Controlling Effects

Andrzej Filinski

May 1996
CMU-CS-96-119

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:

Robert Harper, Co-Chair
John Reynolds, Co-Chair
Stephen Brookes
Gordon Plotkin, University of Edinburgh

Copyright (©1996 Andrzej Filinski

This research was sponsored in part by the Defense Advanced Research Projects Agency, CSTO,
under the title “The Fox Project: Advanced Development of Systems Software”, under Contract F19628-
95-C-0050. The research was also partially sponsored by the National Science Foundation under Grant
No. CCR-94-09997.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the National Science Foundation, or the U.S. Government.

Keywords: monads, continuations, computational effects, monadic reflection, logical
relations, Scheme, ML.

Abstract

Many computational effects, such as exceptions, state, or nondeterminism,
can be conveniently specified in terms of monads. We investigate a technique
for uniformly adding arbitrary such effects to ML-like languages, without
requiring any structural changes to the programs themselves. Instead, we use
monadic reflection, a new language construct for explicitly converting back
and forth between representations of effects as behavior and as data.

Using monadic reflection to characterize concisely all effects expressible with
a given monad, we can give a precise meaning to the notion of simulating one
effect by another, more general one. We isolate a simple condition allowing
such a simulation, and in particular show that any monadic effect can be
simulated by a continuation monad. In other words, under relatively mild
assumptions on the base language (allowing formation of a suitably large
answer type), control becomes a universal effect.

Concluding the development, we show that this universal effect can itself
be explicitly implemented in terms of only standard first-class continuations
(call/cc) and a piece of global state. This means that we can specify an ef-
fect such as nondeterminism abstractly, in terms of result lists, then directly
obtain from this description a nondeterministic-choice operator performing
imperatively-implemented backtracking. We include a full realization of the
general construction in Standard ML of New Jersey, and give several pro-
gramming examples.

Acknowledgments

I wish to thank my advisors, Robert Harper and John Reynolds, for their guidance in re-
fining my informal ideas into mathematically quantifiable form, and for suffering through
too many early drafts. Without their insistence on rigor and concreteness, I might have
finished sooner, but probably with an ugly hole or two in the formal development. Any
flaws that may remain in this final version are, of course, my own. Thanks are also
due to my other committee members, Stephen Brookes and Gordon Plotkin, who each
contributed useful insights.

My thinking and intuition was deeply influenced by a number of graduate courses
I attended at CMU, especially those taught by Stephen Brookes, Robert Harper, Peter
Lee, Frank Pfenning, and John Reynolds; I found that each of them gave me something
that I could put to good use in some aspect of this thesis.

Several people provided very helpful comments on a previous version of this work,
including notably Olivier Danvy, Matthias Felleisen, Julia Lawall, Greg Morrisett, Amr
Sabry, and Phil Wadler. Many others, too numerous to mention, provided bits and pieces
of advice or insights that helped me get one detail or another just right.

For their prompt and effective help with various administrative hassles, I want to
thank Sharon Burks, Catherine Copetas, Monika Lekuse, Linda Melville, and Karen
Olack; they saved me countless hours of fighting with practical problems when I could
least afford the time.

Finally, I am grateful to a number of friends who offered encouragement and support
throughout this endeavor, including Lars Birkedal, Prasad Chalasani, Rowan Davies,
Kevin Lynch, Karoline Malmkjaer, Greg Morrisett, Mark Wheeler, Chi Wong, and most
especially Olivier Danvy and Chen Lee. And, of course, my greatest thanks go to my
parents for their unwavering faith in me.

Andrzej Filinski

Edinburgh, Scotland
May 1996

i

Contents

1 Introduction

1.1 Effects in functional languages
1.1.1 “Effects asdata”
1.1.2 “Effects as behavior”
1.1.3 Awunified view
1.2 Monads and monadic reflection,
1.3 Overview of the thesis
2 Programming with Monadic Effects
2.1 The base language Lo
2.1.1 Terminology
2.1.2 Thebasesyntax
2.1.3 A denotational semantics L.
2.1.4 Generalized let
2.1.5 Equational properties
2.1.6 Encodings of implicitly-sequenced languages
2.2 Monads in a computational setting o 0L
2.2.1 A framework foreffects o oL
2.2.2 Rigidity
2.2.3 Definable monads
2.3 Extending the language with effects
2.3.1 The monadic translation
2.3.2 Induced equational theory
2.4 Related work

3

Relating Effects

3.1

3.2

3.3

Simulating monadic effects o000
3.1.1 Monad morphisms
3.1.2 The variant translationo
The proof setting
3.2.1 The implementation language
3.2.2 Admissible relations Lo
3.2.3 Computation-extension of relations
The simulation proof oo
3.3.1 Overview

1

iv

CONTENTS

3.3.2 Relating standard terms 61
3.3.3 Relating computational structure 65
3.3.4 Relating monads to continuation-passing 68
3.3.5 Factorizing the variant translation 73
3.3.6 Induced relational correspondence 7

3.4 Related work 78
Implementing Continuation-Effects 80
4.1 Continuation-reflection and composable continuations 81
4.2 Level-erasure 84
4.3 Composable continuations from escapes and state 90
4.3.1 Re-tying the recursive knot L. 92
4.3.2 The continuation-state language 96

4.4 Putting it all together o oo 99
4.5 ML implementation and examples oL 103
4.5.1 Composable continuations 103
4.5.2 Monadic reflection Lo L 104
4.5.3 Example: exceptions L Lo 106
4.5.4 Example: state L 108
4.5.5 Example: nondeterminism 109
4.5.6 Example: probability 0oL 110
4.5.7 Example: continuations Lo Lo L. 112

4.6 Related work 112
Conclusions 114
5.1 Summary . o.o.o. ... 114
5.2 Futurework 116
5.3 Closing remarks L L 117
Properties of the Predomain Model 118
A.1 Recursive type definitions L 118
A.2 Admissible relations L o 122
A.3 Isomorphisms of recursive types 125
A.4 Invariant relations over recursive types 128

Bibliography 134

Chapter 1

Introduction

In this chapter, we cover some general background and motivation for the work de-
scribed in this document. After a brief discussion of two popular conceptual models for
programming with computational effects, we introduce a new approach that in many
ways combines the best aspects of both. We give an informal overview of this approach
and sketch the concrete results obtained in the following chapters.

1.1 Effects in functional languages

An important topic in the field of programming language semantics is the study of compu-
tational effects. Informally, an effect is any deviation from the intuitive characterization
of a program fragment as representing a simple function from inputs to outputs. Ex-
amples are numerous, including such familiar concepts as partiality, exceptions, state,
computational complexity, I/O, nondeterminism, and concurrency.

The treatment of effects is particularly interesting in the context of modern functional
programming languages, such as Standard ML or Haskell. Such languages have relatively
simple and tractable mathematical descriptions, amenable to a formal analysis. In fact,
their basic model of computation is precisely the definition and evaluation of functions,
as opposed to sequential execution of program instructions.

But even though most aspects of functional programming can indeed be usefully cap-
tured with this simple declarative model, the natural formulation of many non-trivial pro-
gramming tasks still tends to involve occasional uses of “imperative” concepts — whether
for convenience in expressing an algorithm, or for interaction with the outside world.

The challenge to the semanticist is thus to admit the possibility of effects, while
retaining as many as possible of the appealing properties of functional programming. This
problem, of course, is not new; but somewhat surprisingly, two distinct schools of thought
have evolved on how best to proceed, exemplified by the treatment of effects in “purely
functional” languages, such as Miranda or Haskell, versus “algorithmic functional” ones,
such as Scheme or ML.

The remainder of this section briefly presents and contrasts these two approaches,
then introduces the basic thesis underlying this dissertation: that we can integrate key
ideas from each framework to obtain a model of specifying and using effects that combines
the best of both worlds.

2 CHAPTER 1. INTRODUCTION

1.1.1 “Effects as data”

When the basic ideas of denotational semantics were originally proposed, a significant
challenge was to demonstrate that a very abstract mathematical model of computation
based on “pure” functions could adequately model some apparently very non-functional
but (at least at that time) important constructs in existing programming languages. Per-
haps the most striking example of this was the use of continuation functions for modeling
unstructured control constructs (gotos) [SW74, Rey93]; simpler techniques sufficed for
concepts such as state or exceptions.

There is a close similarity between the metalanguage of denotational semantics (a con-
cise notation for specifying continuous functions between domains) and actual functional
programming languages. This has the fortunate consequence that often an appropriately
expressed denotational definition can be directly executed to get an interpreter for the
defined language [Rey72]. And in fact, many of the techniques pioneered in denotational
semantics were quickly adopted for functional programs that were not in any reasonable
sense language processors.

Specifically, the denotational representation of almost every computational effect leads
to a characteristic pattern or style in functional programs using that effect. For example,
a global store can be modeled functionally by passing an additional store argument to
every function, together with returning from each function the possibly updated store;
the resulting specification is commonly said to be expressed in state-passing style.

Similarly, exceptions can be modeled by tagging every function return value as either
“normal” or “exceptional”; the caller of a function must then explicitly check for and
propagate exceptions (ezception-passing style). And, perhaps best-known, continuation-
passing style (CPS) passes to every function an explicit representation of the remainder
of the computation, to be invoked on the result of that function [Rey72, Fis72, Plo75].

While these techniques for modeling computational effects all share a similar feel, they
do differ substantially in the details. [t was therefore a remarkable observation by Moggi
that they could each be seen as a particular instance of a generic schema, parameterized
by a monad, a simple concept from category theory [Mog89]. This meant that much of
the theory of computational effects could be derived abstractly, without reference to any
specific notion of effect.

Again, it did not take long for this idea to migrate from mathematical semantics
to mainstream functional programming. Work by Wadler and others [Wad90, Wad92b,
PW93| established monadic style as a practical technique for structuring purely functional
programs in a way that could reasonably conveniently express both program-internal
effects (exceptions, state, etc.) and external ones (foreign function interfaces and monadic

1/0).

The benefits of a denotational specification of an effect are substantial: we get a
concise yet very precise characterization of how a program fragment can behave. For
example, in a language with exceptions and non-termination as the only effects, the
meaning of an integer-returning computation could be a meta-language value of type
Z, ® X where X is some fixed domain of exception names.

This immediately tells us that evaluation of an expression can have only three possible

1.1. EFFECTS IN FUNCTIONAL LANGUAGES 3

outcomes: it either returns a number, raises an exception, or diverges. Thus, for example,
a simple case analysis suffices to formally show that evaluating an expression twice is
equivalent to evaluating it only once and duplicating the result — even if we interpose an
arbitrary other computation between the two evaluations.

Analogous considerations apply to a purely functional program in exception-passing
style: we can use standard reasoning principles for sum types to deduce properties of pro-
grams with exception-effects, again validating program transformations such as common-
subexpression elimination.

On the other hand, the purely-functional approach is not without problems, which
become particularly evident at larger scales. One such disadvantage is that programming
with effects turns into an all-or-nothing choice: to add even the most innocuous effect,
such as debugging output or a “gensym” facility for generating unique names, we may
have to rewrite substantial parts of the program in effect-passing style.

Monads alleviate this inconvenience somewhat, by allowing the program to be struc-
tured uniformly, independently of what effects will eventually be present. Still, we need
to explicitly re-express the underlying functional program in monadic style — sometimes
after the fact, duplicating effort, and sometimes preemptively, in anticipation of possibly
having to add effects in the future.

Of course, since the conversion into monadic style is easily mechanizable, we can
always express programs in a more concise notation, and have them automatically ex-
panded into monadic style — either explicitly as a source transformation, or implicitly by
an interpreter. But such an approach is not without problems either: by interposing a
translation phase for expanding monadic effects into their denotations, we are effectively
defining an entirely new programming language.

And for writing any non-trivial programs in this new language, we will want all the
conveniences commonly provided by a language environment: pattern-matching function
definitions, a static type system (giving meaningful error messages), a module system, a
standard library, etc. Thus, the practical effort involved may be much larger than what
might be expected from only looking at the core translation equations.

A related, but logically distinct, problem is that monadic-style definitions impose
a substantial overhead on execution, whether implemented interpretively or compiled.
Even if effects are rare (which is one of the tenets of functional programming), the
infrastructure required to support an occasional imperative construct imposes a uniform
burden on the entire evaluation process.

For example, for exception-passing style, the specification demands that after every
subcomputation that may raise an exception, we have to check for this possibility and
either proceed normally, or propagate the exception to the rest of the computation.
A simple realization of exception-passing could thus spend a large fraction of its time
checking for conditions that only occur very rarely. A more sophisticated implementation,
especially a translation-based one, may be able to eliminate some of those checks, but
in general calls to “unknown” functions (passed as parameters or separately compiled)
have to be explicitly guarded by a check for exceptional returns.

Any further improvements seem to require pushing the effect down into the language

4 CHAPTER 1. INTRODUCTION

implementation itself, still providing a purely functional interface to the relevant opera-
tions, but implementing them more efficiently than what could be expressed explicitly in
the language. In particular, several proposals have been made for direct implementations
of state in languages like Haskell [PW93, LPJ95].

Unfortunately, such a “black-box” approach negates one of the main advantages of
the denotational approach: the ability to represent effect meanings explicitly as ordinary,
functional constructs that can be reasoned about directly within the language. And even
more significantly, these more efficient implementations are only available for a select few
effects; programmer-defined, application-specific monads cannot take advantage of any
non-functional implementation techniques.

1.1.2 “Effects as behavior”

As noted in the previous section, there are some compelling advantages to the denota-
tional approach to effects, but also some significant practical problems. Whether the
former outweigh the latter is still a controversial issue, especially because there is an
alternative way of treating effects in programs. This approach is often referred to by the
rather loaded term of “impure” functional programming; we will generally use the more
neutral names behavioral or operational.

The basis of this approach is that a program expressed in terms of function defini-
tions and applications can still be given a very natural algorithmic reading. Specifically,
the fundamental principle of applicative-order reduction (namely, reducing the argument
part of a f-redex before performing the substitution) can be seen as specifying a partic-
ular sequencing of evaluations. And this sequencing can serve as a robust skeleton for
organizing general computational effects.

Although this idea can be traced back to early Lisp [M*62], perhaps the prototypical
functional language based on such an approach is Scheme [CR91]. The three key semantic
differences distinguishing Scheme from a “purely functional” language are its call-by-
value evaluation strategy, the presence of explicitly mutable state, and a feature known
as first-class continuations.

These three characteristics make Scheme a very versatile language, but potentially
significantly complicate reasoning about programs. The problem is not that call-by-value,
state, or continuations are inherently particularly hard to reason about. After all, they
have simple denotational counterparts, and any Scheme program can be relatively easily
expanded into a “purely functional” one by a continuation-passing transform.

In fact, we do not need to explicitly translate at all; direct-style equational theor-
ies such as the computational A-calculus are only slightly more complicated than [(n-
conversion [Mog89]. (The situation is complicated somewhat by dynamic creation of
mutable cells, but those too can be dealt with [FH92].) It would thus seem that ease
of reasoning about impure functional programs should be “within a constant factor” of
that about pure programs.

But there is a more subtle reason why general Scheme programs can be much harder
to analyze formally than effect-free ones: because the set of computational effects is
effectively fixed at two low-level but very powerful operations, the natural programming
style consists of encoding higher-level effect abstractions imperatively in terms of the

1.1. EFFECTS IN FUNCTIONAL LANGUAGES 5

available effects, rather than through explicit effect-passing.

For a simple example, consider parameterization. Suppose that at a few places in a
program, perhaps spread across several separately compiled modules, we need access to
a parameter supplied as part of the initial expression to be evaluated. The two basic
approaches for achieving this are to pass the parameter around everywhere it might
eventually be needed, or to store its value in a global cell and access it only where
actually used.

If the program is sufficiently large, and the accesses to the parameter sufficiently in-
frequent, the second approach becomes the natural choice (indeed, probably the correct
choice from a software-engineering perspective). But by encoding parameterization in
terms of state, we have effectively failed to represent the important fact that the para-
meter is immutable.

That is, suppose the program were otherwise purely functional. Then in explicitly-
parameterized style, we could easily argue that the phrase f3p+ f3p could always be
safely replaced by 2 x f3p, even when f was an unknown function. But once we admit
general state, the optimization is no longer automatically valid: we need to be able to
inspect f, making sure that it does not change the global value of p, before we can
eliminate the common subexpressions.

In other words, where the transformation was a simple equational property in a purely
functional setting, it is at best only provable in a language with effects when f and all the
functions it calls are known. The reason is that the program does not explicitly embody
the specification that the global state can never be modified after its initialization.

Of course, in a purely functional language, the state-based solution would not be
available at all. Or, more accurately, given that all effects in a pure language must be
written out in full, parameterization would naturally be expressed as such, rather than
through (functional) state-passing. That is, if we have to be explicit about effects anyway,
we may as well be precise.

With control effects, the problem is of course compounded. Again, an imperative
realization of effects such as exceptions, nondeterminism, or concurrency may well be
practically preferable to its more declarative counterpart in explicit effect-passing style,
but the price we pay is in loss of simple reasoning principles.

In fact, the problem is not only in analyzing programs using the effects: it is often
challenging even to show formally that the implementation of the effect itself is correct.
For example, in Scheme we can encode (the control aspects of) an ML-like exception
facility in a few lines of code using call/cc and a “current handler” cell. But a proof that
such an implementation actually agrees with the explicit exception-passing used in the
formal definition of SML [MTH90] is by no means a trivial task.

Similar considerations apply to analyzing control-based implementations of backtrack-
ing [Hay87, HDM93] or concurrency [Wan80]: while the code may be short, elegant, and
intuitively plausible, formally relating it to a more abstract denotational specification,
such as success lists [Wad85| or resumptions [Sch86, Mog90], is often a serious undertak-
ing.

One could thus say that it is in this sense that “purely functional” programs offer

6 CHAPTER 1. INTRODUCTION

a pragmatic reasoning advantage over “impure” ones: by penalizing all effects equally,
they do not discourage the use of precise, custom-tailored effect representations. Impure
languages, on the other hand, leave us an unpleasant choice, trading off precision against
verbosity: if the desired effect is not already explicitly available, we must decide whether
to encode it in terms of some more general standard effect, or to rewrite the program in
explicit effect-passing style.

1.1.3 A unified view

As we have seen, each of the approaches has its advantages and disadvantages. The
question thus naturally arises, whether there might be a way to somehow combine the
best features of both. In particular, would it be possible to set things up so that we could
think (both formally and informally) in terms of precise, functional denotations, but work
(both when writing and executing programs) with the concise, operational behaviors?

The main goal of this thesis is to answer this question affirmatively. We will see
how it is indeed possible to take a purely functional denotational specification of any
monadic effect and obtain from it a directly executable operational implementation using
call/cc and state. In fact, we will be able to define functions for converting back and forth
between denotational and behavioral views of the same effect with no loss of information.

The fundamental idea is to distinguish carefully between transparent and opaque rep-
resentations of a computational effect. The transparent representation is the explicit,
denotational one: a computation that may raise an exception is represented as an effect-
free computation of a sum-typed result; a computation with state-effects is represented
as a pure function from old state to result and new state; a nondeterministic computation
is represented as a deterministic computation of a list of results; and so forth.

On the other hand, the opaque representation is effectively an abstract data type
with two operations: we can construct a trivial computation out of a value, and we can
sequence two computations, where one may depend on the outcome of the other. How
these operations are realized depends on the particular notion of effects, of course. But
when writing the bulk of a typical program, the opaque representation is all we need.
For example, a program written in monadic style would mostly use abstract unit and
bind operations for structuring, regardless of what they actually expanded to.

Only when we actually wish to perform an effect, such as raising an exception, ac-
cessing the store, or making a nondeterministic choice, do we need additional operations.
For such explicit effect-manipulations, we introduce two additional operations, converting
between transparent and opaque representations of an effect.

That is, given an explicit representation of the effect, such as a value representing a
raised exception, a function modifying the state, or a list of possibilities, we can obtain
from it the corresponding opaque representation, which can then be further combined
with other opaque computations in the usual way.

Conversely, and equally importantly, from an opaque representation, we can recover
its transparent counterpart. For example, to handle an exception, we explicitly examine
the sum-based representation of a computation and perform the appropriate action in
each case. Or to determine whether a nondeterministic subcomputation has at least one
successful outcome, we check if its transparent, list-based representation is non-empty.

1.1. EFFECTS IN FUNCTIONAL LANGUAGES 7

Although this distinction may not at first appear particularly profound or useful, we
now sketch three crucial observations that together summarize the main contributions of
the thesis (with each one roughly corresponding to a chapter):

1. Even though opaque computations are a priori simply another abstract datatype,
the two operations of value-inclusion and sequencing are exactly what forms the
effect-backbone of an “imperative functional” language such as Scheme or ML. In
such a language, any subcomputation may have an effect. A wvalue such as a constant
or a lambda-abstraction is therefore a special case, which must be implicitly coerced
into a general computation. This corresponds to the first operation on our ADT of
opaque computations.

Similarly, effects in compound computations are implicitly sequenced by the call-by-
value evaluation order. For example, in an application F; Es, first E; is evaluated to
a value, then F,, and finally the application is performed. Again, this corresponds
to an explicit sequencing of opaque computations, where subsequent computations
may depend on the values produced by earlier ones.

With this view, then, the conversions between transparent and opaque represent-
ations of computations provide an effect-introspective capability in the language,
exposing the underlying notion of effects when and only when it matters. That is,
the two operators convert between computations as data and as behavior within a
single setting, integrating the views of effects as either being or happening. The key
requirement is that the two conversion operations must be (two-sided) inverses, so
that no information is lost when switching between the two view.

That is, by relaxing the relationship between transparent and opaque represent-
ations from their being identical to merely isomorphic, we have already gained
something important: a model for programming in a convenient, concise ML-like
language, with an intuitive imperative reading, yet at the same permitting equa-
tional reasoning about our programs as if they were written purely functionally,
with explicit effect-passing. But we can actually go further:

2. Since the ultimate goal of reasoning about programs is to characterize their observ-
able behavior, we actually have some freedom in choosing the opaque representation
of effects, as long as we can guarantee that it properly tracks the transparent repres-
entation in all complete programs. In other words, we only need to ensure that the
two representations are observationally isomorphic, whether or not they actually
are denotationally so.

More explicitly, in addition to the canonical opaque representation, which simply
encapsulates the specification monad of the transparent representation, there may
also be a variant opaque representation, based on a different implementation monad.
Then, as long as we choose the implementation monad such that it successfully
mimics its specification counterpart in all program contexts, we can still reason
about programs as if opaque effects were directly represented by the specification
monad.

8 CHAPTER 1. INTRODUCTION

This is of course a well-known property of abstract data types in general. In our
case, however, the ADT operations of value inclusion and sequencing are implicitly
invoked at every single subcomputation (whether it actually performs any effects
or not) in addition to the explicit conversions between transparent and opaque rep-
resentations. Thus, efficiency of the implementation becomes a significant concern.

We will consider several examples of such effect-simulations, and give a general
characterization of the relationships the two monads must satisfy in order for one
to act as the opaque representation of the other. But perhaps the most remarkable
and useful such instance is that, under suitable assumptions, any monad can be
stmulated by a continuation monad. In particular, this means that no matter how
apparently complex the transparent specification may be, it can be implemented
uniformly by continuation-passing.

This further adds to the attractiveness of programming with monadic effects: we
can still reason about our programs as if their operational behavior were realized by
explicit effect-passing according to a (potentially computationally costly) declarat-
ive specification. Yet the actual implementation only needs to incur the relatively
low (and fixed) cost of continuation-passing. And we can do better still:

3. Although we nominally have a way to simulate arbitrary monadic effects with
continuation monads, we are still some way off from a full implementation of our
hypothetical ML-like language with behavior-data duality for user-definable effects.
We have shown that continuations are in a sense a universal effect, but we still need
to actually exploit this property in practice.

A key third step is therefore to note that the wvariant opaque representation of
an effect is also the canonical opaque representation of the effect induced by the
implementation monad. That is, we can define an ML-like language with a notion
of native effects that directly corresponds to the continuation monads we use for
implementing other monadic effects. Any language in the style of (1) above can
then be directly embedded into this one language of control effects.

Moreover, we can show the perhaps equally surprising result that our universal
control-effect language can itself be embedded in a language with only Scheme-
style first-class continuations and mutable global variables. This could be said to
validate the informal claim in the Scheme Rationale for call/cc that most useful
control abstractions can be implemented explicitly, without changing or extending
the language itself [CRI1].

With this correspondence, we have effectively bridged the gap between the denota-
tional and the operational view of effects: we can reason safely in terms of the
former, but work in a practical, familiar programming language in terms of the
latter. The general construction takes a non-trivial amount of work to develop and
prove correct, but we only need to perform it once and for all, not once for every
new effect we want to implement.

The presentation in this document is oriented towards call-by-value languages, which
can take full advantage of point (1) above. Still, there is in principle no reason why (2) and

1.2. MONADS AND MONADIC REFLECTION 9

(3) could not also be exploited in a purely functional language; efficient implementations
of effects are as important for Haskell-like languages as they are for Scheme-like ones.
We will not develop the details of such an application, however.

1.2 Monads and monadic reflection

In this section, we give somewhat simplified introduction to monadic effects. In particu-
lar, we will assume that the monad under investigation represents the only computational
effect in the language. The formal development in the next chapter considers a more gen-
eral notion of computation, where a monad serves to introduce a new effect on top of
potentially already existing ones. Although the basic idea is the same, the details become
substantially more involved. For the moment, let us therefore ignore the possibility of
effects other than the one being introduced.

Monads originate in category theory; like many such concepts, they have several
equivalent definitions. For our purposes, the following variant (usually known as the
Kleisli triple formulation) seems most convenient:

Definition 1.1 (preliminary) A monad T in a functional language consists of the
following:

o A type constructor T-.
e For any type «, a function n, : a — T (the unit function at o).

e For any function f : oy — Tay, a function f*: Ta; — Tas (the extension of f).

These components must further satisfy the three monad laws:
[fema=f my=idea (ffog) = [0y

Remark 1.2 In category theory, the a monad is conventionally defined in terms of a
functor T and natural transformations n : Id — T and pu : T? — T satisfying certain
equalities [ML71, VL.1]. (In the context of functional programming, the corresponding
operations are usually referred to as map, unit, and join [Wad92a).)

It is easy to see, however, that the two formulations are equivalent: every Kleisli triple
(T, n,-*) determines a monad (7', n, 1) by

Tf=mnof) and o = id7, .
Conversely, every monad determines a Kleisli triple by

[=nsoT(f),

and moreover these assignments are inverses. In the following, we will therefore use the
terms “Kleisli triple” and “monad” synonymously.

A simple syntactic variation on Kleisli triples, popularized by Wadler [Wad92b], uses
a binary infix operator to denote application of an extended function, writing ¢ ‘bind* f
or t x f for our f*t. This “continuation last” notation is usually preferable for writing

10 CHAPTER 1. INTRODUCTION

actual functional programs in monadic style, but the formulation in the definition is more
convenient for our purposes.

It should also be mentioned that our monads are properly called strong monads in
category theory [Mog89], essentially because the f being extended need not be closed.
(The monad laws must then also hold for open terms; the formal definition in the next
chapter will reflect this.) We will use the “functional programming” rather than the
“categorical” terminology throughout this document. []

Monads provide a uniform framework for reasoning about computational effects (such
as state, exceptions, or I/O) in applicative programming languages [Mog89, Mog91].
Informally, na represents a “pure” (i.e., effect-free) computation yielding a, while f*¢
represents the computation consisting of t’s effects followed by an application of f to the
result (if any) computed by ¢. A concrete instance may help clarify this:

Example 1.3 For any fixed type x, the monad of x-carrying exceptions is given by
Ta=aoa+y, n = Aa.inl a, f*=At.case t of inla= fa| inre=inre

Here, a computation of type « is either a value a of type « (the left summand), denoting
a successful computation of a, or a value e of type x (right summand), representing
a specific failure. The unit and extension operations capture the expected operational
behavior of exceptions; in particular, if evaluation of a function argument ¢ raises an
exception e, that exception is simply propagated without ever applying f. It is easy to
check that these definitions do in fact satisfy the equations in Definition 2.15.]

The use of monads for structuring purely functional programs — as opposed to language
semantics — is by now quite commonplace [Wad92b, PW93|. Of course, those same
structuring techniques can usually also be used with Scheme-like languages (only rarely
do monadic-style programs rely on lazy evaluation in a fundamental way), but the benefits
seem less clear: often a “mostly pure” program with a few isolated effects (e.g., a gensym
or occasional output) is both more efficient and easier to understand at a glance than an
equivalent “completely pure” program expressed in monadic style throughout.

There is a more interesting way, however, of explicitly using monads as a structuring
tool for programs in “impure” functional languages, one that takes full advantage of an
eager evaluation strategy instead of trying to ignore it. The study of this alternative is
the main focus of this thesis. Specifically, our development is based on a simple functional
language based on “Moggi’s principle”:

Computations of type o correspond to values of type Ta.

As also noted by Moggi, this abstract correspondence principle can be embodied into
a concrete language construct which we will call monadic reflection (by analogy to the
more general notion of computational reflection [Smi82, WF88|). Specifically, we take:

Definition 1.4 (preliminary) A reflection of a monad T in a language is given by two

operators

'FV:Ta 'FE:«
- and -
FEpV):a I'FIE]: Ta

1.2. MONADS AND MONADIC REFLECTION 11

satisfying that for any expression E : « (possibly with computational effects) and any
value V : T,

LE] is a value, w(LE]) = E, and (V)1 =V

Although the presence of these two operators arises naturally from the monadic frame-
work, little is generally said about their computational interpretation, let alone their use-
fulness in actual functional programming. As it turns out, however, monadic reflection
provides exactly what we need to program with monadic effects without having to rewrite
the code in monadic style.

In operational terms, for any value V' : Ta, u(V') reflects V as an “effectful” compu-
tation of type a: we can construct an explicit representation of the effect, then perform
or execute it by passing it to u(-). Conversely, given a general computation E : «, [E]
reifies it as the corresponding effect-free value of type T'a, which can then be further
inspected and analyzed like any other inert piece of data.

Although it is possible to write programs using the reflection and reification operators
directly, an actual programming language would typically define a collection of more
convenient operations in terms of p(-) and [-]:

Example 1.5 Consider again the exception monad from Example 1.3. We can express
the usual exception-raising construct directly as

raise £ ¥ let e=F in u(inre)

where F is an expression — typically just a value — of type x. That is, we explicitly
construct a right-tagged value in the explicit representation of computations, then pass
it to p(-) to perform the effect.

Conversely, [E] reifies a possibly exception-raising a-expression E into a value of
type a + x, so we can define an exception-handling construct like this:

try F; handle ¢ = Ey, ¥ case [E,] of inla=-a | inre= E,

That is, if E] returns normally, E is ignored, but if £ raises an exception, the handler
E5 is invoked with e bound to the exception data; a general pattern-matching handle
construct as found in SML can easily be expressed in terms of this one. []

Example 1.6 For any type o, the o-state monad is defined by:
Ta=0—axo, n = Aa. As. (a, s), [T = At As.let (a,s') =tsin fas'

Here, a computation ¢ is represented as a (pure) function accepting a current state s and
returning a value a and a new state s’; an effect-free computation passes the state along
without modifying or reading it; and the extension of f first evaluates ¢ in the current
state s and then fa in the state s’ resulting from evaluation of ¢.

12 CHAPTER 1. INTRODUCTION

Using reflection, we can define operators for updating and reading the state:

state .= £ < let v =F in u(As. ((),v))
Istate = p(\s. (s, s))

That is, state := E is the effect represented by a function replacing the state with the
value of E (and returning () as the result of the operation), while !state denotes the effect
of reading the current state without modifying it. Neither of these definitions explicitly
uses the reification operator. That one is only used implicitly at the top level: if F is a
program with state effects, then

run F ¥ let (a,s') = [Elsyin a

is the result of evaluating E starting with an initial state sy and discarding the final
state. A simple refinement is of course to permit the state to persist across a sequence
of top-level evaluations, as, in the interactive read-eval-print loops of ML or Scheme.

More generally, if we take o to be a whole store (a finite map from locations to values),
we can define, for any mutable variable x,

r=EF < let v < E in u(As. (), s{ls — 0}))
e < p(Xs. (sly, s))

where /, is the location corresponding to the cell x.

Note that the state-accessing operations export only a subset of the functionality
of the state monad. To express general reflection/reification in the store case, we need
access to a “first-class store” mechanism. This can actually be implemented reasonably
efficiently using version trees, without requiring the whole store to be copied [JD88,
Mor93], but it does impose some overhead. [

The latter example illustrates that it may not always be feasible or desirable to
export the full reflection/reification pair for a monad in a real programming language.
Nevertheless, it will be important for analysis purposes to consider the fully general
formulation of an effect in terms of u(-) and [-], with any restrictions on accessible
functionality viewed as purely pragmatic considerations.

This is not to trivialize such concerns, only to emphasize that they are an orthogonal
issue. Reflection and reification expose ezactly the range of effects expressible in the
corresponding state-passing formulation — much as a traditional denotational semantics
of a language with a store does not formally enforce that the store is used in a single-
threaded way.

The exception and state monads by no means exhaust the interesting possibilities.
Some other examples of simple monadic effects are listed in Table 1.1; we will encounter
many of these in more detail later. And although this collection may still seem limited, we
have not even considered all the combinations that encode multiple effects. For example,
Ta =0 — (a+ x) X o represents computations with both exceptions and state.

(How to combine specifications of individual effects into composites is actually a
non-trivial problem. Although we will not develop the details in full generality, the

1.3. OVERVIEW OF THE THESIS 13

‘ Common name ‘ Functor, T« ‘ Unit, 7, ‘ Extension, f* ‘
Identity « Aa. a At ft
Partiality oy Aa. up a M.case t of upa= fa] L= 1
Exception a—+x Aa. inla At.case t of inla= fa| inre=inre
State o—axo | AaAs.(a,s) | At.Xs.let (a,s') =tsin fas'
Environment €=« Aa. Xe.a At. de. f(te)e
Complexity axN Aa. {(a, 0) Ma,ny.let (b,n') = fa in (b,n +n')
List-nondeterm. | o* Aa. [a] Aai, ..., ap]. fay ++ -+ fa,
Set-nondeterm. | Pppx Aa. {a} May, ... an}. fa,U---U fa,
Continuation (¢ —=0) =0 | Aa. k. ka At Ak .t (Aa. fak)

Table 1.1: Some simple monads

incremental approach used in the next chapter to layer a new effect on top of an existing
one illustrates the basic principle: we must refine the definition of a monad to explicitly
account for the original effects in the new specification.)

1.3 Overview of the thesis

1. This Introduction presents some background material about computational effects
and informally introduces the notion of monadic reflection as the bridge between
the denotational and operational view of monadic effects.

2. In Programming with Monadic Effects, we first specify a simple functional base
language with some notion of ambient effects, such as partiality. We then formally
define monads in this setting and show how a monad T induces an extension of
the base language with a new focus effect. We specify the semantics of this effect-
enriched language by a simple but somewhat impractical (definitional) monadic
translation back the original language, for which we already have a semantics. Our
task in the remaining chapters will then be to devise and prove correct an alternative
implementation of the extended language.

3. Relating Effects contains the main technical contribution of the thesis. We consider
a specification monad T and an tmplementation monad U, and investigate when
U can be said to simulate T. We first show how, given some data connecting T
and U, we can define a variant translation from the T-extended language to the
base language, using U-effects to perform T-effects (but without any correctness
guarantees yet).

After some technical preliminaries, setting up the proof context, we then introduce
the concept of a monad relation between T and U, and show that given such a
relation, the definitional and the variant translation agree on complete T-programs.
In many cases we can obtain the required monad relation directly from existence
of a monad morphism from T to U, but the general continuation-simulation of T

14

CHAPTER 1. INTRODUCTION

with a continuation monad involves an additional twist to capture the parametricity
properties of the “final answer” type.

We conclude the chapter by showing that the correspondence between monads and
continuations also allows us to define the monadic reflection operators for T directly
in terms of those for the continuation monad U. Thus, it suffices to provide an
implementation of the language with continuations as the notion of focus effect.

. Completing the construction, Implementing Continuation-Effects shows how the

effects corresponding to a continuation monad can be embedded into a Scheme-like
language. The proof can be broken into three distinct steps. First, we show that the
monadic effects for continuations can be expressed in terms of a control abstraction
called composable continuations, which can be further decomposed into three even
simpler control operators.

Second, we show that the distinction between ambient and focus effects introduced
by the definitional monadic translation does not actually affect evaluation, thus
leaving us to implement a language with a single level of effects. And third, we
show that this language can be implemented by embedding in language with first-
class continuations and state. We conclude by showing a concrete implementation
of the construction and a few programming examples.

. Finally, the Conclusion summarizes the results and outlines some promising direc-

tions for further work.

Chapter 2

Programming with Monadic Effects

In this chapter, we introduce a simple functional programming language that will serve
as a concrete framework for the results and proofs throughout the thesis. We also form-
ally define the notion of monad in this setting, and show how a monad allows us to
systematically define a extended language with a new notion of effects.

2.1 The base language

2.1.1 Terminology

A language consists of a syntar L and a semantics L. The syntax defines the sets of well-
formed types and of well-typed terms of a given type by means of a language signature,
i.e., a set of type constructors and (typed) term constructors from which language phrases
are built up inductively.

The semantics assigns some notion of meaning to the terms. As a practical minimum,
we expect a semantics to provide a notion of program evaluation, i.e., a partial function
Eval, from a suitable subset of L-terms (e.g., closed terms of base type) to some set
of observable results, say natural numbers. An evaluation semantics induces a notion of
observational equivalence on terms, where two terms are considered equivalent if they can
be substituted for each other in any program context without changing the observable
outcome of the program. It is easy to see that this relation on terms is in fact a congruence
wrt. all term constructors of the language.

A denotational semantics provides more, namely a model. That is, for every type, a
set of meanings of terms of that type, and to every term constructor, a meaning of the
constructed term expressed as a function of the meanings of the subterms. In particular,
this provides a notion of equality, denotational equivalence, where two terms are equal iff
they denote the same element of the model; because of the compositionality requirement,
denotational equivalence is likewise a congruence. Two terms may be observationally
equivalent without being denotationally so, but it is usually simpler to reason about
denotational equivalence.

We obtain an evaluation semantics from a denotational semantics by defining a func-
tion from the meanings of closed terms to observable results. For example, the denotation
of a program could be an element of the flat domain N of lifted natural numbers; the

15

16 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

induced evaluation semantics is then given simply by the evident partial function map-
ping every lifted natural number to itself, and undefined on the 1-element of the domain.
Two different semantics for a syntax (say, direct and continuation) may determine the
same evaluation semantics (and hence the same notion of observational equivalence), but
induce different notions of denotational equivalence.

We say that a language (L, £) is a member of a language class (e.g., the class of
lambda-calculi) if its signature contains some specified set of type constructors (product,
function space, etc.) and term constructors (abstraction, application, etc.), and the
meanings of these types and terms in £ satisfy some equational constraints (congruences,
[-conversion, etc.). Often we can prove a result for an entire class of languages by showing
that it holds generically in any model of the equations.

2.1.2 The base syntax

We now present a concrete language, in which we will be doing most of the formal
development. Its syntax and semantics are very similar to PCF [Plo77] (even more so
to PCF with lifted types [Mit96], except that the effect structure is made more explicit.
We call it Effect-PCF. We present the syntax and informal operational interpretation in
this section, with a precise denotational semantics in the next.

Effect-PCF is somewhat more verbose than a typical practical programming language,
because all computation sequencing is made explicit in the syntax. For example, in an
application, both the function and the argument must be explicitly evaluated if they are
not already values.

Although we could have worked in an ML-like CBV language directly, the general
treatment of monadic effects becomes awkward when the sequencing is left implicit. The
present formulation allows us to cleanly separate out the handling of effects from the
“purely functional” structure (exponentials, products, etc.).

Moreover, there is a simple, effect-independent elaboration of a standard, ML-like
syntax into Effect-PCF, so we can view the implicit sequencing of computations in call-
by-value languages as merely convenient shorthand for the corresponding Effect-PCF
terms. We will return to this elaboration in Section 2.1.6.

The base signature is displayed in Figure 2.1.

Type structure

The most notable characteristic of the syntax is the division of the types into two classes:
value types (), and a subset called (generalized) computation types (). The operational
significance of this division is to make the possibility of effects explicit in the types,
separating trivial or manifestly effect-free from serious computations.

We make value types properly include computation types by taking one possibility
for a value to be an unevaluated computation, represented by a value of type “a. For
example, a closed expression of type ¢ will always be equivalent to a numeral; a general
expression expected to yield a natural number, but which may diverge (or have some
other effect) has type °..

2.1. THE BASE LANGUAGE 17

Types:
a = alt|l]ag Xay|ar+ay |
Bou="ala=F|1]b %G
Terms:
M == x|z|sM|ifz(M,My,z. M) | () | (M, M) | fst M | snd M
| inl M| inr M | case(M,xl.Ml,xg.Mg) | Ax*. M | M1 M2
"M | let” w <= M, in M, | fixg M
Typing: [isa type assignment z1:ay, ..., Z,: o (with all z; distinct).

(z:a) €T I'EM:.
'Fz:« F'kFz:. F'EsM:.

'-M:. I'-M,:« [a:oE M«

['Fifz(M, My, x. M) : « LF(:1
'-M; o ' Ms: s I'EM:oa X ay '-M:op X as
U'F (M, M) :aq X o I'FfstM: oy 'k snd M : ay
'-M: o '=M: as

'inl M :op+ oy I'inrM: o + as
Fl-M:oq—l—ozz F,.CC1:CY1|_M11£¥ F,IQIOQ'_MQIOC
'+ Case(M,Il.Ml,xQ.Mg) e

Dye:ab-M: (3 '-M:a—pj I'EM:«
'FXe.M:a—p3 ' M M, :j3
' M, : 06 ' Ms: (6 I'EM: 3 X5 I'EM: 3 x5
['F (M, My) : By X (s ['Efst M : 5y ['Fsnd M : (3
I'EM: « I'E M : oy ['eiag My "o I'-M:0—p
['F°M: « ['Flet’” x < M; in M, : “ay I'Ffixg M : 3

Figure 2.1: Base signature, Ly

18 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

A computation of type aa— [is often more conveniently thought of as S-computation
parameterized by an a-value, rather than as a function from values to computations.
In particular, when [is itself an arrow type, no actual evaluation occurs until all the
parameters are present.

Similarly, a computation of type 3 X 5 can be viewed as a single computation impli-
citly parameterized by the choice of which component to evaluate, not as two unrelated
computations. (In the case where 3, and 3, are the same type 3, this is reflected in the
isomorphism § % 32 (1+1) = 3.)

There are actually two product-type constructors, one for value types and one for
computation-types only. Although their typing and equational properties are identical
(and in the standard semantics, they are even interpreted by the same cpo constructor),
the two variants are logically distinct. Still, we generally omit the superscripts when it
is clear which one is meant — i.e., when one of the factors is a value type, or the context
requires a computation-type.

(Analogous consideration apply to the unit type, of course, but there we can simply
assume that the two types are identical without unduly constraining the semantics.)

The set of value-types also includes a countable set of type variables. (There are no
type variables for the computation-types.) When A = {ay,...,a,} is a finite set of type
variables, we write

Fa o type and Fa [ctype

if all type variables occurring free in « and [are in A; in this case we say that a or 3
is a type over A. Clearly when A’ D A then also Far o type and Far 3 ctype. We say
that « and [are (type-)closed when A is empty. A type over A determines a type family
consisting of all types obtained by substituting closed types for type variables in A.

Note that there are no constructs within the language for explicitly binding type
variables. (There will be, however, in an extension of Ly with recursively-defined types
in Section 3.2.1.)

The canonical model of the language is given by the category of “bottomless” cpos
(predomains) and continuous functions, with computation-types interpreted by pointed
cpos and the “-operator on types corresponding to lifting. See Section 2.1.3 for details.

Terms

The term structure and associated typing rules are again mostly conventional. Similarly
to the parameterization of types by type variables, we write

I'bFA M : «

if all type variables occurring free in I, M, and « are listed in A. M is then said to be a
term over A; again it is called type-closed when A is empty, and the set of type-closed
instances of a term over A forms a term family.

Complementing the *-operator on types, there is a term operator "M, which constructs
an effect-free computation returning M, and let” x <= M; in M,, which constructs a
computation consisting of evaluating M; and M, in sequence, with = in the second
evaluation bound to the result of the first one. A computation is treated as a first-class

2.1. THE BASE LANGUAGE 19

object, and is not actually performed until its value is explicitly requested, either directly
by a top-level program evaluation, or through evaluation of an enclosing let.

We generally omit the type tags in terms when they are clear from the context. Also,
we will occasionally use pattern-matching syntax in let- and lambda-bindings, with the
usual expansions, e.g.,

(let” (z1,22) = M in M') = (let” x <= M in M'{fstz/x1, snd x/x2}) (agrv(m'))

(Note that the projections are considered to be trivial by the typing rules, so the result
of the substitution is still well-typed.)

The constructs associated with type ¢ allow us to program with natural numbers using
a zero-constant, a successor function, and a combined zero-test/predecessor operation.
Given general recursion, we can construct the standard arithmetic operations out of those
primitives. For example, we can define addition as:

plus : ¢ X t = " = A(ny, na). fix,yo, (A f. An.ifz(n, "ng,n'.let” r < fn' in *(sr)))ny

Note, however, that because of the use of fix, the result of an addition is an t-computation,
even though the addition function happens to be total. (We could of course extend the
language with additional primitives for arithmetic or a primitive-recursion construct,
which could then be given pure value-types.)

Having fixed points at all computation-types 3 also allows us to express mutual
recursion easily, as in:

even : L — 2
= fst (fix(,—,2) x (1572) (Ae, 0). (An. ifz (n, *(inl (), n". on'), An.ifz (n, *(inr ()),n". en'))))

where 2 2 1 + 1 is the type of Boolean values.

On the other hand, we cannot write down a term corresponding to a fixed point of
the pure successor function; indeed, the type ¢ — ¢ is not even expressible in the language.
(We can write fix-, (Al*.1et” n <[in °(sn)) : “.. Not surprisingly, this denotes a diverging
computation in the intended interpretation of fix.)

Finally, we occasionally use the standard abbreviations:

F|_M12Q—>ﬂ1 Fl_Mglﬂlﬁﬂg
I'Fidg:8— 0 ' MyolM:a— By

TFis:8 Tro: Y

with idg € \2? .z, My o My & N> My (M), Lg & fixgidg, and n & s™z.

2.1.3 A denotational semantics

A program in our base language is a closed term of type °,; if in the semantics that term
is equivalent to “n for some n, the program denotes a successful computation with result
n; otherwise, a diverging computation. A denotational semantics gives the meaning of a
complete program by induction on its syntactic structure.

20 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Preliminaries We give a simple model of the base language in the setting of bottomless
cpos (also called pre-domains), i.e., complete partial orders not necessarily having a least
element. For completeness, we review the associated terminology and constructions.

Definition 2.1 A cpo A is a set equipped with an w-complete partial order C, i.e., such
that every countable chain ay C ay T - - - of elements in A has a least upper bound, written
Ll; ai. A monotone (= order-preserving) function from A to A' is called continuous if for
every chain (ai)icw in A, f(Las) = L f(a:).

A cpo B is called pointed if it has a least element Lg, i.e., if Lg C b for every b in
B. A function between pointed cpos B and B' is called strict if f(Lg) = Lg. We use
the name domain synonymously with pointed cpo.

There are a number of standard cpos and cpo constructions:

e base types. Any set, such as the natural numbers N, can be organized as a cpo
by equipping it with the discrete ordering, n Cn n' iff n = n'.

e unit type. The one-element set 1 = {x} is trivially a cpo. It is even degenerately
pointed, with 1; = x.

e products. A; x A, is the cartesian product of cpos, ordered componentwise (i.e.,
(a1,a2) Ca,xa, (a),d)) iff a; Cy4, o) and ay T4, af). If B; and B, are pointed then
SO 1S Bl X Bg, with J—leB2 = (J_Bl,_LB2).

e sums. A; + A, is the disjoint union of cpos (note: not the “separated sum” from
standard domain-theoretic notation),

Al + A2 = {(l,al) | a; € Al} U {(2,&2) | as € AQ}

ordered inject-wise, i.e., (i,a) Ca, 44, (i',d') iff i = ¢ and a T4, o'. Such a cpo is
in general not pointed, even if the summands are.

e function space. A; — A, is the cpo of continuous functions from A; to A,, with
fEaa, frifVa € Ay f(a) C4, f'(a). To minimize confusion with abstraction
and application in the language, we write Ax.p(z) and f(a) for abstraction and
application in the cpo model. A — B is pointed when B is, with L 4,5 = Az. Lp.

e lifting. For any cpo A, we define the [ifted cpo,
AL ={{a} [ac A U{D}

ordered such that {a} T4, {d'} if a C4 o/, and) C {a} for any a. We write up(a)
for {a} and L for (). Naturally, A, is pointed.

The strict extension of a function f : A— A’ is the function f7: A, — A’ given by
fT(up(a)) = f(a) and fT(L) = L. More generally, for any pointed B and f : A— B,
f¥: A, — B maps up(a) to f(a) and L4, to Lg.

e reflexive types. Finally, the CPO model allows us to construct solutions (up to
isomorphism) to recursive type equations. While we will not need this immediately,
it will become important in Section 3.2.1.

2.1. THE BASE LANGUAGE 21

Given a finite set I, we write [[;c; A; for the I-indexed product of cpos, i.e., the set
of functions p : I — U;c; A; such that for each i € I, p(i) € A;. Such a function is usually
called an environment. Environments can be naturally ordered pointwise, with p C p' iff
Vi e I p(i) Ea; p'(0)-

Finally, we write for the empty environment; p[i' — a] € [[;cuqsy Ai (Where ' may
or may not already be a member of I) for the function mapping i’ to a € Ay and every
other i € I to p(i); and p \ ¢ for the function p restricted to I\ {i}.

Base effects To give a semantics to our language in the predomain model, we first
need to choose a notion of base or ambient effects, to be denoted by the computation-
type constructor. The canonical example of such an effect is partiality, but the structure
of the later proofs is largely independent of the exact choice; we only need to show that
it satisfies a few simple relational properties.

We treat the case of partiality formally, and sketch how the setup generalizes to other
ambient effects where appropriate. We do not develop the semantics of ambient effects
in detail, however; where possible, it is more convenient to treat ambient effects more
uniformly, using the monadic translations to be introduced a little later.

A valid reason for considering more complicated base effects, however, is to model lan-
guage features that cannot be eliminated by a source-to-source transform. For example,
“true” non-determinism (as opposed to a finitary variant, which can be defined by a
backtracking transformation), can be modelled by a powerdomain or similar construct.
Similarly, any notion of I/O operations or other extra-linguistic effects must somehow be
accounted for in the semantics rather than at source level. We will not treat any of those
formally, however.

Definition 2.2 An ambient-effect monad for the cpo semantics is given by the following
data:

e A cpo constructor T, such that for any cpo A, T A is a pointed cpo.

A family of continuous functions €4 : A — T A.

An assignment to any continuous function f : A—TA’, a strict continuous function
fe:TA—=TA' This assignment must itself be continuous, i.e., satisfy the equality

(l_li fz)<> =L ff

Further, the components must satisfy the three monad laws:
feola=f &=idra [fCog’=(f"0g)°

Definition 2.3 The partiality semantics is given by taking TA = A, (pointed, as re-
quired), £(a) = up(a), and f° = fT (strict by definition). It is easy to check that the
monad laws hold for this triple.

(Incidentally, the requirement that f¢ be strict ensures that ffl : A = TAisamonad
morphism from the partiality monad to 7. We will phrase this in more general terms in
Definitions 2.11, 2.15, and 3.1, and in Example 3.2.)

22 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Semantics of types To every well-formed Fa « type, we assign a cpo, and to every
Fa 0 ctype, a pointed cpo:

L[a] = 6a

L[] =N

£ = 1
Loy % as] = L]on] x Las]
Loy + az] = Llay] + Leg]
Lla—= 6] = Lol = L[A]
LB x fo] = L[B1] x L[]

Ll a] = T(L[e])

Semantics of terms To every well-typed I' -a M : «, we assign an element L[M]’ €
(Izy:00)er Lla;]?) — L[a]?:

L[z](p) = p(z)
L[z](p) = 0
Ll[s M](p) = L[M](p) +1
LM, when L|M =0
Llifz(M, M, 2. My)](p) = { E%Mjgﬁfxv—wﬂ) when E%M%Ez; =n+1
LIONp) = =
LI(My, M)(p) = (L[Mi](p), £]IM:](p))
L[fst M](p) = a; when L[M](p) = (a1, as)
L[snd M](p) = ag when L[M](p) = (a1, az)
LLinl M)(p) = (1, £IM](p))
Lline MI(p) = (2, £[M](p)
LM |(p|lxi— a1]) when LM = (1,09
Llcase (M, 1. M1, 2-002)(p) { C%Mjgﬁxz '—>G2B when E%M%EZ% = E2=a2;
L[z. M](p) = Aa.L[M](p[z — a])
LIV M) = LI (LD ()
LIM](p) = &(L[M](p))
Lllet” x <= My in M](p) = (Aa. L[Ms](plz = a]))*(L[M1](p))
Llfixs M](p) = ||,(£IM](p))" (Legs)

(where for any i > 0, f* is the i-th iterate of f, i.e., f°(a) = a and f*"'(a) = f(f(a))).

Figure 2.2: Denotational semantics £?77§7_<>> of the base language

2.1. THE BASE LANGUAGE 23

Other examples can be easily adapted from the source-level monads to be presented
in Section 2.2.3; for example, we obtain a notion of ambient state by taking 7A =
N — (A x N), cf. Example 2.18. However, such Ly-definable ambient effects are more
conveniently dealt with at the syntactic level, through an explicit monadic translation.

Although the only explicitly accessible effect in our base language is divergence (via
fix), it is still useful to consider more general effect-structures in the semantics. For
example, a continuation semantics may well be of interest even for a language that does
not contain explicit control operators.

We can now give a denotational semantics of the base language (parameterized by
the choice of effect structure) in Figure 2.2. Let A be a finite set of type variables, and 6
be a mapping of type variables in A to cpos. The semantics then assigns to every A-type
Fa a, a cpo L[a]’ (pointed if a is computational), and to every A-term I' Fo M : «,
a continuous function L[M]’ from L[T]? = I;,.aner Lles]? to L]a]’. (We usually omit
f when it is clear from context. In particular, since there are no language constructs
for binding type variables, 6 stays constant throughout the semantic equations, and is
omitted throughout the figure to reduce clutter.)

Although the denotational semantics thus assigns meanings to types and terms over
arbitrary As (interpreting type variables by arbitrary cpos), for most purposes we will not
use this generality; syntactic substitutions of closed types for type variables suffice. The
only uses of the #-parameterized semantics are in showing that a syntactic monad may
be used to express a semantic one in Proposition 2.20, and when introducing recursively-
defined types in Section 3.2.1.

2.1.4 Generalized let

Definition 2.4 For any computation-type 3 of Lo, we define a derived term constructor
lets, the generalized let with typing rule

' M : "« ['Ne:abE My : 8
Fl_letcﬂ$<:M1 inMglﬂ

by induction on the structure of (3:

let:a T <= M1 in M2 = let’ z < M1 in M2
let] < M; in M, <>
lety .5, v < M, in M, (lety 2 <= M, in fst My,let; <= M, in snd M)
let;*)ﬂ T <= M1 in M2 =)\a“.let% T <= M1 in Mga

In the predomain semantics (for any 7), two particular consequences of this definition
are:

CIM) (ol al) when L]0 (p)
g when £[),](p)

§(a)

Clet; z < M, in My)(p) = { o

In the case of the partiality semantics, these are in fact the only two possibilities for
L[M](p). We thus obtain a natural generalization of the existing “strict extension”

24 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

let, in that M, can now be of a type interpreted by any pointed cpo, not necessarily a
directly lifted one. Note, however, that we still need to restrict M; to be of type “«, not
a general computation type: while strictness makes sense for functions By — By between
arbitrary pointed cpos, the strict extension operation can only extend a function A — B
to A, — B, not “strictify” an arbitrary function B; — Bs.

It is important to note the difference between, say, a computation returning a pair of
integers:

let,,,) <= M in “(z,5)

LX)

(where M is evaluated exactly once, yielding a pair of numbers), and the construction of
a pair of computations:
let, -, v <= M in ("z,"5)

(where M is evaluated when either component of the result is requested). Similarly, we
distinguish between the diverging computation of a function:
let?, -y y<= L in "(Ax.73) : (L =)

="
and a successful computation yielding a function which diverges for all inputs:

(let; -, y <= L, in (Az."3)) : "(t =)

2.1.5 Equational properties

When the semantics £ is fixed and clear from context, it is often preferable to reason
about programs at the level of terms, rather than explicitly about their denotations in
the semantics. More generally, we can often isolate a set of reasoning principles that hold
for a large variety of interpretations, then check that our specific semantics £ verifies
those principles.

As mentioned before, for our purposes, it will suffice to consider equational properties
of type-closed terms (i.e., with no free type variables), although the following should
extend naturally to type and term families over a nonempty set of type variables.

Definition 2.5 A signature L consists of a set of type and term constructors. An in-
terpretation £ of L assigns to every type ¢ o type of L, a set Val(a); and to every
L-term T’ =g M : « and finite function p with ¥(z;: ;) € . p(z;) € Val(ey), an element
Int(M)? € Val(w).

An equational theory £ for L is a set of typed equalities between (type-closed) L-
terms, ' = M = M' : a. A model of an equational theory is an interpretation that
satisfies all the equations of the theory, i.e., whenever I' = M = M' : « is provable and p
is a I'-environment, then Int(M)? = Int(M')? as elements of Val(«).

It is clear that the predomain semantics (for any notion of ambient effects 7) determ-
ines an interpretation of Ly, by taking Val(a) as the set underlying L]a] and Int(A/)?
as L[M](p), forgetting continuity of L[M] (as a function from environments to values).
We present an equational theory & for Ly and simultaneously argue that the predomain
interpretation is a model of that theory. For particular classes of T's, additional equations

2.1. THE BASE LANGUAGE 25

may be axiomatizable, for example that ambient effects are commutative or idempotent;
we do not consider such extensions, however.

In most cases, the axioms listed below can be immediately verified by referring to
the semantics; we often omit the details where they can be easily filled in. Also, since
equality judgments are always about type-closed terms, we omit the implicit -y in all
typing assumptions in the rules.

Lemma 2.6 In the semantics £ of Figure 2.2, for any terms M and M’, the following
weakening and substitution principles hold:

LIM](p) = LIM](p\ =) if « & FV (M)
LIM{M' [x}](p) = LIM](pla— LIM'[(p)])

Proof. Routine, by induction on M. []
Given this lemma, the verification of the following equations is straightforward.

Congruences, substitutions By the denotational assumption, our notion of equival-
ence is inherently a congruence wrt. all the term constructors of the language. We also
have general principles of closure under weakening and substitution:

I'FM=M:« Dx:onEM=M:« I'EM =M :a
Le:aonbFM=M:« I'E M{M,/z} = M'{M{/z} : «

which follow directly from Lemma 2.6:
L[M](p) = L[M](p\ z) = LIM}(p \ @) = LIM](p)
LIM{M,/=}](p) = LIM](plz — LIM1](p)]) = LIM T (plz — LIM{](p)])
= L[M'{M]/z}](p)

Natural numbers

'-M,: « [ax:oo = M « '-M:. I'-M,: « e M«
['Fifz(z, M,,x. My) =M, : « I'Fifz(sM,M,,x. My) = M{M/z} : «

C'EM:. oo M«
U Eifz(M, M'{z/x},2". M'{s2'/x}) = M'{M/z} : «

Unit type

'EM:1
FrEM={:1

(1 is a terminal object). Note that this equation means that there is only one wvalue of
type 1; there may well be different computations of that value, i.e., terms of type °1.
Already in the partiality case there are two such closed terms: termination (°()) and
divergence (L-1).

26 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Products
I'=M;: o I'E M, : I'EM:o; X oy
(-+symm) v
FFfSt<M17M2>:M1:Oé1 Fl-(fstM,sndM>:M:a1Xa2
Fl_Mllﬂl Fl_MQ:/BQ Fl_Mﬂlﬁﬂg

(+symm)

Fl_f5t<M1,M2>:M1:ﬂ1 Fl—(fstM,sndM>:M:ﬂ1>°<62

(Both are products in the categorical sense.) Although in the predomain semantics the
two notions of products are interpreted by the same object, we do not actually require
this in general.

Sums
Fl_MIOél F,xlzall—Ml:oz F,IQZCYQ'_MQZOC
'+ case(inl M, .Tl.Ml,.TQ.Mg) = Ml{M/.l'l} e’

(+symm)

PEM: o+ o Cooiog +as M«
['F case (M, x1. M'{inl z1/x}, xo. M'{inr 3 /2}) = M'{M/x} : «
(Sums are coproducts in the categorical sense.) Verification of the first law is immediate,
given Lemma 2.6. For the second, we rely on the fact that L[M](p) must be a value
of the form (7, a); the equation would not be sound if + were interpreted by, e.g., a
separated sum and M denoted a diverging computation. A useful consequence of the
above equations is that for any h (not necessarily denoting a strict function),

h(case (M, zy. My, x9.My)) = h(case(z,x1. My, xo.My)){M/z}
= case (M, zy.h(case (inl z1, x1. My, x9.My)), x9.h (case (inr xo, x1. My, x5.Ms)))
= case (M,Jfl.h,Ml,CEQ.hMg)

Function space

De:ab M, :f3 I'-M,: « 'EM:a—p3
I (Ax®. My) My = Mo{M,/x} : 8 'z Mzx)=M:a—f

(Categorically, & — [is an exponentiation of a and 3, but we do not require existence
of exponentiations with arbitrary codomain types, so the category of types and terms is
not quite a ccc.)

Computations
I'EM;:om Dxiayr B My o I'EM: «
I'F (let” z < "M in Ms) = Mo{M;/z} : "ay 'F(let"z<=Min"z) =M : "«

FI—M1:°a1 F,xl:all—Mgz°a2 F,x2za2|—M3:°a3
'k (let° To <= (1et° r1 <= M in Mg) in M3) = (let° r1 <= Mj in let” 29 < M5 in M3) D Tas

Each of these corresponds directly to one of the monad equations governing the
ambient-effect monad (7, £,%). For example, for the first one we verify:

Llet” x < "M, in My](p) = (Aa. L[M,](plz = a]))*(E(L]M1](p)))
= (Aa. LM] (plz = a)) (L[ML] () = LIM:](plz = LM](p)])

2.1. THE BASE LANGUAGE 27

Fixed points

CHM:3—0
FI_fIXBM:M(fIXﬂM)ﬁ

This suffices for evaluation, but for more general formal reasoning we will need additional
properties; the details of this are covered in the next chapter. (Actually, none of the
results in the thesis depend on the fixed-point equation being in &), so in principle we
could safely omit it without affecting correctness.)

We have thus established:

Proposition 2.7 For any ambient-effect monad, the predomain semantics Loy 1S a
model of &y, the equational theory generated by the inference rules listed above.

2.1.6 Encodings of implicitly-sequenced languages

In actual programming languages there is often no explicit syntactic or typing distinction
between values and general terms. Rather, the grammar of types and terms is of the form:

o = 1|1]oy Xoy|o1+ 09| 01— 09
E = ux|z|sM|()|(E\,Es)|fstE|sndE|inlE|inrE
| case (E,Jfl.El,CUQ.Eg) | e’ B | E1 E2 | fix £

with trivial and serious computations a priori occupying the same type.

Our explicitly-sequenced syntax simplifies formal manipulation of programs, but it
is somewhat inconvenient for actual programming. (However, in common practice, it is
relatively uncommon to see, e.g., applications of the form E; Ey; where one or both of
E, and E5 themselves have effects; in particular, evaluation of E; only very rarely has
effects). Nevertheless, typical programs in ML-like languages do have some sequencing
left implicit, and it would be too burdensome to force them to always be explicitly
sequenced.

Fortunately, we can treat the more compact general syntax as merely shorthand
for explicitly-sequenced terms, with programs first being desugared or elaborated into
sequenced form, and only then given an operational or denotational semantics. We
present two such elaborations, leading to either a call-by-value (CBV) or a call-by-name
(CBN) interpretation of the implicitly-sequenced language.

CBV Translation on types. If o is a type of the CBV language, (o) is a type of Ly.

28 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Translation on terms. If I' = E : o in the source language, then (I')Y = (E)Y : *(o)Y
in Lg:

v o

()" ="z
()7 = 2
(sE)Y = let"z < (F)Y in “(sx)
(ifz(E, E,,z. Ey))" = let” n< (E)Y in ifz(n, (E,)", z. (E;)Y)
(@) =0
((E4, Eq))Y = let” z1 <= (E1)Y in let” zy <= (E2)Y in “(z1,)

(inr E)Y = let” z <= (£)Y in “(inr z)

where for the CBV fix, 0 must be a functional type, so that (o) is a computation-type.
(We can actually also allow it to be a product of computation-types, if in the context
of mutually-recursive definitions we interpret x as the computation-product %.) The
explicit let(,)v is necessary because the type of F'is (0 = o)¥ = (o) — *(0)".

When E is syntactically a value V, we have (V)¥ = "M for some M. Thus, for
example, we get validity of beta-value reduction because

(N EYV)Y =1let” f <= (Az.E)Y in let" a<= (V)Y in fa
=let’ f<"(\z.(E)Y) inlet" a<="M in fa= (\z.(E)")M = (E)"{M/z}
= (E{V/x})*
Similarly, in general we have

2

(2. Ex)Y = (\z.let” f < (E) in fz) =" (E)

but when (E)Y ="M for some M, the equality does hold.

CBN A CBN interpretation gives a language essentially identical to PCF with product
and sum types. The type translation is now:

(" ="

* =1
(o1 xa2)" = (01)" % (02)"
(o1 +02)" = “((00)" + (02)")

2.2. MONADS IN A COMPUTATIONAL SETTING 29

Since the interpretation of every type is computational, we can form exponentials between
any pair of types exponentials, and thus the source language forms a ccc. When the
elaboration is composed with our predomain semantics, every type is interpreted by
a (proper) domain; in fact, for a partiality semantics, this gives exactly the standard
domain-theoretic model of PCF.

Translation on terms. If I' = E : ¢ in the source language, then (I')™ F (E)™ : (o)™
in Lo.

=]

(z

(z

(sE
(ifz(E,E,,x. E,

)
(¥
)

= T

let” z < (E)™ in *(sz)
" let(,) n <= (£)" in ifz(n, (E,)", = (E£5)"{"z/z})
P =90

=]

=]

((Er, E2))" = ((E1)" (E2)")
(snd E)* = snd (E)"
(inl E)* = “(inl (E)™)
(inr E)™* = “(inr (E)")

(case(E,x1.E1,2.E5))" = let(,ya v < (E)" in case (z,z1.(E1)", z2.(E£2)")
(Ao . E)™ = Xz (E)™
(EvE2)" = (E1)"(£2)"
(fixg) = fixgpn (E)"
where we now have fixed points at all source types, including (. Note also that numbers

are still represented by a flat domain (as opposed to the lazy natural numbers, which also
include partially-defined values, such as s).

)
)
)
)
)
)
(fst E)™ = fst(B)"
)
)
)
)
)
)

2.2 Monads in a computational setting

In this section, we present a formal definition of monads, suitable for a language that
already has a notion of ambient effects. This definition is phrased in terms of few basic
concepts, which we need to introduce first.

2.2.1 A framework for effects

The ultimate goal of the line of research presented here is a framework for computational
effects which makes it possible to describe effects in a modular way. Specifically, we want
the ability to add effects incrementally. the resulting language is specified by a sequence
of definitional translations, each one of which “translates away” one level of effects. For
example, we can have a language with exceptions and state, specified as a composition
of an exception-passing and a state-passing transform.

For now, however, we only consider the two-level case, with a notion of ambient effects
(possibly already a combination of several primitive ones), specified by the “semantic”

30 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

monad 7 used in the denotational semantics); and a focus effect, specified by a “syntactic”
monad T.

In order to define the notion of a monad that interacts in a suitable way with ambient
effects, we need some amount of structure in the language. The following provides what
we will need:

Definition 2.8 We say that a language (L, L) is a computational lambda-language (cll)
if it has a class of computation types 3, forming a (not necessarily proper) subset of all
types «, and with the following properties:

o There are computations at any type, and the set of computation-types is closed

under finite products and function spaces (with arbitrary domain):

o type (1 ctype [ctype « type [ctype
‘ar ctype 1 ctype By X 33 ctype o — (3 ctype

We write Fa « type and a [ctype for types over a set of type variables A, but
do not require L to assign any meaning to such types when A is nonempty.

o The syntax L includes at least the following terms and term constructors:

(z:a) €T 'FM:« I'FM "« Doiab My: 8
'Fz:« I'=°"M: ‘« Fl—let;x<:M1inM2:ﬂ

(that is, we have variables, computation-inclusions, and a generalized let), together
with the term constructors for products and function spaces. Again, we write I' Fa
M : « for a term over A, not necessarily given a meaning by L.

e In the semantics L, the following equations hold (between type-closed terms):

'-M;: « Iz:at My : (B '-M: "«
I't (lety z <= "My in My) = Mo{M;/z}: 3 I'E(let, s <=M in "z) =M : "«

FI—M1:°a1 F,xlzall—Mg:°a2 F,x2:a2|—M31,3
It (let% Ty <= (let3a2 T <= M, in Mg) in Mg)
= (let}, x1 <= M, in let; To <= Moy in Mg) : 5

together with the congruence and substitution rules, as well as the axioms for unit,
products, and functions (as listed in Section 2.1.5). And finally, the generalized let
must satisfy (not necessarily directly by definition) the equations in Definition 2.4.

For example, in any cll, for every type «, there exists a (computation-)type o — o —
‘a X “a. Note that this is a slightly stronger requirement than Moggi’s T-exponentials
[Mog89], which only guaranteed existence of all function spaces of the form a; — “ay.

A weaker notion would be to take the computation types to be exactly the set of
types of the form ‘. However, requiring computation-types to be closed under products
and (especially) function spaces will allow us to give a uniform treatment of definable
computational effects.

2.2. MONADS IN A COMPUTATIONAL SETTING 31

Proposition 2.9 Our base language (with any model L satisfying the equations in Sec-
tion 2.1.5) can be organized as a cll by defining lets inductively as in Definition 2.4.

Proof. We only need to verify that the equational properties of the generalized let hold
for the definition. The proof is a simple induction on 3. We show two sample cases; the
others are very similar.

letZ, , ="My in My = (letz,1 < "M in fst Mg,letzg2 x < "M in snd Mo)

1 X

i (fSt MQ{MI/QT}, snd MQ{Ml/[I)}) = (fSt MQ, snd M2>{M1/$} = MQ{MI/w}

let;_w Ty <= (let3a2 T <= M, in Mg) in My

= Aa.let"ﬂ T9 <= (letiaz r1 <= M in Mg) in Msa

a)\a.let% x1 <= M,y in let% To <= Moy in Msa

= Aa.let; 21 < M in (Aa.let"ﬂ x9 <= My in Msa)a
=)\a.let% x1 <= M,y in (let° L9 <= Moy in M3)a

a—f
:let;_w 1 < M, in let T <= Mo in M3

o

a—f

Other ways of constructing computation-types may be possible, depending on the
actual set of types available. For example, in a language with explicit polymorphism, it
seems natural to take 3 ::=--- | Va. 3, with the generalized let extended accordingly.

For lack of a better name, we say that a computational \-language is effect-free if
a and ‘a are actually the same type (with "M = M); in this case, the cll requirements
degenerate to those of a ccc. But effect-freeness should not be confused with existence
of a type o — o/ (with associated abstraction and application operations) for all o/ — we
can have the latter without the former.

(We do not actually work with any concrete effect-free languages; the concept is
mainly used to show that various definitions and results reduce to their more familiar
counterparts in the existing work on monads for computational effects.)

Remark 2.10 The essence of a generalized let at a computation-type 3 can be expressed
simply as existence of the function

(ﬂ:°ﬂ—>ﬂd:ef)\m.let°ﬂ:r<:minx

satisfying the equations
r:fEC(Tx)=a:p
and
m:“("B) F (g(let” x <=m in x) = (s (let” x <= m in ((zx)) :
(In category-theoretic terms, this says that (s is the structure map of an algebra (8, ()

for the monad underlying ° [MLT71, VI.2].) Specifically, given such a function, we can
define a generalized-let operator by

let; r< M, in My = Cﬂ (let° T < M in OMQ)

However, the generalized-let formulation is more convenient to work with, its equational
properties being a natural generalization of the existing let, as formalized in Defini-
tion 2.8. Remember also that our generalized let (or, equivalently, () is characterized
uniquely by Definition 2.4. []

32 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Among other applications, the generalized let-operation can be used to define a simple
“effect-theoretic” generalization of strictness, which in turn plays a key role in the defin-
ition of layerable monads.

2.2.2 Rigidity
Definition 2.11 We say that a term ' = M : 3 — 3" in a cll is a rigid function between
computation-types B and (' if

Iym: "B M(lety v <=m in) = (lety v <=m in Mx): 3

We write this as T =M : 3 5 3.

Rigidity is a purely equational property; as such, we distinguish between provable rigidity
(i.e., when the above equation is derivable in an equational theory) and semantic rigidity
(when the equation holds in a model); the former implies the latter.

As an immediate consequence of the definition, we get:

Lemma 2.12 An application of a rigid function can be “moved through” an arbitrary
let-binding:

FFM:p54 ' M : -« Cooiab My: 3
FI—M(letZ,:r<:M1 in MQ):(letZ,,a:<:M1 in MMQ):/BI

(i.e., the above is derivable in & and hence true in any model.)

Proof. Simple verification:
M (lety x <= M, in My) = M (lety x <= M, in let; y <= "M; in y)
= M (let; y < (let’y x <= M, in “M,) in y)
= (M (lety y <= m in y)){(let’; x <= M, in "Ms)/m}
=" (let} y < m in My){(let3; x < M, in "M,)/m}
= lety y < (let’y v <= M, in "Ms) in My
= letZ,, r < M; in let;, y<="Myin My = let;, r< M, in M M,

where T marks the application of rigidity of M.]

In particular, for any M’ : "« and rigid M : "o — °d/,
MM =M (let” z < M’ in “z) =let” z < M’ in M ("z)
Operationally, this says that an argument to a rigid function can be evaluated before
the call and the result coerced into a trivial computation, instead of the nominal CBN

evaluation for parameters of *-type. This is usually a property associated with strictness.
And indeed we have

Proposition 2.13 In the predomain model (for any T) of our base language, a rigid
function is necessarily strict. In the particular case of the partiality semantics, the con-
verse also holds, i.e., any strict function is rigid.

2.2. MONADS IN A COMPUTATIONAL SETTING 33

Proof. First, it is easy to check the following equational reasoning principle:
Dye:ab-M: (3
[E(lety o< Lo in M) = 15:

(because for any f, f° is strict, and L][Lg](p) = Lcsp). Now, let b : § — ' be a rigid
function. Then
hJ_ﬁ = h(let"B r< 1+ in J_B) = letg, r< 1+ in hJ_ﬂ = J_ﬂ/
Conversely, let h be strict and let m : 3. When TA = A, there are only two
possibilities for m:
® M = J_“ﬂ. Then
h(let; v <=min z) =h(letz v < Ly inx) =hlg= lg
=lety v < L in hx =lety v <m in hx
e m = b for some b : [
h(lety x <=m in z) = h(let; v < "b in x) = hb =lety v < "b in hx
=lety x<m in hx

In general, a function is rigid if it uses its argument exactly once, and before any other
serious computation. But in the particular case of partiality, a function like h = Ax. L
(= Az.let” y <2 in L in the model) also qualifies as rigid, even though it does not
explicitly reference its argument.

It is easy to check that identity and composition of two rigid functions are rigid; so
are fst, snd, \f. fa for any a, and Ax.let” a <=z in fa for any f. Likewise, if f; and f,
are rigid, so is Az. (f1z, fox), and if fa is rigid for every a, so is Ax.Aa. fax. These are
well-known properties of strictness, but also hold for general rigidity.

In the effect-free case ("o = «), every function is trivially rigid.

Remark 2.14 We can give an alternative, equivalent characterization of rigidity. There
is a natural functorial action of °, mapping a function f : 5 — (' to

ffooB— B = m.let” v <=m in °(f2)
Further, recall from remark 2.10 that for any [, we can define
Gp:B—=>p=Amletyx<=min x.
Then a function f : 8 — (' is rigid iff (g o f* = fo (s (i.e., if f is a morphism of the
corresponding “-algebras), because
(Csr o ffym = (y (let” <=m in *(fz)) = lety y < (let” v <=m in °(f)) in y
=lety v <=minlet; y<="°(fz) in y =lety x<=m in fz
while

(fogs)m=f(let x <=m in x).

34 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

2.2.3 Definable monads

The notion of a monad in a language (L, £) consists of both a syntactic and a semantic
aspect. Syntactically, we exhibit a type constructor 7- and term families n and -* in
L. Semantically, we establish that certain equational properties hold among these terms
in £ (but not necessarily in any particular equational theory for L). The separation
is important — we will eventually have to consider interpretations of the n and * in a
semantics where they do not necessarily satisfy the monad laws.

When Fa « type is a type over A in L and 6 is a substitution of (closed) L-types for
variables in A, a{6} is itself a (closed) type of L. In particular, a type constructor Fa = «
(where a may occur in «) can be identified with a type schema -,y o type. Analogously,
given a term I' - M : «, 0 determines a (type-closed) L-term I'{f} - M{6} : a{6}.

We can now give a formal definition of a monad (in the Kleisli-triple formulation):

Definition 2.15 Let L be a signature of a cll. A monad-triple T in L consists of the
following items:

o A computation-type constructor, -,y T'a ctype. We write T for Ta{a/a}.

o A term family of unit functions, given as instances of a term -,y N, :a—Ta. We
write ng for n,{a/a}.

o A term family of extension operators, f:a; — Tay ra a) f* 1 Tay — Tay (strictly
speaking, type-indexed as above, but we always omit the type indices).

Such a triple is an actual monad in the cll (L, L) if in L the following equations hold at
all closed type instances:

0. fray = Tas b f*: Toy = Ta.

1. fraon = Tagbk ffon, = f:a = Tas.

2. Bl =idpy : Tao—Tou.

3. frog > Tag,gas—Task ffog*=(f*og)" : Tay - Tas.

(Note that (0) is an equational condition like the others, because of its expansion in
Definition 2.11. Conditions (0-3) also cover equations between non-variable terms, such
as M (nMsy) = My Ms, because of closure under substitution of terms for variables.)

Actually the above definition is more akin to that of a monad constructor than of a
simple monad; the necessary information for composition is implicit in the representation
of the monad in the computational language. Nevertheless, we will refer to it as a monad
over L, since that is where the monad laws are required to hold — as opposed to being
provable in some equational theory for L. Of course, showing the monad laws in the
equational theory is sufficient to establish them for a model of that theory.

Note that condition (0) only makes sense because both T'a; and T'ay are required to
be computation types. When L is effect-free, the rigidity requirement is vacuous, and
the definition reduces to that of an ordinary monad.

Although it is important for our concrete language that rigidity implies strictness,
the rigidity requirement for f* is not merely present for domain-theoretic reasons; it

2.2. MONADS IN A COMPUTATIONAL SETTING 35

is crucial for composing effects in general, and would be present even in a purely set-
theoretic formulation of composable monads in a setting without general recursion. In
practice, natural monad extensions always seem to be rigid anyway.

Example 2.16 (Identity) Perhaps the simplest possible monad, definable in any cll, is
given by:
Ta="qa, n = Aa. a, ff=A.let"a<tin fa

The verification of the monad laws is straightforward. The identity monad is actually a
degenerate case of many others; for example, we obtain it by specializing the exception
monad below to xy = 0 (a type with no values, hence no possibility of raising an exception)
or the state monad to 0 = 1 (a type with one value, hence an information-free state).

|

Example 2.17 (Exceptions) Let x be some fixed type of exception names (exn in
SML). We then obtain a monad by:

Ta="(a+), n = Aa."(inl a), f* = At.let” v <t in case(v,a.fa,e.”(inre))

For completeness, we show the complete verification, since it is slightly more involved

than for an exception monad over an effect-free language:
f*(lety, T+ min) =let” v < (letf(al+x
=let” z <=m in let’ v <z in case(v,a.fa,e.’(inre)) = let},, z<=m in f*z

) & <=m in x) in case(v,a.fa,e.’(inre))

[fon=Xa.f*(na) = Xa.let” v <="(inla) in case(v,a.fa,e.”(inre))
= Aa.case(inla,a.fa,e.’(inre)) = Xa.fa=f

n* = At.let” v <t in case(v,a.’(inla),e.’(inre)) = At.let” v <t in “v = A\t.t = id

g o ff=X.g"(f"t) = M.g" (let” v <t in case(v,a.fa,e.(inre)))
= At.let” v <t in g* (case(v,a.fa,e.’(inre)))
= At.let” v <t in case(v,a.g* (fa),e.g* ("(inre)))
= At.let” v <=1t in case(v,a.g* (fa),e.let” w < "(inre) in case(w,b.gb,e.”(inre)))
= At.let” v <t in case(v,a.g* (fa),e.case(inre, b.gb,e.’(inre)))
= At.let” v <=1t in case(v,a.¢* (fa),e.”(inre)) = (Aa.g* (fa))* = (¢" o f)*

(Note that the type and term constructors are in the image of the CBN translation;
thus exceptions also form a monad in a language like Haskell, where the language-level
sum type is actually a “separated sum” in domain terminology.) [

Example 2.18 (State) Let o be any type. Then the o-state monad is defined by:
Ta=o0—"(axo), n = Aa.As. (a, s), [*= At As.let” (a,s') <tsin fas'
Again, the verification is fairly simple:

f*(let},, < m in x) = Xs.let” (a,s') <= (let? -
= Xs.let” (a,s') < (let?(alxa
= MXs.let” z <=m in let’ (a,s') < zsin fas' = As.let" z<=m in f*xs
=letr,, z<=min f*x

axo) TEM N)5 in fas'

) & <m in zs) in fas'

36 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

fon=2Xa.f"(na) = Aa.rs.let” (a,s’) < [Xs."(a, s)]s in fas'
= Xa.As.let” (a,s') < (a,s) in fas' = Aa.As. f(fst (a,s))(snd (a,s)) = Aa.As. fas
=Xa.fa=f

n" = At.Xs.let” (a,s') <ts in [Aa.Xs.(a, s)]as’ = At. As.let” (a,s') < ts in “(a,s')
=A.As.let" p<=tsin p=A.As.ts=At.t =id

gioff=X.g"(f"t) = At.g" (As.let” (a,s1) < ts in fas))
= At. As.let” (b, s9) < (let” (a,s1) < ts in fasy) in gbssy
= At. As.let” (a,s1) < ts in let” (b,s2) < fas; in gbsy
= Xt. As.let” (a,s1) <ts in g*(fa)sy = At. As.let” (a,s1) <ts in [Aa.¢* (fa)]as;
— Qg (@) = (9" 0)"

Although most practically useful monads over (Lg, £) are actually monads in any
model of the equational theory &, there are two important reasons to only require the
monad laws to hold with respect to specific interpretations. First, since the monad
components may be defined using fix, it can be arbitrarily hard to show that a given
monad-triple is actually a monad; certainly &, alone will not always be sufficient. We
only need & to validate a few equational properties that will be used frequently in the
proofs later; the results do not rely on the monad laws for particular monads being
provable in &,.

The second, and more fundamental, reason is that certain very useful notions of
computation do not actually form monads in the presence of arbitrary ambient effects.
Perhaps the best known such example [KW93] is the list monad T'a = “(« list), used
to model nondeterminism. It turns out to only be a monad if the ambient effects are
commutative, i.e., if the equation

let” 1 < M; in let’ o < M, in M =let’ ©9 < My in let” 1 < M; in M

(where neither z; occurs free in an M;) holds in £. Partiality satisfies the above equation,
but many other possible notions of ambient effects, such as state or continuations, do not.
Other examples of “fragile” monads require the ambient effects to also be idempotent, a
property shared by few effects other than partiality.

Thus, distinguishing between satisfaction of the monad laws in the equational theory
and in a specific model (such as the partiality semantics) makes our results applicable to
list-like monads as well as the “robust” ones (such as exceptions or state), that satisfy
the monad laws for any notion of ambient effect.

Let us finally note that given a semantics that also assigns a meaning to type-open
types and terms, a stronger definition of monad is possible:

Definition 2.19 When T is a monad in (L, L) where L is the predomain interpretation
for any T, T is said to be uniform if its equations also hold for type-open terms. That
18, for each of the four monad laws I' = My, = M, : a in Definition 2.15, if we allow the
types and terms to contain type variables from A, 6 assigns a cpo to each a € A, and
px; € Llag]? for each (z;: ;) € T then L[M,]%(p) = LIM:]%(p) as elements of L][]°.

We can then state the simple consequence:

2.3. EXTENDING THE LANGUAGE WITH EFFECTS 37

Proposition 2.20 Let T be a uniform monad in the predomain semantics (for some
notion of ambient effect). Then the following determines a new ambient-effect monad in
the sense of Definition 2.2:

TA= E[[Ta]]aHA §A _ E[[na]]aHA(.) fo _ ,C[[l‘*]]al i—)Al,azHAz(.[x'_)f])

Proof. We first note that because computation-types were interpreted as pointed
cpos by L, T A is pointed as required. Similarly, because arrow-types are interpreted as
continuous-function spaces, £4 and f° are continuous; and because L][M] is a continuous
function from environments to values, so is the mapping f — f°. Finally, by Proposi-
tion 2.13, we get strictness of f° from rigidity of z*. The verification of the monad laws
is also straightforward given uniformity of T. |

However, usually there is no need to modify the semantic characterization of ambient
effects explicitly; we can define a language with a new notion of ambient effects via
iterated monadic translation, in which case it is sufficient for the monad laws to hold
only for type-closed instances.

2.3 Extending the language with effects

2.3.1 The monadic translation
We now show how a monad in a language allows us to define a new language with a

richer set of computational effects.

Definition 2.21 Let T = (T,n,-*) be a monad-triple over a cll signature L. Then the
signature LT consists of L extended with a new computation-type constructor,

Fa a type
Fa 'a ctype
and new term constructors:

Fl_MlicOél F,.I‘ICYll_MQZIOCQ
Fl—let°x<:M1 in MQZIOCQ

'-M:a« I'EM :'ay Tyziab My:'ag
'='M: '« I'Flet' v < M, in M, : 'y

T'HM:'a I'HM:Ta
TFIM]:Ta TFpM): '«

(Note that we overload the syntactic construct let” to represent two distinct term con-
structors: the existing one, where Ms : “as and the new one defined above, where My : 'as.
It will always be clear from context which one is meant.)

38 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

There are now two basic notions of computation: the original “« (e.g., partiality)
and 'a which also includes T-effects (e.g., raising exceptions). As before, the set of
computation-types is closed under products and function spaces.

Because we have extended the signature (rather than merely the unstructured set of
types), every type constructor of L is still a type constructor of L. In particular, for
any LT-type o, T is a well-formed LT-type. Generalized let (still for binding results of
“-computations) is also definable at all computation-types, with the new clause for letr,
using the mixed-level let.

Reflection (p(AM)) and reification ([M1) establish a correspondence between opagque
and transparent representation of computations: opaque computations may only be con-
structed and sequenced using ' and let', while transparent ones may be manipulated using
the full range of operations available on the type T'«, such as injections, case analysis,
etc. See Example 2.26 below.

Together with the extension, we define a canonical or definitional translation of the
extended signature back into the original one.

Since we will be dealing with several source-to-source translations, let us introduce
the following shorthand:

Definition 2.22 (Translation convention) When specifying a translation [-] from a
signature L to L' that share a lot of operations, we generally omit clauses of the form

[[QO(XI; cee ;Xn)]] = 90([[X1]]7 SRR [[Xn]])

where the construct ¢ in L is translated to the same-named construct in L'. (We do
occastonally include selected clauses of this form for emphasis or clarity; but no formal
distinction should be attached to whether a clause is included or not.)

Definition 2.23 The monadic translation [-], maps types and terms of L' to their
L-counterparts, such that:

e For any Fa a type in LT, Fa [@], type in L.
e For any Fa B ctype in LT, =a [B], ctype in L.
o Foranyl o M :a in L", U], Fa [M], : [a], in L.

The translation on types merely replaces '« with its definitional expansion:

[[Ia]]T = T[[a]]T

Other type constructors are left intact, as are type variables (i.e., [a], = a). Similarly,
the term translation expands away the new term constructors:

[[IM]]T = U[[M]]T
[let” x <= M, in M, (:'a)], = letyp,, =< [Mi], in [M;],
[let' < M, in M), = (A\x.[My],)"[Mi],
[[/’I’(M)]]T = [[M]]T
[[[M]]]T = [[M]]T

with variables and other term constructors of L translated into themselves (but with any
type-annotations expanded according to the type translation).

2.3. EXTENDING THE LANGUAGE WITH EFFECTS 39

Although the monadic translation is simply a definitional extension, rather than a
full syntactic transformation, we adopt the translation formulation to get an explicit
syntactic handle on the expansion. In particular, when we later consider alternative
ways of translating away the new constructs of LY, it will be convenient to have an
concise notation for referring to the different expansions.

Note also that because type and term variables are translated into themselves, the
translations are compositional in the sense that

[e{o//a}], = [a] {[e'],/a} and [M{M'/x}], = [M] {[M],/=}.
In particular,

[Tol, = [Tafa/a}], = [Ta],{[a],/a} = Ta{la],/a} = T[a],
and likewise for the term translations of the monad components: [1,], = 7., and
[f*], = f* (with the implicit type-tags on -* appropriately translated).

The translation of the “mixed let” may need a little explanation. Consider the case
where T is the state monad, and the base effect is partiality. Then if in the extended
language, I' = M; : "oy (i.e., evaluation of M; may diverge, but has no state effects),
[Mi], : °Joa], does not take a state argument, nor does it return a new state. On the
other hand, when I',z: v = My : 'ay (i.e., My may both diverge and access the store),
[Ms], : 0 = “([ae], X o), so the translation of M, should be passed the current state,
and the new state it returns is the state returned by the whole let-expression. The
appropriate state-passing translation is therefore

[[let° r < M; in MQ]]T = As.let” z < [[Ml]]T in [[MQ]]T S

which is precisely what the generalized let expands to.
More generally, it is easy to check the following derived rule, where (3 is an L’-
computation type (i.e., may contain '):

[[let; r < M; in Mg]]T = letﬁﬂ]]T T <= [[Ml]]T in [[MQ]]T

In the definitional translation, the opaque and transparent 1T-computations are rep-
resented by the same underlying L-type; consequently, the term translations for reflection
and reification are trivial. Later, when we consider a different representation of effects,
the two operators will have more interesting definitions.

This syntactic translation also determines a semantics:

Definition 2.24 Given a semantics L for our base language L, we obtain a semantics
LT of the extended language L' by taking

L'e])" = L[],]" and £7[M]° = L][M],]’

In fact, this semantics extends the standard monadic semantics for the new ambient-
effect monad induced by T:

40 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Proposition 2.25 Let L be a predomain semantics of Ly with some underlying ambient-
effect monad, T a uniform monad in that semantics (Definition 2.19), and let |-| :
Lo — LY be the syntactic transformation replacing every ° in types and terms with '.

Then LY]|-|] = L7[-] (for types and terms) where Ly is the monadic semantics of
Lo for the ambient-effect monad T given by interpreting in L the components of T, as
shown in Proposition 2.20.

Proof. Induction on the structure of the types and terms. Most cases are immediate;
for computations, we get:
LM’ = L7l = LI’ = £[T[la]],]’ = LLTa){[lo],/a}]’
= L[Ta]’l= £lllelrl’] = prra)e— £lllelrl® & prpajacs £700l’ = T2 [a]?)
= L7[o]’

LEMIP () = LT IMIP () = LI MIL T (0) = LB, 1ML (0)
= L1, 1O EMM LY () = Ll el /a1 (o) (LM 1)
= L] ELL Y o) (LML 1 () = L] S0 () (LTIML T (0)
2 L[TV (@)L MY () = g e (ErIMY) = £7 1M (0)

The case for let® © < M; in M, is similar. [|

Similarly, given an evaluation semantics for £ (i.e., a computable partial function
Eval, from closed L-terms of type °t to natural numbers), we get an evaluation semantics
for L1 by taking Evalyr(M) = Evalz([M],). (We can do this directly, regardless of T,
because the T-translation of a term of type °. is itself a term of type °..)

It is worth remarking that when 7' is the “identity” monad (Ta = ‘o, n = Az."x,
f*t = let” a <t in fa), the translation effectively replaces all occurrences of ' in the
source term with °:

[[IM]]T = ()‘x'ox) [[M]]T = D[[M]]T = [[DM]]T

[[letl T <= M1 in MQ]]T = ()\.CL' [[MQ]]T)* [[Ml]]T =let’ a < [[Ml]]T in ()\.CL' [[MQ]]T)G
=let’ v < [[Ml]]T in [[MQ]]T = [[let° T <= M1 in MQ]]T

so when we later exhibit a relation between the T-translation and a monadic translation
for a continuation monad, we will get a relation between direct and continuation-passing
style in the presence of arbitrary (sufficiently well-behaved) ambient effects by simply
taking T to be the identity monad.

Defining 7T-specific operators The reflection and reification primitives allow us to
define the meanings of effectful terms as abbreviations within the extended language,
instead of through additional clauses in the translation equations.

Example 2.26 When 7 is the exception monad, we can define the usual ML-like excep-
tion primitives
'EM:'"y I'-M '« Doe:x - M : '«
[raise M : '« [+ try M; handle z = M, : '«

2.3. EXTENDING THE LANGUAGE WITH EFFECTS 41

as follows:

raise M % let' e = M in pu(*(inre))
try M, handle x = M, < let’ ¢t < [M,] in case(t,a.' a, z.M,)

That is, to raise an exception, we explicitly construct its sum-representation as a value
in the right inject, then “activate” it by reflecting it into the process of computation.
Conversely, to handle a potential exception in a computation M, we first reify M; and
then inspect it, taking the appropriate action for either of the two possibilities (normal
or exceptional value).

And in fact, expanding the definitions using the monadic translation gives the expec-
ted results:

[raise M], = [let' e<= M in p((inre))], = (Ae.[u("(inre))],)* [M],
=let” t <= [M], in case(t,e.[(inre)],,e.”(inre))
=let” t <= [M], in case(t,e.”(inre),e.”(inre))

[try M, handle z = M), = --- = [let” t < [M;] in case(t,a.'a,z.M>3)],
=let” t < [[M;1], in case(t,a.['a],,z.M2)
= let” t <= [M,], in case(t,a.”(inla),z.[M2],)

2.3.2 Induced equational theory

The translation induces a natural equational theory on terms of the extended language:

Definition 2.27 Given an equational theory £ (including the cll azioms) for L and a
monad-triple T in L, the equational theory ET for LT consists of € extended with the
following rules (where we write ® for * and 8 for'):

I'EM:om I‘,x:all—Mg:ag
I'F (letf ¢ <00, in M) = My{M;/z} : Doy

(1<4)

't M: B
I'F (letd z < M in Oz) = M : B

' M, :oq Ixyiag B My :042 [xorag H Ms :a3

, . i<j<k
rr (let Ty <= (let T <= M, in Mg) in Mg) (==
= (let r1 < M in letl T9 <= Ms in M3) :a3
'-M:'a '-M:Ta
PEup(lM]) =M : '« PEuM)]=M:Ta
' M : o Dzioag F My 'ag
't [let’ = <= M, in MQ] = (let}a2 T <= M, in [MQ]) :Tag
'-M:« I'-M :'oy Dyziap - Ms i 'as

Fr'FM]l=nM:Ta I'F Qet' 2 <= M; in M1 = (Az. [M2])* [M1] : Ty
(The instance i = j = k = 0 in the first three rules is already part of £.)

42 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Proposition 2.28 The equational theory is sound for the monadic translation, in the
sense that if M = M' is provable in ET, then [M], = [M'], is provable in & extended
with the monad laws for T (which may or may not already be provable in €). This again
implies that L[[M],] = L[[M'],] in any model L of £ in which T is a monad.

Proof. Simple equational reasoning, using Proposition 2.9 (the derivable equational
properties for the generalized let). For example,

[let” z <= "My in My : ‘o], =letyy, ;=< [Mi], in [Ma], = [M:] {[Mi],/=}
= [Ma{M:/z}],

llet' « <M, in My], = (. [Ma],)* (n[M],) = Oha. [Ma],) [Mi,
= [Ma] A[Mi], o} = [Mo{ My [},

[[let° T9 <= (let° T <= M, in Mg) in Ms : Iag]]T
= let g, @2 < (let” o1 <= [Mi], in [Ma],) in [Ms],
= let}[[asﬂT Tl <= [[Ml]]T in let}[[asﬂT To <= [[MQ]]T in [[Mg]]T
= [[1et° r1 < My in let” 9 < M5 in Mg]]T

[[let' To <= (let° T <= M, in Mg) in M3]]T
= ()\372 [[M?’]]T)* (let}[[(m]]T T <= [[Ml]]T in [[MQ]]T)
= let}[[asﬂT Tl <= [[Ml]]T in ()\IQ [[M3]]T)* [[MQ]]T
= [[1et° r1 < My in let' 9 < M5 in Mg]]T

[[[IM]]]T = [[IM]]T = U[[M]]T = [[UM]]T .

The first three rules of Definition 2.27 say that let-elimination and let-flattening are
valid even for mixed levels, as long as the types match. That is, there is a single notion of
computation-sequencing shared by all effects; the level-tags merely keep track of which
kinds of effects can happen where.

The next two express that reflection and reification are exact inverses. For example,
in the exception case, there is a one-to-one correspondence between “dynamic”, effectful
computations of type 'a, that may raise exceptions, and “static”, exception-free values
of type “(a + x).

The remaining three equations show that [-] acts as a “shallow” version of the mon-
adic translation. According to the first one, terms with ambient effects only are unaffected
by reification for the focus effect, and may hence move across a [-]-barrier freely. For
example, if the ambient effect is state and focus effect is exceptions, a computation that
cannot raise an exception can be moved out of a try-handle. (The equation is necessar-
ily satisfied when the base language is effect-free, because in that case let” is simply a
substitution of M; for x in M>.)

The final two rules make it explicit how T-computations are realized in terms of the
monad operations, enabling us to reason “locally” about propagation of effects entirely
at the extended-language level.

Moreover, for all the rules it is the case that when the LHS is type-correct, then so
is the RHS. Thus, we can always use the equations from left to right without worrying
about type preservation.

As a simple consequence of the proposition, we get:

2.4. RELATED WORK 43

Corollary 2.29 Let |-| : Ly — LE be the translation replacing every occurrence of ° in
types and terms by '. Let L be a model of &. Then the interpretation E‘Oﬂ of Ly, given

by EBTl[[—]] = LL|-1] is also a model of & (and hence in particular itself a computational
lambda-language).

Proof. The equations for numbers, products, sums, functions, and fixed points follow
immediately from the translation. For computations, take ¢ = j = k = 1 in the first
three rules of €7 and use Proposition 2.28. []

Note also that €7 implicitly asserts that (T, n,-*) form a monad in L, because it is
easy to see that the equalities

n = Aa.['al
fr= Atllet' a <= p(t) in p(fa)l

are derivable, and the monad laws for n and f* then follow from the equations, e.g.,

[(na) = (At.[let' a <= p(t) in p(fa)l) ['al = Oet' a <= p('al) in p(fa)l
=[let' a<"'ain pu(fa)l = [u(fa)l = fa

and for rigidity of f*:

f*(let},, <« M in z) = [let' a < pu(let}, < M in z) in u(fa)l
= [let' a < p(lety, =<« M in [p(z)]) in p(fa)l
= [let' a < p([let” z <= M in p(z)]) in p(fa)l
= [let' a < (let” x < M in p(z)) in pu(fa)l
= [let" z < M in let' a < p(z) in u(fa)l
= let},, < M in [let' a < p(z) in p(fa)]l =lety,, v« M in f*z

Example 2.30 We can use the extended-language equations to verify the following n-
like rule for exceptions:

(try M handle z = raise 'z)
=let” t <= [M] in case(t,a.'a,z.let' e<="z in pu(“(inre)))
= let” t « [M] in case(t,a.u(['al), z.u("(inr x)))
=let” t <= [M] in case(t,a.u((inla)), z.u("(inrz))) = let” t < [M1 in u()
= u(let” t < [M] in p(t)]) = p(let” t < [M] in [p(t)]) = p(let” t < [M] in °t)
=u([M])=M

This identity is crucial for pattern-matching exception handlers, where an exception
is implicitly re-raised if it does not match any of the clauses in a handler; we want to
ensure that such a handler has no effect on the result of the program.]

2.4 Related work

There has already been much work on combining monadic effects, e.g., [Mog90, KW93,
CM93, Ste94, LHJ95, Esp95], of varying degrees of generality and formality. None of these
approaches, however, were particularly concerned about nonstandard implementations of

44 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

the newly-specified effects; effectively, they all interpret programs using the modular
specification directly, often at a significant cost in execution time.

It seems likely that the framework outlined here for the two-level case generalizes to
multiple, explicitly-specified effects, each with a full reflection and reification operator.
However, the primary constraint was not only to define a workable notion of layered effect,
but also to ensure that it could be simulated in a strong sense by continuation-passing,
and further by escapes and state, as detailed in the next two chapters. Consequently,
any broader modularity aspects of the approach have not been properly developed.

Chapter 3

Relating Effects

It is part of continuation folklore that continuations provide a very general notion of
effects, in that many others (such as partiality, exceptions, or state) can be expressed as
a continuation semantics with a suitable answer type. In the presence of higher-order
functions, however, proving correctness of a continuation-based simulation is decidedly
non-trivial [Rey74a, Sto81, MW85]|, even for a “purely functional” language with parti-
ality as the only notion of computational effect.

In this chapter, we will consider the relationship between a direct and a continuation
semantics for arbitrary monadic effects. In fact, the continuation semantics can itself
be conveniently cast in the monadic mold, making the result a particular instance of
simulating one monadic effect with another. However, the continuation-passing case is
especially complicated, and a significant part of the proof consists of establishing the
general framework and necessary lemmas for this case.

Very broadly, the general idea is as follows: assume we have two monads T and U
over a base language, where U is in a suitable sense “more general” than T. We can
then give two different translations from L? to L: the original monadic translation for T
and a variant translation using U-representations of T-effects. Moreover, we can exhibit
a type-indexed family of relations <, with the property that the two translations of an
LT-term of type « are related by <,, and such that the relation at base types is the
identity. Thus, the two translations induce the same evaluation semantics.

3.1 Simulating monadic effects

In this section, we present a general principle for relating effects, introduce the vari-
ant translation, and argue informally for its correctness. The actual simulation proof,
however, will be postponed until Section 3.3.

3.1.1 Monad morphisms

A natural way of relating two monads consists of exhibiting a function mapping one to
the other:

45

46 CHAPTER 3. RELATING EFFECTS

Definition 3.1 Let T = (T,n,-*) and U = (U,¢,-%) be monads over a cll (L,L). A
(definable) monad morphism from T to U is a type-indezed family of L-terms,

'_{a} ia:Ta—>Ua,

respecting the monad structure, i.e., such that the following holds in L for all closed
L-types:

0. Fiy:Ta = U.
1. Figong,=¢q:a—Uqa.

2. frag > Tagbig, 0 f*=(ig,0 f) 0, : Tay = Uay.

We can think of i as converting 7-representations of effects to U-representations. Con-
dition (0) is a technical constraint, ensuring essentially that the conversion of focus effects
respects any underlying ambient effects (for example, a nonterminating 7-computation
must be represented by a nonterminating U-computation). More explicitly, (1) says that
a trivial T-computation is mapped into a trivial U-computation. Condition (2) may look
somewhat arbitrary at first, but note that it can be written in the form of a conditional
equality emphasizing the parallel to (1):

ia20f:g:>ia2of*:g+0ial

(where f:a; — Tas and g : iy — Ucw). It expresses the requirement that if ¢ is the U-
counterpart of an a;-parameterized T-computation f, then T-extending f and converting
its output is equivalent to applying the U-extended g to the conversion of the input.

Example 3.2 For any monad U, the function family
he :‘a = Ua = At".1et;,a<tinca

is a monad morphism from the identity monad I (Example 2.16) to U:

h(let” z < m in z) =lety, a < (let” z < m in z) in ca
=let;, v<minlet; , a< 2 in ca =let;, x < m in hz

h(na) =h("a) =let;,a<="ain ca=ca

h(f*t)=nh(let" a; <t in fa;) =let” ay < (let” a; <t in fa;) in cay
=let’ a; <t in let” ay < fay in eay =let” a1 <t in h(fay)
=let"a;<tin (ho f)T(ca;)=(hof) (let°a; <t in cay) = (ho f)"(ht)

In fact, it is the only such morphism. This is immediate when the base language is
effect-free (condition (1) with n = id), but it also holds in general: Suppose h': ‘o — U«
is another monad morphism from I to U. Then

h't =h'(let" z <t in “z) =let},, v <t in h'(°z) =let},, z < in h'(nz)
=let;,r<tinex = ht

3.1. SIMULATING MONADIC EFFECTS 47

This captures the intuitive notion that any effect can simulate the absence of effects,
which we would probably consider a minimal requirement for any notion of effect simu-
lation. [

A more interesting example is provided by the following:

Example 3.3 For simplicity, assume that our base language includes a term constructor
+ : ¢ X ¢ — 1, satisfying equations 0 + M = M +0 = M and M; + (M, + M;) =
(M, + M) + Mj in the model, i.e., such that (¢,0,+) forms a monoid. (We could of
course have defined an addition operator in the existing language using recursion, but
that would necessarily give it the type ¢ X ¢« — °, cluttering up the terms with explicit
sequencing of the additions. Still, it is easy to check that everything does work out
correctly even for a defined +.)
Then the following determines a monad, usually called the complexity monad:

Ta = “(axt)
n = Aa."(a,0)
f* = At.let’ <a1, ’ﬂ1> <t in let’ <CL2, ’ﬂ2> = fa1 in °<a2, ny + n2>

Here, a computation of type « is represented by a base-computation yielding a value
of type « together with some notion of the cost involved in computing it, such as the
number of floating-point operations performed (perhaps using an encoding of floating-
point numbers in terms of ¢), or the amount of I/O (assuming our ambient effects include
some notion of communication with the outside world). A trivial computation, na,
resulting from viewing an already given value as a computation, has zero cost; the cost
of evaluating f*t is the sum of the cost n; of computing the value a; of ¢t and the cost
no of evaluating f at a.

The complexity monad works by summing the complexities of each subcomputation.
But if most subcomputations do not invoke the operation being counted, this is poten-
tially wasteful, since we will be adding zeros most of the time. Even more important,
complexity is a fairly “ad hoc” monad, so that we will most likely have to perform an
actual translation to get a language with the corresponding monadic effects.

There is an alternative way to keep track of complexity, however: maintain a running
total, which is updated only by the cost-incurring operations themselves, and passively
transmitted everywhere else. We achieve this using the (-state monad (Example 2.18):

Ua=1—"(ax1), e = Aa.\s. (a, s), [T =Xu.)s.let” (a,s') <us in fas'

We can then represent a computation of a with complexity n as a function adding n to
the current total, in addition to returning a. And in fact,

o = AT As". let” (a,n) <t in “(a,s + n)

is a monad morphism from T to U.]

48 CHAPTER 3. RELATING EFFECTS

We now formally define a very important class of monads:

Definition 3.4 Let o be any computation-type. Then the continuation monad with an-
swer type o, K, = (K,,&,") is given by:

K,a = (a—0) — o, e = M\a.\k.ka, [T =M. k.u(Na. fak)

It is easy to check that this actually determines a monad. For rigidity of f*, we have:

[(lety, < m in z) = \k.(let;,, z < m in x) (\a. fak)
= Ak.let, v <=m in x(Xa. fak) = Ak.let, x <=m in f*zk
=lety, v <=min ffz

Satisfaction of the other three equations is completely straightforward.
The importance of continuation monads stems from the following property:

Lemma 3.5 Let T = (T,n,-*) be a monad in a computational A-language, and let
be an arbitrary type (not necessarily computational). Take U as Ky, the continuation
monad with answer type T'v. Then the family of functions

i : Tao— Ua = X" N7 k5 t
forms a monad morphism from T to U.

Proof. Straightforward verification:
i(lety, t < m in t) = M.k (lety, t < m in t) =1 Mr.let}, ¢ < m in k1
= Ak.let;, t<=m in itk =let}, t <m in it
i(na) = Me.k* (na) =" Me.ka =ea
i(F5 1) = M k™ (F5 1) =T M. Qa k* (Fa))* t = Me.it(Na.k* (fa)) = Mk.it(ha.i(fa) k)
= M.it(Aa.[Aa.i(fa)]ak) = (Na.i(fa))" (it) = (io)" (it)

(where the equations marked with T signify application of the monad laws of T from
Definition 2.15). ™

When T is the identity monad, this (necessarily) degenerates to an instance of Ex-
ample 3.2. More interestingly,

Example 3.6 For exceptions, Ta = “(o + X), the monad morphism from T to Ky,
specializes to:

o = ACTONETO let” v <t in case (v, a.ka,e.(inre))

Recall that the T-representation of a successful computation of type « is an included
value a in the left inject of a4 x. The corresponding continuation-passing computation
should immediately apply its continuation to a. And in fact, we have

i("(inla)) = Ak.let” v <="(inl a) in case (v, a.ka,e.”(inre))
= Ak.case(inl a,a.ka,e.’(inre)) = Ak. ka

3.1. SIMULATING MONADIC EFFECTS 49

Similarly, a computation that terminates with a raised exception e is represented by a
value in the right inject; the continuation-passing analog simply discards the current
continuation and returns the exceptional value as the result:

i(“(inre)) = Ak.let” v <= “(inre) in case (v, a.ka,e.”(inr e))
= Ak.case(inre,a.ka,e.”(inre)) = Ak."(inre)

And finally, a nonterminating computation is represented by a non-terminating compu-
tation (for any continuation):

iL = Mk.let” v< L in case(v,a.ka,e.”(inre)) = A\k. L .

This monad morphism from an arbitrary monad T to a continuation monad Kr,
will form the core of our simulation result. However, the fact that the continuation-
based representation is in a sense parametric in the choice of v cannot be captured
equationally in our setting. (It might be possible in a language with Fs-polymorphism
[Gir72, Rey74b].) For the formal proof in Section 3.3, we will therefore need a stronger,
relational characterization of i to accurately express this property.

3.1.2 The variant translation

In this section, we show how to actually exploit the existence of a monad morphism
(with some further properties) to simulate one kind of effects with another. Specifically,
we will show how to interpret our T-enriched effect language in terms of U-effects. The
exposition is slightly simplified in that we consider only a single semantics for the base
language — the actual proof in Section 3.3 distinguishes between a specification and the
implementation semantics, mostly to make get a result of sufficient strength to support
Chapter 4. However, the formal definitions we give are general enough for both cases.

As motivated in the previous section, monad morphisms give us a simple way of relat-
ing two notions of effects. Nevertheless, a monad morphism by itself does not guarantee
that U-effects simulate T-effects in any useful sense. For example, for any T there is a
(unique) monad morphism from T to the degenerate monad, (Ua = 1,6 = Xa.(), f+ =
idy). To get a proper simulation, we also need a way to recover the T-representation of
an effect from its U-representation:

Definition 3.7 Let i be a monad morphism from T to U. A monad retraction at type
a is a left inverse of iy, t.e., a term j, : Ua — Ta such that j, o1, = idp,. We say that
such a retraction is schematic if all the j, are themselves members of a term family, i.e.,

ifja = ja{a/a}'

We usually expect at least j, to exist; this gives us a way of extracting meanings of
complete programs. In many cases, however, it is easy to find a suitable inverse at all

types:

Example 3.8 For the complexity-state simulation from Example 3.3, where in particular
the monad morphism was given by

o = At As' let” (a,n) <t in “(a,s +n),

20 CHAPTER 3. RELATING EFFECTS

taking
ja —)\’U:L—f(aXL)./UIQ

determines a monad retraction at all types. That is, to actually extract the complexity
of a computation from its state-passing representation, we simply initialize the state to
zero, perform the computation, and read off the complexity as the final state.

It is easy to see that this j is a schematic left inverse of i. It is not, however, a monad
morphism from U to T: it does not in any meaningful sense simulate arbitrary state-
passing computations using complexity-effects. []

Given terms typed like the monad morphisms and retractions, we can give a different
translation of our effect-enriched language L?, back into L, using a U-based represent-
ation of T-effects instead of the T-representation from the definitional translation. To
define the translation itself, of course, we do not need to assume any equational properties
of the terms involved:

Definition 3.9 In L, let T and U be monad-triples, and let i be a family of terms such
that for any L™ -type ., iy, : T']a], = Ulc], . Further, let X be a set (finite or infinite)
of LT -types and for every o in R, a term jia, : Ula], — T[a], .

Now, let L™™ be L™ but with reification restricted to N-types, i.e., with [-]1 :'a — Ta
only for a in X. We then define the variant or implementation translation from L™ to
L as follows. For types, we take

[a]: = Ulel’

so for the type translation we have [o],. = [a],), and for terms,
T U

M], = e[M];
[[let' T < M in MQ]],T = ()\CU [[MQ]]’T)+ [[Ml]],T
[[let T <:M1 in M2 . Oé]],T = let;][[a]]/T T <= [[Ml]],T in [[MZ]],T
[(M I> = g, [M];
MY T = ey, [M]7

(We write p7(-) and [-17 to emphasize that these are reflection and reification operators
for T, not U.) Like the definitional translation (Definition 2.23), [-], is easily seen to

T
preserve types, i.e., if ' =a M : o in LT then], Fa [M], : [@], in L.

Of course, when U = T, with i, = j, = idy, (trivially a monad morphism with a
schematic retraction), we get exactly the original [-],-translation as a special case. In
general, however, we now have [Ta], = T[a], # Ula], = ['a],: the transparent and
opaque representations of a computation with T-effects are different. This is why for re-
flection we need to internalize a T-representation of an effect into a U-representation that
fits with the rest of the U-passing translation. Conversely, for reification, we externalize
the U-representation into the definitional T-representation of the effect.

Although the definitional and the variant translation of a type are in general differ-
ent, they do agree on base types, so in particular the results of transforming complete

3.1. SIMULATING MONADIC EFFECTS 51

programs (closed terms of type ") are directly comparable. And in fact, will show in Pro-
position 3.29 that the two translations of a closed Li-term of type ° are indeed equal in
our partiality semantics (and appropriately related for other notions of ambient effects).

In the monad-continuation case of a monad morphism (Lemma 3.5), it is not obvious
how to define j, in general. We will see in Section 3.3.4 how to achieve this. For
the purposes of this section, however, let us simply restrict ourselves to performing 7-
reification at a single L-type v (as opposed to at arbitrary LT-types, as the standard
T-translation allows us to). That is, we take X = {7}.

If we then let U be the continuation monad with answer type Ty, we can directly
take ., : Uy — Ty = Au.un,, which gives us

Iy (iyt) = (Aw.uny) (Ak.E*t) = (Ak. K" t)n, =it =1t
i.e., that j, is a monad retraction at .

Example 3.10 Let Ta = “(a+ x) be the exception monad, with the continuation-based
representation Ua = Kpyo = (o = (v + x)) = “(v + x) from Example 3.6. In this case,
the translation equations specialize to:

(M, = Akk[MT,
[let' z < M, in M,], = Me.[M], (\x.[M],. k)
[let” x <= M, in M, :'a], = Mk.let:, o< [M], in [Ms], k
[1E(M)],. = Ak.let” t < [M].. in case(t,a.ka,e.’(inre))
[CMTT], = [M], (Aa."(inl a))

(where, for the third equation, we have used Definition 2.4 to expand out the generalized
let in Definition 3.9). The continuation-passing analogs of raise and handle, as given
by the expansions in Example 2.26 then work out to:
[raise M], = [let' e <= M in p"(*(inre))], = k. [M]}, (Xe.[u"(C(inr e))]} k)
= M. [M]}, (Ne.let” t < [*(inre)]} in case(t,a.ka,e.’(inre)))
= M. [M], (Ne.let” t < “(inre) in case(t,a.ka,e.’(inre)))
= M. [M]}, (Ne.case (inre,a.ka,e.’(inre))) = Ak.[M]}. (Ae."(inre))

[try M, handle z = M), = [let” t < [M,]” in case(t,a.'a, z.M>)]}
= Ak.let” t < [[M117], in case(t,a.['a],, z.[M2],)k
= Ak.let” t < [M1]}. (Aa."(inl @) in case (t,a.(\k.ka) k, z.[M2]' k)
= Ak.let” t < [M1]). (Aa."(inl @) in case (¢, a.ka, z.[M2], k)

(where handle can only be used with expressions of type 'y). This again should match
the operational intuition that to raise an exception determined by M, we simply return
name directly as an answer (tagged as a right inject, so that an enclosing handle can tell
the difference). Conversely, to handle a potential exception in M;, we invoke it with the
left injection as the continuation. If M returns normally i.e., by returning inl a, we pass
a to the continuation of the handle. On the other hand, if M, raises an exception ¢, i.e.,
returns inr e, we instead evaluate M, with x bound to e, again in the control context of
the handle.]

52 CHAPTER 3. RELATING EFFECTS

Comparison Suppose the restrictions on reification were not an issue, for example
if we were content to only allow uses of handle at a single base type (not an entirely
unreasonable restriction; we still have raise at all types). Then given the fairly simple
correspondence between “direct” and “continuation-passing” definitions of exceptions,
one might reasonably ask why we formalize the T-translation at all — why not simply
take the continuation-based [-].. as the “official” definition of exceptions? Then we could
view exceptions as simply syntactic sugar for the corresponding continuation effects.

The problem is that the CPS translation does not satisfy the desirable equational
reasoning principles that pure exception-passing does. For example, consider again the
reasoning principle

(try M handle z = raise 'x) = M

We saw in Example 2.30 that the T-translation verifies this law; indeed, it is provable in
EX. But with the continuation-based semantics we get:

[try M handle z = raise 'z],. = [let’ ¢ < [M] in case(t,a.'a, z.u(*(inr x)))],
= \k.let’ t < [[M1].. in case(t,a.['a], k, z.[u(*(inr 2))], k)
= Mk.let” t < j[M], in case(t,a.ka,z.i(*(inrz))k)
= \k.let” t < [M],.n in case(t,a.ka,x.k* ("(inr x)))
= Me.let” t < [M]. (\a."(inl a)) in case(t,a.ka,z.’(inrz)) =" [M],

It is easy to check that this does in fact hold when [M]’. is of the form Ak.ka for some a,
corresponding to an effect-free computation of a. Similarly, the equation is satisfied when
[M],. = Ak."(inr e) for some e, corresponding to a computation raising the exception e.
Even when [M]!. = Ak. L, representing a non-terminating computation, the terms have
equal denotations. But there is no simple guarantee that [M].. is in fact in one of those
forms, especially when M may call an “unknown” function.

For example, consider the case v = ¢. Then one element of the type ['«]. = ([o], —

(t+x)) = (¢ + x), is Ak.°(inl 42), which we could call an ezotic T-computation: it
represents neither a normal value, nor a raised exception, nor divergence. And in fact, if
[My]. = Mk."(inl 42), our desired reasoning principle fails because we get
[try M, handle z = raise 'z], = A\k.k42 # \k."(inl 42) = [M,]’,

The presence of such computations means that we cannot derive the identity directly in
the U-model — we need a much more elaborate argument, involving at least an induction
over all syntactic terms in the language, and further complicated by the presence of
higher-order functions.

An analogous situation holds for the complexity-state simulation from Example 3.3. It
is easy to see that if the ambient effects are commutative, then so are the '-effects defined
by the complexity monad. General state passing, on the other hand, is not commutative,
so again we lose a useful equational property by specifying complexity-effects directly in
terms of state-passing.

That does not mean, however, that using [-], inherently presents a problem for
formal reasoning. Recall that we will show independently that the [-],-translation and
the [-],-translation do agree on complete LI-programs. Since the equations induced by
the T-translation are (by definition) valid for observational equivalence in LI, and the

3.2. THE PROOF SETTING 23

evaluation semantics induced by the two translations is the same, we can thus reason
about effects in terms of their (relatively) declarative T-specification, rather than their
derived U-implementation.

Remark 3.11 In the particular case of exceptions, we could actually construct an ad-
hoc continuation semantics where the translation of a term M : « takes both a normal
continuation (of type [a] —0) and an exceptional one (of type x — o), invoking whichever
is appropriate. Such a translation does verify the handle/re-raise equation above, and it
does not have a problem with the choice of answer type.

However, such a scheme requires all translation equations to be modified to pass the
extra continuation along, so we cannot use a standard cps transform for the bulk of the
language. And even more importantly, this two-continuations trick does not generalize,
because it relies on the isomorphism ((a+ x) —0) =0 = ((a—0) X (x = 0)) — 0, which
does not have a counterpart for other monadic effects. [

3.2 The proof setting

This section establishes the general framework for the simulation proofin the next section.
Much of the material is relatively standard, and has consequently been relegated to an
appendix.

3.2.1 The implementation language

The base signature Ly, and the derived L{ need to be tightly constrained because we
will rely on induction over L!-types and -terms in the proof. The target language for
the variant translation, on the other hand, need not be restricted to simple types. And
in fact, to obtain the simulation result for continuations in full generality, we will need
more of the structure of our predomain model to be denotable in the implementation
language. Accordingly, we now define the required extensions for expressing (1) a weak
notion of infinitary sums and (2) recursively-defined types.

Embedding-types

To simulate T-reification using continuations, we will need to embed several different
types into a single type of answers. A suitable construct for expressing this is given by
the following:

Definition 3.12 The signature L extends Ly with a new type constructor X:

Vi e I. Fa R(7) type
Fa 2iR(7) type

where (N(i))ier is any countable family of L3 -types (possibly with repetitions); we usually
abbreviate ¥;X (i) as ¥X. The associated term constructors are:

['F M :R(7) ['FM:XR

i d i
CFim M-z M T owd MR+ 10

54 CHAPTER 3. RELATING EFFECTS

for injecting into and projecting from the embedding-type. Correspondingly, £ extends
&y with the equations
['F M :R(7)
['F outd; (in; M) = inl M : R(i) + 1

(i€l)

and

['F M :R(q)
I'F outdy (in; M) = inr () : R(¢') + 1

From outd;, we can define a derived term constructor,

(38 €134 £i) .

I'HM:OR
T F out; M : "N(i)

(i€l)

by out; M < case (outd; M, a."a, u.Lxg)). Then we easily get the following derived infer-
ence rule in EF:
['F M :R(q)
'+ outi(in,-M) ="M : ON(Z)

(i€l).

In this chapter, in; and out; with the above equation will suffice (in particular, we
will not use that outy (in; M) = L when ¢ # ¢'), but in Chapter 4, an explicit outd;, not
tied to any particular notion of ambient effects, will be more convenient.

It is important that even for infinite index sets, embedding types do not introduce
any circularity: each summand R(i) must already be a well-defined type before we can
form XN,

When the index set is finite, {4, ...,i, 1}, we can simply take
SR = R(ig) + (- + (N(in—1) + 1))

(the terminating 1 merely ensures a uniform encoding for all summands) with the cor-
responding operations:

ing, M = inl M outd;, M = case(M,ag.inl a,s.inr ())
M = inr (in; M) outd;, ., M = case(M,a.inr (), s.outd;,)

Mgy lgt1

which are easily seen to satisfy the required equations.
In the general case, we obtain a model by a straightforward extension of the predomain
semantics to /-indexed coproducts:

LIERG]) = {(i,a) | i€ L,a€ LX)}
Llin; M1*(p) = (i, L[M]" ()
) = {(l,a) when L[M]%(p) = (i, a)

Lloutd: MY (0) = \ (54 when £[M]*(p) = (7' a'). 7 # i

It is immediate to check that this interpretation validates the equations.

3.2. THE PROOF SETTING 95

Recursive type specifications

Independently of the embedding-types, to express the continuation-based variant trans-
lation of reification at types containing ', we will need a recursively-defined answer type.
Accordingly, we take:

Definition 3.13 For a signature L, L* extends L with a new type constructor pa. o with
well-formedness rule

'_{a} « type
ko pa. o type ’
and new term constructors roll, ., and unroll, , with typings
I'FM:ao{(pa. a)/a} p I'EM: pa. o
an)
['Frollyo M : pa.« ['F unroll, o M : of (pa. o) /a}

Likewise, E* extends & with the isomorphism equations

I'FM:aof(pa.a)/a} p I'EM: pa. o
an :
I' F unrolly o (roll, o M) = M : o{(pa.) /a} ['F roll,q (unroll, o M) = M : pa. «

(For simplicity we do not allow parameterized recursive types, although it would probably
do no harm to include them.)

Unlike the case for domains, not every predomain equation expressed in terms of the
standard cpo constructors has a solution. (For example, consider the equation V' = V' —0,
where (is the empty set organized as a cpo; both assuming V' empty and non-empty
lead to a contradiction.) But equations arising from interpretations of L¥-types (which
notably require codomains of arrow types to be computational, thus ruling out the above
counterexample) do have solutions, essentially because we can extend the interpretation
of a parameterized type to a functor in a suitable category. We will need the following
result:

Theorem 3.14 Let 5y « be a parameterized type of L. Then there exists a cpo A
with an isomorphism i : Lla]*?4 = A.

Proof. See Corollary A.8 in the appendix (ignoring for now the additional minimal-
invariant property of 7).]

Then with the interpretation of pa. v as the A in the theorem, roll, , as ¢, and unroll,
as i~!, our predomain semantics (for any 7) becomes a model of £

3.2.2 Admissible relations

Much as an equational theory allows us to reason about equivalence of terms axiomatic-
ally, rather than about equality of their denotations in a specific interpretation, we can
reason about more general relations between terms at the syntactic level. That is, we
first establish a set of generic relational reasoning principles, validated by a wide range

26 CHAPTER 3. RELATING EFFECTS

of interpretations. If we then confine our reasoning about programs to those principles,
the results will necessarily hold in each particular relational interpretation.

Our denotational semantics associates to every open term a (continuous) function
from the meanings assigned to the free variables to the meaning of the resulting term.
When the semantics L is fixed, we use the term constructors of L directly to denote this
semantic function. For example, for any element a of Val(a) (not necessarily denotable
by a closed L-term), we write inl a for the element (1, a) of Val.(« + o).

Further, when o = (a;/xy,...,a,/x,) assigns to every variable x;:¢; in I' a value
a; € Val(oy) = Loy], we write M{o} for the value L][M](®[x1— ay,...,z1—aq]). (To
improve readability, we will usually write M{c} as M?; the two notations are equival-
ent.)

Unlike the equational case, we can talk about relations between terms of two different
languages. That is, given (L, £) and (L', L') we say that R is a relation between types
a of L and o of L’ if it is a relation between the sets Valg(«) and Valg (o). When the
languages are fixed, we write simply Rel(a, /) for the set of all such relations. (Actually,
we will only be interested in the set of all admissible relations; see Definition 3.16 below.
But sometimes it is useful to classify a relation wrt. types before we have established
that it is admissible.)

The motivation for considering different languages is that when implementing a mon-
adic effect, we may need different resources than when specifying it. In particular, L'
may contain constructs not in L, with £ providing an interpretation for those. Moreover,
L and £’ may arise from different choices of the base-effect monad T .

This means that we can specify a monad T over (L, £) (say, with only the constructs
of Ly and with partiality as the only ambient effect), and show how to implement L’ using
a T'-translation into (L', £') (say, Lo extended with recursive types, and a continuation
semantics for ambient effects) — even if T does not satisfy the monad laws in L.

For a relation R € Rel(a, '), we often write Ya R a'. P(a,d’) as shorthand for
Va € Valg(«),d' € Valg (o). a R o = P(a,d’). Similarly, 3a R o'. P(a,a’) abbreviates
Jda € Valg(«),d’ € Valg(a').a R a' A Pla,d).

We can now isolate the subset of relations we will be working with. First, we define
a relational analog of (pointed) cpos:

Definition 3.15 A binary relation R between (the sets underlying) cpos A and A’ is
called chain-complete if for any pair of chains ay C ay C -+ in A and a} C al, C -+ in
A" with a; R a); for each i, it also holds that (l; a;) R (L; a}). A relation between pointed
cpos B and B' is called pointed if Lg R Lp.

We can then define a suitable notion of relations for our predomain semantics:

Definition 3.16 Let there be given languages (L, L) and (L', L"), where L and L' are ex-
tensions of Ly, and L and L' are the corresponding extensions of the predomain semantics
from Section 2.1.3 (with possibly different ambient-effect monads).

We say that a relation between types o of L and o of L' is admissible if it is interpreted
as a chain-complete relation between Valg(«) and Valg (o'); we write ARel(c,) for the
set of such relations. Similarly, a computation-admissible relation between types 3 and

3.2. THE PROOF SETTING o7

B is one whose interpretation is chain-complete and pointed; we use CARel(S3, ") for
the corresponding set.

We will refer to such a pair of languages with type-indexed sets of (computation-)
admissible relations as a relational correspondence. (This is for conciseness only; the
correspondence s already fully determined by the languages themselves and the above

definitions of ARel(c, /) and CARel(f, 7).)

In the following, we enumerate some properties of (computation-)admissible relations,
especially that certain stylized methods of constructing them are available. The proofs
are all fairly simple and can be found in the Appendix.

Given these properties, we can reason about related terms entirely within the base
language, without referring to the semantic equations, chains, continuity, etc. explicitly.
That is, although we will not consider other notions of (computation-)admissibility than
(pointed) chain-completeness, the remainder of this section establishes all we actually
need to require of admissible relations for establishing the results in Section 3.3.

Lemma 3.17 Admissible relations are closed under inverse image by term contexts and
under arbitrary intersection. That s,

1. When R € ARel(a, o), (z1i0q,...,¢p) F M @« and (20, ... 20 al,)
M': o are terms of L and L' respectively, and for all i > 2, ox; € Valg(oy) and
o'zl € Valg(af), the relation Ry € Rel(ay, o)) given by

a; Ry df = Mlar/zuo) g ey /@y,0)
18 admassible.

Moreover, when «y and o) are computation-types, R is computation-admissible,
and the functions Ax1. M? and)\x’l.M’”' are rigid, then Ry is also computation-
admissible.

2. When (Rj)jes ts an arbitrary (not necessarily finite or even countable) family of
admissible relations between o and o, the relation ;e R; is admissible, where

a (ﬂjEJRj) o = VjelaR;d
Moreover, if each R; is computation-admissible then so is e, R;.

Proof. See Lemma A.9.]

We also have a simple way of combining existing relations on individual types into
relations on constructed ones:
Lemma 3.18 The standard relational actions of the type constructors, defined by

1" <= InmeNi=nAi=n
ul"u < true

p(Ry X" Ry)p' < fstp Ry fstp' A sndp Ry sndp
s(Ri4+"Ry) s <= (Jax Ry d}.s =inlag As' = inld))
V (Jag Ry ay. s = inrag A s' = inray)

f(Ri—="Ry) f' <= VaRid. faRy f'd

o8 CHAPTER 3. RELATING EFFECTS

are admissible. Specifically, when all the R’s are admissible, so are ", 17, Ry X' Ry,
Ry 4" Ry, and Ry —" Ry. Moreover, when the S’s are computation-admissible, so are 17,

Sl X' 52, and R —=*S.

(We often omit the -* when it is clear form the context that the action is on relations.)
Note that the relational action of ° is not in general explicitly definable within the lan-
guage; we characterize it in Definition 3.20.

Proof. We can actually show admissibility of 1", Ry x" Ry and R; —" R, using only
Lemma 3.17. The first case is simply an empty intersection of (computation-)admissible
relations. The constructed relation for products is the intersection of the two admissible
relations obtained by inverse images of the projections on the admissible relations R; and
R5. Moreover, since projections are rigid, Ry X Ry is also computation-admissible if both
R; and R are. Finally, R; — R, can be expressed as an intersection of the family (R;) jeR,
of admissible relations, where each R} is given by an inverse-image construction: f R,(a,a’)
f' <= fa Ry f'a’. And again, since application is rigid, computation-admissibility of
Ry implies computation-admissibility of R; — R,.

The cases for natural numbers and sums, on the other hand, depend on the specifics
of the model; see Lemma A.10(1,2). n

The reason for restricting attention to (computation-)admissible relations is that they
validate the following binary version of fixed-point induction:

Lemma 3.19 Let S € CARel(f,), and let f € Valg(8 — () and ' € Valg (3 —)
be such that Yo S V. fb S f'V. Then fixg f S fixg f'.

Proof. See Lemma A.11.]

Effectively, this is saying that for any computation-admissible relation S, the two
interpretations of fix are related by (S —"S) =" S.

3.2.3 Computation-extension of relations

A key concept we will make use of in the following is the extension of a value-relation to
a relation on computations. Intuitively, two computations are considered related if they
both have the same (or, more generally, related) effects, and if any results they pass on
to further computations are related by the original relation.

For example, in the case of partiality, two computations are related if they either
both diverge, or both converge to related values. For exceptions, two computations are
related if they produce related successful answers, or raise the same exception. For state
(given a fixed relation on states), they must map related initial states to related values
and related final states. And for two control-computations to be related, when invoked
with related continuations (i.e., mapping related values to related final answers), they
must themselves produce related final answers.

Much as monads abstract out the common equational properties of effects into a
simple set of axioms for the unit and extension functions, we can characterize the minimal
requirements for a relation-extension as follows:

3.3. THE SIMULATION PROOF 29

Definition 3.20 A computation-extension of relations assigns to any pair of types «
and o, and admissible relation R € ARel(«, o), a computation-admissible relation "R €

CARel("a, "), such that for all admissible R, Ry and Ry, the following holds:
1. YaRd.%a ("R) d'.
2. IfVa Ry d. fa ("Ry) f'd
then Ym ("Ry) m'.let” x <=m in fz ("Ry) let” 2’ <m/ in f'a'.

That is, if two terms are related as values, their inclusions into computations must also
be related. And if two parameterized computations are related for every pair of related
parameters, they must remain related when prefixed by related computations computing
values for those parameters. A simple instance is given by the following:

Proposition 3.21 In the standard partiality semantics (i.e., with TA = T'A = A,),
taking for any R, "R to be the lifting of R, i.e.,

m(CR)m' < (v RvV.m="vAm =)V (m=_L,Am = Ly)
determines a computation-extension.

Proof. Lemma A.10(4) shows that "R is computation-admissible. ~ Condition (1)
(v R v = "v ("R) ') is also immediate. For (2), assume m ("R;) m’ and Va R,
a'. fa ("Ry) f'a’. There are two cases, one for each disjunct in the definition of “R;:

e m = "vand m' = v for some v R; v'. Then we get the result directly by assumption
on f and f":

let’z<=min fo = fo (CRy) ffv' =let” ' <=m' in f'2
e m = 1, m' = L. Then, by the second disjunct in the definition of "Ry,
let"c<=min fo =1 ("Ry) L=1et" 2’ <m' in f'2'

(using Proposition 2.13 to obtain the equalities)
|

We will see later (Proposition 3.40) how to systematically construct computation-
extensions for effects defined by an explicit monadic translation.

3.3 The simulation proof
To avoid repetition in the following, we first define:

Definition 3.22 (Persistent assumption) Throughout this section, we will assume
that there is given a relational correspondence between interpretations Lg of Ly (the spe-
cification language) and L; of a signature L D Ly (the implementation language), with
a fired computation-extension of relations. In particular, all unqualified occurrences of

ARel(a, o'), CARel(8, '), and "R will refer to this correspondence.

60 CHAPTER 3. RELATING EFFECTS

For concreteness, it may help to think of L{ as Ly extended with recursive types
and embedding types (which is what we will use in the monad-continuation case in
Section 3.3.4), Ly as the partiality semantics and £; as a continuation semantics (for
base computations, not to be confused with a continuation monad defined in (L{, £;);
we will use such a continuation-based interpretation of ambient effects in Chapter 4).

3.3.1 Overview

A monad morphism i gives us a simple way of converting a T-computation ¢ to the
U-computation representing it, by taking v = i,t. However, this simple relationship
does not extend directly to functions on computations. For example, given a function
f:Ta—Ta, how would we obtain the g : Ua — Ud/, representing f7

If i has a left inverse j, we could try taking ¢ = iy o f o j,. This is not really
satisfactory, however: for example, when o = o' and f is the identify function, we get
g:Ua—U«a = i, 0),, meaning that the identity on U« would in general not be the
correct representation of the identity on Ta.

A better approach, therefore, is to characterize instead what a correct U-based repres-
entation g of f would be, for example by requiring it to satisfy the equation i, o f = goi,.
In general, then, instead of a function from higher-order values involving T-computations
to the corresponding ones with U-computations, we get a (binary) relation.

The general outline of the proof is then as follows. First, for any type family « in Ly,
we define a family of logical relations {(«)), and show that for any relational interpretation
of the type parameters, the two interpretations of a term family M of Ly are related by
(). In particular, this means that the term components of any monad-triple T in Ly are
related in the two interpretations. This gives us a way of talking about related T-effects
in the two languages, even when T is not a monad in £;.

We then define the general notion of a monad relation between a monad T in the
specification language and a monad U in the implementation language. This is a more
general notion than existence of a monad morphism from T to U: instead of assigning
to every « a function from T« to Ua, we only assign a binary relation. More precisely,
to every relation R € ARel(a, o'), we assign a relation 'R € ARel(T'«, Ud/).

However, if U is also a monad in the specification language, any monad morphism i
from T to U induces in a canonical way a monad relation between T and U, by taking
t '(R) u <= it (UR) u, where UR is the standard, syntactically-derived action of U on
relations. This way of constructing monad relations covers most of our sample monad
simulations — all except the general monad-continuation case.

Given a monad relation between T and U, we can now exhibit a family of relations
indexed by Li-types a, <, € ARel([a],,[],), defined in the usual inductive way for
the standard type constructors, and taking <i,='<, € ARel(T[c],,U[c],).

Further, we show that the two translations, [-], : LY — Lo and [-], : LT — L{ of an
L¥-term of type « are related by <,. Since in particular <-,= °(.*), this says that the
two translations coincide for complete programs.

3.3. THE SIMULATION PROOF 61

Returning to the monad-continuation case, we show how to construct the appropriate
monad relation between T and K, explicitly. (Intuitively, we need the generalization from
an equational to a relational characterization of the relationship between the monads for
the same reason that forced us to adapt a relational approach for higher-order values:
when we embed non-simple types in the answer type o of the continuation monad, the
K ,-based representation of T-effects will in general not be unique.)

For this simulation, we also rely on the fact that our implementation language may
contain additional types and terms beyond those in Lg; in particular, depending on how
general a notion of T-reification we want to simulate, we will need recursive types and/or
embedding-types to construct K,. Once we have established the monad relation, it is
a simple consequence of the properties of < that the definitional 7-translation and the
variant, or continuation-passing, translation agree on complete programs.

Finally, we show how to lift the simulation result from a relationship between transla-
tions to a relationship between source terms. Specifically, the basic motivation for adding
reflection and reification to our source language was precisely to permit programs to be
written in direct style instead of in effect-passing style. And in fact, it is possible to
express the simulation result at the source level, by defining the reflection and reifica-
tion operators for T in terms of those for K,. Thus, we do not need a monad-specific
variant translation for implementing T-effects with continuations, but can use a fixed
continuation-passing translation for all such effects.

3.3.2 Relating standard terms

We first show that a large collection of terms are related by the relations determined
systematically from their types:

Definition 3.23 Let A be a finite set of type variables, 0 a substitution of closed Lg-
types for variables in A, and 0" of closed Lg-types. Further, let o assign to each type
variable a € A a relation pa € ARel(fa, 0 a). To every type o over A in Ly, we then
assign a relation {(a)® € ARel(a{0},a{0'}) (such that (3)°€ CARel(5{0},3{0'})) as

follows:

(o= B)° = (a)® =" (B)*
(Ca)® = "(a*
We extend this definition pointwise to relate value-substitutions o and o', i.e., if for each
(ri:aq) €T, (o) (i) (o), we write o (') o'.

The (computation-)admissibility of these relation follows directly from Lemma 3.18. It
is also easy to see that we have the usual weakening and substitution principles,

(a)? = <<a>>0[aHR} (ag FTV(a)) and (afa'/al)? = <<a>>g[ae(<a'>>a]

62 CHAPTER 3. RELATING EFFECTS

Lemma 3.24 (logical relations lemma) Let § and 0" be substitutions of closed types
for A-variables, and o a relation assignment for 6 and 0" (as in Definition 3.23). Further,
let T' and « be a type assignment and a type over A, both in Ly, and let M be a term of
Lo withT'Ea M : «. Finally, let 0 and o' be substitutions of values from Lg and L; for
variables in T, such that o (T)° o'. Then M% {(a)? M?7".

Proof. By induction on the structure of M:

e Case x;, where (z;:c;) € I. To show: 227 ()¢ 227", i.e., that ox; ()¢ o'y,

which follows directly from the assumption on ¢ and o’.

e Case z. To show:
ImeN.z2'=npArz?’" =n

0o

Since z7 = z, we can simply take n = 0.

e Case s M. To show:
IneN.s(M)=nAs(M')=n
By IH on M, we already have
E!mEN.Ma":m/\Mel"’ =m

so we get the result by taking n =m + 1.

e Case ifz(M, M,,x. M;). To show:
ifz (M%7, M x. M%) (@)? ifz(MY, MYz MO

z S

By IH on M, we know that (in £,) M% = p and (in £;) M?? = n for some natural
number n. There are then two cases:

— Case n =0. By IH on M,, we get

ifz(z, M, x,. MP7) = MP (a)? MY = ifz(z, MV, z,. MP7)
— Case n =m + 1. Then

ifz (sm, M%, x. M??) = M%{m/az} = M@/

and analogously on the RHS, so the result follows by IH on Mj, in the type
assignment (I', z:¢) and the extended substitutions (o, m/z) and (o', m/x).

e Case (). To show:
O (L) (7
which is trivially true by the definition of ((1))°.
e Case (M, M,). To show:
(My, Mo)? (> ap))® (M, Mo)"™

That is,

3.3. THE SIMULATION PROOF 63
fst (M1, My)") ((an))? fst (M, M)"")
A snd ((Mi, M2)") ((@a))® snd ((My, My)" ")

Since we have
fst ((My, My)7) = fst (M7, ME7) = MP°

and analogously on the RHS and for snd, we get the result by IH on M; and M,.
e Case fst M (snd M is analogous). To show:
fst (M) ()2 fst (M7
which we get from IH on M and the first conjunct of the definition of {(a; x a)®.
e Case inl M (inr M is analogous). To show:
inl M% (o 4 a3)? inl M7
By the first disjunct in the definition of {(a; 4+ a»))?, it suffices to show that
MY (o) MO
which we get from TH on M.

e Case case (M, x1.M;, x9.My). To show:
case (M, . MP 20 M) (a)? case (M? g . MP7 2y ME)

By IH on M, we have M% {(a; + au))® M??". Without loss of generality, assume
that we are in the first case of the definition of (a; + ay)°. That is, M? = inl a,

and M?? = inl) for some a; (o)? a}. Then
case (M, a1 . M% 29 M%) = case (inl ay, x,. M 2y MI?) = M {a,/2,}
_ Mlﬂ(a,(m/m))

and analogously on the RHS, so we get the result by IH on M; using the extended
substitutions o7 = (0, a1/x1) and o} = (o', d/x1).

e Case \z“.M. To show:
(Az. M)% (o — B)? (Ao M)?

Le., that
DV asa VA (o — B)° Aoty oo’

Accordingly, let a {(«))? a'; we must show that
Az MY a (B)° (M. MY) d

And since

we get the result by IH on I';z:a Fao M : [using the extended substitutions
o1 = (0,a/z) and o} = (o',d'/x).

64

CHAPTER 3. RELATING EFFECTS

Case My M. To show:
(M) (M) (B)° (M) (M]7)

This follows directly from IH on M; and M,, and the definition of {(« — 3))°.

Case M. To show:
(M) (Ca)? (M7

By IH on M, M?% ((a)? M?? so the result follows from the definition of {{“a/))?
and the properties of a computation-extension (Definition 3.20(1)).

Case let” x < M; in M,. To show:
let” 2 <= M in MY {"a,)° let” x <= M7 in MY
By IH on M, we have MY ("o,) MY i.e.,
MY (*(ar))®) MY
Similarly, by [H on M, with appropriately extended substitutions, we get

0(o,(a1/x ° 0" (o' ,(a")z
Va, <<a1>>g a”l-MQ((ar/)) (<<a2>>g) M2((a}/))

And from those two facts and Definition 3.20(2), we get the required result.
Case fixg M. To show:

fix oy M° (B) fixggoy M"
By IH on M, we have M? (3 — B)° M7 i..,
Vb (B . M7 (B MUY
The result then follows directly from fixed-point induction (Lemma 3.19), because

<<5>>g is computation-admissible.
n

As a simple corollary of Lemma 3.24, we obtain that the two interpretations of a

monad-triple are related:

Lemma 3.25 Let T be a monad-triple in Ly. Then the standard relational action of T,
given by

t (TR) t' <= t (Ta)* "t

respects the monad operations in the sense that for any R, Ry, and Ry, the following
conditions are satisfied:

0. IfVa Ry d. fa (TRy) f'd

then Ym ("Ry) m/.lety,, v <= m in fx (T'Ry) let,, ' <m'in f'a'.

3.3. THE SIMULATION PROOF 65

1. YaRd . nya (TR) nya.
2. IfVa Ry d'. fa (T'Ry) f'a then ¥Vt (TRy) t'. f*t (T'Ry) f™t'

Proof. All cases are simple:

0. By assumption on f and f’, we have
f <<a1 _)Ta2>>a,1»—>R1,a,2l—>R2 f/

and by assumption on m and m’,

m << Dal >> a1~ Ri,a2— R ml

Then use Lemma 3.24 on the term
ryia; — Tag, Ty ay byay ayy lety,, v <= wy, inwpx: Tay

(which, recall, abbreviates a term of the core syntax, given by expanding the gen-
eralized let according to the shape of T') with the substitutions o = (f/xf, m/xm)
and o' = (f'/zy,m'[/xy).

1. Analogous to above, using the term z,:a . 7.2, : T'a.

2. Analogous to above, with xy:a; — Tag, 74: T'ay) ay) ziay: Tag.

3.3.3 Relating computational structure

We are now ready to characterize what it means for two monads to be related:

Definition 3.26 A monad relation between monads T = (T,n,-*) in (Lo, Ls) and U =
(U,,-%) in (L§, L;) assigns to every admissible relation R € ARel(«, /) a computation-
admissible relation 'R € CARel(T«,Ud') such that for all admissible relations R, Ry,
and Ry,

0. IfVa Ry a. fa ('Ry) gd

then Vm ("Ry) m/.let},, v <=m in fx (‘Ry) lety, o' <m' in ga'.
1. YaRd.nya (R)eya.
2. IfVa Ry d. fa ('Ry) gd’ then ¥t ('Ry) u. f*t ('R2) g™ u.

Eurther, we say that an L§ -term iy : To! — Ud’ is a reflection function (with respect to
the monad relation) if for any Lo-type o and relation R € ARel(a, o),

3.Vt (TR) t'.t (R) iwt'

Analogously, a reification function is an L -term jo : Ud' —To' such that for any o and
R € ARel(a,),

4. Vt (R) u.t (TR) jou

66 CHAPTER 3. RELATING EFFECTS

(Note that since T need not satisfy the monad laws in £;, i cannot in general be a monad
morphism. Nor do we explicitly require that j, oiy = idyy, although it often does hold.)

An important special case is when a monad-triple T = U is a monad in both Ly
and £;. Then Lemma 3.25 shows that the standard relational action of T induces a
monad relation between the two copies of T; moreover, for any o/, we can simply take
ior = Jor = idpe. (There is still some non-trivial content to the definition in this case,
because Lg and L£; could be different models, with their ambient effects related only by
relation-extension.)

More generally, we have the following convenient way of obtaining monad relations
directly from monad morphisms:

Proposition 3.27 Let T and U be monad-triples in Ly such that T is a monad in Ly
and U is a monad in both Ly and L;i. Further, let i in (Lo, Ls) be a monad morphism
from T to U. Then the assignment to any R € ARel(«, ') of the 'R € CARel(Ta, Ud!)
given by

t('R)u <= gt (UR) u

establishes a monad relation between T and U.
Moreover, for any o' of L, iw is a reflection function. And if | is a schematic
retraction of i in (Lo, L) then for any o in L{, jo is a reification function.

Proof. First, 'R is computation-admissible, because it is defined as an inverse image of
the computation-admissible UR by the rigid functions i, and idy, . Further, we have:

0. Let m ("Ry) m' and f (R, —'Ry) g be given. To show:
oy (let,, a <=m in fa) (URy) lety,,, o' <=m' in gd
By rigidity of i,, (Definition 3.1(0)) on the LHS, this amounts to showing
lety,, a <=m in iy, (fa) (URy) lety,,, o' <=m' in gd’

We get that from assumption on m and m/, and the properties of U’s relational
action (Lemma 3.25(0)). if we can establish that

Va Ry d'.ig, (fa) (URy) gd'

And that was precisely the assumption on f and g¢.

1. Let a R o'. To show: i, (nya) (UR) e a'. By Definition 3.1(1) on the LHS, this is
equivalent to showing
£at (UR) ey a

which we get from Lemma 3.25(1) for U.

2. Let ¢t ('Ry) uand f (Ry —'R2) g be given as in the hypothesis. We must show that

ia, (1) (UR) g™ u

3.3. THE SIMULATION PROOF 67

Again, using the property of a monad morphism 3.1(2) on the LHS, this amounts
to showing

(iay © f)+ (iay t) (URy) g u

Now, by assumption on ¢ and u, we have
iyt (URy) u
and by assumption on f and g,
Va Ry . (i, 0 f)a (URy) gd
from which we get the desired result by 3.25(2).

3. Let t (TR) t'; we must show that ¢t ('R) i ', i.e., that iyt (UR) iy t'. And since i,
was a term of Ly, this follows from Lemma 3.24 by an argument analogous to those
in Lemma 3.25.

4. Let t ('R) u; to show: ¢ (T'R) jo u. From the assumption on ¢ and wu, we have
iat (UR) u, and hence again by Lemma 3.24 with M = j,, we get j, (iat) (TR) jo u.
Then cancelling the j, and i, on the LHS gives us the result.

A monad relation with reflection and reification functions is exactly what we need to
relate the definitional and the variant translation: the monad relation itself relates the
computational structure, and the reflection and reification functions, where they exist,
convert between effect representations:

Definition 3.28 Let T be a monad in (L, Ls) and U a monad in (Lg , L£;), with a monad
relation between T and U. Then for any type o of LY, the relation

o € ARel([o], [o],)

is given in the usual way by induction on the structure of a (as in Definition 3.23, but
without the type variables), and with <= "', from the monad relation.

Note in particular that since the standard relational action of 1" in Lemma 3.25 is
also given by Definition 3.23, we have <r,= T'd, for any LOT—type «. We can now state:

Proposition 3.29 Let there be given a monad relation between T and U, with a reflec-
tion function i at every type [a], where « is a type of LE. Further, let R be a family of
Lt -types, with j a reification function at every [R(:)],. Let T &= M : a be a term of LOT[N]
(i.e., with reifications only at types in V). Then for any pair of substitutions of <J-related
values for the variables in T, o <p o', we have [M]3 <, [M]/¢" (where [-],. is the variant
translation from Definition 3.9).

Proof. Given the definitions, this is a simple induction on the structure of M. The cases
for variables, numbers, products, sums, functions, and base computations are exactly as
before (Lemma 3.24). For the remaining constructs, we have:

68 CHAPTER 3. RELATING EFFECTS

e Case 'M. To show:
n[M]; <, e [M]Y

Follows from IH on M and Definition 3.26(1).
e Case let” x <= M, in M, (of type 'az). To show:

let)r,1, © < [Mi]Z in [Ms]7 S, lety @< [M]7 in [Ms]

By IH on M, and My, and 3.26(0).

e Case let' x < M; in M. To show:
(Az. [M2]7)" [MA]] <ha, (M. [Ma])" [MLTY

Follows from IH on M; and M, using 3.26(2).

e Case pu(M). To show:
[M]5 <o i[M]F

T

Since <p, = T'9,, this follows from IH on M and Definition 3.26(3).

e Case [M]. To show:
[M]2 Dpo j[M]Y

As above, <y, = T4, so we get the result by IH on M and Definition 3.26(4).

e Case fix. As before, we need to check that <z is computation-admissible, where 3
may now also contain the type 'a. And in that case, computation-admissibility of

'd, is ensured by the requirement of a monad relation (Definition 3.26).
n

Using the monad relation induced by a monad morphism (Proposition 3.27), Pro-
position 3.29 immediately gives us correctness of a number of effect-simulations. For
example, the complexity-state monad morphism from Example 3.3 validates the state-
based maintenance of complexities.

For our monad-continuation simulation in full generality, however, we have to work
a little harder. To obtain reification at arbitrary types, we cannot use purely equational
properties of the monad morphism and the standard relational action of U alone — we
need to construct the appropriate monad relation explicitly.

3.3.4 Relating monads to continuation-passing

Recall from Example 3.10 that the main limitation of our monad-morphism formulation of
the continuation-based variant translation was its incomplete treatment of 71'-reification.
Specifically, it did not directly allow us to define a reification operation (1) at more than
one type and (2) at types containing '. We will now see how to overcome these problems
by using a more elaborate monad relation.

At the same time, we will take care of an independent technical complication (3)
with simulating a monad T with a continuation monad K,. Following Lemma 3.5, we

3.3. THE SIMULATION PROOF 69

would expect to take the answer type o to be Ty for some . However, the constraints
imposed by our eventual application in Section 3.3.5 will not always allow us to do this.
Specifically, we will need the answer type to be expressible as “w for some w, but Ty is
not necessarily of this form.

Fortunately, the relational approach allows us considerable latitude in picking the
actual answer type o, as long as it is “larger” than the Ty that we originally needed. (Be-
cause the answer type occurs both positively and negatively in the continuation monad,
we cannot express this condition purely equationally.) For conciseness, we formulate the
requirement in general terms:

Definition 3.30 An answer-embedding of L{ -computation-types o, into oy consists of
a pair of functions ¢* : 0 — 09 and Y* : 0y — 01, such that in L;, (1) ¢* is rigid and (2)
Yo g® = ido1 -

(Taking 0; = 0y = Ty and ¢* = * = idp, certainly satisfies these requirements,
and still gives us a result strong enough to solve problems (1) and (2) mentioned above.
Thus, on a first reading, it may be helpful to simply ignore all occurrences of ¢* and *
throughout this section. However, for the purpose of the next section, it is important
that the we only rely on the weaker properties guaranteed by Definition 3.30.)

We are now ready to state a central result about relating monads and continuations.
The essential trick is that, although we commit to a fixed answer type for the continuation
monad, we are still free to consider all possible relational interpretations of that type:

Lemma 3.31 (continuation-simulation of monads) Let T be a monad in (Lg, Ls).
Further, let v be a type and o a computation-type of Ly, with an answer-embedding ¢®
Tv—o0 and ¢* : 0—T~. Then the mapping of R € ARel(«, ') to'R € CARel(T«, K, o)
given by
t('R)u
<= Vo typer,, O € ARel(w,7), k € Valg, (o = Tayp), k' € Valg, (o' — o).
(Va Rd. ka (TO) Y (K'd"))=k*t (TO) ¢* (uk')

15 a monad relation between T and K,. Moreover,
i = M7 N0 00 (V° o k)™ t) and Jy = A7)0 (u (9 o ny))
form a reflection function for all o/ and a reification function for ~y.

(Intuitively, the outer quantification over aq allows us to overcome limitation (1) from
above; if we only needed reification at a single L{-type a, we could simply fix ay = [,
Further, the inner quantification over O takes care of (2), by replacing a fixed relation
on answer types (where in particular v may be recursive) with a stronger parametricity
condition. And finally, as already mentioned, we need ¢* and v* for (3).

It is instructive to compare the cases of the following proof with the corresponding
ones in Proposition 3.27. Although some common structure could clearly be abstracted
out, it is probably easier to follow how the continuations are being passed around in a
concrete formulation.)

70 CHAPTER 3. RELATING EFFECTS

Proof. First, we check that 'R is computation-admissible when R is admissible: 'R
is defined as an intersection over inverse images of the computation-admissible relations
TO by the rigid functions £* and ¢® o Au.uk’. For the specific requirements, we have:
0. Assume Va R; d'. fa ('Ry) ga’ and m ("Ry) m'. To show:
letr,, v <=m in fz (‘'Ry) let|

!/ ! 3 !/
0/2_)0)_)0.7) <=m 1n g.’L'

i.e., that
let;,, v <= m in fz ('Ry) Ak let, o' <m' in ga'k'.
Let O, k, and k' be given, with
Va Ry o' ka (TO) ¢* (K'd').
We must then show that
k™ (lety,, x <=m in fx) (TO) ¢°(let; 2’ <= m' in ga'k').

Using rigidity of k* (Definition 2.15(0)) on the LHS and rigidity of ¢* (Defini-
tion 3.30(1)) on the RHS, this is equivalent to showing

letr,, © <=m in k*(fz) (TO) lety, 2’ <=m' in ¢* (gz'k').

Now, by Lemma 3.25(0) and the assumption that m ("Ry) m/, it suffices to show
that
Va Ry o k*(fa) (TO) ¥*(gd k')

and that follows from the assumption that fa ('Ry) ga'.
1. Assume a R a'. Then for O, k, and k' as above, we must show that
k*(na) (T'O) ¢* (ca'k')
i.e., using law 2.15(1) and the definition of £, that
ka (TO) ¢*(K'd)
which was precisely the assumption on k and &'
2. Assume Va Ry d'. fa ('Ry) ga’ and t ('Ry) u.
Let O, k and k' be given as before; to show:
k*(f*t) (TO) ¥* (g7 uk)
using monad law 2.15(3) on the LHS and expanding the RHS, this amounts to
showing
Az k*(fz)) t (TO) ¥* (u(Ax.gzk'))
This follows from the definition of ¢ ('Rs) u if we can show that
Va Ry o Az k™ (fz))a (TO) ¢¥* (Ax.gxk')a")

i.e., that
Va Ry . k*(fa) (TO) ¢*(gd' k")

And that follows from the assumption that fa (‘'Rs) gd'.

3.3. THE SIMULATION PROOF 71

3. Again, let O, k, and £’ be given with Va R a'. ka (TO) ¢* (k'd"), and t (T'R) t'; we
must show that

Kt (TO) ¢ (¢° (4" o k)" 1"))
i.e., cancelling the ¢* and ¢* (Definition 3.30(2)), that

k*t (TO) (¢°* o k")*t'.
By Lemma 3.25(2), it suffices to show that
Va Rd . ka (TO) (¢Y*ok')d .

And that was precisely the assumption on k and &'

4. Let R € ARel(«,) be given, with ¢ ('R) u. To show:
t (TR) ¢* (u(4® ony))
Here we finally need to instantiate the O in the definition of 'R. Take
ap = «, O =R, k= nq, k'=¢*on,.

Clearly this O is admissible, because R was assumed to be. Further, let a R d'.
Then, because n respects the relational action of 7' (Lemma 3.25(1)), we have:

ka=mna (TO)na" =°*(¢*(na)) =¢*(k'd)
From the assumption on ¢ and u, and monad law 2.15(2), we therefore obtain

t=n"t=k"t(T0O)¢* (uk') = ¢* (u(9® on))

as required.

Although the construction only gives reification at v directly, by choosing v appro-
priately, we can define reification functions at other types:

Lemma 3.32 Let there be a monad relation between T and U, and let j, : Uy — Ty be
a reification function at (L -type) v. Let o' be any type of Ly with term constructors
e: o —yand 0 :v— "d such that (in L;) a:a' = 6 (ea) = "a. Then the term

JL(€,6) : Ud' — Ta! & M . (As".letr, a <65 in nya)* (j, (Aa™ ., (€a)) T u))

is a reification function at o'.

Proof. Let o in Ly and R € ARel(«, ') be given, with ¢ ('R) u; we must show that
t (TR)jl (¢,0)u. Accordingly, define R, € ARel(«,) by

aR,s < "a('R)Js.

72 CHAPTER 3. RELATING EFFECTS

This is clearly admissible, being given as an inverse image of the admissible "R. Moreover,
from the assumption on € and ¢, and the properties of the computation-extension “R
(Definition 3.20(1)), we immediately get

Va Rd'.a R, ead,

which, together with the assumption on ¢ and v and the properties of the monad relation
(Definition 3.26(1,2)), gives us

t = (Aa.na)*t ('R,) (\a'.c(ea)) u.
From this, we get by the assumption on j, that
t (TR,) jy (N e (ea")) u).

And finally, using all three parts of Lemma 3.25 and the definition of R,,

t = (A\a.let}, a<="a in na)*t
(TR) (As.let;,, o' < ds in na')* (j, (Aa'.e(ead'))u™)) = jL(e,0)u

as required. [

For the j from Lemma 3.31 specifically, this works out to:

iL(e,0) = A" (\s". lets,, a<=ds in na)* (* (u(Aa™. (¢* o n) (€a))))

Consider now an L -program. Because our type system is monomorphic, every [-]-
operator in that program can be uniquely labeled with a specific type. There is thus
only ever a finite set N of LI-types a such that [a]’ needs to be embedded in the ~y
from Lemma 3.32. (Note that this is a static property of the program, with the set of
reification-types bounded linearly by the program size. This in contrast to, say, finite
unrollings of fixed points, where we cannot a priori determine how deeply to unroll.)

Thus, we can simulate reification with a finite sum, if we are willing to construct
the relevant type v = 3;[X(4)]}. for each program. In fact, for any finite X covering all
reifications in an L{-program, we get the same overall result when using any larger R for
defining v. We can thus formally define the evaluation semantics of programs resulting
from the variant translation to be the unique meaning determined by any “sufficiently
large” finite collection N.

Or, we can use a single, infinite embedding type that works for all programs. In
particular, we can simply take I to be the countable set of names of closed L{-types,
with R(‘a’) = a. Giving such an enumeration is unproblematic: the set of L-types
does not itself contain any embedding-types. Also, the tags themselves are inherently
unstructured; in particular, for a monadic translation, we have [in(, M], = in[M],,
not inq),-[M],. (In the actual ML implementation, we use an extensible data type for
YR, with tags dynamically generated and assigned at each instance of reification.)

3.3. THE SIMULATION PROOF 73

Embedding-types alone do not suffice to express a continuation-based simulation of
reification, however: there is an independent problem with reifying at LI-types containing
the type constructor '. Suppose for simplicity that we only needed reification at a single
Lt -type ap, and moreover that we could choose the answer type of the continuation
monad freely. Then it would seem natural to simply take v = [ag]’. and o = T™y.

But since the continuation-passing [-]/.-translation is itself defined in terms of the
answer type o, this would require us to solve the recursive type equation o = T'[ay]’.
exactly, which is too strong a requirement in general. Instead, we still take v = [ap]?,,
but only o = Tv. In fact, the latter need not even be a full isomorphism; an answer-
embedding suffices.

(Alternatively, we could have broken up the recursion by taking o = Ty and v = [ap]?..
This approach gives a slightly simpler abstract correspondence between monads and
continuation-passing, but does not allow us to express the construction in the next section
in full generality.)

3.3.5 Factorizing the variant translation

Although it translates from LT to L, the [-],-translation using U-effects is actually
much more like the standard U-monadic translation [-], from LY to L, sharing the
type translation and most of the term translation clauses with the latter. The only non-
standard clauses are for reflection and reification of T-effects. And in fact, we can express
the [-].-translation entirely in terms of the [-],-translation by expanding T-reflection
and reification into LY-definable terms.

In practice, this means that if we have a good (efficient, convenient, etc.) way of
implementing evaluators for £y (whether using the definitional translation for U or some
other technique, as long as it gives correct results for complete programs), we can ob-
tain an evaluator for L by simply viewing T-reflection and -reification as definitional
extensions of LY.

When i and j are definable in Ly (and hence invariant under the translations), this
is immediate: we can simply take p7(M) = p¥(iM) and [MI1* = j[M]I”. When U is a
continuation monad with a recursively-defined answer type, however, it will be more con-
venient to work with a formulation of U-effects that integrates the recursion isomorphisms
in the continuation-passing translation.

First, since for any monad-triples T and U, the sets of types of LT and LV are actually
the same (given by the type constructors of L together with '), we use the name L*-type
for a type from the extended signature, independent of the actual monad (which only
affects the types of p(-) and [-]1). We can then define a suitable notion of “native” effects
for an L*-continuation monad:

Definition 3.33 Let L be a cll signature. Then for any closed L*-type w, the signature
L extends L with a new computation-type constructor'a, the associated value-inclusion
and two lets (with types as in Definition 2.21), and the following two term constructors:

F'EM: (o= w)—w 'EM:'a
'k p<(M) '« FFIMI* (0= w)—Ww

74 CHAPTER 3. RELATING EFFECTS

Note that this strictly generalizes our previous definition of a monad-extended signature,
because in the case where w is actually a type of L (i.e., does not contain any '), the
above is exactly what we get by taking the monad T in Definition 2.21 to be K-,.

Unlike the case for a standard monad-extension of a signature, however, we will not
always be able to translate L back into L, because the corresponding monad now
involves a recursive type definition. But when the target syntax includes pu-types, we can
give such a translation:

Definition 3.34 The translation [-], : L™« — L* is defined as follows: first take

O = pa. [w],. and 0="W

a

(where the type translation [-] . ezpands'a into ([a] . — "a)—"a and preserves all type
constructors of L). We abbreviate the associated isomorphisms as:

¢ ¥ rollypg,. : [wle, =@ and ¢ Eounrolly g, 10 [w]i

o

(where we write ¢ : o = o' to summarize the typing rule of a term constructor ¢ building
o'-terms from a-terms).

Then the type and term translation is the standard monadic translation for the monad
K,, except with the clauses for reflection and reification reading:

[W5(M)] . = Ak.let” r <= [M], (Ma.let” o <=ka in “(¢Yo)) in *(¢r)
[[M1<], = M.let o< [M], (Aa.let r < ka in “(6r)) in “(40)

Note that when the isomorphisms are identities, as we can always trivially ensure when
w is only an L-type, this reduces to the original definition of a monadic translation
(Definition 2.23) because of the law let” z <= M in "z = M.

The usual direct-style reasoning principles for reflection and reification from Defini-
tion 2.27 still hold for the more general notion of monadic translation. Specifically:

Lemma 3.35 In addition to the equations for let and inclusion from Definition 2.27,
the following equations are sound for the [-] . -translation from Definition 3.34:

pe(IM1%) = M
(M) = Me. Mk = M
[M1* = Nk.kM
[let' © < M, in M1 = M. [M;15 (\w. [Mp1¥ k)
[et’ x <= M, in My1* = Ak.let” o <= M, in [M>1%k

(where k does not occur free in any of the Ms).

Proof. Simple calculation; we mainly have to verify that the isomorphisms cancel out.
For example, for the third equation:

3.3. THE SIMULATION PROOF 75

[MI¥], = Ak.let” o= ['M], (Aa.let” r <= ka in *(¢r)) in (o)
= Ak.let” o = (MK .K'[M],) (Na.let” r < ka in °(¢r)) in (o)
= Ak.let” o < (let” r <= k[M], in *(¢7)) in *(1p0)
= Mk.let” r = k[M], in let” o< *(¢r) in (o) = Ak.let” r < k[M], in “(¢ (¢7))
= Me.let” r < k[M], in r = M. k[M], = [\e.kM],

The others are similar.]

Note again the similarity of the direct-style equations characterizing [-] to those of an
explicit continuation-passing translation. The operational intuition is that p*(M) passes
to M a functional representation of the current evaluation context, i.e., the continuation
waiting for the result of (M). Conversely, [M]1* evaluates M with a given continuation
and returns the answer. For example, taking w = ¢, we have
[let' z < pX(Ak.let” r < k3 in kr) in'(sz)]1* (Aa."a)

= [p*(\k.let” r < k3 in kr)1* (Az. ['(sz)1* (Aa."a))

= (Ak.let” r <= k3 in kr) (Az.(Aa."a) (sz)) = (Ak.let” r <= k3 in kr) (Az."(sz))

=let” r< (A\z.”(sz))3 in (A\z.’(sz))r =let” r <°(s3) in (A\z.’(sz))r

= (Az.”(sz))4="5

That is, £ gets bound to the function Az.’(sz) and applied twice to 3.

Remark 3.36 The circularity inherent in allowing w to be an L*-type is genuine: even
without fix in the language, it is possible to write non-terminating programs in L%,
For perhaps the simplest example, take w ='1. Then reflection and reification (as shown
above, they are still two-sided inverses) give us an isomorphism

w="121l-w oW w—ow

And indeed, we can define a diverging term €2-,, by the usual double self-application made
type-correct by the isomorphisms:

d:w—w = \v.[z] (\()."x)
d:w = p(Ak'7".let” © < k() in dx)
Q:w = dd
|
It turns out that picking a fixed shape for the answer type (i.e., requiring it to be of
the form “w) necessitates a slight twist when simulating monads whose type constructors
do not contain an outermost °; this is why we allowed the answer-embedding in Defini-

tion 3.30 to be a retraction, rather than a full isomorphism. First, we slightly transform
the monad to be simulated:

Definition 3.37 Let T = (1,n,-*) be a monad-triple. We then define a new monad-
triple T = (T,7,-*) as follows:
Ta = “(Ta)

N = Aa."(na)
f* = Am.let” t <=m in *((Ma.lety,, r <= fa in r)*t)

76 CHAPTER 3. RELATING EFFECTS

For example, for state (Example 2.18), this gives

~

Ta = “(0 = (ax0))
n = Xa."(As.*(a, s))
[T = dm.let t <=m in “(As.let” (a,s') <ts in let” r < fa in rs)

Now T'a does have an outermost °. On the other hand, T is not in general a monad,
even if T was. In particular, for law 2.15(1) we only get

f*(ha) =let” t < °(na) in “((Aa.let],, r < fa in r)*t)
= "((\a.lety,, r < fa in r)*(na)) = “(let],, r < fa inr) =" fa

T is, however, a monad “up to extensionality”: when evaluated and applied to a
value, fa and f* (fa) do behave identically:

let’ r < f*(fa) in rs =let’ r < (lety,,, r< fa in r) in rs
= (lety,, r< fainr)s=let’ r< fainrs

And in fact, our construction will ensure that functions like f are always “fully applied”,
so that we can use 7 and -* instead of 7 and -*.

We can now define reflection and reification for T in terms of the corresponding
operators for continuations as follows:

Theorem 3.38 Let T be a monad in (Ly, Ls), and let M be an L} -program without
top-level focus effects, (i.e., - = M : °1). Further, let X be a family of types containing
at least all LT -types for which M contains a reification-operator. Take w = T(XR), a
well-formed (L3)*-type, and in (L)%« define the term constructors p*(-) and [-17 by:

W(M) = p Nk ("M))
[M]T = let}, t < (Ar.let” a < out;r in fa)* ([M1* (\a.7(in;a))) in t ®@)=a)

Now take Ly = (L))", with L; a model of (EF)" from Section 3.2.1. Then replacing
all T-reflection and -reification operators in M with the definitions above (picking i for
each reification arbitrarily, subject to the constraint), yields an (L3)"-program M' such

that [M], ("0") [M'] .

Proof. Let @ = [T(XR)], with associated isomorphisms be as in Definition 3.34, and
take v = X;[N(i)].; then [w], = [T(EN)], = T[ER], = T(X[X],) = Ty. It is also
easy to see that the functions defined by

¢ Ty — "W = Ar.*(or)
Y*iw =Ty = Am.lety, o<=m in Yo
form an answer-embedding in the sense of Definition 3.30.

Now, using the i from Lemma 3.31 directly, we get (omitting a few tedious let-
simplification steps):

3.3. THE SIMULATION PROOF 7

(7 (M)], = Ok K (M), = [V *(Aa.let, 7 <= ka in r)* M))],,
= Mk.let” r < [Mk.°((Ma.let), r < ka in 7)* M)] . (Aa.let” o< ka in (o)) in “(¢7)
= Ak.let” r < "((Aa.let}, o< ka in o)*[M],) in *(¢7)
= Mk."(¢((Aa.let}, o =ka in ¢o)* [M])) = Mk.¢* ((Aa.y* (ka))" [M])
= i) M1 = [n(M)]7
Similarly, using j from 3.31 as extended by Lemma 3.32 (with € = in; and 0 = out;,
satisfying the retraction condition by definition), we get:
[[MI7], = [let,, t < (Ar.let” a <= out;r in Ha)* ([MIX (Aa.1(in;a))) in t],
= leti), < [IM15], (Aa."(n(in;a))) in (Ar. let7r,p, @< out;r in na)*t
=letyp, o< [M]x (Aa."(p(n(in;a)))) in (Ar. let7 ., @< outir in na)* (o)
= (Ar. let)), @< out;r in na)* (lety., o < [M], (Aa.¢® (n(in;a))) in o)
= (Ar. let7,), @< outir in na)* (Y* ([M]x (Aa.(¢® on)(in;a))))
31, (ins,outy) [M],, — [LM],

We can thus apply Proposition 3.29 (with empty o and o¢') to get the result. [

Remark 3.39 When the monad T is already of the form T'a = *(T"«) for some type
constructor 7" (e.g., for exceptions, T'a = « + x), a slightly simpler construction is
possible. Take w = T"(XR) so that o = "w = *(T"y) =T, ¢*t =let’ s<t in (¢ s), and
Y*m =let” r<=m in “(¢r). (Here ¢* and ¢* are actually two-sided inverses.) Then we
get the analog of Theorem 3.38 by defining reflection and reification as follows:

JHM) = R M)
[M]" = (Ar.let” a <= out;r in na)* (M1 (Aa.n(in;a))) ®()=a)

The actual ML code in Section 4.5 takes advantage of this optimization by not including
an explicit suspension in the definition of monads like T, but instead having it implicitly
inserted by the CBV elaboration from Section 2.1.6. In other words, the type constructor
T in the ML signature of such a monad actually corresponds to the 7" above, so that,
e.g., (o1 = Tow)Y = (01)¥ = *(Toz2)¥ = (01)Y = T(02)". We could, however, simply use
Theorem 3.38 directly in all cases. [

We have thus reduced the problem of implementing a language with monadic effects
for an arbitrary definable monad T to that of implementing a language with reflection
and reification operators for a continuation monad with an answer type “w for some value-
type w. In the next chapter, we will show how this can itself be achieved by embedding
the continuation-effect language into a Scheme-like one.

3.3.6 Induced relational correspondence

We finally show how the relational correspondence between £y and £; can be generalized
to the case where the base language is itself given by a monadic translation. That is, we
consider the language where we take ' as the distinguished computation-type constructor,
while * and its related operations become simply additional type and term constructors.
Corollary 2.29 showed that this new language is also a model of &; the following shows
that this equational characterization extends to a relational one:

78 CHAPTER 3. RELATING EFFECTS

Proposition 3.40 Let there be given a monad relation between T in Lg and U in L;
(Definition 3.26). Then the relation assignment determined by the monad relation is a

computation-extension in the sense of Definition 3.20 for'-computations in the languages
(LE, LYY and (LY, LY), as given by Definition 2.24.

Proof. For the first condition, let R € ARelzr cv(, ') be a relation, and let a R a;
we must show that 'a ('R) 'd/, i.e., that in the original correspondence,

[[Ia]]T =na (IR) €a = [[Ia]]U

and that follows immediately from Definition 3.26(1).
Similarly, assume that Va Ry @'. fa ('Ry) f'a’ and m ('R;) m'. We must show that

let' z<=min fx ('Ry) let' 2’ <= m' in f'2'
in the new correspondence, i.e., that

[let' v <=min fz], = (A\z. fz)"m = f'm
(‘Rg) f"m/ =\, f'2")"m =[let' / <= m/ in f'2'],

in the original one, which is precisely the statement of 3.26(2).]

3.4 Related work

The study of relationships between direct and continuation semantics has a long history.
Early investigations [Rey74a, ST80, Sto81] were set in a domain-theoretic framework
where the main difficulties concerned reflexive domains; as a result, these methods and
results were closely tied to specific semantic models. On the other hand, Meyer and
Wand’s more abstract approach [MW85] applied to all models of simply-typed A-calculi,
but did not encompass computational effects — not even nontermination.

The present work, while formulated in a simply-typed setting, and using mostly ax-
iomatic reasoning, is nevertheless closer conceptually to the domain-theoretic results. In
particular, it explicitly handles general recursion in computations by fixed-point induc-
tion, and should extend to recursively-defined types without too many obstacles. (The
initial version in [Fil94] was based on the Meyer-Wand approach, but it is not clear how
well that would scale to ambient effects and especially recursion.)

A possible correspondence between monads and continuation-passing style (CPS) was
conjectured by Danvy and Filinski [DF90], and more concretely presented by Wadler
[Wad92b]. (The general idea of using a monad morphism to simulate one monadic ef-
fect with another is also due to Wadler [Wad90].) However, this work was largely in-
formal. Most notably, the problems with reification (needed, e.g., to express handle for
continuation-based exceptions) in a typed setting were not addressed at all.

Peyton Jones and Wadler [PW93] probe the relationship between monads and CPS
further, and Wadler [Wad94] analyzes composable continuations from a monadic per-
spective, but in both cases the restriction to Hindley-Milner typable translations ob-
scures the general correspondence; properly expressing the answer-type parametricity

3.4. RELATED WORK 79

in a simulation of general monads by continuation-passing requires a more flexible type
system.

Finally, another glimmer of the connection between monads and continuations can
be seen in Sabry and Felleisen’s result that #n-equivalence of CPS terms coincides with
direct-style equivalence in Moggi’s computational A-calculus [SF93, Mog89]; the latter
captures exactly the equivalences holding in the presence of arbitrary monadic effects.
While this does not by itself imply that any monadic effect can be simulated by a continu-
ation monad, it does indicate that continuations form a mazimally (but not necessarily
most) general notion of effect.

Chapter 4

Implementing Continuation-Effects

In this chapter, we continue the simulation of effects by showing that a language with
reflection and reification operators for a continuation monad can itself be embedded in
a language with a more traditional set of effects: Scheme-style first-class continuations
and typed state.

That is, in the previous chapter we showed that continuations are in a precise sense
a universal effect: any definable monad can be simulated by a continuation monad with
a suitable answer type. Now we show that this universal effect can itself be expressed
in terms of two specific, low-level effects. Thus, we can program directly with monadic
effects in a language such as Scheme, or MLL with continuations.

The development consists of three major steps. First, we re-express reflection and
reification for continuations in terms of an alternative, more operationally motivated
pair of control operators. These implement a control abstraction known as composable
continuations. We further decompose the composable-continuations operators into a
standard escape-operator, an abort-operator, and a control delimiter.

Then we show that the level-tags (* and ' on value-inclusions and lets) introduced
by the monadic translation are actually unnecessary for evaluation-purposes: the level-
erasure of a program evaluates to the same result as the original one. The proof involves
another set of logical relations, indexed by types of the original two-level language, and
relating original and level-erased terms at each type.

Finally, in the level-erased language, we define the control operators in terms of
Scheme-like primitives. The key step here is to re-express the sequencing of already
continuation-passing terms in meta-continuation-passing style, then observe that the
metacontinuation is used in a single-threaded way throughout the translation and can
hence be maintained in a fixed cell of the store. Again, a simple logical-relations argu-
ment shows the equivalence of the original definitions of the control operators to their
escape-state simulation.

We conclude the chapter with an actual implementation of the construction in Stand-
ard ML of New Jersey, which includes language support for first-class continuations. In
addition to the complete code implementing monadic reflection and reification in terms
of escapes and state, we show a few simple programming examples. In particular, we
illustrate how definable monadic effects, such as nondeterministic or probabilistic com-
putations, fit very naturally into a traditional call-by-value setting.

80

4.1. CONTINUATION-REFLECTION AND COMPOSABLE CONTINUATIONS 81

4.1 Continuation-reflection and composable continuations

For convenience, we will assume that all signatures in the following contain an empty type
0 with no value constructors. Our implementation signature Lj = LE’“ (i.e., Lo with
recursive types and embedding-types) certainly does, for example defining 0 as pa. a or as
an embedding-type with empty index set. We need not require that 0 has a counterpart
in the specification language Ly as well, although adding it there would be unproblematic.

Further, for any computation-type 3 there is a (unique) function from 0 to /3, express-
ible as, e.g., A\z. L, which we write as V3. In fact, 0 and V are simply the zero-ary analogs
of sums and case (except that we do not require a V, for arbitrary «); in particular, for
any monadic translation we have [0], = 0 and [V3 M], = Vg, [M],.

Unlike Chapter 3, where the simulation results were parameterized by the fairly com-
plex notion of a definable monad (which included a type constructor and type-indexed
families of term constructors), all the constructions in this chapter are parameterized by
a fixed, closed value-type w. Accordingly, except within definitions of recursive types
with p, we only need to consider type-closed types and terms.

The continuation-passing translation allows us to define a wide range of control oper-
ators in the source language. We have already seen reflection and reification, but many
others are possible. In particular, we have:

Definition 4.1 Let L be a cll signature with a 0-type, and let w be a type of L*. Then
in L¥ (Definition 3.33), we define the operations

'FM:(a—'0)—"0 'FM:w 'EM:'w 'FM: (- w)—'w
'=CM :'«a '-AM:'0 D'=#M:"w '=8SM:'a

by the expansions:

CM = p(Me*7 IM (Ma®. p(Ag""7 ™. ka))] (A" V,2))
AM = p(MN*v."M)

#M = [MI(\re.°r)

SM = p(Ak*7“ [IMEI(Are."r))

The operational intuition is as follows: C M (escape) invokes M with a representation
of the current evaluation context as a procedure ¢ : « —'0 that, when applied to a value
a : «, will abandon the then current context of evaluation and return a as the result of
CM,e.g.,

C(M\g.let' z<=¢3in---) ="3

(regardless of what happens in --+). The 0-“returning” ¢ can invoked in a context ex-
pecting an 'a/-typed result by writing let' z <= qa in Viy z. C thus acts very much like
Scheme’s call/cc, except that the M must explicitly invoke ¢ in order to return a value
from C M. Each variant can be used to define the other, however.

AM (abort) immediately terminates the current computation, returning M as the
answer. Like a ¢ supplied by C, it can be used in combination with)V to break out of
any computation-typed context.

82 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

#M (reset or prompt) evaluates M in an empty evaluation context and returns the
final answer of that evaluation, thus delimiting any control effects M might have. For
example, when w =1, we get

#(let' z = A51in'T) =5

Finally, SM (shift) captures and erases the current evaluation context up to (but
not including) the innermost enclosing #, passing this context to M as a composable
function. For example, still with w = ¢, we have

#(let' v = S(A\k.let” r < k4 in let” ro < kry in 'ry) in '(sz)) =76
Note also that we could define AM = S(A\k*7~.' M)

Although probably not as well known as call/cc, control operators like S, A, and #
have already seen a fair amount of study, e.g., [Fel88, SF90, DF92, Wad94, Fil94, GRRI5];
we will briefly compare the various approaches in Section 4.6.

For reference, and since we will need it later (in Definition 4.5), let us note:

Lemma 4.2 The translations of the derived control operators using Definition 3.34 work
out to:

[CM], = Ak.[M], (Aa.N\g.ka)(Nz.V 2)

M],
[AM], = A¢."(6[M],)
[#M], = let” o= [M], (\r.(¢7)) in (o)

[SM], = M. [M], (Aa.let” o <= ka in (o)) (Ar.°(¢r))

Proof. Straightforward. For example,

[AM], = [1"(Ag."M)],x = Ak.1let” r <= [Ag."M] (Aa.let” o <= ka in “(10)) in *(¢r)
= Mk.let” r < (A\g.[M]) (Na.let” o = ka in *(1p0)) in *(¢r7)
= Ak.let” r < [M], in “(¢r) = Xk (H[M] x)

The others are similar.]

The reason why we can concentrate on the composable-continuations operators in-
stead of the seemingly more general p%(-) and [-1¥ is the following property:

Lemma 4.3 Shift and reset form a complete set of control operators, in the sense that
we can use them to express reflection and reification as follows:

P (M) = S\ let" r< Mk in 'r)
[M1S = Mo~ #(let' a < M in let’ r < ka in 'r)

and get equivalent translations under [-],. .

Proof. The actual translations of the terms contain explicit isomorphisms, which
clutter up the equational proofs. It is thus more convenient to use the standard direct-
style reasoning principles for reflection and reification, whose soundness with respect to
the [-]-translation was established in Lemma 3.35:

4.1. CONTINUATION-REFLECTION AND COMPOSABLE CONTINUATIONS 83

S(Ok.let” r < Mk in 'r) = p(\k. [(\k.let” r < Mk in 'r) k1 (Ar."r))
=p(Ak.[let” r <= ME in 'r1(Ar.r)) = p(Ak.let” r < Mk in ['r] (A\r."r))
= pAk.let” r =Mk in (M\e.kr)(Ar.r)) = p(Ak.let” r <= Mk in r) = p(Ak. M k)
= p(M)

Me.#(let' a<= M in let” r < ka in 'r) = M\k.[let' a <= M in let” r < ka in 'r] (Ar."r)
= Ak.[M]1(Xa.[let” r < ka in 'r] (Ar.7r)) = Ak. [M]1(Xa.let” r <= ka in ['r]1(Ar.7T))
= Ak.[M]1(Xa.let” r < ka in (Ar.’r)r) = Ak.[M] (Aa.let” r < ka in r)
— M. [M1(Na.ka) = \k. [M1k = [M]

That is, reflection essentially captures the current continuation and passes it to M,
while reification evaluates M in a delimited control context containing only k. This simple
reading is somewhat obscured by the explicit lets and value-inclusions used to coerce
between the two kinds of computation. However, when we eliminate the operational
distinction between ° and ' in the next section, the two mixed-level lets (binding r) can
actually be replaced with just M k and ka.

Somewhat surprisingly, the reflect-like & can itself be decomposed into a standard
escape-operator and two simpler constructs:

Lemma 4.4 § is definable in terms of C, #, and A by

SM =C(A\7".let' r <= M (Ma®. #(let' z < ca in V,2)) in Ar)

Proof. Asin Lemma 4.3, we can use direct-style reasoning for the actual verification:

C(Xc.let' r <= M (Aa.#(let' z <= ca in Vz)) in Ar)
= u(Mk.[(Ac.let' r <= M (Aa.#(let' z <= ca in V2)) in Ar) (Aa.u(Ag.ka))]l (Az.V 2))
= p(Ak. [et' r <= M (Aa.#(let' z <= (Aa.p(Ag.ka))a in Vz)) in Ar] (Az.Vz))

M (Aa.#(let' z <= p(Ag.ka) in Vz))]1(Ar.[Ar] (Az.Vz2)))

M (Na. [let' z <= p(Ag.ka) in Vz] (A\x."z))] (Ar. [p(Ag. 7)1 (A2.V 2)))

M (Aa. [p(Ag.ka)]l (Az. [V 2] (Az."z)))] (Ar. (Ag.r) (A2z.V 2)))

M (Aa. (Ag.ka) (Az. [V 2] (Az."x)))] (Ar.r)) = p(Ak. LM (Aa.ka)] (Ar."r))

AMEI(Arr)) =8SM

(\k
(\k
(\k
(\k
(\k
(\k

I
TEEETETE

Here, we wrap the escaping continuation ¢ provided by C in a control delimiter, making
it into a composable function that can be passed to M. Since S also needs to erase the
continuation after capturing it, we explicitly abort with the result r returned by M.

Because C, A and # were themselves defined in terms of p(-) and [-1%, in principle
it does not matter which set we use in the following. Pragmatically, however, (C, A, #)
have the advantage that their types contain no negative occurrences of °, which slightly
simplifies the arguments in Section 4.2. We therefore now switch attention to the new
set:

84 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

Definition 4.5 Let L be a cll signature with a 0-type, and let w be a type of L*. The
signature L% extends L with a computation-type constructor', associated value-inclusion
and lets, and the term constructors C, A, and #, typed as in Definition 4.1. There is an
evident translation from L¥% to L¥% given by the statements of Lemmas 4.3 and 4.4.

The definitional translation [-], from L¥% to L* is identical to the one for L from
Definition 3.34, except that the clauses for p(-) and [-1% are replaced with the clauses
for C, A, and # from Lemma 4.2.

Note that, since we consider complete programs to be terms of type “, the type system
ensures that all control effects in an LX%-program occur within the dynamic scope of
some #.

4.2 Level-erasure

Between Chapter 3 and Section 4.1, we have now reduced monadic effects to shift /reset
and further to escapes, abort, and reset; all dependencies on the original monadic transla-
tion are gone from the translation equations, with the monad simulation being performed
entirely by expanding T-reflection and -reification into simple control operators and com-
ponents of the monad-triple.

However, our effect-enriched language L still has a significant practical limitation: we
need to explicitly indicate the levels on all value-inclusions and lets. From a specification
perspective, this is reasonable; with general reflection and reification available, we must
distinguish properly between °- and '-computations in order to even define the monadic
translation.

Moreover, most programs can actually be written in terms of '-computations alone,
with uses of ° restricted to the definitions of monad-specific effects from reflection and
reification, such as the raise and handle in Example 2.26. Thus, for particular compu-
tational effects, we may not need to explicitly expose “~computations to the language as
a whole.

On the other hand, if we are to provide reflection and reification for arbitrary,
programmer-defined monads, we do need general "-computations to be directly express-
ible in the language. In languages such as Effect-PCF (i.e., our Lg), where computation-
sequencing is already explicit, adding level-annotations to all inclusions and lets may not
be too problematic. But in an ML-like language, implicitly elaborated into Effect-PCF
as in Section 2.1.6, there is no room for significant effect-annotations of source terms.
And fortunately, as far as program evaluation is concerned, the levels can actually be
safely elided.

The idea is to view "« as a subtype of 'a, rather than as an entirely separate type.
Membership in “a then becomes a semantic property on values, with the type system
guaranteeing absence of effects in certain terms, but not playing an active role in the
actual evaluation process. Accordingly, we now define a new language with a unified
notion of control-effects:

Definition 4.6 Take L, to be L} extended with an empty type 0 and associated V. We
further define the set of L% -types to be the same as that of Ly, but with the type constructor
“ replaced by a new constructor .

4.2. LEVEL-ERASURE 85

When w is an Li-type, the signature LY of the composable-continuations language
then consists of Ly with all instances of * replaced by * (so in particular, for computations

we now have:
'-M: « ' M : oy I,ziop B M,y fas

['-"M: '« ['Flet’ < M in M, : "oy
but no °-computations), together with the following additional term constructors:
'FM:(a—"0)—"0 'EM:w 'EM: w
'ECM :’« L'=AM:°0 CE#M: w

We can define a translation from our two-level control-effect language into the unified
one by simply dropping the distinctions between the levels:

Definition 4.7 The level-erasure translation |-| is defined as follows. First, for any
Li-type «, || is the Li-type obtained by replacing all occurrences of ° and' in o with *:

o

(07

= ['af ="|a]

with the other type constructors unaffected. For terms, level-erasure likewise conflates all
uses of * and ' into * (e.g., |"M| = |'"M|="|M|), and maps the constructors C, A, and #
to their counterparts from Definition /.6.

It is easy to see that if T M : « in L% then |T| F |M] : o] in LEE1.

We can also give a definitional translation of the one-level language:

Definition 4.8 Letw be an L-type. We then define the continuation-passing translation
[[lz from LS to LY as follows. First, let the auziliary [-1%., on types be the syntactic
expansion of ‘o into ([a]g, — "a) = "a, and take

o = pa.w]z. -

a

We also write
b : Wiz, = &= rolla. ., and 0> Wiz, = unrolly iz,
for the associated isomorphisms. The translation of types is then given by:
[alz = ([o]z = @) =@

(with the other type constructors not affected). Correspondingly, the non-identity clauses
of the term translation are:

Iz = M-k[M]z

Iz = Ak [Mi]z (Ax. [Ma]z k)

CM]z = Me.[M]z (Ma.N\g.ka)(A2.V2)

Ix = Ao (GIMIp) _ _
lz = Ak.let” o< [M]x (Ar.°(¢r)) in k(¢ o)

As usual, this translation is easily seen to be type-preserving: if '+ M : v in LYY then

[z = [M]z : [o]z in LY.

86 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

We can now state our goal concretely: we want to show that the original [-],-
translation from Definition 4.5 is equivalent for evaluation purposes to a level-erasure
followed by the [-]z-translation. To establish this equivalence, we will define a collection
of relations between the types arising from the two translations. The key ingredient here
is a suitable relational action of the type constructor ° in the two translations:

Definition 4.9 Let there be given a relational correspondence between two interpreta-
tions of LY, with a computation-extension of relations R — "R (Definition 3.20). Then
for any relation R € ARel(a, o), we define the relation "R € CARel (o, (o' — ") — @)
by:
m ("R) u
< Vay typepr, O € ARel(ag,). Ak.let” z <= m in kz (R—"0) = "0) u
< Vay typerr, O € ARel(a, @),k : o = g, k' 1 o/ = .
VaRd . ka(CO)K'd)=1let" a<=m in ka ("O) uk’

(Note that this is essentially the monad relation from Lemma 3.31, with T taken as the
identity monad, v = &, 0o = ", and ¢* = ¢* = id. That is, we are using a continuation
monad to simulate a trivial notion of focus effects.)

We can now define our system of relations:

Definition 4.10 Let w be an Li-type, take w = [w], (Definition 3.34) and © = [|w|]x
(Definition 4.8), and let
= € ARel(w, @)

be an admissible relation on final answers; for the moment we leave its definition unspe-
cified. For any type o of L7, the relation

~a € ARel([a], [lof]z)

s then given in the usual way for base types, sums, products, and functions. For the
remaining L3-type constructors, we take:

2072 = 207 < false
s>y 8 &= s (Ximnp) s <= diedomN, a -y a'.s=injaNs =ina
m = u <= m("=4)u
Ut = u((a—"7)—= ") d
= VEk, k. (Va o d . ka (=) Kd) = uk (O=) o'k

/

It is easy to see that all >, are admissible (we can view g as being defined by an
inverse image of constant functions: z o 2/ <= 0" 1 ; for >yy, see Lemma A.10(3)),
and that »-, and =, are also computation-admissible.

The representation of a “a-value in the [|-|]z-translation will always be of the form
M. let” <= m' in kx for some m', and thus in particular must be parametric in the
answer type. Hence, we could define >-, without committing to any particular relational
interpretation of answers: > does not occur in the definition of >-, from .

4.2. LEVEL-ERASURE 87

On the other hand, for >, the identity of the answer type is explicitly exposed to
the source language, because A takes an arbitrary value of type w to be an answer, while
allows answers to be inspected as (control-effect-free) computations of type w. Thus,
if we want to relate terms containing A and #, we cannot choose > arbitrarily: it must
match up with >,. Fortunately, this circular dependency can be resolved, because of the
following important result:

Theorem 4.11 Let F and F' be type constructors, and let * be a formal relation con-

structor, built out of (1) the standard relational actions of Ly-type constructors, (2) con-

stant admissible relations (computation-admissible for computation-types), and (3) the re-

lation constructor; so that * maps any relation R € ARel(a, /) to *R € ARel(Fa, F'a!).
Then * has an invariant relation pR.*R € ARel(pa. Fa, pa. F'a), such that

a (uR.°R) ' <= unroll, paa *(uR.*R) unroll, fr,a’.

Proof. See Corollary A.20 in Section A.4. []

Form this we immediately obtain:
Lemma 4.12 There exists an admissible relation = € ARel(w, @) such that
00 <= Yo, Yo
(where =, is defined in terms of = by Definition 4.10).

Proof. The existence of > hinges on >, being defined from it using only the operations
enumerated in Theorem 4.11. Thus, we can directly take > to be the invariant relation
for the action ®* mapping > to >,. [

Note that even though @& is genuinely recursive when w contains any computation-
type constructors, the circularity in the definition of > still only occurs when w contains
a'. Otherwise, >, becomes just an unparameterized definition by induction on «, and in
particular does not depend on ». We can then simply take Lemma 4.12 as the definition
of »; there is nothing to prove in that case.

We can now state the correctness result for level-erasure:

Lemma 4.13 IfT'F M : « is a term of L1 * and o = o' then [M]%. =q [|1M]]z.

K

Proof. The proof is by induction on M. The interesting cases are:
e Case "M. To show: ,
M5 o AR RTIMIE
Le., that for any O and k (>, — "O) k',
let” a < [M]? in ka ("O) K [|M|]Z
With a simplification of the LHS, this reduces to showing
K[MI (CO) K IIMITE

which we get immediately from IH on M and the assumption on k and &'

88

CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

e Case let” x <= M, in Ms : “a. To show:

let® @ <= [M,]% in [Ma]7 =0, &' [|My]]Z (A [|M|]Z &)
That is, for any O and k (>,, — "O) k', we must show
let” ay <= (let” z < [M,]% in [M,]7) in kay (FO) [|Mi[]E (A\a. [| My|]Z &)

Again, by a simple rewriting of the LHS, this is equivalent to
let” v < [M,]7 in (Az.let” ay <= [M]7 in kay)w
(0) [IM)% (Az. [IM:]% &)

By IH on M; and the definition of >-,,, it suffices to show that
Vay o, a). (\z.let” ay <= [Ma]? in kaz)ar (CO) (Ao [|Me]]Z k') a)
i.e., that for all a; >, af,
let” ay < [M,]7 {a)/2} in kay ("O) [|M]]Z{d,/2} k'

And that follows immediately from the IH on Ms, with extended substitutions
(0,a1/x) and (o', d}/x).

Case let” x < M; in M, :'ay. To show:
A let” z <= [M]7 in [Mo]7 k =10, MK [|M[]Z (Az. [| M2|]Z K)
That is, for k (>4, = =) k',
let” x <= [M,]7, in [ML]5 k (=) [[M[1F (Ao [[M[1%)

Again, by a simple rewriting of the LHS, this is equivalent to
let” v < [M]7 in (M. [M2]7 k)x (°=) [[|M1|]]f_{' (Az. [[|M2|]]‘Ii(l k")

As above, by IH on M; and the definition of >-,, , taking ay = @ and O = >, it
suffices to show that

Vay =, ay. Az [Ms]% k) ay (=) (A [|Ma|]Z k') d)

which follows immediately from the IH on M, with extended substitutions (o, a; /x)
and (o', a}/x).

Case AM. To show:

Ag-(G[M]7) >0 Ag- (B[M]F)

Le., that when ¢ (>¢ — “>) ¢’ (vacuously true for any ¢ and ¢’) then

(p[M]7) (=) “(e[1M11Z)

4.2. LEVEL-ERASURE 89

By property 3.20(1) of “>, it suffices to show that

!

oM = o lIM]%

which by Lemma 4.12 is equivalent to

Y (O[M]7) =0 D (B[IM]T)
and that we get by IH on M after cancelling out the isomorphisms.

e Case #M. 'To show:

let” 0 < [M]7 (Ar.(¢7)) in *(¢0)
-y A let” o <= [|M[]Z (A (1)) in K (o)

Le., that for any O and k (>~, —°0) K,

) K
let” z < (let’ 0<:[[M]]f§((qb_ r)) in (¢ 0)) in kz
("0) let™ o <= [| M|]% (\r'."(¢1")) in &' (¥ 0')

which simplifies to

let” o < [M]7 (M. °(¢r),) in k(v o))
(FO) let” o' <= [|M|]Z (Ar'."(¢r")) in k' (v 0)

By definition of > and the assumption on k£ and &', we have

Yo = o k(o) (CO) k(o)
so by 3.20(2), it suffices to show that

[MI5, (hr~(6r)) (=) [IM[]% (W' ~(61))
By IH on M, we have [M]% =, [|M|[]Z, so we only need to show that

K
Vr =, . (or) (°=) “(é7r')
which follows from 3.20(1) if we have
Vr o=, 1. ¢r = ¢r

and that is again an immediate consequence of the definition of >, as in the case
for AM above.

e Case C M. Simple — same translation on both sides.

e Case V3 M. To show:
Vsl IMI5 =5 Visnz [IM 1%

But by IH on M, [M]? ¢ [[M|]Z, so this case can never actually occur (indeed,
there are no closed values of type 0).

90 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

e Case in; M. To show:
ing [M]7 =y in; [|M|]Z

By IH on M, we have [M]% =y [|[M|]Z, so we get the result directly from the
definition of >sxy.

e Case outd; M. To show:
outd; [M]7, =x(i)+1 outd; [|M|]%

Le., that
outd; [M]%. (=@ + 1) outd; [|M|[]%
By IH on M and the definition of =sy, [M]% = inya and [|M|]Z = inyd’ for some

K
i € dom X and a >y @’. There are two possibilities:

— 4" = i. Then by definition of +* we have
outd; (in;a) = inla (x4 + 1) inla’ = outd; (in;a’)
— 4" #£ ¢. Then, again by definition of the relational actions of + and 1,

outd; (iny a) = inr () (>=x@) +1) inr () = outd; (iny a’)

4.3 Composable continuations from escapes and state

We now only have to implement a one-level language with escapes, prompts, and abort,
specified by a simple continuation-passing transform. Since we may want to perform the
continuation-passing translation anyway, e.g., for cps-based code generation [App92], we
seem to be on the right track. On closer inspection, however, the translation does not
quite produce “proper” continuation-passing terms: there is still a little bit of explicit
sequencing left in the output.

Recall the equations for [-]z from Definition 4.8. The problem is with A, and espe-
cially with #, which introduce an explicit notion of sequencing of already continuation-
passing terms. By a stroke of good luck, however, we can express this sequencing in
terms of another standard effect, namely state.

The key idea is to eliminate the remaining traces of explicit sequencing by performing
another continuation-passing transformation, using a new metacontinuation v to keep
track of the nested °-computations. That is, we take the implementation interpretation of
ambient effects to also be given by a continuation monad. (We do not constrain the answer
type of this monad, so we retain the full range of possible ambient computational effects.)
While this may at first seem to move us farther away from a direct implementation, we
will see that the “properly continuation-passing” terms are effectively unaffected by this
second translation, while the translations of A and # change in a useful way.

4.3. COMPOSABLE CONTINUATIONS FROM ESCAPES AND STATE 91

Definition 4.14 In LY, let there be given a computation-type 0 of ultimate answers; we
will often abbreviate « — 6 as —«. We then define [-], : L} — LY to be the translation
expanding °-computations into continuation-passing with answer type 0, i.e.,

[ade = (la]c = 0) =0

[[M], = Ay.y[M],
[let” x <= M in M), = Av.[Mi]. (Ax.[Ms].)

(with other type and term constructors unaffected as usual).

We also define a new continuation-passing translation of LY, where the answer

type is itself explicitly a type of continuation-passing computations (as opposed to the
unspecified notion of ambient effects in “@):

Definition 4.15 Let w be an Li-type, and take & = pa. [w]z . with isomorphisms
" w]z. , B0 = rolla fulz . and P S Wl = unrolly
We then define [-] o : LY — LY as follows:

[I:wOé]]Ku — Kﬁﬁa)[[a]]Ku — ([[Oé]]Ku —)_|_|(I)) _>_‘_‘CZ)

[[wM]]K“ = \k.)‘7' k [[M]]K“ Y

[let” z <= My in My],.. = Ae Ay [Mi] o0 Az Ay [M] 0 k')
CM]e = M Ay [M] 0 (Aa.Ag. AV kav") (Az. Ny Vzy")y
AML = AgAg (6" [M],)
[#M], o = A Ay [M] 0 (Ar. XY A (¢ 7)) (Mo k (4" 0))

Note that all but the underlined occurrences of v can be n-reduced away, so the trans-
lations for value-inclusions, lets, and escapes form a completely standard continuation-
passing transformation.

It is also easy to see that this translation consolidates the two nested continuation-
passing translations into one:

Lemma 4.16 For any type o of LY, [[a]=]. = [@] e and for any term M, [[M]=]. =
[M]u (in the predomain interpretation of LY).

Proof. The only complication is the type-recursion in the definition of the translations.
Recall the key cases:

o [‘a]z = K-z[a]z where @ = pa. [[w]]z_%.
[] [[POC]]Ku = Kﬁﬁa) [[Oé]]Ku Where (I) e Ha_ [[w]]I_(ﬁﬁa‘

i [[Da]]o = Kﬂ[[a]]o = _'_'[[a]]O'

92 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

We first strengthen the relationship for the type translation to, for any o of LY,

[[edz,]c = lalz,, (*)
The proof of (*) is a simple induction on «; the only interesting case is
[Talz,le = [(elz, = 0) = ole = (lelz,lc = loe) = [l
= ([[a]]l_([[o]]o - [[0]](1) - [[0]]() = K[[O]]O [[a]]l_([[o]]o = [['04]];7[[0]0
Now, first take 0o = "a in (*) to get
[©]c = [pa. [w]z,]c = pa. [[@lz, lc = pa. [w]zp,, = pa vz, =@
and then, with o = ",
[[adzle = llelz.1c = lalzps,, = lalz.), = [alz. .
Given the equalities on types, the equality on terms is completely straightforward.
The cases for value-inclusion, let, and escape are immediate since their [-],-translations

do not contain any sequencing; we obtain the result by simple 7-conversion. For A and
#, we use that

[M]. = [rolla puyz., Mo = rolla i, 1o [M1e = rolla e [M]. = ¢"[M],
and analogously for ¢». Then, for example,

[IAM]z]e = M- (@ [M]z)]e = Ag-Ay-y (¢ [[M]z]e) 2 Ag- Ay v (" [M])
= [AM]

4.3.1 Re-tying the recursive knot

Our metacontinuation translation [-],. was derived directly from the original [-]%.
However, to match it up with he state-passing translation later, we first need to relate
[-] <« to an equivalent formulation, using an isomorphic answer type:

Definition 4.17 Let ¢ = pa'. =[w]z , with isomorphisms

¢" : o[wle.. =< = rolly ~pz and Y"1 ¢ aw]x.. = unrolly

-

.ﬁ[w}] I_(_‘a/

Then define [-]n to be the continuation-passing translation with answer type —¢, and
with translation equations for escape, abort and reset now reading:

[CM]n = Mo Ag.[M] o (Ma.Ag. NG kag') (Az.Mg".V2zg")g

[AM] = Ak.Ag.vg [M],r

[#M] o = Ak Ag. [M] e (Ar.Ag". 0" g'r) (6" (Aa.kag))

It should be intuitively plausible that this definition is equivalent to the one in Defini-

tion 4.15 above; we state this precisely in Corollary 4.22 below, to which one may proceed
without loss of continuity.

From Section A.3, we include:

4.3. COMPOSABLE CONTINUATIONS FROM ESCAPES AND STATE 93

Definition 4.18 The functorial action of Ly-type constructors on isomorphisms is given
as follows, so that for any ¢ : a1 = g, Dh.(p) @ af{ar/a} = a{as/a} and Vi s(p) :
Hou/ay = Bloz/a}:

ia(p)a = pa
! (p)n = n
ui(p)u = ()
Bfoxan ()P = (Phuay () (Fst p), Pras () (snd p))
Dlo(p)z = 2
;_alfm(go)s = case(s,aj.inl ((I)‘"i-ofl (¢)ay), ag.inl (®L 4, (¢) az))
Oy n(p)s = case(s, . a;. in; (Paxe) (@) ai))
fo(p)b 2o(p)b

Ul (p)m = let” 2 <=m in (P}, (p))

a.1(§0)0 = <>

asxi(P)p = (Yap (0) (fstp), Ui, () (snd p))
(p)g = Ao Tl 5(90) (g(DLa(p))

We then take advantage of the fact that our chosen solutions to recursive type equa-
tions are unique up to isomorphism, so that in particular it does not matter where we
break up the recursion when defining a pair of mutually recursive types:

Lemma 4.19 Let F' and G be type constructors of Ly (not necessarily covariant), and
let o = pa. F(Ga) and o = pa’. G(Fa') be the solutions to the corresponding recursive
type equations. Then in the predomain model, there exists an isomorphism x : Ga = o,
which further satisfies the following two (equivalent) coherence equations:

v:Ga k= rolly gra) (@é,.g(Fa,)(X) (@;.Ga(unrolla,p((;a))x)) =xz:d
ya' q);.Ga(rOHa.F(Ga)) (CI);’.G(Fa’)(X_l) (UnfOHa'.G(Fa') y)) = X_1 y:Ga

Proof. See Lemma A.14 in the appendix. []

In our case, we obtain from this the following instance:

Lemma 4.20 There exists an isomorphism x : ~w = . This induces for any type a of
LYY an isomorphism Yo : [] oo = [a] o0 = D% [a1z., (X), and moreover

g5, rifwle Fx tg(@tr) =g (Yur) 0
Proof. Define the type constructors Fa' = [w]z , and Ga = —a. Then we have
0 = pa. W]z = pa. F(Ga) and ¢ =pa' [w]z , =pa . G(Fa')

We thus get the isomorphism x : =@ — ¢ directly from Lemma 4.19. Moreover, we can
write T, = ®% pa(x). Now, first note that

94 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

@50 () ha = Vaams(p) ha = Vag(p) (M(Phalp ') e)) = id (h(Phaly M) 2))
= h(Phale™h)x)

And then, using the second form of the coherence equation from 4.19, we get

X lg(¢'r) = @Zaﬁa(sbu)[vl 0D (@9l (¢"r)
= [®h Llr ., (X (@ 9)] (®ha(i") (¢"7)) = [, Sl D @@ (4 7))
:(I);’.ﬁ[[w]]g_‘a/()(Q/’n gr=9"g(a’.[[w]]f?ﬁa/(X)r) = d’n (Yur)

Because the translations from Definitions 4.15 and 4.17 are both continuation-passing
translations with isomorphic answer types, they are very closely related: instead of the
usual logical relation, we get a simple equational correspondence:

Lemma 4.21 Let I' = (z;:ay,..., T, qp), and let us write Y for the substitution
(Yo, x1/x1, ..., Yo, xn/xn). Then for any L¢% term T+ M : «,
Yo [M] o = [MIE

KR

Proof. The cases for the standard terms (products, sums, and functions) are straight-

forward. For example, for abstractions and applications, we have
Yoo Ao M] o = Aa. T (Az. [M]) (Y51 a)) = Aa. Az Tﬂ [M],0) (X5 a) B
i Tr,Yaz/x — _ Tr,Taz/z _ Tr, Yo (Yo a)/z
2 Na. Az [M] I T®/®) (T La) = Aa. [[M]]KE v tajzy = ha. [M] T)/

= Xa.[M] 5% = (Az. [M])" = [Az. M]7%

Ty [Mi M) = T ([Mi]ju [M2]) = (Aa. T ([M1] u @) [M2] e

= (A\d'. Tﬁ([[Ml]]Ku (Y:'a)) (Yo [[M2]]Ku) = (Tasp [[M1]]Ku)(Ta [M2] ;)
L M EE [Mo] (5 = ([Mi] n [Ma] on)™ = [My My] 15

Kn

K

K Kn
For computations, let us first name the induced isomorphisms on meta-computations

T S g = @ (x) and e S = Bl (X7

The value isomorphism for computations then becomes:

Trau =)ol . (X) U = P (o], »-a)>-a(X) U
= M. Uy, —a(X) (u (¢a o]z, ﬁﬁa(Xil) k))
= M. (u (A Wh— (x) (b (2] bz, (X)a))) = Ak.m (u(a. 7w (k(Taa))))
With this, the cases for inclusion and let are also simple, e.g.,
Yoo [[M] o = Yoo [Nk [M]z] = Yoo (M. E[M] c0)
= Me.m (Mo b [M] ou) Da. 7wt (B (Yoa))) = Me.m (771 (B (Yo [M]u)))
= Mok (Yo [M]) 2 MoK [M] T = ["M]7x
The interesting cases are for A and #, which actually depend on the answer type.
Here we need to expand the 7 and 77!,

Tf=®-()f=Ag-f(x'g) and T f =0 .(x7)f=M.f(x7)

in T+, to get
Trqu = Ak Ag.u(Na. \v.k(Toa) (x7) (X g).

We then check:

4.3. COMPOSABLE CONTINUATIONS FROM ESCAPES AND STATE 95

T [AM] a = Yoo [Ag."(¢" [M])] = Tro (Ag-Ay.y (¢" [M]u))
= Ag.Ag. X" g (9" [M]) =" Aq. Mg 9" g (Yo [M]) 2 Aq. Ag.9p" g [M] 15
= [AM]}%

where the step marked with { uses the coherence equation from Lemma 4.20.
For reset, the calculation is a little more involved, since here we do not simply discard
the continuation:

Yo, [#M] o = Yoy [Ak.1let” 0 < M()\r (¢"r)) in k(" 0)],
= T, (M. Ny [M] ;00 (Ar. XY/ (6" 7)) (Ro.k (¥ 0) 7))
= Ak Ag. [M]en (A Ay (8" 7)) (Mo k(T (4 0)) (x (X" 9)))
= Mo Ag. [M];cu (Ar. M.+ (9" 7)) (Xo.k (Yo (4" 0)) g)
= Mo Ag. [M]eu (Ar. My o' (8"))(/\0 (Ar-krg) (Lo, (4" 0)))
= Mg [M] o (r Ay x (7' (91 7)) (Mo.9p™ (9" (A k7)) (T (4% 0)))
=T M. Ag. [M] o (Ar. MY 9" (Xv)(r)) (Ao.x 7 (¢" (Ar.krg)) (4" (" 0)))
= Ak A [M] o Ar Ay 9" (x7') (Ywr) (X (9" (Ar-krg)))
= M. Ag. (Yo [M]) (A Ag"4p" g'r) (¢" (Ar. 7 g))
2Nk Mg [M]TE (W Ag' b g'r) (6™ (AN krg)) = [#M] S5

where again the ¥ marks two applications of the coherence equation. [

We can now state the observable consequence of the above result, expressed using
only constructs of LY, i.e., without the “helper” isomorphisms y and Y,:

Corollary 4.22 Let M be a closed LYY -term, of type "v. Then for any ag : 0 and p : 1—0),
[M]u (An. Ay .pn) (Ao.ag) = [M] 0 (An. Ag'.pn) (8" (Ar. o))

Proof. Simple equational verification, using Lemma 4.21 (with empty I'), T, =
¢.(x) = id, and the coherence equation:

[M]er (i Ag'-p) (3 (. 0)) = (X, [M],e0) O Ag"-pm) (6 (M- o)
= [M] e (A Xy A Ay.pn] (Tun) (x7') (x 7 (8" (A ap)))
= [M] 0 Qv Xy (T,)) (o X (88 (. a0)) (8 (9 0))
=" [M] e (An. Ay pn) (No.9p™ (6" (Ar.a0)) (Yo (4" 0)))
= [M] ;o An. XY .pn) (No.(Ar.ap) (T, (1" 0))) = [M] e (An. Xy .pn) (Mo.ag)

Although this corollary may at first appear too specialized, it actually covers exactly
what we need. In particular, if M is a term without escaping effects, it must be equivalent
to an included numeral, n in the [-]..-translation, and we get:

[M] co An. Xy .pn) (Mo.ag) = ['n] xu (An. XY .pn) (No.ag)
= [nlxn (An.Ag".pn) (¢" (Ar.ag)) = [Me.Ag.kng] (An. Ag".pn) (¢" (Ar.ag)) = pn

On the other hand, if M actually invokes the metacontinuation (through an A not
protected by an enclosing #), both translations return the “error answer” ay.

96 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

4.3.2 The continuation-state language

Let us now assume that we have available a language with Scheme-like escapes and state
as the effects. For simplicity, we consider the state to consist of only a single, typed cell
(additional state could still be accommodated by choosing # appropriately):

Definition 4.23 Let o be an Li-type. Then the signature LY of the continuation-state
language consists of Ly with all occurrences of ° replaced by * (as in Definition 4.6), and
extended with the following term constructors:

'FM:(a—"0)—"0 I'M:o
I'FCM :*a '+lst:’o 'Fst:=M:"1

Note that the type o can be a complex type, such as t— "¢, so that values stored in the
cell can be procedures that themselves read or modify the state. This again introduces
a reflexivity in the types, and it is well known that one can define a fixed-point operator
using higher-order state (as actually done for letrec in Scheme [CR91]). As usual, we
give a definitional translation of the new language:

Definition 4.24 Let 6 be a computation-type of LY, and let o be a Li-type. Then the
translation [-] from L5 to LY is given by, on types:

[Fa]s = K-s]a]s where & = pa. [o]z

We have ¢° : [o]y = 6 and ¢® : 6 = [o], in the two directions. (As usual, these can
be taken as identities if o does not contain *.) Then we can give the term translations of
the new constructs:

['M], = Me.As.k[M]q s
[let” <= M; in M), = Ak As. [Mi]y Az As'. [Ma] s ks') s
[= Mk As. [M]s (Aa.-Ag. As" kas') (A2 As".V zs") s
— sk (4°5)
. = Ak sk () (8

xQ

0

[[

0

]
M]
1 s)s
] [M]s)

iﬁ

[st

Again, all but the underlined instances of state-passing in the above can be eta-
reduced away. In other words, for the core computational structure, this is a standard
continuation-translation with answer type ¢ — 6.

Now pick 0 = w — 0. We then have
62 Jw—"0],=[w]s > (0—=6—0)—>5—0
We will use ¢ to represent our metacontinuation . Although this state-based encod-

ing of v now also gets passed a continuation 0 — —6 and a state o, it will use neither of
these. That is, we informally have “6 & [w], — 0.

4.3. COMPOSABLE CONTINUATIONS FROM ESCAPES AND STATE 97

Having chosen a suitable state type, we also need to express the relevant operations
on the metacontinuation in terms of the constructs of our continuation-state language.
For conciseness, we introduce the abbreviation:

'+M,:"1 '+ Ms: "«
Fl_Ml;MQIVCY

with expansion
Ml; M2 def let® <> <~ M1 in M2

We already have value-inclusion, computation-sequencing, and escapes directly avail-
able in LY. For the remaining two constructs of LY“, we take:

Definition 4.25 Let w be an Li-type. Then in L%~ we define operators A and #,
typed as in Definition 4.6, as follows:

AM ¥ let’ g<!st in g M
#M € C(\c*7".1let’ g« !st in (st:= (Av*.(st:=g;cv));let’ x < M in Ax))

Note in particular that the procedure stored into st in # does not use the previous
value of st, nor does it return to its point of call (not that it could, since its return type
is empty).

We now set up a system of logical relations suitable for showing that the above state-
based definitions of the control operators capture the behavior of the metacontinuation-
based translation:

Lemma 4.26 Let there be given a relational correspondence between two interpretations
L and L' of LY, with a computation-extension of relations R — “R. Let ~ € CARel(0, 6)
be an arbitrary computation-admissible relation on ultimate answers. Then there exists
a collection of relations with the following properties:

e On “wrapped” ultimate answers: ~* € CARel(0, (0 — —6) — ¢ — 0)

m ~*m' < Vq € Valg (0 — —6),s € Valg(6).m ~m'qs

e On metacontinuations/state: < € ARel(c,),

g s <= Pg (=) PPs <= Vr o~y Yt gr = PP syt
e On meta-computations: ~ € CARel(¢c - 0,6 = 0) = (x — ~), i.e.,
r~1 <= Vgxsavg~as

e On values: for any Li-type a, ~o € ARel([a], []s), defined in the usual way
for the standard type constructors, and in particular,

U~ U = u (o =) o)

98 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

Proof. First assume that the relation < is given independently, and define the oth-
ers in terms of it (thus satisfying all of the equivalences in the lemma except the one
characterizing x<). Further, define *< € CARel([w]:» — 0, [w]s — (0— —=6) — 6 —) by

Y)Y = (v =)Y = Ve~ oy

~* is a computation-admissible relation, being given as an intersection over inverse
images of ~ by the (rigid) functions id on the LHS and Am.mgs on the RHS. (~* does
not depend on <, so there is no concern about admissibility of the action defining it.)
All of the relational actions defining *< from =< are thus standard, so by Theorem 4.11
we can take =< as the invariant relation for the overall action, i.e.,

g=s = Pg(*x) s

giving us the remaining equivalence of the lemma. []

Having established existence of the appropriate relations, we can now easily show
correctness of the state-based representation of the metacontinuation:

!

Lemma 4.27 Let I' = M : o be a term of LYY and o ~p o'. Then [M]°, ~q [M]°

K" S

(where on the RHS we use the expansions of A and # from Definition 4.25.

Proof. By induction on M. Most cases are immediate, with the term constructors
having the same expansions in the two translations. The only exceptions are:

e Case AM. We first compute

[AM], = [let’ g < !st in g M), = Ag. As.[!st]y (A\g-As'.[gM]sqs') s
=Aq. As.(Ag. A" g[M]s qs') (4°s)s = Aq. Xs. (4% s) [M] s g5

We must then show that [AM]%, ~v [AM]?, ie., that

!

A AG. (" g) [M] e ~ro A As. (9%) [M]5 ¢'s

So let ¢ (0 — =) ¢/. Then we must show

Ag- (9") [M]7 ~ Xs. (4°5) [M]7 ¢'s
Accordingly, let g < s; it then suffices to show that
(" g) M7 = (47 5) [M]]
which follows from the definition of g < s and the IH that [M]?, ~, [M]7 .

K S
e Case #M. Again, we first expand the RHS:
[#M]s = [C(Ac.let” g <=!st in (st := (Av.(st :=g;cv));let” x <= M in Ax))],
= = M. As. [M]g Az As". (° ")z (A2. V 2) 8") (¢° (Av. Aq. As" kv (¢° (% 8))))
= M. As. [M]s (Az. As". (° 8") 2 (A\2.V 2) §") (¢* (Mv. Aq. As" . kv s))
We must now show that [#M]7, ~, [#M]7, ie., that

KR

4.4. PUTTING IT ALL TOGETHER 99

M Mg [M]%. (A Ag" . 0" g'r) (6" (Na. kag))

KR

~org M. [M]7 Az As'. (08" 2 (A2.V 2)) (6° (. A\g. As” k' v s))
As usual, assume k (~, — =) k' and ¢ < s; we must then show

[MI7 (Ar-Ag 9" g'r) (6" (Aa- kag))
~ [M]S Az As". (°s") 2 (A2.V 2) s") (¢° (Av. Ag. As" K v s))

By IH on M, it suffices to show that the continuations and metacontinuations
passed to the two translations are related. For the continuations, we must show
that if r ~, x and ¢’ < s’ then

Y g~ (Vs x (A2 V2) s

which follows from the definition of ¢’ < s'. Similarly, for the metacontinuations,
we must show that
¢" (Aa.kag) < ¢ (\v.\q. \s" k' vs)

Again, by definition of =, this requires showing that for r ~,, .
P (9" (Na.kag))r = * (¢° (v Ag. A" K vs))r'
i.e., cancelling the isomorphisms, that
krg~*"Xg.\s".k't"s

which follows immediately from the definition of ~* and the assumption on k£ and
K.

4.4 Putting it all together

Summarizing the results of this chapter, we can state:

Theorem 4.28 Let there be given a relational correspondence between a language (LY, L)
and itself, with a computation-estension of relations R — "R such that ~ = °(i*) is an
equivalence relation.

Further, let [-]. : L{ — LY be the translation of ambient effects using the continuation
monad with answer type @ = °v from Definition 4.14, p € Valz(1—) a printing function,
and ay € Valg(0) an error answer.

Finally, let w be a type of LY, [-] . the continuation-passing transform with answer type
w from Definition 3.34, and [-]4 the continuation-state transform from Definition /.24,
with state type o = |w| — "0 and ultimate-answer type 0.

Then for any complete program -+ M : . in L¥™,

[[M] 1o p = [M{]s (An.As".pn) (¢° (Az. A\g. As.ag))

where - = M| : v is a term of L% obtained syntactically from M by (1) erasing all
level-annotations on value-inclusions and lets, and (2) defining p*(-) and [-1¥ in terms
of escapes and state as detailed in Lemmas 4.3 and 4.4, and Definition 4.25.

100 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

(For a correctly effect-stratified program M, the initial error-metacontinuation on the
right-hand side will never be invoked. When the implementation is hosted in an ML-like
language, however, the system cannot statically verify that M is typable in our stricter
system, only that the level-erasure of M is ML-typable. Pragmatically, to give a more
useful behavior for effect-typing errors (notably if M has escaping control-effects, i.e., if
it effectively has type 't rather than °.), we therefore take the initial metacontinuation to
produce a distinct answer ag when invoked; we want to show that the simulation is still
correct with this error-catching extension.)

Proof. First, let £Lc be the predomain semantics for the ambient-effect monad induced
by K-, (which is easily checked to be a uniform monad in the predomain semantics) as
in Proposition 2.20. Proposition 2.25 (straightforwardly extended to the additional term
constructors of L) then gives us that

Le[-] = L[]
for types and terms. Moreover, the standard relational action of K-, in L, i.e.,
m (CR)m' <= m ((R— ") = ") m’
= Vv,7Y.VaRd.va~=~d)=my>=m'y
is easily seen to be a computation-extension for the notion of ambient effects determined
by the continuation monad: for any a and o' such that a R d,

[a], = Me.ka (R— ~)— ~) Ak.kad' = [4d'],.,

and similarly for let”.

Let M' now be the LY program obtained from M by defining pX(-) and [-1¥ in
terms of C, A, and # (still with their two-level types). Then from Definition 4.5 (with
associated lemmas) we get that in L¢, [M], = [M'], and hence in £ that

[[M]cdep =M Ddep (*)

We can now use the level-erasure Lemma 4.13 to get, in the relational correspondence
between the two copies of L¢:

[M]y = [IM'|]%
Since >, is simply equality of numerals, this expands to

Vayg typeps, O € ARelg, c.(an, @), k € Valg, (1 — “ap), k' € Valg, (1 — D).
(Vn € N.kn (FO) k'n) = let” x <= [M'], in kz (FO) [|M'|]z ¥

Or, in the original correspondence:

Yo typen, O € ARelz c([ao], [@]0),
ke Vals(t = ([ao], = 0) = 0), k' € Valz(v — ([©], — 0) = 0).
(Vn € N.kn (CO) K'n) = M. [[M']]c (Ae.kzy) (CO) [[|M'|]z]c ¥

Somewhat surprisingly, the actual choice of the relation O does not matter much; it is
the use of C' to computation-extend O that is important. In fact, we can simply take

4.4. PUTTING IT ALL TOGETHER 101

ap = 0, and O to vacuously relate every element of 0 to every element of [©],. Then
consider the two continuations

E=An" A" pn and Kk = \n" \yFle™? pn'.
Let n be a natural number; we must show that kn (CO) k'n, i.e., that
Vy,7'. (Yo O 0. vo~~"0d)=kny ~kny".

Since both k£ and k" ignore their metacontinuation arguments, this reduces to pn ~ pn,
which we get from reflexivity of ~. We thus have:

MM dop = Ay [IM]]e (A2 k)
(CO) [IM"lz]c k' = M 1M]z]e (An-Ay".pn)

Take v = Az.Vyz and 7' = MNo.ag; they vacuously map all O-related values to ~-
related results. Expanding the definition of C'O, we therefore get:

[[M'Ticle p = TIM [Tz]e (An. Xy pn) (Xo. ao) ()

We can now take the step to escapes and state. Let M; = |M’'|. First, Lemma 4.16
gives us

[[Mi]z]e AnAY".pn) (Ax.ap) = [M1] 0 (A AY".pn) (Az. ap) (*)
and then Corollary 4.22,
[Mi]e n 2") (A ag) = [Mi e (. Ag.pm) (6 (A aq)) (*)
From Lemma 4.27, we get, in the L£-correspondence:

[M] o ~n [M]

where M/ is obtained from M; by defining A and # in terms of C, !st and st :=- as in
Definition 4.25. We want to get from this that

[M],n Az NG . px) (8" (Az.00)) = [M{]s (Az.As".px) (6° (\1. Aq. NS ap)) (*)

Expanding the definition of ~1,, we need to verify that the continuations are related,
i.e., that for every n ~, n' (i.e., n = n'), A\¢.pn ~ As'.pn’, which again reduces to just
pn ~ pn'. We must also check that the initial metacontinuation and state are related by
=, i.e., that for r ~_ 7', and ¢, s arbitrary,

Y™ (" (A\w.ag))r =~ (¢V°(¢* (A\z.Aq.As.ap))) 7' qs

And that is true since both sides simplify to aq.
Finally, taking the lines marked with (x) above together in sequence, using the trans-
itivity of ~, gives us the desired result.]

102 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

And finally, taking this theorem together with Chapter 3, with nontermination as the
notion of ambient effects, and simply diverging for effect-typing errors, we get:

Corollary 4.29 Let L, be the partiality interpretation of LY, and let T be a monad in
(Lo, L£1). Then we can pick a state type o in L} such that for any complete LE -program
=M,

L [[M],](0) = LLIIM s (An. As'."n) (¢° (Az. L))] (o)

where M' is a term of LY obtained syntactically from M by (1) erasing all the levels
on value-inclusions and lets, and (2) defining p"(-) and [-17 in terms of escapes, state,
embeddings, and the term constructors of T.

Proof. In the partiality semantics, with relation lifting as the computation-extension,
two closed terms of type “ are related by ~ = °(:") iff their denotations are equal in the
model (so in particular, ~ is an equivalence relation).

First, let Ty = I be the identity monad (Example 2.16) and Uy = K-, the continuation
monad with answer type “v (Definition 3.4). Then by Lemma 3.5 there is a monad
morphism h from T to Uy defined as follows:

h, =Am*. 7" let” a<=min vya

From this, Proposition 3.27 gives us a monad relation between I and K-,, mapping a
relation R € ARel(«,) to 'R € CARel(“a, (& — ") — °¢) by:

!

m(R)ym'" <= hm=M.let"z<min~yzr (R—~)—~)m
= V7,7 VaRd.va~~d)=let" v <=min yr ~m'y

Hence, by Proposition 3.40, we get a relational correspondence between the interpreta-
tions given by L[-] = £, [-] and £;[-] = L£.[[-].], with computation-extension "R taken
as the 'R defined above.

Theorem 3.38, with X taken as an enumeration of all closed L{-types, now gives us
that, in the correspondence between Ly and L;,

[M], () [Mu]
where M, in Li*7®™" is obtained from M by defining ;"(-) and [-]” in terms of p*(-) and

[-1%, the components of T, and the operations for embedding-types. Using (" as our R
above, with v =+ = Az."x, we thus get in the original correspondence:

[M], =let” v < [M], in (A\zx."z)x ~ [[Mi]], (Az."z)

And from this, we get the desired result directly by Theorem 4.28 with p = Az."z and
Ay = J_=L. |

4.5. ML IMPLEMENTATION AND EXAMPLES 103

4.5 ML implementation and examples

In this section we illustrate how the abstract construction presented so far can be tran-
scribed into runnable code. To emphasize the typing issues involved, we use the New
Jersey dialect of Standard ML [AM91] as our concrete language, but the operational
content should translate straightforwardly into Scheme as well (though instantiation to
different monads may be less convenient without a “parameterized module” facility).
We also give several examples; the reader may want to compare these with Wadler’s
presentation [Wad92b).

4.5.1 Composable continuations

In SML/NJ, first-class continuations have a type distinct from the type of general pro-
cedures. Let us therefore first set up a Scheme-style representation of such continuations
as non-returning procedures (this is not essential but makes for a more direct corres-
pondence with the development in Section 4.3):

signature ESCAPE =
sig
type void
val coerce : void -> ’a
val escape : ((’la -> void) -> void) -> ’la
end;

structure Escape : ESCAPE =
struct
datatype void = VOID of void
fun coerce (VOID v) = coerce v
fun escape f = callcc (fn k => coerce (f (fn x => throw k x)))
end;

For example, we can write

let open Escape
in 3 + escape (fn k => k (6 + coerce (k 1))) end;
(* val it = 4 : int *)

(The use of void and coerce instead of an unconstrained type variable in Escape permits
continuations to be stored in ref-cells while staying within the ML type system [HDM93].)

Now we can define a composable-continuations facility, parameterized by the type of
final answers (using Definition 4.25 and Lemma 4.4):

signature CONTROL =
sig
type ans
val reset : (unit -> ans) —-> ans
val shift : ((’1a -> ans) -> ans) -> ’la
end;

functor Control (type ans) : CONTROL =
struct

104 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

open Escape

exception MissingReset

val mk : (ans -> void) ref = ref (fmn
fun abort x = (!mk x)

=> raise MissingReset)

type ans = ans
fun reset t =

escape (fn k => let val m = !'mk

inmk := (fn r => (mk :=m; k 1r));
abort (t()) end)

fun shift h =

escape (fn k => abort (h (fn v => reset (fn ()=>coerce (k v)))))

end;

For example,

structure IntCtrl = Control (type ans = int);

let open IntCtrl

in 1 + reset (fn () => 2 * shift (fm k => k (k 10))) end;
(¥ val it = 41 : int *)

4.5.2 Monadic reflection

Building on the composable-continuations package, we implement the construction of
Section 3.3.5. The signature of a monad is simple:

signature MONAD =

sig
type ’a t
val unit : ’a -> ’a t

val ext : (’a -> ’bt) ->’at ->"’bt
val show : string t -> string
end;

(The monad laws have to be verified manually, though.) The component show is included
in the signature for convenience only. We require it to satisfy showounit = id; on terms
that do not factor through unit, it provides an informal string-based representation of
the effect if possible. It might at first seem more general to parameterize over types,
i.e., have a show’: (’a -> string) -> ’a t -> string, but we can recover that as
fn ms=>fn t=>show (ext (unit o ms) t). Our goal is to define reflection and reific-
ation operations for an arbitrary monad M to get

signature RMONAD =
sig
structure M : MONAD
val reflect : ’la M.t -> ’la
val reify : (unit -> ’1la) -> ’la M.t
val run : (unit -> string) -> string
end;

4.5. ML IMPLEMENTATION AND EXAMPLES 105

Here, run is again mostly for illustration purposes: it takes a suspended string-returning
computation and returns the result of executing it, annotated by an external represent-
ation of its computational effects, if any.

Using Control we can now define a representation of the continuation monad for an
arbitrary answer type (Lemma 4.3, but simplified because of level-erasure):

functor ContMonad (type answer) : MONAD =
struct
type ’a t = (’a -> answer) -> answer
fun unit a = fn k => k a
fun ext f t =fmn k => t (fm a => f a k)
fun show t = raise Fail "show not defined"
end;

functor ContRep (type answer) : RMONAD =
struct
structure C

Control (type ans = answer)

structure M = ContMonad (type answer = answer)
val reflect = C.shift
fun reify t = fn k => C.reset (fmn () => k (t ()))
fun run t = raise Fail "run not defined"

end;

(where show and run cannot be defined when the answer type is unknown).

To implement the general construction, we also need to somehow represent the in-
finitary embedding type from Section 3.3.4. This might at first seem fundamentally
incompatible with SML’s type system, especially if we want a “parametric” solution,
independent of the collection of available base types and type constructors. But the con-
struction only requires us to exhibit an embedding for those types at which we actually
perform a reification. Thus, all we need is what could be called a “generative type
dynamic”: a structure matching

signature DYNAMIC =

sig

type dyn

val newdyn : unit -> (’la -> dyn) * (dyn -> ’1la)
end;

such that for any monotype ’1a, an invocation of newdyn () returns a pair of functions
(to_d, from_d) with from_d o to_d equal to the identity on ’1a. This signature can
actually be implemented type-safely in SML, by exploiting the fact that the standard
datatype exn (nominally of exception names, but useful for other purposes as well) can
be dynamically extended with new summands:

structure Dynamic : DYNAMIC =
struct
exception Dynamic
abstype dyn = DYN of exn
with fun newdyn () =
let exception E of ’1la
in (fn a => DYN (E a), fn DYN (E a) => a | _ => raise Dynamic) end

106 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

end
end;

Note that we never actually raise or handle the exception E anywhere; we only use it as
a dynamically-allocated tag.

Remark 4.30 Encoding dynamic types in terms of exception names is probably the
most efficient approach in SML/NJ (short of bypassing the type system entirely via
System.Unsafe.cast), but we do not actually depend on existence of an “extensible
datatype” for the construction. In fact, we can get the same effect by representing a
value of type dyn as a procedure unit -> unit, setting a specific cell to the desired
value:

structure Dynamic’ : DYNAMIC =
struct
exception Dynamic
abstype dyn = DYN of unit -> unit
with fun newdyn () =
let val r = ref NONE
in (fm a => DYN (fn () => r := SOME a),
fn (DYN d) =>
(r := NONE; 4 O;
case !r of SOME a => a | NONE => raise Dynamic)) end
end
end;

However, this needlessly builds a closure for the dynamic value, and is perhaps a bit more
obscure than the exn-based definition above. []

We can now complete the construction (Theorem 3.38):

functor Represent (structure M : MONAD) : RMONAD =
struct
structure CR = ContRep (type answer = Dynamic.dyn M.t)

structure M = M
fun reflect m = CR.reflect (fmn k => M.ext k m)
fun reify t =
let val (to_d, from_d) = Dynamic.newdyn ()
in M.ext (M.unit o from_d) (CR.reify t (M.unit o to_d)) end
fun run t = M.show (reify t)
end;

4.5.3 Example: exceptions

Example 1.5 from the Introduction becomes, in the concrete setting of our ML-based
implementation:

structure ErrorMonad =
struct
datatype ’a t = SUC of ’a | ERR of string
val unit = SUC

4.5. ML IMPLEMENTATION AND EXAMPLES 107

fun ext f (SUC a) = f a
| ext £ (ERR s) (ERR s)
fun show (SUC a) = a
| show (ERR s) = "<Error: " ~ s =~ '">"
end;

functor ErrorOps (structure R : RMONAD sharing R.M = ErrorMonad)
sig
val myraise : string -> ’la
val myhandle : (unit -> ’2a) -> (string -> ’2a) -> ’2a
end =
struct
open ErrorMonad
fun myraise e = R.reflect (ERR e)
fun myhandle t h = case R.reify t of SUC a => a | ERR s => h s
end;

Note that the operations myhandle and myraise are defined generically in terms
of any valid implementation of reflection and reification for the exception monad. For
example, since SML already has exceptions we could simply take

structure ErrorRep’ : RMONAD =
struct
exception Exc of string;

structure M = ErrorMonad open M
fun reflect (SUC a) = a
| reflect (ERR e) = raise Exc e
fun reify t = SUC (¢t ()) handle Exc e => ERR e
fun run t = show (reify t)
end;

We can, however, also plug in the “canonical” definitions obtained from Represent:

structure ErrorRep = Represent (structure M = ErrorMonad)
structure FX = ErrorOps (structure R = ErrorRep) open FX;

fun mydiv (x,y) = if y = O then myraise "Div0" else x div y;
(* val mydiv : int * int -> int *)

ErrorRep.run (fn () => makestring (1 + mydiv (100, 3)));
(* val it = "34" : string *)

ErrorRep.run (fn () => makestring (1 + mydiv (100, 0)));
(* val it = "<Error: Div0>'" *)

ErrorRep.run (fn () => myhandle (fn () => makestring (1 + mydiv (100, 0)))
(fn s => "Oops: " "~ 8));
(* val it = "Oops: DivO0" *)

The type inferred for myraise above is actually overly conservative wrt. weakness:
since an exception-raising operation never returns normally in the first place, it is safe
to give it a fully polymorphic type. We can achieve this by simply changing the defin-
ition of myraise to Escape.coerce (reflect (ERR e)). Unfortunately, myhandle is

108 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

also only weakly polymorphic, which can be traced back to the fact that reify in the
functor Represent has a weakly polymorphic type (and that itself is a consequence of
its definition in terms of Dynamic.newdyn).

It is instructive to inspect the expansion of myraise and myhandle into the underlying
state and continuation manipulations: the cell allocated for the metacontinuation in
Control effectively contains the “current handler continuation”, which is invoked by a
raise and temporarily rebound in the scope of each new handle. This is very much like
the way exceptions are actually implemented in SML/NJ, although the details are not
quite the same: an exception-specific implementation can take advantage of particular
operational properties of the monad (notably that handler continuations are invoked at
most once) to optimize the generic construction a bit.

4.5.4 Example: state

The state monad is straightforward:

functor StateMonad (type state) : MONAD =
struct
type ’a t = state —> ’a * state
fun unit a = fn s => (a,s)
fun ext f t = fn s => let val (a,s’) =t s in f a s’ end
fun show t = raise Fail "not defined"
end;

structure IntStateMonad : MONAD =
struct
structure S = StateMonad (type state = int) open S
fun show t =
let val (a,s’) =t 42
in if s’ = 42 then a else "<s: " ~ makestring s’ ~ "> " " a end
end

functor IntStateOps (structure R : RMONAD sharing R.M = IntStateMonad)
sig
val store : int -> unit
val fetch : unit -> int
val tick : unit -> unit
end =
struct
fun store n = R.reflect (fm s => ((),n))
fun fetch () = R.reflect (fmn s => (s,s))
fun tick () = R.reflect (fm s => ((),s+1))
end

structure IntStateRep = Represent (structure M = IntStateMonad)
structure FX = IntStateOps (structure R = IntStateRep) open FX;

IntStateRep.run (fn () => (store 5; tick ;

let val x = fetch ()

in tick (); makestring (2 * x) end));
(* val it = "<s: 7> 12" *)

4.5. ML IMPLEMENTATION AND EXAMPLES 109

Here the general construction is clearly wasteful, however: we could easily have rep-
resented the state monad without using callcc at all. This is also true for many other
“state-like” monads, such as I/O or complexity. Thus, the real value of the general con-
struction is when the decomposition into escapes and state is not immediately apparent,
as in the following examples.

4.5.5 Example: nondeterminism

A nondeterministic computation can be represented as a list of answers. (Formally, this
goes beyond the monads considered in Chapter 3, but extending the proof to a language
with inductive datatypes such as lists is straightforward.)

structure ListMonad : MONAD =
struct
type ’a t = ’a list
fun unit a = [a]
fun ext £ [] = []
| ext £ (h::t) =f hQ@ext ft
fun show [] = "<fail>"

end;

functor ListOps (structure R :

show [x] = x
show (h::t) =h = " <or> " ~ show t

sig
val pick : ’la list -> ’la
val fail : unit -> ’la
val results : (unit -> ’la) -> ’la list
end =
struct
fun pick 1 = R.reflect 1
fun fail () = R.reflect []
fun results t = R.reify t
end;
structure ListRep = Represent (structure M = ListMonad)
structure FX = ListOps (structure R = ListRep) open FX;

ListRep.run (fn () => let val x = pick [3,4] * pick [5,7]

(* val it

in if x >= 20 then makestring x else fail () end);

= "21 <or> 20 <or> 28" : string *)

RMONAD sharing R.M = ListMonad) :

More generally, we get Haskell-style list comprehensions “for free”, in that the schema

(where each x; may be used in Ej,q,..., E, and in F) can be expressed directly as

w(E,) in E]

[let z; = p(Ey) in ... let z,

Of course, this is probably not the most efficient way of implementing list comprehen-
sions in ML. As observed by Wadler, however, list comprehensions can be generalized
to arbitrary monads [Wad92al; similarly we get general monad comprehensions in ML
simply by supplying the appropriate [-] and p(-) operations.

110 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

4.5.6 Example: probability

A slight refinement of the nondeterminism monad permits us to keep track not only of
the possible outcomes of a nondeterministic evaluation, but also their relative probab-
ilities, given a distribution on the individual choice operations. That is, a probabilistic
computation of type « is represented by a finite set of pairs (a;, p;), where a; is a value
of type «, p; € (0,1], all the a; are distinct, and the p; sum to 1.

However, this example also illustrates a technical problem with monads as a struc-
turing tool for functional programs, as opposed to describing programming language
semantics: the definition of a monad requires that the operations 1 and -* be defined
uniformly at all types, but in general we cannot properly implement sets of higher-order
values because elements of such type cannot be tested for equality.

For example, we cannot algorithmically identify two probabilistic computations like
{(Az.z,1)} and {(Az.z,0.5), (Az.x,0.5)}, even though both represent the same “def-
inite” identity function. Note that the latter variant can easily arise even if we do
not allow explicit non-deterministic choice at higher types — consider a source term like
let y=amb(3,4) in \z.x +y — v.

While this non-uniqueness is not in itself a problem — after all, we cannot observe
functions directly — we need to ensure that any ground-type result we may obtain by a
series of applications of potentially higher-order probabilistic functions is still uniquely
represented. An easy way of achieving this is to always represent “active” probabilistic
computations non-uniquely using list-nondeterminism, but then only expose reification
at types for which we can eliminate duplicates:

abstraction ProbMonad :
sig
include MONAD
val to_t : (’a * real) list -> ’a t
val from_t : ’’a t -> (’’a * real) list
end =
struct
type ’a t = (’a * real) list (* 0.0<p<=1.0; sum(p) = 1.0 *)
fun unit a = [(a,1.0)]
fun ext £ ([1:’a t) = []
| ext £ ((a,p) :: t) = map (fn (b,q) => (b,p*q)) (f a) @ ext £ ¢
= a

fun show’ [(a, 1.0)]
| show’ [] = nn
| show’ ((a,p) :: t) = "<p: " ~ makestring p ~ ">" "~ a " show’ t

fun to_t 1 =1 (* could do some sanity checking here *)
fun tally (a,p) ([1:’’a t) = [(a,p)]
| tally (a,p) ((a’,p’) :: t) =
if a = a’ then (a,p+p’) :: t else (a’,p’) :: tally (a,p) t
fun from_t t = fold (fn (h,1l) => tally h 1) t []
fun show t = show’ (from_t t)
end;

functor ProbOps (structure R : RMONAD sharing R.M = ProbMonad) :
sig
val choose : (’la * real) list -> ’la

4.5. ML IMPLEMENTATION AND EXAMPLES 111

val flip : real -> bool
val distribution : (unit -> ’’1la) -> (°’la * real) list
end =
struct
fun choose 1 = R.reflect (ProbMonad.to_t 1)
fun flip p = if p <= 0.0 then false
else if p >= 1.0 then true
else choose [(true,p), (false,1.0-p)]
fun distribution t = ProbMonad.from_t (R.reify t)
end;

structure ProbRep = Represent (structure M = ProbMonad)
structure FX = Prob0Ops (structure R = ProbRep) open FX;

ProbRep.run (fn () => if flip 0.3 = flip 0.3 then "same" else "diff");
(* val it = "<p: 0.58>same<p: 0.42>diff" : string *)

Here we have used the SML/NJ abstraction extension to hide the implementation
of the type t; an analogous effect could be achieved, slightly more verbosely, using the
standard abstype construct. Also, strictly speaking, the above only gives us uniqueness
up to permutation; to get a truly unique representation we actually need the type ’’a
to be linearly orderable, not only supporting an equality predicate.

We can use probabilistic effects to solve “textbook problems” such as finding the
distribution of the total number of heads in n tosses of a biased coin:

fun toss p 0 =0
| toss pn = if flip p then 1+toss p (n-1) else toss p (n-1);
(* val toss = fn : real -> int -> int *)

distribution (fmn () => toss 0.3 5);
(* val it = [(0,0.16807), (1,0.36015), (2,0.3087), (3,0.1323),
(4,0.02835), (5,0.00243)] : (int * real) list *)

Of course, in this particular case, there already exists a simple analytic solution, but
the “probabilistic execution” approach also handles less regular experiment protocols,
where very dissimilar branches may be taken depending on outcomes of probabilistic
choices.

Note that the simulation keeps track of all possible computation paths, at a potentially
exponential cost in computation time. In cases where the same net outcome can be
achieved in many different ways (as in the example above), it is therefore often useful to
add an explicit wrapper,

choose (distribution (fn () => FE))

around such a subcomputation E. This has no effect on the result computed (almost by
definition: it is an instance of the principle u([E]) = E), but it improves efficiency by
consolidating computation paths in a manner analogous to dynamic programming.

112 CHAPTER 4. IMPLEMENTING CONTINUATION-EFFECTS

4.5.7 Example: continuations

Finally, let us consider the continuation monad (for an arbitrary but fixed answer type).
This lets us define both escapes and composable first-class continuations. We already
have the functor ContMonad. Let us create a specific instantiation:

structure StringContMonad : MONAD =
struct
structure S = ContMonad (type answer = string) open S
fun show t = t (fn x => x)
end

functor StringContOps (structure R : RMONAD sharing R.M = StringContMonad) :
sig
val mycallcc : ((’la -> ’1b) -> ’la) -> ’la
val myshift : ((’la -> string) -> string) -> ’la
val myreset : (unit -> string) -> string
end =
struct
fun mycallcc h =
R.reflect (fn k => let fun ¢ a = R.reflect (fmn k’ => k a)
in R.reify (fn () => h ¢) k end)
fun myshift h =
R.reflect (fn k => R.reify (fn () => h k) (fn x => x))
fun myreset t = R.reify t (fn x => x)
end;

structure StringContRep = Represent (structure M = StringContMonad)
structure FX = StringContOps (structure R = StringContRep) open FX;

StringContRep.run (fn () => makestring (3 + mycallcc (fm k => 6 * k 1)));
(* val it = "4" : string *)

StringContRep.run (fn () => "a" ~ myreset (fm () =>
"b" ~ myshift (fm k => k (k "c"))));
(¥ val it = "abbc" : string *)

4.6 Related work

Different notions of functional or composable continuations have been studied by a num-
ber of researchers. Early work [JD88, FWFD88, DF90| presumed explicit support from
the compiler or runtime system for the actual implementation, such as the ability to mark
or splice together delimited stack segments. However, an encoding in standard Scheme
of one variant was devised by Sitaram and Felleisen [SF90]. Still, this embedding was
quite complex, relying on dynamically-allocated, mutable data structures, eq?-tests, and
the dynamic typing of Scheme.

Another explicitly Scheme-implementable notion of partial continuations was pro-
posed by Queinnec and Serpette [QS91]; the code required is perhaps even more intric-
ate. And more recently, an implementation of a related construct in Standard ML of
New Jersey was presented by Gunter, Rémy and Riecke [GRR95].

4.6. RELATED WORK 113

At least initially, most of these operators appear more general than monadic reflection
for continuations, but it is not clear if the additional expressive power is sufficiently
useful in practice to justify their fairly complex implementations. The much simpler
construction presented in this chapter uses only a single, statically-typed cell holding a
continuation, perhaps the minimal increment over call/cc alone.

Much more significantly, however, this implementation is directly derived from and
related to the original specification; other efforts gave at most an informal argument that
the (usually operationally specified) control construct was correctly implemented by the
code. Given the relatively complex correctness proof for even the very simple control
operators used in this chapter (A and #), it is not likely that any of the alternatives
would be easier to verify.

The term metacontinuation, with a fairly broad meaning, was first used in giving a
formal semantics to a notion of computational reflection by Wand and Friedman [WF88].
The more restrictive usage of the term, where the metacontinuation actually arises from
a standard continuation-passing transform of an “almost-cps” term, is due to Danvy and
Filinski [DF90].

The further observation that the metacontinuation can be represented by a storage
cell was first exploited in a preliminary version of the present work [Fil94]. An application
of this technique for continuation-based partial evaluation was reported by Lawall and
Danvy, who found that a call/cc-based implementation of composable continuations uni-
formly outperformed the equivalent explicit continuation-passing translation, especially
with respect to heap usage [LD94].

The main difference between the variant of composable continuations considered in
this chapter and the previous formulations is that we start with an even more abstract
specification of the original operators, distinguishing in the type system between com-
putations with and without control effects. Correspondingly, the definitional translation
only has a non-trivial effect on computations of the former kind.

This distinction gives us a very simple correspondence between composable continu-
ations and monadic reflection for the continuation monad, further motivating composable
continuations as the canonical control effect. (The change was also partially necessitated
by the introduction of ambient effects; in [Fil94], the target language of the definitional
translation was assumed to be effect-free in the present terminology.)

Chapter 5

Conclusions

5.1 Summary

We have analyzed a new approach to incorporating computational effects in a functional
language. In many ways, it combines the best features of the existing “purely functional”
and “imperative” models for effects, as well as providing a basis for introducing effects
incrementally. Let us recapitulate the main properties of the construction:

Convenience. An important advantage of monadic reflection is the ease with which it
fits into the familiar programming paradigm of ML-like languages. There is essen-
tially no up-front cost: programs do not have to be (re)written in any particular
style, the effects used do not have to be settled upon in advance, and we can directly
use the existing type checker, module system, etc.

In fact, there is no need to even explicitly mention monads when writing the bulk
of the program. Typically, the programmer simply defines the desired operations
(such as raise and handle for exceptions, pick and results for nondeterminism, or
spawn and yield for resumptions) using monadic reflection for a suitable monad,
then expresses the program in terms of those new primitives alone.

The visible difference from a “manual” implementation of the effects in terms of
continuations and state (or, even more markedly, as part of the compiler) is the
amount of effort and ingenuity required. Usually, the monad specification consists
of only a few lines of simple, effect-free code. Likewise, the exported operations
are generally a simple combination of the reflection and/or reification operators.
We never have to think about capturing, storing, retrieving, and invoking continu-
ations to implement, say, a backtracking search; all the required low-level code is
synthesized mechanically from an abstract specification of nondeterministic choice.

Ease of reasoning. Despite its apparent “imperative” nature, monadic reflection can
equally well be viewed as a technique for writing “purely functional” programs
in a more concise notation, much like monad comprehensions [Wad92a]. In fact,
any imperative program fragment is extensionally equivalent to its monadic-style
counterpart, in the sense that there exist language-definable isomorphisms between
the two representations.

114

5.1. SUMMARY 115

A crucial point, however, is that this correspondence to monadic style is a means,
not an end, for reasoning about programs. Simply “being expressible with a mon-
ad”, or “having a translation into purely functional code” are vacuous properties,
true of any program using continuations and state (since both are monadic effects),
and do not help us prove anything new. Rather, we must exploit the knowledge that
a program is expressible with a particular monad, with a more restrictive notion of
effects than the continuation-state monad into which it happens to be embedded
for implementation purposes.

For example, in an ML-like language defined by exception-passing on top of par-
tiality, it is easy to argue correctness of a source-level transformation such as
fx+ fx = 2 x fa: the subcomputation fx must either succeed with a value,
raise an exception, or diverge; in all three cases, the two expressions are equivalent.
On the other hand, if we examine only a hand-coded implementation of exceptions
in terms of escapes and state — even if the latter effects are used for no other purpose
in the program — we cannot argue nearly as directly that common-subexpression
elimination is a valid optimization principle.

Efficiency. Execution efficiency is an important concern for practical uses of effects, and
monadic reflection usually fares significantly better than an actual translation into
monadic style. If effects are rare, programs run at full speed without the overhead
of explicitly performing the administrative manipulations specified by the monad,
such as tagging and checking return values for exceptions.

To ensure good performance of the reflection and reification operators as well, we
do need to assume a reasonably efficient implementation of call/cc in the host
language. In cps-based compilers, providing a cheap first-class continuation facility
is generally straightforward [App92]. And even in stack-based implementations,
good techniques exist for keeping at least the amortized cost per call/cc acceptably
low [HDB90].

Still, if a particular effect is heavily used, it may be preferable to rewrite the program
in the corresponding monadic style. For example, if the parameter provided by
an environment monad changes very frequently, we should make it an explicit
argument to all functions using it. Not only is this likely to be faster than going
through the store on every access, but it will probably result in a clearer program as
well. Conversely, of course, rarely-used arguments can be made implicit, improving
both execution speed and clarity — the latter by focusing attention on the few
cases where some value changes, rather than on all the ones where it is merely
propagated.

In either case, however, the changeover need not be done all at once, because we
can use reflection and reification to interface between program fragments using the
two approaches. Indeed, the best solution may well be to make the effect explicit in
parts of the program that use it heavily, and implicit in those that are not directly
affected by it.

116 CHAPTER 5. CONCLUSIONS

5.2 Future work

Several opportunities for extensions and future investigation arise naturally:

Recursive types in the specification language. Even though our language for de-
fining monadic effects was simply typed, there do not appear to be any fundamental
problems in allowing general recursive types. In fact, the logical-relations proofs in
Chapter 4 already handle recursion in the answer type for the continuation monads
using invariant relations, and similar techniques could in all likelihood be used in
Chapter 3 as well.

However, a proper treatment of recursive types would probably include more than
merely adding the p-types from Section 3.2.1 to the specification language. For
example, it might be appropriate to also allow recursively-defined computation-
types, i.e., types of the form upb. [, with an explicit notion of computation-type
variables and the associated extensions to generalized let, etc.

Even more important, we would want a general treatment of recursive monad spe-
cifications, such as used in the continuation-passing translation of Definition 3.34.
The required structure seems to be an Ly-monad in the usual sense, but parameter-
ized by an Lj-type. This would allow us to express, for example, ML-style ref-cells
storing procedures, or exceptions carrying non-ground data, without introducing
explicit isomorphisms.

Layering effects. Although its potential was not fully realized in this thesis, the organ-
ization in terms of ambient and focus effects should generalize directly to multiple,
layered effects. In other words, we should be able to integrate different notions of
effects in a single language by a series of nested monadic translations, at each step
taking the previous focus effect as the new notion of ambient effect.

Moreover, this layered strategy for modularly specifying effects promises to general-
ize to a modular implementation of such effects in terms of continuations and state.
More specifically, we would first relate a heterogeneous tower of monads to a tower
of continuation-monads (applying at each level the construction in Chapter 3), then
flatten this cps tower into a single-level implementation (as in Chapter 4), with a
collection of cells, each holding one meta-continuation of the hierarchy.

Indeed, an apparently-working implementation based on this strategy already ex-
ists, and preliminary investigations into both its theoretical justification and prac-
tical usefulness have been very encouraging. However, time constraints made it
infeasible to include a treatment this generalized construction in the thesis. Fully
formalizing and analyzing the multiple-effect case is therefore left as future work.

Practical effect-typing for monadic effects. While one of the goals of the construc-
tion was to permit a direct embedding of the effect-enriched language into ML,
this does not mean that we could not take advantage of a more refined type sys-
tem. Some discipline is required when writing programs with effects, and it would
be useful to detect violations of effect-stratification statically, rather than during
program execution.

5.3. CLOSING REMARKS 117

Accordingly, there should be a way to optionally make the effects used by a piece
of code manifest in its type, especially at module boundaries. We could of course
achieve this by always exporting procedures in their “fully reified” form. Such an
approach, however, tends to be impractically verbose, and the additional conver-
sions, although semantically transparent, may impose a non-negligible overhead.
We would want a concise and unobtrusive way of representing that same informa-
tion in direct style.

Existing work in this area tends to consider mainly low-level notions of effects
(jumps and state manipulation) [JG89, KJLS87], rather than application-specific,
higher-level concepts. But given the often complex relationship between a monadic
specification and its imperative implementation, it seems highly unlikely that an
automated analysis based on the latter would be able to detect a higher-level pattern
such as an exception-handling system.

Moreover, current effect-type systems are generally phrased in terms of Curry-style
type inference (i.e., with the semantics of a program given a priori, and independ-
ently of its type). The reflection-based approach to effects, on the other hand, also
seems well suited for Church-style type reconstruction (where type information is
considered an inherent part of the program, only elided for conciseness), as already
advocated for ML in [HM93].

5.3 Closing remarks

Perhaps the most concise way of stating the main conclusion of this work is that a func-
tional program can and should distinguish between specification and implementation of
computational effects — as it already would for any other abstract data type. Oversim-
plifying grossly, we could summarize the alternatives by following Hegelian triad:

e Thesis: the implementation is the specification. The meaning of an effect is fully
determined by a reference implementation. For example, a Scheme program could
be written with intuitive but informal abstractions such as error handlers, back-
tracking, or threads, ultimately defined only by their expansions into call/cc and
set!.

e Antithesis: the specification s the implementation. The behavior of an effect
is fully determined by a purely functional executable specification. For example,
a Haskell program could be written in monadic style, expanding into explicit
exception-passing, success lists, or resumptions.

e Synthesis: the implementation is related to the specification. An effect has a
declarative meaning and an imperative behavior, with the latter obtained from the
former in a systematic, but not necessarily direct way. For example (but by no
means exclusively), a program could be written and analyzed in terms of monadic
reflection, but eventually executed using effects built out of escapes and state.

In other words, the tension between Haskell-style monads and Scheme-style primitive
effects need not and should not be resolved in unilateral favor of one or the other; it is
precisely through their interplay that the best qualities of both are exposed.

Appendix A

Properties of the Predomain Model

In this chapter we summarize a few auxiliary results about the predomain semantics,
needed in Chapters 3 and 4, but somewhat tangential to the main development. Most are
fairly simple adaptations of standard domain-theoretic results to our predomain setting.

A.1 Recursive type definitions

The proof that all recursive type equations have solutions in the predomain semantics
hinges on exhibiting for any type constructor a suitable functorial action in the category
of domains and strict continuous functions. That is, in addition to the evident action on
objects, we need an action on morphisms.

Although we could construct such functors directly in the model, using the standard
notation for continuous functions, it seems more convenient and consistent to use the
existing term syntax for effects (fixed to be partiality) in the definitions, and only consider
the denotations of the constructed terms in the end.

For the purposes of this appendix only, let us therefore extend our term syntax by
introducing the additional computation-type constructor “« and term constructors ~M
and let* x <= M; in M, with types:

'-M:« C'EM :*«a Cyx:ab My: (3
L'-*M:*a 'Flett x <= M, in M, : ¢

analogous to the existing ambient effects, but always referring to the partiality monad.
The let* is actually more like the generalized let; than like let”, because the result can be
of any computation-type. We omit the explicit type subscript in let*, however, because
we already have a uniform semantic characterization of its meaning at all pointed types:

L[] = L[a]’s

LI*M](p) = up(L[*M]’(p))
Lllet* v <=My in M]"(p) = (da. L[M]" (plw— a]))*(L[M]’ ()

where f* is the generalized strict extension from Section 2.1.3(lifting).

118

A.1. RECURSIVE TYPE DEFINITIONS 119

For embedding-types, we also define a general case-construct, dispatching among all
the possibilities in N:
FFM:ER Viel.I)o:RX(E) M) : «
I'F case(M,i.z;. M(7)) : «

with semantics
L[case (. M,le./\/l(z))]]a(p) = E[[M(z)]]g(p[xl — a;]) when L[M]%(p) = (i, a;)

Again, this case is never used in writing actual programs; it merely gives us a convenient
way of referring to semantic entities in the predomain model.

Definition A.1 For any value-type o and computation-type 3 over {a} in Ly (i.e., LY
extended with an empty type), we define a type constructor ®, (-, -) and a computation-
type constructor ¥, 5(-,-) by

P, ,a) =afa /a ,a’/at} and W,s(a ,a")=p{a Ja ,a"/aT}

where o' /at} means o with o/ substituted for all positive occurrences of a, and ana-
logously for negative occurrences.
Further, we define term constructors @, o(-,-) and ¥, 5(-,-) with types:

[ra; = tay ffraf = *af
q)a-oz(f_a f+) : q)a.oz(a;a ail_) — Lcl)a-oz(al_a a;’)

fmral = tay ffrof = *ag
\I]aﬂ(fia f+) : \I]a-ﬂ(aga a1+) - \Ija-ﬁ(afv O‘;)
as follows:
q)a.a,(fia f+) =)\a-era
Q0 (f7) = Antn
Qo (f7, 1) = AuX()
Pooyxan(f L fT) = Mplett o, =@, (f, f) (fstp)

in lett 2, <= @, ., (f7,) (snd p) in (21, z)
q)a.O(f_af+) = Az.'z

Pooytan(f L fT) = As.case(s,x.lett yy <= @, 0, (f7,)z in *(inlyy),
CUQ.letJ' Yo <— q)a.az (fi, f+)1'2 in L(inr y2))

q)a.gp:(f_, f+) = As. CBSG(S, 1. T;. let+ Y; <= q)a.N(i) (fi, f+)$z in J'(If'lzyz))
Cap(f 7)) = A0 (Tap(f . f1)D)

Voo f,fT) = dmdlet z<=minlett y <@, ,(f, M)z in Yy
War(f7, 1) = ()
Wasixs(f 75 0T) = A0 (Tap, (f 7, [7) (fstp), Wa, (f7, fF) (snd p))
Vaanrs (7 17) = Mg Azlet y &= Qua(fF, /7)o in Cas(f 7) (g9)

120 APPENDIX A. PROPERTIES OF THE PREDOMAIN MODEL

A few simple properties of these definitions are:

Lemma A.2 (1) When a does not occur free in o or (3 then
Poo(f 7 fT) = Aa"a Was(f ™, f7) = Ab.D

More generally, (2) the type-directed actions are compositional:
Poo(Pac (f 7 f7), Paw (f7 f7)) = Pacagarsay (f 7, 1)
s Pacr (FF, £, @t (174) = oy (7 FF)

Finally, (3) the definitions are functorial in the following sense:
D, o(Ax. "2, \x. ") = Na."a U, s(Az. b, Ax.tx) = Ab.b

D, o(Az.let* y< fi xin f, y, Az.let* y < fi' z in f5 y)
= Aa.let" r <= Poo(fy, fiN)ain Quu(fi,)7

V. s(A\z.lett y < fi zin fy y, Az.let* y < fi'x in f)y)
= N0 Was(fi, f2) (Was(fy, fi7)D)

(i.e., ®onl-,-) is an endofunctor in the Kleisli category of the lifting monad, while
U, 5(-,-) is a functor from the Kleisli category to the underlying one).

Proof. Simple induction on a and (in all cases. Note, however, that verification of
the value-product case of (3) relies on partiality being a commutative effect.]

We can also define an “ordinary” functorial operation on functions between lifted
types:

1

Definition A.3 When g~ and g* are strict functions (i.e., rigid with respect to *-
effects), we define the term constructor

g tay > tag gt taf — oy

q)g.a(gia g+) : J_q)a.a(a;; 051+) — J_q)a,a(a;, 052+)

o (¢7,97) = Am.let* v <=m in &, o(\2.g (*z), A\v.g" (*2))x
We then have:

Lemma A.4 ®¢ (-, -) is functorial in the following sense:
®? (id,id) = id
Poalg5 097,95 0 91) = Palor, 05) 0 Poales, oi)

Proof. Simple verification, using Lemma A.2(3):

¢ (id,id) = dm.let* z < m in &, ,(A\z. 'z, \z.*2)x = Am.let* z < m in (\a.*a)z
=Am.lett <= min ‘x = dm.m = id

A.1. RECURSIVE TYPE DEFINITIONS 121

@g'a(gg 091,94 097) = dm.let* z <=m in @, ,(\a.g, (97 (*a)),a.g5 (g7 (*a)))=

=t Am.let* z =m

in @, ,(A\a.let y < g; (*a) in g5 (Yy), Aa.let* y < g (*a) in g5 (*y))z
=Am.lett z<=m

in let* r < ®,,(A\y.g5 (*y), Xa.g; (*a))z in @, 4(Na.g; (*a),\y.g5 (‘y))r
= Am.let* r < (let* z <=m in @, ,(\y.g; (*y), Aa.gi (*a))z)

in ®,0(Na.gy (fa),\y.g5 (“y))r
= xm. @ (97 ,97) (®4 o (95,97)m) = D 4(91,95) © D4 algs,97)

where t uses that for a strict g,

gm =g(let* z <=min *z) =let* z <= m in g(*x)

Let us also recall some elementary properties of least fixed points:

Lemma A.5 Let fixg : (B — B) — B denote the least-fized-point operator for a pointed
cpo B. Then

1. For any continuous [: B— B and g : B' — B’', and strict continuous h : B' — B
with foh =hog, fixg(f) = h(fixg(g)).

2. For any continuous [: B— B' and g : B' — B, fixg(go f) = g(fixg (f o g)).

Proof.
1. Follows directly from the definition of fix:

h(fixg: (g)() T WL ' (Ls)) = L. hlg'(Le) = LI F/(h(L)) = L. (L)
= fixp(f

2. (We cannot simply use the above result here, because g is not necessarily strict.)
Let © = fixg (f o g) and y = fixg(g o f). First, since g(z) is a fixed point of g o f
(because (g o f)(g(z)) = g((f ° g)(z)) = g(z)), we have y T g(z). Analogously,
since f(y) is a fixed point of f o g, x C f(y), and hence by monotonicity of g,
g(x) C ¢g(f(y)) = y. And thus, since C is a partial order, we get g(x) = y.

Although for the purposes of Chapter 3, all we need is a solution to the type equa-
tion (not necessarily the least one), for Chapter 4 we will also need that the relevant
isomorphism satisfies an additional equational property:

Definition A.6 Let Cpo, be the category of pointed cpos (domains) and strict continu-
ous functions. Let F : Cpo? x Cpo, — Cpo, be a functor (we call such an F a mixed
functor in Cpo |); it is locally continuous if its action on morphisms is continuous. A
minimal invariant for F' is an object X together with an isomorphism i : F(X, X) — X
such that

fixx_x (Ah.io F(h,h)oi ') =idx

122 APPENDIX A. PROPERTIES OF THE PREDOMAIN MODEL

One can show that the standard inverse-limit construction for solving recursive do-
main equation actually yields minimal invariants:

Theorem A.7 Ewvery locally continuous mized functor in Cpo, has a minimal invari-
ant.

Proof. See [Pit99]. n

Using this, we get for our predomain language:

Corollary A.8 Every recursive type equation in Ly has a solution in the predomain
model, i.e., for any parameterized type Fiay « type, there exists a cpo A with an iso-
morphism i : L[a]*™* — A. Moreover, interpreting pa.a as A, roll, as i, and unroll,,
as i~t, the following equation is satisfied in the model:

fiX (ya.0) > Lpaa (A Aa.let @ <= @, o(f, f) (unroll, o a) in *(roll, o 7)) = Aa."a

Proof. Every pointed cpo is isomorphic to a lifted cpo. So we can use Theorem A.7
with the functor given by

F(AL,AT) = (L[@aa(a, a7 7474047

Flg-: AT L= A L9 AL — A2++¢)
= L[®2 (z~,a")] AT 2 A (o v gt e)

to obtain a pointed cpo A with an isomorphism j : (L[a]*~ %) — AL. Moreover, since
J is an isomorphism, it both preserves and reflects L, and must hence be expressible as
j =i, = Am.let* x < m in *(ix) for some isomorphism i : L[a]*~4 — A,

Further, we get the minimal invariant property for ¢ from the minimal invariant
property of j wrt. 2 (-,-), using Lemma A.5(2) to rearrange the fix body:

fix (A f. Az lett r <= @, 4(f, f) (Yx) in ~(¢7))

= fix (A\g.-Az.g (*z)) o (A\f.Am.let* z <=m in let* r < @, o(f, f) (Y z) in *(¢p7)))
— (g g (‘)

(fix (Af-Am.lett z <= m in lett r < @, o(f, f) (¥ z) in L(¢p7r)) o (A\g. Az.g(*7))))
= Az.fix (Ag. Am.let+ z <=m

in lett r <&, ,(Az.g(*z), A\x.g(*z)) (¢Yz) in (1)) (tz)

= Az.fix (A\g. Am.let* z < m in let* r < ®¢ (g) (*(vx)) in (o)) (*z)
= \z. fix (\g. Am. (Am.let™ 7 < m in ~(¢7)) (22 (g, 9) (le t;a; <m in (¢ 1)))) (fx)

(
= . fix (Ag. Am. j (2, (9,9) " m))) (“2) = Az.id (*a) = Ao o .

A.2 Admissible relations

In this section we review the properties of (computation-)admissbile relations in the cpo
semantics; in particular, we show admissibility of the key relation-forming constructs.

Let there be given a relational correspondence between predomain interpretations £
of L and L' of L' (Definition 3.16). Most notably, admissibility is then preserved by
formation of inverse images and intersections (e.g., [Pit99]):

A.2. ADMISSIBLE RELATIONS 123

Lemma A.9 Recall that a (computation-)admissibile relations between closed types «
and o' s a (pointed) chain-complete relation between cpos Lla] and L']o]. We then
have:

1. When R € ARel(«,), (x1:aq, ...,z an) B M @« and (2i:04, ... 2l al,) F

rn

M': o are terms of L and L' respectively, and for all i > 2, ox; € Valg(oy) and
o'zl € Valg(al), the relation Ry € Rel(ay, o)) given by

ay R1 a'l <= M(al/wl,tr) R Ml(all/wll"fl)

18 admassible.

Moreover, when oy and o) are computation-types, R is computation-admissible,
and the functions A\x,. M® and M\&',. M'" are rigid, then Ry is also computation-
admissible.

2. When (Rj)jes ts an arbitrary (not necessarily finite or even countable) family of
admissible relations between o and o, the relation ;e R; is admissible, where

a (ﬂjEJRj) J = VjelaR;d
Moreover, if each R; is computation-admissible then so is e, R;.

Proof. Both parts are fairly simple:
1. Define the continuous functions f : L]a;] — L]a] and f': L[] — L[] by
[=Aay. L[M](e[x)— ay,x9—>0xs. .., Ty 0Ty))
and
= Xa| . L'[M'](e|x), — a}, y > 0'xh, ... xw — 0'2l,])
Then a; Ry o} iff f(a1) R f'(a}).

Now let (a1;)ice and (al;)ic, be chains in L]y] and L']e)], respectively, such that
for all i € w, ay; Ry dl;, i.e., f(ay;) R f'(a};). By monotonicity of f, the sequences
(f(a1))iew and (f'(a);))icw then form chains in L]a] and £'[¢/], and since R was
assumed chain-complete, we have

LI, flaw) R f'(aly)

By continuity of f and f’, this is equivalent to

f(|_|Z ay) R f’(l_li ay;)

which says that | |; ay; Ry ||a};, meaning that R, is chain-complete.

Further, to show R; pointed, we must show f(L) R f’(L), which follows from
pointedness of R and the fact (Proposition 2.13) that a rigid function is strict.

124 APPENDIX A. PROPERTIES OF THE PREDOMAIN MODEL

2. Let R; be a family of chain-complete relations between cpos L]a] and £'[¢/], and
let (a;);ew and (a});c, be chains componentwise related by the intersection R of all
the R;. That is,

View.Vje Ja R;a;

Exchanging the two universal quantifiers, we get
Vje JVicw. a R a;
Now, since each I?; was assumed chain-complete, this implies
- /
VJ € J |—|z a; Rj |—|z a,;
And thus, ||; a; (Njes R;) L; a; as required to show chain-completeness of R.

Similarly, if each R; relates L[5 and Lz, then so must their intersection, and
thus ;¢ R; is pointed.
]

We can also show admissibility of the standard relational actions of the type con-
structors (where it does not already follow directly from the previous lemma):

Lemma A.10 If the R’s are admissible relations, then so are (1) " and (2) Ry +" Ry
(defined as in Lemma 3.18), and (3) the XXR;, given by

s (XiR;) ' <= Jiel.3a; R;a;.s =inja; As' = in;a;

Moreover, if relation extension is taken as relation-lifting (from Proposition 3.21), then
(4) °R is computation-admissible.

Proof. The relations determined by the definitions in each case can be written as:

" = {(n,n) | neN}
Ri+" Ry = {((1,), (1,a1)) | (a1,01) € Ri} UL((2,a2),(2,03)) | (a2,a3) € Ry}
EgRi = {((Za ai)a (iv a;)) | e, (aiaa;) S Ri}

"R = {(up(a),up(d)) | (a,a) € R} U{(L, L)}

We then check each case:

1. Case (. Since the cpo N of natural numbers was discretely ordered, any chain in
N must be constant, so least upper bounds of componentwise related chains are
obviously also related.

2. Case Ri+"R,. A chain in A;+ A must lie entirely within one of the injects. Assume
wlog. that it is of the form ((1, a;))scw for some chain (a;);e, in A;. Analogously,
the related chain must be of the form ((1, a}))icw, with a; Ry @;. By assumption on
Ry, L; a; Ry L; a;. The result then follows by observing that

ui(laai) = (lvl_li ai) (Rl + RQ) (l’l—li a;) = ui(lva;)

A.3. ISOMORPHISMS OF RECURSIVE TYPES 125

3. Case X! R; is analogous to +*, only with the set of tags taken as I instead of {1,2}.

4. Case “R. Let (m;)ic, and (m});e,, be chains such that m; ("R) m.. There are then
two possibilities. It could be that for all ¢, m; = L4, and m} = L . In this case,

L|mi=La, CR) La =[] m;

by the second disjunct of the definition, and we are done. Or there exists an ig > 0,
such that for all i > iy, m; = up(a;) and m; = up(a;) for some a; R a;. By
definition of the ordering in A, , the a; form a chain (if up(a;) C up(a;;1) then
a; C a;r1). Analogously for the a. Because R was assumed chain-complete, we
have |;>;, @i R ;> ;. And since the initial segment of Ls in a chain does not

affect its least upper bound, we get
L|;mi =L, up(a) = up(L,., @) CR) up(Ll,., @) =L, wp(a)) =[] m;

Also, directly by the second component of the definition, R is pointed.

And finally, we can verify our fixed-point induction principle:

Lemma A.11 Let S be a computation-admissible relation between (3 and (3. Let f €
Valz(8—) and f" € Valg (' — ') be such that Vb S . fb S f'V. Then fixg f S fixg f'.

Proof. We have L[fixzz](e[z f]) = U; f/(Lcs)), and analogously for f’. Since in
particular S is admissible, i.e., chain-complete in the model, it suffices to show that for
all 7 > 0,

Fi(Legsp) S f*(Legsn)
This follows by a simple induction on . For ¢ = 0, we get the result from pointedness

(computation-admissibility) of S. And for the inductive step, we use that if f*(L) S f(L)
then by assumption on f and f’,

FRHL) = FUF) S (L) = £ ()

A.3 Isomorphisms of recursive types

The definition of @, ,(f, f7) allows it to act on partial functions (i.e., total functions
into a lifted cpo); we need this generality for solving recursive type equations, because
the approximants will not be total. But when the type-directed functor acts on known
isomorphisms between cpos (not necessarily pointed), a simpler definition is possible:

Definition A.12 When ¢ is a term constructor denoting an isomorphism (e.g., roll or
unroll), we define term constructors ® ,(¢) and Wi 5(p) with types:

RN e D) piap = Qo
and

Pralp) s afar/a} = ofar/a} as(p) : flon/a} = Blan/a}

126 APPENDIX A. PROPERTIES OF THE PREDOMAIN MODEL

as follows:

@;.a(go)a = @a
L, (p)n = n
Ba(p)u = ()

Df oo (9)P = (Phay () (fst p), Pha, () (snd p))
PLo(p)z = 2

L antan(p)s = case(s,ar.inl (L4, (©)ar), ag.inl (L, () as))
ton(p)s = case(s, i. ai.lni(q)a,u(i)(go)ai))
as(P)b = Wis(p)b

Ul -o(o)m = let” o <=m in (®L ())

ai(p)o = ()

\I]g-ﬁl ><ﬂ2(90)p = <\Ijg-ﬂ1 (30) (fSt p): \I]g-ﬁz (90) (snd p)>
(P)g = Ae.Wop(p) (9(Paalv™)2))

Lemma A.13 The functorial actions on isomorphisms are related to their general coun-
terparts as follows:

(‘Péa(Ja) = Pao(Az. (0 ' 2), Ay *(0y))a
La(@)b = Was(A\e. (o7), Ay H(ey)) b

Proof. Straightforward induction on o and (3.]

Note also that we have ®f o(PL o (¢)) = Pk afar/a} (©)-

Lemma A.14 Let F and G be type constructors of Ly (not necessarily covariant), and
let @« = pa. F(Ga) and o = pa'. G(Fa') be the solutions to the corresponding recursive
type equations. Then in the predomain model, there exists an isomorphism x : Ga = o,
which further satisfies the following two (equivalent) coherence equations:

r:Ga k- ro”a’.G(Fa/) ((I);’.G(Fa’)(X) ((I)g.Ga(unro”a,.F(Ga,))x)) =XT: o
y: o - @ Ga(rolla p(aay) ((Dg’.G(Fa’)(Xil) (unrolly Grayy)) = X 'y : Go
Proof. When ¢ : a; = a3 is a term constructor, we define the function
Oty = oy = dm o lett © < m in (1)
For terms, take F(f~, ft) = ®¢ . (f~, fT) and also write F(f) for F(f, f). Analogously

for G. Further, we define the usual abbreviations ¢ = roll, p(g.) and ¢' = rolly g(ra),
with ¢ and ¢’ for the inverses.

A.3. ISOMORPHISMS OF RECURSIVE TYPES 127

Now let i = ¢* : *F(Ga) — *a and j = ¢ : *G(Fd') — o/ be the minimal in-
variants for the corresponding functors. We first show that there exists an isomorphism
[:*+G(a) — . Take

(ll, 1) = fix ()\(hJ-o/—H-Ga, kLGa—H-o/)‘
(G4, i) o G(F (h, k), F(k,h)) 0 j~", j o G(F(k, h), F(h, k)) o G(i,i7")))
We want to show that [’ is actually the two-sided inverse of [. Accordingly, consider the
strict function ¢ = A(h, k). k o h. Lemma A.4 then gives us:

o (A(h,k). (G(i*,i) o G(F(h, k), F(k,h)) oj*l,joG((k.h), F(h,k)) o G(i,i" "))
= (h,k)-joG(F(k,h),F(h,k))oG(z',rl)oG(,i) o G(F(h, k), F(k,h)) o j "
= MhE).j 0 G(E(k,h), F(h, k) o G(i *o'i,i * o)) o G(F(h,), F(k,h)) 0 j "
= Ah,k).70G(F(k,h),F(h,k)) o G(idLFGa, |dLFGa) oG(F(h,k),F(k,h)) oj‘1
= A h,k).j 0o G(F(k,h),F(h,k)) o idigrga © G(F(h,k), (k,h)) oj*1
= \(h,k).j 0 G(F(h,k) o F(k,h),F(h,k) o F(k, h)) -1
:A(h,k).joG(F(AkoAh,k h F(koh,koh))o _A(h k).jo ((koh))
= MR k). (Mg o GUE(f)) o) (ko) = (AfyoG((f))ojihoc

From Lemma A.2(2) and a let—simpliﬁcation, we obtain that

q)g.Ga(q)g.Fa(fv f)? q)g.Fa(fJ f)) = q)g.G(Fa)(fa f)

so by Lemma A.5(1) and the fact that j is a minimal invariant for GF, we get
ol = c(fix(A(h,k).-) = fix \f.j o GUE(f)) 0 5~") = idro = id?,

In the other direction, taking ¢ = A(h, k). h o k, we similarly get:
o (A(h, k). (G (_la')OG((h, k), F(k,h)) o 7]0G((k,h), F(h, k)) o G(i,i™")))
=>\(hak) G(i~t,i) o G(F(h, k), F(k,h)) 0 j~t o jo G(F(k,h), F(h,k)) o G(i,i ")
= A(h,k).G(i™",4) o G(F(h, k), F(k, h)) o ((k,h), F(h,k)) o G(i,i™"
= A h,k).G(i i) o G(F (hok ho),F(hok hok))oG(z i)
=(\g-G(i™"i) o G(F (9,9), F(g,9)) 0 Gliy i)od

— (Ag.Gli o Flg,9)0i L, Flg,g) o 1))00 = (Ag.G(io F(g)oi ")) od
And thus we have, using both parts of Lemma A.5 and the minimal-invariant property
of i:
Lol =¢ (fix (A(h, k). -+)) = fix(Ag. G(i o F(g) 0i™ 1)) = G(fix (Af.i 0 F(G(f)) 0i™ 1))
= G(idiy) = idig, = idh,
We can thus take y to be the unique isomorphism such that y* = [.

Further, knowing that [and [" are actually inverses, we get the second part of the
result by unrolling their fixed-point definition once:

(1) = (GG,) 0 GE(), F(1, 1)) 0 7, j o G LT, F(,1)) 0 Gayi ™)
Now, take advantage of the following simple relationship between the functorial ac-
tions on an isomorphisms:
e (oM o) = 0d (Mm.let" <= m in “(¢~' z), Am.let* z < m in *(px))
= m.lett z = m in ®, ,(\z.lett z <=1z in (o tz),- - p -z

= Am.let* £ < m in @a,a()\xﬁ(goflx)v, Ar.t(px))x
= dm.lett z < m in (O} (@) z) = Of o ()*

128 APPENDIX A. PROPERTIES OF THE PREDOMAIN MODEL

From this we get:

X' _l—]oG(F(l,z’), (', l)) G(i,t)
= ¢’ﬁ °© (I)a Gau(q)g.Fa(XIj) g a()) ° q)g.Ga(Qbﬂuz/.)ﬂ) . .
= QM °© @g.Ga(a.ra(X) aFa()ﬁ) o (I)a Ga(@[’)Ij = ¢'ﬂ o q)gt.Ga(@é.Fa(X))n ° '1)21.Ga(1/’)Ij

So, in particular,

L (Rhara) (X) (Prca($) 7)) = (67 0 B gal®hra(X))f 0 Phca()F) (“2) = X (“2)
=*(x=),
and since lifting is injective, we get the first coherence equation. The second one is
analogous. n

A.4 Invariant relations over recursive types

We now want to show that certain principles for constructing relations over recursive
types are valid; specifically, that a class of well-behaved relational actions allows us to
solve “recursive relation equations”. The following presents only the specific results we
need for the proofs in Chapter 4; for a general treatment of the subject, see [Pit99].

Throughout this section, let us assume a fixed relational correspondence between
predomain interpretations £ of L and £ of L', with a computation-extension of relations.
In keeping with the general convention in this appendix, we also write *R for relation-
lifting. We first characterize a particularly well-behaved way of constructing admissible
relations:

Definition A.15 Let F' and F' be type constructors. A (mized) relational action F for
F and F' assigns to every pair of relations R~ € ARel(a™,a'”) and RT € ARel(a™, /")
a relation F(R™, R") € ARel(®u pa(a,a™), @y o, a'")). We say that this action is
admissible if it satisfies:
(% Ry - o (“Ry) /o) A (V2 R} &' f* o (“RY) ™)
=Vy F(Ry, R)) ¢ Qara(f7, f)y CF (R RY)) Papal f7 f) Y
Likewise, for computation-type constructors G and G', a relational action is called
computation-admissible if it maps R~ € ARel(a™,a’") and RT € ARel(a™,a/") to a
relation G(R™, R*) € CARel(V,a(a™,a™), U, gra(a'™, /")) such that
(Vo Ry ' f~x ("Ry) /') A (Vo B o [Ta (CRY) f7a)
= \V/y g(R2_7 R+) y . \Ila.Ga(f_J f+)y g(Rl_J R;—) \Ila.G’a(f,_J f,+) y,

It is easy to see from the definition of @, 5(f~, f*) that any computation-admissible
action is also admissible. Moreover, we have a number of standard ways of constructing
(computation-)admissible relational actions:

Lemma A.16 The following relational actions are all admissible (and computation-
admissible where noted):

1. F(R™,R") = R" for Fa= F'a=a.

A.4. INVARIANT RELATIONS OVER RECURSIVE TYPES 129

2. F(R™,R") = Ry for Fa =« and F'a = «af, where ay and o do not depend on a,
and Ry € ARel(ap, af) is an arbitrary admissible relation. F is also computation-
admissible if Ry is.

3. F(R",R") = Fi(R™,R") x"Fo(R™,R") for Fa = Fiax Fya and F'a = Fla X Fja,
where Fy is admissible for Fy and F{, and F, is admissible for Fy and F). F is
also computation-admissible iof both F, and Fy are.

4. F(R,RY)=F (R ,R")+"F(R,R") for Fa= Fla+ Fya and F'a = Fla+ Fja,
where Fy is admissible for Fy and F|, and F» is admissible for Fy and F}.

5. F(R™,R") = XIF,(R,R") for Fa = Y;F;a and Fa = X;F!a, where for every
i €I, F; is admissible for F; and F.

6. G(R",R")=F(R*, R)—>"Gi(R,R") for Ga= Fa—Gha and G'a = F'a— Ga,
where F is admissible for F' and F', and G, is computation-admissible for G1 and
G'. G 1is also computation-admissible.

7. G(R~,R") =°"F(R™,R") for Ga="(Fa) and G'a = °(F'a), where F is admissible

for F and F'. G is also computation-admissible.

8 F(R,R*) = Njes F;(R°,R") for any I' and F', when for every j € J, Fj is

admissible for F' and F'. F is also computation-admissible if each Fj is.

Proof. Simple verification in all cases. For example, and since it is somewhat non-
standard, let us go through the details of (7), i.e., “F(R™, R"). First, we note that for
any computation-extension of relations we have that if Va Ry @'. fa ("Ry) f'a’ then

Vm (*Ry) m'.let* x < m in fz ("Ry) let* 2/ < m' in f'2'

(Note that this is simply condition (0) of a monad relation from Definition 3.26 in the case
where the ambient effect is partiality, and “Rs is taken as the 'Ry of the definition.) This
holds because ° R is by definition computation-admissible and hence pointed. Thus, since
m (*Ry) m’ means that either both m and m’ are L, or both are liftings of R;-related
elements, we get the required relationship in either case.

We can now verify admissibility of the action (R~, R*) —"F(R~, R") for the type
constructors Ga = “(Fa) and G'a = °(F'a) when F is an admissible action for F" and F".
Let the Rs and fs be as in Definition A.15; we must then show:

Vy (F(Ry, BY)) ¢ Warpa(f 7, [1)y CF(RY, RY)) Warpa(f, f7) Y

So assume y ("F(R;, R)) v'. Expanding ¥, -p,(f ", f7) according to Definition A.1, we
must then establish that

let’ z <y in let* r <=, 5o (f~, [Nz in r CF(R,,Ry)) let” 2/ < ¢ in - --

By property (2) of relation-extension and the assumption on y and y’, it suffices to show
that

130 APPENDIX A. PROPERTIES OF THE PREDOMAIN MODEL

Vo F(Ry,Rf) 2.
lett r <= @, ;o (f, [o inr CF(R, RY)) lett 1" <= O, oo (f', /)2’ in '

Let x F(R,, R)) o' be given. By assumption on F, we then have that
ora(f)2 CF(R L RY)) Qapalf, f1)2
And hence, by the observation at the beginning of the proof, it suffices to show
Vr F(R,RY) r'.r CF(R,,RS)) '

which follows immediately from property (1) of relation extension. u

We also have the following principle for constructing new computation-admissible actions
from old ones:

Lemma A.17 Let G, be a computation-admissible relational action for Gy and G', and
let G and G' be another pair of computation-type constructors. Further let h be a rigid
natural transformation from G to G4, i.e., satisfying

h(Waca(f 5 f1)2) = Vagalf, f7) (ho)

and analogously for h'. Then the relational action G for G and G’ defined by
rG(R,R") 2 < ha G(R™,R") W'

15 computation-admissible.

Proof. We first note that G(R~, R") is a computation-admissible relation by assump-
tion on G; and rigidity of A and h'. Further, let the Rs and fs be as in Definition A.15;
we must show that

Vy G(Ry, RY) ¥ Vaca(f ™. f 1)y G(RT, RY) Yaga(S,)Y
Le., that
Yy, y' hy Gi(Ry, RY) 1y = h(Yaca(f 7, [1) y) Gi(RT, RS) B (Wacra(f, f7)Y)
Now, by assumption on h and A', this is equivalent to
Vy,y' hy Gi(Ry , RY) W'y = Wagalf, f7) (hy) GL(Ry, Ry) Yaga(f' 7 f7) (MY)

and that follows form the assumption that G; was admissible (taking y and y' in the
definition of admissibility to be the hy and h'y" above). |

From this, we get admissibility of the action relating ambient computations to their
continuation-passing counterparts:

A.4. INVARIANT RELATIONS OVER RECURSIVE TYPES 131

Lemma A.18 Let v be a type of L', and for any R € ARel(«, o') let the relation "R €
CARel(‘a, (&' —) — “y) be given by:

m ("R) u
< Vay typer, O € ARel(ag,). \k* 7. let” 2 <=m in kx (R — °"0) = °0) u

Further, let F and F" be type constructors, with an admissible relational action F. Then
the relational action G given by

G(R™,R*)="F(R™,R")
is computation-admissible for Ga = *(Fa) and G'a = (F'a— "y) — ™.
Proof. First note that for any ay and O € ARel(ay,), the action GO given by
G (R™,R") = (F(R™,R") =" "0) =" "0

is computation-admissible for G{*a = (Fla — “ap) — "o and G’ by Lemma A.16(2,6).
Let h = Am. \k.let” x <= m in kx. This mapping is a natural transformation between
the functors derived from G and G{°:
h(Parpalf, fT)m) =h(let" r<=m in let* y < Cupa(f~, f*)r in 7y)

= Mk.let” z < (let” r<m in let* y < @, po(f ., fT)r in *y) in kz

= Xk.let" r <=m in lett y < @, pu(f~,)7 in ky

= Ak. (hm) (Ar.let* y < @y pa(f~, f7) 7 in ky) = Mk (hm) (Vo paseao (f 75 f7) K)

= M.let* y < (Vs pasoag (f5f)k) in (hm)y = Wa.(Faa’ao)ﬂ"ao f f+) (hm)

(using that W, -, (f~, f7) = id-, by Lemma A.2(1), because a cannot appear free in ay).
Thus, taking A’ as the identity in Lemma A.17, we get that the action given by G,

m (GO(R™,R")) u= M.let” v <=m in ka (G°(R™,R)) u

is computation-admissible for G and G'. And finally, since G(R™, R") is the intersection
of all GZ(R~, R"), we get the result by Lemma A.16(8).]

We can now state the main result motivating the definition of admissible actions:

Theorem A.19 Let F be an admissible relational action for type constructors F' and F'.
Then there erxists an invariant relation for F, i.e., a relation A € ARel(pa. Fa, pa. F'a)
such that a A o' <= unroll, poa F(A, A) unroll, g, d’.

Proof. (The proof technique is due to Pitts and can essentially be found in [Pit99].
However, since we are working with binary relations instead of unary ones, and a few
details are slightly more involved for predomains than for domains, it seems worth spelling
out the construction.)

As usual, we abbreviate roll as ¢ and unroll as 1.

We first note that a functorial action on relations preserves inclusions. For let R} C
Ry and R} C Rf. Take f~ = f* = Xa.*a and f'~ = f'* = Xd’.*d’. Then clearly

132 APPENDIX A. PROPERTIES OF THE PREDOMAIN MODEL

[~ (Rf —=*Ry) f and f* (Rf —*RJ) f'". Hence for any y F(R;,R{) y, we get
from Lemma A.2(3) that

ty =@, pa(Na.ta, Aaa)y (FF(RD, RY)) @ pra(Na' ' Mdl d)y =y

Moreover, we easily see that *z (*R) ' iff # R 2’ (by definition of relation-lifting specific-
ally, not true for computation-extension of relations in general), so we get y F(Ry, Ry) v/,
i.e., F(Ry,R) C F(R;,Rf). In other words, F is monotone in its second argument
and antimonotone in the first one.

Let R~ and R be arbitrary relations in ARel(pa. Fa, pa. F'a), and define the rela-
tions R¥, R* € ARel(ua. Fa, ua. F'a) by

a RTd <= Ya F(RT,R)¢'d and aR*d < YaF(R,R")¢'d .

We can then define an operator ©, mapping (R, R*) to (R¥, RF), antimonotone in
the first position and monotone in the second. Further, the set of admissible relations
between two types is closed under arbitrary intersection, so ARel(ua. Fa, pa. F'a) x
ARel(pa. Fa, pa. F'a) forms a complete lattice. Hence, by the Knaster-Tarski fixed-point
theorem, © has a least fixed point (A, A"), with A™, A" € ARel(pa. Fa, ua. F'a)
satisfying

a A7 d <= Ya F(AT, A7) d and a AT d = Ya F(AT,AT) ' d .

Moreover, (A" A7) is clearly also a fixed point of ©, and so must be greater than the
least one, giving (for both components) the inclusion AT C A~

It thus remains to show containment in the other direction. Consider the relation
V € CARel(pa. Fa — *“pa. Fa, pa. F'a — *pa. F'a) determined by

hV h <= VYa A d.ha (FAY) Bd

V is computation-admissible because it is given by an intersection over inverse images

g g
(by application, which is rigid) of the computation-admissible *A*.) Now define the
functional H : (pa. Fa — *pa. Fa) — (pa. Fa — *pua. Fa) by:

H = \hpoFommeefs Ngrofs Jett 1 <= @y (b, b) (Ya) in *(px)

and analogously for H'. We want to show that when A V A’ then also Hh V H'h/| i.e.,
that
Va A~ d.lett x <= @, oo (h, h) (Ya) in +(¢px)
(A1) lett 2" < P, pro (B, 1) (W' d) in +(P ')

This follows from the usual properties of relation-extension, the equations defining A~
and AT above, and the functorial action of F (taking f~ = f* = h, f'= = f'* =1,
R =R =A7,and R, = Ry = A™).

Thus, since the relation V was computation-admissible, we get by fixed-point induc-
tion (Lemma 3.19) that fix H V fix H'. And because fix H = Az.*z by the minimal-
invariant property (Corollary A.8), we have

Va A~ d'.*a (FAT) *d' .

A.4. INVARIANT RELATIONS OVER RECURSIVE TYPES 133

Finally, by the same argument about *R as at the beginning of the proof, this simplifies
to A~ C A", completing the proof that we can take A = A~ = A" as the invariant
relation for F. m

From this, we immediately get that — much like recursive type equations — a large
class of recursive relation equations has solutions:

Corollary A.20 Let F' and F' be type constructors, and let ® be a formal relation con-
structor, built out of (1) the standard relational actions of Li-type constructors, (2)
constant admissible relations (computation-admissible for computation-types), and (3)
the relation constructor ° (for any v); so that * maps any relation R € ARel(a, o) to
*R € ARel(Fa, F'd').

Then there ezists a relation pR.*R € ARel(pa. Fa, pa. F'a) such that

a (uR.*R) a' < unroll, paa *(pR.*R) unroll, praa’ .

Proof. By induction on °, using Lemmas A.16 and A.18, we directly obtain an admiss-
ible mixed relational action F, such that

F(R,R)="R

By Theorem A.19, this F has an invariant relation A. And because of the equation
above, we can simply take uR.*R to be A. [

Bibliography

[AMOY1]

[App92]

[CMO3]

[CRY1]

[DF90]

[DF92]

[Esp95]

[Fel88]

[FHY2]

[Fi194]

[Fis72]

Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
Third International Symposium on Programming Language Implementation and Lo-
gic Programming, number 528 in Lecture Notes in Computer Science, pages 1-13,
Passau, Germany, August 1991.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

Pietro Cenciarelli and Fugenio Moggi. A syntactic approach to modularity in de-
notational semantics. In Proceedings of the Conference on Category Theory and
Computer Science, Amsterdam, September 1993. CWI Tech. Report.

William Clinger and Jonathan Rees. Revised* report on the algorithmic language
Scheme. Lisp Pointers, 4(3):1-55, July 1991.

Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the
1990 ACM Conference on Lisp and Functional Programming, pages 151-160, Nice,
France, June 1990.

Olivier Danvy and Andrzej Filinski. Representing control: A study of the
CPS transformation. Mathematical Structures in Computer Science, 2(4):361-391,
December 1992.

David A. Espinosa. Semantic Lego. PhD thesis, Graduate School of Arts and
Sciences, Columbia University, May 1995.

Matthias Felleisen. The theory and practice of first-class prompts. In Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Programming Languages,
pages 180-190, San Diego, California, January 1988.

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science, 103(2):235-271,
September 1992.

Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 446-457,
Portland, Oregon, January 1994.

Michael J. Fischer. Lambda calculus schemata. In Proceedings of the ACM Con-
ference on Proving Assertions about Programs, pages 104-109. SIGPLAN Notices,
Vol. 7, No 1 and SIGACT News, No 14, January 1972. Revised version in Lisp and
Symbolic Computation, 6(3/4), 1993.

134

BIBLIOGRAPHY 135

[FWFD88] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Ab-

[Gir72]

[GRRY5]

[Hay87]

[HDBYO]

[HDM93]

[HMY3]

[JD88

[1G89]

[KJLS87]

[KW93]

[LDY4]

[LHJ95]

stract continuations: A mathematical semantics for handling full functional jumps.
In Proceedings of the 1988 ACM Conference on Lisp and Functional Programming,
pages 52—62, Snowbird, Utah, July 1988.

Jean-Yves Girard. Interprétation Fonctionelle et Elimination des Coupures de
UArithmétique d’Ordre Supérieur. These d’état, Université Paris VII, 1972.

Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions
and control in ML-like languages. In Functional Programming and Computer Ar-
chitecture, 1995.

Christopher T. Haynes. Logic continuations. The Journal of Logic Programming,
4(2):157-176, June 1987.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the
presence of first-class continuations. In Proceedings of the ACM SIGPLAN ’90
Conference on Programming Languages Design and Implementation, pages 6677,
White Plains, New York, June 1990.

Robert Harper, Bruce F. Duba, and David MacQueen. Typing first-class continu-
ations in ML. Journal of Functional Programming, 3(4):465-484, October 1993. (A
preliminary version appeared in Proceedings of the 1991 Symposium on Principles
of Programming Languages).

Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM
Transactions on Programming Languages and Systems, 15(2):211-252, April 1993.

Gregory F. Johnson and Dominic Duggan. Stores and partial continuations as
first-class objects in a language and its environment. In Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, pages 158-168,
San Diego, California, January 1988.

Pierre Jouvelot and David K. Gifford. Reasoning about continuations with control
effects. In Proceedings of the ACM SIGPLAN’89 Conference on Programming Lan-
guages Design and Implementation, pages 218-226, Portland, Oregon, June 1989.

David K.Gifford, Pierre Jouvelot, John M. Lucassen, and Mark A. Sheldon. FX-87
reference manual (edition 1.0). Technical Report MIT/LCS/TR-407, Laboratory
for Computer Science, Massachusetts Institute of Technology, September 1987.

David J. King and Philip Wadler. Combining monads. In J. Launchbury and
P. M. Sansom, editors, Functional Programming, Glasgow 1992, pages 134-143,
Ayr, Scotland, 1993. Springer-Verlag.

Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In Pro-
ceedings of the 1994 ACM Conference on Lisp and Functional Programming, pages
227-238, Orlando, Florida, June 1994.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 333-343, San Francisco, California,
January 1995.

136

[LPJ95]

[MT62]

[Mit96]

[ML71]

[Mog89]

[Mog90]

[Mog91]

[Mor93]

[MTH90]

[MWS85]

[Pit99]

[Plo75]

[Plo77]

[PW93]

[QS91]

BIBLIOGRAPHY

John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and Symbolic
Computation, 8(4):293-341, December 1995.

John McCarthy et al. LISP 1.5 Programmer’s Manual. MIT Press, Cambridge,
Massachusetts, 1962.

John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996. To
appear.

Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Gradu-
ate Texts in Mathematics. Springer-Verlag, 1971.

Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of
the Fourth Annual Symposium on Logic in Computer Science, pages 14-23, Pacific
Grove, California, June 1989. IEEE.

Eugenio Moggi. An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, Laboratory for Foundations of Computer Science, University of
Edinburgh, Edinburgh, Scotland, April 1990.

Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1):55-92, July 1991.

J. Gregory Morrisett. Generalizing first-class stores. In ACM SIGPLAN Workshop
on State in Programming Languages, pages 73-87, Copenhagen, Denmark, June
1993. (Technical report YALEU/DCS/RR-968, Department of Computer Science,
Yale University).

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
The MIT Press, 1990.

Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-
calculi (summary). In Rohit Parikh, editor, Logics of Programs - Proceedings,
number 193 in Lecture Notes in Computer Science, pages 219-224, Brooklyn, June
1985.

Andrew M. Pitts. Relational properties of domains. Information and Computa-
tion, 1997 Revised version of Cambridge Computer Laboratory Technical Report
Number 321. To appear.

Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical
Computer Science, 1(2):125-159, December 1975.

Gordon D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5(3):223-255, December 1977.

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In
Proceedings of the Twentieth Annual ACM Symposium on Principles of Program-
ming Languages, pages 71-84, Charleston, South Carolina, January 1993.

Christian Queinnec and Bernard Serpette. A dynamic extent control operator for
partial continuations. In Proceedings of the Fighteenth Annual ACM Symposium on
Principles of Programming Languages, pages 174-184, Orlando, Florida, January
1991.

BIBLIOGRAPHY 137

[ReyT2]

[Rey74al

[Rey74b]

[Rey93]

[Sch86]

[SF90]

[SF93]

[Smi82]

[ST80]

[Ste94]

[Sto81]

[SW74]

[Wad85]

[Wad90]

John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of 25th ACM National Conference, pages 717-740, Boston,
August 1972.

John C. Reynolds. On the relation between direct and continuation semantics.
In Jacques Loeckx, editor, 2nd Colloquium on Automata, Languages and Pro-
gramming, number 14 in Lecture Notes in Computer Science, pages 141-156,
Saarbriicken, West Germany, July 1974.

John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Programming Symposium, number 19 in Lecture Notes in Computer Science, pages
408-425, Paris, France, April 1974.

John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computa-
tion, 6(3/4):233-247, November 1993.

David A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon, Inc., 1986.

Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp
and Symbolic Computation, 3(1):67-99, January 1990.

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. Lisp and Symbolic Computation, 6(3/4):289-360, November 1993.
(An earlier version appeared in Proceedings of the 1992 ACM Conference on Lisp
and Functional Programming).

Brian C. Smith. Reflection and Semantics in a Procedural Language. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, January 1982.
MIT-LCS-TR-272.

Ravi Sethi and Adrian Tang. Constructing call-by-value continuation semantics.
Journal of the ACM, 27(3):580-597, July 1980.

Guy L. Steele, Jr. Building interpreters by composing monads. In Proceedings
of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 472-492, Portland, Oregon, January 1994.

Joseph E. Stoy. The congruence of two programming language definitions. Theor-
etical Computer Science, 13(2):151-174, February 1981.

Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathem-
atical semantics for handling full jumps. Technical Monograph PRG-11, Oxford
University Computing Laboratory, Programming Research Group, Oxford, Eng-
land, 1974.

Philip Wadler. How to replace failure by a list of successes. In Functional Pro-
gramming Languages and Computer Architecture, number 201 in Lecture Notes in
Computer Science, Nancy, France, September 1985.

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, pages 61-78, Nice, France, June 1990.

138

[Wad92a]

[Wad92b]

[Wad94]

[Wan80)]

[WFS8S]

BIBLIOGRAPHY

Philip Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2(4):461-493, December 1992. (An earlier version appeared in Proceedings
of the 1990 ACM Conference on Lisp and Functional Programming).

Philip Wadler. The essence of functional programming (invited talk). In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Principles of Programming
Languages, pages 1-14, Albuquerque, New Mexico, January 1992.

Philip Wadler. Monads and composable continuations. Lisp and Symbolic Compu-
tation, 7(1):39-56, January 1994.

Mitchell Wand. Continuation-based multiprocessing. In Conference Record of the
1980 LISP Conference, pages 19-28, Stanford, California, August 1980.

Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A
non-reflective description of the reflective tower. Lisp and Symbolic Computation,
1(1), May 1988.

