comparison, Figure 6.8 shows the computation graph of the correspond-
ing profiling semantics evaluation, using the appropriate states’ expressions as node labels.
Observe that each of these executions is a g-DF'T of the graph, and thus for ¢ > 4, il is also
a level-order traversal.

6.2. P-CEKY,; MACHINE

qg>4

Step

expressions in StA;

~

[

—_

O 00 ~1 O U = W N

add (add 1 2) (add 3 4)
add (add 12), add 34
add, add 12, add 3, 4

add 1, 2, add, 3
add, 1, @ add 3
@ add 1, @ adds 4
Q@ add; 2

@ add 3

@ adds 7

done 10

== =N W R e N

States processed:

—
Nej

q=2

Step

expressions in StA;

~

[

O 0~ O O = W N =

—_ =
— o

add (add 1 2) (add 3 4)
add (add 12), add 34
add, add 12, add 3, 4
add 1, 2, add 3, 4
add, 1, add 3, 4
@add 1, add 3, 4

@ add; 2, add, 3, 4
@ add 3, 3, 4

@ add 3, 4

Q@ adds 4

@ adds 7

done 10

= NN DN DN DN NN N

States processed:

—
Nej

93

Figure 6.7: P-CEKY}, | evaluations for Example 6.1. The underlined expressions correspond

to the selected states of each step.

94

CHAPTER 6. INTERMEDIATE MODEL

add (add 1 2) (add 3 4)

Figure 6.8: PAL computation graph for Example 6.1.

6.2. P-CEKY,; MACHINE 95

Representation of environments

For any given program, the environments during its evaluation are of constant size (relative
to the program size), bounded by the number of variables in the program. As a result, we
treat the size of all environments as bounded by a constant. Since all values (constants and
locations) are of constant size, any reasonable representation has constant time access and
updates of environments.

In general, most environments are small, and treating them as of constant size is not
unreasonable. In particular, the abstract machine restricts environments to a set of relevant
free variables, and most functions use few variables.

In this implementation, any representation of environments must support the following
operations:

e access of a variable’s binding,
e extension with a new binding, possibly with a new variable, and
e restriction to a set of variables.

We could avoid the restriction operation by using a standard functional language compilation
technique called closure conversion in the mapping to the intermediate model, but that would
complicate the equivalence of Section 6.3. When examining the constant factors, or when not
treating environments as having constant size, there is a efficiency tradeofl between different
implementations for the costs of these operations. Some implementations use an array to
make access constant time and restriction constant time per restricting variable, while making
extension linear time (although lambda-lifting and compiler analysis can reduce the number
of uses of extension). Alternatively, a list makes extension constant time extension, but access
and restriction linear time. Balanced trees offer a middle ground.

Without the assumption that environments are of constant size, our time bounds need
to be generalized to account for the time for environment accesses and updates. F.g., repre-
senting environments as balanced binary trees, this adds a factor logarithmic in the number
of distinct variables in the program [9]. We can then assume that the variables are renamed
(e.g., via deBruijn indices) so as to minimize the number of variables. Moreover, translating
other language features into the basic A-calculus syntax adds at most a constant number of
variables (e.g., Figure 5.20).

Without the assumption, our space bounds do not hold, since a computation node that
updates an environment may allocate more than constant space. At worst, this multiplies the
space bounds by the number of program variables, but a tighter bound may be possible by
representing environments efficiently. For example, assuming environments are implemented
as balanced binary trees that share bindings when possible, an update may allocate space log-
arithmic in the number of variables, duplicating some bindings so that the new environment
is balanced. Naturally, each occurrence of any duplicated binding is eventually unreachable.

96 CHAPTER 6. INTERMEDIATE MODEL

6.3 Equivalence of language and intermediate models

This section relates the P-CEK}, | to the PAL profiling semantics. In addition to proving
its extensional correctness, we also prove bounds on the costs of the P-CEKY, | model as a
function of those of the PAL model. In particular, we show the following:

Serial: The work, depth, and space required by the PAL model are within a constant factor
of the number of states processed, steps, and space, respectively, of the P-CEKp,y, (the
machine that only selects one state per step).

Parallel: There is a one-to-one correspondence between states processed by the P-CEK}, |
machine and nodes of the graph (i.e., work) returned by the profiling semantics. Fur-
thermore, we show that the P-CEK},; machine executes a ¢-DFT of the graph. This
allows us to use previous results on graph scheduling to show that the P-CEKY,; ma-
chine never schedules too many states prematurely relative to the P-CEKpE,;, machine.
This, in turn, allows us to bound the extra reachable space required by the P-CEKL, .
machine. It also allows us to bound the number of steps taken by the P-CEK},; as a
function of thePAL depth.

Serial equivalence

To understand the space that is required to implement the P-CEK{,,; machine we need to
consider on each step both the space for any store values reachable via some label in the
active states as well as space for the active states themselves. For each state we include the
following space: for the control C, constant space; for the environment p, space proportional
to the size of its domain; and for the stack of continuations s, space proportional to the
number of entries in the stack (here we are just accounting for space required by the active
states stack itself and not for any values that are in the store). To find the root labels into
the store we consider all labels accessible either though an environment or continuation of
any of the substates.

Theorem 6.5 (PAL serial evaluation) Ife evaluates in the profiling semantics:

PAL
'7'7{}|_€—>U70-;9787

then it evaluates to the same result in the serial abstract machine:
PAL,1
Nyt Fe — U7UI;Q7¢7S/7
such that s’ < k - s, for some constant k.

Proof Outline: To prove this we first generalize the statement to that of Lemma 6.1. There we
consider the steps of P-CEK}p,, required to evaluate an expression in some general context
and bound the reachable space during those steps by the space specified by the profiling

6.3. EQUIVALENCE OF LANGUAGE AND INTERMEDIATE MODELS 97

semantics plus the control space at the beginning of the evaluation. The theorem then holds
by specializing the lemma to start with an empty environment, store, and roots, and one
active state. O

Lemma 6.1 If e evaluates in the profiling semantics:
p,o, REe AL v,0'5¢,s,
and for any step i of the serial abstract machine P-CEKb,; ,

o the machine starts with a state at the front of the active states stack that corresponds
to this evaluation: StA; = [(e, p, k)| HStA, for some stack StA and continuation k;

o the semantics and machine can access the same locations: L(StA;) = R U p(FV(e));
and

o these locations have the same values: vlelOCS(L(StA,') Ui)U(l) = o;(l),

e on some future step m > i, the machine calls throw (v, k);

o the maximum reachable space is bounded by the space for the original active states, plus
a constant factor more than the space of the profiling semantics: max’L, Sr(StA;, 0;) <
S4(StA;) + k- s for some constant k.

Proof: We prove this by structural induction on the language evaluation derivation and
show a representative set of the cases. The remaining cases are similar.

case VAR, e = 2: By the definition of the P-CEK},,; machine, throw (v,) is called on step
i,50 m =t. And by VAR, s = S(RU{p(z)},0), so
maxj,; S, (StA;, o;)
= Sa(StA;)+ S(L(StA;),o;) (Definition 6.11)
= Sa(StA;)+ S(L(StA;),o) (3rd assumption)
= S4(St4;) +s (2nd assumption)

The other base cases, CONST and ABSTR, are similar.

case APP, ¢ = e¢; e5: Alternately inspecting the machine rules and using induction, we ob-
tain the following results about the executions of the subexpressions e; and e; and on
the appropriate function body e3. The steps of the P-CEK}), [, corresponding to these
three sub-evaluations are numbered iy to mq, etc., where 1y = ¢+ 1, 1o = my + 1, and

98

CHAPTER 6. INTERMEDIATE MODEL

i3 = M9 + 2, and step mo + 1 is the appropriate function call transition. The active
states at these important steps are

StA; = [(e1 ez, p, k)] +HStA
StA;, = [(e1,p,arg{l r))]+StA
StA;, = [(ez,p,fun{l K))]+StA

StA,,4+1 = [(Q vy, - k)] HStA
StA;, = [(es,ple — vo], k)] HStA

Furthermore, these three sub-evaluations result in the appropriate values:

e [is the value of ey, where 0, (I) = cl(p’,2,¢’) and p’ = restr(p, €');

e vy is the value of ey; and

e v is the result of the function body, and thus of the entire application.
We now look at the reachable space during the evaluation. First look at the steps not
in the inductive sub-evaluations, ¢.e., steps 71 and mo + 1. Examining the definition of
the P-CEK},; machine and using Definition 6.11, we have

S, (StAZ', Ui) = S, (StAil , Uil)
Sr(StAmg—I—lvag—l—l) < Sr(StAMO—z)

So the reachable space in these steps is not greater than in the others.

Now we look at the reachable space in the inductive sub-evaluations. Using induction
we have

Sr(StA]‘,U]‘) < max (SA(StAZ'],)—I—k-S]‘/).

max
je{ijl7"'7m]/}7j/€{17273} j/€{17273}

So we relate the control space at the beginning of these sub-evaluations, i.e., S4(StA4;,),
Jj €41,2,3}, to the control space of the starting step, S4(StA;). For the first two sub-
evaluations, j € {2,3}, we see that

Sa(StA;) = Sa(StA;,) = Sa(StA;) +1.

For the space during the evaluation of the function body, S4(S5tA;,), first observe that
|p'| +2 < s1 by the definition of the store space since the closure with p’ must have
been the result of a sub-derivation of e;. Thus,

SA(StAZ'S) +k-s3 < SA(StAZ) +k-s
and the conclusion holds.

The APPC case is similar, but somewhat simpler, since it does not involve induction
for the function body.

6.3. EQUIVALENCE OF LANGUAGE AND INTERMEDIATE MODELS 99

Parallel equivalence

Given the costs of serial execution in the abstract machine P-CEK}p,1,, we are now concerned
with the costs of parallel execution, for P-CEK}, ; with any ¢. Parallel execution can require
more space because it can create many more simultaneous parallel threads (i.e., the active
states stack can become much larger) and because it can have simultaneous access to many
more locations in the store. We place bounds on how much extra space is needed.

As mentioned, the idea behind the proof is to show that the P-CEK], | executes a ¢-
DFT traversal of the computation graph returned by the semantics, then use the previous
results on the number of nodes scheduled prematurely in a ¢-DFT [8] (¢f. Section 6.1), and
finally use these results to bound the space. By the machine traversing the graph we mean
that there is a one-to-one correspondence between nodes in the graph and sets of a single
step’s computation, communication, and synchronization transitions for a given state. This
implies that each parallel step of the P-CEK}, | selects ¢’ nodes of the graph, and the total
number of states processed is equal to the size of the graph (i.e., the work). The following
lemma and theorem show that the machine evaluation corresponds to the specification of the
computation graph.

We also state that the profiling semantics and abstract machine compute the same value.
The proofs concentrate on intensional aspects—we could add details of the extensional equiv-
alence, as in the proof of serial equivalence.

Lemma 6.2 (P-CEK},, executes traversal) If e evaluates in the profiling semantics:

PAL
'7'7{}|_€—>U70-;9787

then it evaluates to the same result in the abstract machine:
Fe ALy v,0Q, 1,8
such that the machine executes a q-traversal of the profiling semantics’ graph g. Le.,
o the selected states and visited nodes correspond at each step, and

e the active states and ready nodes correspond at each step.

Proof Outline: We prove this by induction on the steps of the machine. We could fully
formalize this as in Lemma 6.1.

For brevity, we refer to states being visited or ready, rather than corresponding to nodes
which are visited or ready, respectively. Clearly the initial state is ready, as it corresponds
to the source of g.

Inductively, we need to show that any states added to the active states stack are ready on
the next step—the non-selected states left in the stack remain ready. By a case analysis on
the expression of each of the selected states, we see that the computation substep generates
states corresponding to the graph.

100 CHAPTER 6. INTERMEDIATE MODEL

Constants, variables, and abstractions finish immediately, thus this state corresponds to
the unit graph specified for these expressions in the profiling semantics.

Applications generate two new states to start evaluating the subexpressions. These cor-
respond to the two parallel children of the application node and are ready on the next step.
Once both branches are scheduled and eventually finish, inductively, the machine generates
a state for @ vy vy that is immediately ready, corresponding to the node before the function
body. When selected, the machine starts evaluating the function body, inductively (for a
user-defined function) or via § (for a constant function). Thus the evaluation corresponds to
the graph. O

Corollary 6.1 If e evaluates in the profiling semantics:

PAL
'7'7{}|_€—>U70-;9787

then it also evaluates in the abstract machine:
PAL,
Ty He :>q U7U/;Q7¢7S/
such that the number of states processed by the machine is the profiling semantics’ work:
Q=Wi(g).

Proof: This follows from the one-to-one correspondence of active states processed and nodes
in the graph. O

Theorem 6.6 (P-CEK},, evaluates ¢-DFT) If e evaluates in the profiling semantics:
PAL
'7'7{} Fe— U,0:9,5,
then it also evaluates in the abstract machine:
PAL,
Ty He :>q U7OJ;Q7¢7S/
such that the machine executes a q-DFT of the profiling semantics’ graph g.

Proof: This follows since the machine selects min(g,|StA|) nodes per step and since g is
series-parallel, together with Theorem 6.3 and Lemma 6.2. O

Corollary 6.2 If e evaluates in the profiling semantics:
L AL
KR € — U,0,4,5,
then it also evaluates in the abstract machine:
PAL,
KR Fe :>q U7OJ;Q7¢7S/

such that the number of machine steps are bounded as a function of the profiling semantics’

work and depth: ¥ < W(g)/q+ D(g).
Proof: This follows by Theorem 6.2. O

6.3. EQUIVALENCE OF LANGUAGE AND INTERMEDIATE MODELS 101

Equivalence of space

Since the P-CEK}], | executes a traversal of the corresponding computation graph, we can
use the machine to define the space costs of the graph nodes. Then using Theorem 6.4 we
can bound the number of premature nodes on any given step of the P-CEK},; and bound
the memory used by these nodes, as Theorem 6.8 shows.

Theorem 6.7 Each step of a P-CEK}, execution allocates at most k space or deallocates
at most k space for each selected state, for some constant k.

Proof: In the first substep, the cases calling throw create either one new state or one
intermediate state (which is deallocated later in the same step and can be ignored). The
abstraction case may also create a new restricted environment, which we assume to be of
constant size, as discussed in Section 6.2. The other cases create at most two new states,
one new environment binding, and two new continuations. Note that the @ [v case need
not create an entirely new environment, as environments can be shared, as discussed in
Section 6.2. The substep may also allocate at most one new store binding.

For each selected state, the second and third substeps deallocate any intermediate state
created in the first substep. They may also allocate at most one new state or store binding.
Note that which states create new states in this substep depends on the traversal.

Each selected state may also be credited with the deallocation of memory if this is the last
state to reference it. This is a constant amount since each state refers to at most a constant
amount of space. Note that we allow the crediting of a deallocation of a location even if it is
still accessible, i.e., in an environment. O

Since each step for a given selected state corresponds to a node (Lemma 6.2), each node
allocates between k and —k space. By Theorem 6.5, the profiling semantics space is within
a constant factor of the space complexity of the serial traversal. Thus as constant factors
can be ignored, the profiling semantics space can be used in the context of Theorem 6.4 to
provide a bound for the space of parallel execution.

Theorem 6.8 (PAL parallel space) If

e program e evaluates in the profiling semantics: -, -, {} ke AL v,0;4,s; and
. . PAL,g ,
e thus the program computes in the abstract machine: -,- e =" v,0;Q, ¢, ¢,

then the maximum reachable space in the abstract machine is bounded by the mazimum reach-
able space of the profiling semantics plus a function of the parallelism: s' < k(s + D(g)q).

Proof: Since the P-CEK}],,; machine executes a ¢-DFT of g, then by Theorem 6.1, on any
step of the P-CEK%Y,, there can be at most D(g)q nodes executed prematurely relative to
the P-CEKp,,. Since each state transition in step ¢ of a P-CEK%,; machine adds at most

102 CHAPTER 6. INTERMEDIATE MODEL

constant space to the next state of the machine, then the proof is easy. In particular since the
maximum reachable space taken by any step of the P-CEK},; is k- s, and on any step of the
P-CEK}, | machine there are at most D(g)q state transitions that were executed prematurely
relative to some step of the P-CEK},;, machine, each of which allocated at most constant
space (Theorem 6.7), so the total space is k(s + D(g)g). O

Chapter 7

Machine models

The previous chapter related the PAL profiling semantics to the P-CEKL,, intermediate
model. Now we need to complete the implementation of the language model by implementing
the abstract machine on more standard machine models. Combining these two pieces results
in the full implementation of the language.

Section 7.1 outlines the targeted parallel machine models. Section 7.2 discusses the im-
plementation of the active state stack. These are then used in the overall implementation
of the P-CEK}, | abstract machine in Section 7.3. Throughout, the chapter uses standard
sequence operations such as scans and reductions, which are summarized in Appendix A.

7.1 Machine models

Here we are most interested in implementing our parallel language models onto three specific
traditional parallel machine models: the butterfly, hypercube, and Parallel Random-Access
Machine (PRAM), as pictured in Figures 7.1, 7.2, and 7.3, respectively. Each consists of a
set of processors connected by a communication network. The butterfly and hypercube are
each based on specific network architectures used in practice, such that in each, any two
processors are within O(logp) distance of each other. The PRAM is based on the unre-
alistic network architecture assumption that all processors are within constant distance of
each other, i.e., that communication is within a constant factor as fast as computation. But
the PRAM is commonly used to describe algorithms so that computation issues are not ob-
scured by communication issues—a common problem in more realistic models. These simpler
PRAM algorithms can then be mapped to other models using standard implementation tech-
niques [101, 123, 72]. We discuss several variants of the PRAM: primarily the concurrent-
read concurrent-write (CRCW), but also the exclusive-read exclusive-write (EREW) and
concurrent-read exclusive-write (CREW), which differ in what memory accesses are allowed,
as their names imply.

We assume that in each model allocating an arbitrary-sized chunk of memory or accessing
a memory location requires constant time. For the butterfly we assume that for p processors

103

104 CHAPTER 7. MACHINE MODELS

Figure 7.1: Illustration of butterfly network.

Figure 7.2: lllustration of hypercube network.

Shared Memory

LLLboooL

Figure 7.3: lllustration of Parallel Random Access Machine (PRAM).

7.1. MACHINE MODELS 105

TS(p)
Machine Randomized? Time for scan
Butterfly Yes O(log p)
Hypercube Yes O(log p)
EREW PRAM | Yes O((log p)*'?/\/Toglog p)
CREW PRAM | Yes O(log ploglog p)
CRCW PRAM | No O(log p/ loglog p)

Figure 7.4: Time bounds 7'S(p) for implementing scans and reductions on machines with p
processors.

we have plog, p switches and p memory banks, and that memory references can be pipelined
through the switches. On such a machine, each of the p processors can access (read or write)
n elements in O(n + logp) time, with high probability [75, 101].! The O(logp) time is due
to latency through the network. We also assume the butterfly network has simple integer
adders in the switches, such that scan and reduce operations can execute in O(log p) time. A
separate prefix tree, such as on the Connection Machine 5, would also be adequate. For the
hypercube we assume a multiport hypercube in which messages can cross all wires on each
time step, and for which there are separate queues for each wire. This model is quite similar
to butterfly and has the same bounds for simulating shared memory. However, we do not
need to assume that the switches have integer adders. We assume that primitive function
calls can be implemented in the indicated amount of work (for the PAL, constant) on a single
processor.

Our simulation uses the scan and reduce operations (¢f. Appendix A), and our cost
bounds are parameterized by their cost. We denote this time overhead 7'S(p), as shown in
Figure 7.4 [29, 100, 73, 41, 74]. Some of these bounds use randomized routing to avoid network
congestion [122], and thus those bounds hold with high probability (w.h.p., for short).

We show that each step of a P-CEKEYE? machine can be implemented in O(T'S(p)) amor-
tized time. These bounds hold with high probability (w.h.p.) on the randomized machines.
The amortization comes from how we grow the active state stack. Since we have a bound on
the number of steps required by the machine, this allows us to bound the total running time
for these machines.

Note that in each model, T'9(p) dominates the latency for communication. Because of
this, we do not have to separately parameterize our results by the latency.

'In this context, we mean that the time for network communication is within the specified bound with
probability at least 1 — n% for any constant k& and n data to be transmitted across the network.

106 CHAPTER 7. MACHINE MODELS

7.2 Representation of the active states multi-stack

The multi-stack (stack, for short) of active states requires three operations:
e creating a new stack at the beginning of an evaluation,
e pushing states onto the stack in parallel, and
e popping states from the stack in parallel.

We do not have a bound on the maximum size of the stack, so its representation must be
able to grow.

We use an array-based representation of the stack for its constant-time lookup and update
per element. To grow the stack, we create a new larger array when necessary, and copy the
old elements into the new array. The key to efficiency is to copy infrequently, so that copying
doesn’t dominate the cost of using the stack. The standard technique for this is to double
the size of the array each time it grows. The copying is sufficiently infrequent that its cost
is amortized to constant time per step. Alternatively, for the PAL model, we can bound the
number of states pushed or popped each step in terms of the number of states ¢ selected each
step.

A stack of active states StA is implemented by a single-threaded dynamically growing
array (SDGA). A SDGA of states is a pair (m, st) of its length m and an array of states St
such that

e the array is at least as large as the specified length: m < |si|; and

e the rear of the array stores the SDGA’s contents, so that it can grow at the front: data
element ¢ of StA is st for each i € {0,...,m —1}.

|st|—m+i

Each operation returns a new pair of the length and a new or modified array.

To initially create a stack of one state, create the pair (m,st) where m = 1, |st| > 1, and
the state is in the last element of the array. A larger initial array would delay the need for
creating a larger array as the stack grows. This clearly requires constant time and space.

We add elements to the stack at the end of each step. Each processor i € {0,...,p— 1}
has states in an array St; to push onto the stack. In the PAL model, |St;| < 2, but in the
NESL model, the upper bound on the number of states is run-time dependent.

1. Compute (via an add-reduce operation) the number of states k being pushed: &k =
i St
This requires 7'S(p) time and O(p) temporary space for the reduce operation.

2. If the array is not large enough for these new states (k 4+ m > |st|), create an array
st’ twice as big as the total number of states, i.e., of size 2(k + m). This is large
enough to hold all of the states and is also at least double the size of the original array.
Then copy the contents of st into st in parallel, such that each processor ¢ copies

7.2. REPRESENTATION OF THE ACTIVE STATES MULTI-STACK 107

- -
0 ‘st‘ -m ‘st‘ -1
9
st
[m/p] Copy Frlnlm
0 2k +m 2(k+m) -1
ﬁ
st’

Figure 7.5: Step 2 of push operation on single-threaded dynamically growing array (SDGA).

a proportional share, e.g., states i[m/p],..., (i + 1)[m/p] — 1, (stored in locations
|st| — m +i[m/p],...,|st| = m+ (i + 1)[m/p] — 1) as shown in Figure 7.5. From now
on, ignore the old array and use the new array, i.e., let the name st now refer to the
array st

The time for copying each of the m elements is counted against the time for initially
writing the elements that will be written into the array until the next time it grows.
There are at least m such elements, since the array doubles in size each time it grows. If
the array doesn’t grow again, the cost of this copy operation is counted instead against
the initial writing of these elements. Thus, the time for copying data is at most twice
that of initially writing data. This requires O(k/p) amortized time and O(k) space.

3. Move the new states into the array st such that the load is evenly distributed among
the processors, as shown in Figure 7.6.

(a) Each processor computes the starting point in array St for its new states, and
stores this in /. This can be accomplished by an add-scan, where each processor
i adds |St;] and gets the offset from the new top of the stack for its first state.

This requires O(T'S(p)) time and O(p) temporary space for the scan operation and
its result.

(b) For each location in array st that receives a new state, i.e., location i € {|st| — k —
m,...,|st| — m — 1}, record the source of the state to be stored in the location.
For example, the source for one location may be the 0y, element of Sts. Thus
the sources are stored in an array i of processor numbers (here, 3) and an array

108 CHAPTER 7. MACHINE MODELS

0 p-1
> p-2
i”10 cee St
i=0
Sty s Sty
[k/p] copy [k/p]
- - U -> -
0 ‘st‘—k—m ‘st‘—m—l ‘st‘—m ‘st‘—l
5
st
0 k-1

0 k—1

%
i”, O ‘Sto‘—l eoe O ‘Stp—l‘_l

Figure 7.6: Step 3 of push operation on single-threaded dynamically growing array (SDGA).
The cross-hatched section of st has its previous contents.

7.3. IMPLEMENTATION OF STEPS 109

i of indices within the corresponding processor’s states (here, 0). These can be
computed by a segmented distribute of ¢/ and a segmented index, respectively.

This requires O(k/p+ 1S (p)) time and O(k) temporary space.

(c) Copy the states into array st. Each processor i copies a proportional share of the
array, e.g., states i[k/p],..., (i + 1)[k/p] — 1 (to be stored in locations |st| — k —
m+i[k/pl,...,|st| =k —m+ (i+1)[k/p] — 1), using " and i to index into the
appropriate arrays St;.

This requires constant time per element, or O(k/p) total time and no space.

So this step requires O(k/p+ TS(p)) time and O(k) temporary space.

Note that for the PAL model, the simpler alternative of each processor moving its array
St; would evenly distribute the load since |St;| is bounded by a constant. But Chapter 9
uses SDGAs for models where that bound doesn’t hold.

So in total, this requires O(k/p + T'S(p)) amortized time and O(k) space for the data, plus
O(p) temporary space. This temporary space can be reused in each step.

We remove elements from the stack when selecting (at most) ¢ states for each step. To
pop k states, each processor indexes into the array and grabs the appropriate k/p states.
We use a scan operation to assign tasks to processors and ensure that they are assigned to
processors in order (i.e., lower numbered processors get lower numbered states). Finally, the
stack length is decremented by k. This requires O(1) time and O(k) space.

7.3 Implementation of steps

The stores of the abstract machine are all implemented with one global store that is mutated.
The small stores resulting from the substeps of the abstract machine represent updates per-
formed on the global store.

Theorem 7.1 (Cost of P-CEK},; step) FEach step of the P-CEK},; machine can be
processed on a p processor machine in O(q/p+TS(p)) amortized time (w.h.p., where appro-
priate) and O(q) mazimum reachable space on the butterfly, hypercube, and PRAM models.

Proof: Each processor is responsible for at most [¢/p] of the current selected states, i.e.,
processor 7 is responsible for the states [i[¢'/p], ..., (i+1)[¢'/p]—1], where ¢’ = min(q, |StA]).
We assume each processor knows its own processor number, so it can calculate a pointer to
its section of the array.

The simulation of a step consists of the following phases, each of which we show can be
executed with the given bounds:

1. Select the ¢’ states for this step, popping them from the stack.
This requires O(q'/p) time and ¢’ temporary space to copy the states.

110

CHAPTER 7. MACHINE MODELS

. PAL
2. Locally evaluate the states using the < . transition. This requires accessing shared

memory for reading but requires no communication among the states. Each transition
requires constant time, returns an intermediate state of constant size, and allocates a
constant amount of space. More precisely, the transition can be broken down so that all
of the allocation is performed at once by using a add-scan operation to both determine
how much space is needed and give each processor an index into a global array.

Each processor makes a total of O(¢'/p) memory requests. The time for this on the
CREW and CRCW PRAM is therefore O(¢'/p) (w.h.p., on the CREW). The time
on the butterfly and hypercube is O(¢’'/p + logp) w.h.p. since the memory references
require a log, p latency through the network. On any of these machines, this is bounded
by O(¢'/p+TS(p)) time. Since at most two new states and one new location are created
per selected state, this requires O(q') space: O(q’) control space and O(¢’) temporary
space for the intermediate states.

PAL PAL ..
. Locally evaluate the — ;1 and < 4 substeps, synchronizing all processors between the

two transitions. The “returned” stores are implemented as updates. Each processor can
perform an update independently since each location appears in at most one function
continuation and one argument continuation.

Again, each transition accesses constant memory and allocates constant space. In
fact, allocation can be eliminated by reusing the state that just ended this application’s
function or argument branch. If we avoid allocation, this phase requires O(¢'/p+TS(p))
time (w.h.p., where appropriate) and constant temporary space.

. Push the states created during this step onto the active state stack. This requires

O(q'/p+ TS (p)) amortized time (w.h.p., where appropriate) and O(¢’) control space.

Adding the bounds for the three phases, we get the stated bounds for each of the machines.

a

To account for memory latency in the butterfly and hypercube, and for the latency in the

scan operation for all three machines, we process p-T'5(p) states on each step instead of just

Kp~TS(p)

p (i.e., we use a P-CEKp, " machine).

Corollary 7.1 Each step of the P-CEK;ZS(ZD) machine can be simulated within O(TS(p))
amortized time on the p processor butterfly, hypercube, and PRAM machine models (w.h.p.,

where appropriate).

Corollary 7.2 If e evaluates in the profiling semantics:

PAL
'7'7{}|_€—>U70-;9787

then the abstract machine evaluation

PAL,p- TS(p
fr— (

'7'|_€)U7O'/;Q7¢7S/

7.3. IMPLEMENTATION OF STEPS 111

can be simulated within O(W (g)/p+ D(g)T'S(p)) amortized time and O(s+ p - D(¢g)T'S(p))
mazimum reachable space on the p processor butterfly, hypercube, and PRAM machine models
(w.h.p., where appropriate).

Proof: Theorem 6.6 relates the graph ¢ to the P-CEK},,; computation, where ¢ = p-T'S(p).
Theorem 6.2 bounds the number of steps of the graph traversal. There are O(w/q+ d) steps,
and each step takes O(7'S(p)) amortized time (w.h.p., where appropriate). Theorem 6.4
provides the space bound. O

An improvement

These time results can be slightly improved on the CRCW PRAM. If we change the repre-
sentation of the active state stack to allow a constant factor of holes in the array, we can
replace the scan operations with linear approxzimate compaction: given an array of m cells,
m' of which contain an object, place the m’ objects in distinct cells of an array of size k - m’
for some constant & > 1 [73]. Gil, Matias, and Vishkin [42] have shown that the linear ap-
proximate compaction problem can be solved on a p processor CRCW PRAM (ARBITRARY)
in O(m/p+ log™ p) expected time, using a randomized solution. Goldberg and Zwick [43]
have shown that the problem can be solved deterministically in O(m/p+ loglog p) time.

Since each selected state leads to at most two new states, the idea is to first allocate two
new positions for each state, mark the states that will remain and then do an approximate
compaction. This means that each processor is responsible for at most k - ¢/p states. The
scan operations used for allocating space are also replaced by linear approximate compaction.

This breaks the lock-step simulation of the abstract machine. Each machine step selects
at most ¢ elements of the array, but since the array has holes in it, this probably results in
less than ¢ states (on average, ¢/k). Rather than requiring exactly D(g) steps, the simulation
takes at most k - D(g) steps.

Thus the time bounds for the overall simulation on the CRCW PRAM are O(w/p +
D(g)log® p) amortized w.h.p., if randomized, or O(w/p 4+ D(g)loglog p) amortized, if not.
The space bounds are unchanged, as a constant factor extra space is used throughout the
simulation.

112 CHAPTER 7. MACHINE MODELS

Part 111

Other Models

113

Chapter 8

Speculative models

This chapter discusses a different model of parallelism, the Parallel Speculative A-Calculus
(PSL) model. It shares the same extensional semantics as that of the PAL model, but paral-
lelizes computation differently. Like the PAL model, it evaluates the function and argument
of an application in parallel. But it relaxes the synchronization constraint prior to evaluating
the body, allowing more parallelism. If the function expression evaluates to a closure, evalua-
tion of the function body starts immediately even if the argument expression has not finished
evaluating. If the argument’s value is needed and not yet computed, the lookup blocks until
the value is computed.

For example, consider the evaluation of (Az.1) e. The function finishes evaluating im-
mediately, so the application proceeds while e might be still evaluating. Thus the program
quickly returns the value 1, even though the argument e might still be evaluating. In the
PSL model, an expression might result in a value before the expression finishes evaluating.

If the program evaluates without ever needing a subexpression’s value, as is the case with
e in previous example, that subexpression is irrelevant [40, 48]. Here we describe two variants
of the model: full speculation, which evaluates all expressions, even if irrelevant, and partial
speculation, which can abort and discard irrelevant computations. The latter offers a wide
spectrum of implementations, depending on which computations it aborts and when.

Speculative evaluation is most closely related to the futures of Multilisp and its many
descendant languages [50, 51, 26, 31, 79, 69, 58, 125], the lenient evaluation of Id and pH [120,
87, 88], and parallel graph reduction, e.g., [55, 96, 61].

e In Multilisp, any expression can be designated as a future that spawns a thread which
may be executed in parallel. If its value is needed and not yet computed, the thread
requesting the future’s value blocks until the value is available. A future can be explic-
itly touched to force its evaluation and its synchronization with the touching thread.
It can also be explicitly aborted—if its value is relevant, this leads to an error. Specu-
lative evaluation is equivalent to designating all expressions as futures and disallowing
touching. Full speculation also disallows aborting futures, whereas partial speculation
allows aborting them, but in a safe manner not in the programmer’s control.

115

116 CHAPTER 8. SPECULATIVE MODELS

e Full speculation and leniency are essentially the same thing, although the term “le-
niency” originally implied a specific lack of evaluation ordering [120]. Id and pH evalu-
ate all subexpressions fully because they may contain side-effects, although a compiler
might optimize cases when this is not necessary.

e Graph reduction is one technique for implementing lazy (call-by-need) functional lan-
guages. But since lazy evaluation entails an inherent lack of parallelism [64, 121], par-
allel versions of these languages have incorporated partial speculation, compromising
on the laziness of the language.

The PSL model is “speculative” in two senses. First, it is speculatively parallel relative to
the PAL model, as it allows a function body and argument to be evaluated in parallel when
possible. This is consistent with Hudak and Anderson’s call-by-speculation [53] terminology,
which they contrasted with call-by-value and call-by-need. Second, it is speculative relative
to a call-by-need evaluation, as it at least starts the evaluation of an argument even if it is
irrelevant.

This contrasts with some descriptions of speculativeness [90, 37, 83] that are speculative
relative to a call-by-value evaluation. By definition of those descriptions, the parallel exe-
cution of a program must be extensionally equivalent to the serial execution, even in the
presence of control escapes or side-effects. F.g., when evaluating let x = ey in eg, if €; has
an error or escapes, then any escapes or side-effects of e;’s evaluation must be ignored. Thus,
e is considered mandatory, while e is speculative. Similarly, any side-effects in e; must occur
before any conflicting side-effects in e;. Computation of e; and e; may still be parallelized
within these constraints. OQur results are still applicable to this alternate view of speculation
by simply reversing which evaluations are considered mandatory or speculative.

The implementation of speculation is based on the idea of suspending threads. If one
thread 71 requests the value of another thread 75 before the value is available, the machine
suspends 71. When 79 finishes with a result value, 7y reactivates and then accesses the value.

We implement suspension using a queue per thread of the threads suspended on it. le.,
the above 71 would be on 75’s queue. Previous implementations, e.g., [90, 87, 88], serialized
the operations on these queues. Thus if other threads also suspend on 7 at the same step
of the machine that 7y does, it would take steps proportional to the number of these threads
to enqueue them. Similarly, it would take steps proportional to the number of all threads in
the queue to reactivate them when 7 finishes. However, the implementation here parallelizes
these operations so that enqueuing and dequeuning multiple threads at once requires constant
steps.

Whereas the PAL implementation is based on the scan and reduce operations, the PSL
implementation uses a generalization, called fetch-and-add (c¢f. Appendix A). This operation
allows efficient implementation of the queuing operations on multiple queues at once. Our
cost bounds are parameterized by the time cost of this operation, T'F(p), as Figure 8.1 shows
for the same machine models as in Section 7.1. These bounds hold with high probability
(w.h.p., for short) [100, 73, 41, 74].

8.1. LANGUAGE AND PROFILING SEMANTICS 117

TF(p)
Machine Randomized? | Time for fetch-and-add
Butterfly Yes O(log p)
Hypercube Yes O(log p)
EREW PRAM | Yes O((log p)*'?/\/Toglog p)
CREW PRAM | Yes O(log ploglog p)
CRCW PRAM | Yes O(log p/ loglog p)

Figure 8.1: Time bounds T'F(p) for implementing fetch-and-add on machines with p proces-
SOTS.

We show that each step of a P—CEK%ISOLgfp machine can be implemented in O(TF(p))
amortized time, w.h.p. The amortization comes from how we grow the active state stack.
Since we have a bound on the number of steps required by the machine, this allows us to
bound the total running time for these machines.

Section 8.1 defines the PSL model, including its computation graphs and profiling se-
mantics. Section 8.3 defines a generalization of the dynamically growing array to implement
collections of threads. Sections 8.2 and 8.4 describe a fully speculative implementation and its
costs. And finally Section 8.5 describes a partially speculative implementation and its costs.
Neither of these implementations make a DFT of the computation graph, so we present
no results on the space required by the implementations. However, it does make a greedy
traversal, which we use in showing time bounds.

8.1 Language and Profiling semantics

Again for the sake of simplicity, we use the basic A-calculus syntax of Chapter 4. We claim
without proof that the translation of Section 5.5.2 preserves the equivalent of Theorem 5.1
for this model as well. Il.e., basing the PSL model on the extended A-calculus results in the
same asymptotic bounds. This holds for the work cost since it is equivalent to that of the
PAL model, as Theorem 10.9 shows. Like for the PAL, it holds for the depth cost since the
translation adds only a constant factor work overhead, and thus can only add a constant
factor depth overhead. However, note that the depth overhead might be different than that
for the PAL model.

This equivalence means that standard translations preserves speculativeness. For exam-
ple, defining

Trsi[let = €1 in €3] = (Az.e2) €;

results in the two subexpressions e; and e; being evaluated in parallel. Data structures such
as lists would be based on pairing—e.g., a cons-cell would be a triple (nested pair) of a tag

118 CHAPTER 8. SPECULATIVE MODELS

and the cell’s contents. Using the encoding for pairs in Section 5.5.2 results in each pair being
built speculatively in parallel. Thus any data structure using pairs is also built speculatively.

Since we include no basic serialization construct in the core of PSL, providing a serializing
binding construct, for example, is more difficult. But it can be encoded using a continuation
passing style (CPS) transformation (e.g., [99]):

Trs[slet @ = €1 in e3] = CPS[e1] (Aw.eq).

Traditionally used for serial computation, CPS makes the standard serial path of evaluation
control explicit. The transformation to CPS introduces additional dependences, so that no
significant computation can be performed in parallel under speculative evaluation. Alterna-
tively, we could simply add a special expression with a serial semantics.

Section 8.1.1 defines the computation graphs of the model. Then Section 8.1.2 defines its
profiling semantics. Section 8.1.3 discusses using implicit recursion (as in the basic A-calculus)
versus explicit recursion (as in the extended A-calculus) for the model.

8.1.1 Computation graphs

Relaxing the synchronization constraint during an application significantly affects the forms of
computation graphs. To model that a computation may result in a value before its terminates,
we distinguish a graph’s minimum sink, when it results in a value, and its mazimum sink,
when it terminates (if it does). The depth of the minimum sink is denoted D(g) and that of
the maximum sink is D’(g). Clearly by definition, the maximum sink is at a depth at least
as great as that of the minimum sink, as the names imply. Since we now distinguish a source
and two sinks, we draw a graph as a triangle, as illustrated in Figure 8.2.

It can be intuitively helpful to distinguish two classes of edges. The edges for applications
are “control” edges, and the edges for variable lookups are “data” edges. These names are
meant only for intuition since each edge represents a control dependence and allows for the
flow of data. Each control edge corresponds exactly to an edge in the PAL computation
graph for an application.

The form of an application’s graph differs from that of the PAL model in several ways.
There is still a single node to start the application, with edges to the subcomputations, but
there is no single node for synchronization. There is also still an edge from the function’s
graph to that of the function body, but the existence of edges from the argument’s graph
depends on whether its value is accessed. In an application, edges may connect the interior
nodes of the subgraphs, from either the function or argument subgraph to the function body
subgraph. What edges exist depend on the expressions:

e Edges from the argument value (i.e., the argument’s minimum sink) connect to each
of its uses within the function body. Note that there may be multiple such edges, as
Figure 8.3 illustrates, although other figures in the chapter show only one edge to avoid
clutter.

8.1. LANGUAGE AND PROFILING SEMANTICS

119

Expression e: cor A\z.e x
e
Graph g¢: () /
X
where €’ is the expression com-
puting the value of x
Expression e: e1 € e1 €
€&
Graph g¢:
@

where the last subgraph is that
for the body of the user-defined
function (closure) to which e;
evaluates

where the last subgraph is that
for the application of the con-
stant to which e; evaluates

Figure 8.2: Illustration of computation graphs for the PSL model. The dashed lines represent

possible dependencies.

120 CHAPTER 8. SPECULATIVE MODELS

€.

Figure 8.3: PSL computation graphs may have multiple edges from nodes.

e If the argument’s value is a closure (or with the extended A-calculus, also a data struc-
ture), it may communicate the name of another value being computed within the ar-
gument’s subgraph. If that value is used in the function body, there is an edge from
within the argument subgraph to its use, somewhere below the node linked to the argu-
ment’s value. For example, if the argument constructs what represents a list, its value
represents the first cons-cell. Edges would exist for each accessed element and cons-cell
of the list, as illustrated in Figure 8.4.

e Similarly, the edge from the function to the function body may also communicate
names of other values being computed within the function. These names are in the
environment of the closure to which the function evaluates.

e Unlike PAL computation graphs, those of the PSL model are not compositional in terms
of their subgraphs. This complicates the operators for defining graphs.

For an application expression, the node between the function and the function body is in-
cluded only for consistency with the PAL model. It represents the application of the function
value and a placeholder for its argument. It could be omitted with a resulting constant factor
difference in the work and depth.!

'This extra node was not included in the previous version of this work [47]. Thus, the costs of this
presentation are a constant factor greater than those of that earlier presentation.

8.1. LANGUAGE AND PROFILING SEMANTICS 121

Figure 8.4: Illustration of PSL computation graph where the function branch accesses a list’s
elements in order and the argument branch creates the list. To access each element, the
function must first access the cons-cell containing the element. The graph is simplified, with
some nodes consolidated, but still representing constant amounts of computation.

122 CHAPTER 8. SPECULATIVE MODELS

The asymmetric nature of these graphs leads to a useful notion of threads, which is
formally defined in the abstract machine. The thread evaluating an application expression

e spawns a new thread to evaluate the argument,
e evaluates the function, and
e evaluates the function body.

Recursively, the evaluation of both the function and function body generally use additional
threads. For example in Figure 8.5, evaluating (e; e3) es, the initial thread spawns a new
thread for es, then evaluates the inner application, spawning a new thread for e;, and then
evaluates ;. The same thread then evaluates the function bodies €] and ¢{,. Although not
shown, additional data edges may come into the graph for the inner application body €} from
outside the graph for the application e; e;. As in the following example, threads follow the
leftmost control edges until encountering a parent thread or the thread simply ends.

Example 8.1 Consider the evaluation of the following expression:

(Az.1) ((Ay.e) 2).

The computation graph for this expression is given in Figure 8.6. The leftmost edges including
the root represent the main thread; the middle branch, another thread; and the right-most
node, another. The evaluation of e may use additional threads. No thread synchronizes with
the main thread, but the right-most thread might need to synchronize with the evaluation of
€.

One general pattern of graphs possible arises from a consumer-producer relationship. In
an application (Az.e3) e, execution of the trivial function is immediately followed by that
of the function body es. This occurs in parallel with the execution of the argument es.
Examining the graph from Figure 8.2, we see that the argument can act as a producer of
some arbitrarily large data structure, and the body acts as a consumer of that data.

PSL. computation graphs formalized

As Figure 8.2 shows, graphs are always built with edges leading from the minimum, not the
maximum, sink. Thus maximum sinks are not part of the formal definition of the computation
graphs, but are only a descriptive tool. For example, no computation can simply “stall”,
delaying with no work, until all of a list is built, where the tail of the list is computed at the
maximum sink of a subgraph. Instead, the computation would need to perform work such as
counting down the list to delay until the list was built.

Definition 8.1 A speculative (or PSL) computation graph is a triple (ns,nt, NE) of its
source, minimum sink, and a mapping representing adjacency lists as before.

8.1. LANGUAGE AND PROFILING SEMANTICS 123

€1 & e

Figure 8.5: PSL computation graph of nested applications (e; e3) es, where e; evaluates to
Az.€], and e; ey evaluates to Ay.el,.

124 CHAPTER 8. SPECULATIVE MODELS

(Ax.1) (Ay-€) 2)

Figure 8.6: PSL computation graph for Example 8.2.

Figure 8.7 shows the definition of the combining operators for these computation graphs.
Because of the cross links in the graph for an application, this definition is not compositional.
Similarly, the minimum and maximum depths (the depths of the corresponding sink nodes)
cannot be computed compositionally, although the work of a graph can be.

The major differences from the operators for PAL graphs are as follows:

e The operator 1+ g creates a new singleton node and also creates an edge to this node
from the minimum sink of g. This represents the synchronization at a variable in a
function body. Alone, this does not form a valid graph, but must be used in conjunction
with the other operators. In particular, this is never the only edge to the node.

e A new parallel operator g1 A ¢, is introduced to fork graphs. Note that we can define
a fork-and-join parallel operator by g1 @ g2 = (g1 A g2) & (1 g2).

e Both the serial and parallel operators use W to combine mappings representing sets of
adjacency lists. The domains of their adjacency lists may overlap if they each contain
an edge from the same node, which may occur if either graph joined by an operator
includes a data edge created by 1+ g, for some ¢. Figure 8.8 illustrates one case where
this arises. Combining adjacency lists with potentially overlapping domains uses W.

8.1.2 Semantics

We now define the PSL model using a profiling semantics. Since the language is the same
as before, its space under serial evaluation is the same, and we omit it from this profiling

8.1. LANGUAGE AND PROFILING SEMANTICS 125

Graph g¢: 1 1+ g1 g1 b g9
(ns,nt, NLI) (n,n,:) | (n,n,[nty — [n]]) | (nsi, nty
(NEl] NEQ)[ntl — [nsz]])
unique n unique n
9, ns;
ns 9. nt,
& en Nty
¢
’ / 9 &
n nt,
W(g): 1 1 W (g1) + W(g2)
Graph g¢: g1 A g2
(ns,nty, (NE1W N E3)[ns — [nsy, ns]])
unique ns
ns
9, ns, 9, ns,
ntl
Wi(g): W(g1) + W(g2) +1

Figure 8.7: The definition of combining operators for PSL. computation graphs and work.

126 CHAPTER 8. SPECULATIVE MODELS

g
%X

X

Figure 8.8: Illustration of a case where combined computation graphs share edges from the
same node. This shows the graph (g1 A g2) &1 & g3 5 1 & g4, where each of g5 and g4 contains
a subgraph 1+ gs.

semantics. However, we still explicitly manage the memory via stores, since we use a store
in the implementation as well.

A significant difference from the PAL semantics is needed to describe synchronization.
In this model, environments maps each variable to both a value and the computation graph
describing the evaluation to that value, as in Figure 8.9. This is used to describe when that
value has been computed and can be looked up in the environment. The profiling semantics
is then given by Definition 8.2.

Definition 8.2 (PSL profiling semantics) In the PSL model, starting with the environ-
ment p and store o, the expression e evaluates to value v and the new store ¢’ with compu-

l € Locations
v € Values n= el
sv € StoreValues == cl(p,z,e) closure
p € FEnvironments = Variables T Values x Graphs
€ Stores = Locations ™% Store Values

Figure 8.9: PSL run-time domains.

8.1. LANGUAGE AND PROFILING SEMANTICS 127

p,obec Ll c,o;1 (CONST)
p,o b Az.e Ll Lol cl(pz,e)];1 wherel go (LAM)
p(z) = vig
(P)SL (VAR)
p,obv—uvo;lg
p,0 kel EJ)l,crl;gl p,all—eQEivz,CQ;g&
oa(l) = clp'wes) plr s vaignlon b es T8 va, 0530 (APP)

PSL,
p, ok el e l>z)3,cr3;(gl ANg2) B1PBgs

PSL PSL
p,ober —c,o1;q01 p,01 Fex = va, 00,92 d(o2,¢,v2) = vs,03; 93

= (APPC)
p,obelea —Svs,00U03;(g1 ANg2) D (1 g2) D ga

Figure 8.10: The profiling semantics of the PSL. model using the definition of ¢ in Figure 5.13.

tation graph ¢, or
PSL ,
p,oke—uwv oy,
if it is derivable from the rules of Figure 8.10. The § function for the application of constants
1s given in Figure 5.13.

Aside from the inclusion of graphs in the environment, the PSL profiling semantics is much
like that of the PAL semantics. The constant, abstraction, and constant application rules are
the same. To see that for APPC, remember that g1 @ g2 = (91 A g2) & (14 g2). The variable
rule is basically the same, except that the singleton node adds an edge from the minimum
sink of the graph computing the value. The application of a general function is similar, except
that its graph has no synchronization point, as that occurs in the variable rule. Note that its

cost (g1 A g2) @ 1@ g3 is equivalent to ((g1 @ 1) A g2) @ g3 and ((g1 B 1D g3) A g2).

Example 8.2 As a small example of a PSL profiling semantics derivation, observe the eval-
uation of (Ax.z) (Ay.1) 2 and compare to the PAL derivation and graph for the same expres-
ston, as given in Fxample 5.2. The derivation tree is the same as that for the PAL evaluation,
except for the costs. Figure 8.11 shows the overall computation graph. The left spine includ-
ing the root represents the main thread; the other two nodes are separate threads, only one of
which synchronizes.

Comparisons to similar semantics

By using computation graphs as our costs, we have been able to simplify the semantics as
compared to those by Roe [105, 106] and by the author and Blelloch [47]. Similar to here, they

128 CHAPTER 8. SPECULATIVE MODELS

(Axx) (Ay.1) 2

(Axx) (Ay.1) 2

T
<
=

Figure 8.11: PSL computation graph for Example 8.2.

8.1. LANGUAGE AND PROFILING SEMANTICS 129

included depths in an environment to describe when values had been computed. But they
also required the context of a judgment to contain a depth at which the evaluation begins,
like threading clocks through the evaluation. Here we accomplish this result by building
computation graphs which contain the same information in the connections.

Roe’s semantics suffers from an additional complication resulting from his use of some se-
rial expressions. Each expression results in two depths?: when the value becomes “available”
(i.e., the minimum depth) and when the evaluation has finished traversing the expression.
This latter is just the minimum depth in our model, but to explain the difference in his,
consider a pairing expression, (e1,e3). The most natural rule for the PSL would express that
the two subexpressions start evaluating at the same depth. But using its translation as in
Section 5.5, the second subexpression starts at a constant lower depth than the first. This
happens in Roe’s model, despite there being a rule specifically for pairing expressions. De-
scribed operationally, first evaluation of the first component is started, then the second, then
the pair is created where the component values eventually reside.

Another difference from Roe’s semantics is that he tags every value with the depth at
which it becomes available. This is a result of his inclusion of explicit data structures (cons-
cells). These tags are subsumed here by

e tagging values in environments with their computation graphs (recall that the encoding
of a data structure is a closure, which contains an environment), together with

e the evaluation judgment resulting in a value and its graph.

Flanagan and Felleisen [37] and Moreau [83, 84, 85] also provided semantics for speculative
languages that were augmented with costs. Both used small-step contextual-style operational
semantics and included continuations or escapes in the language. Moreau also included side-
effects. Each described two measures of the work cost of evaluation: the total and the
mandatory, i.e., non-speculative, work. Note that in an expression let © — e; in ey, they
considered €5, not ey, to be speculative since e; could abort, so that the result of e; would
not be needed. Neither measured depth, or any related cost, even though both described
parallel computation.

8.1.3 Recursion

This section outlines some issues about recursion in the PSL model and suggest one possible
extension to incorporate explicit data recursion.

In the PAL model, it is unimportant for asymptotic bounds whether recursion was ex-
plicitly included or not. Here, that is not the case, but the problem is harder to describe.
If we consider only recursive functions, the translation of Section 5.5 again introduces only
constant work and depth overhead to each unrolling of a recursive function.

2Roe uses the word “time”.

130 CHAPTER 8. SPECULATIVE MODELS

, PSL,)
plok el — vi,01;01

pol = vk e Ll v,02; g2 where l € o, p' = plz — I;91] (LETREC-pair)

. PSL
p,0 Fletrec x = cons e; inex — v,02;1 D g2

Figure 8.12: Potential PSL rule for creating circular pairs. This assumes that the definition
of expressions is suitably extended.

However, in a speculative semantics it might also make sense to create a subclass of recur-
sive data structures—those that are circular. For example, consider the following recursive
definition in an extended speculative language:

letrec z = (e1,2) in e;.

The semantics rule of Figure 8.12 would result in a circular pair. In this example, the
definition returns a location for the pair value in constant work and depth and binds it to x
while the pair’s components are still evaluating. The pair’s second component returns having
the value of the pair itself, circularly.

This form of a letrec expression can also be encoded in the basic A-calculus, but its
evaluation results in an infinitely long chain of pairs being created. Each pair in this chain
is created by a separate thread in finite work and depth, but the overall computation never
stops creating new threads for the rest of the chain. In full speculation without explicit
recursion, the only way to terminate with circular data structures is to rewrite the program
to delay and force the structures’ components. In partial speculation without explicit recur-
sion, any irrelevant threads should be eventually aborted, assuming the particular variant of
partial speculation allows thread aborting to catch up with thread spawning, as discussed in
Section 8.5.2.

8.2 Fully speculative intermediate model

This section defines the intermediate abstract machine for implementing the fully speculative
version of the PSL model, PSLf. The basic structure of the P-CEK}y; ; is similar to that of
the P-CEKL,; . It consists of a series of steps, each

e selecting at most ¢ active states from a stack, where we guarantee that these active
states correspond to ready nodes in a graph traversal (¢f. Section 6.1);

e executing computation and communication substeps on these states; and
e pushing any newly active states back onto the active state stack.

But while the basic structure is the same, the less structured synchronization pattern of
speculation results in several differences.

8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 131

StA,
StA,
7/
StAj+1
NS
StAj+2
StA,,

Figure 8.13: llustration of P-CEK}y; (active states during an evaluation. It starts with one
active state representing the entire program and ends with no active states. The states are
kept in a stack. At most ¢ states are selected each step. Here, ¢ = 5 and these states are
shaded. These can create zero or more new states (solid arrows). Unselected states are still
active in the next step (dashed arrows).

132 CHAPTER 8. SPECULATIVE MODELS

Each step consists of one substep for computation and two substeps for communication
and synchronization, as illustrated in Figure 8.14. The computation substep is much like that
for the PAL model, except that instead of creating a new continuation for the argument of
an application, we create a new thread for it. Note that the variable lookups are guaranteed
not to block because active states correspond to ready nodes.?
substeps manage sets of suspended states that have blocked. For each state that is finishing
this step (Fin{(v 7)), the second substep reactivates the states that were blocked on the state.
Reactivated states correspond to ready nodes since the value that they need is now available.
Each of the states created by this step might block. These are suspended and placed in the
appropriate sets in the final substep. Synchronization is required between the communication
substeps to ensure that a thread’s result value is found in the last substep if stored in the
second substep.

We formalize the intuitive notion of a thread as a central data structure of the imple-
mentation. A thread represents a series of states over time computing the same value, as
described previously. A thread 7 is a pair of locations that contain the information common
to these states:

The two communication

e The first location contains either the resulting value of the thread or a marker Noval
indicating the value has not been computed yet. Since a thread provides a pointer to
its result value, environments now map variables to the threads evaluating them, rather
than to their values. Of course, a more realistic implementation would also cache the
value in the environment once computed, to avoid the extra indirection.

e The second location contains a set of states suspended on this thread, waiting for its
value. When this thread finishes, these threads are reactivated so that they can continue
with the value.

A thread’s two components are selected with 7y and ms.

Each state records of which thread it is part by including the thread in its control string.
This information is passed from state to state, for example, from application state to the
state representing the function branch, and eventually to the state representing the function
body. Only one state of a thread is accessible (i.e., active or suspended) in the machine
at any given time. Thus, while we describe the machine in terms of states for the sake of
consistency, we could describe it equivalently in terms of threads.

Synchronization in an application happens on demand by the function body. Since it is
out of the control of the argument, the argument can simply die when it is done, as long as
the machine saves its result. By this we mean that the argument does not result in some
intermediate state used for communication, as it does in the PAL model. Thus we do not

®In the previous presentation of this work [47], states blocked in the computation substep, rather than in a
“pre-fetching”-like suspension substep. Thus active states did not correspond to ready nodes, and each state
could be active on two steps—once when blocking and once when reactivated. As a result, the machine did
not make a traversal of the computation graph, and the equivalence of the abstract machine and the profiling
semantics was awkward.

8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 133

C X, T add, 1, X, T3 Ay.e, T4 1 €9, Tg
p px—2] p’ plx—2] . p from StA;
K fun<t; x» funt¢tg k3>
C p add 1, 1 @1g 14 1, Tg e, Tg
p p’ : p p from StA;,;
K Ko K3 fun¢tg 1© °
st

st

cl(-,y,e)

Figure 8.14: Illustration of a P-CEK}q, step. States with constants and variables finish
evaluation on this step and either reactivate any suspended threads or create a state for the

where o;(m2(m3)) =
! ¢

oi1(l)

Q

appropriate function body. States with abstractions create a state to evaluate their bodies.
Applications create two new states. New states may immediately block.

134 CHAPTER 8. SPECULATIVE MODELS

7 € Threads m= (1,1)
ValueOpts = Noval | Val v
e € Faxpressions = L |@Qur application
C' € Controls n= (e, 7)
p € FEnvironments = Variables JZ; Threads
k € Continuations n= e thread finishing
fun(t k) function finishing
st € Slates w= (C,p, k)
St € StateArrays = st
I € IntermediateStates = St | new/reactivated states
Fin(v 1) finishing state
o € Stores = Locations JZ; (Store Values+
ValueOpts+
ThreadSets)

Figure 8.15: P-CEK}y; ; domains. The ellipsis represents the expressions of Figure 4.1.

need a continuation for arguments. The function continuation is used simply to record the
thread of its argument so that this information can be passed to the function body.

The initial state and thread of the computation uses a location [,.; for the thread’s
eventual result. When the machine finishes, the result value v is in that location; thus the
special state with done v is not needed. So this machine ends when there are no active states
left.

The above descriptions lead us to the definition of domains for the intermediate ma-
chine given in Figure 8.15, where the ellipsis represents the basic A-calculus expressions of
Figure 4.1.

Definition 8.3 (P-CEK}g,, step) A step i of the P-CEK}q;, machine, written

PSLi,q
StAZ', o, “— StAH_l, Oi41; Qi7

s defined in Figure 6.5. It starts with a stack of active states StA; and a store o; and produces
a new stack and store for the next step. This step processes (); states.

Definition 8.4 (P-CEK}g,, evaluation) In the P-CEK}q , machine, the evaluation of
expression e to value v, starting in the environment p and store g, ends with store oy and
processes () states, in 1) steps using s reachable space, or

PSLf,q
p700|_€ — U7U¢;Q7¢7S'

8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 135

For each of these i € {0,...,9 — 1} steps,

PSLi,q
StAZ',UZ' — StAZ'+1,UZ'+1;QZ',

such that

e the machine starts with one active state and one thread for the whole program: StAg =
[((67 T)7 Py .)], 0o — [17’65 = Noval][l;es = I::I:I)

o the machine ends with zero active states and the result value: StAy =[], oy(lres) = v;
and

o the total number of states processed is () = Z;p:_ol Q;.

: ... PSL '

The computation substep’s transition < .., corresponds to that of the P-CEK},; in

that it performs a case analysis on the state’s expression and generates up to two new states

or a special intermediate state for use in the following substeps. The main differences are as
follows:

e A variable lookup must get the value from the appropriate thread. A previous step’s
use of the third substep guarantees this value is available when requested.

o All expressions are tagged with a thread identifier. An application creates a new thread
for the argument.

The step uses this transition in parallel for each of the selected active states.
The communication substeps finish and suspend states, respectively. For each interme-

. . PSL .. .
diate state Fin{(v 7), the second substep uses the <., transition to reactivate the states
suspended on thread 7 and store its result value v. For each newly created state, the third

substep uses the F:i%block transition to check whether it would block and if so, add it to the
set of suspended states owned by the thread on which it would block. The blocked thread
reactivates in a later instance of the second substep once the value is available. While Fig-
ure 8.16 describes the semantics sequentially for simplicity, the following section shows that
the instances of this transition can be parallelized so that all these states suspend at once.

The step ends by adding the new states that haven’t blocked and the reactivated states
to the active states stack. In the P-CEK{;, the active states do not need to be treated as
a stack—since states block and reactivate in arbitrary patterns, a stack does not obtain a
¢-DFT ordering of the computation graph. Maintaining them in a stack is one way to ensure
determinacy. Obtaining the ¢-DFT ordering would require sorting the new and reactivated
states based on their 1-DFT ordering and merging them into the non-selected active states,
which cannot be done in the time bounds we show.

Since each transition represents constant work, the total work for the step is defined as

¢'. The space cost is the reachable space at the beginning of the step, which is within a

136 CHAPTER 8. SPECULATIVE MODELS

st I if/where
PSL
((c, T), — K) — :comp throw(c, 7, k)
(=, T) e K) o iwmp throw(v, 7, k) . o(m1(p(x))) = Val v
(Az.e, 1), p, K) © ‘%} comp throw(l, 7,K) [l = cl(p/,ze)] p' =restr(p,Aze), €0
((er €2, 7 py K) 0 eomp [((er,7), pfun{r’ &)), [l — Noval, P=WU), LU go
PSL ((6277/)7p70)] U []]
(@l7,7),, k) o :comp [((e,7), plz — T'],K)] - o(l) =cl(p,z,€)
(@c7,7),-, K) o i comp throw(v',7,K) o' o(m ') = Val v,
5(o,c,v) =" 0’ —
where throw(v, T, e) = Fin{v 7)
throw(v, 7, fun{r' k)) = [(Q@v 7', 1), &)]
restr(p, €) = the environment p restricted to the free variables in e
1 St
Fin<U T> 2 F:i%react 0'(7T2T) [71'17' — Val U]
S_’t - P‘i>Lreact []
st St if /where
PSL -
(o o) o D [olmlele)) o [s+Ho(rmlo)] a(m(ola)) = Nov
(@Qct'\7),K) o ‘Lblook [] olmat’ v [st]+Ho(m1’)] o(m17") = Noval
st o lfifblock [st] o otherwise
St o " (HeS) 1 (HSI) sty stei], 0 0 S, (SEA, o)
lf StA = [Sto,...,stk_l]
q = min(q, k) select at most ¢ states per step
st;, o E%iwmp L, o for each 1 € {0,...,4' — 1} a':aU(U #)
I, cr_: ‘%Teact Sti, ol for each 1 € {0,...,4' — 1} aé’:a'U(U _”)
st = [st|st € lo,...,Ip_1] collect newly created states
= |s#|
sth, o) lfifblock Sth, oty “sequentially” for each j € {0,...,k -1} "' =0}

Figure 8.16: Definition of the P-CEK}q; abstract machine step. Assume all new locations
of the computation step are chosen or renamed to be distinct.

8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 137

constant of that reachable at the end of the step. This would be defined in a similar manner
to Definition 6.11, but also account for threads. But we omit the corresponding definition
here, as we show no space bounds for the PSL implementations.

Example 8.3 As an ezample of execution in the P-CEK}g ¢, Figure 8.17 shows the active
states at the beginning of each step of evaluating the expression (Ax.Ay.x) ((Az.z) (add 1 2)).
For lower values of q, the evaluation might take more steps, but it processes the same total
number of states. The computation graph of the corresponding profiling semantics evaluation
is shows for comparison in Figure 8.18, using the appropriate states’ expressions as node
labels. Observe that each of these executions is a greedy g-traversal of the graph. Also observe
that the program’s mazimum depth is greater than its minimum depth, i.e., its value (a
closure) is computed before the machine finishes.

Example 8.4 If we apply the previous example program to another argument, the main
thread must then wait for the computation of the value 3, as Figure 8.19 shows. The minimum
and maximum sinks are then the same node.

In these examples, the machine’s executions are also ¢-DFTs because, for each thread,
there as at most one thread that blocks on it. If more than one thread blocks on a given
thread, the traversal depends on which blocks first. This results in a ¢-DFT if the reactivated
threads are added to the active states in their 1-DFT order. Thus, the P-CEK}q; ; executes
a ¢-DFT if threads blocking on a given thread block in their 1-DFT order.

Comparisons to similar machines. Moreau [84, 85] uses two similar, but more abstract,
machines for speculative computation. The more detailed of the two is similar in form, as
it is also based on the CEKS serial machine and consists of a series of steps transforming a
collection of states and a store, such that each state contains a control string, environment,
and continuation. It has three primary differences from ours:

e it includes side-effects and continuations;
e it does not explain how to schedule threads; and

e it uses one giant set of suspended threads, rather than a queue per thread.

Pragmatics. One way to reduce communication is to cache in the environment the results
of fetching values from other threads. This is simple since the value of a thread never changes
once computed.

We could reduce overhead by a constant factor by mutating the state of each thread,
rather than creating a series of states over time. This would improve memory management
on a real machine.

138 CHAPTER 8. SPECULATIVE MODELS

g>4
Step ¢ expressions in StA;
0 (Az.Ay.z) ((Az.2) (add 1 2))
Az Ay.x, (Az.z) (add 1 2)
Q@ lo T1, M, add 12
Ay.x, @l p,add 1, 2

~

[

-1 O O = W N =
o
oL
&

— = =N R W N

—
(S

States processed:

q=2

~

Step ¢ expressions in StA;
(Az.Ay.z) ((Az.2) (add 1 2))
Az y.x, (Az.z) (add 1 2)
Qlym, Az.z,add 12

Ay.x, @ly 75, add 1 2
add 12

add 1,2

add, 1

Q add 73

Q@ add1 T4

Z

[

o

N T e S L
— = RN =N NN

—
(S

States processed:

where [y contains el(—,z,Ay.z),
l; contains ¢l(—,z,z), and
71 and 75 are defined in Figure 8.18.

Figure 8.17: P-CEK}q; ; evaluations for Example 8.3. The underlined expressions correspond
to the selected states of each step.

8.2. FULLY SPECULATIVE INTERMEDIATE MODEL

OxAy.X) (Az2) (add 1 2))

AXAYX (Az.2) (add 12)

/N

Az add 12

X £ add 1

O

A

<

8-
o
o
g =
o
\@/
g

4

139

Figure 8.18: PSL computation graph for Example 8.3. The threads are numbered left-to-
right, i.e., the leftmost spine is 79, the next leftmost is 71, etc. Note that this is not the order

of creation of the threads in this example.

140 CHAPTER 8. SPECULATIVE MODELS

(AXAy.X) (Az.2) (add 1 2)) 4

/N

(AxAy.X) (Az2) (add 12)) 4

Xx.A’y.x/Q‘(add 12)

AzZZ add 12

X £ add 1

>
S Qu—

L

@ add

@ add,

/

z

/

X

Figure 8.19: PSL computation graph for Example 8.4.

8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 141

Figure 8.20: PSL computation graph dominated by a chain of dependencies.

The machine can build chains of suspended threads. For example, evaluation of the
following expression:

(Az.(Ay.(Az.2) y) z) e

can have z blocked waiting for the value of y, which is blocked on 2, which is blocked on e.
When e finishes, it takes three steps for zs to get the value. The steps to follow this chain
may dominate the computation. Consider the computation graph that Figure 8.20 displays.
The first log, m levels spawn m = 3 threads which then form a chain of dependencies. The
next m — 1 levels are needed to follow the chain. The following expression:

let z =let y =let z =1
in z
inlet 2 — y
in z
inlet y=1let 2 =1
in z
inlet 2 — y
in z
creates a graph similar to this, except that it requires 3logy m levels, m = 3, to build the
chain (assuming let expressions are translated as in Section 5.5.2.

Successively halving the length of such chains would reduce the height of the computation
graph to O(logm), but this probably cannot be implemented efficiently. This could be
accomplished by having each thread 7 that was blocked on a thread m that was, in turn,
blocked on a thread 75 move itself from 79’s suspended set onto 73’s. We would also need

142 CHAPTER 8. SPECULATIVE MODELS

to check that each of these threads has an empty continuation, so that they do not need to
perform more computation when reactivated. But identifying such threads probably cannot
be done efficiently, and the data structure used to implement suspended sets does not support
an efficient delete operation.

Equivalence of the language and intermediate models

This section relates the PSL profiling semantics to the P-CEK}g; ; abstract machine. We show
that the machine executes a greedy g-traversal of the computation graph. This provides a
bound on the total states processed and steps taken by the machine. This also shows that
the models compute the same result, although details of the extensional equivalence are
omitted—they could be shown as for the equivalence of the PAL models. Since the machine
does not execute a g-DFT, in general, we provide no bound on the total space. Thus we do
not need to separately prove serial equivalence to obtain the serial space bound.

Lemma 8.1 (P-CEKj};, executes traversal) If e evaluates in the profiling semantics:

-,-I—e@?v,a;g,
then it evaluates in the abstract machine:
ke FELLs v, 00,
such that the machine executes a traversal of g. ILe.,
o the selected states and visited nodes correspond at each step, and

e the active states and ready nodes correspond at each step.

Proof Outline: We prove this by induction on the steps of the machine. We could fully
formalize this as in Lemma 6.1.

For brevity, we refer to states being visited or ready, rather than corresponding to nodes
which are visited or ready, respectively. Clearly the initial state is ready, as it corresponds
to the source of g.

Inductively, we need to show that any states added to the active states stack are ready on
the next step—the non-selected states left in the stack remain ready. By a case analysis on
the expression of each of the selected states, we see that the computation substep generates
states corresponding to the graph.

Constants, variables, and abstractions finish immediately, thus this state corresponds
to the unit graph specified for these expressions in the profiling semantics. Furthermore,
a variable’s lookup is the data dependency corresponding to the extra edge added by the
profiling semantics.

Applications generate two new states to start evaluating the subexpressions. These cor-
respond to the two parallel children of the application node. They are ready on the next step

8.2. FULLY SPECULATIVE INTERMEDIATE MODEL 143

unless they are lookups of variables which do not have values yet, in which case it is sus-
pended until ready. Both the function and argument evaluate inductively. Once the function
finishes, the machine generates a state for @ v 7 that is immediately ready, corresponding to
the node before the function body. When selected, the machine starts evaluating the function
body, inductively (for a user-defined function) or via ¢ (for a constant function). Thus the
evaluation corresponds to the graph. O

Corollary 8.1 If e evaluates in the profiling semantics:

- PSL .
Tyt € r V0,054,

then it also evaluates in the abstract machine:
PSLf,q
'7'F-€ — U702697¢

such that the number of states processed by the machine equals the work of the profiling
semantics: @ = W(g).

Proof: This follows from the one-to-one correspondence of active states processed and nodes
in the graph. O

Theorem 8.1 (PSLf executes greedy ¢-traversal) If e evaluates in the profiling seman-

tics:
PSLf
'Wv{}k_e » V0,04,

then it also evaluates in the abstract machine:
PSLf,q
'7'F-€ — U706627¢78/
such that the machine executes a greedy g-traversal of g.

Proof: This follows since the machine selects min(g,|StA|) nodes per step together with
Lemma 8.1. O

Corollary 8.2 If e evaluates in the profiling semantics:
PSL
- Fe—wv,0;g,
then it also evaluates in the abstract machine:
PSLf,q
'7'F-€ — U702697¢

such that the number of steps in the machine is bounded by a function of the work and depth
of the profiling semantics: » < W(q)/q+ D(g).

Proof: This follows by Theorem 6.2. O

144 CHAPTER 8. SPECULATIVE MODELS

8.3 Representation of the sets of suspended states

The speculative implementation represents the active states the same as in the PAL im-
plementation, with a SDGA. However, the sets of suspended states require a generalization
of the single-threaded dynamically growing array (SDGA) used there. The SDGA opera-
tions assume that appending to multiple SDGAs does not need to be properly parallelized.
However, in the speculative implementation, the machine must parallelize the suspension
of threads onto multiple queues. To support that we introduce multi-threaded dynamically
growing arrays (MDGAs). Two changes are made from the implementation of SDGAs:

e Uses of add-scan are replaced with uses of fetch-and-add (¢f. Appendix A).
e We add an additional operation that pushes items onto multiple arrays in parallel.

We show that each step of a P—CEK%STLI;(Z?) machine can be implemented in O(TF(p))
amortized time, with high probability. Thus the cost bounds of the implementation are are
parameterized by the cost of fetch-and-add. The amortization comes from how we grow the
active state stack. Since we have a bound on the number of steps required by the machine,
this allows us to bound the total running time for these machines.

In the new push operation, m MDGAs of arbitrary size may need to grow at the same
time, and we must parallelize the allocation and copying of all of the relevant data in these
arrays. Fach processor ¢ € {0,...,p — 1} has states in an array St; to add to some MDGA
m;. Clearly there are at most p MDGASs relevant to any given instance of this operation, so
m < p. The state array of MDGA j is labeled St;, for j € {0,...,m — 1}. The operation is
implemented as follows:

1. Compute (via a fetch-and-add) the number of states being added to each MDGA j and
the total number of states: k; = sum of |St;| such that m; = j, k = Y.0-, |St:].

This requires O(T'F'(p)) time and O(p) temporary space for the fetch-and-add operation.

2. Increase the size of MDGA arrays, where necessary, as Figure 8.21 illustrates.

(a) Determine which MDGAs need larger arrays, and consider only these for the re-
mainder of this step,
This requires constant time to check the new length of each of the m < p MDGAs,
and O(m) temporary space to store these lengths.

(b) Create asingle array St such that each MDGA will use a sub-array of it. As before,
each MDGA allocates twice as much space as its new total number of states. The
length of St is then the sum of the total space needed for each of the MDGAs and
is computed with an add-reduce.

This requires O(T'S(p)) time, at most O(k) control space, and O(m) temporary
space.

8.3. REPRESENTATION OF THE SETS OF SUSPENDED STATES 145

copy
W-J eoe W-J

N\

~

0 k-1
i”1d 0 eee [M=1 m-1
0 k-1
I Of.. ‘Stlo‘ - o0 0 ‘Stlm—l‘ -1
0 k-1
vy i
|”“ O 0 LI} I m-1 I,m—l

Figure 8.21: Step 2 of push operation on multi-threaded dynamically growing array (MDGA).

146

(c)

(d)

CHAPTER 8. SPECULATIVE MODELS

Each MDGA computes (via a add-scan) the starting point within St for its array,
and stores this in ¢'.

This requires O(T'S(p)) time and O(m) temporary space.

For each location in array St that receives an old state, record the source of its
states. For example, the source for one location might be the 0th element of S¢%.
Thus the sources are stored in an array # of MDGA numbers (here, 3) and an
array " of indices within the corresponding MDGA’s states (here, 0). These is
computed by a segmented distribute of /m and a segmented index, respectively.

This requires O(k/p+ 1S (p)) time and O(k) temporary space.

For each location in array St that receives an old state, record the destination of
its states. The destinations are stored in an array i of offsets into St marking
where the new MDGA arrays start and in array " The former is computed by
using " to index into .

This requires O(k/p) time and O(k) temporary space.

Copy the current contents of these arrays into St. Each processor copies a pro-
portional share of the array, using " and i to index into the appropriate arrays
St'..

For each MDGA 7, the time for copying each of its |St;| elements is counted against
the time for initially writing the elements that will be written into the array until
the next time it grows. There are at least |St’| such elements, since the array
doubles in size each time it grows. If the array doesn’t grow again, the cost of
this copy operation is counted instead against the initial writing of these elements.
Thus, the time for copying data is at most twice that of initially writing data.
This requires O(k/p) amortized time and O(k) space.

From now on, ignore the old arrays for these MDGAs and use the new ones.

Thus this step requires O(k/p+71S(p)) amortized time, O (k) space, and O(k) temporary
space.

. Move the new states into the MDGA arrays such that the load is evenly distributed

among the processors, Figure 8.22 illustrates.

(a)

For each location in the arrays St; that receives a new state, record the source of

its state. The sources are stored in an array i of processor numbers and an array
i of indices within the corresponding processor’s states. These are computed by
a segmented distribute of the processor numbers and a segmented index of the
lengths of St;, respectively.

This requires O(k/p+ 1S (p)) time and O(k) temporary space.

For each location in the arrays St'j that receives a new state, record this destina-
tion. The destinations are stored in an array ¢/ of MDGA numbers and an array

8.3. REPRESENTATION OF THE SETS OF SUSPENDED STATES 147

N
Stgr - Sty _ \
0 p-1 \
A
copy
St cee
0 k—1
%
i’lo 0 K p—l p_l
0 k—1
i7>’ 0 ‘Sto‘_l..o 0 ‘S[p_l‘_l
0 k—1
7
i |my Mo oo sMpo—17| Mp-1
0 k—1
— St + S, | *
P77 ‘Stmo‘ ""St:‘]o—l ...‘Stmp_l‘-- St:—l_l

Figure 8.22: Step 3 of push operation on multi-threaded dynamically growing array (MDGA).

148 CHAPTER 8. SPECULATIVE MODELS

@ of indices within the corresponding MDGA’s states. The former computed by
using ¢ to index into 13, and the latter by segment distributing the MDGA lengths
and adding them to ¢

This requires O(k/p+ 1S (p)) time and O(k) temporary space.
(c) Copy the states into arrays St;«. Each processor copies a proportional share of

the data, using the sources and destinations just computed to control the indirect
reads and writes, respectively.

This requires constant time per element, or O(k/p) total time and no space.

Thus this step requires O(k/p+ T'S(p)) time and O(k) temporary space.

So in total, this requires O(k/p + T F(p)) amortized time and O(k) space for the data, plus
O(p) temporary space. This temporary space can be reused in each step.

8.4 Fully speculative machine models

Using the basic data structures just described, we now simulate the P-CEK}]g , on our
machine models. First we examine the time required for each step of the P-CEK}q; (, then
total this for all steps.

Theorem 8.2 (Cost of P-CEK} ; step) Fach P-CEK}g, step can be simulated within
O(q/p+TF(p)) amortized time on the p processor butterfly, hypercube, and PRAM machine
models, w.h.p.

Proof: Each processor is responsible for up to ¢/p elements, i.e., processor i is responsible for

the elements i[¢'/p],..., 1+ 1)[¢'/p] — 1, for ¢ = min(q, |StA|). We assume each processor

knows its own processor number, so it can calculate a pointer to its section of the array.
The simulation of a step consists of the following:

. PSL .
1. locally evaluating the states (<= smp), and synchronize all processors;

. . . C1. PSL
2. saving the result value, reactivating the queued states of all finishing states (= piock),

and synchronizing all processors;

. . PSL
3. suspending all states requesting to do so (= ,cqct); and
4. create a new active state stack for the next step.

We now show each of these is executed in the given bounds.
Locally evaluating the states requires the time it takes to process k = [¢’/p] states. The

] . PSL)))))
implementation of < ., is straightforward and requires constant time for environment
access and other operations. Thus the total time for locally evaluating the states on the

8.5. PARTIALLY SPECULATIVE IMPLEMENTATIONS 149

machine models of interest is O(k + T'F(p)), where T'F(p) provides an upper bound on any
memory latency or space allocations.

In the second substep, each processor has up to k states to finish. Each processor writes
its states’ results, then returns pointers to their suspended sets. This requires O(k + T F(p))
time, including memory latency.

In the third substep, each processor has up to 2k states that suspend. The states suspend
with a single push operation, requiring O(k + T F(p)) amortized time.

The new active state stack is the appending of the newly created and reactivated states
to the unselected original active states. There are at most 2¢ new states. On average, there
are at most 2¢ reactivated states, since each state is blocked and later reactivated at most
once. Thus we amortize over all steps, the number of states being added to the active states
stack. We can push these elements onto the stack in O(¢/p+ T'F(p)) amortized time. O

To account for memory latency in the butterfly and hypercube, and for the latency in
the fetch-and-add operation for all three machines, we process p - T'F(p) states on each step

(»)

instead of just p. Le., we use a P—CEK%ZI]JT machine.

Corollary 8.3 Each step of the P-CEK;STLI;(ZD) machine can be simulated within O(TF(p))
amortized time on the p processor butterfly, hypercube, and PRAM machine models, w.h.p.

Corollary 8.4 If e evaluates in the profiling semantics:

- PSL .
Tyt € r V0,054,

then its evaluation in the abstract machine,

PSLE,p-TF(p
fr— (

'7'|_€)U7OJ;Q7¢7

can be simulated within O(W (g)/p+ D(9)T'F(p)) amortized time on the p processor butterfly,
hypercube, and PRAM machine models, w.h.p.

8.5 Partially speculative implementations

A partially speculative implementation can abort and discard any irrelevant computation.
We consider two definitions of relevance, varying in what program’s result is treated.

1. If the result of the computation is only the semantic value obtained, i.e., a constant or
location, the definition is as follows:

A node n of a computation is relevant if there is a path from n to the minimum sink
nt of the overall graph, i.e., the final value depends on n.

150 CHAPTER 8. SPECULATIVE MODELS

2. If the result of the computation is either a constant or the entire data structure refer-
enced from a location, the definition is as follows:

A node n of a computation is relevant if there is a path from n to the minimum sink
nt of the overall graph, i.e., the final value depends on n, or if n is reachable from the
value computed in nt, i.e., it is part of the final result data structure.

Note that both of these definitions are stronger than saying that an application’s argument
is relevant if its value is used in its function body, since that function body (or that part of
it) might not be relevant.

The simplest appropriate modification to the fully speculative implementation is to end
on the first iteration that the main thread is done, i.e., when [,.; has a value. But since
the fully speculative implementation does not maintain the states in any particular order, we
might be unlucky and schedule all irrelevant computation before the relevant computation.
Thus it might make sense to prioritize computations to minimize the amount of irrelevant
computation. This might also allow us to detect and discard irrelevant threads during eval-
uation.

Sections 8.5.1 and 8.5.2 discuss some strategies and implementations for prioritizing and
aborting threads. Then Section 8.5.3 discusses the benefits of partial speculation.

8.5.1 Prioritizing threads

On each step, we select the (up to) ¢ active states with the highest priority. The goal of
prioritizing threads is to minimize the number of irrelevant states used during a computation,
so as to reduce the cost of the computation. Since we do not know whether a thread is relevant
or not until the computation is done, any priority scheme is either very restricted or based on
heuristics. Furthermore, more involved prioritization methods introduce more complicated
data structures to store the active states. The cost of prioritizing threads has the potential
for overwhelming the cost of evaluation.

The most basic priority scheme distinguishes necessary threads, those known to be rele-
vant, from speculative threads, those not yet known to be relevant or irrelevant. Necessary
threads are given higher priority than speculative threads. The initial thread is immediately
necessary, as is any thread spawned from a necessary thread by APPC, or any thread that a
necessary thread blocks on. To implement this scheme, we can use two active state stacks,
one for each priority, with only a constant factor of overhead (e.g., each newly created or
reactivated state checks to which of the two stacks it should be added). This priority scheme
was proposed by Baker and Hewitt [6].

More general priority schemes can be based on the distinguishing degrees of “speculative-
ness”:

e Threads created by APPC have the same priority as the original parent thread, because
they are relevant (or irrelevant) if and only if the original thread is.

8.5. PARTIALLY SPECULATIVE IMPLEMENTATIONS 151

e Threads created by APP are more speculative than the original thread, because the
original parent thread must be used to communicate this one’s name for it to be used.

The prioritization used by Partridge [94, 93] is an example of this. If we assume that each
speculative child has equal probability to be relevant, then the active states should be kept
as a tree, where each node represents active states of equal priority, and each edge represents
a speculative child relationship. Selecting the highest priority threads is removing them from
the top of the tree, which seems unlikely to be efficient. But adding new threads can be easily
done by adding them in the appropriate places of the tree. Adding reactivated threads is also
easy if we remember where they would have been placed when they blocked. Blocking also
requires updating the priority of the thread blocked on to the higher of its current priority
and the blocking thread’s priority, but comparing two priorities is also unlikely to be faster
than logarithmic in the depth of the priority tree.

Further generalizing the scheme to allow arbitrary probabilities of relevance would likely
be even more ineflicient. Maintaining the accurate thread ordering can dominate the cost
of computation since it can involve touching many additional threads per step. As a simple
example, consider storing the threads in order of relevance in an array. Inserting threads
involves a sorted merge operation, requiring work linear in the number of currently active
threads.

8.5.2 Aborting threads

To distinguish unnecessary threads, those known to be irrelevant, requires a form of garbage
collection on threads. For example, consider the evaluation of an application e; e; resulting
in a closure. Even if the function body does not use the argument e,, the closure can contain
a reference to the argument which is then used by the enclosing context. Only following all
the relevant pointers can tell us which threads are no longer accessible, and thus unnecessary.

Several methods of garbage collection of processes has been previously described. Baker
and Hewitt [6] and Hudak and Keller [54] used a mark-and-sweep approach, which is not
asymptotically efficient since it traverses pointers too many times. Grit and Page [48] and
Partridge [94, 93] used a reference counting approach which can be efficient if we don’t spend
too much effort garbage collecting on each step. We discuss this option in more detail.

For each thread we maintain a count of the references to this thread from environments.
The count is one when the thread is created. Counts are incremented when environments
are extended, creating a new copy of the environment.? And the appropriate counts are
decremented when environments are restricted or threads finish.

When a state is selected at the beginning of a step, we check the count of its thread. If
its count is zero, we abort this thread, including decrementing all counts of threads reach-
able from its environment. But these environments contains values, which in turn contain
environments, etc., and we cannot efficiently traverse the entire environment and decrement

*If environments are partially shared to minimize space as described in Section 6.2, the counts should
appropriately reflect the sharing.

152 CHAPTER 8. SPECULATIVE MODELS

all these counts at once. So, we use a queue (implemented with a SDGA, but with queue
operations) of environment bindings, decrementing k - ¢ reference counts each step, for some
constant k.

We can augment this scheme further by observing that all threads spawned by an ir-
relevant thread (i.e., its children) are themselves irrelevant. When a thread is aborted, we
also abort its children. To implement this, each thread also keeps a set of pointers to its
children. When aborting a thread, the machine sets the counts of its descendants to zero and
aborts them. While a given thread can have many more than ¢ descendants, the machine
can amortize the cost of aborting them over all the steps, accounting this cost against the
cost of creating the threads. Alternatively, we can use a queue (implemented with a SDGA®)
of threads to abort, and abort k- ¢ of these on each step, adding the children of any aborted
thread onto the queue.

Reference counting is asymptotically efficient since we only need to change counts for
threads that the machine is touching anyway. Thus it involves only a constant factor overhead.

The standard problem with reference counting in garbage collection is accounting for
recursive data. Here it works with recursive functions because a recursive closure cl(p,z,y,e)
would not be represented recursively (cf. the PAL’ model). The key to that representation
is explicitly naming the closure z and unrolling the recursion only when necessary. The
same technique could be applied to circular data structures. F.g., the semantics suggested
in Section 8.1.3 could be altered so that it created a named pair value, similar to the named
closure, that is unrolled when applied to the selectors fst or snd.®

8.5.3 Cost benefits of partial speculation

When a priority scheme schedules computation well, for some computations it can greatly
reduce the number of states processed or steps an evaluation. Clearly any partially specu-
lative implementation should quickly detect that the potentially large computation e in the
expression (Az.1) e can be aborted.

Consider the subgraph ¢, consisting of only the relevant nodes of a computation graph
g. Note that a serial call-by-need implementation executes a 1-DFT of ¢, and thus requires
W (g,) time to evaluate the computation. Unlike the PSLf, any partially speculative abstract
machine correctly prioritizing necessary computation processes at most ¢ - W(g,) states and
W (g,) steps, since at least one relevant node is traversed on each step. This implies that it
terminates if the call-by-need implementation does. But we conjecture that it is possible to
construct, for any priority scheme, example computation graphs that the priority scheme does
not significantly parallelize even if its relevant subgraph has significant parallelism. ILe., no

5Qrit and Page used a less efficient binary tree data structure for this.

SThere are two alternatives as to what the “name” would be in this pair value. If we use lazy pairing, so
that the pair component expressions are evaluated only as needed, the “names” are variables. Then the named
value pair also includes an environment to perform the unrolling efficiently, ¢.e., without substitution. If we
retain eager pairing, the “names” need to be a new construct, and the named value pair includes a mapping
from these names to values for unrolling efficiently.

8.5. PARTIALLY SPECULATIVE IMPLEMENTATIONS 153

priority scheme can correctly guess sufficiently often which speculative computation becomes
necessary.

Garbage collecting threads obviously benefits the space cost of evaluation. But it is
unclear whether it can improve the worst case asymptotic space bounds of an evaluation
strategy. Consider an irrelevant subcomputation that generates many threads before the
main thread of this subcomputation is known to be irrelevant. As the machine aborts these
threads, their descendants, since they are not yet known to be irrelevant, can generate new
irrelevant threads. The aborting of threads will eventually catch up with the spawning of
new irrelevant threads if the machine does both of the following:

e It aborts more threads per step than it creates, e.g., it aborts up to k - ¢ threads per
step, for some constant k > 1.

e It aborts on at least two levels of the graph each step. FE.g., its aborts some threads,
which adds those threads’ children to the abort queue and then aborts some of these
children.

Without the latter condition, spawning could always be a level ahead of aborting, as in Grit
and Page’s description.

154 CHAPTER 8. SPECULATIVE MODELS

Chapter 9

Basic data-parallel models

This chapter presents a model of nested data-parallelism. Here we add sequences and parallel
operations on sequences to the extended A-calculus.! This models the core of the NESL
language. As Figure 9.1 shows, the NESL model adds several constant functions on sequences
and a sequence-based expression to the extended A-calculus (Figure 4.3). These constants
are described in the glossary of Appendix A. The “for-each” expression {¢’:z in e} first
evaluates e, which should result in a sequence. Then for each binding of z to an element
of this sequence, it evaluates ¢’. Each of these evaluations in done in parallel, and all of
these synchronize before the rest of the computation continues. Only these new operations
parallelize—applications and pairs do not, unlike the previous models.

¢ € Constants == ...|elt|# | sequence observers
index | dist | ++ | sequence constructors
pack | put sequence mutators

addscan | maxscan | sequence scans
e € Fupressions == ...|{€ :zin e} for-each

Figure 9.1: NESL expressions. The ellipses represent the constants and expressions of Fig-
ure 4.3.

For brevity, we do not include explicit constant sequences as expressions. FE.g., the se-
quence [eg, ..., ex_1] can be encoded so its components evaluate in parallel:

{if eq (2,0) then ¢y else ...: z in index k}

or in serial:

++ (dist (eg,1),...)

'As in the PAL’ model, translating pairs, conditionals, etc., to the basic A-calculus would introduce only
constant overhead in work, depth, and space, but here we include these language constructs for convenience.

155

156 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Sections 9.1 and 9.2 define the computation graphs and profiling semantics, respectively,
for the NESL model. Then Section 9.3 translates NESL to the ArrL model to make allocation
more explicit, simplifying further implementation. Finally, Sections 9.4 and 9.5 implement
the machine in an abstract machine and then in machine models, respectively, proving the
time and space cost mappings of each stage of the implementation.

9.1 Computation graphs

Like the PAL model, the NESL model uses only series-parallel graphs, which allows us to use
the same techniques as before to prove both time and space bounds on our implementation.
But here, the unbounded parallelism of the for-each expression and other sequence constructs
results in graph nodes of unbounded fan-out and fan-in. There are two main differences from
those of the PAL model:

e Application and pairing are serialized, not parallelized.

e The for-each expression allows unbounded parallelism (as do some constant applica-
tions, to be shown). Its graph also contains m “extra” parallelized nodes, where m is
the number of parallel branches of the body to execute. This ensures that we perform
m work before we allocation m space for the result of the for-each.

Figures 9.2 and 9.3 illustrate these graphs.

As before, the computation graphs are formally defined in the profiling semantics. They
use essentially the same set of combining operators as for PAL computation graphs, except
that here we generalize the parallel operator, as Figure ?? shows.

9.2 Profiling semantics

The profiling semantics for this model is essentially an extension of that of the PAL model,
except that it serializes applications. A key extension is the addition of sequences as store
values. Since we allow nested data-parallelism, sequences can contain locations, e.g., to other
sequences.

Definition 9.1 (NESL profiling semantics) In the NESL model, starting with the envi-
ronment p, store o, and roots R, the expression e evaluates to value v and new store o’ with
computation graph g and s reachable space, or

p,o, Rt 61\@}LU70/;9787
if it is derivable from the rules of Figure 9.6. The § function for the application of constants

s given in Figure 9.7. Additional functions for defining the space of a computation are given
mn Figure 9.8.

9.2. PROFILING SEMANTICS

Expression e:

¢, T, Or Ax.e

(e1,€2)

letrec z y = e1 in es

Graph g¢:

(e1.e)

letrec x

Figure 9.2: Illustration of computation graphs for the NESL model, part 1.

157

158 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Expression e: ey e if ¢; then e, else e3 {e/ 12 in e}

€ &

Graph g¢:

where the last sub- | where ¢’ is either e where there are m (the length
graph is that for ei- | or es depending on of the value of e) evaluations of
ther the body of the | the value of e; e

user-defined function
(closure) or the appli-
cation of the constant
to which e; evaluates

Figure 9.3: Illustration of computation graphs for the NESL model, part 2. The “extra” m
parallel nodes in the graph for {¢’ : # in e} account for allocation of the result.

9.2. PROFILING SEMANTICS 159

Graph g¢: 1 g1 D g2 ®:’r§)1 gs
(ns,nt, NE) (n,m,-) (nsi, ntq, (ns,nt,
(NE; U N Ey) (Ut NE[nt; v [nt]])[ns v~ 15])
[nt; — [ns2]])
unique n unique ns and nt
NSy ns
99
ns NSm-1
ntl
g on go
ns
nt 2 M1
9,
nt2 nt
W(g): 1 W (g1) + W (g2) 24+ 20 Wig:)
D(g): 1 D(g1) 4+ D(g2) +1 2+ max2' D(g:)

Figure 9.4: The definition of combining operators for NESL computation graphs, work, and
depth.

{ € Locations

v € Values = ¢l
sv € StoreValues m= cl(p,z,y.e) | closure
(v1,v2) | pair
U sequence
p € FEnvironments = Variables T Values
o Stores = Locations JZ; Store Values
R € Roots = ValueSets

Figure 9.5: NESL run-time domains.

160 CHAPTER 9. BASIC DATA-PARALLEL MODELS

p.o, R c 25 ¢ 6:1,S(R, o) (CONST)
po, R 2 25 p(x),0:1, S(RU {p(x)}, o) (VAR)
p,o, RE dz.e NESL L,o';1,S(RU{l}, 6") where o/ = o[l = cl(p,_,3,e)], | & dom(o) (ABSTR)

p,0, RUp(FV(e2)) F ey NE;J l,o1;91,51 p,o1, RU{l} ez NE;J v2,02; g2, S2
o2(l) = cl(p’,z,y,e3) plo= 1y v, 00, RE e ES v,03; 49,8 (APP)

p,o, REel ex NESE v,03;1 B g1 DgoP1Pg,max(s1 +1,s2+1,5)

NESL NESL
p,0, RUp(FV(e2)) F er i c,01;91, 81 p,o1, RE e ' v2,02; g2, S2
6(c,v2,02) = v3,03;9s (APPC)

NESL
p,o, RE el e i va, 00 U0ds; 1B g1 B g @ gs, max(s; + 1,52 + 1, S(RU {v},03))

p,0, RUp(FV(ez)) F ey Rty V1, 01591, 81
p,o1, RU{vi} ke NESL v2,02; g2, S2 where | € o (PAIR)

p, o, RF (e1,e2) NESL Lol = (v1,02)];1 B g1 B g2 B 1, max(s; + 1, s2)

NESL
— 1], o[l — cl Rbes — !
plo =l ol cllpaye)], RE e ©:91925 chereld o (LETREC)

p,o, Rt letrec o y = e; in e R v, 1&g, s+ 1

p,0, RUp(FV(e2))U p(FV(es))t ex MRS true, 1591, s1
o1 Riex 5 vy, 00100, 52 (IF-TRUE)

p,o, RE if e; then e; else es NE)L v2,02;1 B g1 B g2, max(s; + 1, s2)

p,0, RUp(FV(ez))Up(FV(es)) e MRS false, o1; g1, 51
P01, Ries " va, 05308, 5 (IF-FALSE)

p,o, RE if e; then e; else es NESL vs,03;1 B g1 B gs, max(s; + 1, s3)

p,a,RUp(FV(e'))I—eNE;Jl 00;9, 8 oo(l) =70 m = |7
NE
ple = vl 05, RUp(FV(e') —{z}) F € —b> U], 541395, 8 ; vy € {0,. -1} (EACH)
p,o, R {e' 1z in e} NESL U,o [l'b—)&];g@(@ & (@), max(s m—l—max(s)

where I' € dom(0o)

Figure 9.6: The profiling semantics of the NESL model using the definitions of 6 and S(o, R)
in Figures 9.7 and 9.8, respectively.

9.2. PROFILING SEMANTICS 161
5(c,v, o)
c v | v o' g if/where
Include the definitions of Figure 5.18.
elt U] o, 1 o(l) = ('), o(l') = &
Ll 1 o) =7
index i | o, —1]] Qi1 ' ¢ dom(o)
~l_ .
dist A A A | R, 1 o(l) = (vi), I' & dom(o)
++ L1 [~ o) +Ho(lz)] X1 ()= (li,ls), I' & dom(o),
1 = [o(0)] +lo(l2)
pack LU U= [vigy -, ®;n=_0 1 (l):l m = |l|, o(l;) = {vy,c;),
Uim—l]] {ZO7 Zm’ 1} { |Cz = true}
fo <+ < tyi_y, I' € dom(o)
put L1 U dvofio,. .., (@7 Ve | o) = <z&,12>, o(l) =7, m=|dl,
Vi fim]l (=t | oll) =T, m =], a(l'y) = iy 0'y),
I= 0< 1 <m, ' g dom(o)
addscan 1[I [[i, QL1 o(l)=1, m=i], I & dom(c)
|
maxscan | [I' [I'— [max{_gij,..., ®;n=_01 1 c)=1, m=1], I & dom(o)
max;";Ol 75]]

Figure 9.7: The § function defining constant application for the NESL model. The substitu-
tion in the definition of put gives priority to the last occurrence of any duplicate indices.

S(R,)
locs(c, o)
locs(l, o)
foes(el(pyz.9,¢),)
locs({vy,v o)
locs (0, o)

ey 2
|0 if o
where L = {J;cp locs(l, o)

{
{l}Ulocs(a(l),0)

Uier, loes(l, o)
locs(vy, 0) U locs(vy, 0)

U?;Bl locs(vg, 0)

where L = p(FV(e) —{z,y})

where m = |7

Figure 9.8: Semantics functions used in the NESL profiling semantics for defining reachable

space.

162 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Most of these rules are similar to those of the PAL’ model, differing only in the serialization
of application and pairing. The only totally new semantic rule is the EACH rule. For the
expression {e’: x in e} we first evaluate the binding expression e, which should result in a
sequence U. We then evaluate the body €’ in parallel for each element of the sequence, with
each parallel branch binding z to the corresponding element of the sequence.

9.3 Array language

To present a relatively straightforward abstract machine (Section 9.4) we first introduce the
array language, ArrL.. The sequence instructions of NESL translate to a similar set which
allocates memory more explicitly and uses constant functions which are more primitive. ArrL
includes explicit side-effects to atomically update array elements. Note that we say that
NESL sequences are represented as ArrlL arrays. These two data structures are semantically
equivalent, but this corresponds to a common terminology distinction between data structures
without and with side-effects, respectively.

The syntax of ArrL is the same as that of NESL, except that we replace the for-each
expression and the constants index, ++, pack, put, addscan, and maxscanwith the con-
stants store, new, fork, addS, and max$, as in Figure 9.9:

e Applying store to an array, an index, and a value writes the value into the indexed
location of the array.

e Applying new to an integer creates and returns a new array of that length.

e Applying fork to an integer ¢ and a function applies the function in parallel to each of
0,...,2— 1 and returns a dummy value 0. Since the fork function returns a dummy
value, it is useful only for any side-effects of the applications.

e The new scan operations addS and maxS compute the same as their counterparts,
but they perform no allocation and thus require an additional array argument in which
to store their results.

Definition 9.2 defines the profiling semantics of ArrLl,, which is like that of NESL, except
that it adds definitions for these constants.

Definition 9.2 (ArrlL profiling semantics) In the Arrl. model, starting with the environ-
ment p, store o, and roots R, the expression e evaluates to value v and new store ¢’ with
computation graph g and s reachable space, or

ArrLL
p70-7R|_€ 1“1“; U,O'/;g787

if it is derivable from the rules of Figure 9.10. The § function for the application of constants
is given in Figure 9.7. Additional functions for the space of a computation are given in
Figure 9.8.

9.3. ARRAY LANGUAGE

163

¢ € (Constants =

e € FLzpressions 1=

...|elt |# | sequence observers
store | sequence update
new | sequence constructor
fork |

addS | maxS sequence scans

Figure 9.9: ArrL expressions. The ellipses represent the constants and expressions of Fig-

ure 4.3.

pya, RUp(FV(e2)) F er = fork, o’ g1, 1
oo (1) = (5,1 1 >0 ool

ArrL
p, o' RE e ki l,00;92, 82
/) = Cl(p/7_7.’L‘763)

plo = il oj, RULUY b ea 2% ol oihiigl,s) Wi €0, .. i—1} (FORK)
p,o, REel ex Iﬂi 0,0n;1® g1 Bga® (®;;é (1@ g’])),max(sl, 82, ;’)
5(c,v, o)
c v | o’ g if/where
store [| v ofl; — F[0'/i]] 1 o(l) = (l1,l), o(li) =0, o(l2) = (i,v")
new i |l o[l—]0,...,0]] ®. 41 |1 ¢ dom(a)
addS 1 [1" ['= [i QU1 o) = (k) o(l) =1, o)==, m =]
ST
maxS | [I" [~ [maxi_g1j,..., ®;n=_01 1] o) =(l), olli) =1 olz)=—, m=]4
max" " i,]]

Figure 9.10: The semantics rules for the constants added to ArrL.

164 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Since all uses of fork are introduced by the translation, the value of the argument e is
guaranteed to be a non-recursive closure with the environment p. The FORK rule evaluates
the function, the argument, and then the parallelized branches. Note that there is unit
overhead prior to each parallel branch—this will correspond with unit work in the abstract
machine to set up the evaluation of each branch.

Equivalence of the NESL and Arrl. models

The NESL and Arrl. models, where the latter is restricted to using the expressions in the
image of a translation, are essentially equivalent in that they can simulate each other with only
a constant factor of overhead. Here we show only that the restricted ArrL. model can simulate
the NESL model. This simulation requires translating NESL into ArrL.. The remainder of
this section gives such a translation Ta.[], proves that Tayp[] is correct, and proves that
Tawp[] introduces only a constant factor of overhead. This follows the same structure as in
Section 5.5.2.

Definition 9.3 defines a translation from the semantic domains of the NESL model to
those of the ArrL model, and Theorem 9.1 shows that the translated evaluation derivation is
correct and incurs at most a constant factor of overhead. The ArrL derivation uses an initial
environment and store defining NESL’s extra constants. The translation is a relation except
on expressions, like Tpar[], as that allows it to be independent of location names.

Definition 9.3 Figures 9.11 and 9.12 show the translation Tay1[e] of NESL expressions,
values, and store-values to those of the ArrL model. The translations of environments and
stores are defined point-wise on the values and store-values in their ranges, respectively, and
the translation of root set of values is defined point-wise on the contents.

For example, the translation of the for-each {¢’ : x in e} evaluates the binding expression
e, allocates a result array, and forks 7 threads to evaluate the body ¢’ and writes the result in
the appropriate element of the result array. The motivation for separately allocating space
with new in the translation is to account for the allocation of k£ space with k& work prior to
the allocation. This allows us to bound memory use (see the proof of Theorem 9.5). Note
that side-effects are used only in a single-assignment manner—each location is assigned a
value exactly once.

Example 9.1 Consider the NESL expression
{add (z,1) : in index 4}.
Its translation under Tan[] is

let © = 73, dex 4

z=new (# z)

- =fork (# z,\y.z[y] := (Az.add (z,1)) z[y])
in z

where we use same syntactic shorthand as in the translation.

9.3. ARRAY LANGUAGE 165

TAHL[[ir%dex]] = Tindex
TAHL[[dISt]] = xdist
TArrL[[++]] = T4+
TAI‘I‘L [[paCk]] = xpack
TarL[put] = Tput
TarL[addscan] = ZTzddscan
Tanr[maxscan] = zmaxscan
Tanp[{e' :zine}l] = let z = Tanrle]
z=new (#)
- =fork (# =z, y.z[y] := Ae TanLle]) «[y])
n z
where eq[es] abbreviates elt (e1,e2)
e1lez] ;= e3 abbreviates store (e,(ea,e3))

Figure 9.11: Translation T'a.q,[] from NESL expressions to those of ArrL. The translation
simply translates any subexpressions, i.e., is homomorphic, where not shown. The variables
x. are assumed to be distinct from the free variables of the expression or closure being
translated and are defined in the initial environment (Figure 9.13). For convenience, we use
a multi-assignment let statement that executes the assignments in sequential order, which is
also translated into NESL.

Values:

Tarcr], [c], if ¢ ¢ {index, dist, ++, pack, put, addscan, maxscan}
Tarer[e], [lc], if ¢ € {index, dist, ++, pack, put, addscan, maxscan}, [. € ¢
Tawr[l'], 00, if Taren[V ()], [(o)],

Store-Values:

TArrL[[CI(p/axayae)]]a’ [[CI(paxayaTArrL[[e]])]]g 1f TArrL[[p/]]g/ [[P]]g

TArrL[[<j)/1 ,U/2>]]U, [[<vl ﬂ)2>]]g if TAI‘I‘L [[vll]]g/ [[vl]]g s TAI‘I‘L [[vlz]]g/ [[UZ]]U
TAI‘I‘L [[U/]]U, [[17]]0 if TAI‘I‘L [[1)6]]0, [[UO]]U y e TAI‘I‘L [[v;c—l]]gl [[vk—l]]g
where k = |v/| = |7

Figure 9.12: Translation T'apq,[] from NESL values and store-values to those of Arrl, using
the translation on expressions.

166

CHAPTER 9. BASIC DATA-PARALLEL MODELS

Pr

Le

l., for each ¢ € {index, dist, ++, pack, put, addscan, maxscan}

a1

€index

€dist

E++

¢pack

put

€addscan
fmaxscan

where eq[es)
€1 [62]

:=e3 abbreviates store (e1,(e2,e3))

cl(-,ze.), for each ¢ € {index, dist, ++, pack, put, addscan, maxscan}

let z = new z
_=fork (z,Ay.z[y] == y)
in z
let z; =fst =
ro =snd z
Z = new s
- = fork (z2,Ay.z[y] := 1)
in z
let z; =fst =
ro =snd z
z =new (add (# z1,# z2))
- = fork (z2,Ay.z[y] := (if It (y,# x1) then z,[y] else zz[sub (y,# ©1)]))
i(reltle =fst z
ro =snd z
2’ = Tarp[addscan] Ta.[{if =’ then 1 else 0: 2’ in z,}]
z = new z'[sub (# z) 1]
- = fork (# z,Ay.if snd (z1[y]) then z[2'[y]] := fst z;[y] else 0)
in z
let z; =fst =
ro =snd z
z =new (# »;)
- = fork (# z1,Ay.z[y] .= z1[y]) (copy destination array)
- = fork (# 2, Ay.z[fst za[y]] := snd z2[y])

in z
addS (znew (# z))

maxS (znew (# z))

abbreviates elt (e1,e2)

Figure 9.13: Initial ArrlL environment p; and store o7y when translating from NESL with
Tawns[]. For convenience, we use a multi-assignment let statement that executes the assign-
ments in sequential order, which is also translated into NESL.

9.3. ARRAY LANGUAGE 167

Theorem 9.1 now shows that the PAL model can simulate the PAL> model with only a
constant factor of overhead. To prove this, Lemma 9.1 shows that the simulation holds for
all contexts. These are very similar to Theorem 5.1 and Lemma 5.1, so we do not provide as
many details in these proofs.

Lemma 9.1 (Equivalence of NESL and ArrL) If e evaluates in the NESL model:

NESL
Y, 1o R
p 1 g 1 R l_ € v 1 g U Unew 1 g 1 S 1

then for any context of p, o, and R for the corresponding ArrL. derivation such that

e its initial context is the translation of that of the NESL derivation: Tawi[p],.[p],
Tanr[o']lo], Tant[R'],[R],, S(R,0) < k-S(R',0'), and

e it uses the initial environment and initial store defined in Figure 9.13: prUp and
crUo,

then e’s translation evaluates in the Arrl, model:
ArrLL
pPI U P01 U ag, R TArrL[[e]] i} v, o0 U Onews 4, S
such that

e it results in the translated value: Tapr,[v’ dUal. [vly U Orew’ and

e its costs are at most a constant factor more than those of the NESL evaluation: W (g') <
k-Wi(g), D(¢') < k-D(g), and s <k -s, for some constant k.

Proof Outline: We prove this by induction on the structure of the NESL evaluation deriva-
tion. We assume that the NESL derivation holds and prove the ArrLL derivation and side
conditions hold, using a case analysis on the last rule used in the NESL derivation. The
definition of the translation Ta.1]] on environments and stores make most cases entirely
straightforward.

The second condition on the ArrL context holds inductively since, by definition, the do-
mains of the initial environment and store are distinct from any other variables or locations.
In most cases, the first conclusion holds by simple observation of the definition of the trans-
lation. The second conclusion holds by showing the translation introduces only a constant
factor larger computation graph and a constant factor of extra closures.

case CONST, ¢ = ¢: If Thn[¢] = ¢, then the conclusion holds since the NESL constant
rule corresponds to the ArrL constant rule.

Otherwise, Tar1[¢] = ., and the conclusion follows from the definition of the bindings
of the initial environment and store. It holds since the NESL constant rule corresponds
to an ArrL variable lookup, so ¢’ = g and s < k - s’ for some constant k determined by
the size of the closures in oy.

168

CHAPTER 9. BASIC DATA-PARALLEL MODELS

case LAM, e¢ = Az.¢/: The conclusion holds since the NESL abstraction rule corresponds

to the ArrlL abstraction rule.

case VAR, e = z: This follows from the definition of the translation of an environment,

since by definition T [p"(2)],/[p(2)], holds if Tawr[p],.[p], holds. The conclusion
follows since the NESL variable lookup corresponds exactly to an ArrL variable lookup,
of a value that is at most a constant factor larger than the NESL value.

case APPC, ¢ = ¢; ey: By assumption, the function e; evaluates to a constant ¢. By in-

duction, the conclusion holds for both subexpressions, and in particular, we obtain the
corresponding graphs g; and go. The exact structure of the ArrLL evaluation depends
upon the constant c. If T [c] = ¢, this last step of the NESL and Arrl. derivations
correspond exactly. Otherwise, Ta,,1.[c] is an abstraction, and in each case the ArrL
application involves a constant amount of overhead.

cases APP, PAIR, LETREC, IF-TRUE, and IF-FALSE: Since the translation is ho-

momorphic on applications, pairs, recursive definitions, and conditional branches,

e the conclusion holds inductively on each subexpression, and

e this last step of the NESL and ArrL. derivations correspond exactly.

case EACH, e = {¢" : 2 in €'}: By assumption, €’ evaluates to a location that contains

an array. By induction, the conclusion holds for ¢’ and for each of the m evaluations
of ¢”, and in particular, we obtain the graphs ¢’ and g¢{,..., ¢/ _,. The translation
introduces a constant factor of overhead, as illustrated by Figure 9.14. This includes
several applications, including those of new and fork.

Theorem 9.1 (Equivalence of NESL and ArrL) If e evaluates in the NESL model:

NESL
1 [WA
'7'7{}|_6 r U,0,4,S,

and the corresponding ArrL derivation uses the appropriately translated expression:

€ = (A$index.. .. A$maxscan.TArrL[[€/]]) (A$.€index) e (A$.€maxscan)

using the subexpressions defined in Figure 9.13, then the translation of € evaluates in the

ArrL, model:

'7'7{}|_€Ar—ﬂ;v70-;gvs

such that

o il results in the translated value: Tan1,[V'],,[v],, and

9.3. ARRAY LANGUAGE 169

EACH

Lo

<G>
el

Figure 9.14: The ArrLL computation graph g corresponding to that produced by the NESL
EACH rule.

170 CHAPTER 9. BASIC DATA-PARALLEL MODELS

e its costs are at most a constant factor more than those of the NESL model: W(g') <
k-Wi(g), D(¢') < k-D(g), and s <k -s, for some constant k.

Proof: This follows from Lemma 9.1. The initial applications in e set up the initial environ-
ment and store for that lemma. O

We are only interested in ArrlL expressions obtained via this translation. This places two
constraints of interest on expressions:

e Since each translation rule introduces side-effects only on local variables introduced
by the translation, not including the function parameters, these side-effects cannot
interfere with each other. Again note that the side-effects are single-assignment. Thus
the translation does not introduce nondeterminism. Therefore the constraint ensures
that the expressions are deterministic, despite the presence of side-effects.

e It ensures that the second argument of fork is an abstraction. Thus its value uses the
current defining environment, simplifying the FORK case of the proof of Lemma 9.2.

9.4 Intermediate model

The P-CEKY,,;, abstract machine is similar to the P-CEK},; machine. It executes a series
of steps, each transforming a group of active states and a store into a new group of active
states and new store for the next step. Figure 9.15 illustrates this process. It starts with
with one active state for the entire computation, selects up to ¢ active states per step, and
ends with one active state with the final value. Bounds on execution costs hold for the same
reason as before: the machine executes a g-DFT of the computation graph returned by the
profiling semantics, and its reachable space is bounded by the serial space returned by the
profiling semantics.

For brevity, we omit maxS, pairing, conditionals, and recursive bindings from our def-
initions and proofs. The primitive maxS would be treated similarly to addS. Pairing,
conditionals, and recursive bindings are all serialized in this model, and thus are relatively
uninteresting. We present further details of this omission as relevant.

Like the P-CEK}, | , the machine uses the expressions @ vy v; and done v to represent the
function body and the end of the entire computation, respectively. The additional expression
Y Iy I3 I i represents part of a addS computation: the addition of the ¢th element of the
array at [; to the result array at /5, where the current total is stored at {’. A similar expression
would be included for the omitted maxS.

The primary difference between the P-CEKY ; and the previous abstract machines is
that it can create an unbounded number of threads in a single step. But allocating the space
for an unbounded number of active states all at once would break our space bounds. So we
must ensure that we allocate space for no more than O(q) active states on each step. The
constructs which can allocate unbounded number of computations are addS and fork (and

9.4. INTERMEDIATE MODEL 171

StA,
StA,
AR
! : StAj+1
IR
StAj+2
StA,,

Figure 9.15: llustration of P-CEKY ,; active states during an evaluation. It starts with one
active states representing the entire program and ends with one active states representing the
result value. The states are kept in a stack. At most ¢ states are selected each step. Here,
g = 5, and these selected states are shaded. These can create zero or one new state, including
the possibility of a stub representing multiple states (solid arrows). Unselected states are still
active in the next step (dashed arrows).

172 CHAPTER 9. BASIC DATA-PARALLEL MODELS

the omitted maxS). Rather than immediately creating an active state per created thread,
we create a single stub state. When selecting active states for a step, we expand the stubs to
the relevant states; if the step does not need all of a stub’s representative states, it places a
new stub on the active states stack to represent the remaining states. The stub @stub(l ¢ k k)
represents states of a fork call, where [is a pointer to the function value (closure) to be called
on each of the remaining numbers 7,...,k — 1, and k is the continuation to be used after
these operations. The stub Mstub(l; I I i k k) represents states of an addS call, where [is
a pointer to the source array to be added, [/, is a pointer to the result array, I’ is a pointer to
the running summation total, and 7,...,k — 1 are the remaining indices of data to sum.

Each step consists of selecting these states, and then one substep for computation and
one substep for communication and synchronization.

This machine uses four forms of continuation. The empty continuation e represents the
end the entire computation. The continuation arg(e p k) represents the need to evaluate the
argument e of an application after evaluating the corresponding function. The continuation
fun(v k) represents the need to apply the function value v to what is currently being evaluated.
And, finally, the continuation end({! k) represents the need to synchronize threads (originally
spawned by fork) on the counter in /. Additional continuation forms are needed to serialize
the omitted pairing, conditional, and recursive binding expressions.

We implement the semantics’ nested sequences as nested sequences in the abstract ma-
chine, unlike in the current implementation of NEsSL [14]. During compilation, NESL flattens
nested sequences and any code building or using nested sequences. As a result, NESL’s
implementation (i.e., VCODE) uses only larger, one-dimensional sequences. This has the
advantage of increasing the granularity for parallelism, which is very important in practice.
But it has the disadvantages of increasing sequence sizes, and thus the cost of applying most
constant functions, and of not allowing subsequences to be shared.

Given the domains just described, as defined in Figure 9.16, Definitions 9.4 and 9.5 then
define a P-CEKY 1, step and the abstract machine. Remember that this omits maxS, pairing,
conditionals, and recursive bindings.

Definition 9.4 (P-CEKY ;| step) A step i of the P-CEKY | machine, written

ArrL,g
StAZ', o, — StAH_l, Oi41; Qi7 S5,

s defined in Figure 9.17. It starts with a stack of active states StA; and a store o; and
produces a new stack and store for the next step. This step requires processes (); (non-stub)
states and uses s; maximum reachable space.

Note that we do not count stubs in the number of states processed by the machine. We
are only interested in the count of non-stub states because they will correspond to the nodes
of the computation graph. The stubs are only important for the efficient storage of the active
state stack.

9.4. INTERMEDIATE MODEL 173

e € FExpressions n= | @ oy vy application
done v | final result
LU addscan element

C € Controls n= e

p Environments — Variables 1% Values

k€ Continuations n= e program finishing
fun(v k) | function finishing
arg(e p k) | argument finishing
end(l x) for-each branch finishing

st € Slates m= (e, py k) |
@stub(l i k &) | for-each stub
Sstub{ly L I' i k k) addscan stub

St € StateArrays = st

I € IntermediateStates = St | new states
Fin(l k) | finishing state
Sy, lo, U1, K) addscan

o € Stores = Locations M; (Store Values+

Integers)

Figure 9.16: P-CEKY | domains. The ellipsis represents the expressions of Figure 4.3.

174 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Definition 9.5 (P-CEKY ;| evaluation) In the P-CEKY} ; machine, the evaluation of
expression e to value v, starting in the environment p and store og, ends with store oy,
processing () states in 1 parallel steps using s maximum reachable space, or

ArrL,g
p700|_€ — U7U¢;Q7¢7S'

For each of these i € {0,...,9 — 1} steps,

ArrL,g
StAZ', o, — StAH_l, Oi41; Qi7 S5,

such that

e the machine starts with one active state for the whole program: StAg = [(e,p,9)],
0g = 5

o the machine ends with one active state with the result value: StA,; = [(done v, -, o)];
and

o the total number of states processed and maximum reachable space are () = Z;p:_ol oF

and s = maxf:_ol ;-

As in the other models, each step begins by selecting at most ¢ states. But here we must
allow the stubs to expand to the ordered set of states they represent. If the step does not
need all of a stub’s states, the machine puts a stub representing the extra states back on the
active states stack. The stub expansion is defined by Figure 9.18. When selected, a for-each
stub sets up the application of the closure at location / to the dummy value in the stub?, and
an addscan stub sets up the addition of the next element. While defined sequentially, the
machine parallelizes the selection of multiple elements.

This abstract machine uses only two substeps per step: one for computation and one
for communication and synchronization, as illustrated in Figure 9.19. The computation step

. ArrL .. . el
parallelizes the SN comp transition. This transition corresponds to that of the PAL model,
with two main differences:

e the fork and addS primitive function calls create stub states, and

e the expression X [; I I’ 7 leads to the addition of the ith element of an addS applica-
tion.

The communication substep parallelizes the A(gLsync transition. This transition synchronizes
the results of the fork and scan applications. Each branch of a fork ends with a Fin{l)
intermediate state. These branches may complete any arbitrary order; [is a synchronization
counter that indicates how many branches have yet to finish. The transition decrements the

2We know it is a closure by definition of the translation.

9.4. INTERMEDIATE MODEL 175
st I if/where
ArrL
(c, — K) — < comp throw(c,k)
(1}7 P, H) - Az)Lcomp thTOU)(p(.’L‘),K)
(Az.e, p, K) o A<E>Lcomp throw(l, k) [l cl(p',oze)] p' = resir(p, Az.e),
I & dom(o)
ArrL
(e1 ez, Py K) 0 comp (€1, p,argles: p' &))] p' = restr(p, e2)
(@1 v, Y K)o A<E>Lcomp [(e, p'[z = [y = v], k)] (o) = cl{p’\2,y,e)
(@fork I, -, k) 0 O eomp [@stub(l’ 0dend(l” k)] [~ i—1] a(l) = (i,l'), i >0,
U" & dom(o)
(@addS 1, -, k) 0 B eomp [Ostublly b ' 0m k)] [+ 0] o(l) = (o),
m = |o(l)],
U & dom(o)
(@cuw, Y K)o A<E>Lcomp throw(v', k) o' 5(c,v,0) =0 o' —
(E ll 12 l/ i, ‘Y K) a A&Lcomp E<ll7l27l/7 i7K>
where throw(v, e) = [(done v,-,)]
throw(v, argle p k)) = [(e,p,fun{v k))]
throw(vz, fun{vy k)) = [(Q v v2,-,&)]
throw(v, end{l k)) = Fin{l k)
restr(p, €) = the environment p restricted to the free variables in e
1 st
Fin(l k) o A‘iLSync [(0,-, k)] o ifo(l)=0 last thread alive of fork
i oll o o(l) 1] if o(l) £0
S, b, Ui, 5) o A‘iLSync [(z,[z— 1],K)] o if i=[i|—1 last element to sum
(] o if i i) —1
where o(l1) =i, o(I') = j, o' = olla = o(l2)[§/1]][l' = j + is]
st o A‘iLSync st o
StA, 0 " (H St HStA ol S (StA, o)
if st, StA’ = select(q, StA) select at most ¢ active states
q = |st]
ArrLL . ’
sti, o > comp iy o for each 1 € {0,...,q' — 1}
L, o} A‘iLSync Sti, 0i4 for each 1 € {0,...,¢' — 1} oo =0cuU (U3

Figure 9.17: Definition of the P-CEKY , abstract machine step, omitting some transitions.
Assume all new locations of the computation step are chosen or renamed to be distinct.

176 CHAPTER 9. BASIC DATA-PARALLEL MODELS

q StA select(q, StA)

0 - [1,[]

1 [@stub({l k k r)]++St select(1, St)

1 [@stub({l i k —)]++St (@4, k)], [@stub{l (i+ 1) k k)] H5t
if e <k

1 [Mstub(— — — k k —)]4++S5t | select(1, St)

1 [Sstub{ly I3 " ik r)]HSt | (X4 o Ui, k)], [Estub{ly I3 " (i+ 1) k K)]-H-St
if e <k

1 [st]+HSt [st], St
if st not a stub

St Sty 4++Sty, St}
if ¢ > 1, select(1,St) = Sty, St},

select(v — 1, 5t)) = Sty, St}

Figure 9.18: Selecting P-CEKY | active states in the presence of stub states.

counter that was initially set to the number of branches of the fork call. The counter reaches
zero on the last branch to finish, which generates a state to use the continuation. This state
corresponds to the for-each’s sink node in Figure ??. The machine generates an intermediate
state X (I1, 12, ', i, k) for each ith array element of the scan operation. The transition adds
the ith element of the array in /; to the running total in /" and stores the current total in the
tth element of the array in /5. When the machine reaches the last element, it creates a state
to pass the result to the continuation. The machine does not need a synchronization location
to determine which is the last element of the scan because its adds the elements in sequential
order. While described serially, this substep parallelizes over all of the intermediate states
generated by the first substep.

Example 9.2 As an example of the execution of the P-CEK} ;, we describe the active
states at the beginning of each step of evaluation the following expression:

let z = new 4
- = fork (4,\y.store (z,(y,add (y,1))))
in z
We do not show the active states for each step because of the size of the example. Note that
this expression is an optimization of that from Fzample 9.1.

Figure 9.20 shows the computation graph of the corresponding profiling semantics evalu-
ation for comparison, using the appropriate states’ expressions as node labels. For any value
of q, the machine processes 85 states. For g = 2, this requires 51 steps, while for ¢ > 4, it
requires 34 steps. Fach of these executions is a q-DFT of the graph, and thus for ¢ > 4, it
is also a level-order traversal. Also, in this example which has no conditionals, each parallel
branch executes the same instructions.

9.4. INTERMEDIATE MODEL

C X 3 Ay.e el e @ addS |
P plx=2] | plx—2] P p’
K end<ls x> lenddds x> fargee, [1 kg K K2
C 0 e, e : :
P P Tstubdly I I' 0 m ko
K K1 fundg x> [argee, p © ' '
where () = (l1,l3)
m o = |oi(li)]
U'.le & dom(o;)
Oi+1 = UiUG = Cl('v—vyve)][l/ = 0]

177

from StA;

from StA;

Figure 9.19: Hlustration of a P-CEKY ;| step. States with constants, variables, and abstrac-
tions create zero or one new state depending on their continuation and whether they are the
last one of a fork or scan operation. States with applications create one new state to evaluate
their functions first.

178 CHAPTER 9. BASIC DATA-PARALLEL MODELS

To formally define the reachable space during evaluation, we again consider its two com-
ponents: the control space, for the control information of the active states, and the store
space, for the elements in the store. We include the space for the synchronization locations
in the control space (e.g., L.(fun(l k)) does not add [to the labels) even though they are
are kept in the store so that the locations in in the profiling semantics correspond exactly to
those in the P-CEK},,;, machine.

Definition 9.6 (Reachable space of P-CEKY} ; step) The reachable space of a step i
of the P-CEKY | machine, written S, (StA;, 0;), is the sum of

e the active states space S4(StA;) for the active states, including any environments and
continuations: the sum of, for each state in StA;,

— 14 |dom(p)| + |k| for a state (e, p, k), where |k| is the length of the continuation
stack k; or

— 1+ |&| for a stub @stub(— — — k) or ¥stub(— — — — —)
and

e the store space S, (StA;, 0;) for program variables and all temporary values: equals the
space in the store reachable from the active states used as roots, S(L(StA;),0;), where
S(—,—) and L(—) are defined in Figures 5.14 and 9.21, respectively.

9.4.1 Equivalence of language and intermediate models

In this section we relate the P-CEKY | to the ArrL profiling semantics. In addition to prov-
ing its extensional correctness, we also prove bounds on the time and space taken by the
P-CEKY ; machine as a function of the work, depth, and space given by the profiling se-
mantics. As before, we prove both serial and parallel equivalence, including that the abstract
machine executes a ¢-DFT of the profiling semantics’ computation graph.

Serial equivalence

Theorem 9.2 (ArrLL serial evaluation) If e evaluates in the profiling semantics:
ArrLL
'7'7{} He i} U7O'/;g787
then it also evaluates in the serial abstract machine:
Arrl, 1
et Fe % U7U¢;Q7¢78/7

such that s < k- s, for some constant k.

9.4. INTERMEDIATE MODEL

where [y
Iy
l2
I3
l4
ls
le
Iz

and mkpair (v, v2) is the omitted machine expression that creates a pair

contains cl(-,_,z,—)
contains [0, 0,0, 0]
contains cl(—,_,_,2)
contains (4,l3)
contains (0,1)
contains (1,1)
71>

1
2
3,1)

(
(
contains (
contains (
)

Figure 9.20: Arrl computation graph for Example 9.2.

(\z.(_2)(fork (4\y.store (z,(y,add (y,1)))))) (new 4)

@store |12 @storel13 @store 14 @store 15

ls contains (0,1)
lg contains (1,2)
l1o contains (2,3)
l11 contains (3,4)
l12 contains (l1,ls)
l13 contains (l1,lg)
l14 contains (l1,l10)
l15 contains ({1,l11)

179

180 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Lp(p)ULH(H) if st = (_7P7H)
L(stA) = |J {DUL.(x) if st = @stub(l — — &)
stestA | {ly,l, '} U L, (k) if st = Estub(ly [I — — k)

Ly(p) = rmy(p)
Li(e) = {}
L.(fun(v k)) = {v}UL.(k)
Ly(arg(=pr)) = rng(p)U Ly (k)
Li(end(— r)) = Li(r)

Figure 9.21: Definitions for the root values L(StA) of a step of the P-CEK{ g machine.
This is a set of values, where labels act as roots into the store.

Proof Outline: To prove this we first generalize the statement to that of Lemma 9.2. There we
consider the steps of P-CEK},,;, required to evaluate an expression in some general context
and bound the reachable space during those steps by the space specified by the profiling
semantics plus the control space at the beginning of the evaluation. The theorem then holds
by specializing the lemma to start with an empty environment, store, and roots, and one
active state. O

Lemma 9.2 If e evaluates in the profiling semantics:
p,o, Rt ejﬂ?v,a’;g,s,

e is a subexpression of an expression in the image of translation Tan[], and for a step i of

the P-CEK} 1,

e the machine starts with a state or stub at the front of the active states stack that
corresponds to this evaluation: select(1,StA;) = [(e, p,K)], StA, for some stack StA
and continuation k,

e the semantics and machine can access the same locations: L(StA;) = R U p(FV(e)),
and

o these locations have the same values: V¢ joeg(r(s1a,),007 (1) = 0i(l),

then

9.4. INTERMEDIATE MODEL 181

e on some future step m > i, the machine finishes this evaluation and calls throw(v,),

o the mazximum reachable space during this evaluation is bounded by the space for the
original active states, plus a constant factor more than the space given by the profiling

semantics: maxL, S.(StA;,0;) < Sa(StA;) + k- s, for some constant k.

Proof: We prove this by structural induction on the language evaluation derivation and
show a representative set of the cases. The remaining cases are similar.

case VAR, e = 2: By the definition of the P-CEKY ;| machine, throw(v, k) is called on step
i,50 m =t. And by VAR, s = S(RU{p(z)},0), so
max7,; S, (StA;, o;)
= Sa(StA;)+ S(L(StA;),o;) (Definition 6.11)
= Sa(StA;)+ S(L(StA;),o) (3rd assumption)
= S4(St4;) +s (2nd assumption)

The other base cases, CONST and ABSTR, are similar.

case APP, ¢ = e¢; e5: Alternately inspecting the machine rules and using induction, we ob-
tain the following results about the executions of the subexpressions e; and e; and on
the appropriate function body e3. The steps of the P-CEKY ; corresponding to these
three sub-evaluations are numbered iy to mq, etc., where 1y = ¢+ 1, 1o = my + 1, and
13 = mo + 2, and step moy + 1 is the appropriate function call transition.

The active states at these important steps are as follows:

StA; [(e1 ez, p, k)] +HStA
[(e1, p, argles p' K))]++5TA
StA;, = [(eq,p,fun{l K))]++StA
[(Q 1 vy, k)] HStA
[(

es, p'le — [y — v3], K)|++StA
Furthermore, these three sub-evaluations result in the appropriate values:

e [is the value of ey, where o,,, (I) = cl(p’,2,y,e’) and p' = restr(p, €');
e vy is the value of ey; and

e v is the result of the function body, and thus of the entire application.

We now look at the reachable space during the evaluation. First look at the steps not
in the inductive sub-evaluations, i.e., steps ¢ and my + 1. Examining the definition of
the P-CEKY | machine and using Definition 6.11, we have

S, (StAZ', Ui) = 5, (StAil , Uil)
Sr(StAm2+17O'm2+1) < Sr(StA“O'Z)

182 CHAPTER 9. BASIC DATA-PARALLEL MODELS

So the reachable space in these steps is not greater than in the others.

Now we look at the reachable space in the inductive sub-evaluations. Using induction
we have

max Sp(StAj,05) < max (Sa(StA;,) +k-sj).

je{ij/,...,m]/},j/6{1,2,3} j/6{1,2,3}

So we relate the control space at the beginning of these sub-evaluations, i.e., S4(StA4;,),
Jj €41,2,3}, to the control space of the starting step, S4(StA;). For the first two sub-
evaluations, j € {1,2}, we see that

SA(StA;) = Sa(StA;,) = Sa(StA;) + 1.

For the space during the evaluation of the function body, S4(S5tA;,), first observe that
|p'| + 2 < sy by the definition of the store space since the closure with p’ must have
been the result of a sub-derivation of e;. Thus,

SA(StAZ'S) +k-s3 < SA(StAZ) +k-s

and the conclusion holds.

The APPC case, other than that for addS, is similar, but somewhat simpler, since it
does not involve induction for the function body.

case FORK, ¢ = ¢; e As in the APP case, we first use induction on the derivations of the
two subexpressions e and ey. Then we use induction each of the k forked branches of the
body es. The steps of the P-CEK},,;, corresponding to these k 4 2 sub-evaluations are
numbered %1 to my, etc., where i1 = ¢+1, i3 = my+1, i3 = mo+2, and tpr43 = Mpryo+1,

for each branch k' € {1,...,k —1}.

The active states at these important steps are as follows:

StA; = [(e1 ez, p,k)]HStA
StA;, = [(er,p,argles p’ k))]HStA
StA;, = [(es,p,fun(fork k))]++StA
StAn,+1 = [(@ fork [y, p, k)] +HStA
StA;, -1 = [@stub{l k' (k—1) end(l" k))]++StA

for each branch k¥’ € {0,...,k—1}. Note that this is just like the APP case for the first
two uses of induction, except for the value of the function eq:

e fork is the value of ey, and

e [y is the value of eq, where o, (I2) = (k,l"), 0.m, (') = cl(p,-,x,e3) (the closure is
guaranteed to use p by definition of the translation TapL[]).

9.4. INTERMEDIATE MODEL 183

We now look at the reachable space during the evaluation. First look at the steps not
in the inductive sub-evaluations, i.e., steps ¢ and ipy3 — 1, for &' € {0,...,k — 1}.
Examining the definition of the P-CEK],; machine and using Definition 6.11, we have

Sr(StAi,Ui) = Sr(StAiNUil)
Sr(StAik,_l_S_l,Uik,_l_S_l) < Sr(StA

ik’+37 Uik/+3)

for each k' € {0,...,k — 1}. So the reachable space in these steps is not greater than
in the others.

Now we look at the reachable space in the inductive sub-evaluations. Using induction
we have

Sr(StA]‘,U]‘) < max (SA(StAZ'],)—I—k-S]‘/).

max <

J€liysmyr by €1, k+2} jlef{l,. . k+2}
So we relate the control space at the beginning of these sub-evaluations, i.e., S4(StA4;,),
j € {1,2,k" 4+ 3} for k' € {0,...,k — 1}, to the control space of the starting step,
S4(StA;). Since all sub-evaluations start with the same environment,

Sa(StA4;)) = Sa(StA;)+1
Sa(StA;,) = Sa(StA;)+1
SA(StA = SA(StAZ) + 2

ik’+3)
and the conclusion holds.

The APPC case for addS is similar.

Parallel equivalence

Given the costs of serial execution in the abstract machine P-CEKp,;,, we are now concerned
the costs of parallel execution, for P-CEKY,; with any ¢. Parallel execution can require
more space because it can create many more simultaneous parallel threads (the active states
stack can become much larger) and because it can have simultaneous access to many more
locations in the store. We place bounds on how much extra space is needed.

As before, we show that the P-CEKY ; executes a ¢-DFT traversal of the computation
graph returned by the semantics, then use previous results on graph scheduling to bound
the space. The following lemma and theorem provide bounds on the costs of the machine
execution by showing that it corresponds to the specification of the computation graph

We also state that the profiling semantics and abstract machine compute the same value.
The proofs concentrate on intensional aspects—we could add details of the extensional equiv-
alence, as in the proof of serial equivalence.

184 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Lemma 9.3 (P-CEKY | executes traversal) If e evaluates in the profiling semantics:
ArrLL
'7'7{} He i} v,0,9,5,

and e is a subexpression of an expression in the image of translation Tay1[], then it also
evaluates in the abstract machine:

Arrl,
Ty He %q v, O-/;Q7 ¢78/7
such that the machine executes a q-traversal of the profiling semantics’ graph g. Le.,
o the selected states and visited nodes correspond at each step, and

e the active states (or in the case of stubs, the states represented by those stubs) and ready
nodes correspond at each step.

Proof Outline: We prove this by induction on the steps of the machine. We could fully
formalize this as in Lemma 9.2.

For brevity, we refer to states being visited or ready, rather than corresponding to nodes
which are visited or ready, respectively. Clearly the initial state is ready, as it corresponds
to the source of g.

Inductively, we need to show that any states added to the active states stack are ready on
the next step—the non-selected states left in the stack remain ready. By a case analysis on
the expression of each of the selected states, we see that the computation substep generates
states corresponding to the graph.

Constants, variables, and abstractions finish immediately, thus this state corresponds to
the unit graph from the profiling semantics.

Applications generate one new state to start evaluating the function subexpression. This
corresponds to the one child of the application node and is ready on the next step. Once
it finishes, inductively, the machine has an active state which is ready and, when selected,
starts the evaluation of the argument. Once the argument finishes, inductively, the machine
generates a state for @ vy vy that is immediately ready, corresponding to the node before the
function body. When the state is selected, the machine starts evaluating the function body,
inductively (for a user-defined function, via § (for a constant function other than fork),
or as follows (for fork). For v; = fork, then the function body is the parallel branching
of the argument’s body. The state generated by the @ vy vy is a stub representing states
corresponding to the the source node of each parallel branch. When selected, each inductively
evaluates its branch. The last one to finish generates the state (0, -, k) corresponding to the
sink node of this parallel branching, which is immediately ready.

Pairs and conditionals similarly evaluate serially in the machine, as specified by the graph.
O

9.4. INTERMEDIATE MODEL 185

Corollary 9.1 If e evaluates in the profiling semantics:

ArrLL
-7-,{}|_6i>1170';g787

then it also evaluates in the abstract machine:
ArrL,g
N Fe — U7UI;Q7¢7S/7

such that the number of states processed by the machine is the profiling semantics’ work:

Q=W(g).
Proof: This follows from the one-to-one correspondence of active states processed and nodes

in the graph. O

Theorem 9.3 (ArrL executes ¢-DFT) If e evaluates in the profiling semantics:
ArrLL
'7'7{} He i} v,059, 5,
then it also evaluates in the abstract machine:
Arrl,
Ty He %q v, O-/;Q7 ¢78/7
such that the machine executes a q-DFT of profiling semantics’ graph g.

Proof: This follows since the machine selects min(g,|StA|) nodes per step and since g is
series-parallel, together with Theorem 6.3 and Lemma 9.3. O

Corollary 9.2 If e evaluates in the profiling semantics:
ArrLL
Fe—nv,0;9,s,
then it also evaluates in the abstract machine:
ArrL,g
'7'|_ € — U7U/;Q7¢7S/

such that the number of machine steps are bounded as a function of the profiling semantics’

work and depth: ¥ < W(g)/q+ D(g).

Proof: This follows by Theorem 6.2. O

186 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Equivalence of space

Since the P-CEKY | executes a traversal of the corresponding computation graph, we can
use the machine to define the space costs of the graph nodes. Then using Theorem 6.4 we
can bound the number of premature nodes on any given step of the P-CEKY ; and bound
the memory used by these nodes, as Theorem 9.5 shows.

Theorem 9.4 Each step of a P-CEKY | execution allocates at most k space or deallocates
at most k space for each selected state, for some constant k.

Proof: In the first substep, the cases calling throw create at most one new state, one new
continuation, and one new intermediate state (which is deallocated later in the same step
and can be ignored). It may also create a new restricted environment, which we assume to
be of constant size, as discussed in Section 6.2. The other cases create at most one new
state, two new environment bindings, and one new continuation. Note that the @ [v case
need not create an entirely new environment, as environments can be shared, as discussed in
Section 6.2. The substep may also allocate at most one new store binding.

For each selected state, the second substep deallocates any intermediate state created in
the first substep. It may also allocate at most one new state or store binding. Note that
which states create new states in this substep depends on the traversal.

Each selected state may also be credited with the deallocation of memory if this is the last
state to reference it. This is a constant amount since each state refers to at most a constant
amount of space. Note that we allow the crediting of a deallocation of a location even if it is
still accessible, e.g., in an environment or an an array. O

Since each step for a given selected state corresponds to a node (Lemma 9.3), each node
allocates between k and —k space. By Theorem 9.2, the profiling semantics space is within
a constant factor of the space complexity of the serial traversal. Thus as constant factors
can be ignored, the profiling semantics space can be used in the context of Theorem 6.4 to
provide a bound for the space of parallel execution.

Theorem 9.5 (ArrlL parallel space) If

e program e evaluates in the profiling semantics: -, -, {} ke Arrl v,054,8; and
. . Arrl,
e thus the program computes in the abstract machine: -,-Fe =" v,0":Q, 1, ¢,

then the maximum reachable space in the abstract machine is bounded by the mazimum reach-
able space of the profiling semantics plus a function of the parallelism: s' < k(s + D(g)q).

Proof: Since the P-CEKY ; machine executes a ¢-DFT of ¢, then by Theorem 6.1, on
any step of the P-CEKY ,; there can be at most D(g)g nodes executed prematurely relative
to the P-CEK},,,. Since each state transition in step ¢ of a P-CEK% ; machine adds at

9.5. MACHINE MODELS 187

most constant space to the next state of the machine, then the proof is easy. In particular
since the maximum reachable space taken by any step of the P-CEKY _; is k¢s, and on any
step of the P-CEKY ; machine there are at most D(g)q state transitions that were executed
prematurely relative to some step of the P-CEK},;, machine, each of which allocated at most
constant space, the total space is k(s + D(g)q). O

9.5 Machine models

The implementation of this abstract machine is like that for the P-CEK}, , e.g., the active
state stack is implemented with a SDGA. The two main differences are that the machine
expand stubs when selecting states and handles the synchronization counters for the parallel
branches of forks and scans.

Theorem 9.6 (Cost of P-CEKY | step) Each step of the P-CEK} ; machine can be
processed on a p processor machine in O(q/p + TF(p)) amortized time, w.h.p., and O(q)
mazimum reachable space on the butterfly, hypercube, and PRAM machine models.

Proof: The proof is like that for Theorem 7.1.

Each processor is responsible for at most ¢/p of the current selected states, i.e., processor
i is responsible for the states [i¢'/p, ..., (i+1)¢'/p—1], where ¢’ = min(q, |StA]). We assume
each processor knows its own processor number, so it can calculate a pointer to its section of
the array.

The simulation of a step consists of the following phases, each of which we show can be
executed with the given bounds:

1. Select the ¢’ states for this step, popping them from the stack and expanding the
appropriate stub states.

One way to efficiently expand the stub states is as follows:
(a) Examine the first min(q 4 1,]StA|) states, including stubs, in the active states

stack. This represents at least ¢’ states since only the first stub can represent zero
states.

(b) Observe to how many states each expands.
(c) Perform an add-scan to determine where the ¢’'th stub occurs in the expansion,
and expand the states up to that point.
For practicality, the machine could cache O(q) of expanded states that were not selected.

This requires O(q'/p) time and O(¢’) space.

. ArrLL .. .
2. Locally evaluate the states using the i comp transition, as in the P—CEK%AL.

This is bounded by O(¢'/p+ T'S(p)) time. Since at most one new state and one new
location are created per selected state, this requires O(¢’) space.

188 CHAPTER 9. BASIC DATA-PARALLEL MODELS

ArrLL ..
3. Locally evaluate the i sync transition.

Here we must update the synchronization counters and merge the stores as if they were
done sequentially. To update the counters we use the fetch-and-add operation. For the
states ending a fork call, each adds —1 to the appropriate synchronization counter and
fetches the new total number of elements left alive—the last state of each call creates
a state for the dummy result and its continuation. For the states ending an addS call,
each adds the appropriate data element to the appropriate running total. The last state
of each call creates a state for the result and its continuation.

Since each processor can have at most ¢ requests, this takes O(g) time. The fetch-
and-add can also be used for the transition on E@ I, k). For merging the stores
the only operation that could conflict is a store instruction as part of implementing
the put operation. However since the states have the same order as the processors, a
priority concurrent write (with higher numbered processors given the higher priority)
guarantees that rightmost value is written.

Again, each processor accesses constant memory and allocates constant space. As in
the P-CEK},; machine, allocation can be eliminated by reusing the state that just
resulted in this transition. If we avoid allocation, this phase requires O(q'/p + T'S(p))
time, w.h.p., and O(1) space.

4. Push the states created during this step onto the active state stack.
This requires O(¢'/p+ TF(p)) amortized time, w.h.p., and O(¢’) maximum space.

Adding the bounds for the three phases, we get the stated bounds for each of the machines.
O

To account for memory latency in the butterfly and hypercube, and for the latency in

the fetch-and-add operation for all three machines, we process p - T'F(p) states on each step

instead of just p (i.e., we use a P—CEKiif(p) machine).

Corollary 9.3 Each step of the P-CERﬁif(p) machine can be simulated within O(TF(p))
amortized time on the p processor butterfly, hypercube, and PRAM machine models, w.h.p.

Corollary 9.4 If e evaluates in the profiling semantics:

ArrLL
-7-,{}|_6i>1170';g787

then the abstract machine evaluation
A L,p~TF P
o f— (

)
U? O-/; Q? Q/b? S/

can be simulated within O(W (g)/p+ D(g)T'F(p)) amortized time and O(s+p- D(g)TF(p))
mazimum reachable space on the p processor butterfly, hypercube, or PRAM machine models,
w.h.p.

ke

9.5. MACHINE MODELS 189

Proof: Theorem 9.3 relates the graph ¢ to the P-CEKY_; computation, where ¢ = p-TF(p).
Theorem 6.2 bounds the number of steps of the graph traversal. There are O(w/q+ D(g))
steps, and each step takes O(T'F'(p)) amortized time, w.h.p. Theorem 6.4 provides the space

bound. O

190 CHAPTER 9. BASIC DATA-PARALLEL MODELS

Chapter 10

Algorithms and Comparing models

This chapter examines how we can use the PAL, PSL, and NESL models to analyze several
parallel algorithms. Section 10.1 starts with a general discussion of how to analyze algorithms
in these language models. As examples, Section 10.2 describes parallel versions of quicksort,
mergesort, and Fast Fourier Transform (FFT) in each of the models. These illustrate some
of the techniques necessary for programming efficient algorithms in the models. Then Sec-
tion 10.3 defines a general relation of cost-expressiveness describing the relative power of
language models, restates some of the previous results in terms of cost-expressiveness, and
provides some additional general results.

10.1 Analyzing Algorithms

This section analyzes the work and depth bounds of several algorithms. Using the previous
theorems on implementing these language models then obtains time bounds on the machine
models. While not described here, space bounds could be obtained similarly.

Each profiling semantics defines a given computation’s work and depth in terms of its
computation graph. Recall that we have functions W(g) and D(g) defining the work and
depth of a graph. For the PSL model, we also have the function D’(g) defining the maximum
depth. In each the algorithms discussed here, we are interested in the maximum depth for
the PSL because we wish to wait until the entire result data structure is available.

We are generally interested in the work and depth, not of a single computation, but of a
parameterized set of computations, i.e., of an algorithm. In the PAL and NESL models, we
use the profiling semantics to define recurrence equations that result in the algorithm’s costs
for any input. Recall that the computation graphs, and thus the work and depth costs, of
these models are defined compositionally, as reflected in the recurrence equations. In the PSL
model, the computation graphs are not defined compositionally. However, as Theorem 10.9
shows, the work of the PSL model is equivalent to that of the PAL model, so we can analyze
it as such. To analyze the depth, we effectively “time-stamp” the data when it is created
and see when the last data is created. More precisely, we consider the computation graph

191

192 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

0 0
o o
oRoNo NN oRONO

6 9 1513 5 18 3 5 6 9 13 15

18

Unsorted Tree Sorted Tree

Figure 10.1: Representing sequences as balanced binary trees. The values are stored at the
leaves, and each internal node stores the size of its subtree (the number of leaves below it).

where each node is labeled with its depth. Each computation node creates at most a single
data object, so we treat the computation node’s depth as the object’s time-stamp.! For
convenience, we idealize these time-stamps to ignore constant factor differences in depth,
e.g., identifying those at the same recursion depth in an algorithm when appropriate. Since
the time-stamps correspond only to a subset of the computation nodes, we must also argue
that the remaining computation does not dominate. That is simple if all of the algorithm is
directed towards computing the single result, as in the examples here.

10.2 Specific Algorithms

This section describes the work and depth bounds of quicksort, mergesort, and FFT in each
of the language models. We first note that any algorithm that examines all of its input, such
as sorting or FFT, and represents its input as a list requires depth at least proportional to
the number of elements in the input. In fact, a simple mergesort that makes its two recursive
calls in parallel will match this lower bound for depth. To derive parallel algorithms that use
time sublinear in the number of input elements (for other than the input and output) requires
data structures other than lists. For the PAL and PSL models, we use balanced binary trees,
as in Figure 10.1, where we assume that the ordering for sorted sequences in specified by a
left-to-right traversal of the tree. For the NESL model, we could use trees, but sequences are
clearly more efficient. This section shows how we can produce and analyze effective parallel
versions of quicksort, mergesort, and FFT.

The complexities for the quicksort and mergesort algorithms are equivalent for the PAL
and PSL. But the PSL requires asymptotically less depth than the PAL for the FFT algo-
rithm. Furthermore, it is unclear whether a different FFT algorithm allows the PAL model
to match the performance of the PSL.

For readability, the example code in this chapter uses pattern matching using the syntax
of Standard ML. As used here, pattern matching can be encoded in any of the models with

'Note that an alternative way to define the PSL model is based on defining the depths of data objects
rather than defining computation graphs [47], effectively including these time-stamps in the semantics.

10.2. SPECIFIC ALGORITHMS 193

6 9 1513 5 18 3 11

less Pivot = 13 \j\;reater

15 18

Figure 10.2: Quicksort pivoting. The algorithm chooses a pivot, here the median element,
and then splits the tree into trees of lesser and greater elements.

only constant overheads.

10.2.1 Parallel Quicksort

The PAL and PSL code for our quicksort algorithm is given in Figure 10.3, and the code
for NESL is given in Figure 10.4. As usual, the algorithm sorts by choosing an element to
pivot on, selecting the lesser and greater elements, sorting those recursively, and appending
the sorted elements (cf. Figure 10.2). The function gsort_rec returns a sorted tree, but in
the PAL/PSL version, it will generally not be perfectly balanced, so the function rebalance
rebalances it.

The function select selects all the elements of the tree matching the given predicate
function. It calls itself recursively in parallel on both branches and append the results back
together. Assuming the function £ has constant work and depth, select on a tree of size m
and depth d requires O(m) work and O(d) depth. We note that the tree returned by select
is generally not going to be balanced, which is why we do not assume that d = log, m. The
append function simply puts its two arguments together in a tree node and therefore has
constant work and depth.

We first present a general theorem that bounds work and depth in the PAL and PSL
models for our quicksort in the expected case for any input tree, even if not balanced, and as
a corollary give the bounds for balanced input.

Theorem 10.1 (Quicksort in PAL and PSL) The quicksort algorithm quicksort shown
in Figure 10.3, when applied to a tree with m leaves and depth d, will execute in O(mlogm)

194 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

datatype ’a Tree =
Empty
| Leaf of ’a
| Node of int * ’a Tree * ’a Tree

fun elt (Leaf x) 1 = x
| elt (Tree (_,xs,ys)) n = gt n (size xs) then elt ys (sub n (size xs)) else elt xs n

fun append Empty ys = ys
| append xs Empty = xs
| append xs ys = Tree (add (size xs) (size ys),xs,ys)

fun take _ 0 = Empty
| take (Leaf x) 1 = Leaf x
| take (Tree (_,xs,ys)) n =

if gt n (size xs) then append xs (take ys (sub n (size xs))) else take xs n

fun drop xs 0 = xs
| drop (Leaf x) 1 = Empty
| drop (Tree (_,xs,ys)) n =
if gt n (size ys) then drop xs (sub n (size ys)) else append xs (drop ys n)

fun select f Empty = Empty
| select £ (Leaf x) = if f x then Leaf x else Empty
| select £ (Tree (_,xs,ys)) = append (select f xs) (select f ys)

fun gsort_rec xs =
if 1t (size x) 2 then xs
else let val pivot = elt xs (div2 (size xs))
val 1ts = select (\ x. 1t x pivot) xs
val eqs = select (\ x. eq x pivot) xs
val gts = select (\ x. gt x pivot) xs
in append (gsort_rec lts) (append eqs (gsort_rec gts))

fun rebalance Empty = Empty
| rebalance (Leaf x) = Leaf x
| rebalance xs =
let val half = div2 (size xs)
in append (rebalance (take xs half) (rebalance (drop xs half))

fun quicksort xs = rebalance (qsort_rec xs)

Figure 10.3: PAL/PSL (tree-based) code for the parallel quicksort algorithm. This code uses
syntactic extensions easily translatable into the syntax of the PAL and PSL.

10.2. SPECIFIC ALGORITHMS 195

fun gsort_rec xs =
if 1t (#xs,2) then xs
else let val pivot = elt (xs,div2 (#xs))

val 1ts = pack (xs,{lt (x,pivot) : x in xs})
val eqs = pack (xs,{eq (x,pivot) : x in xs})
val gts = pack (xs,{gt (x,pivot) : x in xs})

in ++ (++ (gsort_rec lts,eqs), gsort_rec gts)

fun quicksort xs = gsort_rec xs

Figure 10.4: NESL quicksort algorithm. This codes uses syntactic extensions easily translat-
able into the syntax of NESL.

work and O(dlogm) depth in the PAL and PSL models, both expected case (i.e., averaged
over all possible inputs of that depth and size).

Proof: First consider gsort_rec. Note that since the pivots in quicksort will not perfectly
split the data in general, some recursive paths will be longer than others. We call the
longest path of recursive calls for qsort_rec on a particular input the recursion depth for
that input. We note that the worst case recursion depth is O(m) and that fewer than 1 of
the m possible inputs will lead to a recursion depth greater than klogm, for some constant
k [102]. To determine the total computational depth of qsort_rec, we need to consider the
computational depth along the longest path. We claim that this computational depth is at
most O(d) times the recursion depth since each node along the recursion tree will require at
most O(d) depth. This is because elt and select will run in O(d) depth.? Since a fraction
of only 1/m of the inputs will have a recursion depth greater than O(logm), and these cases
will have recursion depth at most O(m), the average (expected case) computation depth of
gsort_rec is

D(d,m) = O(d(longr%m))
= O(dlogm)

To see that the work is expected to be O(mlogm), we simply note that all steps do no more
than a constant fraction more work than a list-based sequential implementation.

We now briefly consider the routine rebalance. We note that the depth of the tree
returned by gsort_rec is at most a constant times the recursion depth. This is because the
append operation that builds the returned tree simply joins the trees with a new node, not
shuffling any elements. The function rebalance splits the tree along the path that separates
the tree into two equal size pieces (or off by 1), recursively calls itself on the two parts, and

?Note that although select does not return balanced trees, it will never return a tree with depth greater
than the original tree, which has depth d.

196 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

appends the results. Its costs are as follows:

W(m) = W(3)+02(Wiake(F) + Warop(5)))
2W (%) +O(m)
O(mlogm)
D(d', %)) + O(max(Dtake(d, m), Darop(d, m))), for some d’ < d
= D(d, %)+ 0(d)
(d

D(d, m)

< O(dlogm)

For a tree of size m and depth d, it requires O(mlogm) work. It also requires at most
O(dlogm) depth, e.g., when the tree is a chain, and at least O(d) depth, when it is already
balanced. O

Corollary 10.1 (Quicksort in PAL & PSL) The quicksort algorithm quicksort shown in
Figure 10.3, when applied to a balanced tree with m leaves, will execute in O(nlogm) work
and O(log? m) depth on the PAL and PSL models, both expected case.

Proof: The depth of a balanced tree is O(logm). Thus, this gives an expected depth of
O(log?m). O

Theorem 10.2 (Quicksort in NESL [15]) The quicksort algorithm quicksort shown in
Figure 10.4, when applied to a tree with m leaves, will execute in O(mlogm) work and

O(log m) depth on the NESL model.

10.2.2 Parallel Mergesort

We first consider the problem of merging two sorted trees. We use m to refer to sum of
the sizes of the two trees. We assume that each internal node contains the number and
the maximum value of its descendants. This is clearly easy to generate in O(m) work and
O(logm) depth. The main component of the parallel algorithm is a routine select kth
which given two ordered trees a and b, returns the &*" smallest value from the combination
of the two sequences (see Figure 10.5). It is implemented using a dual binary search in which
we go down a branch from one of the two sequences on each step, using the maximal element
at each node for navigation. Assuming the depths of the two trees are d, and dj, the work
and depth complexity of this routine is O(d, + dp).

To merge two trees, we use select_kth to find their combined median element. We then
select the elements less and greater, respectively, than the median for each tree with the
functions take_less and drop_less. These can be implemented with O(logm) work and
depth since the trees are sorted and balanced (it just requires going down a tree splitting
along the way). Recursively merging the two trees of lesser elements and the two trees of

10.2. SPECIFIC ALGORITHMS 197

greater elements gives us two sorted trees which are guaranteed to be the same size (or off by
one) by construction. So, joining them under a new node produces a balanced sorted tree.
As a whole, merging in this manner takes O(m) work and O(log® m) depth since we recurse
for the log, m depth of the trees.

Theorem 10.3 (Mergesort in PAL & PSL) The mergesort algorithm mergesort shown
in Figure 10.5, when applied to a balanced tree with m leaves, will execute in O(mlogm)
work and O(log® m) depth on the PAL and PSL models.

Proof: We can write the following recurrences for work and depth:

W(m) = 2W(%) + Waerge(m)
2W (%) +O(m)

3

2
IR TR
o T O

This version of mergesort is not as efficient as the quicksort previously described. However,
if merging uses O(m/logm) splitters, rather than just the median, the depth complexities of
merging and mergesort can each be improved by a factor of O(logm).

Theorem 10.4 (More efficient mergesort in PAL and PSL) A mergesort algorithm on
m elements can execute in O(m log m) work and O(log® m) depth on the PAL and PSL models.

Proof: The PAL case is shown by Blelloch and the author [16]. The PSL case then holds by
Theorem 10.9. O

Theorem 10.5 (Mergesort in NESL [17]) A mergesort algorithm on m elements can ex-
ecute in O(mlogm) work and O(log® m) depth on the NESL model.

10.2.3 Fast Fourier Transform

This section presents the standard FF'T algorithm, adapted to each of the models in the most
straightforward manner, as shown in Figures 10.6 and 10.7. Each version assumes all inputs
are of size 2% for some integer k, as is usual for the FFT algorithm. This ensures that all
trees are of size 27 for some j < k and are perfectly balanced. Therefore, we do not need
to include Empty trees as in the previous sections. Unlike for quicksort and mergesort, here
we show that this tree-based algorithm is more efficient in the PSL model than in the PAL
model.

198 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

datatype ’a Tree =
Empty
| Leaf of ’a
| Node of int * ’a * ’a Tree * ’a Tree

fun select_kth k (Leaf v1) (Leaf v2) =
if gt v2 vl then if eq k 0 then vl else vO0
else if eq k O then v0 else vl
| select_kth k (Leaf v1) (Node (n2,v2,12,r2))
if gt v2 vl then if gt k n2
then select_kth (sub k n2) (Leaf v1) r2
else select_kth k (Leaf v1) 12
else if gt n2 k
then select_kth k (Leaf v1) 12
else select_kth (sub k n2) (Leaf v1) r2
| select_kth k (Node (n1,v1,11,r1)) (Leaf v2)
select_kth k (Leaf v2) (Node (nl,vi,11,r1))
| select_kth k (Node (n1,v1,11,r1)) (Node (n2,v2,12,r2)) =
if gt v2 v1 then if gt k (add nl n2)
then select_kth k (Node (nl1,v1,11,r1)) 12
else select_kth (sub k n1) r1 (Node (n2,v2,12,r2))
else if gt k (add nl n2)
then select_kth k 11 (Node (n2,v2,12,r2))
else select_kth (sub k n1) (Node (ni1,v1,11,r1)) r2

fun merge (Leaf x) b = insert x b
| merge a (Leaf y) = insert y a
| merge a b =
let val k = div2 (add (size a) (size b))
val median = select_kth k a b

in
append (merge (take_less a median) (take_less b median))
(merge (drop_less a median) (drop_less b median))

fun mergesort xs =
if 1t (size xs) 2 then xs
else let val half = div2 (size xs)
in merge (mergesort (take xs half)) (mergesort (drop xs half))

Figure 10.5: PAL/PSL (tree-based) code of the parallel mergesort algorithm. This code uses
syntactic extensions easily translatable into the syntax of the PAL and PSL.

10.2. SPECIFIC ALGORITHMS

datatype ’a Tree =

fun

and

fun

fun

Figure 10.6: PAL/PSL (tree-based) code for the parallel FF'T algorithm, assuming the input
size is a power of two. This code uses syntactic extensions easily translatable into the syntax

Leaf of ’a

Node of ’a * ’a Tree * ’a Tree

even_elts (Tree (Leaf x,Leaf y)) = Leaf y
even_elts (Tree (left,right)) = append (even_elts left) (even_elts right)

odd_elts (Tree (Leaf x,Leaf y)) = Leaf x
odd_elts (Tree (left,right)) = append (odd_elts left) (odd_elts right)

map2 f (Leaf x) (Leaf y) = Leaf (f y w)
map2 f (Tree (x1,xr)) (Tree (yl,yr)) = append (map2 f x1 yl) (map2 f xr yr)

fft (Leaf x) _ = Leaf x

fft xs ws =

let rs1 = fft (even_elts xs) (even_elts ws)

fft (odd_elts xs) (even_elts ws)

in map2 add (append rsl rs1l) (map2 mul (append rs2 rs2) ws)

rs2

of the PAL and PSL.

fun

fun

fun

even_elts xs = pack ({x : x in xs},{even i : i in index (#xs)})
odd_elts xs = pack ({x : x in xs},{odd i : i in index (#xs)1})

fft xs ws =
if 1t (#xs,2) then xs
else let xys = {fft xs’ (even_elts ws): xs’ in [even_elts xs,odd_elts xs]}
in {add x (mul y w): x in ++ (elt (xys,0),elt (xys,0))
y in ++ (elt (xys,1),elt (xys,1))
w in ws}

Figure 10.7: NESL (sequence-based) code for the parallel FFT algorithm.

200 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

Theorem 10.6 (FFT in PAL) The FFT algorithm ££t shown in Figure 10.6, when applied
to balanced trees each with m leaves, will execute in O(mlogm) work and O(log? m) depth
on the PAL model.

Proof: First, examine the helper functions. Each requires constant work per element and
recurses on each half of its input. Thus they require O(m') work and O(logm’) depth on
balanced trees of with m’ leaves.

The main function, £ft, also recurses on each half of its input. But before recursing, it
performs O(m') work and O(log m') depth, assuming its input is balanced and has m’ leaves.
Its input is balanced initially by assumption, and throughout the recursion by induction.
Thus its costs are as follows:

W(m) = 2W(3)+0(m)
O(mlogm)

2D (%) + O(logm)
= O(log®m)

3
2
I

Theorem 10.7 (FFT in PSL) The FFT algorithm ££t shown in Figure 10.6, when applied
to balanced trees each with m leaves, will execute in O(mlogm) work and O(logm) depth on

the PSL model.

Proof Qutline: Here we discuss only the depth bound, as the work bound holds by Theo-
rems 10.6 and 10.9. We assume the whole input tree exists when starting the algorithm, so
its time-stamps are all 1. Examining the time-stamps on the trees built during the algorithm,
we show that the time-stamps on the output tree are O(logm).

We first examine time-stamps as the algorithm recurses on progressively smaller trees.
Each call to even_elts and odd_elts creates a new tree by recursing down its input tree
and finally selecting half of the leaves. They each build their result top-down, i.e., the nodes
at the top are created before those at the bottom. This is possible in the speculative model
since each thread spawns child threads to build each subtree while this thread creates and
returns a node. The time-stamp of each node in the result is the maximum of one more
than the time when the algorithm recurses down to this level of the input tree and one
more than the time-stamp of the needed data of the input tree. The top row of Figure 10.8
shows the time-stamps of trees during the recursive descent. This idealizes the amount of
computation in these functions to a single step per node. It also idealizes computation by
grouping function calls, such as the four calls to even_elts and odd_elts, into single steps
and ignores additional overhead such as calls to append. As a result of the idealization, the
time-stamps form a simple pattern down the tree. These idealized time-stamps are within a
constant factor of the corresponding depths since each recursive call of the algorithm adds

10.2. SPECIFIC ALGORITHMS

201

Time:

1

Call(s):

(Start of algorithm)

Time-
stamps:

Time: 2 3

Call(s):

fft

Time-

stamps:

9 10

Time:

11

Call(s): | addmult addmult

addmult

Time-
stamps:

Figure 10.8: Time-stamps during PSL FFT algorithm. Tree nodes are labeled with their
idealized time-stamps. The trees are the the result of the given function call made at the

given idealized time.

202 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

only constant depth, i.e., at most pattern matching the input, binding a constant number of
variables, and calling a constant number of functions.

Next we examine time-stamps as the algorithm comes back up the recursion, using
addmult. Each call to addmult creates a new tree by recursing down its input and finally
performing the arithmetic. It also builds its result top-down. The bottom row of Figure 10.8
shows the time-stamps of tree during the recursive ascent, again idealizing computation as
before.

The computation depth of the entire algorithm can now be broken into three components,

each of which is O(log m):
e the depth of the recursive descent,
e the depth of the recursive ascent, and
e the delay for the threads to create the entire tree once the main thread is done.

Thus, the entire computation is of O(logm) depth. O

Theorem 10.8 (FFT in NESL) The FFT algorithm of Figure 10.7 when applied to bal-
anced trees each with m leaves will execute in O(mlogm) work and O(logm) depth on the

NESL model [15].

10.3 Comparing models

Now that we have compared these three models on three specific algorithms, we make some
more general statements about how the costs of these models relate. We then define and use
a general relation of cost-expressiveness.

10.3.1 PAL and PSL

The previous comparisons, along with the definitions of computation graphs, suggest that
the PSL model is more efficient than the PAL model. Here we show that this is the case for
any given program, but possibly not in general. Note that we ignore the space of the PAL
computation since we do not track the space of the PSL computation.

Theorem 10.9 (Equivalence of PAL and PSL) If e evaluates in the PAL profiling se-
mantics:

'7'7{} e Fﬂ; U059, =
then it also evaluates in the PSL profiling semantics:

PSL
'7'|_€ ? U/7O-/;gl

such that

10.3. COMPARING MODELS 203

o they compute with equal work: W(g) = W(g'),
e the PSL requires no more depth than the PAL to obtain a result: D(g) > D(¢'), and
e the PSL requires no more depth than the PAL to terminate: D'(g) > D(¢g').

Proof Outline: This can be proved formally by generalizing the contexts to all environments
and stores, using induction on the structure of e, which requires a case analysis on the form
of e. In each case, we inspect the graphs formed by the appropriate pairs of semantics rules.
For each kind of expression, the PSL graph has exactly as many nodes (work) and at most
as many levels (depth) as the corresponding PAL graph.

For example, examine the graphs for the application e; e; where ey evaluates to a closure,
i.e., those formed by the APP rule of each model. Induction shows that the theorem holds
for the subcomputations ey, ez, and the body of the closure that e; evaluates to. Each APP
rule creates a graph with the graphs of the subcomputations and exactly two new nodes.
Thus the work of the graphs are equal. Each APP rule also adds edges to the result graph.
The PSL adds three edges corresponding exactly to three of the PAL edges. The PSL may
also add data edges via the VAR rule, but these impose no greater constraint that the fourth
PAL edge, by the third conclusion of the e, induction. O

Theorem 10.10 (PSL sometimes faster than PAL) There exist algorithms which exe-
cute with asymptotically less depth in the PSL model than in the PAL model.

Proof: Follows from Theorems 10.6 and 10.7. O

However, this does not prove that these programs cannot be rewritten in the PAL model
to be as efficient as those in the PSL model. [e., this does not show the PAL model to be
less efficient than the PSL in solving problems.

10.3.2 NESL and PAL

It should be clear that the NESL model is more time-efficient than the PAL model. First we
show that NESL can simulate PAL with only constant cost overhead. That NESL is strictly
more time-efficient then follows from the simple example of adding one to a collection of
numbers, which requires only constant depth in the NESL model.

Theorem 10.11 (PAL and NESL) Ife evaluates in the PAL profiling semantics:
3'7{}}_(32é% v,0:9,5

then it can be simulated in the NESL profiling semantics:

NESL
o ETe] — v 0" 4,8

such that

204 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

e they compute within a constant factor of the same work: k-W(g) = W(yg'), and
e NESL requires no more than an extra constant factor extra depth: k- D(g) > D(g'),

for some constant k.

Proof Outline: 'To show this we need to give a translation T[] from the PAL model to the
NESL model. This would be the identity, except for translating the PAL model’s parallel
application ey e in terms of the parallel NESL for-each:

{z 0:2in [A_.e1, Aes]}

where we use constant sequences for brevity. Clearly this introduces at most constant extra
work and depth.

Note that this translation would not be typable in most type systems with homogeneous
sequences (e.g., as in existing NESL implementations). In the presence of types, a NESL
simulation of the PAL model would need to encode the PAL expressions in some NESL type
and then simulate the P-CEK},; or a similar machine. O

The two models are equally space-efficient since they require equal space overhead (cf.
Corollaries 7.2 and 9.4) and the PAL can encode any NESL sequence as a tree or list with
only a constant factor space overhead for the pointers.

10.3.3 Simulation of traditional models

This section describes the simulation of a PRAM on the PAL. The simulation we use gives the
same results for the EREW, CREW, and CRCW PRAM as well as for the multiprefix [100]
and scan models [12]. The simulation is optimal in terms of work for all the PRAM variants.
This is because it takes logarithmic work to simulate each random access into memory (this
is the same as for pointer machines [7]). Since we don’t know how to do better for the
weaker models, we will base our results on the most powerful model, the CRCW PRAM with
unit-time multiprefix sums (MP PRAM).

Theorem 10.12 (PRAM simulation on PAL) A program that runs in time t on a p pro-
cessor MP PRAM using s space can be simulated on the PAL model with O(plogs) work and
O(tlog slogp) depth.

Proof: We will simulate a PRAM based on state transitions on the state (C, .S, P) where C'
is the code, S is the global state, and P is per-processor state (i.e., registers and program
counter). Let ¢ = |C], s = |5], and p = |P|, and assume that ¢ < s and p < s. For
efficient access, the simulation stores C', S, and P as balanced binary trees. Each state
transition corresponds to a step of the PRAM, and the processors will be strictly synchronous.
Register-to-register instructions can be implemented with O(p) work and O(log p) depth, and
concurrent reads with O(plogs) work and O(logs) depth. This just requires traversing the

10.3. COMPARING MODELS 205

appropriate trees. The writes are the only interesting instruction to implement, and can be
implemented by sorting the write requests from the processors by address and then recursively
splitting the requests at each node of S as we insert them. We can sort the p requests in
O(plogp) work and O(log? p) depth. We assume the sorted requests, which we call the
write-tree W, start out balanced and are sorted from left to right in the tree. To implement
a concurrent write or multiprefix, we combine nodes in the write-tree that have the same
address. Since the addresses are sorted this can be done in O(p) work and O(log p) depth.

We now consider the insertion of the sorted requests of a write-tree W into state S (i.e.,
modify(S,W)). We assume that S stores the addresses and associated values at the leaves,
ordering the addresses from left-to-right, and that the internal nodes contain the value of the
greatest address in the left branch. We assume all addresses in W are also in 5, and that
each node of W stores the minimum and maximum address of its descendants, so that we
can access these in constant work and depth. To insert W into S, we first check if S is a
single node, in which case W must also be a single node, and we simply modify the value and
return. Otherwise, we check if all the addresses in W belong to just one of the branches of
the S tree. If so, we call modify recursively on that branch of .5 with the same W and put
the result back together with the other branch of S when the call returns. If not, we split W
based on the address stored at the root of S and call modify in parallel on the two children
of S and the two split parts of W. This algorithm works since all addresses in the original
write-tree will eventually find their way to the appropriate leaf of the S tree and modify that
leaf.

We now consider the total work and depth required. Splitting W into two trees based on
a key can be implemented in O(log p) work and depth by following down to the appropriate
leaf, splitting along the way. Since S is of depth log, s, the total depth complexity is therefore
bound by O(logplogs). To prove the bounds on the work, we observe that it cannot take
more than O(plogp) work to split the tree into p pieces of size 1 since each split takes O(log p)
work and there are p — 1 of them. This means the total work needed to split the original
write-tree is bound by O(plogp). The only other work is the check at each node of the S
tree of whether we have to split or send all values down to one or the other branches. The
maximum work done for these checks is O(plog s) since there can be at most p separate chains
(one per leaf of the write-tree) each which is at most as deep as the S tree (O(logs)) since
¢ < s and p < s. The total work is therefore O(p(logp +logs)) = O(plogs), since p < s. O

We now relate the PAL to another common parallel complexity class. NC is the class
of problems solvable on a PRAM (any variant) in polylogarithmic time with a polynomial
number of processors.

Corollary 10.2 (PAL relation to NC) Restricting the PAL model to those expressions
that evaluate in polynomial work and polylogarithmic depth is equivalent to the NC' complezity
class.

Proof: Any NC problem is solvable on a PRAM in polylogarithmic time with polynomial
processors, by definition. By Theorem 10.12, this is solvable on the PAL within the desired

206 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

bounds.

A PAL expression that requires polynomial work and polylogarithmic depth can be sim-
ulated on a PRAM in polylogarithmic time assuming we use as many processors as there is
work, as seen from Corollary 7.2. O

These bounds also holds for the PSL model. If we knew how to sort faster on the PSL
model than the PAL model, we could improve upon these bounds for the PSL. A similar
simulation results in the same bounds for the NESL model.

10.3.4 Cost-expressiveness

We can generalize these comparisons by defining the notion of cost-expressiveness, which
describes how efficiently models can simulate each other. E.g., intuitively we would say that
the NESL model is more time-expressive than the PAL model. This is based on extensional
ideas of expressiveness, which are concerned with how languages compare in computational
power.

Comparing two language models in isolation is meaningless because the abstract costs
of the models have no a priori relation to each other. Rather, the comparison must occur
relative to some machine model on which both language models are implemented. This
gives a common base to compare costs. FE.g., an accurate restatement of the NESL/PAL
relationship is that NESL is more time-expressive than and equally space-expressive as the
PAL model, relative to any of the PRAM, hypercube, and butterfly. In contrast, the NESL
and PAL models are equally work-, depth-, and space-expressive relative to the PAL model?.

Definition 10.1 (Cost-expressiveness) We now define when model A is at least as cost-
expressive as model B, relative to implementation on model C', for implementation cost
measure ¢, or A >5¢ B. For some implementation of B in C, choose an implementation of
A in C. For all functions f, if some B-program computes f with c-complezity O(cp), then
some A-program computes [with c-complexity O(cy4) such that O(cs) < O(cR).

Note that we can choose a different implementation of A for each implementation of B.
While model B may have an optimal implementation in model C', this is not always true. For
example, while most NESL functions are faster in an implementation that uses pointer-based
nested sequences, some like flattening and partitioning would be faster in an implementation
that uses flattened nested sequences. The definition allows model A different implementations
for each of these for the model to be more cost-expressive than NESL.

Having a definition does not make general comparisons of cost-expressiveness easy. The
following are some of the general statements that we can make:

e A non-Turing-equivalent model A cannot be as or more cost-expressive than a Turing-
equivalent model B, relative to any Turing-equivalent model, for any cost. This is

®Any model can be treated as a “machine” model!

10.3. COMPARING MODELS 207

Relation Follows from
PSLf >X* PAL. Th. 10.9, Cor. 7.2, Cor. 8.4
PSLp >%¢ PSLf Sec. 8.5.3
NESL >X* PAL Sec. 10.3.2, Cor. 7.2, Cor. 9.4
NESL =% PAL Sec. 10.3.2
PAL >X* NC Cor. 10.2

Figure 10.9: Summary of PAL, PSL, and NESL cost-expressiveness. Here, X is any of the
butterfly, hypercube, and PRAM models of Section 7.1.

because model B can compute more than A. However, B is not necessarily more
cost-expressive than A, because it may be less efficient for what A can compute, thus
they may be incomparable. This generalizes beyond Turing-equivalence to any idea of
computability, e.g., recursive enumerability.

e No model A is more cost-expressive than model B relative to model B, for any cost.
Le., nothing can be simulated in B any better than running native code.

o If model A strictly extends model B with additional features, then A is at least as
cost-expressive as B, relative to any other model and for any costs. The extra features
in A can be ignored for the comparison, but may give model A an advantage.

Figure 10.9 summarizes some of our previous results, put in terms of cost-expressiveness.

208 CHAPTER 10. ALGORITHMS AND COMPARING MODELS

Part IV

Conclusions

209

Chapter 11

Conclusions

We conclude with a summary of the contributions of this dissertation in Section 11.1 and a
discussion of future extensions of this work in Section 11.2.

11.1 Summary of contributions

The primary conceptual contribution of this dissertation is the idea of provably efficient im-
plementations. This extends previous work on providing provably correct implementations
by also giving efficiency bounds on the implementation. Each provably efficient implemen-
tation consists of an abstract language model and a machine model, each with definitions of
execution costs, and an implementation of the language model in the machine model and the
cost mapping that induces.

This concept is useful for the language designers, implementors, and users (i.e., pro-
grammers) alike. The designer is able to provide more complete specifications by describing
intensional requirements. The implementor has a more complete specification, and this for-
mal specification can be used to verify the extensional and intensional correctness of the
implementation. The specification can also guide language development tools such as profil-
ers and automatic complexity analyzers. It can also guide optimizations within the compiler.
The programmer has an abstract summary of the costs of executing a program, together
with mappings of these costs onto each target machine—the the programmer should not be
expected to know the details of each compiler.

The dissertation describes three specific parallel models, and variants of these, based
on fork-and-join parallelism, speculative parallelism, and data-parallelism (the PAL, PSL,
and NESL models, respectively). While many language models could be described in the
framework of provably efficient implementations, these models offer two core benefits. First,
they are purely functional, and thus have relatively simple semantics which are suitable for use
as intuitive examples. Second, they are parallel, with run-time costs of their implementations
that are not readily apparent.

For each model, we provide a profiling semantics that defines its abstract costs. All

211

212 CHAPTER 11. CONCLUSIONS

three define the amount of computation and parallelism of the evaluation using computation
graphs. The PAL and NESL models also define the amount of maximum reachable space
during evaluation.

The definition of the PSL model is simpler than Roe’s similar model, while more use-
ful for describing parallelism. The PSL defines computation graphs, and thus the amount
of parallelism available, unlike those of Roe [105, 106], Flanagan and Felleisen [37], and
Moreau [84, 85], which only define the work of a computation. Similarly, the computation
graphs in the NESL model are a more appropriate measure of parallelism than the maximum
number of useful processors as defined by Zimmermann [128]. And this definition is formal,
unlike that specified for NESL [14].

For each of these language models, we give a formal implementation onto the hypercube,
butterfly, and PRAM machine models, and obtained the induced cost mapping. The spec-
ulative implementation is asymptotically faster than those used in practice, as it correctly
parallelizes the suspension and reawakening of blocked threads. It is a much more detailed
implementation that than of Moreau [84]. The data-parallel implementation is asymptotically
more space-efficient than the current version of NESL.

We examine three examples—quicksort, mergesort, and Fast Fourier Transform—of how
to program and analyze program costs in these models. We also define a general relation,
called cost-expressiveness, of cost models based on the intensional aspects of the models and
their implementations. We derive some classes of instances of the relation from its definition,
and show additional instances relating the PAL, PSL, and NESL, based on the previous
content of the dissertation.

In the future, we suggest that a definition of a language should include not only its
extensional semantics, but also a profiling semantics and a provably efficient implementation.

11.2 Future work

We briefly discuss the practicality of the implementations and three types of extensions to
this work: additional models, more detailed models, and automated use of such models.

11.2.1 Practicality of implementations

The dissertation has concentrated on asymptotic behavior at the cost of ignoring constant
overheads. In particular, while we account for communication costs, we ignore the fact that
communication is typically significantly slower than computation. Throughout the disser-
tation, we have mentioned possible improvements. Here we briefly discuss some additional
pragmatic issues about the implementations and how they could be modified to reduce the
constants.

The implementations aggressively create many threads to maximize parallelism and fre-
quently synchronize all threads to guarantee load-balancing. Since most expressions are
relatively simple, and the cost of thread management is high, creating a thread for each

11.2. FUTURE WORK 213

subexpression involves too much overhead (e.g., [96]). Furthermore, each step performs little
computation between each load-balancing. Thus the ratios of computation to both overhead
and communication are relatively low.

One way to increase both ratios is grouping multiple sets of substeps between each load-
balancing. F.g., in the PAL implementation, a step could first evaluate each selected state
two units of work, resulting in up to four new states, and then synchronize on all of these
states. This reduces the number of load-balancing steps by half. In terms of the computation
graph, this means that on each step the machine visits some set of ready nodes and then
immediately visits the ready children of those nodes. This is the same basic idea as work
examining heuristics for building large sequential blocks of code, e.g., [57, 96]. As long as
each step performs constant work per selected state, this does not effect our asymptotic time
bounds, but reduces load-balancing costs and other overhead by a constant factor. Another
improvement that is easy to incorporate is to avoid load-balancing whenever the number of
active states is no greater than the number of processors.

We have also not addressed data locality. For example, one problem with the speculative
model is that it accesses a remote threads to use those threads’ final values. One improvement
would be to cache those results in the local environment.

One way to reduce the space used is to introduce garbage collection of the various seman-
tics objects. This can be done within the given work and space bounds.

Naturally, coding these implementations is necessary for more complete pragmatic com-
parisons. The implementations should be compared to those of languages such as Id, pH,
and NESL, as appropriate.

11.2.2 Additional models

The framework of provably correct implementations could be used with any language model,
and some specific models offer themselves as obvious next targets.
First, the speculative model could be adapted in two orthogonal ways:

e It could incorporate side-effects and/or continuations, in the style of Moreau [84, 85].
The only significant change required is adding legitimacies to ensure that side-effects
and continuations happen in the same order as they would serially.! An important
question is how much this serializes the implementation.

e It could be based on the more traditional implementation strategy of assigning threads
to processors and letting them run until they finish or block. How can that strategy be
adapted to execute within the bounds shown here?

Furthermore, it would be valuable to prove some results about the space usage of specu-
lative computation and compare this to the other models. Is there a more space-efficient
implementation of speculative computation that also adequately parallelizes?

Second, the data-parallel model could be adapted in three orthogonal ways:

!This requirement is simply an assumption made by Moreau and others.

214

CHAPTER 11. CONCLUSIONS

It could optimize some applications of put so that if its first argument value is not
needed again, the application updates that sequence rather than creating a new one.
When this case occurs, the application requires work proportional only to the number
of updates rather than also to the size of the argument. It appears that a conservative
reference counting can be implemented with only a constant factor overhead that is
sufficiently accurate to detect some common cases when a sequence value is no longer
needed. This results in asymptotically less work for some programs that repeatedly
update sequences.

It could be based on the implementation strategy of flattening nested data-parallelism,
as in NESL. In the compilation to an ArrL-like language, nested uses of data-parallelism
are compiled into single uses of data-parallelism on larger, flattened sequences. Its
advantage is this increases the granularity of parallelism, often dramatically. The dis-
advantage is that it can asymptotically increase the size of sequences in the ArrL-like
language, so that applications of constant functions can take asymptotically longer.

Side-effects and other features could be added to model HPF, etc. Asin the speculative
model, the models would need to specify how any side-effects interact with parallelism.

The following examples are meant to hint at the range of additional properties and lan-
guages that are of interest:

In languages with nested lexical scoping and first-class functions, how much space is
required to store environments (bindings for variables) and how much time is required
to add to or lookup from an environment?

In functional languages, when is data copied and how much space do these copies take?
This includes the question of whether tail recursion is used or not.

In lazy languages, such as Haskell and Miranda, which expressions are executed is not
readily apparent. Which are executed, how long will they take, in what order are they
executed, and how much space does they use?

In declarative languages such as Prolog, how long does searching for applicable rules,
unifying terms, and backtracking take?

In parallel languages, how long does communication take, and how does this affect the
scheduling order of computations and thus other behaviors such as the allocation of
memory?

With significantly different models, such as those based on object-oriented or declarative
languages, we would use the same basic idea of defining an abstract semantics with cost
information and relating this to machine models. Details such as the most appropriate form
of an operational language semantics would likely need to change.

11.2. FUTURE WORK 215

11.2.83 More detailed models

The models could also incorporate more detailed costs to accurately measure run-time costs,
i.e., worrying about constant factors. Le., provide a microanalysis, as opposed to our current
macroanalysis [28]. At the simplest level, this could be distinguishing between the various
costs here described as unit cost, e.g., assigning some constant applications to be twice as
expensive as others. More generally, this requires incorporating into the semantics anything
considered relevant that affects the costs. At the extreme, this would include caches and
processor pipelines. It could also include reflecting the distinctions made by compiler opti-
mizations. While allowing more accurate definitions of given implementations, incorporating
that level of detail negates the advantages of having an abstract language model.

Also, we could include more a formal treatment of garbage collection. This includes incor-
porating garbage collection formally into the implementations, proving the bounds outlined
in Appendix B, and potentially improving upon these bounds.

11.2.4 Additional and more detailed comparisons of models

Within the given framework, additional comparisons of the models should be possible. In
particular, we have only conjectured that the PSLf is strictly more time-expressive than the
PAL. One way to show this would be proving that no PAL FFT algorithm requires only
logarithmic depth. We have also not addressed how the PSL and NESL models compare.
However, we conjecture that the NESL variant with the optimized put operation can simulate
the PSL with T'F'(p) work and depth overhead. The key is to have NESL simulate the PRAM
using one large sequence to represent the PRAM memory. The optimization avoids any
copying of this sequence.

Given more detailed models as previously described, we could also make more detailed
comparisons.

11.2.5 Automated use of models

The original motivation for this work was to extend the work of automatic complexity anal-
ysis. Thus, a logical step would be to use these models as the core of automatic complexity
analysis tools such as Metric, ACE, COMPLEXA, and AyQ [124, 77, 35, 126], Kishon’s
profiling tool [66, 65], or compiler analyses.

216 CHAPTER 11. CONCLUSIONS

Bibliography

[1]

Samson Abramsky and R. Sykes. Secd-m: A virtual machine for applicative program-
ming. In Jean-Pierre Jouannaud, editor, Proceedings 2nd International Conference on
Functional Programming Languages and Computer Architecture, number 201 in Lecture
Notes in Computer Science, pages 81-98, 1985.

Shail Aditya, Arvind, Jan-Willem Maessen, Lennart Augustsson, and Rishiyur S.
Nikhil. Semantics of pH: A parallel dialect of Haskell. Technical Report Computa-
tion Structures Group Memo 377-1, Laboratory for Computer Science, Massachusetts
Institute of Technology, June 1995.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

Boon S. Ang, Alejandro Caro, Stephem Glim, and Andrew Shaw. An introduction to the
Id compiler. Technical Report Computation Structures Group Memo 328, Laboratory
for Computer Science, Massachusetts Institute of Technology, May 1991.

Andrew W. Appel. Compiling with continuations. Cambridge University Press, 1992.

Henry G. Baker, Jr. and Carl Hewitt. The incremental garbage collection of processes.
In Proceedings of Symposium on Al and Programming Languages, volume 12 of SIG-
PLAN Notices, pages 55-59, August 1977.

Amir M. Ben-Amram and Zvi Galil. On pointers versus addresses. Journal of the ACM,
39(3):617-648, July 1992.

Guy Blelloch, Phil Gibbons, and Yossi Matias. Provably efficient scheduling for lan-
guages with fine-grained parallelism. In ACM Symposium on Parallel Algorithms and
Architectures, pages 1-12, July 1995.

Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In

Proceedings Tth International Conference on Functional Programming Languages and
Computer Architecture, pages 226-237, June 1995.

217

218 BIBLIOGRAPHY

[10] Guy Blelloch, Gary L. Miller, and Dafta Talmor. Developing a practical projection-
based parallel Delaunay algorithm. In Proceedings ACM Symposium on Computational
Geometry, May 1996.

[11] Guy Blelloch and Girija Narlikar. A comparison of two n-body algorithms. In DIMACS
Implementation Challenge Workshop, October 1994.

[12] Guy E. Blelloch. Scans as primitive parallel operations. IFFE Transactions on Com-
puters, C-38(11):1526-1538, November 1989.

[13] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

[14] Guy E. Blelloch. NESL: A nested data-parallel language (version 3.1). Technical Report
CMU-CS-95-170, Carnegie Mellon University, 1995.

[15] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM,
pages 85-97, March 1995.

[16] Guy E. Blelloch and John Greiner. A parallel complexity model for functional lan-
guages. Technical Report CMU-CS-94-196, Carnegie Mellon University, October 1994.

[17] Guy E. Blelloch and Jonathan C. Hardwick. Class notes: Programming parallel al-
gorithms. Technical Report CMU-CS-93-115, Carnegie Mellon University, February
1993.

[18] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded compu-
tations. In Proceedings 25th ACM Symposium on Theory of Computing, pages 362-371,
May 1993.

[19] E. Borger and I. Durdanovi¢. Correctness of compiling Occam to Transputer code. The
Computer Journal, 39(1):52-92, 1996.

[20] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of
the ACM, 21(2):201-206, 1974.

[21] Stephen Brookes and Shai Geva. Computational comonads and intensional semantics.
Technical report, Carnegie Mellon University, 1991.

[22] F. W. Burton and D. J. Simpson. Space efficient execution of deterministic parallel
programs. August 1996.

[23] F. Warren Burton. Guaranteeing good memory bounds for parallel programs. January
1996.

BIBLIOGRAPHY 219

[24] Bettina Buth, Karl-Heinz Buth, Martin Frinzle, Burghard von Karger, Yassine
Lakhneche, Hans Langmaack, and Markus Miiller-Olm. Provably correct compiler de-
velopment and implementation. In U. Kastens and P. Pfahler, editors, Compiler Con-
struction, number 641 in Lecture Notes in Computer Science, pages 141-155. Springer-
Verlag, 1992.

[25] Wentong Cai and David B. Skillicorn. Calculating recurrences using the Bird-Meertens
formalism. Parallel Processing Letters, 5(2):179-190, June 1995.

[26] David Callahan and Burton Smith. A future-based parallel language for a general-
purpose highly-parallel computer. In David Galernter, Alexander Nicolau, and David
Padua, editors, Languages and Compilers for Parallel Computing, Research Mono-
graphs in Parallel and Distributed Computing, chapter 6, pages 95-113. MIT Press,
1990.

[27] William Clinger and Jonathan Rees. Revised® report on the algorithmic language
Scheme. LISP Pointers, IV(3):1-55, July-September 1991.

[28] Jacques Cohen. Computer-assisted microanalysis of programs. Communications of the
ACM, 25(10):724-733, October 1982.

[29] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control, 70(1):31-53, 1986.

[30] James R. Driscoll, Neil Sarnak, Daniel D. K. Sleator, and Robert E. Tarjan. Making
data structures persistent. Journal of Computer and System Sciences, 38(1):86-124,
February 1989.

[31] Marc Feeley. An Efficient and General Implementation of Futures on Large Scale
Shared-Memory Multiprocessors. PhD thesis, Brandeis University, June 1993.

[32] Matthias Felleisen. On the expressive power of programming languages. Science of
Computer Programming, 17(1-3):35-75, December 1991.

[33] Matthias Felleisen and Daniel P. Friedman. A calculus for assignments in higher-
order languages. In Proceedings 13th ACM Symposium on Principles of Programming
Languages, pages 314-325, January 1987.

[34] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal language
project. Journal of Parallel and Distributed Computing, 10:349-366, 1990.

[35] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Lambda-Upsilon-Omega:
An assistant algorithms analayzer. Applied Algebra, Algebraic Algorithms and Frror-
Correcting Codes, 357:201-212, June 1989.

220 BIBLIOGRAPHY

[36] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Automatic average-case anal-
ysis of algorithms. Theoretical Computer Science, 79(1):37-109, February 1991.

[37] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in pro-
gram optimization. In Proceedings 22nd ACM Symposium on Principles of Program-
ming Languages, pages 209-220, 1995.

[38] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceed-
ings 10th ACM Symposium on Theory of Computing, pages 114-118, 1978.

[39] Daniel P. Friedman and D. S. Wise. The impact of applicative programming on mul-
tiprocessing. In Proceedings International Conference on Parallel Processing, pages
263-272, 1976.

[40] Daniel P. Friedman and D. S. Wise. Aspects of applicative programming for parallel
processing. [FEE Transactions on Computers, 27(4):289-296, April 1978.

[41] Joseph Gil and Yossi Matias. Fast and efficient simulations among CRCW PRAMs.
Journal of Parallel and Distributed Computing, 23(2):135-148, November 1994.

[42] Joseph Gil, Yossi Matias, and Uzi Vishkin. Towards a theory of nearly constant time
parallel algorithms. In IFEE Annual Symposium on Foundations of Computer Science,
pages 698-710, October 1991.

[43] T. Goldberg and U. Zwick. Optimal deterministic processor allocation. In Proceedings
4th ACM-STAM Symposium on Discrete Algorithms, pages 220-228, January 1995.

[44] Michael T. Goodrich and S. Rao Kosaraju. Sorting on a parallel pointer machine with
applications to set expression evaluation. In Proceedings 30th IEFE Annual Symposium
on Foundations of Computer Science, pages 190-195, November 1989.

[45] Allan Gottlieb, B. D. Lubachevsky, and Larry Rudolph. Basic techniques for the ef-
ficient coordination of very large numbers of cooperating sequential processors. ACM
Transactions on Programming Languages and Systems, 5(2), April 1983.

[46] John Greiner. A comparison of parallel algorithms for connected components. In
Proceedings 6th ACM Symposium on Parallel Algorithms and Architectures, pages 16—
25, June 1994.

[47] John Greiner and Guy E. Blelloch. A provably time-efficient parallel implementation of
full speculation. In Proceedings 23rd ACM Symposium on Principles of Programming
Languages, pages 309-321, January 1996.

[48] Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in an expression-oriented
multiprocessor system. ACM Transactions on Programming Languages and Systems,
3(1):49-59, January 1981.

BIBLIOGRAPHY 221

[49]

[50]

[59]

[60]

Douglas J. Gurr. Semantic Frameworks for Complexity. PhD thesis, University of
Edinburgh, January 1991.

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501-538, October
1985.

Robert H. Halstead, Jr. New ideas in Parallel Lisp: Language design, implementation,
and programming tools. In T. Ito and R. H. Halstead, Jr., editors, Parallel Lisp:
Languages and Systems, US/Japan Workshop on Parallel Lisp, number 441 in Lecture
Notes in Computer Science, pages 2-51. Springer-Verlag, June 1989.

Robert Hood. The Efficient Implementation of Very-High-Level Programming Language
Constructs. PhD thesis, Cornell University, 1982.

Paul Hudak and Steve Anderson. Pomset interpretations of parallel functional pro-
grams. In Proceedings 3rd International Conference on Functional Programming Lan-
guages and Computer Architecture, number 274 in Lecture Notes in Computer Science,
pages 234-256. Springer-Verlag, September 1987.

Paul Hudak and Robert M. Keller. Garbage collection and task deletion in distributed
applicative processing systems. In Proceedings ACM Conference on LISP and Func-
tional Programming, pages 168-178, 1982.

Paul Hudak and Eric Mohr. Graphinators and the duality of SIMD and MIMD. In
Proceedings ACM Conference on LISP and Functional Programming, pages 224-234,
July 1988.

Paul Hudak et al. Report on the functional programming language Haskell, version
1.2. SIGPLAN Notices, 27(5), May 1992.

Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. Using the run-time sizes
of data structures to guide parallel-thread creation. In Proceedings ACM Conference
on LISP and Functional Programming, pages 79-90, July 1994.

Takayasu Ito and Manabu Matsui. A parallel lisp language PaiLisp and its kernal
specification. In T. Ito and R. H. Halstead, Jr., editors, Parallel Lisp: Languages
and Systems, US/Japan Workshop on Parallel Lisp, number 441 in Lecture Notes in
Computer Science, pages 58—100. Springer-Verlag, June 1989.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA,
1992.

Neil D. Jones. Constant time factors do matter (extended abstract). In Proceedings
25th ACM Symposium on Theory of Computing, pages 602-611, May 1993.

222

[61]

[62]

[63]

[64]

[67]

[68]

[69]

[70]

[71]

[72]

BIBLIOGRAPHY

Mike Joy and Tom Axford. Parallel combinator reduction: Some performance bounds.
Technical Report RR210, University of Warwick, 1992.

A. R. Karlin and E. Upfal. Parallel hashing: an eflicient implementation of shared
memory. Journal of the ACM, 35:876-892, 1988.

R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory machines.
In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science — Volume A:
Algorithms and Complexity. MIT Press, Cambridge, MA, 1990.

Richard Kennaway. A conflict between call-by-need computation and parallelism (ex-
tended abstract). In Proceedings Conditional Term Rewriting Systems-94, pages 247
261, February 1994.

Amir Kishon. Monitoring Semantics: Theory and Practice of Semantics-directed Fre-
cution Monitoring. PhD thesis, Yale University, 1991.

Amir Kishon, Paul Hudak, and Charles Consel. Monitoring semantics: A formal frame-
work for specifying, implementing, and reasoning about execution monitors. In Proceed-
ings ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 338-352, June 1991.

Jiirgen Knopp. Improving the performance of parallel lisp by compile time analysis.
In U. Kastnes and P. Pfahler, editors, Compiler Construction, volume 641 of Lecture
Notes in Computer Science, pages 271-277. Springer-Verlag, 1992.

Jiirgen Knopp. Touching analysis: Avoiding runtime checking in future-based parallel
languages. In Hesham El-Rewini, Ted Lewis, and Bruce D. Shriver, editors, 26th Pro-
ceedings Hawaii International Conference on System Sciences, volume 2, pages 407-416.
IEEE Computer Society Press, 1993.

David A. Kranz, Jr. Robert H. Halstead, and Eric Mohr. Mul-T: A high-performance
parallel lisp. In Proceedings ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 81-90, June 1989.

P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6:308—
320, 1964.

Peter Lee and Uwe Pleban. A realistic compiler generator based on high-level semantics.
In Proceedings 14th ACM Symposium on Principles of Programming Languages, pages
284-299, 1987.

F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing and
sorting on fixed-connection networks. Journal of Algorithms, 17(1):157-205, July 1994.

BIBLIOGRAPHY 223

[73] Yossi Matias and Uzi Vishkin. On parallel hashing and integer sorting. Journal of
Algorithms, 12(4):573-606, December 1991.

[74] Yossi Matias and Uzi Vishkin. A note on reducing parallel model simulations to integer
sorting. In Proceedings 9th International Parallel Processing Symposium, pages 208—
212, April 1995.

[75] Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic simulations of PRAMs
by parallel machines with restricted granularity of parallel memory. Acta Informatica,
21:339-374, 1984.

[76] Daniel Le Métayer. Mechanical analysis of program complexity. In Proceedings SIG-
PLAN Symposium on Language Issues in Programming Environments, 1985.

[77] Daniel Le Métayer. Ace: An automatic complexity evaluator. ACM Transactions on
Programming Languages and Systems, 10(2):248-266, April 1988.

[78] Daniel Le Métayer. Analysis of functional programs by program transformation. In
J.-P. Banétre, S. B. Jones, and D. Le Métayer, editors, Prospects for Functional Pro-
gramming in Software Engineering, volume 1 of Research Reports, FSPRIT, Project
302, chapter 5, pages 87-120. Springer-Verlag, 1991.

[79] James S. Miller. MultiScheme: A Parallel Processing System Based on MIT Scheme.
PhD thesis, Massachusetts Institute of Technology, September 1987.

[80] Peter H. Mills, Lars S. Nyland, Jan F. Prins, John H. Reif, and Robert A. Wagner.
Prototyping parallel and distributed programs in Proteus. Technical Report UNC-CH
TR90-041, Computer Science Department, University of North Carolina, 1990.

[81] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, Cambridge, MA, 1990.

[82] John C. Mitchell. On abstraction and the expressive power of programming languages.
In Proceedings Theoretical Aspects of Computer Software, pages 290-310, September
1991.

[83] Luc Moreau. The PCKS-machine. an abstract machine for sound evaluation of parallel
functional programs with first-class continuations. In Furopean Symposium on Pro-
gramming, number 788 in Lecture Notes in Computer Science, pages 424-438. Springer-
Verlag, April 1994.

[84] Luc Moreau. The semantics of Scheme with future. Technical Report M95/7, Depart-
ment of Electronics and Computer Science, University of Southampton, 1995.

[85] Luc Moreau. The semantics of Scheme with future. In Proceedings 1st ACM SIGPLAN
International Conference on Functional Programming, pages 146-156, May 1996.

224

[86]

[87]

[90]

[91]

[92]

[93]

[94]

BIBLIOGRAPHY

Rishiyur S. Nikhil. The parallel programming language Id and its compilation for
parallel machines. Technical Report Computation Structures Group Memo 313, Mas-
sachusetts Institute of Technology, July 1990.

Rishiyur S. Nikhil. Id version 90.1 reference manual. Technical Report Computation
Structures Group Memo 284-1, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, July 1991.

Rishiyur S. Nikhil, Arvind, James Hicks, Shail Aditya, Lennart Augustsson, Jan-Willem
Maessen, and Yuli Zhou. pH language reference manual, version 1.0—preliminary.
Technical Report Computation Structures Group Memo 369, Laboratory for Computer
Science, Massachusetts Institute of Technology, January 1995.

Chris Okasaki. Simple and efficient purely functional queues and dequeues. Journal of
Functional Programming, 5(4):583-592, October 1995.

Randy B. Osborne. Speculative Computation in Multilisp. PhD thesis, Massachusetts
Institute of Technology, December 1989.

Robert Paige. Real-time simulation of a set machine on a RAM. In W. Koczkodaj,
editor, Proceedings International Conference on Computing and Information, volume 2,
pages 68-73, 1989.

Michel Parigot. Programming with proofs: A second order type theory. In H. Ganzinger,
editor, Proceedings 2nd Furopean Symposium on Programming, volume 300 of Lecture
Notes in Computer Science, pages 145-159. Springer-Verlag, 1988.

Andrew S. Partridge. Speculative Fvaluation in Parallel Implementations of Lazy Func-
tional Languages. PhD thesis, Department of Computer Science, University of Tasma-
nia, 1991.

Andrew S. Partridge and Anthony H. Dekker. Speculative parallelism in a distributed
graph reduction machine. In Proceedings Hawaii International Conference on System
Sciences, volume 2, pages 771-779, 1989.

Lawrence C. Paulson. A semantics-directed compiler generator. In Proceedings 9th
ACM Symposium on Principles of Programming Languages, pages 224-239, January
1982.

Simon L Peyton Jones. Parallel implementations of functional programming languages.
The Computer Journal, 32(2):175-186, 1989.

Nicholas Pippenger. Pure versus impure lisp. In Proceedings 23rd ACM Symposium on
Principles of Programming Languages, pages 104-109, January 1996.

BIBLIOGRAPHY 225

[98] Uwe F. Pleban and Peter Lee. An automatically generated, realistic compiler for an
imperative programming language. In Proceedings ACM SIGPLAN Conference on
Programming Language Design and Implementation, volume 23 of SIGPLAN Notices,
pages 222-227, June 1988.

[99] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Com-
puter Science, 1, August 1974.

[100] Abhiram G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University, New
Haven, CT, 1989.

[101] Abhiram G. Ranade. How to emulate shared memory. Journal of Computer and System
Sciences, 42(3):307-326, June 1991.

[102] Rudiger Reischuk. Probabilistic parallel algorithms for sorting and selection. STAM
Journal of Computing, 14(2):396-409, 1985.

[103] Oege de Moor Richard Bird, Geraint Jones. A lazy pure language versus impure lisp.
Post in comp.lang.functional newsgroup, May 1996.

[104] J. W. Riely, J. Prins, and S. P. Iyer. Provably correct vectorization of nested-parallel
programs. In Proceedings Programming Models for Massively Parallel Computers, pages
213-222. IEEE Computer Society Press, October 1995.

[105] Paul Roe. Calculating lenient programs’ performance. In Simon L Peyton Jones, Gra-
ham Hutton, and Carsten Kehler Holst, editors, Proceedings Functional Programming,
Glasgow 1990, Workshops in computing, pages 227-236. Springer-Verlag, August 1990.

[106] Paul Roe. Parallel Programming using Functional Languages. PhD thesis, Department
of Computing Science, University of Glasgow, February 1991.

[107] John R. Rose and Guy L. Steele Jr. C*: An extended C language for data parallel pro-
gramming. In Proceedings 2nd International Conference on Supercomputing, volume 2,
pages 2-16, May 1987.

[108] Mads Rosendahl. Automatic complexity analysis. In Proceedings 4th International Con-
ference on Functional Programming Languages and Computer Architecture. Springer-
Verlag, September 1989.

[109] David Sands. Complexity analysis for a lazy higher-order language. In Proceedings
Functional Programming, Glasgow 1989, Workshops in Computing Series. Springer-
Verlag, 1989.

[110] David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, University
of London, Imperial College, September 1990.

226 BIBLIOGRAPHY

[111] David Sands. Time analysis, cost equivalence and program refinement. In Proceedings
11th Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, Lecture Notes in Computer Science. Springer-Verlag, December 1991.

[112] Patrick M. Sansom. FEzxecution Profiling for Non-strict Functional Languages. PhD
thesis, Department of Computing Science, University of Glasgow, 1994.

[113] Patrick M. Sansom and Simon L Peyton Jones. Time and space profiling for non-strict,
higher-order functional languages. In ACM Symposium on Principles of Programming
Languages, 1995.

[114] Helmut Seidl and Reinhard Wilhelm. Probabilistic load balancing for parallel graph
reduction. In Proceedings TENCON ’89, 4th IEFE Region 10 International Conference,
pages 879-884, November 1989.

[115] Jon Shultis. On the complexity of higher-order programs. Technical Report CU-CS-
288-85, University of Colorado, Boulder, January 1985.

[116] David B. Skillicorn. The Bird-Meertens formalism as a parallel model. In Proceedings
Software for Parallel Computation, June 1992.

[117] David B. Skillicorn and W. Cai. A cost calculus for parallel functional programming.
Journal of Parallel and Distributed Computing, 28(1):65-83, July 1995.

[118] Dan Suciu and Val Tannen. Efficient compilation of high-level data parallel algorithms.
In Proceedings 6th ACM Symposium on Parallel Algorithms and Architectures, pages
57-66, June 1994.

[119] Carolyn Talcott. Rum: An intensional theory of function and control abstractions. In
Proceedings Workshop on Foundations of Logic and Functional Programming. Springer-
Verlag, 1986.

[120] Kenneth R. Traub. Sequential Implementation of Lenient Programming Languages.
PhD thesis, Massachusetts Institute of Technology, October 1988.

[121] Guy Tremblay and G. R. Gao. The impact of laziness on parallelism and the limits
of strictness analysis. In A. P. Wim Bohm and John T. Feo, editors, Proceedings High
Performance Functional Computing, pages 119-133, April 1995.

[122] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal of Computing,
11(2):350-361, May 1982.

[123] L. G. Valiant. General Purpose Parallel Architectures, volume A, chapter 18, pages
943-972. Elsevier Science Publishers, 1990.

BIBLIOGRAPHY 227

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Ben Wegbreit. Mechanical program analysis. Communications of the ACM, 18(9),
September 1975.

C. K. Yuen, M. D. Feng, and J. J. Yee. Speculative parallelism in BalLinda Lisp.
Technical Report TR31/92, Department of Information Systems and Computer Science,
National University of Singapore, November 1992.

Paul Zimmermann and Wolf Zimmermann. The automatic complexity analysis of
divide-and-conquer algorithms. Technical Report 1149, Institut National de Récherche
en Informatique et en Automatique, Rocquencourt, December 1989.

Paul Zimmermann and Wolf Zimmermann. The automatic complexity analysis of
divide-and-conquer algorithms. Computer and Information Sciences VI, 1:395-404,
November 1991.

Wolf Zimmermann. Automatic worst case complexity analysis of parallel programs.
Technical Report TR-90-066, International Computer Science Institute, December
1990.

Wolf Zimmermann. The automatic worst case analysis of parallel programs: Simple
parallel sorting and algorithms on graphs. Technical Report TR-91-045, International
Computer Science Institute, August 1991.

Wolf Zimmermann. Complexity issues in the design of functional languages with explicit
parallelism. In Proceedings International Conference on Computer Languages, pages
34-43, April 1992.

228 BIBLIOGRAPHY

Appendix A

Glossary

This appendix briefly describes several array operations which are used in the machine model
implementations and the data-parallel language. See Figure 8.1 for some time bounds on
implementing the fetch-and-add operation. See Figure 7.4 for time bounds on the other
operations.

fetch-and-add In the fetch-and-add [45] (or multiprefix [100]) operation, each processor has
an address and an integer value 1.

Consider each set of processors using a given address. Each processor receives the
sum of the initial contents at the address and the values of the processors writing to
the address prior to this processor. The final value stored at the address is its initial
contents plus the sum of the appropriate processors’ values. Here, we assume that the
fetch-and-add is stable—that lower-numbered processors access their addresses first.
For example, a fetch-and-add of an array of addresses [1,0,2,1,1,2] and array of values
[3,8,4,12,5,7], where the addresses’ initial contents are zeroes, results in the new array
[0,0,0,3,15,4] and the addresses’ contents being 8, 20, and 11.

This can also be described as having each processor, in parallel, atomically fetch its
address’ contents and increment it by ¢. The stable fetch-and-add operation can be
implemented in a butterfly or hypercube network by combining requests as they go
through the network [100], and on a PRAM by various other techniques [73, 41]. If
each processor has at most m data elements to combine, all data can be processed in
O(m + logp) time on the butterfly and hypercube, and in O(m + log p/loglog p) time
on the CRCW PRAM, each with high probability. We parameterize these bounds to
say that a fetch-and-add on m - p elements requires O(m + T F(p)) time. For values of
TF(p), see Figure 8.1.

In the degenerate case where all processors use the same address, this implements a
scan (prefix sum) and reduce on the integer data values. More generally, a fetch-and-op
is defined and implemented in the same way for any associative binary operation.

229

230 APPENDIX A. GLOSSARY

scan A scan operation (or prefix sum) combines each prefix of an array with an associative
binary operation. For example, the additive scan of [2, 1, 3] is [0, 2, 3, 6].

This is equivalent to a fetch-and-add with all processors using the same address, and
the address’ contents initially zero.

If each processor has at most m data elements to combine, all data can be processed
in O(m + logp) time on the butterfly and hypercube, and in O(m + log p/loglog p)
time on the CRCW PRAM. We parameterize these bounds to say that a scan on m-p
elements requires O(m + T'S(p)) time. For values of T'S(p), see Figure 7.4.

reduce A reduce operation combines all elements of an array. For example, the additive
reduction of [2,1, 3] is 6.

index An index operation takes an integer ¢ and creates an array [0, ...,i— 1] of that length.

A segmented index of the array [2, 1, 3] performs an index operation on each element
2, 1, and 3, and combines the results into an array [[0, 1], [0], [0, 1, 2]].

distribute A distribute operation takes a value v and an integer i and creates an array
[v,...,v] of i copies of the value.

A segmented distribute of the values [vg, vy, v2] and the array [2, 1, 3] distributes each
of the values as follows: [[vg, vo], [v1], [v2, V2, v2]].

pack A pack operation takes an array of values and an array of booleans of the same length
and returns an array containing the values whose corresponding flag is true. The
result’s contents are in the same order as in the original array.

put A put operation takes an array of values o' and an array of pairs, each with an index
J; and value v;. The operation creates a an array like the original one except that it
contains the values @ at the corresponding indices. Thus, each index j; must be in

the range 0,..., |1;’| If a given index occurs multiple times, we specify that the last
corresponding value is used. So, for example. the put of [2,1, 3] and [(1,9), (0,6), (1,7)]
is [6,7, 3].

Scans, reduces, indices, and distributes can all be implemented with a constant number of
fetch-and-op operations.

Appendix B

Simple Parallel Garbage Collection

This appendix describes a parallel version of garbage collection (GC) and its effects on the
machine complexity bounds for the PAL and NESL models. It maintains the space bounds,
but adds work proportional to the number of collections (gc¢) during the evaluation. This
algorithm is only outlined, and its details should be further explored.

The machine has a block of memory available for use (the heap) and consists of allocated
memory and unallocated memory. The heap is initially of some constant size. During an
allocation, if there is insufficient unallocated space in the heap, the machine increases the
heap size and garbage collects the current allocated data. The heap doubles in size during
each GC to twice the size sufficient for the allocation, like a SDGA (¢f. Section 7.2. The heap
never shrinks, although the allocated space within it may.

We store the continuation stacks within the heap!, and assume that each processor has
a constant number of registers. This ensures that there are at most O(p) root pointers into
the heap—the profiling semantics’ roots are all stored in these continuations. Space for the
continuation stack is already accounted by the added space constants in the profiling semantic
rules, so placing it in the heap does not alter the previous space bounds.

In stop-and-copy GC, the heap consists of two sub-blocks: the allocated data and the
unallocated space. In each of languages examined here, the heap and roots form a forest
of data. On each allocation, if there is enough space available in the heap, that space is
allocated. Otherwise, the machine increases the size of the heap and copies the surviving
data into the new empty part of the heap, as illustrated in Figure B.1. The old data is copied
by a p-DFT of this forest.

Each GC clearly requires at least [m;/p] time to examine and potentially copy m; data.
Over all GCs, this is bounded by O(w/p) time, where w is the work of the entire program,
since the heap doubles in size on each GC. In the PAL and NESL models, the data forest is
of at most d depth, where d is the computation depth of the entire program. Thus copying
can require a constant factor times d-7T'5(p) (for PAL model) or d-TF(p) (for NESL model)
time. So, GC requires at most

1E.g., as in the implementation of Standard ML of New Jersey.

231

232 APPENDIX B. SIMPLE PARALLEL GARBAGE COLLECTION

0 ml—l m2—1
heap
0 k-1
new alloc
0 m, -1 m, +k-1 2(k+my) -1
new heap
(compacted)

Figure B.1: Basic structure of stop-and-copy garbage collection. The allocated space is
marked with lines, while unallocated space is blank.

233

O(w/p+gc-d-TS(p)) (for PAL model)
O(w/p+gc-d-TF(p)) (for NESL model)

time, which dominates the overall evaluation time.

Since the heap doubles in size per GC and since each model ensures that we spend m
work to allocate m space, there may be at most gc = O(logW(g)) GCs. Thus, GC and the
overall computation requires at most

O(w/p+logw-d-TS(p)) (for PAL model)
O(w/p+logw-d-TF(p)) (for NESL model)

time.

Since the heap doubles in size on each GC, then after the first GC, the heap size is never
more than twice the maximum reachable space. l.e., with stop-and-copy GC, the total space
complexity is asymptotically the same as the maximum reachable space complexity without

GC for the PAL and NESL models.

