
Controlling E�ects

Andrzej Filinski

May 1996

CMU{CS{96{119

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Robert Harper, Co-Chair

John Reynolds, Co-Chair

Stephen Brookes

Gordon Plotkin, University of Edinburgh

Copyright c
1996 Andrzej Filinski

This research was sponsored in part by the Defense Advanced Research Projects Agency, CSTO,

under the title \The Fox Project: Advanced Development of Systems Software", under Contract F19628-

95-C-0050. The research was also partially sponsored by the National Science Foundation under Grant

No. CCR-94-09997.

The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the o�cial policies, either expressed or implied, of the Defense Advanced

Research Projects Agency, the National Science Foundation, or the U.S. Government.



Keywords: monads, continuations, computational e�ects, monadic re
ection, logical

relations, Scheme, ML.



Abstract

Many computational e�ects, such as exceptions, state, or nondeterminism,

can be conveniently speci�ed in terms of monads. We investigate a technique

for uniformly adding arbitrary such e�ects to ML-like languages, without

requiring any structural changes to the programs themselves. Instead, we use

monadic re
ection, a new language construct for explicitly converting back

and forth between representations of e�ects as behavior and as data.

Using monadic re
ection to characterize concisely all e�ects expressible with

a given monad, we can give a precise meaning to the notion of simulating one

e�ect by another, more general one. We isolate a simple condition allowing

such a simulation, and in particular show that any monadic e�ect can be

simulated by a continuation monad. In other words, under relatively mild

assumptions on the base language (allowing formation of a suitably large

answer type), control becomes a universal e�ect.

Concluding the development, we show that this universal e�ect can itself

be explicitly implemented in terms of only standard �rst-class continuations

(call=cc) and a piece of global state. This means that we can specify an ef-

fect such as nondeterminism abstractly, in terms of result lists, then directly

obtain from this description a nondeterministic-choice operator performing

imperatively-implemented backtracking. We include a full realization of the

general construction in Standard ML of New Jersey, and give several pro-

gramming examples.
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Chapter 1

Introduction

In this chapter, we cover some general background and motivation for the work de-

scribed in this document. After a brief discussion of two popular conceptual models for

programming with computational e�ects, we introduce a new approach that in many

ways combines the best aspects of both. We give an informal overview of this approach

and sketch the concrete results obtained in the following chapters.

1.1 E�ects in functional languages

An important topic in the �eld of programming language semantics is the study of compu-

tational e�ects. Informally, an e�ect is any deviation from the intuitive characterization

of a program fragment as representing a simple function from inputs to outputs. Ex-

amples are numerous, including such familiar concepts as partiality, exceptions, state,

computational complexity, I/O, nondeterminism, and concurrency.

The treatment of e�ects is particularly interesting in the context of modern functional

programming languages, such as Standard ML or Haskell. Such languages have relatively

simple and tractable mathematical descriptions, amenable to a formal analysis. In fact,

their basic model of computation is precisely the de�nition and evaluation of functions,

as opposed to sequential execution of program instructions.

But even though most aspects of functional programming can indeed be usefully cap-

tured with this simple declarative model, the natural formulation of many non-trivial pro-

gramming tasks still tends to involve occasional uses of \imperative" concepts { whether

for convenience in expressing an algorithm, or for interaction with the outside world.

The challenge to the semanticist is thus to admit the possibility of e�ects, while

retaining as many as possible of the appealing properties of functional programming. This

problem, of course, is not new; but somewhat surprisingly, two distinct schools of thought

have evolved on how best to proceed, exempli�ed by the treatment of e�ects in \purely

functional" languages, such as Miranda or Haskell, versus \algorithmic functional" ones,

such as Scheme or ML.

The remainder of this section brie
y presents and contrasts these two approaches,

then introduces the basic thesis underlying this dissertation: that we can integrate key

ideas from each framework to obtain a model of specifying and using e�ects that combines

the best of both worlds.
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2 CHAPTER 1. INTRODUCTION

1.1.1 \E�ects as data"

When the basic ideas of denotational semantics were originally proposed, a signi�cant

challenge was to demonstrate that a very abstract mathematical model of computation

based on \pure" functions could adequately model some apparently very non-functional

but (at least at that time) important constructs in existing programming languages. Per-

haps the most striking example of this was the use of continuation functions for modeling

unstructured control constructs (gotos) [SW74, Rey93]; simpler techniques su�ced for

concepts such as state or exceptions.

There is a close similarity between the metalanguage of denotational semantics (a con-

cise notation for specifying continuous functions between domains) and actual functional

programming languages. This has the fortunate consequence that often an appropriately

expressed denotational de�nition can be directly executed to get an interpreter for the

de�ned language [Rey72]. And in fact, many of the techniques pioneered in denotational

semantics were quickly adopted for functional programs that were not in any reasonable

sense language processors.

Speci�cally, the denotational representation of almost every computational e�ect leads

to a characteristic pattern or style in functional programs using that e�ect. For example,

a global store can be modeled functionally by passing an additional store argument to

every function, together with returning from each function the possibly updated store;

the resulting speci�cation is commonly said to be expressed in state-passing style.

Similarly, exceptions can be modeled by tagging every function return value as either

\normal" or \exceptional"; the caller of a function must then explicitly check for and

propagate exceptions (exception-passing style). And, perhaps best-known, continuation-

passing style (CPS) passes to every function an explicit representation of the remainder

of the computation, to be invoked on the result of that function [Rey72, Fis72, Plo75].

While these techniques for modeling computational e�ects all share a similar feel, they

do di�er substantially in the details. It was therefore a remarkable observation by Moggi

that they could each be seen as a particular instance of a generic schema, parameterized

by a monad, a simple concept from category theory [Mog89]. This meant that much of

the theory of computational e�ects could be derived abstractly, without reference to any

speci�c notion of e�ect.

Again, it did not take long for this idea to migrate from mathematical semantics

to mainstream functional programming. Work by Wadler and others [Wad90, Wad92b,

PW93] establishedmonadic style as a practical technique for structuring purely functional

programs in a way that could reasonably conveniently express both program-internal

e�ects (exceptions, state, etc.) and external ones (foreign function interfaces and monadic

I/O).

The bene�ts of a denotational speci�cation of an e�ect are substantial: we get a

concise yet very precise characterization of how a program fragment can behave. For

example, in a language with exceptions and non-termination as the only e�ects, the

meaning of an integer-returning computation could be a meta-language value of type

Z? �X where X is some �xed domain of exception names.

This immediately tells us that evaluation of an expression can have only three possible
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outcomes: it either returns a number, raises an exception, or diverges. Thus, for example,

a simple case analysis su�ces to formally show that evaluating an expression twice is

equivalent to evaluating it only once and duplicating the result { even if we interpose an

arbitrary other computation between the two evaluations.

Analogous considerations apply to a purely functional program in exception-passing

style: we can use standard reasoning principles for sum types to deduce properties of pro-

grams with exception-e�ects, again validating program transformations such as common-

subexpression elimination.

On the other hand, the purely-functional approach is not without problems, which

become particularly evident at larger scales. One such disadvantage is that programming

with e�ects turns into an all-or-nothing choice: to add even the most innocuous e�ect,

such as debugging output or a \gensym" facility for generating unique names, we may

have to rewrite substantial parts of the program in e�ect-passing style.

Monads alleviate this inconvenience somewhat, by allowing the program to be struc-

tured uniformly, independently of what e�ects will eventually be present. Still, we need

to explicitly re-express the underlying functional program in monadic style { sometimes

after the fact, duplicating e�ort, and sometimes preemptively, in anticipation of possibly

having to add e�ects in the future.

Of course, since the conversion into monadic style is easily mechanizable, we can

always express programs in a more concise notation, and have them automatically ex-

panded into monadic style { either explicitly as a source transformation, or implicitly by

an interpreter. But such an approach is not without problems either: by interposing a

translation phase for expanding monadic e�ects into their denotations, we are e�ectively

de�ning an entirely new programming language.

And for writing any non-trivial programs in this new language, we will want all the

conveniences commonly provided by a language environment: pattern-matching function

de�nitions, a static type system (giving meaningful error messages), a module system, a

standard library, etc. Thus, the practical e�ort involved may be much larger than what

might be expected from only looking at the core translation equations.

A related, but logically distinct, problem is that monadic-style de�nitions impose

a substantial overhead on execution, whether implemented interpretively or compiled.

Even if e�ects are rare (which is one of the tenets of functional programming), the

infrastructure required to support an occasional imperative construct imposes a uniform

burden on the entire evaluation process.

For example, for exception-passing style, the speci�cation demands that after every

subcomputation that may raise an exception, we have to check for this possibility and

either proceed normally, or propagate the exception to the rest of the computation.

A simple realization of exception-passing could thus spend a large fraction of its time

checking for conditions that only occur very rarely. A more sophisticated implementation,

especially a translation-based one, may be able to eliminate some of those checks, but

in general calls to \unknown" functions (passed as parameters or separately compiled)

have to be explicitly guarded by a check for exceptional returns.

Any further improvements seem to require pushing the e�ect down into the language
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implementation itself, still providing a purely functional interface to the relevant opera-

tions, but implementing them more e�ciently than what could be expressed explicitly in

the language. In particular, several proposals have been made for direct implementations

of state in languages like Haskell [PW93, LPJ95].

Unfortunately, such a \black-box" approach negates one of the main advantages of

the denotational approach: the ability to represent e�ect meanings explicitly as ordinary,

functional constructs that can be reasoned about directly within the language. And even

more signi�cantly, these more e�cient implementations are only available for a select few

e�ects; programmer-de�ned, application-speci�c monads cannot take advantage of any

non-functional implementation techniques.

1.1.2 \E�ects as behavior"

As noted in the previous section, there are some compelling advantages to the denota-

tional approach to e�ects, but also some signi�cant practical problems. Whether the

former outweigh the latter is still a controversial issue, especially because there is an

alternative way of treating e�ects in programs. This approach is often referred to by the

rather loaded term of \impure" functional programming; we will generally use the more

neutral names behavioral or operational.

The basis of this approach is that a program expressed in terms of function de�ni-

tions and applications can still be given a very natural algorithmic reading. Speci�cally,

the fundamental principle of applicative-order reduction (namely, reducing the argument

part of a �-redex before performing the substitution) can be seen as specifying a partic-

ular sequencing of evaluations. And this sequencing can serve as a robust skeleton for

organizing general computational e�ects.

Although this idea can be traced back to early Lisp [M+62], perhaps the prototypical

functional language based on such an approach is Scheme [CR91]. The three key semantic

di�erences distinguishing Scheme from a \purely functional" language are its call-by-

value evaluation strategy, the presence of explicitly mutable state, and a feature known

as �rst-class continuations.

These three characteristics make Scheme a very versatile language, but potentially

signi�cantly complicate reasoning about programs. The problem is not that call-by-value,

state, or continuations are inherently particularly hard to reason about. After all, they

have simple denotational counterparts, and any Scheme program can be relatively easily

expanded into a \purely functional" one by a continuation-passing transform.

In fact, we do not need to explicitly translate at all; direct-style equational theor-

ies such as the computational �-calculus are only slightly more complicated than ��-
conversion [Mog89]. (The situation is complicated somewhat by dynamic creation of

mutable cells, but those too can be dealt with [FH92].) It would thus seem that ease

of reasoning about impure functional programs should be \within a constant factor" of

that about pure programs.

But there is a more subtle reason why general Scheme programs can be much harder

to analyze formally than e�ect-free ones: because the set of computational e�ects is

e�ectively �xed at two low-level but very powerful operations, the natural programming

style consists of encoding higher-level e�ect abstractions imperatively in terms of the
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available e�ects, rather than through explicit e�ect-passing.

For a simple example, consider parameterization. Suppose that at a few places in a

program, perhaps spread across several separately compiled modules, we need access to

a parameter supplied as part of the initial expression to be evaluated. The two basic

approaches for achieving this are to pass the parameter around everywhere it might

eventually be needed, or to store its value in a global cell and access it only where

actually used.

If the program is su�ciently large, and the accesses to the parameter su�ciently in-

frequent, the second approach becomes the natural choice (indeed, probably the correct

choice from a software-engineering perspective). But by encoding parameterization in

terms of state, we have e�ectively failed to represent the important fact that the para-

meter is immutable.

That is, suppose the program were otherwise purely functional. Then in explicitly-

parameterized style, we could easily argue that the phrase f 3p + f 3p could always be

safely replaced by 2� f 3p, even when f was an unknown function. But once we admit

general state, the optimization is no longer automatically valid: we need to be able to

inspect f , making sure that it does not change the global value of p, before we can

eliminate the common subexpressions.

In other words, where the transformation was a simple equational property in a purely

functional setting, it is at best only provable in a language with e�ects when f and all the
functions it calls are known. The reason is that the program does not explicitly embody

the speci�cation that the global state can never be modi�ed after its initialization.

Of course, in a purely functional language, the state-based solution would not be

available at all. Or, more accurately, given that all e�ects in a pure language must be

written out in full, parameterization would naturally be expressed as such, rather than

through (functional) state-passing. That is, if we have to be explicit about e�ects anyway,

we may as well be precise.

With control e�ects, the problem is of course compounded. Again, an imperative

realization of e�ects such as exceptions, nondeterminism, or concurrency may well be

practically preferable to its more declarative counterpart in explicit e�ect-passing style,

but the price we pay is in loss of simple reasoning principles.

In fact, the problem is not only in analyzing programs using the e�ects: it is often

challenging even to show formally that the implementation of the e�ect itself is correct.

For example, in Scheme we can encode (the control aspects of) an ML-like exception

facility in a few lines of code using call=cc and a \current handler" cell. But a proof that
such an implementation actually agrees with the explicit exception-passing used in the

formal de�nition of SML [MTH90] is by no means a trivial task.

Similar considerations apply to analyzing control-based implementations of backtrack-

ing [Hay87, HDM93] or concurrency [Wan80]: while the code may be short, elegant, and

intuitively plausible, formally relating it to a more abstract denotational speci�cation,

such as success lists [Wad85] or resumptions [Sch86, Mog90], is often a serious undertak-

ing.

One could thus say that it is in this sense that \purely functional" programs o�er
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a pragmatic reasoning advantage over \impure" ones: by penalizing all e�ects equally,

they do not discourage the use of precise, custom-tailored e�ect representations. Impure

languages, on the other hand, leave us an unpleasant choice, trading o� precision against

verbosity: if the desired e�ect is not already explicitly available, we must decide whether

to encode it in terms of some more general standard e�ect, or to rewrite the program in

explicit e�ect-passing style.

1.1.3 A uni�ed view

As we have seen, each of the approaches has its advantages and disadvantages. The

question thus naturally arises, whether there might be a way to somehow combine the

best features of both. In particular, would it be possible to set things up so that we could

think (both formally and informally) in terms of precise, functional denotations, but work

(both when writing and executing programs) with the concise, operational behaviors?

The main goal of this thesis is to answer this question a�rmatively. We will see

how it is indeed possible to take a purely functional denotational speci�cation of any

monadic e�ect and obtain from it a directly executable operational implementation using

call=cc and state. In fact, we will be able to de�ne functions for converting back and forth
between denotational and behavioral views of the same e�ect with no loss of information.

The fundamental idea is to distinguish carefully between transparent and opaque rep-

resentations of a computational e�ect. The transparent representation is the explicit,

denotational one: a computation that may raise an exception is represented as an e�ect-

free computation of a sum-typed result; a computation with state-e�ects is represented

as a pure function from old state to result and new state; a nondeterministic computation

is represented as a deterministic computation of a list of results; and so forth.

On the other hand, the opaque representation is e�ectively an abstract data type

with two operations: we can construct a trivial computation out of a value, and we can

sequence two computations, where one may depend on the outcome of the other. How

these operations are realized depends on the particular notion of e�ects, of course. But

when writing the bulk of a typical program, the opaque representation is all we need.

For example, a program written in monadic style would mostly use abstract unit and
bind operations for structuring, regardless of what they actually expanded to.

Only when we actually wish to perform an e�ect, such as raising an exception, ac-

cessing the store, or making a nondeterministic choice, do we need additional operations.

For such explicit e�ect-manipulations, we introduce two additional operations, converting

between transparent and opaque representations of an e�ect.

That is, given an explicit representation of the e�ect, such as a value representing a

raised exception, a function modifying the state, or a list of possibilities, we can obtain

from it the corresponding opaque representation, which can then be further combined

with other opaque computations in the usual way.

Conversely, and equally importantly, from an opaque representation, we can recover

its transparent counterpart. For example, to handle an exception, we explicitly examine

the sum-based representation of a computation and perform the appropriate action in

each case. Or to determine whether a nondeterministic subcomputation has at least one

successful outcome, we check if its transparent, list-based representation is non-empty.
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Although this distinction may not at �rst appear particularly profound or useful, we

now sketch three crucial observations that together summarize the main contributions of

the thesis (with each one roughly corresponding to a chapter):

1. Even though opaque computations are a priori simply another abstract datatype,

the two operations of value-inclusion and sequencing are exactly what forms the

e�ect-backbone of an \imperative functional" language such as Scheme or ML. In

such a language, any subcomputation may have an e�ect. A value such as a constant

or a lambda-abstraction is therefore a special case, which must be implicitly coerced

into a general computation. This corresponds to the �rst operation on our ADT of

opaque computations.

Similarly, e�ects in compound computations are implicitly sequenced by the call-by-

value evaluation order. For example, in an applicationE1E2, �rst E1 is evaluated to

a value, then E2, and �nally the application is performed. Again, this corresponds

to an explicit sequencing of opaque computations, where subsequent computations

may depend on the values produced by earlier ones.

With this view, then, the conversions between transparent and opaque represent-

ations of computations provide an e�ect-introspective capability in the language,

exposing the underlying notion of e�ects when and only when it matters. That is,

the two operators convert between computations as data and as behavior within a

single setting, integrating the views of e�ects as either being or happening. The key

requirement is that the two conversion operations must be (two-sided) inverses, so

that no information is lost when switching between the two view.

That is, by relaxing the relationship between transparent and opaque represent-

ations from their being identical to merely isomorphic, we have already gained

something important: a model for programming in a convenient, concise ML-like

language, with an intuitive imperative reading, yet at the same permitting equa-

tional reasoning about our programs as if they were written purely functionally,

with explicit e�ect-passing. But we can actually go further:

2. Since the ultimate goal of reasoning about programs is to characterize their observ-

able behavior, we actually have some freedom in choosing the opaque representation

of e�ects, as long as we can guarantee that it properly tracks the transparent repres-

entation in all complete programs. In other words, we only need to ensure that the

two representations are observationally isomorphic, whether or not they actually

are denotationally so.

More explicitly, in addition to the canonical opaque representation, which simply

encapsulates the speci�cation monad of the transparent representation, there may

also be a variant opaque representation, based on a di�erent implementation monad.

Then, as long as we choose the implementation monad such that it successfully

mimics its speci�cation counterpart in all program contexts, we can still reason

about programs as if opaque e�ects were directly represented by the speci�cation

monad.
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This is of course a well-known property of abstract data types in general. In our

case, however, the ADT operations of value inclusion and sequencing are implicitly

invoked at every single subcomputation (whether it actually performs any e�ects

or not) in addition to the explicit conversions between transparent and opaque rep-

resentations. Thus, e�ciency of the implementation becomes a signi�cant concern.

We will consider several examples of such e�ect-simulations, and give a general

characterization of the relationships the two monads must satisfy in order for one

to act as the opaque representation of the other. But perhaps the most remarkable

and useful such instance is that, under suitable assumptions, any monad can be

simulated by a continuation monad. In particular, this means that no matter how

apparently complex the transparent speci�cation may be, it can be implemented

uniformly by continuation-passing.

This further adds to the attractiveness of programming with monadic e�ects: we

can still reason about our programs as if their operational behavior were realized by

explicit e�ect-passing according to a (potentially computationally costly) declarat-

ive speci�cation. Yet the actual implementation only needs to incur the relatively

low (and �xed) cost of continuation-passing. And we can do better still:

3. Although we nominally have a way to simulate arbitrary monadic e�ects with

continuation monads, we are still some way o� from a full implementation of our

hypothetical ML-like language with behavior-data duality for user-de�nable e�ects.

We have shown that continuations are in a sense a universal e�ect, but we still need

to actually exploit this property in practice.

A key third step is therefore to note that the variant opaque representation of

an e�ect is also the canonical opaque representation of the e�ect induced by the

implementation monad. That is, we can de�ne an ML-like language with a notion

of native e�ects that directly corresponds to the continuation monads we use for

implementing other monadic e�ects. Any language in the style of (1) above can

then be directly embedded into this one language of control e�ects.

Moreover, we can show the perhaps equally surprising result that our universal

control-e�ect language can itself be embedded in a language with only Scheme-

style �rst-class continuations and mutable global variables. This could be said to

validate the informal claim in the Scheme Rationale for call=cc that most useful

control abstractions can be implemented explicitly, without changing or extending

the language itself [CR91].

With this correspondence, we have e�ectively bridged the gap between the denota-

tional and the operational view of e�ects: we can reason safely in terms of the

former, but work in a practical, familiar programming language in terms of the

latter. The general construction takes a non-trivial amount of work to develop and

prove correct, but we only need to perform it once and for all, not once for every

new e�ect we want to implement.

The presentation in this document is oriented towards call-by-value languages, which

can take full advantage of point (1) above. Still, there is in principle no reason why (2) and
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(3) could not also be exploited in a purely functional language; e�cient implementations

of e�ects are as important for Haskell-like languages as they are for Scheme-like ones.

We will not develop the details of such an application, however.

1.2 Monads and monadic re
ection

In this section, we give somewhat simpli�ed introduction to monadic e�ects. In particu-

lar, we will assume that the monad under investigation represents the only computational

e�ect in the language. The formal development in the next chapter considers a more gen-

eral notion of computation, where a monad serves to introduce a new e�ect on top of

potentially already existing ones. Although the basic idea is the same, the details become

substantially more involved. For the moment, let us therefore ignore the possibility of

e�ects other than the one being introduced.

Monads originate in category theory; like many such concepts, they have several

equivalent de�nitions. For our purposes, the following variant (usually known as the

Kleisli triple formulation) seems most convenient:

De�nition 1.1 (preliminary) A monad T in a functional language consists of the

following:

� A type constructor T .

� For any type �, a function �� : �! T� (the unit function at �).

� For any function f : �1! T�2, a function f � : T�1! T�2 (the extension of f).

These components must further satisfy the three monad laws:

f � � �� = f ��
�
= idT� (f � � g)� = f � � g�

Remark 1.2 In category theory, the a monad is conventionally de�ned in terms of a

functor T and natural transformations � : Id ! T and � : T 2 ! T satisfying certain

equalities [ML71, VI.1]. (In the context of functional programming, the corresponding

operations are usually referred to as map, unit, and join [Wad92a].)

It is easy to see, however, that the two formulations are equivalent: every Kleisli triple

(T; �; �) determines a monad (T; �; �) by

Tf = (� � f)� and �� = id�
T�
:

Conversely, every monad determines a Kleisli triple by

f � = �� � T (f) ;

and moreover these assignments are inverses. In the following, we will therefore use the

terms \Kleisli triple" and \monad" synonymously.

A simple syntactic variation on Kleisli triples, popularized by Wadler [Wad92b], uses

a binary in�x operator to denote application of an extended function, writing t `bind` f
or t ? f for our f � t. This \continuation last" notation is usually preferable for writing
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actual functional programs in monadic style, but the formulation in the de�nition is more

convenient for our purposes.

It should also be mentioned that our monads are properly called strong monads in

category theory [Mog89], essentially because the f being extended need not be closed.

(The monad laws must then also hold for open terms; the formal de�nition in the next

chapter will re
ect this.) We will use the \functional programming" rather than the

\categorical" terminology throughout this document.

Monads provide a uniform framework for reasoning about computational e�ects (such

as state, exceptions, or I/O) in applicative programming languages [Mog89, Mog91].

Informally, � a represents a \pure" (i.e., e�ect-free) computation yielding a, while f �t
represents the computation consisting of t's e�ects followed by an application of f to the

result (if any) computed by t. A concrete instance may help clarify this:

Example 1.3 For any �xed type �, the monad of �-carrying exceptions is given by

T� = � + �; � = �a: inl a; f � = �t:case t of inl a) f a [] inr e) inr e

Here, a computation of type � is either a value a of type � (the left summand), denoting

a successful computation of a, or a value e of type � (right summand), representing

a speci�c failure. The unit and extension operations capture the expected operational

behavior of exceptions; in particular, if evaluation of a function argument t raises an
exception e, that exception is simply propagated without ever applying f . It is easy to

check that these de�nitions do in fact satisfy the equations in De�nition 2.15.

The use of monads for structuring purely functional programs { as opposed to language

semantics { is by now quite commonplace [Wad92b, PW93]. Of course, those same

structuring techniques can usually also be used with Scheme-like languages (only rarely

do monadic-style programs rely on lazy evaluation in a fundamental way), but the bene�ts

seem less clear: often a \mostly pure" program with a few isolated e�ects (e.g., a gensym

or occasional output) is both more e�cient and easier to understand at a glance than an

equivalent \completely pure" program expressed in monadic style throughout.

There is a more interesting way, however, of explicitly using monads as a structuring

tool for programs in \impure" functional languages, one that takes full advantage of an

eager evaluation strategy instead of trying to ignore it. The study of this alternative is

the main focus of this thesis. Speci�cally, our development is based on a simple functional

language based on \Moggi's principle":

Computations of type � correspond to values of type T�.

As also noted by Moggi, this abstract correspondence principle can be embodied into

a concrete language construct which we will call monadic re
ection (by analogy to the

more general notion of computational re
ection [Smi82, WF88]). Speci�cally, we take:

De�nition 1.4 (preliminary) A re
ection of a monad T in a language is given by two

operators

� ` V : T�

� ` �(V ) : �
and

� ` E : �

� ` [E] : T�
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satisfying that for any expression E : � (possibly with computational e�ects) and any

value V : T�,

[E] is a value; �([E]) = E; and [�(V )] = V

Although the presence of these two operators arises naturally from the monadic frame-

work, little is generally said about their computational interpretation, let alone their use-

fulness in actual functional programming. As it turns out, however, monadic re
ection

provides exactly what we need to program with monadic e�ects without having to rewrite

the code in monadic style.

In operational terms, for any value V : T�, �(V ) re
ects V as an \e�ectful" compu-

tation of type �: we can construct an explicit representation of the e�ect, then perform

or execute it by passing it to �( ). Conversely, given a general computation E : �, [E]
rei�es it as the corresponding e�ect-free value of type T�, which can then be further

inspected and analyzed like any other inert piece of data.

Although it is possible to write programs using the re
ection and rei�cation operators

directly, an actual programming language would typically de�ne a collection of more

convenient operations in terms of �( ) and [ ]:

Example 1.5 Consider again the exception monad from Example 1.3. We can express

the usual exception-raising construct directly as

raise E def= let e= E in �( inr e)

where E is an expression { typically just a value { of type �. That is, we explicitly

construct a right-tagged value in the explicit representation of computations, then pass

it to �( ) to perform the e�ect.

Conversely, [E] rei�es a possibly exception-raising �-expression E into a value of

type � + �, so we can de�ne an exception-handling construct like this:

try E1 handle e)E2
def= case [E1] of inl a) a [] inr e)E2

That is, if E1 returns normally, E2 is ignored, but if E1 raises an exception, the handler

E2 is invoked with e bound to the exception data; a general pattern-matching handle

construct as found in SML can easily be expressed in terms of this one.

Example 1.6 For any type �, the �-state monad is de�ned by:

T� = �! �� �; � = �a: �s: ha; si; f � = �t: �s: let ha; s0i= ts in f as0

Here, a computation t is represented as a (pure) function accepting a current state s and
returning a value a and a new state s0; an e�ect-free computation passes the state along

without modifying or reading it; and the extension of f �rst evaluates t in the current

state s and then f a in the state s0 resulting from evaluation of t.
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Using re
ection, we can de�ne operators for updating and reading the state:

state := E def= let v = E in �(�s: hhi; vi)

! state
def= �(�s: hs; si)

That is, state := E is the e�ect represented by a function replacing the state with the

value of E (and returning hi as the result of the operation), while ! state denotes the e�ect

of reading the current state without modifying it. Neither of these de�nitions explicitly

uses the rei�cation operator. That one is only used implicitly at the top level: if E is a

program with state e�ects, then

run E def= let ha; s0i= [E]s0 in a

is the result of evaluating E starting with an initial state s0 and discarding the �nal

state. A simple re�nement is of course to permit the state to persist across a sequence

of top-level evaluations, as, in the interactive read-eval-print loops of ML or Scheme.

More generally, if we take � to be a whole store (a �nite map from locations to values),

we can de�ne, for any mutable variable x,

x := E def= let v( E in �(�s: hhi; sf`x vgi)

!x def= �(�s: hs`x; si)

where `x is the location corresponding to the cell x.
Note that the state-accessing operations export only a subset of the functionality

of the state monad. To express general re
ection/rei�cation in the store case, we need

access to a \�rst-class store" mechanism. This can actually be implemented reasonably

e�ciently using version trees, without requiring the whole store to be copied [JD88,

Mor93], but it does impose some overhead.

The latter example illustrates that it may not always be feasible or desirable to

export the full re
ection/rei�cation pair for a monad in a real programming language.

Nevertheless, it will be important for analysis purposes to consider the fully general

formulation of an e�ect in terms of �( ) and [ ], with any restrictions on accessible

functionality viewed as purely pragmatic considerations.

This is not to trivialize such concerns, only to emphasize that they are an orthogonal

issue. Re
ection and rei�cation expose exactly the range of e�ects expressible in the

corresponding state-passing formulation { much as a traditional denotational semantics

of a language with a store does not formally enforce that the store is used in a single-

threaded way.

The exception and state monads by no means exhaust the interesting possibilities.

Some other examples of simple monadic e�ects are listed in Table 1.1; we will encounter

many of these in more detail later. And although this collection may still seem limited, we

have not even considered all the combinations that encode multiple e�ects. For example,

T� = �! (�+ �)� � represents computations with both exceptions and state.

(How to combine speci�cations of individual e�ects into composites is actually a

non-trivial problem. Although we will not develop the details in full generality, the



1.3. OVERVIEW OF THE THESIS 13

Common name Functor, T� Unit, �� Extension, f �

Identity � �a: a �t: f t
Partiality �? �a: up a �t: case t of up a) f a [] ?)?
Exception � + � �a: inl a �t: case t of inl a) f a [] inr e) inr e
State �! �� � �a: �s: ha; si �t: �s: let ha; s0i= ts in f as0

Environment �! � �a: �e: a �t: �e: f (te)e
Complexity ��N �a: ha; 0i �ha; ni: let hb; n0i= f a in hb; n+ n0i
List-nondeterm. �� �a: [a] �[a1; : : : ; an]: f a1 ++ � � �++ f an
Set-nondeterm. P�n� �a: fag �fa1; : : : ; ang: f a1 [ � � � [ f an
Continuation (�! o)! o �a: �k: ka �t: �k: t(�a:f ak)

Table 1.1: Some simple monads

incremental approach used in the next chapter to layer a new e�ect on top of an existing

one illustrates the basic principle: we must re�ne the de�nition of a monad to explicitly

account for the original e�ects in the new speci�cation.)

1.3 Overview of the thesis

1. This Introduction presents some background material about computational e�ects

and informally introduces the notion of monadic re
ection as the bridge between

the denotational and operational view of monadic e�ects.

2. In Programming with Monadic E�ects, we �rst specify a simple functional base

language with some notion of ambient e�ects, such as partiality. We then formally

de�ne monads in this setting and show how a monad T induces an extension of

the base language with a new focus e�ect. We specify the semantics of this e�ect-

enriched language by a simple but somewhat impractical (de�nitional) monadic

translation back the original language, for which we already have a semantics. Our

task in the remaining chapters will then be to devise and prove correct an alternative

implementation of the extended language.

3. Relating E�ects contains the main technical contribution of the thesis. We consider

a speci�cation monad T and an implementation monad U, and investigate when

U can be said to simulate T. We �rst show how, given some data connecting T

and U, we can de�ne a variant translation from the T-extended language to the

base language, using U-e�ects to perform T-e�ects (but without any correctness

guarantees yet).

After some technical preliminaries, setting up the proof context, we then introduce

the concept of a monad relation between T and U, and show that given such a

relation, the de�nitional and the variant translation agree on complete T-programs.

In many cases we can obtain the required monad relation directly from existence

of a monad morphism from T to U, but the general continuation-simulation of T
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with a continuation monad involves an additional twist to capture the parametricity

properties of the \�nal answer" type.

We conclude the chapter by showing that the correspondence between monads and

continuations also allows us to de�ne the monadic re
ection operators for T directly

in terms of those for the continuation monad U. Thus, it su�ces to provide an

implementation of the language with continuations as the notion of focus e�ect.

4. Completing the construction, Implementing Continuation-E�ects shows how the

e�ects corresponding to a continuation monad can be embedded into a Scheme-like

language. The proof can be broken into three distinct steps. First, we show that the

monadic e�ects for continuations can be expressed in terms of a control abstraction

called composable continuations, which can be further decomposed into three even

simpler control operators.

Second, we show that the distinction between ambient and focus e�ects introduced

by the de�nitional monadic translation does not actually a�ect evaluation, thus

leaving us to implement a language with a single level of e�ects. And third, we

show that this language can be implemented by embedding in language with �rst-

class continuations and state. We conclude by showing a concrete implementation

of the construction and a few programming examples.

5. Finally, the Conclusion summarizes the results and outlines some promising direc-

tions for further work.



Chapter 2

Programming with Monadic E�ects

In this chapter, we introduce a simple functional programming language that will serve

as a concrete framework for the results and proofs throughout the thesis. We also form-

ally de�ne the notion of monad in this setting, and show how a monad allows us to

systematically de�ne a extended language with a new notion of e�ects.

2.1 The base language

2.1.1 Terminology

A language consists of a syntax L and a semantics L. The syntax de�nes the sets of well-

formed types and of well-typed terms of a given type by means of a language signature,

i.e., a set of type constructors and (typed) term constructors from which language phrases

are built up inductively.

The semantics assigns some notion of meaning to the terms. As a practical minimum,

we expect a semantics to provide a notion of program evaluation, i.e., a partial function

EvalL from a suitable subset of L-terms (e.g., closed terms of base type) to some set

of observable results, say natural numbers. An evaluation semantics induces a notion of

observational equivalence on terms, where two terms are considered equivalent if they can

be substituted for each other in any program context without changing the observable

outcome of the program. It is easy to see that this relation on terms is in fact a congruence

wrt. all term constructors of the language.

A denotational semantics provides more, namely a model. That is, for every type, a

set of meanings of terms of that type, and to every term constructor, a meaning of the

constructed term expressed as a function of the meanings of the subterms. In particular,

this provides a notion of equality, denotational equivalence, where two terms are equal i�

they denote the same element of the model; because of the compositionality requirement,

denotational equivalence is likewise a congruence. Two terms may be observationally

equivalent without being denotationally so, but it is usually simpler to reason about

denotational equivalence.

We obtain an evaluation semantics from a denotational semantics by de�ning a func-

tion from the meanings of closed terms to observable results. For example, the denotation

of a program could be an element of the 
at domain N? of lifted natural numbers; the

15
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induced evaluation semantics is then given simply by the evident partial function map-

ping every lifted natural number to itself, and unde�ned on the ?-element of the domain.

Two di�erent semantics for a syntax (say, direct and continuation) may determine the

same evaluation semantics (and hence the same notion of observational equivalence), but

induce di�erent notions of denotational equivalence.

We say that a language (L, L) is a member of a language class (e.g., the class of

lambda-calculi) if its signature contains some speci�ed set of type constructors (product,

function space, etc.) and term constructors (abstraction, application, etc.), and the

meanings of these types and terms in L satisfy some equational constraints (congruences,

�-conversion, etc.). Often we can prove a result for an entire class of languages by showing
that it holds generically in any model of the equations.

2.1.2 The base syntax

We now present a concrete language, in which we will be doing most of the formal

development. Its syntax and semantics are very similar to PCF [Plo77] (even more so

to PCF with lifted types [Mit96], except that the e�ect structure is made more explicit.

We call it E�ect-PCF. We present the syntax and informal operational interpretation in

this section, with a precise denotational semantics in the next.

E�ect-PCF is somewhat more verbose than a typical practical programming language,

because all computation sequencing is made explicit in the syntax. For example, in an

application, both the function and the argument must be explicitly evaluated if they are

not already values.

Although we could have worked in an ML-like CBV language directly, the general

treatment of monadic e�ects becomes awkward when the sequencing is left implicit. The

present formulation allows us to cleanly separate out the handling of e�ects from the

\purely functional" structure (exponentials, products, etc.).

Moreover, there is a simple, e�ect-independent elaboration of a standard, ML-like

syntax into E�ect-PCF, so we can view the implicit sequencing of computations in call-

by-value languages as merely convenient shorthand for the corresponding E�ect-PCF

terms. We will return to this elaboration in Section 2.1.6.

The base signature is displayed in Figure 2.1.

Type structure

The most notable characteristic of the syntax is the division of the types into two classes:

value types (�), and a subset called (generalized) computation types (�). The operational
signi�cance of this division is to make the possibility of e�ects explicit in the types,

separating trivial or manifestly e�ect-free from serious computations.

We make value types properly include computation types by taking one possibility

for a value to be an unevaluated computation, represented by a value of type��. For

example, a closed expression of type � will always be equivalent to a numeral; a general
expression expected to yield a natural number, but which may diverge (or have some

other e�ect) has type��.
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Types:

� ::= a j � j 1 j �1 �
v �2 j �1 + �2 j �

� ::= �� j �! � j 1 j �1 �
c �2

Terms:

M ::= x j z j sM j ifz(M;M1; x:M2) j hi j hM1;M2i j fstM j sndM

j inlM j inrM j case(M;x1:M1; x2:M2) j �x
�:M jM1M2

j�M j let�x(M1 in M2 j �x�M

Typing: � is a type assignment x1:�1; : : : ; xn:�n (with all xi distinct).

(x:�) 2 �

� ` x : � � ` z : �

� `M : �

� ` sM : �

� `M : � � `Mz : � �; x: � `Ms : �

� ` ifz(M;M1; x:M2) : � � ` hi : 1

� `M1 : �1 � `M2 : �2

� ` hM1;M2i : �1 �
v �2

� `M : �1 �
v �2

� ` fstM : �1

� `M : �1 �
v �2

� ` sndM : �2

� `M : �1

� ` inlM : �1 + �2

� `M : �2

� ` inrM : �1 + �2

� `M : �1 + �2 �; x1:�1 `M1 : � �; x2:�2 `M2 : �

� ` case (M;x1:M1; x2:M2) : �

�; x:� `M : �

� ` �x�:M : �! �

� `M1 : �! � � `M2 : �

� `M1M2 : �

� `M1 : �1 � `M2 : �2
� ` hM1;M2i : �1 �

c �2

� `M : �1 �
c �2

� ` fstM : �1

� `M : �1 �
c �2

� ` sndM : �2

� `M : �

� `�M :��

� `M1 :��1 �; x:�1 `M2 :��2

� ` let�x(M1 in M2 :��2

� `M : �! �

� ` �x�M : �

Figure 2.1: Base signature, L0
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A computation of type �!� is often more conveniently thought of as �-computation
parameterized by an �-value, rather than as a function from values to computations.

In particular, when � is itself an arrow type, no actual evaluation occurs until all the

parameters are present.

Similarly, a computation of type �1�
c �2 can be viewed as a single computation impli-

citly parameterized by the choice of which component to evaluate, not as two unrelated

computations. (In the case where �1 and �2 are the same type �, this is re
ected in the

isomorphism � �c � �= (1 + 1)! �.)
There are actually two product-type constructors, one for value types and one for

computation-types only. Although their typing and equational properties are identical

(and in the standard semantics, they are even interpreted by the same cpo constructor),

the two variants are logically distinct. Still, we generally omit the superscripts when it

is clear which one is meant { i.e., when one of the factors is a value type, or the context

requires a computation-type.

(Analogous consideration apply to the unit type, of course, but there we can simply

assume that the two types are identical without unduly constraining the semantics.)

The set of value-types also includes a countable set of type variables. (There are no

type variables for the computation-types.) When � = fa1; : : : ; ang is a �nite set of type
variables, we write

`� � type and `� � ctype

if all type variables occurring free in � and � are in �; in this case we say that � or �
is a type over �. Clearly when �0 � � then also `�0 � type and `�0 � ctype. We say

that � and � are (type-)closed when � is empty. A type over � determines a type family

consisting of all types obtained by substituting closed types for type variables in �.

Note that there are no constructs within the language for explicitly binding type

variables. (There will be, however, in an extension of L0 with recursively-de�ned types

in Section 3.2.1.)

The canonical model of the language is given by the category of \bottomless" cpos

(predomains) and continuous functions, with computation-types interpreted by pointed

cpos and the�-operator on types corresponding to lifting. See Section 2.1.3 for details.

Terms

The term structure and associated typing rules are again mostly conventional. Similarly

to the parameterization of types by type variables, we write

� `� M : �

if all type variables occurring free in �, M , and � are listed in �. M is then said to be a

term over �; again it is called type-closed when � is empty, and the set of type-closed

instances of a term over � forms a term family.

Complementing the�-operator on types, there is a term operator�M , which constructs

an e�ect-free computation returning M , and let�x(M1 in M2, which constructs a

computation consisting of evaluating M1 and M2 in sequence, with x in the second

evaluation bound to the result of the �rst one. A computation is treated as a �rst-class
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object, and is not actually performed until its value is explicitly requested, either directly

by a top-level program evaluation, or through evaluation of an enclosing let.

We generally omit the type tags in terms when they are clear from the context. Also,

we will occasionally use pattern-matching syntax in let- and lambda-bindings, with the

usual expansions, e.g.,

(let�hx1; x2i (M in M 0) def= (let�x(M in M 0f fst x=x1; snd x=x2g) (x 62FV (M 0))

(Note that the projections are considered to be trivial by the typing rules, so the result

of the substitution is still well-typed.)

The constructs associated with type � allow us to program with natural numbers using

a zero-constant, a successor function, and a combined zero-test/predecessor operation.

Given general recursion, we can construct the standard arithmetic operations out of those

primitives. For example, we can de�ne addition as:

plus : �� �!�� = �hn1; n2i: �x�!�� (�f:�n: ifz(n;�n2; n
0: let�r( f n0 in�(s r)))n1

Note, however, that because of the use of �x, the result of an addition is an �-computation,

even though the addition function happens to be total. (We could of course extend the

language with additional primitives for arithmetic or a primitive-recursion construct,

which could then be given pure value-types.)

Having �xed points at all computation-types � also allows us to express mutual

recursion easily, as in:

even : �!�2

= fst (�x(�!�2)�(�!�2) (�he; oi:h�n: ifz (n;�( inl hi); n
0
: on

0); �n: ifz(n;�( inr hi); n0: en0)i))

where 2 def= 1 + 1 is the type of Boolean values.

On the other hand, we cannot write down a term corresponding to a �xed point of

the pure successor function; indeed, the type �!� is not even expressible in the language.
(We can write �x�� (�l

��: let�n( l in�(sn)) :��. Not surprisingly, this denotes a diverging
computation in the intended interpretation of �x.)

Finally, we occasionally use the standard abbreviations:

� ` id� : �! �

� `M1 : �! �1 � `M2 : �1! �2
� `M2 �M1 : �! �2

� ` ?� : � � ` n : �
(n2N)

with id�
def= �x�:x, M2 �M1

def= �x�:M2 (M1x), ?�

def= �x� id�, and n
def= sn z.

2.1.3 A denotational semantics

A program in our base language is a closed term of type��; if in the semantics that term

is equivalent to�n for some n, the program denotes a successful computation with result

n; otherwise, a diverging computation. A denotational semantics gives the meaning of a

complete program by induction on its syntactic structure.
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Preliminaries We give a simple model of the base language in the setting of bottomless

cpos (also called pre-domains), i.e., complete partial orders not necessarily having a least

element. For completeness, we review the associated terminology and constructions.

De�nition 2.1 A cpo A is a set equipped with an !-complete partial order v, i.e., such

that every countable chain a1 v a2 v � � � of elements in A has a least upper bound, writtenF
i ai. A monotone (= order-preserving) function from A to A0

is called continuous if for

every chain (ai)i2! in A, f(
F
i ai) =

F
i f(ai).

A cpo B is called pointed if it has a least element ?B, i.e., if ?B v b for every b in
B. A function between pointed cpos B and B0

is called strict if f(?B) = ?B0 . We use

the name domain synonymously with pointed cpo.

There are a number of standard cpos and cpo constructions:

� base types. Any set, such as the natural numbers N, can be organized as a cpo

by equipping it with the discrete ordering, n vN n0 i� n = n0.

� unit type. The one-element set 1 = f�g is trivially a cpo. It is even degenerately

pointed, with ?1 = �.

� products. A1 � A2 is the cartesian product of cpos, ordered componentwise (i.e.,

(a1; a2) vA1�A2
(a01; a

0
2) i� a1 vA1

a01 and a2 vA2
a02). If B1 and B2 are pointed then

so is B1 � B2, with ?B1�B2
= (?B1

;?B2
).

� sums. A1 + A2 is the disjoint union of cpos (note: not the \separated sum" from

standard domain-theoretic notation),

A1 + A2 = f(1; a1) j a1 2 A1g [ f(2; a2) j a2 2 A2g

ordered inject-wise, i.e., (i; a) vA1+A2
(i0; a0) i� i = i0 and a vAi

a0. Such a cpo is

in general not pointed, even if the summands are.

� function space. A1! A2 is the cpo of continuous functions from A1 to A2, with

f vA1!A2
f 0 if 8a 2 A1: f(a) vA2

f 0(a). To minimize confusion with abstraction

and application in the language, we write �x:'(x) and f(a) for abstraction and

application in the cpo model. A!B is pointed when B is, with ?A!B = �x:?B.

� lifting. For any cpo A, we de�ne the lifted cpo,

A? = ffag j a 2 Ag [ f;g

ordered such that fag vA?
fa0g if a vA a

0, and ; v fag for any a. We write up(a)
for fag and ? for ;. Naturally, A? is pointed.

The strict extension of a function f : A!A0
? is the function f y : A?!A0

? given by

f y(up(a)) = f(a) and f y(?) = ?. More generally, for any pointed B and f : A!B,
f z : A?!B maps up(a) to f(a) and ?A?

to ?B.

� re
exive types. Finally, the CPO model allows us to construct solutions (up to

isomorphism) to recursive type equations. While we will not need this immediately,

it will become important in Section 3.2.1.
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Given a �nite set I, we write
Q
i2I Ai for the I-indexed product of cpos, i.e., the set

of functions � : I!
S
i2I Ai such that for each i 2 I, �(i) 2 Ai. Such a function is usually

called an environment. Environments can be naturally ordered pointwise, with � v �0 i�
8i 2 I: �(i) vAi

�0(i).
Finally, we write � for the empty environment; �[i0 7! a] 2

Q
i2I[fi0gAi (where i

0 may

or may not already be a member of I) for the function mapping i0 to a 2 Ai0 and every

other i 2 I to �(i); and � n i for the function � restricted to I n fig.

Base e�ects To give a semantics to our language in the predomain model, we �rst

need to choose a notion of base or ambient e�ects, to be denoted by the computation-

type constructor. The canonical example of such an e�ect is partiality, but the structure

of the later proofs is largely independent of the exact choice; we only need to show that

it satis�es a few simple relational properties.

We treat the case of partiality formally, and sketch how the setup generalizes to other

ambient e�ects where appropriate. We do not develop the semantics of ambient e�ects

in detail, however; where possible, it is more convenient to treat ambient e�ects more

uniformly, using the monadic translations to be introduced a little later.

A valid reason for considering more complicated base e�ects, however, is to model lan-

guage features that cannot be eliminated by a source-to-source transform. For example,

\true" non-determinism (as opposed to a �nitary variant, which can be de�ned by a

backtracking transformation), can be modelled by a powerdomain or similar construct.

Similarly, any notion of I/O operations or other extra-linguistic e�ects must somehow be

accounted for in the semantics rather than at source level. We will not treat any of those

formally, however.

De�nition 2.2 An ambient-e�ect monad for the cpo semantics is given by the following

data:

� A cpo constructor T , such that for any cpo A, T A is a pointed cpo.

� A family of continuous functions �A : A!T A.

� An assignment to any continuous function f : A!T A0
, a strict continuous function

f � : T A!T A0
. This assignment must itself be continuous, i.e., satisfy the equality

(
F
i fi)

� =
F
i f

�
i
.

Further, the components must satisfy the three monad laws:

f � � �A = f ��
A
= idT A f � � g� = (f � � g)�

De�nition 2.3 The partiality semantics is given by taking T A = A? (pointed, as re-

quired), �(a) = up(a), and f � = f y (strict by de�nition). It is easy to check that the

monad laws hold for this triple.

(Incidentally, the requirement that f � be strict ensures that �z
A
: A?!T A is a monad

morphism from the partiality monad to T . We will phrase this in more general terms in

De�nitions 2.11, 2.15, and 3.1, and in Example 3.2.)
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Semantics of types To every well-formed `� � type, we assign a cpo, and to every

`� � ctype, a pointed cpo:

L[[a]] = �a

L[[�]] = N

L[[1]] = 1

L[[�1 �
v �2]] = L[[�1]]� L[[�2]]

L[[�1 + �2]] = L[[�1]] + L[[�2]]

L[[�! �]] = L[[�]]!L[[�]]

L[[�1 �
c �2]] = L[[�1]]� L[[�2]]

L[[��]] = T (L[[�]])

Semantics of terms To every well-typed � `� M : �, we assign an element L[[M ]]� 2

(
Q

(xi:�i)2� L[[�i]]
�)!L[[�]]�:

L[[x]](�) = �(x)

L[[z]](�) = 0

L[[sM ]](�) = L[[M ]](�) + 1

L[[ifz(M;Mz; x:Ms)]](�) =

�
L[[Mz]](�) when L[[M ]](�) = 0

L[[Ms]](�[x 7!n]) when L[[M ]](�) = n+ 1

L[[hi]](�) = �

L[[hM1;M2i]](�) = (L[[M1]](�);L[[M2]](�))

L[[ fstM ]](�) = a1 when L[[M ]](�) = (a1; a2)

L[[sndM ]](�) = a2 when L[[M ]](�) = (a1; a2)

L[[ inlM ]](�) = (1;L[[M ]](�))

L[[ inrM ]](�) = (2;L[[M ]](�))

L[[case(M;x1:M1; x2:M2)]](�) =

�
L[[M1]](�[x1 7! a1]) when L[[M ]](�) = (1; a1)
L[[M2]](�[x2 7! a2]) when L[[M ]](�) = (2; a2)

L[[�x:M ]](�) = �a:L[[M ]](�[x 7! a])

L[[M1M2]](�) = L[[M1]](�)(L[[M2]](�))

L[[�M ]](�) = �(L[[M ]](�))

L[[let�x(M1 in M2]](�) = (�a:L[[M2]](�[x 7! a]))�(L[[M1]](�))

L[[�x�M ]](�) =
G

i
(L[[M ]](�))i(?L[[�]])

(where for any i � 0, f i is the i-th iterate of f , i.e., f 0(a) = a and f i+1(a) = f(f i(a))).

Figure 2.2: Denotational semantics L�(T ;�; �) of the base language
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Other examples can be easily adapted from the source-level monads to be presented

in Section 2.2.3; for example, we obtain a notion of ambient state by taking T A =

N! (A�N)?, cf. Example 2.18. However, such L0-de�nable ambient e�ects are more

conveniently dealt with at the syntactic level, through an explicit monadic translation.

Although the only explicitly accessible e�ect in our base language is divergence (via

�x), it is still useful to consider more general e�ect-structures in the semantics. For

example, a continuation semantics may well be of interest even for a language that does

not contain explicit control operators.

We can now give a denotational semantics of the base language (parameterized by

the choice of e�ect structure) in Figure 2.2. Let � be a �nite set of type variables, and �
be a mapping of type variables in � to cpos. The semantics then assigns to every �-type

`� �, a cpo L[[�]]� (pointed if � is computational), and to every �-term � `� M : �,
a continuous function L[[M ]]� from L[[�]]� = �(xi:�i)2�L[[�i]]

� to L[[�]]�. (We usually omit

� when it is clear from context. In particular, since there are no language constructs

for binding type variables, � stays constant throughout the semantic equations, and is

omitted throughout the �gure to reduce clutter.)

Although the denotational semantics thus assigns meanings to types and terms over

arbitrary �s (interpreting type variables by arbitrary cpos), for most purposes we will not

use this generality; syntactic substitutions of closed types for type variables su�ce. The

only uses of the �-parameterized semantics are in showing that a syntactic monad may

be used to express a semantic one in Proposition 2.20, and when introducing recursively-

de�ned types in Section 3.2.1.

2.1.4 Generalized let

De�nition 2.4 For any computation-type � of L0, we de�ne a derived term constructor

let��, the generalized let with typing rule

� `M1 :�� �; x:� `M2 : �

� ` let�
�
x(M1 in M2 : �

by induction on the structure of �:

let�
��
x(M1 in M2 = let�x(M1 in M2

let�1 x(M1 in M2 = hi

let�
�1��2

x(M1 in M2 = hlet�
�1
x(M1 in fstM2; let��2 x(M1 in sndM2i

let�
�!�

x(M1 in M2 = �a�: let�
�
x(M1 in M2a

In the predomain semantics (for any T ), two particular consequences of this de�nition

are:

L[[let�
�
x(M1 in M2]](�) =

�
L[[M2]](�[x 7! a]) when L[[M1]](�) = �(a)
?L[[�]] when L[[M1]](�) = ?

In the case of the partiality semantics, these are in fact the only two possibilities for

L[[M1]](�). We thus obtain a natural generalization of the existing \strict extension"



24 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

let, in that M2 can now be of a type interpreted by any pointed cpo, not necessarily a

directly lifted one. Note, however, that we still need to restrict M1 to be of type��, not
a general computation type: while strictness makes sense for functions B1!B2 between

arbitrary pointed cpos, the strict extension operation can only extend a function A!B
to A?!B, not \strictify" an arbitrary function B1!B2.

It is important to note the di�erence between, say, a computation returning a pair of

integers:

let�
�(���) x(M in�hx; 5i

(where M is evaluated exactly once, yielding a pair of numbers), and the construction of

a pair of computations:

let�
����� x(M in h�x;�5i

(where M is evaluated when either component of the result is requested). Similarly, we

distinguish between the diverging computation of a function:

let�
�(�!��) y(?�� in�(�x:�3) :�(�!��)

and a successful computation yielding a function which diverges for all inputs:

�(let�
�!�� y(?�� in (�x:�3)) :�(�!��)

2.1.5 Equational properties

When the semantics L is �xed and clear from context, it is often preferable to reason

about programs at the level of terms, rather than explicitly about their denotations in

the semantics. More generally, we can often isolate a set of reasoning principles that hold

for a large variety of interpretations, then check that our speci�c semantics L veri�es

those principles.

As mentioned before, for our purposes, it will su�ce to consider equational properties

of type-closed terms (i.e., with no free type variables), although the following should

extend naturally to type and term families over a nonempty set of type variables.

De�nition 2.5 A signature L consists of a set of type and term constructors. An in-

terpretation L of L assigns to every type `; � type of L, a set Val(�); and to every

L-term � `; M : � and �nite function � with 8(xi:�i) 2 �: �(xi) 2 Val(�i), an element

Int(M)� 2 Val(�).
An equational theory E for L is a set of typed equalities between (type-closed) L-

terms, � ` M = M 0 : �. A model of an equational theory is an interpretation that

satis�es all the equations of the theory, i.e., whenever � `M =M 0 : � is provable and �
is a �-environment, then Int(M)� = Int(M 0)� as elements of Val(�).

It is clear that the predomain semantics (for any notion of ambient e�ects T ) determ-

ines an interpretation of L0, by taking Val(�) as the set underlying L[[�]] and Int(M)�

as L[[M ]](�), forgetting continuity of L[[M ]] (as a function from environments to values).

We present an equational theory E0 for L0 and simultaneously argue that the predomain

interpretation is a model of that theory. For particular classes of T s, additional equations
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may be axiomatizable, for example that ambient e�ects are commutative or idempotent;

we do not consider such extensions, however.

In most cases, the axioms listed below can be immediately veri�ed by referring to

the semantics; we often omit the details where they can be easily �lled in. Also, since

equality judgments are always about type-closed terms, we omit the implicit `; in all

typing assumptions in the rules.

Lemma 2.6 In the semantics L of Figure 2.2, for any terms M and M 0
, the following

weakening and substitution principles hold:

L[[M ]](�) = L[[M ]](� n x) if x 62 FV (M)

L[[MfM 0=xg]](�) = L[[M ]](�[x 7! L[[M 0]](�)])

Proof. Routine, by induction on M .

Given this lemma, the veri�cation of the following equations is straightforward.

Congruences, substitutions By the denotational assumption, our notion of equival-

ence is inherently a congruence wrt. all the term constructors of the language. We also

have general principles of closure under weakening and substitution:

� `M =M 0 : �

�; x : �1 `M =M 0 : �

�; x : �1 `M =M 0 : � � `M1 =M 0
1 : �1

� `MfM1=xg =M 0fM 0
1=xg : �

which follow directly from Lemma 2.6:

L[[M ]](�) = L[[M ]](� n x) = L[[M 0]](� n x) = L[[M 0]](�)

L[[MfM1=xg]](�) = L[[M ]](�[x 7!L[[M1]](�)]) = L[[M 0]](�[x 7!L[[M 0
1]](�)])

= L[[M 0fM 0
1=xg]](�)

Natural numbers

� `Mz : � �; x: � `Ms : �

� ` ifz(z;Mz; x:Ms) =Mz : �

� `M : � � `Mz : � �; x: � `Ms : �

� ` ifz(sM;Mz; x:Ms) =MsfM=xg : �

� `M : � �; x: � `M 0 : �

� ` ifz (M;M 0fz=xg; x0:M 0fs x0=xg) =M 0fM=xg : �

Unit type

� `M : 1

� `M = hi : 1

(1 is a terminal object). Note that this equation means that there is only one value of

type 1; there may well be di�erent computations of that value, i.e., terms of type�1.

Already in the partiality case there are two such closed terms: termination (�hi) and

divergence (?�1).



26 CHAPTER 2. PROGRAMMING WITH MONADIC EFFECTS

Products

� `M1 : �1 � `M2 : �2

� ` fst hM1;M2i =M1 : �1

(+symm)
� `M : �1 �

v �2

� ` h fstM; sndMi =M : �1 �
v �2

� `M1 : �1 � `M2 : �2
� ` fst hM1;M2i =M1 : �1

(+symm)
� `M : �1 �

c �2
� ` h fstM; sndMi =M : �1 �

c �2

(Both are products in the categorical sense.) Although in the predomain semantics the

two notions of products are interpreted by the same object, we do not actually require

this in general.

Sums

� `M : �1 �; x1:�1 `M1 : � �; x2:�2 `M2 : �

� ` case ( inlM;x1:M1; x2:M2) =M1fM=x1g : �
(+symm)

� `M : �1 + �2 �; x:�1 + �2 `M
0 : �

� ` case (M;x1:M
0f inl x1=xg; x2:M

0f inr x2=xg) =M 0fM=xg : �

(Sums are coproducts in the categorical sense.) Veri�cation of the �rst law is immediate,

given Lemma 2.6. For the second, we rely on the fact that L[[M ]](�) must be a value

of the form (i; a); the equation would not be sound if + were interpreted by, e.g., a

separated sum and M denoted a diverging computation. A useful consequence of the

above equations is that for any h (not necessarily denoting a strict function),

h(case(M;x1:M1; x2:M2)) = h(case(x; x1:M1; x2:M2))fM=xg
= case (M;x1:h(case ( inl x1; x1:M1; x2:M2)); x2:h(case ( inr x2; x1:M1; x2:M2)))

= case (M;x1:hM1; x2:hM2)

Function space

�; x:� `M1 : � � `M2 : �

� ` (�x�:M1)M2 =M2fM1=xg : �

� `M : �! �

� ` (�x�:M x) =M : �! �

(Categorically, �! � is an exponentiation of � and �, but we do not require existence

of exponentiations with arbitrary codomain types, so the category of types and terms is

not quite a ccc.)

Computations

� `M1 : �1 �; x:�1 `M2 :��2

� ` (let�x(�M1 in M2) =M2fM1=xg :��2

� `M :��

� ` (let�x(M in�x) =M :��

� `M1 :��1 �; x1:�1 `M2 :��2 �; x2:�2 `M3 :��3

� ` (let�x2 ( (let�x1 (M1 in M2) in M3) = (let�x1 (M1 in let�x2 (M2 in M3) :��3

Each of these corresponds directly to one of the monad equations governing the

ambient-e�ect monad (T ; �;� ). For example, for the �rst one we verify:

L[[let�x(�M1 in M2]](�) = (�a:L[[M2]](�[x 7! a]))�(�(L[[M1]](�)))
= (�a:L[[M2]](�[x 7! a]))(L[[M1]](�)) = L[[M2]](�[x 7! L[[M1]](�)])
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Fixed points

� `M : �! �

� ` �x�M =M (�x�M) : �

This su�ces for evaluation, but for more general formal reasoning we will need additional

properties; the details of this are covered in the next chapter. (Actually, none of the

results in the thesis depend on the �xed-point equation being in E0, so in principle we

could safely omit it without a�ecting correctness.)

We have thus established:

Proposition 2.7 For any ambient-e�ect monad, the predomain semantics L(T ;�;�) is a

model of E0, the equational theory generated by the inference rules listed above.

2.1.6 Encodings of implicitly-sequenced languages

In actual programming languages there is often no explicit syntactic or typing distinction

between values and general terms. Rather, the grammar of types and terms is of the form:

� ::= � j 1 j �1 � �2 j �1 + �2 j �1! �2

E ::= x j z j sM j hi j hE1; E2i j fst E j snd E j inl E j inr E

j case (E; x1:E1; x2:E2) j �x
�:E j E1E2 j �x E

with trivial and serious computations a priori occupying the same type.

Our explicitly-sequenced syntax simpli�es formal manipulation of programs, but it

is somewhat inconvenient for actual programming. (However, in common practice, it is

relatively uncommon to see, e.g., applications of the form E1E2 where one or both of

E1 and E2 themselves have e�ects; in particular, evaluation of E1 only very rarely has

e�ects). Nevertheless, typical programs in ML-like languages do have some sequencing

left implicit, and it would be too burdensome to force them to always be explicitly

sequenced.

Fortunately, we can treat the more compact general syntax as merely shorthand

for explicitly-sequenced terms, with programs �rst being desugared or elaborated into

sequenced form, and only then given an operational or denotational semantics. We

present two such elaborations, leading to either a call-by-value (CBV) or a call-by-name

(CBN) interpretation of the implicitly-sequenced language.

CBV Translation on types. If � is a type of the CBV language, ((�))v is a type of L0.

((�))v = �

((1))v = 1

((�1 � �2))
v = ((�1))

v �v ((�2))
v

((�1 + �2))
v = ((�1))

v + ((�2))
v

((�1! �2))
v = ((�1))

v!�((�2))
v
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Translation on terms. If � ` E : � in the source language, then ((�))v ` ((E))v :�((�))v

in L0:

((x))v = �x

((z))v = �z

((sE))v = let�x( ((E))v in�(s x)

((ifz(E;Ez; x: Es)))
v = let�n( ((E))v in ifz(n; ((Ez))

v; x: ((Es))
v)

((hi))v = �hi

((hE1; E2i))
v = let�x1( ((E1))

v in let�x2( ((E2))
v in�hx1; x2i

(( fst E))v = let�x( ((E))v in�( fst x)

((snd E))v = let�x( ((E))v in�(snd x)

(( inl E))v = let�x( ((E))v in�( inl x)

(( inr E))v = let�x( ((E))v in�( inr x)

((case (E; x1:E1; x2:E2)))
v = let�x( ((E))v in case (x; x1:((E1))

v; x2:((E2))
v)

((�x�:E))v = �(�x((�))v :((E))v)

((E1E2))
v = let�f ( ((E1))

v in let�a( ((E2))
v in f a

((�x�E))
v = let�F ( ((E))v in�(�x((�))v (�f: let�((�))v f

0( F f in f 0))

where for the CBV �x, � must be a functional type, so that ((�))v is a computation-type.
(We can actually also allow it to be a product of computation-types, if in the context

of mutually-recursive de�nitions we interpret � as the computation-product �c .) The

explicit let((�))v is necessary because the type of F is ((�! �))v = ((�))v!�((�))v.
When E is syntactically a value V , we have ((V ))v =�M for some M . Thus, for

example, we get validity of beta-value reduction because

(((�x:E)V ))v = let�f ( ((�x:E))v in let�a( ((V ))v in f a
= let�f (�(�x:((E))v) in let�a(�M in f a = (�x:((E))v)M = ((E))vfM=xg
= ((EfV=xg))v

Similarly, in general we have

((�x:E x))v =�(�x: let�f ( ((E))v in f x) =? ((E))v

but when ((E))v =�M for some M , the equality does hold.

CBN A CBN interpretation gives a language essentially identical to PCF with product

and sum types. The type translation is now:

((�))n = ��

((1))n = 1

((�1 � �2))
n = ((�1))

n �c ((�2))
n

((�1 + �2))
n = �(((�1))

n + ((�2))
n)

((�1! �2))
n = ((�1))

n! ((�2))
n
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Since the interpretation of every type is computational, we can form exponentials between

any pair of types exponentials, and thus the source language forms a ccc. When the

elaboration is composed with our predomain semantics, every type is interpreted by

a (proper) domain; in fact, for a partiality semantics, this gives exactly the standard

domain-theoretic model of PCF.

Translation on terms. If � ` E : � in the source language, then ((�))n ` ((E))n : ((�))n

in L0.

((x))n = x

((z))n = �z

((sE))n = let�x( ((E))n in�(s x)

((ifz(E;Ez; x: Es)))
n = let�((�))n n( ((E))n in ifz(n; ((Ez))

n; x: ((Es))
nf�x=xg)

((hi))n = hi

((hE1; E2i))
n = h((E1))

n; ((E2))
ni

(( fst E))n = fst ((E))n

((snd E))n = snd ((E))n

(( inl E))n = �( inl ((E))n)

(( inr E))n = �( inr ((E))n)

((case(E; x1:E1; x2:E2)))
n = let�((�))n x( ((E))n in case (x; x1:((E1))

n; x2:((E2))
n)

((�x�:E))n = �x((�))n:((E))n

((E1E2))
n = ((E1))

n ((E2))
n

((�x� E))
n = �x((�))n ((E))

n

where we now have �xed points at all source types, including �. Note also that numbers
are still represented by a 
at domain (as opposed to the lazy natural numbers, which also

include partially-de�ned values, such as s?).

2.2 Monads in a computational setting

In this section, we present a formal de�nition of monads, suitable for a language that

already has a notion of ambient e�ects. This de�nition is phrased in terms of few basic

concepts, which we need to introduce �rst.

2.2.1 A framework for e�ects

The ultimate goal of the line of research presented here is a framework for computational

e�ects which makes it possible to describe e�ects in a modular way. Speci�cally, we want

the ability to add e�ects incrementally: the resulting language is speci�ed by a sequence

of de�nitional translations, each one of which \translates away" one level of e�ects. For

example, we can have a language with exceptions and state, speci�ed as a composition

of an exception-passing and a state-passing transform.

For now, however, we only consider the two-level case, with a notion of ambient e�ects

(possibly already a combination of several primitive ones), speci�ed by the \semantic"
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monad T used in the denotational semantics); and a focus e�ect, speci�ed by a \syntactic"

monad T.

In order to de�ne the notion of a monad that interacts in a suitable way with ambient

e�ects, we need some amount of structure in the language. The following provides what

we will need:

De�nition 2.8 We say that a language (L;L) is a computational lambda-language (cll)
if it has a class of computation types �, forming a (not necessarily proper) subset of all

types �, and with the following properties:

� There are computations at any type, and the set of computation-types is closed

under �nite products and function spaces (with arbitrary domain):

� type

�� ctype 1 ctype

�1 ctype �2 ctype

�1 �
c �2 ctype

� type � ctype

�! � ctype

We write `� � type and `� � ctype for types over a set of type variables �, but

do not require L to assign any meaning to such types when � is nonempty.

� The syntax L includes at least the following terms and term constructors:

(x:�) 2 �

� ` x : �

� `M : �

� `�M :��

� `M1 :�� �; x:� `M2 : �

� ` let�
�
x(M1 in M2 : �

(that is, we have variables, computation-inclusions, and a generalized let), together

with the term constructors for products and function spaces. Again, we write � `�
M : � for a term over �, not necessarily given a meaning by L.

� In the semantics L, the following equations hold (between type-closed terms):

� `M1 : � �; x:� `M2 : �

� ` (let�
�
x(�M1 in M2) =M2fM1=xg : �

� `M :��

� ` (let�
��
x(M in�x) =M :��

� `M1 :��1 �; x1:�1 `M2 :��2 �; x2:�2 `M3 : �

� ` (let�
�
x2 ( (let�

��2
x1 (M1 in M2) in M3)

= (let�
�
x1 (M1 in let�

�
x2 (M2 in M3) : �

together with the congruence and substitution rules, as well as the axioms for unit,

products, and functions (as listed in Section 2.1.5). And �nally, the generalized let

must satisfy (not necessarily directly by de�nition) the equations in De�nition 2.4.

For example, in any cll, for every type �, there exists a (computation-)type �!�!
�� ���. Note that this is a slightly stronger requirement than Moggi's T -exponentials
[Mog89], which only guaranteed existence of all function spaces of the form �1!��2.

A weaker notion would be to take the computation types to be exactly the set of

types of the form��. However, requiring computation-types to be closed under products

and (especially) function spaces will allow us to give a uniform treatment of de�nable

computational e�ects.
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Proposition 2.9 Our base language (with any model L satisfying the equations in Sec-

tion 2.1.5) can be organized as a cll by de�ning let� inductively as in De�nition 2.4.

Proof. We only need to verify that the equational properties of the generalized let hold

for the de�nition. The proof is a simple induction on �. We show two sample cases; the

others are very similar.

let�
�1��2

x(�M1 in M2 = hlet�
�1
x(�M1 in fstM2; let��2 x(�M1 in sndM2i

ih= h fstM2fM1=xg; sndM2fM1=xgi = h fstM2; sndM2ifM1=xg =M2fM1=xg

let�
�!�

x2 ( (let�
��2

x1 (M1 in M2) in M3

= �a: let�
�
x2 ( (let�

��2
x1 (M1 in M2) in M3 a

ih= �a: let�
�
x1 (M1 in let�

�
x2 (M2 in M3 a

= �a: let�
�
x1 (M1 in (�a: let�

�
x2 (M2 in M3a)a

= �a: let�
�
x1 (M1 in (let�

�!�
x2 (M2 in M3)a

= let�
�!�

x1 (M1 in let�
�!�

x2 (M2 in M3

Other ways of constructing computation-types may be possible, depending on the

actual set of types available. For example, in a language with explicit polymorphism, it

seems natural to take � ::= � � � j 8a: �, with the generalized let extended accordingly.

For lack of a better name, we say that a computational �-language is e�ect-free if

� and�� are actually the same type (with�M = M); in this case, the cll requirements

degenerate to those of a ccc. But e�ect-freeness should not be confused with existence

of a type �! �0 (with associated abstraction and application operations) for all �0 { we
can have the latter without the former.

(We do not actually work with any concrete e�ect-free languages; the concept is

mainly used to show that various de�nitions and results reduce to their more familiar

counterparts in the existing work on monads for computational e�ects.)

Remark 2.10 The essence of a generalized let at a computation-type � can be expressed
simply as existence of the function

�� :��! � def= �m: let�
�
x(m in x

satisfying the equations

x: � ` �� (�x) = x : �

and

m:�(��) ` �� (let�x(m in x) = �� (let�x(m in�(�� x)) : �

(In category-theoretic terms, this says that �� is the structure map of an algebra (�; �)
for the monad underlying�[ML71, VI.2].) Speci�cally, given such a function, we can

de�ne a generalized-let operator by

let�
�
x(M1 in M2 = �� (let�x(M1 in�M2)

However, the generalized-let formulation is more convenient to work with, its equational

properties being a natural generalization of the existing let, as formalized in De�ni-

tion 2.8. Remember also that our generalized let (or, equivalently, �) is characterized
uniquely by De�nition 2.4.
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Among other applications, the generalized let-operation can be used to de�ne a simple

\e�ect-theoretic" generalization of strictness, which in turn plays a key role in the de�n-

ition of layerable monads.

2.2.2 Rigidity

De�nition 2.11 We say that a term � `M : �! � 0 in a cll is a rigid function between

computation-types � and � 0 if

�; m:�� `M (let�
�
x(m in x) = (let�

�0
x(m in Mx) : � 0

We write this as � `M : �
r
! � 0.

Rigidity is a purely equational property; as such, we distinguish between provable rigidity

(i.e., when the above equation is derivable in an equational theory) and semantic rigidity

(when the equation holds in a model); the former implies the latter.

As an immediate consequence of the de�nition, we get:

Lemma 2.12 An application of a rigid function can be \moved through" an arbitrary

let-binding:

� `M : �
r
! � 0 � `M1 :�� �; x:� `M2 : �

� `M (let�
�
x(M1 in M2) = (let�

�0
x(M1 in MM2) : �

0

(i.e., the above is derivable in E0 and hence true in any model.)

Proof. Simple veri�cation:

M (let�
�
x(M1 in M2) =M (let�

�
x(M1 in let�

�
y(�M2 in y)

=M (let�
�
y( (let�

��
x(M1 in�M2) in y)

= (M (let�
�
y(m in y))f(let�

��
x(M1 in�M2)=mg

=y (let�
�0
y(m in M y)f(let�

��
x(M1 in�M2)=mg

= let�
�0
y( (let�

��
x(M1 in�M2) in M y

= let�
�0
x(M1 in let�

�0
y(�M2 in M y = let�

�0
x(M1 in MM2

where y marks the application of rigidity of M .

In particular, for any M 0 :�� and rigid M :��!��0,

MM 0 =M (let�x(M 0 in�x) = let�x(M 0 in M (�x)

Operationally, this says that an argument to a rigid function can be evaluated before

the call and the result coerced into a trivial computation, instead of the nominal CBN

evaluation for parameters of�-type. This is usually a property associated with strictness.

And indeed we have

Proposition 2.13 In the predomain model (for any T ) of our base language, a rigid

function is necessarily strict. In the particular case of the partiality semantics, the con-

verse also holds, i.e., any strict function is rigid.
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Proof. First, it is easy to check the following equational reasoning principle:

�; x:� `M : �

� ` (let�
�
x(?�� in M) = ?� : �

(because for any f , f � is strict, and L[[?�]](�) = ?L[[�]]). Now, let h : �! � 0 be a rigid

function. Then

h?� = h(let�
�
x(?�1 in ?�) = let�

�0
x(?�1 in h?� = ?�0

Conversely, let h be strict and let m :��. When T A = A?, there are only two

possibilities for m:

� m = ?��. Then

h(let�
�
x(m in x) = h(let�

�
x(?�� in x) = h?� = ?�0

= let�
�0
x(?�� in hx = let�

�0
x(m in hx

� m =�b for some b : �:

h(let�
�
x(m in x) = h(let�

�
x(�b in x) = hb = let�

�0
x(�b in hx

= let�
�0
x(m in hx

In general, a function is rigid if it uses its argument exactly once, and before any other

serious computation. But in the particular case of partiality, a function like h = �x:?
(= �x: let�y( x in ? in the model) also quali�es as rigid, even though it does not

explicitly reference its argument.

It is easy to check that identity and composition of two rigid functions are rigid; so

are fst , snd , �f: f a for any a, and �x: let�a( x in f a for any f . Likewise, if f1 and f2
are rigid, so is �x:hf1x; f2xi, and if f a is rigid for every a, so is �x:�a:f ax. These are
well-known properties of strictness, but also hold for general rigidity.

In the e�ect-free case (�� = �), every function is trivially rigid.

Remark 2.14 We can give an alternative, equivalent characterization of rigidity. There

is a natural functorial action of�, mapping a function f : �! � 0 to

f ] :��!�� 0 = �m: let�x(m in�(f x)

Further, recall from remark 2.10 that for any �, we can de�ne

�� :��! � = �m: let�
�
x(m in x :

Then a function f : � ! � 0 is rigid i� ��0 � f
] = f � �� (i.e., if f is a morphism of the

corresponding�-algebras), because

(��0 � f
])m = ��0 (let�x(m in�(f x)) = let�

�0
y( (let�x(m in�(f x)) in y

= let�
�0
x(m in let�

�0
y(�(f x) in y = let�

�0
x(m in f x

while

(f � ��)m = f (let�
�
x(m in x) :
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2.2.3 De�nable monads

The notion of a monad in a language (L;L) consists of both a syntactic and a semantic

aspect. Syntactically, we exhibit a type constructor T and term families � and � in

L. Semantically, we establish that certain equational properties hold among these terms

in L (but not necessarily in any particular equational theory for L). The separation

is important { we will eventually have to consider interpretations of the � and � in a

semantics where they do not necessarily satisfy the monad laws.

When `� � type is a type over � in L and � is a substitution of (closed) L-types for
variables in �, �f�g is itself a (closed) type of L. In particular, a type constructor Fa = �
(where a may occur in �) can be identi�ed with a type schema `fag � type. Analogously,

given a term � `M : �, � determines a (type-closed) L-term �f�g `Mf�g : �f�g.
We can now give a formal de�nition of a monad (in the Kleisli-triple formulation):

De�nition 2.15 Let L be a signature of a cll. A monad-triple T in L consists of the

following items:

� A computation-type constructor, `fag Ta ctype. We write T� for Taf�=ag.

� A term family of unit functions, given as instances of a term `fag �a : a!Ta. We

write �� for �af�=ag.

� A term family of extension operators, f : a1! Ta2 `fa1;a2g f
� : Ta1! Ta2 (strictly

speaking, type-indexed as above, but we always omit the type indices).

Such a triple is an actual monad in the cll (L;L) if in L the following equations hold at

all closed type instances:

0. f :�1! T�2 ` f
� : T�1

r
! T�2.

1. f :�1! T�2 ` f
� � ��1 = f : �1! T�2.

2. ` ��
�
= idT� : T�! T�.

3. f :�1! T�2; g:�2! T�3 ` f
� � g� = (f � � g)� : T�1! T�3.

(Note that (0) is an equational condition like the others, because of its expansion in

De�nition 2.11. Conditions (0{3) also cover equations between non-variable terms, such

as M�
1 (�M2) =M1M2, because of closure under substitution of terms for variables.)

Actually the above de�nition is more akin to that of a monad constructor than of a

simple monad; the necessary information for composition is implicit in the representation

of the monad in the computational language. Nevertheless, we will refer to it as a monad

over L, since that is where the monad laws are required to hold { as opposed to being

provable in some equational theory for L. Of course, showing the monad laws in the

equational theory is su�cient to establish them for a model of that theory.

Note that condition (0) only makes sense because both T�1 and T�2 are required to

be computation types. When L is e�ect-free, the rigidity requirement is vacuous, and

the de�nition reduces to that of an ordinary monad.

Although it is important for our concrete language that rigidity implies strictness,

the rigidity requirement for f � is not merely present for domain-theoretic reasons; it
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is crucial for composing e�ects in general, and would be present even in a purely set-

theoretic formulation of composable monads in a setting without general recursion. In

practice, natural monad extensions always seem to be rigid anyway.

Example 2.16 (Identity) Perhaps the simplest possible monad, de�nable in any cll, is

given by:

T� =��; � = �a:�a; f � = �t: let�a( t in f a

The veri�cation of the monad laws is straightforward. The identity monad is actually a

degenerate case of many others; for example, we obtain it by specializing the exception

monad below to � = 0 (a type with no values, hence no possibility of raising an exception)

or the state monad to � = 1 (a type with one value, hence an information-free state).

Example 2.17 (Exceptions) Let � be some �xed type of exception names (exn in

SML). We then obtain a monad by:

T� =�(� + �); � = �a:�( inl a); f � = �t: let�v( t in case (v; a:f a; e:�( inr e))

For completeness, we show the complete veri�cation, since it is slightly more involved

than for an exception monad over an e�ect-free language:

f
� (let�

T�1
x(m in x) = let�v( (let�

�(�1+�)
x(m in x) in case (v; a:f a; e:�( inr e))

= let�x(m in let�v( x in case(v; a:f a; e:�( inr e)) = let�
T�2

x(m in f
�
x

f
� � � = �a:f

� (�a) = �a: let�v(�( inl a) in case (v; a:f a; e:�( inr e))

= �a: case ( inl a; a:f a; e:�( inr e)) = �a:f a = f

�
� = �t: let�v( t in case (v; a:�( inl a); e:�( inr e)) = �t: let�v( t in�v = �t:t = id

g
� � f� = �t:g

� (f� t) = �t:g
� (let�v( t in case (v; a:f a; e:�( inr e)))

= �t: let�v( t in g
� (case (v; a:f a; e:�( inr e)))

= �t: let�v( t in case (v; a:g� (f a); e:g� (�( inr e)))

= �t: let�v( t in case (v; a:g� (f a); e:let�w(�( inr e) in case (w; b:g b; e:�( inr e)))

= �t: let�v( t in case (v; a:g� (f a); e:case ( inr e; b:g b; e:�( inr e)))

= �t: let�v( t in case (v; a:g� (f a); e:�( inr e)) = (�a:g� (f a))� = (g� � f)�

(Note that the type and term constructors are in the image of the CBN translation;

thus exceptions also form a monad in a language like Haskell, where the language-level

sum type is actually a \separated sum" in domain terminology.)

Example 2.18 (State) Let � be any type. Then the �-state monad is de�ned by:

T� = �!�(�� �); � = �a:�s:�ha; si; f � = �t:�s: let�ha; s0i ( ts in f as0

Again, the veri�cation is fairly simple:

f
� (let�

T�1
x(m in x) = �s: let�ha; s0i ( (let�

�!�(�1��)
x(m in x)s in f as

0

= �s: let�ha; s0i ( (let�
�(�1��)

x(m in xs) in f as
0

= �s: let�x(m in let�ha; s0i ( xs in f as
0 = �s: let�x(m in f

�
xs

= let�
T�2

x(m in f
�
x
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f � � = �a:f
� (�a) = �a:�s: let�ha; s0i ( [�s:�ha; si]s in f as

0

= �a:�s: let�ha; s0i (�ha; si in f as
0 = �a:�s:f ( fst ha; si)(snd ha; si) = �a:�s:f as

= �a:f a = f

�
� = �t:�s: let�ha; s0i ( ts in [�a:�s:�ha; si]as0 = �t:�s: let�ha; s0i ( ts in�ha; s0i

= �t:�s: let�p( ts in�p = �t:�s:ts = �t:t = id

g
� � f� = �t: g

� (f� t) = �t: g
� (�s: let�ha; s1i ( ts in f as1)

= �t: �s: let�hb; s2i ( (let�ha; s1i ( ts in f as1) in g bs2

= �t: �s: let�ha; s1i ( ts in let�hb; s2i ( f as1 in g bs2

= �t: �s: let�ha; s1i ( ts in g
� (f a)s1 = �t: �s: let�ha; s1i ( ts in [�a:g� (f a)]as1

= (�a:g� (f a))� = (g� � f)�

Although most practically useful monads over (L0;L) are actually monads in any

model of the equational theory E0, there are two important reasons to only require the

monad laws to hold with respect to speci�c interpretations. First, since the monad

components may be de�ned using �x, it can be arbitrarily hard to show that a given

monad-triple is actually a monad; certainly E0 alone will not always be su�cient. We

only need E0 to validate a few equational properties that will be used frequently in the

proofs later; the results do not rely on the monad laws for particular monads being

provable in E0.

The second, and more fundamental, reason is that certain very useful notions of

computation do not actually form monads in the presence of arbitrary ambient e�ects.

Perhaps the best known such example [KW93] is the list monad T� =�(� list), used

to model nondeterminism. It turns out to only be a monad if the ambient e�ects are

commutative, i.e., if the equation

let�x1(M1 in let�x2(M2 in M = let�x2(M2 in let�x1(M1 in M

(where neither xi occurs free in anMj) holds in L. Partiality satis�es the above equation,

but many other possible notions of ambient e�ects, such as state or continuations, do not.

Other examples of \fragile" monads require the ambient e�ects to also be idempotent, a

property shared by few e�ects other than partiality.

Thus, distinguishing between satisfaction of the monad laws in the equational theory

and in a speci�c model (such as the partiality semantics) makes our results applicable to

list-like monads as well as the \robust" ones (such as exceptions or state), that satisfy

the monad laws for any notion of ambient e�ect.

Let us �nally note that given a semantics that also assigns a meaning to type-open

types and terms, a stronger de�nition of monad is possible:

De�nition 2.19 When T is a monad in (L;L) where L is the predomain interpretation

for any T , T is said to be uniform if its equations also hold for type-open terms. That

is, for each of the four monad laws � ` M1 = M2 : � in De�nition 2.15, if we allow the

types and terms to contain type variables from �, � assigns a cpo to each a 2 �, and

�xi 2 L[[�i]]
�
for each (xi:�i) 2 � then L[[M1]]

�(�) = L[[M2]]
�(�) as elements of L[[�]]�.

We can then state the simple consequence:
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Proposition 2.20 Let T be a uniform monad in the predomain semantics (for some

notion of ambient e�ect). Then the following determines a new ambient-e�ect monad in

the sense of De�nition 2.2:

T A = L[[Ta]]a 7!A �A = L[[�a]]
a 7!A(�) f � = L[[x�]]a1 7!A1;a2 7!A2(�[x 7! f ])

Proof. We �rst note that because computation-types were interpreted as pointed

cpos by L, T A is pointed as required. Similarly, because arrow-types are interpreted as

continuous-function spaces, �A and f � are continuous; and because L[[M ]] is a continuous

function from environments to values, so is the mapping f 7! f �. Finally, by Proposi-

tion 2.13, we get strictness of f � from rigidity of x�. The veri�cation of the monad laws

is also straightforward given uniformity of T.

However, usually there is no need to modify the semantic characterization of ambient

e�ects explicitly; we can de�ne a language with a new notion of ambient e�ects via

iterated monadic translation, in which case it is su�cient for the monad laws to hold

only for type-closed instances.

2.3 Extending the language with e�ects

2.3.1 The monadic translation

We now show how a monad in a language allows us to de�ne a new language with a

richer set of computational e�ects.

De�nition 2.21 Let T = (T; �; �) be a monad-triple over a cll signature L. Then the

signature LT consists of L extended with a new computation-type constructor,

`� � type

`� � ctype

and new term constructors:

� `M1 :��1 �; x:�1 `M2 : �2

� ` let�x(M1 in M2 : �2

� `M : �

� ` M : �

� `M1 : �1 �; x:� `M2 : �2

� ` let x(M1 in M2 : �2

� `M : �

� ` [M] : T�

� `M : T�

� ` �(M) : �

(Note that we overload the syntactic construct let� to represent two distinct term con-

structors: the existing one, whereM2 :��2 and the new one de�ned above, whereM2 : �2.

It will always be clear from context which one is meant.)
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There are now two basic notions of computation: the original�� (e.g., partiality)

and � which also includes T -e�ects (e.g., raising exceptions). As before, the set of

computation-types is closed under products and function spaces.

Because we have extended the signature (rather than merely the unstructured set of

types), every type constructor of L is still a type constructor of LT . In particular, for

any LT -type �, T� is a well-formed LT -type. Generalized let (still for binding results of

�-computations) is also de�nable at all computation-types, with the new clause for let��
using the mixed-level let.

Re
ection (�(M)) and rei�cation ([M]) establish a correspondence between opaque

and transparent representation of computations: opaque computations may only be con-

structed and sequenced using and let , while transparent ones may be manipulated using

the full range of operations available on the type T�, such as injections, case analysis,

etc. See Example 2.26 below.

Together with the extension, we de�ne a canonical or de�nitional translation of the

extended signature back into the original one.

Since we will be dealing with several source-to-source translations, let us introduce

the following shorthand:

De�nition 2.22 (Translation convention) When specifying a translation [[ ]] from a

signature L to L0 that share a lot of operations, we generally omit clauses of the form

[['(X1; : : : ; Xn)]] = '([[X1]]; : : : ; [[Xn]])

where the construct ' in L is translated to the same-named construct in L0. (We do

occasionally include selected clauses of this form for emphasis or clarity; but no formal

distinction should be attached to whether a clause is included or not.)

De�nition 2.23 The monadic translation [[ ]]
T
maps types and terms of LT to their

L-counterparts, such that:

� For any `� � type in LT , `� [[�]]
T

type in L.

� For any `� � ctype in LT , `� [[�]]
T

ctype in L.

� For any � `� M : � in LT , [[�]]
T
`� [[M ]]

T
: [[�]]

T
in L.

The translation on types merely replaces � with its de�nitional expansion:

[[ �]]
T

= T [[�]]
T

Other type constructors are left intact, as are type variables (i.e., [[a]]
T
= a). Similarly,

the term translation expands away the new term constructors:

[[M ]]
T

= � [[M ]]
T

[[let�x(M1 in M2 (: �)]]T = let�
T [[�]]

T

x( [[M1]]T in [[M2]]T

[[let x(M1 in M2]]T = (�x: [[M2]]T )
� [[M1]]T

[[�(M)]]
T

= [[M ]]
T

[[[M]]]
T

= [[M ]]
T

with variables and other term constructors of L translated into themselves (but with any

type-annotations expanded according to the type translation).
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Although the monadic translation is simply a de�nitional extension, rather than a

full syntactic transformation, we adopt the translation formulation to get an explicit

syntactic handle on the expansion. In particular, when we later consider alternative

ways of translating away the new constructs of LT , it will be convenient to have an

concise notation for referring to the di�erent expansions.

Note also that because type and term variables are translated into themselves, the

translations are compositional in the sense that

[[�f�0=ag]]
T
= [[�]]

T
f[[�0]]

T
=ag and [[MfM 0=xg]]

T
= [[M ]]

T
f[[M 0]]

T
=xg :

In particular,

[[T�]]
T
= [[Taf�=ag]]

T
= [[Ta]]

T
f[[�]]

T
=ag = Taf[[�]]

T
=ag = T [[�]]

T
;

and likewise for the term translations of the monad components: [[��]]T = �[[�]]
T
and

[[f �]]
T
= f � (with the implicit type-tags on � appropriately translated).

The translation of the \mixed let" may need a little explanation. Consider the case

where T is the state monad, and the base e�ect is partiality. Then if in the extended

language, � ` M1 :��1 (i.e., evaluation of M1 may diverge, but has no state e�ects),

[[M1]]T :�[[�1]]T does not take a state argument, nor does it return a new state. On the

other hand, when �; x:� ` M2 : �2 (i.e., M2 may both diverge and access the store),

[[M2]]T : �!�([[�2]]T � �), so the translation of M2 should be passed the current state,

and the new state it returns is the state returned by the whole let-expression. The

appropriate state-passing translation is therefore

[[let�x(M1 in M2]]T = �s: let�x( [[M1]]T in [[M2]]T s

which is precisely what the generalized let expands to.

More generally, it is easy to check the following derived rule, where � is an LT -
computation type (i.e., may contain ):

[[let�
�
x(M1 in M2]]T = let�[[�]]

T

x( [[M1]]T in [[M2]]T

In the de�nitional translation, the opaque and transparent T -computations are rep-
resented by the same underlying L-type; consequently, the term translations for re
ection

and rei�cation are trivial. Later, when we consider a di�erent representation of e�ects,

the two operators will have more interesting de�nitions.

This syntactic translation also determines a semantics:

De�nition 2.24 Given a semantics L for our base language L, we obtain a semantics

LT of the extended language LT by taking

LT [[�]]� = L[[[[�]]
T
]]� and LT [[M ]]� = L[[[[M ]]

T
]]�

In fact, this semantics extends the standard monadic semantics for the new ambient-

e�ect monad induced by T:
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Proposition 2.25 Let L be a predomain semantics of L0 with some underlying ambient-

e�ect monad, T a uniform monad in that semantics (De�nition 2.19), and let j j :

L0! LT0 be the syntactic transformation replacing every�in types and terms with .

Then LT [[j j]] = LT [[ ]] (for types and terms) where LT is the monadic semantics of

L0 for the ambient-e�ect monad T given by interpreting in L the components of T, as

shown in Proposition 2.20.

Proof. Induction on the structure of the types and terms. Most cases are immediate;

for computations, we get:

LT [[j��j]]� = LT [[ j�j]]� = L[[[[ j�j]]
T
]]� = L[[T [[j�j]]

T
]]� = L[[(Ta)f[[j�j]]

T
=ag]]�

= L[[Ta]]�[a 7!L[[[[j�j]]T ]]�] = L[[Ta]]a 7!L[[[[j�j]]T ]]� ih= L[[Ta]]a 7!LT [[�]]� = T (LT [[�]]
�)

= LT [[��]]
�

LT [[j�M j]]�(�) = LT [[ jM j]]�(�) = L[[[[ jM j]]
T
]]�(�) = L[[�[[j�j]]

T
[[jM j]]

T
]]�(�)

= L[[�[[j�j]]
T
]]�(�)(L[[[[jM j]]

T
]]�(�)) = L[[�af[[j�j]]T =ag]]

�(�)(L[[[[jM j]]
T
]]�(�))

= L[[�a]]
�[a 7!L[[[[j�j]]

T
]]� ](�)(L[[[[jM j]]

T
]]�(�)) = L[[�a]]

a 7!L[[[[j�j]]
T
]]�(�)(L[[[[jM j]]

T
]]�(�))

ih= L[[�a]]
a 7!LT [[�]]�(�)(LT [[M ]]�(�)) = �LT [[�]]�

(LT [[M ]]�(�)) = LT [[�M ]]�(�)

The case for let�x(M1 in M2 is similar.

Similarly, given an evaluation semantics for L (i.e., a computable partial function

EvalL from closed L-terms of type�� to natural numbers), we get an evaluation semantics
for LT by taking EvalLT (M) = EvalL([[M ]]

T
). (We can do this directly, regardless of T ,

because the T -translation of a term of type�� is itself a term of type��.)
It is worth remarking that when T is the \identity" monad (T� =��, � = �x:�x,

f � t = let�a( t in f a), the translation e�ectively replaces all occurrences of in the

source term with�:

[[M ]]
T
= (�x:�x) [[M ]]

T
=�[[M ]]

T
= [[�M ]]

T

[[let x(M1 in M2]]T = (�x: [[M2]]T )
� [[M1]]T = let�a( [[M1]]T in (�x: [[M2]]T )a

= let�x( [[M1]]T in [[M2]]T = [[let�x(M1 in M2]]T

so when we later exhibit a relation between the T -translation and a monadic translation

for a continuation monad, we will get a relation between direct and continuation-passing

style in the presence of arbitrary (su�ciently well-behaved) ambient e�ects by simply

taking T to be the identity monad.

De�ning T -speci�c operators The re
ection and rei�cation primitives allow us to

de�ne the meanings of e�ectful terms as abbreviations within the extended language,

instead of through additional clauses in the translation equations.

Example 2.26 When T is the exception monad, we can de�ne the usual ML-like excep-

tion primitives

� `M : �

� ` raise M : �

� `M1 : � �; x:� `M2 : �

� ` try M1 handle x)M2 : �
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as follows:

raise M def= let e(M in �(�( inr e))

try M1 handle x)M2
def= let�t( [M1] in case (t; a: a; x:M2)

That is, to raise an exception, we explicitly construct its sum-representation as a value

in the right inject, then \activate" it by re
ecting it into the process of computation.

Conversely, to handle a potential exception in a computation M1, we �rst reify M1 and

then inspect it, taking the appropriate action for either of the two possibilities (normal

or exceptional value).

And in fact, expanding the de�nitions using the monadic translation gives the expec-

ted results:

[[raise M ]]
T
= [[let e(M in �(�( inr e))]]

T
= (�e: [[�(�( inr e))]]

T
)� [[M ]]

T

= let�t( [[M ]]
T
in case (t; e:[[�( inr e)]]

T
; e:�( inr e))

= let�t( [[M ]]
T
in case (t; e:�( inr e); e:�( inr e))

[[try M1 handle x)M2]]T = � � � = [[let�t( [M1] in case (t; a: a; x:M2)]]T
= let�t( [[[M1]]]T in case (t; a:[[ a]]

T
; x:M2)

= let�t( [[M1]]T in case(t; a:�( inl a); x:[[M2]]T )

2.3.2 Induced equational theory

The translation induces a natural equational theory on terms of the extended language:

De�nition 2.27 Given an equational theory E (including the cll axioms) for L and a

monad-triple T in L, the equational theory ET for LT consists of E extended with the

following rules (where we write
0
for�and

1
for ):

� `M1 : �1 �; x:�1 `M2 :
j
�2

� ` (let i x( i
M1 in M2) =M2fM1=xg :

j
�2

(i�j)

� `M : i
�

� ` (let i x(M in i
x) =M : i

�

� `M1 :
i
�1 �; x1:�1 `M2 :

j
�2 �; x2:�2 `M3 :

k
�3

� ` (let j x2 ( (let i x1 (M1 in M2) in M3)

= (let i x1 (M1 in let j x2 (M2 in M3) :
k
�3

(i�j�k)

� `M : �

� ` �([M]) =M : �

� `M : T�

� ` [�(M)]=M : T�

� `M1 :��1 �; x:�1 `M2 : �2

� ` [let�x(M1 in M2]= (let�
T�2

x(M1 in [M2]) : T�2

� `M : �

� ` [M]= �M : T�

� `M1 : �1 �; x:�1 `M2 : �2

� ` [let x(M1 in M2]= (�x:[M2])
�[M1] : T�2

(The instance i = j = k = 0 in the �rst three rules is already part of E .)
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Proposition 2.28 The equational theory is sound for the monadic translation, in the

sense that if M = M 0
is provable in ET , then [[M ]]

T
= [[M 0]]

T
is provable in E extended

with the monad laws for T (which may or may not already be provable in E). This again

implies that L[[[[M ]]
T
]] = L[[[[M 0]]

T
]] in any model L of E in which T is a monad.

Proof. Simple equational reasoning, using Proposition 2.9 (the derivable equational

properties for the generalized let). For example,

[[let�x(�M1 in M2 : �2]]T = let�
T [[�2]]T

x(�[[M1]]T in [[M2]]T = [[M2]]T f[[M1]]T =xg

= [[M2fM1=xg]]T

[[let x( M1 in M2]]T = (�x: [[M2]]T )
� (� [[M1]]T ) = (�x: [[M2]]T ) [[M1]]T

= [[M2]]T f[[M1]]T =xg = [[M2fM1=xg]]T

[[let�x2 ( (let�x1 (M1 in M2) in M3 : �3]]T
= let�

T [[�3]]T
x2 ( (let�x1 ( [[M1]]T in [[M2]]T ) in [[M3]]T

= let�
T [[�3]]T

x1 ( [[M1]]T in let�
T [[�3]]T

x2 ( [[M2]]T in [[M3]]T
= [[let�x1 (M1 in let�x2 (M2 in M3]]T

[[let x2 ( (let�x1 (M1 in M2) in M3]]T
= (�x2: [[M3]]T )

� (let�
T [[�2]]T

x1 ( [[M1]]T in [[M2]]T )

= let�
T [[�3]]T

x1 ( [[M1]]T in (�x2: [[M3]]T )
� [[M2]]T

= [[let�x1 (M1 in let x2 (M2 in M3]]T

[[[M]]]
T
= [[M ]]

T
= � [[M ]]

T
= [[�M ]]

T

The �rst three rules of De�nition 2.27 say that let-elimination and let-
attening are

valid even for mixed levels, as long as the types match. That is, there is a single notion of

computation-sequencing shared by all e�ects; the level-tags merely keep track of which

kinds of e�ects can happen where.

The next two express that re
ection and rei�cation are exact inverses. For example,

in the exception case, there is a one-to-one correspondence between \dynamic", e�ectful

computations of type �, that may raise exceptions, and \static", exception-free values

of type�(� + �).
The remaining three equations show that [ ] acts as a \shallow" version of the mon-

adic translation. According to the �rst one, terms with ambient e�ects only are una�ected

by rei�cation for the focus e�ect, and may hence move across a [ ]-barrier freely. For

example, if the ambient e�ect is state and focus e�ect is exceptions, a computation that

cannot raise an exception can be moved out of a try-handle. (The equation is necessar-

ily satis�ed when the base language is e�ect-free, because in that case let� is simply a

substitution of M1 for x in M2.)

The �nal two rules make it explicit how T -computations are realized in terms of the

monad operations, enabling us to reason \locally" about propagation of e�ects entirely

at the extended-language level.

Moreover, for all the rules it is the case that when the LHS is type-correct, then so

is the RHS. Thus, we can always use the equations from left to right without worrying

about type preservation.

As a simple consequence of the proposition, we get:
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Corollary 2.29 Let j j : L0! LT0 be the translation replacing every occurrence of�in

types and terms by . Let L be a model of E0. Then the interpretation L
jT j
0 of L0, given

by L
jT j
0 [[ ]] = LT0 [[j j]] is also a model of E0 (and hence in particular itself a computational

lambda-language).

Proof. The equations for numbers, products, sums, functions, and �xed points follow

immediately from the translation. For computations, take i = j = k = 1 in the �rst

three rules of ET and use Proposition 2.28.

Note also that ET implicitly asserts that (T; �; �) form a monad in LT , because it is
easy to see that the equalities

� = �a:[ a]

f � = �t:[let a( �(t) in �(f a)]

are derivable, and the monad laws for � and f � then follow from the equations, e.g.,

f
� (�a) = (�t:[let a( �(t) in �(f a)])[ a]= [let a( �([ a]) in �(f a)]

= [let a( a in �(f a)]= [�(f a)]= f a

and for rigidity of f �:

f
� (let�

T�1
x(M in x) = [let a( �(let�

T�1
x(M in x) in �(f a)]

= [let a( �(let�
T�1

x(M in [�(x)]) in �(f a)]

= [let a( �([let�x(M in �(x)]) in �(f a)]

= [let a( (let�x(M in �(x)) in �(f a)]

= [let�x(M in let a( �(x) in �(f a)]

= let�
T�2

x(M in [let a( �(x) in �(f a)]= let�
T�2

x(M in f
�
x

Example 2.30 We can use the extended-language equations to verify the following �-
like rule for exceptions:

(try M handle x) raise x)

= let�t( [M] in case (t; a: a; x:let e( x in �(�( inr e)))

= let�t( [M] in case (t; a:�([ a]); x:�(�( inr x)))

= let�t( [M] in case (t; a:�(�( inl a)); x:�(�( inr x))) = let�t( [M] in �(�t)

= �([let�t( [M] in �(�t)]) = �(let�t( [M] in [�(�t)]) = �(let�t( [M] in�t)

= �([M]) =M

This identity is crucial for pattern-matching exception handlers, where an exception

is implicitly re-raised if it does not match any of the clauses in a handler; we want to

ensure that such a handler has no e�ect on the result of the program.

2.4 Related work

There has already been much work on combining monadic e�ects, e.g., [Mog90, KW93,

CM93, Ste94, LHJ95, Esp95], of varying degrees of generality and formality. None of these

approaches, however, were particularly concerned about nonstandard implementations of
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the newly-speci�ed e�ects; e�ectively, they all interpret programs using the modular

speci�cation directly, often at a signi�cant cost in execution time.

It seems likely that the framework outlined here for the two-level case generalizes to

multiple, explicitly-speci�ed e�ects, each with a full re
ection and rei�cation operator.

However, the primary constraint was not only to de�ne a workable notion of layered e�ect,

but also to ensure that it could be simulated in a strong sense by continuation-passing,

and further by escapes and state, as detailed in the next two chapters. Consequently,

any broader modularity aspects of the approach have not been properly developed.



Chapter 3

Relating E�ects

It is part of continuation folklore that continuations provide a very general notion of

e�ects, in that many others (such as partiality, exceptions, or state) can be expressed as

a continuation semantics with a suitable answer type. In the presence of higher-order

functions, however, proving correctness of a continuation-based simulation is decidedly

non-trivial [Rey74a, Sto81, MW85], even for a \purely functional" language with parti-

ality as the only notion of computational e�ect.

In this chapter, we will consider the relationship between a direct and a continuation

semantics for arbitrary monadic e�ects. In fact, the continuation semantics can itself

be conveniently cast in the monadic mold, making the result a particular instance of

simulating one monadic e�ect with another. However, the continuation-passing case is

especially complicated, and a signi�cant part of the proof consists of establishing the

general framework and necessary lemmas for this case.

Very broadly, the general idea is as follows: assume we have two monads T and U

over a base language, where U is in a suitable sense \more general" than T. We can

then give two di�erent translations from LT to L: the original monadic translation for T
and a variant translation using U -representations of T -e�ects. Moreover, we can exhibit

a type-indexed family of relations �� with the property that the two translations of an

LT -term of type � are related by ��, and such that the relation at base types is the

identity. Thus, the two translations induce the same evaluation semantics.

3.1 Simulating monadic e�ects

In this section, we present a general principle for relating e�ects, introduce the vari-

ant translation, and argue informally for its correctness. The actual simulation proof,

however, will be postponed until Section 3.3.

3.1.1 Monad morphisms

A natural way of relating two monads consists of exhibiting a function mapping one to

the other:

45
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De�nition 3.1 Let T = (T; �; �) and U = (U; "; +) be monads over a cll (L;L). A

(de�nable) monad morphism from T to U is a type-indexed family of L-terms,

`fag ia : Ta! Ua ;

respecting the monad structure, i.e., such that the following holds in L for all closed

L-types:

0. ` i� : T�
r
! U�.

1. ` i� � �� = "� : �! U�.

2. f : �1! T�2 ` i�2 � f
� = (i�2 � f)

+
� i�1 : T�1! U�2.

We can think of i as converting T -representations of e�ects to U -representations. Con-
dition (0) is a technical constraint, ensuring essentially that the conversion of focus e�ects

respects any underlying ambient e�ects (for example, a nonterminating T -computation
must be represented by a nonterminating U -computation). More explicitly, (1) says that

a trivial T -computation is mapped into a trivial U -computation. Condition (2) may look
somewhat arbitrary at �rst, but note that it can be written in the form of a conditional

equality emphasizing the parallel to (1):

i�2 � f = g ) i�2 � f
� = g+ � i�1

(where f : �1! T�2 and g : �1! U�2). It expresses the requirement that if g is the U -
counterpart of an �1-parameterized T -computation f , then T -extending f and converting
its output is equivalent to applying the U -extended g to the conversion of the input.

Example 3.2 For any monad U, the function family

h� :��! U� = �t��: let�
U�

a( t in "a

is a monad morphism from the identity monad I (Example 2.16) to U:

h (let�x(m in x) = let�
U�

a( (let�x(m in x) in "a

= let�
U�

x(m in let�
U�

a( x in "a = let�
U�

x(m in hx

h (�a) = h(�a) = let�
U�

a(�a in "a = "a

h (f� t) = h (let�a1 ( t in f a1) = let�a2 ( (let�a1 ( t in f a1) in "a2

= let�a1 ( t in let�a2 ( f a1 in "a2 = let�a1 ( t in h(f a1)

= let�a1 ( t in (h � f)+ ("a1) = (h � f)+ (let�a1 ( t in "a1) = (h � f)+ (h t)

In fact, it is the only such morphism. This is immediate when the base language is

e�ect-free (condition (1) with � = id), but it also holds in general: Suppose h 0 :��!U�
is another monad morphism from I to U. Then

h
0
t = h

0 (let�x( t in�x) = let�
U�

x( t in h
0 (�x) = let�

U�
x( t in h

0 (�x)

= let�
U�

x( t in "x = h t



3.1. SIMULATING MONADIC EFFECTS 47

This captures the intuitive notion that any e�ect can simulate the absence of e�ects,

which we would probably consider a minimal requirement for any notion of e�ect simu-

lation.

A more interesting example is provided by the following:

Example 3.3 For simplicity, assume that our base language includes a term constructor

+ : � � � ! �, satisfying equations 0 + M = M + 0 = M and M1 + (M2 + M3) =

(M1 +M2) +M3 in the model, i.e., such that (�; 0;+) forms a monoid. (We could of

course have de�ned an addition operator in the existing language using recursion, but

that would necessarily give it the type � � �!��, cluttering up the terms with explicit

sequencing of the additions. Still, it is easy to check that everything does work out

correctly even for a de�ned +.)

Then the following determines a monad, usually called the complexity monad:

T� = �(�� �)

� = �a:�ha; 0i

f � = �t: let�ha1; n1i ( t in let�ha2; n2i ( f a1 in�ha2; n1 + n2i

Here, a computation of type � is represented by a base-computation yielding a value

of type � together with some notion of the cost involved in computing it, such as the

number of 
oating-point operations performed (perhaps using an encoding of 
oating-

point numbers in terms of �), or the amount of I/O (assuming our ambient e�ects include

some notion of communication with the outside world). A trivial computation, � a,
resulting from viewing an already given value as a computation, has zero cost; the cost

of evaluating f � t is the sum of the cost n1 of computing the value a1 of t and the cost

n2 of evaluating f at a1.
The complexity monad works by summing the complexities of each subcomputation.

But if most subcomputations do not invoke the operation being counted, this is poten-

tially wasteful, since we will be adding zeros most of the time. Even more important,

complexity is a fairly \ad hoc" monad, so that we will most likely have to perform an

actual translation to get a language with the corresponding monadic e�ects.

There is an alternative way to keep track of complexity, however: maintain a running

total, which is updated only by the cost-incurring operations themselves, and passively

transmitted everywhere else. We achieve this using the �-state monad (Example 2.18):

U� = �!�(�� �); " = �a:�s:�ha; si; f+ = �u:�s: let�ha; s0i ( us in f as0

We can then represent a computation of a with complexity n as a function adding n to

the current total, in addition to returning a. And in fact,

i� = �tT�:�s�: let�ha; ni ( t in�ha; s+ ni

is a monad morphism from T to U.
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We now formally de�ne a very important class of monads:

De�nition 3.4 Let o be any computation-type. Then the continuation monad with an-

swer type o, Ko = (Ko; ";
+ ) is given by:

Ko� = (�! o)! o; " = �a:�k:ka; f+
= �u:�k:u(�a:f ak)

It is easy to check that this actually determines a monad. For rigidity of f+, we have:

f+
(let�

U�
x(m in x) = �k:(let�

U�
x(m in x)(�a:f ak)

= �k: let�
o
x(m in x(�a:f ak) = �k: let�

o
x(m in f+xk

= let�
U�

x(m in f+x

Satisfaction of the other three equations is completely straightforward.

The importance of continuation monads stems from the following property:

Lemma 3.5 Let T = (T; �; �) be a monad in a computational �-language, and let 

be an arbitrary type (not necessarily computational). Take U as KT
, the continuation

monad with answer type T
. Then the family of functions

i� : T�! U� = �tT�:�k�!T
:k� t

forms a monad morphism from T to U.

Proof. Straightforward veri�cation:

i(let�
T�

t(m in t) = �k:k
� (let�

T�
t(m in t) =y

�k: let�
T


t(m in k
�
t

= �k: let�
T


t(m in i tk = let�
U�

t(m in i t

i(�a) = �k:k
� (�a) =y

�k:ka = "a

i(f� t) = �k:k
� (f� t) =y

�k:(�a:k� (f a))� t = �k: i t(�a:k� (f a)) = �k: i t(�a: i(f a)k)

= �k: i t(�a: [�a: i(f a)]ak) = (�a: i(f a))
+
(i t) = (i � f)+ (i t)

(where the equations marked with y signify application of the monad laws of T from

De�nition 2.15).

When T is the identity monad, this (necessarily) degenerates to an instance of Ex-

ample 3.2. More interestingly,

Example 3.6 For exceptions, T� =�(� + �), the monad morphism from T to KT


specializes to:

i� = �t�(�+�):�k�!�(
+�): let�v( t in case (v; a:ka; e:�( inr e))

Recall that the T -representation of a successful computation of type � is an included

value a in the left inject of �+ �. The corresponding continuation-passing computation
should immediately apply its continuation to a. And in fact, we have

i(�( inl a)) = �k: let�v(�( inl a) in case(v; a:ka; e:�( inr e))
= �k: case( inl a; a:ka; e:�( inr e)) = �k:ka
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Similarly, a computation that terminates with a raised exception e is represented by a

value in the right inject; the continuation-passing analog simply discards the current

continuation and returns the exceptional value as the result:

i(�( inr e)) = �k: let�v(�( inr e) in case (v; a:ka; e:�( inr e))
= �k: case( inr e; a:ka; e:�( inr e)) = �k:�( inr e)

And �nally, a nonterminating computation is represented by a non-terminating compu-

tation (for any continuation):

i? = �k: let�v(? in case (v; a:ka; e:�( inr e)) = �k:?

This monad morphism from an arbitrary monad T to a continuation monad KT


will form the core of our simulation result. However, the fact that the continuation-

based representation is in a sense parametric in the choice of 
 cannot be captured

equationally in our setting. (It might be possible in a language with F2-polymorphism

[Gir72, Rey74b].) For the formal proof in Section 3.3, we will therefore need a stronger,

relational characterization of i to accurately express this property.

3.1.2 The variant translation

In this section, we show how to actually exploit the existence of a monad morphism

(with some further properties) to simulate one kind of e�ects with another. Speci�cally,

we will show how to interpret our T -enriched e�ect language in terms of U -e�ects. The
exposition is slightly simpli�ed in that we consider only a single semantics for the base

language | the actual proof in Section 3.3 distinguishes between a speci�cation and the

implementation semantics, mostly to make get a result of su�cient strength to support

Chapter 4. However, the formal de�nitions we give are general enough for both cases.

As motivated in the previous section, monad morphisms give us a simple way of relat-

ing two notions of e�ects. Nevertheless, a monad morphism by itself does not guarantee

that U -e�ects simulate T -e�ects in any useful sense. For example, for any T there is a

(unique) monad morphism from T to the degenerate monad, (U� = 1; " = �a:hi; f+ =

id1). To get a proper simulation, we also need a way to recover the T -representation of

an e�ect from its U -representation:

De�nition 3.7 Let i be a monad morphism from T to U. A monad retraction at type

� is a left inverse of i�, i.e., a term j� : U�! T� such that j� � i� = idT�. We say that

such a retraction is schematic if all the j� are themselves members of a term family, i.e.,

if j� = jaf�=ag.

We usually expect at least j� to exist; this gives us a way of extracting meanings of

complete programs. In many cases, however, it is easy to �nd a suitable inverse at all

types:

Example 3.8 For the complexity-state simulation from Example 3.3, where in particular

the monad morphism was given by

i� = �t�(���):�s�: let�ha; ni ( t in�ha; s+ ni ;
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taking

j� = �u�!�(���):u0

determines a monad retraction at all types. That is, to actually extract the complexity

of a computation from its state-passing representation, we simply initialize the state to

zero, perform the computation, and read o� the complexity as the �nal state.

It is easy to see that this j is a schematic left inverse of i. It is not, however, a monad

morphism from U to T: it does not in any meaningful sense simulate arbitrary state-

passing computations using complexity-e�ects.

Given terms typed like the monad morphisms and retractions, we can give a di�erent

translation of our e�ect-enriched language LT , back into L, using a U -based represent-

ation of T -e�ects instead of the T -representation from the de�nitional translation. To

de�ne the translation itself, of course, we do not need to assume any equational properties

of the terms involved:

De�nition 3.9 In L, let T and U be monad-triples, and let i be a family of terms such

that for any LT -type �, i[[�]]U : T [[�]]
U
!U [[�]]

U
. Further, let @ be a set (�nite or in�nite)

of LT -types and for every � in @, a term j[[�]]
U
: U [[�]]

U
! T [[�]]

U
.

Now, let LT [@] be LT but with rei�cation restricted to @-types, i.e., with [ ] : �! T�
only for � in @. We then de�ne the variant or implementation translation from LT [@] to
L as follows. For types, we take

[[ �]]0
T
= U [[�]]0

T

(so for the type translation we have [[�]]0
T
= [[�]]

U
), and for terms,

[[M ]]0
T
= " [[M ]]0

T

[[let x(M1 in M2]]
0
T
= (�x: [[M2]]

0
T
)
+
[[M1]]

0
T

[[let�x(M1 in M2 : �]]
0
T
= let�

U [[�]]0
T

x( [[M1]]
0
T
in [[M2]]

0
T

[[�T(M)]]0
T
= i[[�]]0

T
[[M ]]0

T

[[[M]
T ]]0

T
= j[[�]]0

T
[[M ]]0

T

(We write �T( ) and [ ]T to emphasize that these are re
ection and rei�cation operators

for T , not U .) Like the de�nitional translation (De�nition 2.23), [[ ]]0
T
is easily seen to

preserve types, i.e., if � `� M : � in LT then [[�]]0
T
`� [[M ]]0

T
: [[�]]0

T
in L.

Of course, when U = T, with i� = j� = idT� (trivially a monad morphism with a

schematic retraction), we get exactly the original [[ ]]
T
-translation as a special case. In

general, however, we now have [[T�]]0
T
= T [[�]]0

T
6= U [[�]]0

T
= [[ �]]0

T
: the transparent and

opaque representations of a computation with T -e�ects are di�erent. This is why for re-


ection we need to internalize a T -representation of an e�ect into a U -representation that
�ts with the rest of the U -passing translation. Conversely, for rei�cation, we externalize
the U -representation into the de�nitional T -representation of the e�ect.

Although the de�nitional and the variant translation of a type are in general di�er-

ent, they do agree on base types, so in particular the results of transforming complete
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programs (closed terms of type��) are directly comparable. And in fact, will show in Pro-

position 3.29 that the two translations of a closed LT0 -term of type�� are indeed equal in

our partiality semantics (and appropriately related for other notions of ambient e�ects).

In the monad-continuation case of a monad morphism (Lemma 3.5), it is not obvious

how to de�ne j� in general. We will see in Section 3.3.4 how to achieve this. For

the purposes of this section, however, let us simply restrict ourselves to performing T -
rei�cation at a single L-type 
 (as opposed to at arbitrary LT -types, as the standard

T -translation allows us to). That is, we take @ = f
g.
If we then let U be the continuation monad with answer type T
, we can directly

take j
 : U
! T
 = �u:u�
, which gives us

j
 (i
 t) = (�u:u�
)(�k:k
� t) = (�k:k� t)�
 = ��



t = t

i.e., that j
 is a monad retraction at 
.

Example 3.10 Let T� =�(�+�) be the exception monad, with the continuation-based
representation U� = KT
� = (�!�(
 + �))!�(
 + �) from Example 3.6. In this case,

the translation equations specialize to:

[[M ]]0
T
= �k:k [[M ]]0

T

[[let x(M1 in M2]]
0
T
= �k: [[M1]]

0
T
(�x: [[M2]]

0
T
k)

[[let�x(M1 in M2 : �]]
0
T
= �k: let�

�(
+�) x( [[M1]]
0
T
in [[M2]]

0
T
k

[[�T(M)]]0
T
= �k: let�t( [[M ]]0

T
in case (t; a:ka; e:�( inr e))

[[[M]
T ]]0

T
= [[M ]]0

T
(�a:�( inl a))

(where, for the third equation, we have used De�nition 2.4 to expand out the generalized

let in De�nition 3.9). The continuation-passing analogs of raise and handle, as given

by the expansions in Example 2.26 then work out to:

[[raise M ]]0
T
= [[let e(M in �T(�( inr e))]]0

T
= �k: [[M ]]0

T
(�e: [[�T(�( inr e))]]0

T
k)

= �k: [[M ]]0
T
(�e: let�t( [[�( inr e)]]0

T
in case(t; a:ka; e:�( inr e)))

= �k: [[M ]]0
T
(�e: let�t(�( inr e) in case (t; a:ka; e:�( inr e)))

= �k: [[M ]]0
T
(�e: case ( inr e; a:ka; e:�( inr e))) = �k: [[M ]]0

T
(�e:�( inr e))

[[try M1 handle x)M2]]
0
T
= [[let�t( [M1]T in case (t; a: a; x:M2)]]

0
T

= �k: let�t( [[[M1]
T ]]0

T
in case (t; a:[[ a]]0

T
; x:[[M2]]

0
T
)k

= �k: let�t( [[M1]]
0
T
(�a:�( inl a)) in case (t; a:(�k:ka)k; x:[[M2]]

0
T
k)

= �k: let�t( [[M1]]
0
T
(�a:�( inl a)) in case (t; a:ka; x:[[M2]]

0
T
k)

(where handle can only be used with expressions of type 
). This again should match

the operational intuition that to raise an exception determined by M , we simply return

name directly as an answer (tagged as a right inject, so that an enclosing handle can tell

the di�erence). Conversely, to handle a potential exception in M1, we invoke it with the

left injection as the continuation. If M1 returns normally i.e., by returning inl a, we pass
a to the continuation of the handle. On the other hand, ifM1 raises an exception e, i.e.,
returns inr e, we instead evaluate M2 with x bound to e, again in the control context of

the handle.
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Comparison Suppose the restrictions on rei�cation were not an issue, for example

if we were content to only allow uses of handle at a single base type (not an entirely

unreasonable restriction; we still have raise at all types). Then given the fairly simple

correspondence between \direct" and \continuation-passing" de�nitions of exceptions,

one might reasonably ask why we formalize the T -translation at all { why not simply

take the continuation-based [[ ]]0
T
as the \o�cial" de�nition of exceptions? Then we could

view exceptions as simply syntactic sugar for the corresponding continuation e�ects.

The problem is that the CPS translation does not satisfy the desirable equational

reasoning principles that pure exception-passing does. For example, consider again the

reasoning principle

(try M handle x) raise x) =M

We saw in Example 2.30 that the T -translation veri�es this law; indeed, it is provable in
ET0 . But with the continuation-based semantics we get:

[[try M handle x) raise x]]0
T
= [[let�t( [M] in case (t; a: a; x:�(�( inr x)))]]0

T

= �k: let�t( [[[M]]]0
T
in case (t; a:[[ a]]0

T
k; x:[[�(�( inr x))]]0

T
k)

= �k: let�t( j [[M ]]0
T
in case (t; a:ka; x:i(�( inr x))k)

= �k: let�t( [[M ]]0
T
� in case (t; a:ka; x:k� (�( inr x)))

= �k: let�t( [[M ]]0
T
(�a:�( inl a)) in case (t; a:ka; x:�( inr x)) =? [[M ]]0

T

It is easy to check that this does in fact hold when [[M ]]0
T
is of the form �k:ka for some a,

corresponding to an e�ect-free computation of a. Similarly, the equation is satis�ed when
[[M ]]0

T
= �k:�( inr e) for some e, corresponding to a computation raising the exception e.

Even when [[M ]]0
T
= �k:?, representing a non-terminating computation, the terms have

equal denotations. But there is no simple guarantee that [[M ]]0
T
is in fact in one of those

forms, especially when M may call an \unknown" function.

For example, consider the case 
 = �. Then one element of the type [[ �]]0
T
= ([[�]]0

T
!

�(� + �))!�(� + �), is �k:�( inl 42), which we could call an exotic T -computation: it

represents neither a normal value, nor a raised exception, nor divergence. And in fact, if

[[M0]]
0
T
= �k:�( inl 42), our desired reasoning principle fails because we get

[[try M0 handle x) raise x]]0
T
= �k:k42 6= �k:�( inl 42) = [[M0]]

0
T

The presence of such computations means that we cannot derive the identity directly in

the U -model { we need a much more elaborate argument, involving at least an induction

over all syntactic terms in the language, and further complicated by the presence of

higher-order functions.

An analogous situation holds for the complexity-state simulation from Example 3.3. It

is easy to see that if the ambient e�ects are commutative, then so are the -e�ects de�ned

by the complexity monad. General state passing, on the other hand, is not commutative,

so again we lose a useful equational property by specifying complexity-e�ects directly in

terms of state-passing.

That does not mean, however, that using [[ ]]0
T
inherently presents a problem for

formal reasoning. Recall that we will show independently that the [[ ]]
T
-translation and

the [[ ]]0
T
-translation do agree on complete LT0 -programs. Since the equations induced by

the T -translation are (by de�nition) valid for observational equivalence in LT0 , and the



3.2. THE PROOF SETTING 53

evaluation semantics induced by the two translations is the same, we can thus reason

about e�ects in terms of their (relatively) declarative T -speci�cation, rather than their

derived U -implementation.

Remark 3.11 In the particular case of exceptions, we could actually construct an ad-

hoc continuation semantics where the translation of a term M : � takes both a normal

continuation (of type [[�]]!o) and an exceptional one (of type �!o), invoking whichever
is appropriate. Such a translation does verify the handle/re-raise equation above, and it

does not have a problem with the choice of answer type.

However, such a scheme requires all translation equations to be modi�ed to pass the

extra continuation along, so we cannot use a standard cps transform for the bulk of the

language. And even more importantly, this two-continuations trick does not generalize,

because it relies on the isomorphism ((�+�)! o)! o �= ((�! o)� (�! o))! o, which
does not have a counterpart for other monadic e�ects.

3.2 The proof setting

This section establishes the general framework for the simulation proof in the next section.

Much of the material is relatively standard, and has consequently been relegated to an

appendix.

3.2.1 The implementation language

The base signature L0, and the derived LT0 need to be tightly constrained because we

will rely on induction over LT0 -types and -terms in the proof. The target language for

the variant translation, on the other hand, need not be restricted to simple types. And

in fact, to obtain the simulation result for continuations in full generality, we will need

more of the structure of our predomain model to be denotable in the implementation

language. Accordingly, we now de�ne the required extensions for expressing (1) a weak

notion of in�nitary sums and (2) recursively-de�ned types.

Embedding-types

To simulate T -rei�cation using continuations, we will need to embed several di�erent

types into a single type of answers. A suitable construct for expressing this is given by

the following:

De�nition 3.12 The signature L�
0 extends L0 with a new type constructor �:

8i 2 I: `� @(i) type

`� �i@(i) type

where (@(i))i2I is any countable family of L�
0 -types (possibly with repetitions); we usually

abbreviate �i@(i) as �@. The associated term constructors are:

� `M : @(i)

� ` iniM : �@
(i2I) and

� `M : �@

� ` outdiM : @(i) + 1
(i2I)
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for injecting into and projecting from the embedding-type. Correspondingly, E�0 extends

E0 with the equations

� `M : @(i)

� ` outdi (iniM) = inlM : @(i) + 1
(i2I)

and

� `M : @(i)

� ` outdi0 (iniM) = inr hi : @(i0) + 1
(i;i02I; i0 6=i) :

From outdi, we can de�ne a derived term constructor,

� `M : �@

� ` outiM :�@(i)
(i2I)

by outiM
def= case (outdiM; a:�a; u:?�@(i)). Then we easily get the following derived infer-

ence rule in E�0 :

� `M : @(i)

� ` outi (iniM) =�M :�@(i)
(i2I):

In this chapter, ini and outi with the above equation will su�ce (in particular, we

will not use that outi0 (iniM) = ? when i 6= i0), but in Chapter 4, an explicit outdi, not

tied to any particular notion of ambient e�ects, will be more convenient.

It is important that even for in�nite index sets, embedding types do not introduce

any circularity: each summand @(i) must already be a well-de�ned type before we can

form �@.

When the index set is �nite, fi0; : : : ; in�1g, we can simply take

�@ = @(i0) + (� � �+ (@(in�1) + 1)���)

(the terminating 1 merely ensures a uniform encoding for all summands) with the cor-

responding operations:

ini0M = inlM
inik+1

M = inr (inikM)

outdi0M = case (M; a0: inl a; s: inr hi)
outdik+1

M = case (M; a: inr hi; s:outdik s)

which are easily seen to satisfy the required equations.

In the general case, we obtain a model by a straightforward extension of the predomain

semantics to I-indexed coproducts:

L[[�i@(i)]]
� = f(i; a) j i 2 I; a 2 L[[@(i)]]�g

L[[iniM ]]�(�) = (i;L[[M ]]�(�))

L[[outdiM ]]�(�) =

�
(1; a) when L[[M ]]�(�) = (i; a)
(2; �) when L[[M ]]�(�) = (i0; a0); i0 6= i

It is immediate to check that this interpretation validates the equations.
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Recursive type speci�cations

Independently of the embedding-types, to express the continuation-based variant trans-

lation of rei�cation at types containing , we will need a recursively-de�ned answer type.

Accordingly, we take:

De�nition 3.13 For a signature L, L� extends L with a new type constructor �a: � with

well-formedness rule

`fag � type

`; �a: � type
;

and new term constructors rolla:� and unrolla:� with typings

� `M : �f(�a: �)=ag

� ` rolla:�M : �a: �
and

� `M : �a: �

� ` unrolla:�M : �f(�a: �)=ag
:

Likewise, E� extends E with the isomorphism equations

� `M : �f(�a: �)=ag

� ` unrolla:� (rolla:�M) =M : �f(�a: �)=ag
and

� `M : �a: �

� ` rolla:� (unrolla:�M) =M : �a: �
:

(For simplicity we do not allow parameterized recursive types, although it would probably

do no harm to include them.)

Unlike the case for domains, not every predomain equation expressed in terms of the

standard cpo constructors has a solution. (For example, consider the equation V �= V!0,

where 0 is the empty set organized as a cpo; both assuming V empty and non-empty

lead to a contradiction.) But equations arising from interpretations of L�
0 -types (which

notably require codomains of arrow types to be computational, thus ruling out the above

counterexample) do have solutions, essentially because we can extend the interpretation

of a parameterized type to a functor in a suitable category. We will need the following

result:

Theorem 3.14 Let `fag � be a parameterized type of L�
0 . Then there exists a cpo A

with an isomorphism i : L[[�]]a7!A �
! A.

Proof. See Corollary A.8 in the appendix (ignoring for now the additional minimal-

invariant property of i).

Then with the interpretation of �a: � as the A in the theorem, rolla:� as i, and unrolla:�
as i�1, our predomain semantics (for any T ) becomes a model of E

�;�
0 .

3.2.2 Admissible relations

Much as an equational theory allows us to reason about equivalence of terms axiomatic-

ally, rather than about equality of their denotations in a speci�c interpretation, we can

reason about more general relations between terms at the syntactic level. That is, we

�rst establish a set of generic relational reasoning principles, validated by a wide range
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of interpretations. If we then con�ne our reasoning about programs to those principles,

the results will necessarily hold in each particular relational interpretation.

Our denotational semantics associates to every open term a (continuous) function

from the meanings assigned to the free variables to the meaning of the resulting term.

When the semantics L is �xed, we use the term constructors of L directly to denote this

semantic function. For example, for any element a of ValL(�) (not necessarily denotable
by a closed L-term), we write inl a for the element (1; a) of ValL(� + �0).

Further, when � = (a1=x1; : : : ; an=xn) assigns to every variable xi:�i in � a value

ai 2 Val(�i) = L[[�i]], we write Mf�g for the value L[[M ]](�[x1 7! a1; : : : ; x1 7!�1]). (To

improve readability, we will usually write Mf�g as M�; the two notations are equival-

ent.)

Unlike the equational case, we can talk about relations between terms of two di�erent

languages. That is, given (L;L) and (L0;L0) we say that R is a relation between types

� of L and �0 of L0 if it is a relation between the sets ValL(�) and ValL0(�
0). When the

languages are �xed, we write simply Rel(�; �0) for the set of all such relations. (Actually,
we will only be interested in the set of all admissible relations; see De�nition 3.16 below.

But sometimes it is useful to classify a relation wrt. types before we have established

that it is admissible.)

The motivation for considering di�erent languages is that when implementing a mon-

adic e�ect, we may need di�erent resources than when specifying it. In particular, L0

may contain constructs not in L, with L0 providing an interpretation for those. Moreover,

L and L0 may arise from di�erent choices of the base-e�ect monad T .

This means that we can specify a monad T over (L;L) (say, with only the constructs

of L0 and with partiality as the only ambient e�ect), and show how to implement LT using
a T 0-translation into (L0;L0) (say, L0 extended with recursive types, and a continuation

semantics for ambient e�ects) { even if T does not satisfy the monad laws in L0.

For a relation R 2 Rel(�; �0), we often write 8a R a0: P (a; a0) as shorthand for

8a 2 ValL(�); a
0 2 ValL0(�

0): a R a0 ) P (a; a0). Similarly, 9a R a0: P (a; a0) abbreviates
9a 2 ValL(�); a

0 2 ValL0(�
0): a R a0 ^ P (a; a0).

We can now isolate the subset of relations we will be working with. First, we de�ne

a relational analog of (pointed) cpos:

De�nition 3.15 A binary relation R between (the sets underlying) cpos A and A0
is

called chain-complete if for any pair of chains a1 v a2 v � � � in A and a01 v a02 v � � � in
A0

with ai R a0
i
for each i, it also holds that (

F
i ai) R (

F
i a

0
i
). A relation between pointed

cpos B and B0
is called pointed if ?B R ?B0 .

We can then de�ne a suitable notion of relations for our predomain semantics:

De�nition 3.16 Let there be given languages (L;L) and (L0;L0), where L and L0 are ex-
tensions of L0, and L and L0 are the corresponding extensions of the predomain semantics

from Section 2.1.3 (with possibly di�erent ambient-e�ect monads).

We say that a relation between types � of L and �0 of L0 is admissible if it is interpreted
as a chain-complete relation between ValL(�) and ValL0(�

0); we write ARel(�; �0) for the
set of such relations. Similarly, a computation-admissible relation between types � and
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� 0 is one whose interpretation is chain-complete and pointed; we use CARel(�; � 0) for

the corresponding set.

We will refer to such a pair of languages with type-indexed sets of (computation-)

admissible relations as a relational correspondence. (This is for conciseness only; the

correspondence is already fully determined by the languages themselves and the above

de�nitions of ARel(�; �0) and CARel(�; � 0).)

In the following, we enumerate some properties of (computation-)admissible relations,

especially that certain stylized methods of constructing them are available. The proofs

are all fairly simple and can be found in the Appendix.

Given these properties, we can reason about related terms entirely within the base

language, without referring to the semantic equations, chains, continuity, etc. explicitly.

That is, although we will not consider other notions of (computation-)admissibility than

(pointed) chain-completeness, the remainder of this section establishes all we actually

need to require of admissible relations for establishing the results in Section 3.3.

Lemma 3.17 Admissible relations are closed under inverse image by term contexts and

under arbitrary intersection. That is,

1. When R 2 ARel(�; �0), (x1:�1; : : : ; xn:�n) ` M : � and (x01:�
0
1; : : : ; x

0
n0
:�0

n0
) `

M 0 : �0 are terms of L and L0 respectively, and for all i � 2, �xi 2 ValL(�i) and
�0x0

i
2 ValL0(�

0
i
), the relation R1 2 Rel(�1; �

0
1) given by

a1 R1 a
0
1 () M (a1=x1;�) R M 0(a01=x

0
1;�

0)

is admissible.

Moreover, when �1 and �01 are computation-types, R is computation-admissible,

and the functions �x1:M
�
and �x01:M

0�0
are rigid, then R1 is also computation-

admissible.

2. When (Rj)j2J is an arbitrary (not necessarily �nite or even countable) family of

admissible relations between � and �0, the relation
T
j2J Rj is admissible, where

a (
\

j2J
Rj) a

0 () 8j 2 J: a Rj a
0

Moreover, if each Rj is computation-admissible then so is
T
j2J Rj.

Proof. See Lemma A.9.

We also have a simple way of combining existing relations on individual types into

relations on constructed ones:

Lemma 3.18 The standard relational actions of the type constructors, de�ned by

i �r i0 () 9n 2 N: i = n ^ i0 = n

u 1r u0 () true

p (R1 �
r R2) p

0
() fst p R1 fst p0 ^ snd p R2 snd p0

s (R1 +
r R2) s

0 () (9a1 R1 a
0
1: s = inl a1 ^ s

0 = inl a01)

_ (9a2 R2 a
0
2: s = inr a2 ^ s

0 = inr a02)

f (R1!
r R2) f

0 () 8a R1 a
0: f a R2 f

0a0
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are admissible. Speci�cally, when all the R's are admissible, so are �r, 1r, R1 �
r R2,

R1 +
r R2, and R1!

r R2. Moreover, when the S's are computation-admissible, so are 1r,

S1 �
r S2, and R!

r S.

(We often omit the r when it is clear form the context that the action is on relations.)

Note that the relational action of�is not in general explicitly de�nable within the lan-

guage; we characterize it in De�nition 3.20.

Proof. We can actually show admissibility of 1r, R1 �
r R2 and R1 !

r R2 using only

Lemma 3.17. The �rst case is simply an empty intersection of (computation-)admissible

relations. The constructed relation for products is the intersection of the two admissible

relations obtained by inverse images of the projections on the admissible relations R1 and

R2. Moreover, since projections are rigid, R1�R2 is also computation-admissible if both

R1 and R2 are. Finally, R1!R2 can be expressed as an intersection of the family (R
0
j
)j2R1

of admissible relations, where each R0
j
is given by an inverse-image construction: f R0

(a;a0)

f 0 () f a R2 f
0a0. And again, since application is rigid, computation-admissibility of

R2 implies computation-admissibility of R1!R2.

The cases for natural numbers and sums, on the other hand, depend on the speci�cs

of the model; see Lemma A.10(1,2).

The reason for restricting attention to (computation-)admissible relations is that they

validate the following binary version of �xed-point induction:

Lemma 3.19 Let S 2 CARel(�; � 0), and let f 2 ValL(�! �) and f 0 2 ValL0(�
0! � 0)

be such that 8b S b0: f b S f 0 b0. Then �x� f S �x�0 f
0
.

Proof. See Lemma A.11.

E�ectively, this is saying that for any computation-admissible relation S, the two

interpretations of �x are related by (S!r S)!r S.

3.2.3 Computation-extension of relations

A key concept we will make use of in the following is the extension of a value-relation to

a relation on computations. Intuitively, two computations are considered related if they

both have the same (or, more generally, related) e�ects, and if any results they pass on

to further computations are related by the original relation.

For example, in the case of partiality, two computations are related if they either

both diverge, or both converge to related values. For exceptions, two computations are

related if they produce related successful answers, or raise the same exception. For state

(given a �xed relation on states), they must map related initial states to related values

and related �nal states. And for two control-computations to be related, when invoked

with related continuations (i.e., mapping related values to related �nal answers), they

must themselves produce related �nal answers.

Much as monads abstract out the common equational properties of e�ects into a

simple set of axioms for the unit and extension functions, we can characterize the minimal

requirements for a relation-extension as follows:
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De�nition 3.20 A computation-extension of relations assigns to any pair of types �
and �0, and admissible relation R 2 ARel(�; �0), a computation-admissible relation�R 2
CARel(��;��0), such that for all admissible R, R1 and R2, the following holds:

1. 8a R a0:�a (�R)�a0.

2. If 8a R1 a
0: f a (�R2) f

0a0

then 8m (�R1) m
0: let�x(m in f x (�R2) let�x

0(m0 in f 0x0.

That is, if two terms are related as values, their inclusions into computations must also

be related. And if two parameterized computations are related for every pair of related

parameters, they must remain related when pre�xed by related computations computing

values for those parameters. A simple instance is given by the following:

Proposition 3.21 In the standard partiality semantics (i.e., with T A = T 0A = A?),

taking for any R,�R to be the lifting of R, i.e.,

m (�R) m0
() (9v R v0: m =�v ^m0 =�v0) _ (m = ?�� ^m

0 = ?��0)

determines a computation-extension.

Proof. Lemma A.10(4) shows that�R is computation-admissible. Condition (1)

(v R v0 ) �v (�R) �v0) is also immediate. For (2), assume m (�R1) m
0 and 8a R1

a0: f a (�R2) f
0a0. There are two cases, one for each disjunct in the de�nition of�R1:

� m =�v andm0 =�v0 for some v R1 v
0. Then we get the result directly by assumption

on f and f 0:

let�x(m in f x = f v (�R2) f
0 v0 = let�x0(m0 in f 0x0

� m = ?, m0 = ?. Then, by the second disjunct in the de�nition of�R2,

let�x(m in f x = ? (�R2) ? = let�x0(m0 in f 0x0

(using Proposition 2.13 to obtain the equalities)

We will see later (Proposition 3.40) how to systematically construct computation-

extensions for e�ects de�ned by an explicit monadic translation.

3.3 The simulation proof

To avoid repetition in the following, we �rst de�ne:

De�nition 3.22 (Persistent assumption) Throughout this section, we will assume

that there is given a relational correspondence between interpretations Ls of L0 (the spe-

ci�cation language) and Li of a signature L+
0 � L0 (the implementation language), with

a �xed computation-extension of relations. In particular, all unquali�ed occurrences of

ARel(�; �0), CARel(�; � 0), and�R will refer to this correspondence.
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For concreteness, it may help to think of L+
0 as L0 extended with recursive types

and embedding types (which is what we will use in the monad-continuation case in

Section 3.3.4), Ls as the partiality semantics and Li as a continuation semantics (for

base computations, not to be confused with a continuation monad de�ned in (L+
0 ;Li);

we will use such a continuation-based interpretation of ambient e�ects in Chapter 4).

3.3.1 Overview

A monad morphism i gives us a simple way of converting a T -computation t to the

U -computation representing it, by taking u = i� t. However, this simple relationship

does not extend directly to functions on computations. For example, given a function

f : T�! T�0, how would we obtain the g : U�! U�0, representing f?

If i has a left inverse j, we could try taking g = i�0 � f � j�. This is not really

satisfactory, however: for example, when � = �0 and f is the identify function, we get

g : U�! U� = i� � j�, meaning that the identity on U� would in general not be the

correct representation of the identity on T�.

A better approach, therefore, is to characterize instead what a correct U -based repres-
entation g of f would be, for example by requiring it to satisfy the equation i�0 �f = g� i�.
In general, then, instead of a function from higher-order values involving T -computations
to the corresponding ones with U -computations, we get a (binary) relation.

The general outline of the proof is then as follows. First, for any type family � in L0,

we de�ne a family of logical relations hh�ii, and show that for any relational interpretation

of the type parameters, the two interpretations of a term family M of L0 are related by

hh�ii. In particular, this means that the term components of any monad-tripleT in L0 are

related in the two interpretations. This gives us a way of talking about related T -e�ects
in the two languages, even when T is not a monad in Li.

We then de�ne the general notion of a monad relation between a monad T in the

speci�cation language and a monad U in the implementation language. This is a more

general notion than existence of a monad morphism from T to U: instead of assigning

to every � a function from T� to U�, we only assign a binary relation. More precisely,

to every relation R 2 ARel(�; �0), we assign a relation R 2 ARel(T�; U�0).

However, if U is also a monad in the speci�cation language, any monad morphism i

from T to U induces in a canonical way a monad relation between T and U, by taking

t (R) u () i t (UR) u, where UR is the standard, syntactically-derived action of U on

relations. This way of constructing monad relations covers most of our sample monad

simulations { all except the general monad-continuation case.

Given a monad relation between T and U, we can now exhibit a family of relations

indexed by LT0 -types �, �� 2 ARel([[�]]
T
; [[�]]

U
), de�ned in the usual inductive way for

the standard type constructors, and taking � �= �� 2 ARel(T [[�]]T ; U [[�]]U ).

Further, we show that the two translations, [[ ]]
T
: LT0 ! L0 and [[ ]]0

T
: LT0 ! L+

0 of an

LT0 -term of type � are related by ��. Since in particular ���=�(�
r), this says that the

two translations coincide for complete programs.
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Returning to the monad-continuation case, we show how to construct the appropriate

monad relation between T andKo explicitly. (Intuitively, we need the generalization from

an equational to a relational characterization of the relationship between the monads for

the same reason that forced us to adapt a relational approach for higher-order values:

when we embed non-simple types in the answer type o of the continuation monad, the

Ko-based representation of T -e�ects will in general not be unique.)

For this simulation, we also rely on the fact that our implementation language may

contain additional types and terms beyond those in L0; in particular, depending on how

general a notion of T -rei�cation we want to simulate, we will need recursive types and/or
embedding-types to construct Ko. Once we have established the monad relation, it is

a simple consequence of the properties of � that the de�nitional T -translation and the

variant, or continuation-passing, translation agree on complete programs.

Finally, we show how to lift the simulation result from a relationship between transla-

tions to a relationship between source terms. Speci�cally, the basic motivation for adding

re
ection and rei�cation to our source language was precisely to permit programs to be

written in direct style instead of in e�ect-passing style. And in fact, it is possible to

express the simulation result at the source level, by de�ning the re
ection and rei�ca-

tion operators for T in terms of those for Ko. Thus, we do not need a monad-speci�c

variant translation for implementing T-e�ects with continuations, but can use a �xed

continuation-passing translation for all such e�ects.

3.3.2 Relating standard terms

We �rst show that a large collection of terms are related by the relations determined

systematically from their types:

De�nition 3.23 Let � be a �nite set of type variables, � a substitution of closed L0-

types for variables in �, and �0 of closed L+
0 -types. Further, let % assign to each type

variable a 2 � a relation % a 2 ARel(� a; �0 a). To every type � over � in L0, we then

assign a relation hh�ii% 2 ARel(�f�g; �f�0g) (such that hh�ii%2 CARel(�f�g; �f�0g)) as

follows:

hhaii
%
= % a

hh�ii% = �r

hh1ii
%
= 1r

hh�1 � �2ii
%
= hh�1ii

%
�r hh�2ii

%

hh�1 + �2ii
%
= hh�1ii

%
+r hh�2ii

%

hh�! �ii% = hh�ii%!r hh�ii%

hh��ii% = �hh�ii%

We extend this de�nition pointwise to relate value-substitutions � and �0, i.e., if for each
(xi:�i) 2 �, (�xi) hh�iii

%
(�0xi), we write � hh�ii% �0.

The (computation-)admissibility of these relation follows directly from Lemma 3.18. It

is also easy to see that we have the usual weakening and substitution principles,

hh�ii% = hh�ii%[a 7!R]
(a 62 FTV (�)) and hh�f�0=agii

%
= hh�ii%[a 7! hh�0ii%]
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Lemma 3.24 (logical relations lemma) Let � and �0 be substitutions of closed types

for �-variables, and % a relation assignment for � and �0 (as in De�nition 3.23). Further,

let � and � be a type assignment and a type over �, both in L0, and let M be a term of

L0 with � `� M : �. Finally, let � and �0 be substitutions of values from Ls and Li for

variables in �, such that � hh�ii% �0. Then M �� hh�ii% M �0�0

.

Proof. By induction on the structure of M :

� Case xi, where (xi:�i) 2 �. To show: x��
i
hh�iii

% x�
0�0

i
, i.e., that �xi hh�iii

% �0xi,
which follows directly from the assumption on � and �0.

� Case z. To show:

9n 2 N: z�� = n ^ z�
0
�
0

= n

Since z�� = z, we can simply take n = 0.

� Case sM . To show:

9n 2 N: s (M ��) = n ^ s (M �
0
�
0

) = n

By IH on M , we already have

9m 2 N:M �� = m ^M �
0
�
0

= m

so we get the result by taking n = m + 1.

� Case ifz(M;Mz; x:Ms). To show:

ifz(M ��;M ��

z
; x:M ��

s
) hh�ii% ifz(M �0�0 ;M �0�0

z
; x:M �0�0

s
)

By IH onM , we know that (in Ls)M
�� = n and (in Li)M

�
0
�
0

= n for some natural
number n. There are then two cases:

{ Case n = 0. By IH on Mz, we get

ifz (z;M ��

z
; xs:M

��

s
) =M ��

z
hh�ii% M �0�0

z
= ifz(z;M �0�0

z
; xs:M

�0�0

s
)

{ Case n = m+ 1. Then

ifz (sm;M ��

z
; x:M ��

s
) =M ��

s
fm=xg =M �(�;(m=x))

s

and analogously on the RHS, so the result follows by IH on Ms, in the type

assignment (�; x: �) and the extended substitutions (�;m=x) and (�0; m=x).

� Case hi. To show:

hi�� hh1ii
%
hi�

0�0

which is trivially true by the de�nition of hh1ii
%
.

� Case hM1;M2i. To show:

hM1;M2i
��
hh�1 � �2ii

%
hM1;M2i

�0�0

That is,
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fst (hM1;M2i
��) hh�1ii

%
fst (hM1;M2i

�
0
�
0

)

^ snd (hM1;M2i
��) hh�2ii

%
snd (hM1;M2i

�0�0)

Since we have

fst (hM1;M2i
��) = fst hM ��

1 ;M ��

2 i =M ��

1

and analogously on the RHS and for snd , we get the result by IH on M1 and M2.

� Case fstM (sndM is analogous). To show:

fst (M ��) hh�1ii
%
fst (M �

0
�
0

)

which we get from IH on M and the �rst conjunct of the de�nition of hh�1 � �2ii
%
.

� Case inlM ( inrM is analogous). To show:

inlM ��
hh�1 + �2ii

%
inlM �0�0

By the �rst disjunct in the de�nition of hh�1 + �2ii
%
, it su�ces to show that

M �� hh�1ii
% M �0�0

which we get from IH on M .

� Case case (M;x1:M1; x2:M2). To show:

case (M ��; x1:M
��

1 ; x2:M
��

2 ) hh�ii% case (M �0�0 ; x1:M
�0�0

1 ; x2:M
�0�0

2 )

By IH on M , we have M �� hh�1 + �2ii
% M �0�0 . Without loss of generality, assume

that we are in the �rst case of the de�nition of hh�1 + �2ii
%
. That is, M �� = inl a1

and M �
0
�
0

= inl a01 for some a1 hh�1ii
% a01. Then

case (M ��; x1:M
��

1 ; x2:M
��

2 ) = case ( inl a1; x1:M
��

1 ; x2:M
��

2 ) =M ��

1 fa1=x1g

=M
�(�;(a1=x1))

1

and analogously on the RHS, so we get the result by IH on M1 using the extended

substitutions �1 = (�; a1=x1) and �
0
1 = (�0; a01=x1).

� Case �x�:M . To show:

(�x�:M)�� hh�! �ii% (�x�:M)�
0
�
0

I.e., that

�x�f�g:M �� hh�! �ii% �x�f�
0
g:M �

0
�
0

Accordingly, let a hh�ii% a0; we must show that

(�x�f�g:M ��)a hh�ii% (�x�f�
0
g:M �

0
�
0

)a0

And since

(�x�f�g:M ��)a =M ��fa=xg =M �(�;(a=x))

we get the result by IH on �; x:� `� M : � using the extended substitutions

�1 = (�; a=x) and �01 = (�0; a0=x).
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� Case M1M2. To show:

(M ��

1 )(M ��

2 ) hh�ii% (M �0�0

1 )(M �0�0

2 )

This follows directly from IH on M1 and M2, and the de�nition of hh�! �ii%.

� Case�M . To show:

�(M ��) hh��ii%�(M �0�0)

By IH on M , M �� hh�ii% M �0�0 , so the result follows from the de�nition of hh��ii%

and the properties of a computation-extension (De�nition 3.20(1)).

� Case let�x(M1 in M2. To show:

let�x(M ��

1 in M ��

2 hh��2ii
%
let�x(M �

0
�
0

1 in M �
0
�
0

2

By IH on M1, we have M
��

1 hh��1ii
% M �0�0

1 , i.e.,

M ��

1 (�hh�1ii
%
)M �0�0

1

Similarly, by IH on M2 with appropriately extended substitutions, we get

8a1 hh�1ii
% a01:M

�(�;(a1=x))

2 (�hh�2ii
%
)M

�
0(�0;(a01=x))

2

And from those two facts and De�nition 3.20(2), we get the required result.

� Case �x�M . To show:

�x�f�gM
��
hh�ii% �x�f�0gM

�0�0

By IH on M , we have M �� hh�! �ii% M �
0
�
0

, i.e.,

8b hh�ii% b0:M �� b hh�ii% M �0�0 b0

The result then follows directly from �xed-point induction (Lemma 3.19), because

hh�ii% is computation-admissible.

As a simple corollary of Lemma 3.24, we obtain that the two interpretations of a

monad-triple are related:

Lemma 3.25 Let T be a monad-triple in L0. Then the standard relational action of T ,
given by

t (TR) t0 () t hhTaiia7!R t0

respects the monad operations in the sense that for any R, R1, and R2, the following

conditions are satis�ed:

0. If 8a R1 a
0: f a (TR2) f

0a0

then 8m (�R1) m
0: let�

T�2
x(m in f x (TR2) let�T�02

x0(m0 in f 0x0.
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1. 8a R a0: �� a (TR) ��0 a
0
.

2. If 8a R1 a
0: f a (TR2) f

0a0 then 8t (TR1) t
0: f � t (TR2) f

0� t0

Proof. All cases are simple:

0. By assumption on f and f 0, we have

f hha1! Ta2ii
a1 7!R1;a2 7!R2 f 0

and by assumption on m and m0,

m hh�a1ii
a1 7!R1;a2 7!R2 m0

Then use Lemma 3.24 on the term

xf : a1! Ta2; xm:�a1 `fa1;a2g let�Ta2 x( xm in xf x : Ta2

(which, recall, abbreviates a term of the core syntax, given by expanding the gen-

eralized let according to the shape of T ) with the substitutions � = (f=xf ; m=xm)
and �0 = (f 0=xf ; m

0=xm).

1. Analogous to above, using the term xa: a `fag �axa : Ta.

2. Analogous to above, with xf : a1! Ta2; xt:Ta1 `fa1;a2g x
�
f
xt : Ta2.

3.3.3 Relating computational structure

We are now ready to characterize what it means for two monads to be related:

De�nition 3.26 A monad relation between monads T = (T; �; �) in (L0;Ls) and U =

(U; "; +) in (L+
0 ;Li) assigns to every admissible relation R 2 ARel(�; �0) a computation-

admissible relation R 2 CARel(T�; U�0) such that for all admissible relations R, R1,

and R2,

0. If 8a R1 a: f a (R2) g a
0

then 8m (�R1) m
0: let�

T�2
x(m in f x (R2) let�U�02

x0(m0 in gx0.

1. 8a R a0: �� a (R) "�0 a
0
.

2. If 8a R1 a
0: f a (R2) g a

0
then 8t (R1) u: f

� t (R2) g
+u.

Further, we say that an L+
0 -term i�0 : T�

0! U�0 is a re
ection function (with respect to

the monad relation) if for any L0-type � and relation R 2 ARel(�; �0),

3. 8t (TR) t0: t (R) i�0t
0

Analogously, a rei�cation function is an L+
0 -term j�0 : U�

0!T�0 such that for any � and

R 2 ARel(�; �0),

4. 8t (R) u: t (TR) j�0u
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(Note that since T need not satisfy the monad laws in Li, i cannot in general be a monad

morphism. Nor do we explicitly require that j�0 � i�0 = idT�0 , although it often does hold.)

An important special case is when a monad-triple T = U is a monad in both Ls

and Li. Then Lemma 3.25 shows that the standard relational action of T induces a

monad relation between the two copies of T; moreover, for any �0, we can simply take

i�0 = j�0 = idT�0 . (There is still some non-trivial content to the de�nition in this case,

because Ls and Li could be di�erent models, with their ambient e�ects related only by

relation-extension.)

More generally, we have the following convenient way of obtaining monad relations

directly from monad morphisms:

Proposition 3.27 Let T and U be monad-triples in L0 such that T is a monad in Ls

and U is a monad in both Ls and Li. Further, let i in (L0;Ls) be a monad morphism

from T to U. Then the assignment to any R 2 ARel(�; �0) of the R 2 CARel(T�; U�0)
given by

t (R) u () i� t (UR) u

establishes a monad relation between T and U.

Moreover, for any �0 of L+
0 , i�0 is a re
ection function. And if j is a schematic

retraction of i in (L0;Ls) then for any �0 in L+
0 , j�0 is a rei�cation function.

Proof. First, R is computation-admissible, because it is de�ned as an inverse image of

the computation-admissible UR by the rigid functions i� and idU�0 . Further, we have:

0. Let m (�R1) m
0 and f (R1! R2) g be given. To show:

i�2 (let�T�2 a(m in f a) (UR2) let�U�02
a0(m0 in g a0

By rigidity of i�2 (De�nition 3.1(0)) on the LHS, this amounts to showing

let�
U�2

a(m in i�2 (f a) (UR2) let�U�02
a0(m0 in g a0

We get that from assumption on m and m0, and the properties of U 's relational
action (Lemma 3.25(0)). if we can establish that

8a R1 a
0: i�2 (f a) (UR2) g a

0

And that was precisely the assumption on f and g.

1. Let a R a0. To show: i� (�� a) (UR) "�0 a
0. By De�nition 3.1(1) on the LHS, this is

equivalent to showing

"�a (UR) "�0 a
0

which we get from Lemma 3.25(1) for U.

2. Let t (R1) u and f (R1! R2) g be given as in the hypothesis. We must show that

i�2 (f
� t) (UR2) g

+u



3.3. THE SIMULATION PROOF 67

Again, using the property of a monad morphism 3.1(2) on the LHS, this amounts

to showing

(i�2 � f)
+
(i�1 t) (UR2) g

+u

Now, by assumption on t and u, we have

i�1 t (UR1) u

and by assumption on f and g,

8a R1 a
0: (i�2 � f)a (UR2) g a

0

from which we get the desired result by 3.25(2).

3. Let t (TR) t0; we must show that t (R) i�0 t
0, i.e., that i� t (UR) i�0 t

0. And since ia
was a term of L0, this follows from Lemma 3.24 by an argument analogous to those

in Lemma 3.25.

4. Let t (R) u; to show: t (TR) j�0 u. From the assumption on t and u, we have

i� t (UR) u, and hence again by Lemma 3.24 withM = ja, we get j� (i� t) (TR) j�0 u.
Then cancelling the j� and i� on the LHS gives us the result.

A monad relation with re
ection and rei�cation functions is exactly what we need to

relate the de�nitional and the variant translation: the monad relation itself relates the

computational structure, and the re
ection and rei�cation functions, where they exist,

convert between e�ect representations:

De�nition 3.28 Let T be a monad in (L0;Ls) and U a monad in (L+
0 ;Li), with a monad

relation between T and U. Then for any type � of LT0 , the relation

�� 2 ARel([[�]]T ; [[�]]U )

is given in the usual way by induction on the structure of � (as in De�nition 3.23, but

without the type variables), and with � �= �� from the monad relation.

Note in particular that since the standard relational action of T in Lemma 3.25 is

also given by De�nition 3.23, we have �T�= T�� for any LT0 -type �. We can now state:

Proposition 3.29 Let there be given a monad relation between T and U, with a re
ec-

tion function i at every type [[�]]
U
where � is a type of LT0 . Further, let @ be a family of

LT0 -types, with j a rei�cation function at every [[@(i)]]
U
. Let � `M : � be a term of L

T [@]
0

(i.e., with rei�cations only at types in @). Then for any pair of substitutions of �-related

values for the variables in �, � �� �
0
, we have [[M ]]�

T
�� [[M ]]0

T

�0

(where [[ ]]0
T
is the variant

translation from De�nition 3.9).

Proof. Given the de�nitions, this is a simple induction on the structure ofM . The cases

for variables, numbers, products, sums, functions, and base computations are exactly as

before (Lemma 3.24). For the remaining constructs, we have:
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� Case M . To show:

� [[M ]]�
T
� � " [[M ]]0

T

�0

Follows from IH on M and De�nition 3.26(1).

� Case let�x(M1 in M2 (of type �2). To show:

let�
T [[�2]]T

x( [[M1]]
�

T
in [[M2]]

�

T
� �2

let�
U [[�2]]U

x( [[M1]]
0
T

�0 in [[M2]]
0
T

�0

By IH on M1 and M2, and 3.26(0).

� Case let x(M1 in M2. To show:

(�x: [[M2]]
�

T
)� [[M1]]

�

T
� �2

(�x: [[M2]]
0
T

�0)+ [[M1]]
0
T

�0

Follows from IH on M1 and M2 using 3.26(2).

� Case �(M). To show:

[[M ]]�
T
� � i [[M ]]0

T

�0

Since �T� = T��, this follows from IH on M and De�nition 3.26(3).

� Case [M]. To show:

[[M ]]�
T
�T� j [[M ]]0

T

�
0

As above, �T� = T��, so we get the result by IH on M and De�nition 3.26(4).

� Case �x. As before, we need to check that �� is computation-admissible, where �
may now also contain the type �. And in that case, computation-admissibility of

�� is ensured by the requirement of a monad relation (De�nition 3.26).

Using the monad relation induced by a monad morphism (Proposition 3.27), Pro-

position 3.29 immediately gives us correctness of a number of e�ect-simulations. For

example, the complexity-state monad morphism from Example 3.3 validates the state-

based maintenance of complexities.

For our monad-continuation simulation in full generality, however, we have to work

a little harder. To obtain rei�cation at arbitrary types, we cannot use purely equational

properties of the monad morphism and the standard relational action of U alone { we

need to construct the appropriate monad relation explicitly.

3.3.4 Relating monads to continuation-passing

Recall from Example 3.10 that the main limitation of our monad-morphism formulation of

the continuation-based variant translation was its incomplete treatment of T -rei�cation.
Speci�cally, it did not directly allow us to de�ne a rei�cation operation (1) at more than

one type and (2) at types containing . We will now see how to overcome these problems

by using a more elaborate monad relation.

At the same time, we will take care of an independent technical complication (3)

with simulating a monad T with a continuation monad Ko. Following Lemma 3.5, we
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would expect to take the answer type o to be T
 for some 
. However, the constraints
imposed by our eventual application in Section 3.3.5 will not always allow us to do this.

Speci�cally, we will need the answer type to be expressible as�! for some !, but T
 is

not necessarily of this form.

Fortunately, the relational approach allows us considerable latitude in picking the

actual answer type o, as long as it is \larger" than the T
 that we originally needed. (Be-
cause the answer type occurs both positively and negatively in the continuation monad,

we cannot express this condition purely equationally.) For conciseness, we formulate the

requirement in general terms:

De�nition 3.30 An answer-embedding of L+
0 -computation-types o1 into o2 consists of

a pair of functions �� : o1! o2 and  
� : o2! o1, such that in Li, (1)  

�
is rigid and (2)

 � � �� = ido1.

(Taking o1 = o2 = T
 and �� =  � = idT
 certainly satis�es these requirements,

and still gives us a result strong enough to solve problems (1) and (2) mentioned above.

Thus, on a �rst reading, it may be helpful to simply ignore all occurrences of �� and  �

throughout this section. However, for the purpose of the next section, it is important

that the we only rely on the weaker properties guaranteed by De�nition 3.30.)

We are now ready to state a central result about relating monads and continuations.

The essential trick is that, although we commit to a �xed answer type for the continuation

monad, we are still free to consider all possible relational interpretations of that type:

Lemma 3.31 (continuation-simulation of monads) Let T be a monad in (L0;Ls).

Further, let 
 be a type and o a computation-type of L+
0 , with an answer-embedding �� :

T
!o and  � : o!T
. Then the mapping of R 2 ARel(�; �0) to R 2 CARel(T�;Ko�
0)

given by

t (R) u
() 8�0 typeL0

; O 2 ARel(�0; 
); k 2 ValLs(�! T�0); k
0 2 ValLi

(�0! o):
(8a R a0: k a (TO)  � (k0 a0))) k� t (TO)  � (uk0)

is a monad relation between T and Ko. Moreover,

i�0 = �tT�
0

:�k�
0
!o:�� (( � � k)� t) and j
 = �u(
!o)!o: � (u(�� � �
))

form a re
ection function for all �0 and a rei�cation function for 
.

(Intuitively, the outer quanti�cation over �0 allows us to overcome limitation (1) from

above; if we only needed rei�cation at a single LT0 -type �, we could simply �x �0 = [[�]]
T
.

Further, the inner quanti�cation over O takes care of (2), by replacing a �xed relation

on answer types (where in particular 
 may be recursive) with a stronger parametricity

condition. And �nally, as already mentioned, we need �� and  � for (3).
It is instructive to compare the cases of the following proof with the corresponding

ones in Proposition 3.27. Although some common structure could clearly be abstracted

out, it is probably easier to follow how the continuations are being passed around in a

concrete formulation.)
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Proof. First, we check that R is computation-admissible when R is admissible: R
is de�ned as an intersection over inverse images of the computation-admissible relations

TO by the rigid functions k� and  � � �u:uk0. For the speci�c requirements, we have:

0. Assume 8a R1 a
0: f a (R2) g a

0 and m (�R1) m
0. To show:

let�
T�2

x(m in f x (R2) let�(�02!o)!o
x0(m0 in gx0

i.e., that

let�
T�2

x(m in f x (R2) �k
0: let�

o
x0(m0 in gx0k0 :

Let O, k, and k0 be given, with

8a R2 a
0: k a (TO)  � (k0a0) :

We must then show that

k� (let�
T�2

x(m in f x) (TO)  � (let�
o
x0(m0 in gx0k0) :

Using rigidity of k� (De�nition 2.15(0)) on the LHS and rigidity of  � (De�ni-

tion 3.30(1)) on the RHS, this is equivalent to showing

let�
T�0

x(m in k� (f x) (TO) let�
T

x0(m0 in  � (gx0 k0) :

Now, by Lemma 3.25(0) and the assumption that m (�R1) m
0, it su�ces to show

that

8a R1 a
0: k� (f a) (TO)  � (g a0k0)

and that follows from the assumption that f a (R2) g a
0.

1. Assume a R a0. Then for O, k, and k0 as above, we must show that

k� (� a) (TO)  � ("a0k0)

i.e., using law 2.15(1) and the de�nition of ", that

ka (TO)  � (k0a0)

which was precisely the assumption on k and k0.

2. Assume 8a R1 a
0: f a (R2) g a

0 and t (R1) u.

Let O, k and k0 be given as before; to show:

k� (f � t) (TO)  � (g+uk0)

using monad law 2.15(3) on the LHS and expanding the RHS, this amounts to

showing

(�x:k� (f x))� t (TO)  � (u(�x:g xk0))

This follows from the de�nition of t (R2) u if we can show that

8a R1 a
0: (�x:k� (f x))a (TO)  � ((�x:g xk0)a0)

i.e., that

8a R1 a
0: k� (f a) (TO)  � (g a0k0)

And that follows from the assumption that f a (R2) g a
0.



3.3. THE SIMULATION PROOF 71

3. Again, let O, k, and k0 be given with 8a R a0: k a (TO)  � (k0 a0), and t (TR) t0; we
must show that

k� t (TO)  � (�� (( � � k0)� t0))

i.e., cancelling the  � and �� (De�nition 3.30(2)), that

k� t (TO) ( � � k0)� t0 :

By Lemma 3.25(2), it su�ces to show that

8a R a0: k a (TO) ( � � k0)a0 :

And that was precisely the assumption on k and k0.

4. Let R 2 ARel(�; 
) be given, with t (R) u. To show:

t (TR)  � (u(�� � �
))

Here we �nally need to instantiate the O in the de�nition of R. Take

�0 = �; O = R; k = ��; k0 = �� � �
 :

Clearly this O is admissible, because R was assumed to be. Further, let a R a0.
Then, because � respects the relational action of T (Lemma 3.25(1)), we have:

ka = � a (TO) � a0 =  � (�� (� a0)) =  � (k0a0)

From the assumption on t and u, and monad law 2.15(2), we therefore obtain

t = �� t = k� t (TO)  � (uk0) =  � (u(�� � �))

as required.

Although the construction only gives rei�cation at 
 directly, by choosing 
 appro-

priately, we can de�ne rei�cation functions at other types:

Lemma 3.32 Let there be a monad relation between T and U, and let j
 : U
! T
 be

a rei�cation function at (L+
0 -type) 
. Let �0 be any type of L+

0 with term constructors

� : �0! 
 and � : 
!��0 such that (in Li) a:�
0 ` � (�a) =�a. Then the term

j



�0
(�; �) : U�0! T�0 def= �uU�

0

:(�s
: let�
T�0

a( � s in ��0 a)
� (j
 ((�a

�
0

: "
 (�a))
+u))

is a rei�cation function at �0.

Proof. Let � in L0 and R 2 ARel(�; �0) be given, with t (R) u; we must show that

t (TR) j

�0
(�; �)u. Accordingly, de�ne R
 2 ARel(�; 
) by

a R
 s ()�a (�R) � s :
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This is clearly admissible, being given as an inverse image of the admissible�R. Moreover,

from the assumption on � and �, and the properties of the computation-extension�R
(De�nition 3.20(1)), we immediately get

8a R a0: a R
 �a
0 ;

which, together with the assumption on t and u and the properties of the monad relation
(De�nition 3.26(1,2)), gives us

t = (�a:� a)� t (R
) (�a
0: "(�a0))+u :

From this, we get by the assumption on j
 that

t (TR
) j
 ((�a
0: "(�a0))+u) :

And �nally, using all three parts of Lemma 3.25 and the de�nition of R
,

t = (�a: let�
T�

a(�a in � a)� t
(TR) (�s: let�

T�0
a0( � s in � a0)� (j
 ((�a

0: "(�a0))u+ )) = j



�0
(�; �)u

as required.

For the j from Lemma 3.31 speci�cally, this works out to:

j



�0
(�; �) = �uKo�

0

:(�s
: let�
T�0

a( � s in � a)� ( � (u(�a�
0

:(�� � �)(�a))))

Consider now an LT0 -program. Because our type system is monomorphic, every [ ]-

operator in that program can be uniquely labeled with a speci�c type. There is thus

only ever a �nite set @ of LT0 -types � such that [[�]]0
T
needs to be embedded in the 


from Lemma 3.32. (Note that this is a static property of the program, with the set of

rei�cation-types bounded linearly by the program size. This in contrast to, say, �nite

unrollings of �xed points, where we cannot a priori determine how deeply to unroll.)

Thus, we can simulate rei�cation with a �nite sum, if we are willing to construct

the relevant type 
 = �i[[@(i)]]
0
T
for each program. In fact, for any �nite @ covering all

rei�cations in an LT0 -program, we get the same overall result when using any larger @ for

de�ning 
. We can thus formally de�ne the evaluation semantics of programs resulting

from the variant translation to be the unique meaning determined by any \su�ciently

large" �nite collection @.

Or, we can use a single, in�nite embedding type that works for all programs. In

particular, we can simply take I to be the countable set of names of closed LT0 -types,
with @(`�') = �. Giving such an enumeration is unproblematic: the set of LT0 -types
does not itself contain any embedding-types. Also, the tags themselves are inherently

unstructured; in particular, for a monadic translation, we have [[in`�'M ]]
T
= in`�'[[M ]]

T
,

not in`[[�]]
T
'[[M ]]

T
. (In the actual ML implementation, we use an extensible data type for

�@, with tags dynamically generated and assigned at each instance of rei�cation.)
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Embedding-types alone do not su�ce to express a continuation-based simulation of

rei�cation, however: there is an independent problem with reifying at LT0 -types containing
the type constructor . Suppose for simplicity that we only needed rei�cation at a single

LT0 -type �0, and moreover that we could choose the answer type of the continuation

monad freely. Then it would seem natural to simply take 
 = [[�0]]
0
T
and o = T
.

But since the continuation-passing [[ ]]0
T
-translation is itself de�ned in terms of the

answer type o, this would require us to solve the recursive type equation o = T [[�0]]
0
T

exactly, which is too strong a requirement in general. Instead, we still take 
 = [[�0]]
0
T
,

but only o �= T
. In fact, the latter need not even be a full isomorphism; an answer-

embedding su�ces.

(Alternatively, we could have broken up the recursion by taking o = T
 and 
 �= [[�0]]
0
T
.

This approach gives a slightly simpler abstract correspondence between monads and

continuation-passing, but does not allow us to express the construction in the next section

in full generality.)

3.3.5 Factorizing the variant translation

Although it translates from LT to L, the [[ ]]0
T
-translation using U -e�ects is actually

much more like the standard U -monadic translation [[ ]]
U
from LU to L, sharing the

type translation and most of the term translation clauses with the latter. The only non-

standard clauses are for re
ection and rei�cation of T -e�ects. And in fact, we can express
the [[ ]]0

T
-translation entirely in terms of the [[ ]]

U
-translation by expanding T -re
ection

and rei�cation into LU -de�nable terms.
In practice, this means that if we have a good (e�cient, convenient, etc.) way of

implementing evaluators for LU (whether using the de�nitional translation for U or some

other technique, as long as it gives correct results for complete programs), we can ob-

tain an evaluator for LT by simply viewing T -re
ection and -rei�cation as de�nitional

extensions of LU .
When i and j are de�nable in L0 (and hence invariant under the translations), this

is immediate: we can simply take �T(M) = �U(iM) and [M]T = j[M]U . When U is a

continuation monad with a recursively-de�ned answer type, however, it will be more con-

venient to work with a formulation of U -e�ects that integrates the recursion isomorphisms
in the continuation-passing translation.

First, since for any monad-triplesT andU, the sets of types of LT and LU are actually

the same (given by the type constructors of L together with ), we use the name L?-type
for a type from the extended signature, independent of the actual monad (which only

a�ects the types of �( ) and [ ]). We can then de�ne a suitable notion of \native" e�ects

for an L?-continuation monad:

De�nition 3.33 Let L be a cll signature. Then for any closed L?-type !, the signature

LK�! extends L with a new computation-type constructor �, the associated value-inclusion
and two lets (with types as in De�nition 2.21), and the following two term constructors:

� `M : (�!�!)!�!

� ` �K(M) : �

� `M : �

� ` [M]
K : (�!�!)!�!
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Note that this strictly generalizes our previous de�nition of a monad-extended signature,

because in the case where ! is actually a type of L (i.e., does not contain any ), the

above is exactly what we get by taking the monad T in De�nition 2.21 to be K�!.

Unlike the case for a standard monad-extension of a signature, however, we will not

always be able to translate LK�! back into L, because the corresponding monad now

involves a recursive type de�nition. But when the target syntax includes �-types, we can
give such a translation:

De�nition 3.34 The translation [[ ]]
K
: LK�! ! L� is de�ned as follows: �rst take

!̂ = �a: [[!]]
K
�a

and o =�̂!

(where the type translation [[ ]]
K�a

expands � into ([[�]]
K�a
!�a)!�a and preserves all type

constructors of L). We abbreviate the associated isomorphisms as:

� def= rolla:[[!]]
K�a

: [[!]]
Ko

�
! !̂ and  def= unrolla:[[!]]

K�a
: !̂ �
! [[!]]

Ko

(where we write ' : � �
! �0 to summarize the typing rule of a term constructor ' building

�0-terms from �-terms).

Then the type and term translation is the standard monadic translation for the monad

Ko, except with the clauses for re
ection and rei�cation reading:

[[�K(M)]]
K

= �k: let�r( [[M ]]
K
(�a: let�o( ka in�( o)) in�(�r)

[[[M]
K]]

K
= �k: let�o( [[M ]]

K
(�a: let�r( ka in�(�r)) in�( o)

Note that when the isomorphisms are identities, as we can always trivially ensure when

! is only an L-type, this reduces to the original de�nition of a monadic translation

(De�nition 2.23) because of the law let�x(M in�x =M .

The usual direct-style reasoning principles for re
ection and rei�cation from De�ni-

tion 2.27 still hold for the more general notion of monadic translation. Speci�cally:

Lemma 3.35 In addition to the equations for let and inclusion from De�nition 2.27,

the following equations are sound for the [[ ]]
K
-translation from De�nition 3.34:

�K([M]
K) = M

[�K(M)]K = �k:M k = M

[M]
K = �k:kM

[let x(M1 in M2]
K = �k:[M1]

K (�x:[M2]
K k)

[let�x(M1 in M2]
K = �k: let�x(M1 in [M2]

K k

(where k does not occur free in any of the Ms).

Proof. Simple calculation; we mainly have to verify that the isomorphisms cancel out.

For example, for the third equation:
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[[[M]K ]]
K
= �k: let�o( [[M ]]

K
(�a: let�r( ka in�(�r)) in�( o)

= �k: let�o( (�k0:k0 [[M ]]
K
)(�a: let�r( ka in�(�r)) in�( o)

= �k: let�o( (let�r( k [[M ]]
K
in�(�r)) in�( o)

= �k: let�r( k [[M ]]
K
in let�o(�(�r) in�( o) = �k: let�r( k [[M ]]

K
in�( (�r))

= �k: let�r( k [[M ]]
K
in�r = �k:k [[M ]]

K
= [[�k:kM ]]

K

The others are similar.

Note again the similarity of the direct-style equations characterizing [ ] to those of an

explicit continuation-passing translation. The operational intuition is that �K(M) passes

to M a functional representation of the current evaluation context, i.e., the continuation

waiting for the result of �K(M). Conversely, [M]K evaluatesM with a given continuation

and returns the answer. For example, taking ! = �, we have

[let x( �K(�k: let�r( k3 in kr) in (sx)]K (�a:�a)

= [�K(�k: let�r( k3 in kr)]K (�x:[ (sx)]K (�a:�a))

= (�k: let�r( k3 in kr)(�x:(�a:�a)(sx)) = (�k: let�r( k3 in kr)(�x:�(sx))

= let�r( (�x:�(sx))3 in (�x:�(sx))r = let�r(�(s 3) in (�x:�(sx))r

= (�x:�(sx))4 =�5

That is, k gets bound to the function �x:�(s x) and applied twice to 3.

Remark 3.36 The circularity inherent in allowing ! to be an L?-type is genuine: even
without �x in the language, it is possible to write non-terminating programs in LK�! .
For perhaps the simplest example, take ! = 1. Then re
ection and rei�cation (as shown

above, they are still two-sided inverses) give us an isomorphism

! = 1 �= (1!�!)!�! �=�!!�!

And indeed, we can de�ne a diverging term 
�! by the usual double self-application made

type-correct by the isomorphisms:

d : !!�! = �x!:[x](�hi:�x)

d0 : ! = �(�k1!�!: let�x( k hi in dx)


 :�! = dd0

It turns out that picking a �xed shape for the answer type (i.e., requiring it to be of

the form�!) necessitates a slight twist when simulating monads whose type constructors

do not contain an outermost�; this is why we allowed the answer-embedding in De�ni-

tion 3.30 to be a retraction, rather than a full isomorphism. First, we slightly transform

the monad to be simulated:

De�nition 3.37 Let T = (T; �; �) be a monad-triple. We then de�ne a new monad-

triple T̂ = (T̂ ;�̂; �̂) as follows:

T̂ � = �(T�)

�̂ = �a:�(� a)

f �̂ = �m: let�t(m in�((�a: let�
T�2

r( f a in r)� t)
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For example, for state (Example 2.18), this gives

T̂ � = �(�!�(�� �))

�̂ = �a:�(�s:�ha; si)

f � = �m: let�t(m in�(�s: let�ha; s0i ( ts in let�r( f a in r s)

Now T̂ � does have an outermost�. On the other hand, T̂ is not in general a monad,

even if T was. In particular, for law 2.15(1) we only get

f �̂ (�̂ a) = let�t(�(� a) in�((�a: let�
T�2

r( f a in r)� t)

=�((�a: let�
T�2

r( f a in r)� (� a)) =�(let�
T�2

r( f a in r) =? f a

T̂ is, however, a monad \up to extensionality": when evaluated and applied to a

value, f a and f �̂ (�̂ a) do behave identically:

let�r( f �̂ (�̂ a) in r s = let�r(�(let�
T�2

r( f a in r) in r s
= (let�

T�2
r( f a in r)s = let�r( f a in r s

And in fact, our construction will ensure that functions like f are always \fully applied",

so that we can use �̂ and �̂ instead of � and �.

We can now de�ne re
ection and rei�cation for T in terms of the corresponding

operators for continuations as follows:

Theorem 3.38 Let T be a monad in (L0;Ls), and let M be an LT0 -program without

top-level focus e�ects, (i.e., � ` M :��). Further, let @ be a family of types containing

at least all LT0 -types for which M contains a rei�cation-operator. Take ! = T (�@), a
well-formed (L�

0 )
?
-type, and in (L�

0 )
K�! de�ne the term constructors �T( ) and [ ]T by:

�T(M) = �K(�k:k�̂ (�M))

[M]
T = let�

T�
t( (�r: let�a( outi r in �̂ a)�̂ ([M]K (�a: �̂ (inia))) in t (@(i)=�)

Now take L+
0 = (L�

0 )
�
, with Li a model of (E�0 )

�
from Section 3.2.1. Then replacing

all T -re
ection and -rei�cation operators in M with the de�nitions above (picking i for
each rei�cation arbitrarily, subject to the constraint), yields an (L�

0 )
K�!-program M 0

such

that [[M ]]
T
(��r) [[M 0]]

K
.

Proof. Let !̂ �= [[T (�@)]]
K
with associated isomorphisms be as in De�nition 3.34, and

take 
 = �i[[@(i)]]K ; then [[!]]
K
= [[T (�@)]]

K
= T [[�@]]

K
= T (�[[@]]

K
) = T
. It is also

easy to see that the functions de�ned by

�� : T
!�̂! = �r:�(�r)

 � :�̂!! T
 = �m: let�
T

o(m in  o

form an answer-embedding in the sense of De�nition 3.30.

Now, using the i from Lemma 3.31 directly, we get (omitting a few tedious let-

simpli�cation steps):
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[[�T(M)]]
K
= [[�K(�k:k�̂ (�M))]]

K
= [[�K(�k:�((�a: let�! r( ka in r)�M))]]

K

= �k: let�r( [[�k:�((�a: let�! r( ka in r)�M)]]
K
(�a: let�o( ka in�( o)) in�(�r)

= �k: let�r(�((�a: let�
T


o( ka in  o)� [[M ]]
K
) in�(�r)

= �k:�(�((�a: let�
T


o( ka in  o)� [[M ]]
K
)) = �k:�

� ((�a: � (ka))� [[M ]]
K
)

= i[[�]]K
[[M ]]

K
= [[�(M)]]0

T

Similarly, using j from 3.31 as extended by Lemma 3.32 (with � = ini and � = outi,

satisfying the retraction condition by de�nition), we get:

[[[M]T ]]
K
= [[let�

T�
t( (�r: let�a( outi r in �̂ a)�̂ ([M]K (�a: �̂ (inia))) in t]]

K

= let�
T [[�]]K

t( [[[M]K ]]
K
(�a:�(� (ini a))) in (�r: let�

T [[�]]K
a( outi r in �a)� t

= let�
T [[�]]K

o( [[M ]]
K
(�a:�(�(� (ini a)))) in (�r: let�

T [[�]]K
a( outi r in �a)� ( o)

= (�r: let�
T [[�]]

K

a( outi r in �a)� (let�
T


o( [[M ]]
K
(�a:�� (� (inia))) in  o)

= (�r: let�
T [[�]]K

a( outi r in �a)� ( � ([[M ]]
K
(�a:(�� � �)(inia))))

= j



[[�]]
K

(ini; outi) [[M ]]
K
= [[[M]]]0

T

We can thus apply Proposition 3.29 (with empty � and �0) to get the result.

Remark 3.39 When the monad T is already of the form T� =�(T 0�) for some type
constructor T 0 (e.g., for exceptions, T 0� = � + �), a slightly simpler construction is

possible. Take ! = T 0(�@) so that o =�̂! �=�(T 0
) = T
, �� t = let�s( t in�(�s), and
 �m = let�r(m in�( r). (Here �� and  � are actually two-sided inverses.) Then we

get the analog of Theorem 3.38 by de�ning re
ection and rei�cation as follows:

�T(M) = �K(�k:k�M)

[M]
T = (�r: let�a( outi r in � a)� ([M]

K (�a:� (inia))) (@(i)=�)

The actual ML code in Section 4.5 takes advantage of this optimization by not including

an explicit suspension in the de�nition of monads like T, but instead having it implicitly

inserted by the CBV elaboration from Section 2.1.6. In other words, the type constructor

T in the ML signature of such a monad actually corresponds to the T 0 above, so that,

e.g., ((�1! T�2))
v = ((�1))

v!�((T�2))
v = ((�1))

v! T ((�2))
v. We could, however, simply use

Theorem 3.38 directly in all cases.

We have thus reduced the problem of implementing a language with monadic e�ects

for an arbitrary de�nable monad T to that of implementing a language with re
ection

and rei�cation operators for a continuation monad with an answer type�! for some value-

type !. In the next chapter, we will show how this can itself be achieved by embedding

the continuation-e�ect language into a Scheme-like one.

3.3.6 Induced relational correspondence

We �nally show how the relational correspondence between Ls and Li can be generalized

to the case where the base language is itself given by a monadic translation. That is, we

consider the language where we take as the distinguished computation-type constructor,

while�and its related operations become simply additional type and term constructors.

Corollary 2.29 showed that this new language is also a model of E0; the following shows

that this equational characterization extends to a relational one:
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Proposition 3.40 Let there be given a monad relation between T in Ls and U in Li

(De�nition 3.26). Then the relation assignment determined by the monad relation is a

computation-extension in the sense of De�nition 3.20 for -computations in the languages

(LT0 ;L
T

s ) and (L+
0
U ;LUi ), as given by De�nition 2.24.

Proof. For the �rst condition, let R 2 ARelLTs ;LUi (�; �
0) be a relation, and let a R a0;

we must show that a (R) a0, i.e., that in the original correspondence,

[[ a]]
T
= � a (R) "a = [[ a]]

U

and that follows immediately from De�nition 3.26(1).

Similarly, assume that 8a R1 a
0: f a (R2) f

0 a0 and m (R1) m
0. We must show that

let x(m in f x (R2) let x0(m0 in f 0x0

in the new correspondence, i.e., that

[[let x(m in f x]]
T
= (�x:f x)�m = f �m

(R2) f
0+m0 = (�x0:f 0x0)+m0 = [[let x0(m0 in f 0x0]]

U

in the original one, which is precisely the statement of 3.26(2).

3.4 Related work

The study of relationships between direct and continuation semantics has a long history.

Early investigations [Rey74a, ST80, Sto81] were set in a domain-theoretic framework

where the main di�culties concerned re
exive domains; as a result, these methods and

results were closely tied to speci�c semantic models. On the other hand, Meyer and

Wand's more abstract approach [MW85] applied to all models of simply-typed �-calculi,
but did not encompass computational e�ects { not even nontermination.

The present work, while formulated in a simply-typed setting, and using mostly ax-

iomatic reasoning, is nevertheless closer conceptually to the domain-theoretic results. In

particular, it explicitly handles general recursion in computations by �xed-point induc-

tion, and should extend to recursively-de�ned types without too many obstacles. (The

initial version in [Fil94] was based on the Meyer-Wand approach, but it is not clear how

well that would scale to ambient e�ects and especially recursion.)

A possible correspondence between monads and continuation-passing style (CPS) was

conjectured by Danvy and Filinski [DF90], and more concretely presented by Wadler

[Wad92b]. (The general idea of using a monad morphism to simulate one monadic ef-

fect with another is also due to Wadler [Wad90].) However, this work was largely in-

formal. Most notably, the problems with rei�cation (needed, e.g., to express handle for

continuation-based exceptions) in a typed setting were not addressed at all.

Peyton Jones and Wadler [PW93] probe the relationship between monads and CPS

further, and Wadler [Wad94] analyzes composable continuations from a monadic per-

spective, but in both cases the restriction to Hindley-Milner typable translations ob-

scures the general correspondence; properly expressing the answer-type parametricity
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in a simulation of general monads by continuation-passing requires a more 
exible type

system.

Finally, another glimmer of the connection between monads and continuations can

be seen in Sabry and Felleisen's result that ��-equivalence of CPS terms coincides with

direct-style equivalence in Moggi's computational �-calculus [SF93, Mog89]; the latter

captures exactly the equivalences holding in the presence of arbitrary monadic e�ects.

While this does not by itself imply that any monadic e�ect can be simulated by a continu-

ation monad, it does indicate that continuations form a maximally (but not necessarily

most) general notion of e�ect.



Chapter 4

Implementing Continuation-E�ects

In this chapter, we continue the simulation of e�ects by showing that a language with

re
ection and rei�cation operators for a continuation monad can itself be embedded in

a language with a more traditional set of e�ects: Scheme-style �rst-class continuations

and typed state.

That is, in the previous chapter we showed that continuations are in a precise sense

a universal e�ect: any de�nable monad can be simulated by a continuation monad with

a suitable answer type. Now we show that this universal e�ect can itself be expressed

in terms of two speci�c, low-level e�ects. Thus, we can program directly with monadic

e�ects in a language such as Scheme, or ML with continuations.

The development consists of three major steps. First, we re-express re
ection and

rei�cation for continuations in terms of an alternative, more operationally motivated

pair of control operators. These implement a control abstraction known as composable

continuations. We further decompose the composable-continuations operators into a

standard escape-operator, an abort-operator, and a control delimiter.

Then we show that the level-tags (�and on value-inclusions and lets) introduced

by the monadic translation are actually unnecessary for evaluation-purposes: the level-

erasure of a program evaluates to the same result as the original one. The proof involves

another set of logical relations, indexed by types of the original two-level language, and

relating original and level-erased terms at each type.

Finally, in the level-erased language, we de�ne the control operators in terms of

Scheme-like primitives. The key step here is to re-express the sequencing of already

continuation-passing terms in meta-continuation-passing style, then observe that the

metacontinuation is used in a single-threaded way throughout the translation and can

hence be maintained in a �xed cell of the store. Again, a simple logical-relations argu-

ment shows the equivalence of the original de�nitions of the control operators to their

escape-state simulation.

We conclude the chapter with an actual implementation of the construction in Stand-

ard ML of New Jersey, which includes language support for �rst-class continuations. In

addition to the complete code implementing monadic re
ection and rei�cation in terms

of escapes and state, we show a few simple programming examples. In particular, we

illustrate how de�nable monadic e�ects, such as nondeterministic or probabilistic com-

putations, �t very naturally into a traditional call-by-value setting.

80
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4.1 Continuation-re
ection and composable continuations

For convenience, we will assume that all signatures in the following contain an empty type

0 with no value constructors. Our implementation signature L+
0 = L�;�

0 (i.e., L0 with

recursive types and embedding-types) certainly does, for example de�ning 0 as �a: a or as
an embedding-type with empty index set. We need not require that 0 has a counterpart

in the speci�cation language L0 as well, although adding it there would be unproblematic.

Further, for any computation-type � there is a (unique) function from 0 to �, express-
ible as, e.g., �z:?�, which we write as V�. In fact, 0 and V are simply the zero-ary analogs

of sums and case (except that we do not require a V� for arbitrary �); in particular, for

any monadic translation we have [[0]]
T
= 0 and [[V�M ]]

T
= V[[�]]

T
[[M ]]

T
.

Unlike Chapter 3, where the simulation results were parameterized by the fairly com-

plex notion of a de�nable monad (which included a type constructor and type-indexed

families of term constructors), all the constructions in this chapter are parameterized by

a �xed, closed value-type !. Accordingly, except within de�nitions of recursive types

with �, we only need to consider type-closed types and terms.

The continuation-passing translation allows us to de�ne a wide range of control oper-

ators in the source language. We have already seen re
ection and rei�cation, but many

others are possible. In particular, we have:

De�nition 4.1 Let L be a cll signature with a 0-type, and let ! be a type of L?. Then

in LK�! (De�nition 3.33), we de�ne the operations

� `M : (�! 0)! 0

� ` CM : �

� `M : !

� ` AM : 0

� `M : !

� ` #M :�!

� `M : (�!�!)! !

� ` SM : �

by the expansions:

CM = �(�k�!�!:[M (�a�:�(�q00!�!:k a))](�z0:V�!z))

AM = �(�q0!�!:�M)

#M = [M](�r!:�r)

SM = �(�k�!�!:[M k](�r!:�r))

The operational intuition is as follows: CM (escape) invokes M with a representation

of the current evaluation context as a procedure q : �! 0 that, when applied to a value

a : �, will abandon the then current context of evaluation and return a as the result of

CM , e.g.,

C (�q: let z( q 3 in � � �) = 3

(regardless of what happens in � � �). The 0-\returning" q can invoked in a context ex-

pecting an �0-typed result by writing let z( q a in V �0 z. C thus acts very much like

Scheme's call=cc, except that the M must explicitly invoke q in order to return a value

from CM . Each variant can be used to de�ne the other, however.

AM (abort) immediately terminates the current computation, returning M as the

answer. Like a q supplied by C, it can be used in combination with V to break out of

any computation-typed context.
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#M (reset or prompt) evaluates M in an empty evaluation context and returns the

�nal answer of that evaluation, thus delimiting any control e�ects M might have. For

example, when ! = �, we get

#(let z(A5 in 7) =�5

Finally, SM (shift) captures and erases the current evaluation context up to (but

not including) the innermost enclosing #, passing this context to M as a composable

function. For example, still with ! = �, we have

#(let x(S (�k: let�r1( k4 in let�r2( kr1 in r2) in (s x)) =�6

Note also that we could de�ne AM = S (�k0!�!: M)

Although probably not as well known as call=cc, control operators like S, A, and #

have already seen a fair amount of study, e.g., [Fel88, SF90, DF92, Wad94, Fil94, GRR95];

we will brie
y compare the various approaches in Section 4.6.

For reference, and since we will need it later (in De�nition 4.5), let us note:

Lemma 4.2 The translations of the derived control operators using De�nition 3.34 work

out to:

[[CM ]]
K

= �k: [[M ]]
K
(�a:�q:ka)(�z:V z)

[[AM ]]
K

= �q:�(� [[M ]]
K
)

[[#M ]]
K

= let�o( [[M ]]
K
(�r:�(�r)) in�( o)

[[SM ]]
K

= �k: [[M ]]
K
(�a: let�o( ka in�( o))(�r:�(�r))

Proof. Straightforward. For example,

[[AM ]]
K
= [[�K(�q:�M)]]

K
= �k: let�r( [[�q:�M ]]

K
(�a: let�o( ka in�( o)) in�(�r)

= �k: let�r( (�q:�[[M ]]
K
)(�a: let�o( ka in�( o)) in�(�r)

= �k: let�r(�[[M ]]
K
in�(�r) = �k:�(� [[M ]]

K
)

The others are similar.

The reason why we can concentrate on the composable-continuations operators in-

stead of the seemingly more general �K( ) and [ ]K is the following property:

Lemma 4.3 Shift and reset form a complete set of control operators, in the sense that

we can use them to express re
ection and rei�cation as follows:

�K(M) = S (�k�!�!: let�r(M k in r)

[M]
K = �k�!�!:#(let a(M in let�r( ka in r)

and get equivalent translations under [[ ]]
K
.

Proof. The actual translations of the terms contain explicit isomorphisms, which

clutter up the equational proofs. It is thus more convenient to use the standard direct-

style reasoning principles for re
ection and rei�cation, whose soundness with respect to

the [[ ]]
K
-translation was established in Lemma 3.35:
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S (�k: let�r(Mk in r) = �(�k:[(�k: let�r(Mk in r)k](�r:�r))

= �(�k:[let�r(Mk in r](�r:�r)) = �(�k: let�r(Mk in [ r](�r:�r))

= �(�k: let�r(Mk in (�k:k r)(�r:�r)) = �(�k: let�r(Mk in�r) = �(�k:M k)

= �(M)

�k:#(let a(M in let�r( ka in r) = �k:[let a(M in let�r( ka in r](�r:�r)

= �k:[M](�a:[let�r( ka in r](�r:�r)) = �k:[M](�a: let�r( ka in [ r](�r:�r))

= �k:[M](�a: let�r( ka in (�r:�r)r) = �k:[M](�a: let�r( ka in�r)

= �k:[M](�a:ka) = �k:[M]k = [M]

That is, re
ection essentially captures the current continuation and passes it to M ,

while rei�cation evaluatesM in a delimited control context containing only k. This simple
reading is somewhat obscured by the explicit lets and value-inclusions used to coerce

between the two kinds of computation. However, when we eliminate the operational

distinction between�and in the next section, the two mixed-level lets (binding r) can
actually be replaced with just M k and ka.

Somewhat surprisingly, the re
ect-like S can itself be decomposed into a standard

escape-operator and two simpler constructs:

Lemma 4.4 S is de�nable in terms of C, #, and A by

SM = C (�c�! 0: let r(M (�a�:#(let z( ca in V !z)) in Ar)

Proof. As in Lemma 4.3, we can use direct-style reasoning for the actual veri�cation:

C (�c: let r(M (�a:#(let z( ca in V z)) in Ar)

= �(�k:[(�c: let r(M (�a:#(let z( ca in V z)) in Ar)(�a:�(�q:ka))](�z:V z))

= �(�k:[let r(M (�a:#(let z( (�a:�(�q:ka))a in V z)) in Ar](�z:V z))

= �(�k:[M (�a:#(let z( �(�q:ka) in V z))](�r:[Ar](�z:V z)))

= �(�k:[M (�a:[let z( �(�q:ka) in V z](�x:�x))](�r:[�(�q:�r)](�z:V z)))

= �(�k:[M (�a:[�(�q:ka)](�z:[V z](�x:�x)))](�r:(�q:�r)(�z:V z)))

= �(�k:[M (�a:(�q:ka)(�z:[V z](�x:�x)))](�r:�r)) = �(�k:[M (�a:ka)](�r:�r))

= �(�k:[M k](�r:�r)) = SM

Here, we wrap the escaping continuation c provided by C in a control delimiter, making
it into a composable function that can be passed to M . Since S also needs to erase the

continuation after capturing it, we explicitly abort with the result r returned by M .

Because C, A and # were themselves de�ned in terms of �K( ) and [ ]K, in principle

it does not matter which set we use in the following. Pragmatically, however, (C;A;#)
have the advantage that their types contain no negative occurrences of�, which slightly

simpli�es the arguments in Section 4.2. We therefore now switch attention to the new

set:
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De�nition 4.5 Let L be a cll signature with a 0-type, and let ! be a type of L?. The

signature LK
cc
�! extends L with a computation-type constructor , associated value-inclusion

and lets, and the term constructors C, A, and #, typed as in De�nition 4.1. There is an

evident translation from LK�! to LK
cc
�! , given by the statements of Lemmas 4.3 and 4.4.

The de�nitional translation [[ ]]
K
from LK

cc
�! to L� is identical to the one for LK�! from

De�nition 3.34, except that the clauses for �K( ) and [ ]K are replaced with the clauses

for C, A, and # from Lemma 4.2.

Note that, since we consider complete programs to be terms of type��, the type system
ensures that all control e�ects in an LK

cc
�! -program occur within the dynamic scope of

some #.

4.2 Level-erasure

Between Chapter 3 and Section 4.1, we have now reduced monadic e�ects to shift/reset

and further to escapes, abort, and reset; all dependencies on the original monadic transla-

tion are gone from the translation equations, with the monad simulation being performed

entirely by expanding T -re
ection and -rei�cation into simple control operators and com-
ponents of the monad-triple.

However, our e�ect-enriched language LT0 still has a signi�cant practical limitation: we
need to explicitly indicate the levels on all value-inclusions and lets. From a speci�cation

perspective, this is reasonable; with general re
ection and rei�cation available, we must

distinguish properly between�- and -computations in order to even de�ne the monadic

translation.

Moreover, most programs can actually be written in terms of -computations alone,

with uses of�restricted to the de�nitions of monad-speci�c e�ects from re
ection and

rei�cation, such as the raise and handle in Example 2.26. Thus, for particular compu-

tational e�ects, we may not need to explicitly expose�-computations to the language as

a whole.

On the other hand, if we are to provide re
ection and rei�cation for arbitrary,

programmer-de�ned monads, we do need general�-computations to be directly express-

ible in the language. In languages such as E�ect-PCF (i.e., our L0), where computation-

sequencing is already explicit, adding level-annotations to all inclusions and lets may not

be too problematic. But in an ML-like language, implicitly elaborated into E�ect-PCF

as in Section 2.1.6, there is no room for signi�cant e�ect-annotations of source terms.

And fortunately, as far as program evaluation is concerned, the levels can actually be

safely elided.

The idea is to view�� as a subtype of �, rather than as an entirely separate type.

Membership in�� then becomes a semantic property on values, with the type system

guaranteeing absence of e�ects in certain terms, but not playing an active role in the

actual evaluation process. Accordingly, we now de�ne a new language with a uni�ed

notion of control-e�ects:

De�nition 4.6 Take L1 to be L�
0 extended with an empty type 0 and associated V. We

further de�ne the set of L�?1-types to be the same as that of L1, but with the type constructor

�replaced by a new constructor�.
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When ! is an L�?1-type, the signature LCC!1 of the composable-continuations language

then consists of L1 with all instances of�replaced by�(so in particular, for computations

we now have:
� `M : �

� `�M :��

� `M1 :��1 �; x:�1 `M2 :��2

� ` let�x(M1 in M2 :��2

but no�-computations), together with the following additional term constructors:

� `M : (�!�0)!�0

� ` CM :��

� `M : !

� ` AM :�0

� `M :�!

� ` #M :�!

We can de�ne a translation from our two-level control-e�ect language into the uni�ed

one by simply dropping the distinctions between the levels:

De�nition 4.7 The level-erasure translation j j is de�ned as follows. First, for any

L?1-type �, j�j is the L
�?

1-type obtained by replacing all occurrences of�and in � with�:

j��j = j �j =�j�j

with the other type constructors una�ected. For terms, level-erasure likewise con
ates all

uses of�and into�(e.g., j�M j = jM j =�jM j), and maps the constructors C, A, and #

to their counterparts from De�nition 4.6.

It is easy to see that if � `M : � in LK
cc
�!

1 then j�j ` jM j : j�j in LCCj!j1 .

We can also give a de�nitional translation of the one-level language:

De�nition 4.8 Let ! be an L�?1-type. We then de�ne the continuation-passing translation

[[ ]]
K
from LCC!1 to L�1 as follows. First, let the auxiliary [[ ]]

K�a
on types be the syntactic

expansion of�� into ([[�]]
K�a
!�a)!�a, and take

�! = �a: [[!]]
K�a

:

We also write

�� : [[!]]
K
��!

�
! �! = rolla:[[!]]K�a

and � : �! �
! [[!]]

K
��!

= unrolla:[[!]]K�a

for the associated isomorphisms. The translation of types is then given by:

[[��]]
K
= ([[�]]

K
!��!)!��!

(with the other type constructors not a�ected). Correspondingly, the non-identity clauses

of the term translation are:

[[�M ]]
K

= �k:k [[M ]]
K

[[let�x(M1 in M2]]K = �k: [[M1]]K (�x: [[M2]]K k)

[[CM ]]
K

= �k: [[M ]]
K
(�a:�q:ka)(�z:V z)

[[AM ]]
K

= �q:�(�� [[M ]]
K
)

[[#M ]]
K

= �k: let�o( [[M ]]
K
(�r:�(��r)) in k ( � o)

As usual, this translation is easily seen to be type-preserving: if � `M : � in LCC!1 then

[[�]]
K
` [[M ]]

K
: [[�]]

K
in L�1 .
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We can now state our goal concretely: we want to show that the original [[ ]]
K
-

translation from De�nition 4.5 is equivalent for evaluation purposes to a level-erasure

followed by the [[ ]]
K
-translation. To establish this equivalence, we will de�ne a collection

of relations between the types arising from the two translations. The key ingredient here

is a suitable relational action of the type constructor�in the two translations:

De�nition 4.9 Let there be given a relational correspondence between two interpreta-

tions of L�1 , with a computation-extension of relations R 7!�R (De�nition 3.20). Then

for any relation R 2 ARel(�; �0), we de�ne the relation ��R 2 CARel(��; (�0!��!)!��!)
by:

m (��R) u
() 8�0 typeL�1 ; O 2 ARel(�0; �!): �k: let�x(m in kx ((R!�O)!�O) u

() 8�0 typeL�1 ; O 2 ARel(�0; �!); k : �!��0; k
0 : �0!��!:

(8a R a0: k a (�O) k0a0)) let�a(m in ka (�O) uk0

(Note that this is essentially the monad relation from Lemma 3.31, with T taken as the

identity monad, 
 = �!, o =��!, and �� =  � = id. That is, we are using a continuation

monad to simulate a trivial notion of focus e�ects.)

We can now de�ne our system of relations:

De�nition 4.10 Let ! be an L?1-type, take !̂
�= [[!]]

K
(De�nition 3.34) and �! �= [[j!j]]

K

(De�nition 4.8), and let

� 2 ARel(!̂; �!)

be an admissible relation on �nal answers; for the moment we leave its de�nition unspe-

ci�ed. For any type � of L?1, the relation

�� 2 ARel([[�]]K ; [[j�j]]K )

is then given in the usual way for base types, sums, products, and functions. For the

remaining L?1-type constructors, we take:

z �0 z
0 () z 0r z0 () false

s ��@ s
0 () s (�r

i
�@(i)) s

0 () 9i 2 dom@; a �@(i) a
0: s = inia ^ s

0 = inia
0

m ��� u () m (����) u

u � � u
0 () u ((��!��)!��) u

0

() 8k; k0: (8a �� a
0: k a (��) k0 a0)) uk (��) u0k0

It is easy to see that all �� are admissible (we can view �0 as being de�ned by an

inverse image of constant functions: z �0 z
0 () 0 �r 1 ; for ��@, see Lemma A.10(3)),

and that ��� and � � are also computation-admissible.

The representation of a��-value in the [[j j]]
K
-translation will always be of the form

�k: let�x(m0 in kx for some m0, and thus in particular must be parametric in the

answer type. Hence, we could de�ne ��� without committing to any particular relational

interpretation of answers: � does not occur in the de�nition of ��� from ��.
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On the other hand, for � � the identity of the answer type is explicitly exposed to

the source language, because A takes an arbitrary value of type ! to be an answer, while

# allows answers to be inspected as (control-e�ect-free) computations of type !. Thus,
if we want to relate terms containing A and #, we cannot choose � arbitrarily: it must

match up with �!. Fortunately, this circular dependency can be resolved, because of the

following important result:

Theorem 4.11 Let F and F 0
be type constructors, and let

�
be a formal relation con-

structor, built out of (1) the standard relational actions of L1-type constructors, (2) con-

stant admissible relations (computation-admissible for computation-types), and (3) the re-

lation constructor��; so that � maps any relation R 2 ARel(�; �0) to �R 2 ARel(F�; F 0�0).
Then

�
has an invariant relation �R: �R 2 ARel(�a: Fa; �a: F 0a), such that

a (�R: �R) a0 () unrolla:Faa
�(�R: �R) unrolla:F 0aa

0 :

Proof. See Corollary A.20 in Section A.4.

Form this we immediately obtain:

Lemma 4.12 There exists an admissible relation � 2 ARel(!̂; �!) such that

o � o0 ()  o �!
� o0

(where �! is de�ned in terms of � by De�nition 4.10).

Proof. The existence of � hinges on �! being de�ned from it using only the operations

enumerated in Theorem 4.11. Thus, we can directly take � to be the invariant relation

for the action � mapping � to �!.

Note that even though �! is genuinely recursive when ! contains any computation-

type constructors, the circularity in the de�nition of � still only occurs when ! contains

a . Otherwise, �� becomes just an unparameterized de�nition by induction on �, and in
particular does not depend on �. We can then simply take Lemma 4.12 as the de�nition

of �; there is nothing to prove in that case.

We can now state the correctness result for level-erasure:

Lemma 4.13 If � `M : � is a term of L
Kcc
�!

1 and � �� �
0
then [[M ]]�

K
�� [[jM j]]

�0

K
.

Proof. The proof is by induction on M . The interesting cases are:

� Case�M . To show:

�[[M ]]�
K
��� �k

0:k0 [[jM j]]�
0

K

I.e., that for any O and k (��!�O) k
0,

let�a(�[[M ]]�
K
in ka (�O) k0 [[jM j]]�

0

K

With a simpli�cation of the LHS, this reduces to showing

k [[M ]]�
K
(�O) k0 [[jM j]]�

0

K

which we get immediately from IH on M and the assumption on k and k0.
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� Case let�x(M1 in M2 :��2. To show:

let�x( [[M1]]
�

K
in [[M2]]

�

K
���2 �k

0: [[jM1j]]
�0

K
(�x: [[jM2j]]

�0

K
k0)

That is, for any O and k (��2
!�O) k0, we must show

let�a2( (let�x( [[M1]]
�

K
in [[M2]]

�

K
) in ka2 (�O) [[jM1j]]

�
0

K
(�x: [[jM2j]]

�
0

K
k0)

Again, by a simple rewriting of the LHS, this is equivalent to

let�x( [[M1]]
�

K
in (�x: let�a2( [[M2]]

�

K
in ka2)x

(�O) [[jM1j]]
�
0

K
(�x: [[jM2j]]

�
0

K
k0)

By IH on M1 and the de�nition of ���1 , it su�ces to show that

8a1 ��1
a01: (�x: let�a2( [[M2]]

�

K
in ka2)a1 (�O) (�x: [[jM2j]]

�0

K
k0)a01

i.e., that for all a1 ��1
a01,

let�a2( [[M2]]
�

K
fa1=xg in ka2 (�O) [[jM2j]]

�0

K
fa01=xgk

0

And that follows immediately from the IH on M2, with extended substitutions

(�; a1=x) and (�0; a01=x).

� Case let�x(M1 in M2 : �2. To show:

�k: let�x( [[M1]]
�

K
in [[M2]]

�

K
k � �2

�k0: [[jM1j]]
�
0

K
(�x: [[jM2j]]

�
0

K
k0)

That is, for k (��2
!��) k0,

let�x( [[M1]]
�

K
in [[M2]]

�

K
k (��) [[jM1j]]

�0

K
(�x: [[jM2j]]

�0

K
k0)

Again, by a simple rewriting of the LHS, this is equivalent to

let�x( [[M1]]
�

K
in (�x: [[M2]]

�

K
k)x (��) [[jM1j]]

�
0

K
(�x: [[jM2j]]

�
0

K
k0)

As above, by IH on M1 and the de�nition of ���1 , taking �0 = !̂ and O = �, it

su�ces to show that

8a1 ��1
a01: (�x: [[M2]]

�

K
k)a1 (��) (�x: [[jM2j]]

�
0

K
k0)a01

which follows immediately from the IH onM2, with extended substitutions (�; a1=x)
and (�0; a01=x).

� Case AM . To show:

�q:�(� [[M ]]�
K
) � 0 �q:�(�� [[jM j]]

�0

K
)

I.e., that when q (�0!��) q
0 (vacuously true for any q and q0) then

�(� [[M ]]�
K
) (��)�(�� [[jM j]]�

0

K
)
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By property 3.20(1) of��, it su�ces to show that

� [[M ]]�
K
� �� [[jM j]]�

0

K

which by Lemma 4.12 is equivalent to

 (� [[M ]]�
K
) �!

� (�� [[jM j]]�
0

K
)

and that we get by IH on M after cancelling out the isomorphisms.

� Case #M . To show:

let�o( [[M ]]�
K
(�r:�(�r)) in�( o)

��! �k
0: let�o0( [[jM j]]�

0

K
(�r0:�(��r0)) in k0 ( � o0)

I.e., that for any O and k (�! !�O) k
0,

let�x( (let�o( [[M ]]�
K
(�r:�(�r)) in�( o)) in kx

(�O) let�o0( [[jM j]]�
0

K
(�r0:�(��r0)) in k0 ( � o0)

which simpli�es to

let�o( [[M ]]�
K
(�r:�(�r)) in k ( o)

(�O) let�o0( [[jM j]]�
0

K
(�r0:�(��r0)) in k0 ( � o0)

By de�nition of � and the assumption on k and k0, we have

8o � o0: k ( o) (�O) k ( � o0)

so by 3.20(2), it su�ces to show that

[[M ]]�
K
(�r:�(�r)) (��) [[jM j]]�

0

K
(�r0:�(��r0))

By IH on M , we have [[M ]]�
K
� ! [[jM j]]

�
0

K
, so we only need to show that

8r �! r
0:�(�r) (��)�(��r0)

which follows from 3.20(1) if we have

8r �! r
0: �r � ��r0

and that is again an immediate consequence of the de�nition of �, as in the case

for AM above.

� Case CM . Simple { same translation on both sides.

� Case V�M . To show:

V[[�]]
K
[[M ]]�

K
�� V[[j�j]]

K
[[jM j]]�

0

K

But by IH on M , [[M ]]�
K
�0 [[jM j]]

�
0

K
, so this case can never actually occur (indeed,

there are no closed values of type 0).
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� Case iniM . To show:

ini [[M ]]�
K
��@ ini [[jM j]]

�
0

K

By IH on M , we have [[M ]]�
K
�@(i) [[jM j]]

�0

K
, so we get the result directly from the

de�nition of ��@.

� Case outdiM . To show:

outdi [[M ]]�
K
�@(i)+1 outdi [[jM j]]

�0

K

I.e., that

outdi [[M ]]�
K
(�@(i) + 1) outdi [[jM j]]

�
0

K

By IH on M and the de�nition of ��@, [[M ]]�
K
= ini0 a and [[jM j]]�

0

K
= ini0 a

0 for some

i0 2 dom@ and a �@(i0) a
0. There are two possibilities:

{ i0 = i. Then by de�nition of +r we have

outdi (inia) = inl a (�@(i) + 1) inl a0 = outdi (inia
0)

{ i0 6= i. Then, again by de�nition of the relational actions of + and 1,

outdi (ini0 a) = inr hi (�@(i) +1) inr hi = outdi (ini0 a
0)

4.3 Composable continuations from escapes and state

We now only have to implement a one-level language with escapes, prompts, and abort,

speci�ed by a simple continuation-passing transform. Since we may want to perform the

continuation-passing translation anyway, e.g., for cps-based code generation [App92], we

seem to be on the right track. On closer inspection, however, the translation does not

quite produce \proper" continuation-passing terms: there is still a little bit of explicit

sequencing left in the output.

Recall the equations for [[ ]]
K
from De�nition 4.8. The problem is with A, and espe-

cially with #, which introduce an explicit notion of sequencing of already continuation-

passing terms. By a stroke of good luck, however, we can express this sequencing in

terms of another standard e�ect, namely state.

The key idea is to eliminate the remaining traces of explicit sequencing by performing

another continuation-passing transformation, using a new metacontinuation 
 to keep

track of the nested�-computations. That is, we take the implementation interpretation of

ambient e�ects to also be given by a continuation monad. (We do not constrain the answer

type of this monad, so we retain the full range of possible ambient computational e�ects.)

While this may at �rst seem to move us farther away from a direct implementation, we

will see that the \properly continuation-passing" terms are e�ectively una�ected by this

second translation, while the translations of A and # change in a useful way.
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De�nition 4.14 In L�1 , let there be given a computation-type � of ultimate answers; we

will often abbreviate �! � as :�. We then de�ne [[ ]]
C
: L�1 ! L�1 to be the translation

expanding�-computations into continuation-passing with answer type �, i.e.,

[[��]]
C

= ([[�]]
C
! �)! �

[[�M ]]
C

= �
:
 [[M ]]
C

[[let�x(M1 in M2]]C = �
: [[M1]]C (�x: [[M2]]C 
)

(with other type and term constructors una�ected as usual).

We also de�ne a new continuation-passing translation of LCC!1 , where the answer

type is itself explicitly a type of continuation-passing computations (as opposed to the

unspeci�ed notion of ambient e�ects in��!):

De�nition 4.15 Let ! be an L�?1-type, and take �! = �a: [[!]]
K::a

with isomorphisms

�u : [[!]]
K::�!

�
! �! = rolla:[[!]]

K::a
and  u : �! �

! [[!]]
K::�!

= unrolla:[[!]]
K::a

We then de�ne [[ ]]
K
u : LCC!1 ! L�1 as follows:

[[��]]
K
u = K::�![[�]]Ku = ([[�]]

K
u !::�!)!::�!

[[�M ]]
K
u = �k:�
:k [[M ]]

K
u 


[[let�x(M1 in M2]]Ku = �k:�
: [[M1]]Ku (�x:�
0: [[M ]]
K
u k
0)


[[CM ]]
K
u = �k:�
: [[M ]]

K
u (�a:�q:�
0:k a
0)(�z:�
00:V z 
00)


[[AM ]]
K
u = �q:�
:
 (�u [[M ]]

K
u )

[[#M ]]
K
u = �k:�
: [[M ]]

K
u (�r:�
0:
0 (�u r))(�o:k ( u o)
)

Note that all but the underlined occurrences of 
 can be �-reduced away, so the trans-

lations for value-inclusions, lets, and escapes form a completely standard continuation-

passing transformation.

It is also easy to see that this translation consolidates the two nested continuation-

passing translations into one:

Lemma 4.16 For any type � of LCC!1 , [[[[�]]
K
]]
C
= [[�]]

K
u and for any termM , [[[[M ]]

K
]]
C
=

[[M ]]
K
u (in the predomain interpretation of L�1).

Proof. The only complication is the type-recursion in the de�nition of the translations.

Recall the key cases:

� [[��]]
K
= K��![[�]]K where �! = �a: [[!]]

K�a
.

� [[��]]
K
u = K::�![[�]]Ku where �! = �a: [[!]]

K::a
.

� [[��]]
C
= K�[[�]]C = ::[[�]]

C
.
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We �rst strengthen the relationship for the type translation to, for any o of L�1 ,

[[[[�]]
Ko
]]
C
= [[�]]

K[[o]]
C

(*)

The proof of (*) is a simple induction on �; the only interesting case is

[[[[��]]
Ko
]]
C
= [[([[�]]

Ko
! o)! o]]

C
= ([[[[�]]

Ko
]]
C
! [[o]]

C
)! [[o]]

C

ih= ([[�]]
K[[o]]C

! [[o]]
C
)! [[o]]

C
= K[[o]]C

[[�]]
K[[o]]C

= [[��]]
K[[o]]C

Now, �rst take o =�a in (*) to get

[[�!]]
C
= [[�a: [[!]]

K�a
]]
C
= �a: [[[[!]]

K�a
]]
C
= �a: [[!]]

K[[�a]]C
= �a: [[!]]

K::a
= �!

and then, with o =��!,

[[[[�]]
K
]]
C
= [[[[�]]

K��!
]]
C
= [[�]]

K[[��!]]C
= [[�]]

K::[[�!]]C
= [[�]]

K::�!

Given the equalities on types, the equality on terms is completely straightforward.

The cases for value-inclusion, let, and escape are immediate since their [[ ]]
K
-translations

do not contain any sequencing; we obtain the result by simple �-conversion. For A and

#, we use that

[[ ��M ]]
C
= [[rolla:[[!]]

K�a
M ]]

C
= rolla:[[[[!]]

K�a
]]
C
[[M ]]

C
= rolla:[[!]]

K::a
[[M ]]

C
= �

u [[M ]]
C

and analogously for � . Then, for example,

[[[[AM ]]
K
]]
C
= [[�q:�(�� [[M ]]

K
)]]

C
= �q:�
:
 (�u [[[[M ]]

K
]]
C
)

ih
= �q:�
:
 (�u [[M ]]

K
u )

= [[AM ]]
K
u

4.3.1 Re-tying the recursive knot

Our metacontinuation translation [[ ]]
K
u was derived directly from the original [[ ]]

K
.

However, to match it up with he state-passing translation later, we �rst need to relate

[[ ]]
K
u to an equivalent formulation, using an isomorphic answer type:

De�nition 4.17 Let & = �a0::[[!]]
K:a0

with isomorphisms

�n : :[[!]]
K:&

�
! & = rolla0::[[!]]

K:a0
and  n : & �

! :[[!]]
K:&

= unrolla0::[[!]]
K:a0

Then de�ne [[ ]]
K
n to be the continuation-passing translation with answer type :&, and

with translation equations for escape, abort and reset now reading:

[[CM ]]
K
n = �k:�g: [[M ]]

K
n (�a:�q:�g0:k ag0)(�z:�g00:V z g00)g

[[AM ]]
K
n = �k:�g: ng [[M ]]

K
n

[[#M ]]
K
n = �k:�g: [[M ]]

K
n (�r:�g0: n g0 r)(�n (�a:kag))

It should be intuitively plausible that this de�nition is equivalent to the one in De�ni-

tion 4.15 above; we state this precisely in Corollary 4.22 below, to which one may proceed

without loss of continuity.

From Section A.3, we include:
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De�nition 4.18 The functorial action of L1-type constructors on isomorphisms is given

as follows, so that for any ' : �1
�
! �2, �

i
a:�(') : �f�1=ag

�
! �f�2=ag and 	i

a:�(') :
�f�1=ag

�
! �f�2=ag:

�i
a:a(')a = 'a

�i
a:�(')n = n

�i
a:1(')u = hi

�i
a:�1��2(')p = h�i

a:�1(')( fst p);�
i
a:�2(')(snd p)i

�i
a:0(')z = z

�i
a:�1+�2(')s = case(s; a1: inl (�

i
a:�1(')a1); a2: inl (�

i
a:�2(')a2))

�i
a:�@(')s = case(s; i: ai: ini (�

i
a:@(i)(')ai))

�i
a:�(')b = 	i

a:�(')b

	i
a:��(')m = let�x(m in�(�i

a:�(')x)

	i
a:1(')o = hi

	i
a:�1��2(')p = h	i

a:�1(')( fst p);	
i
a:�2(')(snd p)i

	i
a:�!�(')g = �x:	i

a:�(')(g (�
i
a:�('

�1)x))

We then take advantage of the fact that our chosen solutions to recursive type equa-

tions are unique up to isomorphism, so that in particular it does not matter where we

break up the recursion when de�ning a pair of mutually recursive types:

Lemma 4.19 Let F and G be type constructors of L1 (not necessarily covariant), and

let � = �a: F (Ga) and �0 = �a0: G(Fa0) be the solutions to the corresponding recursive

type equations. Then in the predomain model, there exists an isomorphism � : G� �
! �0,

which further satis�es the following two (equivalent) coherence equations:

x:G� ` rolla0:G(Fa0) (�
i
a0:G(Fa0)(�)(�

i
a:Ga(unrolla:F (Ga))x)) = �x : �0

y:�0 ` �i
a:Ga(rolla:F (Ga))(�

i
a0:G(Fa0)(�

�1)(unroll a0:G(Fa0) y)) = ��1 y : G�

Proof. See Lemma A.14 in the appendix.

In our case, we obtain from this the following instance:

Lemma 4.20 There exists an isomorphism � : :�! �
! &. This induces for any type � of

LCC!1 an isomorphism �� : [[�]]Ku
�
! [[�]]

K
n = �i

a0:[[�]]
K:a0

(�), and moreover

g: &; r: [[!]]
K
u ` ��1 g (�u r) =  n g (�! r) : �

Proof. De�ne the type constructors Fa0 = [[!]]
K:a0

and Ga = :a. Then we have

�! = �a: [[!]]
K::a

= �a: F (Ga) and & = �a0::[[!]]
K:a0

= �a0: G(Fa0)

We thus get the isomorphism � : :�!! & directly from Lemma 4.19. Moreover, we can

write �! = �i
a0:Fa0(�). Now, �rst note that
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�i
a::�(')hx = 	i

a:�!�(')hx = 	i
a:�(')(h(�

i
a:�('

�1)x)) = id (h(�i
a:�('

�1)x))

= h(�i
a:�('

�1)x)

And then, using the second form of the coherence equation from 4.19, we get

�
�1
g (�u r) = �i

a::a(�
u) [�i

a0::[[!]]
K:a0

(��1)( n
g)] (�u r)

= [�i
a0::[[!]]K:a0

(��1)( n
g)] (�i

a:a( 
u)(�u r)) = [�i

a0::[[!]]K:a0
(��1)( n

g)] ( u (�u r))

= �i
a0::[[!]]K:a0

(��1)( n
g)r =  

n
g (�i

a0:[[!]]K:a0
(�)r) =  

n
g (�! r)

Because the translations from De�nitions 4.15 and 4.17 are both continuation-passing

translations with isomorphic answer types, they are very closely related: instead of the

usual logical relation, we get a simple equational correspondence:

Lemma 4.21 Let � = (x1:�1; : : : ; xn:�n), and let us write �� for the substitution

(��1
x1=x1; : : : ;��n xn=xn). Then for any LCC!1 -term � `M : �,

�� [[M ]]
K
u = [[M ]]��

K
n

Proof. The cases for the standard terms (products, sums, and functions) are straight-

forward. For example, for abstractions and applications, we have

��!� [[�x:M ]]
K
u = �a:�� ((�x: [[M ]]

K
u )(��1

� a)) = �a:(�x:�� [[M ]]
K
u )(��1

� a)
ih
= �a:(�x: [[M ]]��;��x=x

K
n )(��1

� a) = �a: [[M ]]��;�� x=x
K
n f��1

� a=xg = �a: [[M ]]��;�� (�
�1
� a)=x

K
n

= �a: [[M ]]��;a=x

K
n = (�x: [[M ]]

K
n )�� = [[�x:M ]]��

K
n

�� [[M1M2]]Ku = �� ([[M1]]Ku [[M2]]Ku ) = (�a:�� ([[M1]]Ku a)) [[M2]]Ku

= (�a0:�� ([[M1]]Ku (��1
� a)))(�� [[M2]]Ku ) = (��!� [[M1]]Ku )(�� [[M2]]Ku )

ih
= [[M1]]

��
K
n [[M2]]

��
K
n = ([[M1]]Kn [[M2]]Kn )�� = [[M1M2]]

��
K
n

For computations, let us �rst name the induced isomorphisms on meta-computations

� : ::�! �
! :& = �i

a::a(�) and ��1 : :& �
! ::�! = �i

a::a(�
�1)

The value isomorphism for computations then becomes:

���u = �i
a:[[��]]K:a

(�)u = �i
a:([[�]]K:a!:a)!:a(�)u

= �k:	i
a::a(�)(u(�

i
a:[[�]]

K:a
!:a(�

�1)k))

= �k:� (u(�a:	i
a::a(�

�1)(k (�i
a:[[�]]

K:a
(�)a)))) = �k:� (u(�a:��1 (k (�� a))))

With this, the cases for inclusion and let are also simple, e.g.,

��� [[�M ]]
K
u = ��� [[�k:k [[M ]]

K
]]
C
= ��� (�k:k [[M ]]

K
u )

= �k:� ((�k:k [[M ]]
K
u )(�a:��1 (k (�� a)))) = �k:� (��1 (k (�� [[M ]]

K
u )))

= �k:k (�� [[M ]]
K
u )

ih= �k:k [[M ]]��
K
n = [[�M ]]��

K
n

The interesting cases are for A and #, which actually depend on the answer type.

Here we need to expand the � and ��1,

�f = �i
a::a(�)f = �g:f (��1 g) and ��1 f = �i

a::a(�
�1)f = �
:f (�
)

in ��� to get

���u = �k:�g:u(�a:�
:k (��a)(�
))(�
�1 g) :

We then check:
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��0 [[AM ]]
K
u = ��0 [[�q:�(�

u [[M ]]
K
)]]

C
= ��0 (�q:�
:
 (�

u [[M ]]
K
u ))

= �q:�g:�
�1
g (�u [[M ]]

K
u ) =y

�q:�g: 
n
g (�! [[M ]]

K
u )

ih= �q:�g: 
n
g [[M ]]��

K
n

= [[AM ]]��
K
n

where the step marked with y uses the coherence equation from Lemma 4.20.

For reset, the calculation is a little more involved, since here we do not simply discard

the continuation:

��! [[#M ]]
K
u = ��! [[�k: let�o(M (�r:�(�u r)) in k ( u

o)]]
C

= ��! (�k:�
: [[M ]]
K
u (�r:�
0:
0 (�u r))(�o:k ( u

o)
))

= �k:�g: [[M ]]
K
u (�r:�
0:
0 (�u r))(�o:k (�! ( 

u
o))(�(��1

g)))

= �k:�g: [[M ]]
K
u (�r:�
0:
0 (�u r))(�o:k (�! ( 

u
o))g)

= �k:�g: [[M ]]
K
u (�r:�
0:
0 (�u r))(�o:(�r:k r g)(�! ( 

u
o)))

= �k:�g: [[M ]]
K
u (�r:�
0:��1 (�
0)(�u r))(�o: n (�n (�r:k r g))(�! ( 

u
o)))

=y
�k:�g: [[M ]]

K
u (�r:�
0: n (�
0)(�! r))(�o:�

�1 (�n (�r:k r g))(�u ( u
o)))

= �k:�g: [[M ]]
K
u (�r:�
0: n (�
0)(�! r))(�

�1 (�n (�r:k r g)))

= �k:�g:(��! [[M ]]
K
u )(�r:�g0: n

g
0
r)(�n (�r:k r g))

ih
= �k:�g: [[M ]]��

K
n (�r:�g

0
: 

n
g
0
r)(�n (�r:k r g)) = [[#M ]]��

K
n

where again the y marks two applications of the coherence equation.

We can now state the observable consequence of the above result, expressed using

only constructs of L�1 , i.e., without the \helper" isomorphisms � and ��:

Corollary 4.22 LetM be a closed LCC!1 -term of type��. Then for any a0 : � and p : �!�,

[[M ]]
K
u (�n:�
0:pn)(�o:a0) = [[M ]]

K
n (�n:�g0:pn)(�n (�r:a0))

Proof. Simple equational veri�cation, using Lemma 4.21 (with empty �), �� =

�i
a0:�(�) = id, and the coherence equation:

[[M ]]
K
n (�n:�g0:pn)(�n (�r:a0)) = (��� [[M ]]

K
u )(�n:�g0:pn)(�n (�r:a0))

= [[M ]]
K
u (�n:�
0: [�n:�
:pn] (��n)(�


0))(��1 (�n (�r:a0)))

= [[M ]]
K
u (�n:�
0:p(��n))(�o:�

�1 (�n (�r:a0))(�
u ( u

o)))

=y [[M ]]
K
u (�n:�
0:pn)(�o: n (�n (�r:a0))(�! ( 

u
o)))

= [[M ]]
K
u (�n:�
0:pn)(�o:(�r:a0)(�! ( 

u
o))) = [[M ]]

K
u (�n:�
0:pn)(�o:a0)

Although this corollary may at �rst appear too specialized, it actually covers exactly

what we need. In particular, ifM is a term without escaping e�ects, it must be equivalent

to an included numeral,�n in the [[ ]]
K
u -translation, and we get:

[[M ]]
K
u (�n:�
0:pn)(�o:a0) = [[�n]]

K
u (�n:�
0:pn)(�o:a0)

= [[�n]]
K
n (�n:�g0:pn)(�n (�r:a0)) = [�k:�g:kng] (�n:�g0:pn)(�n (�r:a0)) = pn

On the other hand, if M actually invokes the metacontinuation (through an A not

protected by an enclosing #), both translations return the \error answer" a0.
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4.3.2 The continuation-state language

Let us now assume that we have available a language with Scheme-like escapes and state

as the e�ects. For simplicity, we consider the state to consist of only a single, typed cell

(additional state could still be accommodated by choosing � appropriately):

De�nition 4.23 Let � be an L�?1-type. Then the signature LCS�1 of the continuation-state

language consists of L1 with all occurrences of�replaced by�(as in De�nition 4.6), and

extended with the following term constructors:

� `M : (�!�0)!�0

� ` CM :�� � ` ! st :��

� `M : �

� ` st :=M :�1

Note that the type � can be a complex type, such as �!��, so that values stored in the
cell can be procedures that themselves read or modify the state. This again introduces

a re
exivity in the types, and it is well known that one can de�ne a �xed-point operator

using higher-order state (as actually done for letrec in Scheme [CR91]). As usual, we

give a de�nitional translation of the new language:

De�nition 4.24 Let � be a computation-type of L�1 , and let � be a L�?1-type. Then the

translation [[ ]]
S
from LCS�1 to L�1 is given by, on types:

[[��]]
S
= K:�̂[[�]]S where �̂ = �a: [[�]]

K:a

We have �s : [[�]]
S

�
! �̂ and  s : �̂ �

! [[�]]
S
in the two directions. (As usual, these can

be taken as identities if � does not contain�.) Then we can give the term translations of

the new constructs:

[[�M ]]
S
= �k:�s:k [[M ]]

S
s

[[let�x(M1 in M2]]S = �k:�s: [[M1]]S (�x:�s
0: [[M2]]S ks

0)s

[[CM ]]
S
= �k:�s: [[M ]]

S
(�a:�q:�s0:k as0)(�z:�s00:V z s00)s

[[! st]]
S
= �k:�s:k ( s s)s

[[st :=M ]]
S
= �k:�s:k hi(�s [[M ]]

S
)

Again, all but the underlined instances of state-passing in the above can be eta-

reduced away. In other words, for the core computational structure, this is a standard

continuation-translation with answer type �̂! �.

Now pick � = !!�0. We then have

�̂ �= [[!!�0]]
S
= [[!]]

S
! (0! �̂! �)! �̂! �

We will use �̂ to represent our metacontinuation 
. Although this state-based encod-

ing of 
 now also gets passed a continuation 0!:�̂ and a state �̂, it will use neither of
these. That is, we informally have \�̂ �= [[!]]

S
! �".
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Having chosen a suitable state type, we also need to express the relevant operations

on the metacontinuation in terms of the constructs of our continuation-state language.

For conciseness, we introduce the abbreviation:

� `M1 :�1 � `M2 :��

� `M1;M2 :��

with expansion

M1;M2
def= let�hi (M1 in M2

We already have value-inclusion, computation-sequencing, and escapes directly avail-

able in LCS�1 . For the remaining two constructs of LCC!1 , we take:

De�nition 4.25 Let ! be an L�?1-type. Then in LCS!!�01 , we de�ne operators A and #,

typed as in De�nition 4.6, as follows:

AM def= let�g( ! st in gM

#M def= C (�c!!�0: let�g( ! st in (st := (�v!:(st := g; cv)); let�x(M in Ax))

Note in particular that the procedure stored into st in # does not use the previous

value of st, nor does it return to its point of call (not that it could, since its return type

is empty).

We now set up a system of logical relations suitable for showing that the above state-

based de�nitions of the control operators capture the behavior of the metacontinuation-

based translation:

Lemma 4.26 Let there be given a relational correspondence between two interpretations

L and L0 of L�1 , with a computation-extension of relations R 7!�R. Let ' 2 CARel(�; �)
be an arbitrary computation-admissible relation on ultimate answers. Then there exists

a collection of relations with the following properties:

� On \wrapped" ultimate answers: '� 2 CARel(�; (0!:�̂)! �̂! �)

m '� m0
() 8q 2 ValL0(0!:�̂); s 2 ValL0(�̂): m ' m0 q s

� On metacontinuations/state: � 2 ARel(&; �̂),

g � s ()  n g (�!! '
�)  s s () 8r �! r

0:  n g r '�  s sr0

� On meta-computations: � 2 CARel(& ! �; �̂! �) = (�!'), i.e.,

x � x0 () 8g � s: xg ' x0 s

� On values: for any L�?1-type �, �� 2 ARel([[�]]
K
n ; [[�]]

S
), de�ned in the usual way

for the standard type constructors, and in particular,

u ��� u
0 () u ((��!�)!�) u

0
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Proof. First assume that the relation � is given independently, and de�ne the oth-

ers in terms of it (thus satisfying all of the equivalences in the lemma except the one

characterizing �). Further, de�ne �� 2 CARel([[!]]
K
n ! �; [[!]]

S
! (0!:�̂)! �̂! �) by


 (��) 
0 () 
 (�! ! '
�) 
0 () 8r �! r

0: 
 r '� 
0 r0

'� is a computation-admissible relation, being given as an intersection over inverse

images of ' by the (rigid) functions id on the LHS and �m:mqs on the RHS. ('� does

not depend on �, so there is no concern about admissibility of the action de�ning it.)

All of the relational actions de�ning �� from � are thus standard, so by Theorem 4.11

we can take � as the invariant relation for the overall action, i.e.,

g � s ()  n g (��)  s s

giving us the remaining equivalence of the lemma.

Having established existence of the appropriate relations, we can now easily show

correctness of the state-based representation of the metacontinuation:

Lemma 4.27 Let � ` M : � be a term of LCC!1 and � �� �
0
. Then [[M ]]�

K
n �� [[M ]]�

0

S

(where on the RHS we use the expansions of A and # from De�nition 4.25.

Proof. By induction on M . Most cases are immediate, with the term constructors

having the same expansions in the two translations. The only exceptions are:

� Case AM . We �rst compute

[[AM ]]
S
= [[let�g( ! st in gM ]]

S
= �q:�s: [[! st]]

S
(�g:�s0: [[gM ]]

S
q s

0)s

= �q:�s:(�g:�s0:g [[M ]]
S
q s

0)( s
s)s = �q:�s:( s

s) [[M ]]
S
q s

We must then show that [[AM ]]�
K
n ��0 [[AM ]]�

0

S
, i.e., that

�q:�g:( n g) [[M ]]
K
n ��0 �q

0:�s:( s s) [[M ]]�
0

S
q0 s

So let q (0!�) q0. Then we must show

�g:( ng) [[M ]]�
K
n � �s:( s s) [[M ]]�

0

S
q0 s

Accordingly, let g � s; it then su�ces to show that

( n g) [[M ]]�
K
n '

� ( s s) [[M ]]�
0

S

which follows from the de�nition of g � s and the IH that [[M ]]�
K
n �! [[M ]]�

0

S
.

� Case #M . Again, we �rst expand the RHS:

[[#M ]]
S
= [[C (�c: let�g( ! st in (st := (�v:(st := g; cv)); let�x(M in Ax))]]

S

= � � � = �k:�s: [[M ]]
S
(�x:�s0:( s

s
0)x(�z:V z)s0)(�s (�v:�q:�s00:k v (�s ( s

s))))

= �k:�s: [[M ]]
S
(�x:�s0:( s

s
0)x(�z:V z)s0)(�s (�v:�q:�s00:k v s))

We must now show that [[#M ]]�
K
n ��! [[#M ]]�

0

S
, i.e., that
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�k:�g: [[M ]]�
K
n (�r:�g

0: n g0 r)(�n (�a:kag))

��! �k
0:�s: [[M ]]�

0

S
(�x:�s0:( s s0)x(�z:V z)s0)(�s (�v:�q:�s00:k0 v s))

As usual, assume k (�! ! �) k
0 and g � s; we must then show

[[M ]]�
K
n (�r:�g

0: n g0 r)(�n (�a:kag))

' [[M ]]�
0

S
(�x:�s0:( s s0)x(�z:V z)s0)(�s (�v:�q:�s00:k0 v s))

By IH on M , it su�ces to show that the continuations and metacontinuations

passed to the two translations are related. For the continuations, we must show

that if r �! x and g0 � s0 then

 n g0 r ' ( s s0)x(�z:V z)s0

which follows from the de�nition of g0 � s0. Similarly, for the metacontinuations,
we must show that

�n (�a:kag) � �s (�v:�q:�s00:k0 v s)

Again, by de�nition of �, this requires showing that for r �! r
0.

 n (�n (�a:kag))r '�  s (�s (�v:�q:�s00:k0 v s))r0

i.e., cancelling the isomorphisms, that

krg '� �q:�s00:k0 r0 s

which follows immediately from the de�nition of '� and the assumption on k and

k0.

4.4 Putting it all together

Summarizing the results of this chapter, we can state:

Theorem 4.28 Let there be given a relational correspondence between a language (L�1 ;L)
and itself, with a computation-extension of relations R 7!�R such that ' =�(�r) is an

equivalence relation.

Further, let [[ ]]
C
: L�1!L�1 be the translation of ambient e�ects using the continuation

monad with answer type � =�� from De�nition 4.14, p 2 ValL(�!�) a printing function,
and a0 2 ValL(�) an error answer.

Finally, let ! be a type of L?1, [[ ]]K the continuation-passing transform with answer type

! from De�nition 3.34, and [[ ]]
S
the continuation-state transform from De�nition 4.24,

with state type � = j!j !�0 and ultimate-answer type �.
Then for any complete program � `M :�� in LK�!1 ,

[[[[M ]]
K
]]
C
p ' [[M 0

1]]S (�n:�s
0:pn)(�s (�x:�q:�s:a0))

where � ` M 0
1 :�� is a term of LCS�1 obtained syntactically from M by (1) erasing all

level-annotations on value-inclusions and lets, and (2) de�ning �K( ) and [ ]K in terms

of escapes and state as detailed in Lemmas 4.3 and 4.4, and De�nition 4.25.
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(For a correctly e�ect-strati�ed programM , the initial error-metacontinuation on the

right-hand side will never be invoked. When the implementation is hosted in an ML-like

language, however, the system cannot statically verify that M is typable in our stricter

system, only that the level-erasure of M is ML-typable. Pragmatically, to give a more

useful behavior for e�ect-typing errors (notably if M has escaping control-e�ects, i.e., if

it e�ectively has type � rather than��), we therefore take the initial metacontinuation to
produce a distinct answer a0 when invoked; we want to show that the simulation is still

correct with this error-catching extension.)

Proof. First, let LC be the predomain semantics for the ambient-e�ect monad induced

by K�� (which is easily checked to be a uniform monad in the predomain semantics) as

in Proposition 2.20. Proposition 2.25 (straightforwardly extended to the additional term

constructors of L�1 ) then gives us that

LC[[ ]] = L[[[[ ]]C ]]

for types and terms. Moreover, the standard relational action of K�� in L, i.e.,

m (CR) m0 () m ((R!��)!��) m0

() 8
; 
0: (8a R a0: 
 a ' 
0a0))m
 ' m0
0

is easily seen to be a computation-extension for the notion of ambient e�ects determined

by the continuation monad: for any a and a0 such that a R a0,

[[�a]]
C
= �k:ka ((R!')! ') �k:ka0 = [[�a0]]

C
;

and similarly for let�.

Let M 0 now be the L
Kcc
�!

1 -program obtained from M by de�ning �K( ) and [ ]K in

terms of C, A, and # (still with their two-level types). Then from De�nition 4.5 (with

associated lemmas) we get that in LC, [[M ]]
K
= [[M 0]]

K
, and hence in L that

[[[[M ]]
K
]]
C
p = [[[[M 0]]

K
]]
C
p (*)

We can now use the level-erasure Lemma 4.13 to get, in the relational correspondence

between the two copies of LC:

[[M 0]]
K
��� [[jM

0j]]
K

Since �� is simply equality of numerals, this expands to

8�0 typeL�1 ; O 2 ARelLC;LC(�0; �!); k 2 ValLC(�!��0); k
0 2 ValLC(�!��!):

(8n 2 N: kn (�O) k0n)) let�x( [[M 0]]
K
in kx (�O) [[jM 0j]]

K
k0

Or, in the original correspondence:

8�0 typeL�1 ; O 2 ARelL;L([[�0]]C ; [[�!]]C );

k 2 ValL(�! ([[�0]]C ! �)! �); k0 2 ValL(�! ([[�!]]
C
! �)! �):

(8n 2 N: kn (CO) k0n)) �
: [[[[M 0]]
K
]]
C
(�x:kx
) (CO) [[[[jM 0j]]

K
]]
C
k0

Somewhat surprisingly, the actual choice of the relation O does not matter much; it is

the use of C to computation-extend O that is important. In fact, we can simply take
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�0 = 0, and O to vacuously relate every element of 0 to every element of [[�!]]
C
. Then

consider the two continuations

k = �n�:�
0!�:pn and k0 = �n0�:�
0[[�!]]C!�:pn0 :

Let n be a natural number; we must show that kn (CO) k0n, i.e., that

8
; 
0: (8o O o0: 
 o ' 
0 o0)) kn
 ' k0n
0 :

Since both k and k0 ignore their metacontinuation arguments, this reduces to pn ' pn,
which we get from re
exivity of '. We thus have:

�
: [[[[M 0]]
K
]]
C
p = �
: [[[[M 0]]

K
]]
C
(�x:kx
)

(CO) [[[[jM 0j]]
K
]]
C
k0 = �
0: [[[[jM 0j]]

K
]]
C
(�n:�
00:pn)
0

Take 
 = �z:V� z and 
0 = �o:a0; they vacuously map all O-related values to '-

related results. Expanding the de�nition of CO, we therefore get:

[[[[M 0]]
K
]]
C
p ' [[[[jM 0j]]

K
]]
C
(�n:�
00:pn)(�o:a0) (*)

We can now take the step to escapes and state. Let M1 = jM
0j. First, Lemma 4.16

gives us

[[[[M1]]K ]]C (�n:�

00:pn)(�x:a0) = [[M1]]Ku (�n:�
00:pn)(�x:a0) (*)

and then Corollary 4.22,

[[M1]]Ku (�n:�
00:pn)(�x:a0) = [[M1]]Kn (�n:�g:pn)(�n (�x:a0)) (*)

From Lemma 4.27, we get, in the L-correspondence:

[[M1]]Kn ��� [[M
0
1]]S

where M 0
1 is obtained from M1 by de�ning A and # in terms of C, ! st and st := as in

De�nition 4.25. We want to get from this that

[[M1]]Kn (�x:�g0:px)(�n (�x:a0)) ' [[M 0
1]]S (�x:�s

0:px)(�s (�x:�q:�s:a0)) (*)

Expanding the de�nition of ���, we need to verify that the continuations are related,

i.e., that for every n �� n
0 (i.e., n = n0), �g0:pn � �s0:pn0, which again reduces to just

pn ' pn0. We must also check that the initial metacontinuation and state are related by

�, i.e., that for r �! r
0, and q, s arbitrary,

 n (�n (�x:a0))r ' ( s (�s (�x:�q:�s:a0)))r
0 q s

And that is true since both sides simplify to a0.
Finally, taking the lines marked with (�) above together in sequence, using the trans-

itivity of ', gives us the desired result.
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And �nally, taking this theorem together with Chapter 3, with nontermination as the

notion of ambient e�ects, and simply diverging for e�ect-typing errors, we get:

Corollary 4.29 Let L? be the partiality interpretation of L�1 , and let T be a monad in

(L0;L?). Then we can pick a state type � in L�?1 such that for any complete LT0 -program
� `M :��,

L?[[[[M ]]
T
]](�) = L?[[[[M

0]]
S
(�n:�s0:�n)(�s (�x:?))]](�)

where M 0
is a term of LCS�1 obtained syntactically from M by (1) erasing all the levels

on value-inclusions and lets, and (2) de�ning �T( ) and [ ]T in terms of escapes, state,

embeddings, and the term constructors of T.

Proof. In the partiality semantics, with relation lifting as the computation-extension,

two closed terms of type�� are related by ' =�(�r) i� their denotations are equal in the

model (so in particular, ' is an equivalence relation).

First, letT0 = I be the identity monad (Example 2.16) andU0 = K�� the continuation

monad with answer type�� (De�nition 3.4). Then by Lemma 3.5 there is a monad

morphism h from T0 to U0 de�ned as follows:

h� = �m��:�
�!��: let�a(m in 
 a

From this, Proposition 3.27 gives us a monad relation between I and K��, mapping a

relation R 2 ARel(�; �0) to R 2 CARel(��; (�!��)!��) by:

m (R) m0 () hm = �
: let�x(m in 
 x ((R!')! ') m0

() 8
; 
0: (8a R a0: 
 a ' 
0 a0)) let�x(m in 
 x ' m0 
0

Hence, by Proposition 3.40, we get a relational correspondence between the interpreta-

tions given by Ls[[ ]] = L?[[ ]] and Li[[ ]] = L?[[[[ ]]C ]], with computation-extension�R taken

as the R de�ned above.

Theorem 3.38, with @ taken as an enumeration of all closed LT0 -types, now gives us

that, in the correspondence between Ls and Li,

[[M ]]
T
(��r) [[M1]]K

where M1 in L
K�T (�@)
1 is obtained fromM by de�ning �T( ) and [ ]T in terms of �K( ) and

[ ]K, the components of T, and the operations for embedding-types. Using �r as our R
above, with 
 = 
0 = �x:�x, we thus get in the original correspondence:

[[M ]]
T
= let�x( [[M ]]

T
in (�x:�x)x ' [[[[M1]]K ]]C (�x:�x)

And from this, we get the desired result directly by Theorem 4.28 with p = �x:�x and

a0 = ?��.
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4.5 ML implementation and examples

In this section we illustrate how the abstract construction presented so far can be tran-

scribed into runnable code. To emphasize the typing issues involved, we use the New

Jersey dialect of Standard ML [AM91] as our concrete language, but the operational

content should translate straightforwardly into Scheme as well (though instantiation to

di�erent monads may be less convenient without a \parameterized module" facility).

We also give several examples; the reader may want to compare these with Wadler's

presentation [Wad92b].

4.5.1 Composable continuations

In SML/NJ, �rst-class continuations have a type distinct from the type of general pro-

cedures. Let us therefore �rst set up a Scheme-style representation of such continuations

as non-returning procedures (this is not essential but makes for a more direct corres-

pondence with the development in Section 4.3):

signaturesignaturesignature ESCAPE =
sigsigsig

typetypetype void
valvalval coerce : void -> 'a
valvalval escape : (('1a -> void) -> void) -> '1a

endendend;

structurestructurestructure Escape : ESCAPE =
structstructstruct

datatypedatatypedatatype void = VOID ofofof void
funfunfun coerce (VOID v) = coerce v
funfunfun escape f = callcc (fnfnfn k => coerce (f (fnfnfn x => throw k x)))

endendend;

For example, we can write

letletlet openopenopen Escape
ininin 3 + escape (fnfnfn k => k (6 + coerce (k 1))) endendend;
(* val it = 4 : int *)

(The use of void and coerce instead of an unconstrained type variable in Escape permits

continuations to be stored in ref -cells while staying within the ML type system [HDM93].)

Now we can de�ne a composable-continuations facility, parameterized by the type of

�nal answers (using De�nition 4.25 and Lemma 4.4):

signaturesignaturesignature CONTROL =
sigsigsig

typetypetype ans
valvalval reset : (unit -> ans) -> ans
valvalval shift : (('1a -> ans) -> ans) -> '1a

endendend;

functorfunctorfunctor Control (typetypetype ans) : CONTROL =
structstructstruct
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openopenopen Escape
exceptionexceptionexception MissingReset
valvalval mk : (ans -> void) ref = ref (fnfnfn _ => raiseraiseraise MissingReset)
funfunfun abort x = (!mk x)

typetypetype ans = ans
funfunfun reset t =

escape (fnfnfn k => letletlet valvalval m = !mk
ininin mk := (fnfnfn r => (mk := m; k r));

abort (t()) endendend)
funfunfun shift h =

escape (fnfnfn k => abort (h (fnfnfn v => reset (fnfnfn ()=>coerce (k v)))))
endendend;

For example,

structurestructurestructure IntCtrl = Control (typetypetype ans = int);

letletlet openopenopen IntCtrl
ininin 1 + reset (fnfnfn () => 2 * shift (fnfnfn k => k (k 10))) endendend;
(* val it = 41 : int *)

4.5.2 Monadic re
ection

Building on the composable-continuations package, we implement the construction of

Section 3.3.5. The signature of a monad is simple:

signaturesignaturesignature MONAD =
sigsigsig

typetypetype 'a t
valvalval unit : 'a -> 'a t
valvalval ext : ('a -> 'b t) -> 'a t -> 'b t
valvalval show : string t -> string

endendend;

(The monad laws have to be veri�ed manually, though.) The component show is included

in the signature for convenience only. We require it to satisfy show �unit = id; on terms

that do not factor through unit, it provides an informal string-based representation of

the e�ect if possible. It might at �rst seem more general to parameterize over types,

i.e., have a show': ('a -> string) -> 'a t -> string, but we can recover that as

fn ms=>fn t=>show (ext (unit o ms) t). Our goal is to de�ne re
ection and rei�c-

ation operations for an arbitrary monad M to get

signaturesignaturesignature RMONAD =
sigsigsig

structurestructurestructure M : MONAD
valvalval reflect : '1a M.t -> '1a
valvalval reify : (unit -> '1a) -> '1a M.t
valvalval run : (unit -> string) -> string

endendend;
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Here, run is again mostly for illustration purposes: it takes a suspended string-returning

computation and returns the result of executing it, annotated by an external represent-

ation of its computational e�ects, if any.

Using Control we can now de�ne a representation of the continuation monad for an

arbitrary answer type (Lemma 4.3, but simpli�ed because of level-erasure):

functorfunctorfunctor ContMonad (typetypetype answer) : MONAD =
structstructstruct

typetypetype 'a t = ('a -> answer) -> answer
funfunfun unit a = fnfnfn k => k a
funfunfun ext f t = fnfnfn k => t (fnfnfn a => f a k)
funfunfun show t = raiseraiseraise Fail "show not defined"

endendend;

functorfunctorfunctor ContRep (typetypetype answer) : RMONAD =
structstructstruct

structurestructurestructure C = Control (typetypetype ans = answer)

structurestructurestructure M = ContMonad (typetypetype answer = answer)
valvalval reflect = C.shift
funfunfun reify t = fnfnfn k => C.reset (fnfnfn () => k (t ()))
funfunfun run t = raiseraiseraise Fail "run not defined"

endendend;

(where show and run cannot be de�ned when the answer type is unknown).

To implement the general construction, we also need to somehow represent the in-

�nitary embedding type from Section 3.3.4. This might at �rst seem fundamentally

incompatible with SML's type system, especially if we want a \parametric" solution,

independent of the collection of available base types and type constructors. But the con-

struction only requires us to exhibit an embedding for those types at which we actually

perform a rei�cation. Thus, all we need is what could be called a \generative type

dynamic": a structure matching

signaturesignaturesignature DYNAMIC =
sigsigsig

typetypetype dyn
valvalval newdyn : unit -> ('1a -> dyn) * (dyn -> '1a)

endendend;

such that for any monotype '1a, an invocation of newdyn () returns a pair of functions

(to_d, from_d) with from_d � to_d equal to the identity on '1a. This signature can

actually be implemented type-safely in SML, by exploiting the fact that the standard

datatype exn (nominally of exception names, but useful for other purposes as well) can

be dynamically extended with new summands:

structurestructurestructure Dynamic : DYNAMIC =
structstructstruct

exceptionexceptionexception Dynamic
abstypeabstypeabstype dyn = DYN ofofof exn
withwithwith funfunfun newdyn () =

letletlet exceptionexceptionexception E ofofof '1a
ininin (fnfnfn a => DYN (E a), fnfnfn DYN (E a) => a | _ => raiseraiseraise Dynamic) endendend
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endendend
endendend;

Note that we never actually raise or handle the exception E anywhere; we only use it as

a dynamically-allocated tag.

Remark 4.30 Encoding dynamic types in terms of exception names is probably the

most e�cient approach in SML/NJ (short of bypassing the type system entirely via

System.Unsafe.cast), but we do not actually depend on existence of an \extensible

datatype" for the construction. In fact, we can get the same e�ect by representing a

value of type dyn as a procedure unit -> unit, setting a speci�c cell to the desired

value:

structurestructurestructure Dynamic' : DYNAMIC =
structstructstruct

exceptionexceptionexception Dynamic
abstypeabstypeabstype dyn = DYN ofofof unit -> unit
withwithwith funfunfun newdyn () =

letletlet valvalval r = ref NONE
ininin (fnfnfn a => DYN (fnfnfn () => r := SOME a),

fnfnfn (DYN d) =>
(r := NONE; d ();
casecasecase !r ofofof SOME a => a | NONE => raiseraiseraise Dynamic)) endendend

endendend
endendend;

However, this needlessly builds a closure for the dynamic value, and is perhaps a bit more

obscure than the exn-based de�nition above.

We can now complete the construction (Theorem 3.38):

functorfunctorfunctor Represent (structurestructurestructure M : MONAD) : RMONAD =
structstructstruct

structurestructurestructure CR = ContRep (typetypetype answer = Dynamic.dyn M.t)

structurestructurestructure M = M
funfunfun reflect m = CR.reflect (fnfnfn k => M.ext k m)
funfunfun reify t =

letletlet valvalval (to_d, from_d) = Dynamic.newdyn ()
ininin M.ext (M.unit o from_d) (CR.reify t (M.unit o to_d)) endendend

funfunfun run t = M.show (reify t)
endendend;

4.5.3 Example: exceptions

Example 1.5 from the Introduction becomes, in the concrete setting of our ML-based

implementation:

structurestructurestructure ErrorMonad =
structstructstruct

datatypedatatypedatatype 'a t = SUC ofofof 'a | ERR ofofof string
valvalval unit = SUC
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funfunfun ext f (SUC a) = f a
| ext f (ERR s) = (ERR s)

funfunfun show (SUC a) = a
| show (ERR s) = "<Error: " ^ s ^ ">"

endendend;

functorfunctorfunctor ErrorOps (structurestructurestructure R : RMONAD sharingsharingsharing R.M = ErrorMonad) :
sigsigsig

valvalval myraise : string -> '1a
valvalval myhandle : (unit -> '2a) -> (string -> '2a) -> '2a

endendend =
structstructstruct

openopenopen ErrorMonad
funfunfun myraise e = R.reflect (ERR e)
funfunfun myhandle t h = casecasecase R.reify t ofofof SUC a => a | ERR s => h s

endendend;

Note that the operations myhandle and myraise are de�ned generically in terms

of any valid implementation of re
ection and rei�cation for the exception monad. For

example, since SML already has exceptions we could simply take

structurestructurestructure ErrorRep' : RMONAD =
structstructstruct

exceptionexceptionexception Exc ofofof string;

structurestructurestructure M = ErrorMonad openopenopen M
funfunfun reflect (SUC a) = a

| reflect (ERR e) = raiseraiseraise Exc e
funfunfun reify t = SUC (t ()) handlehandlehandle Exc e => ERR e
funfunfun run t = show (reify t)

endendend;

We can, however, also plug in the \canonical" de�nitions obtained from Represent:

structurestructurestructure ErrorRep = Represent (structurestructurestructure M = ErrorMonad)
structurestructurestructure FX = ErrorOps (structurestructurestructure R = ErrorRep) openopenopen FX;

funfunfun mydiv (x,y) = ififif y = 0 thenthenthen myraise "Div0" elseelseelse x div y;
(* val mydiv : int * int -> int *)

ErrorRep.run (fnfnfn () => makestring (1 + mydiv (100, 3)));
(* val it = "34" : string *)

ErrorRep.run (fnfnfn () => makestring (1 + mydiv (100, 0)));
(* val it = "<Error: Div0>" *)

ErrorRep.run (fnfnfn () => myhandle (fnfnfn () => makestring (1 + mydiv (100, 0)))
(fnfnfn s => "Oops: " ^ s));

(* val it = "Oops: Div0" *)

The type inferred for myraise above is actually overly conservative wrt. weakness:

since an exception-raising operation never returns normally in the �rst place, it is safe

to give it a fully polymorphic type. We can achieve this by simply changing the de�n-

ition of myraise to Escape.coerce (reflect (ERR e)). Unfortunately, myhandle is
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also only weakly polymorphic, which can be traced back to the fact that reify in the

functor Represent has a weakly polymorphic type (and that itself is a consequence of

its de�nition in terms of Dynamic.newdyn).

It is instructive to inspect the expansion of myraise and myhandle into the underlying

state and continuation manipulations: the cell allocated for the metacontinuation in

Control e�ectively contains the \current handler continuation", which is invoked by a

raise and temporarily rebound in the scope of each new handle. This is very much like

the way exceptions are actually implemented in SML/NJ, although the details are not

quite the same: an exception-speci�c implementation can take advantage of particular

operational properties of the monad (notably that handler continuations are invoked at

most once) to optimize the generic construction a bit.

4.5.4 Example: state

The state monad is straightforward:

functorfunctorfunctor StateMonad (typetypetype state) : MONAD =
structstructstruct

typetypetype 'a t = state -> 'a * state
funfunfun unit a = fnfnfn s => (a,s)
funfunfun ext f t = fnfnfn s => letletlet valvalval (a,s') = t s ininin f a s' endendend
funfunfun show t = raiseraiseraise Fail "not defined"

endendend;

structurestructurestructure IntStateMonad : MONAD =
structstructstruct

structurestructurestructure S = StateMonad (typetypetype state = int) openopenopen S
funfunfun show t =

letletlet valvalval (a,s') = t 42
ininin ififif s' = 42 thenthenthen a elseelseelse "<s: " ^ makestring s' ^ "> " ^ a endendend

endendend

functorfunctorfunctor IntStateOps (structurestructurestructure R : RMONAD sharingsharingsharing R.M = IntStateMonad) :
sigsigsig

valvalval store : int -> unit
valvalval fetch : unit -> int
valvalval tick : unit -> unit

endendend =
structstructstruct

funfunfun store n = R.reflect (fnfnfn s => ((),n))
funfunfun fetch () = R.reflect (fnfnfn s => (s,s))
funfunfun tick () = R.reflect (fnfnfn s => ((),s+1))

endendend

structurestructurestructure IntStateRep = Represent (structurestructurestructure M = IntStateMonad)
structurestructurestructure FX = IntStateOps (structurestructurestructure R = IntStateRep) openopenopen FX;

IntStateRep.run (fnfnfn () => (store 5; tick ();
letletlet valvalval x = fetch ()
ininin tick (); makestring (2 * x) endendend));

(* val it = "<s: 7> 12" *)
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Here the general construction is clearly wasteful, however: we could easily have rep-

resented the state monad without using callcc at all. This is also true for many other

\state-like" monads, such as I/O or complexity. Thus, the real value of the general con-

struction is when the decomposition into escapes and state is not immediately apparent,

as in the following examples.

4.5.5 Example: nondeterminism

A nondeterministic computation can be represented as a list of answers. (Formally, this

goes beyond the monads considered in Chapter 3, but extending the proof to a language

with inductive datatypes such as lists is straightforward.)

structurestructurestructure ListMonad : MONAD =
structstructstruct

typetypetype 'a t = 'a list
funfunfun unit a = [a]
funfunfun ext f [] = []

| ext f (h::t) = f h @ ext f t
funfunfun show [] = "<fail>"

| show [x] = x
| show (h::t) = h ^ " <or> " ^ show t

endendend;

functorfunctorfunctor ListOps (structurestructurestructure R : RMONAD sharingsharingsharing R.M = ListMonad) :
sigsigsig

valvalval pick : '1a list -> '1a
valvalval fail : unit -> '1a
valvalval results : (unit -> '1a) -> '1a list

endendend =
structstructstruct

funfunfun pick l = R.reflect l
funfunfun fail () = R.reflect []
funfunfun results t = R.reify t

endendend;

structurestructurestructure ListRep = Represent (structurestructurestructure M = ListMonad)
structurestructurestructure FX = ListOps (structurestructurestructure R = ListRep) openopenopen FX;

ListRep.run (fnfnfn () => letletlet valvalval x = pick [3,4] * pick [5,7]
ininin ififif x >= 20 thenthenthen makestring x elseelseelse fail () endendend);

(* val it = "21 <or> 20 <or> 28" : string *)

More generally, we get Haskell-style list comprehensions \for free", in that the schema

[E j x1 E1; : : : ; xn En]

(where each xi may be used in Ei+1; : : : ; En and in E) can be expressed directly as

[let x1 = �(E1) in : : : let xn = �(En) in E]

Of course, this is probably not the most e�cient way of implementing list comprehen-

sions in ML. As observed by Wadler, however, list comprehensions can be generalized

to arbitrary monads [Wad92a]; similarly we get general monad comprehensions in ML

simply by supplying the appropriate [ ] and �( ) operations.
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4.5.6 Example: probability

A slight re�nement of the nondeterminism monad permits us to keep track not only of

the possible outcomes of a nondeterministic evaluation, but also their relative probab-

ilities, given a distribution on the individual choice operations. That is, a probabilistic

computation of type � is represented by a �nite set of pairs (ai; pi), where ai is a value

of type �, pi 2 (0; 1], all the ai are distinct, and the pi sum to 1.

However, this example also illustrates a technical problem with monads as a struc-

turing tool for functional programs, as opposed to describing programming language

semantics: the de�nition of a monad requires that the operations � and � be de�ned

uniformly at all types, but in general we cannot properly implement sets of higher-order

values because elements of such type cannot be tested for equality.

For example, we cannot algorithmically identify two probabilistic computations like

f(�x: x; 1)g and f(�x: x; 0: 5); (�x: x; 0: 5)g, even though both represent the same \def-

inite" identity function. Note that the latter variant can easily arise even if we do

not allow explicit non-deterministic choice at higher types { consider a source term like

let y = amb (3; 4) in �x: x + y � y.
While this non-uniqueness is not in itself a problem { after all, we cannot observe

functions directly { we need to ensure that any ground-type result we may obtain by a

series of applications of potentially higher-order probabilistic functions is still uniquely

represented. An easy way of achieving this is to always represent \active" probabilistic

computations non-uniquely using list-nondeterminism, but then only expose rei�cation

at types for which we can eliminate duplicates:

abstractionabstractionabstraction ProbMonad :
sigsigsig

includeincludeinclude MONAD
valvalval to_t : ('a * real) list -> 'a t
valvalval from_t : ''a t -> (''a * real) list

endendend =
structstructstruct

typetypetype 'a t = ('a * real) list (* 0.0<p<=1.0; sum(p) = 1.0 *)
funfunfun unit a = [(a,1.0)]
funfunfun ext f ([]:'a t) = []

| ext f ((a,p) :: t) = map (fnfnfn (b,q) => (b,p*q)) (f a) @ ext f t
funfunfun show' [(a, 1.0)] = a

| show' [] = ""
| show' ((a,p) :: t) = "<p: " ^ makestring p ^ ">" ^ a ^ show' t

funfunfun to_t l = l (* could do some sanity checking here *)
funfunfun tally (a,p) ([]:''a t) = [(a,p)]

| tally (a,p) ((a',p') :: t) =
ififif a = a' thenthenthen (a,p+p') :: t elseelseelse (a',p') :: tally (a,p) t

funfunfun from_t t = fold (fnfnfn (h,l) => tally h l) t []
funfunfun show t = show' (from_t t)

endendend;

functorfunctorfunctor ProbOps (structurestructurestructure R : RMONAD sharingsharingsharing R.M = ProbMonad) :
sigsigsig

valvalval choose : ('1a * real) list -> '1a
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valvalval flip : real -> bool
valvalval distribution : (unit -> ''1a) -> (''1a * real) list

endendend =
structstructstruct

funfunfun choose l = R.reflect (ProbMonad.to_t l)
funfunfun flip p = ififif p <= 0.0 thenthenthen false

elseelseelse ififif p >= 1.0 thenthenthen true
elseelseelse choose [(true,p), (false,1.0-p)]

funfunfun distribution t = ProbMonad.from_t (R.reify t)
endendend;

structurestructurestructure ProbRep = Represent (structurestructurestructure M = ProbMonad)
structurestructurestructure FX = ProbOps (structurestructurestructure R = ProbRep) openopenopen FX;

ProbRep.run (fnfnfn () => ififif flip 0.3 = flip 0.3 thenthenthen "same" elseelseelse "diff");
(* val it = "<p: 0.58>same<p: 0.42>diff" : string *)

Here we have used the SML/NJ abstraction extension to hide the implementation

of the type t; an analogous e�ect could be achieved, slightly more verbosely, using the

standard abstype construct. Also, strictly speaking, the above only gives us uniqueness

up to permutation; to get a truly unique representation we actually need the type ''a

to be linearly orderable, not only supporting an equality predicate.

We can use probabilistic e�ects to solve \textbook problems" such as �nding the

distribution of the total number of heads in n tosses of a biased coin:

funfunfun toss p 0 = 0
| toss p n = ififif flip p thenthenthen 1+toss p (n-1) elseelseelse toss p (n-1);

(* val toss = fn : real -> int -> int *)

distribution (fnfnfn () => toss 0.3 5);
(* val it = [(0,0.16807), (1,0.36015), (2,0.3087), (3,0.1323),

(4,0.02835), (5,0.00243)] : (int * real) list *)

Of course, in this particular case, there already exists a simple analytic solution, but

the \probabilistic execution" approach also handles less regular experiment protocols,

where very dissimilar branches may be taken depending on outcomes of probabilistic

choices.

Note that the simulation keeps track of all possible computation paths, at a potentially

exponential cost in computation time. In cases where the same net outcome can be

achieved in many di�erent ways (as in the example above), it is therefore often useful to

add an explicit wrapper,

choose (distribution (fn () => E))

around such a subcomputation E. This has no e�ect on the result computed (almost by

de�nition: it is an instance of the principle �([E]) = E), but it improves e�ciency by

consolidating computation paths in a manner analogous to dynamic programming.
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4.5.7 Example: continuations

Finally, let us consider the continuation monad (for an arbitrary but �xed answer type).

This lets us de�ne both escapes and composable �rst-class continuations. We already

have the functor ContMonad. Let us create a speci�c instantiation:

structurestructurestructure StringContMonad : MONAD =
structstructstruct

structurestructurestructure S = ContMonad (typetypetype answer = string) openopenopen S
funfunfun show t = t (fnfnfn x => x)

endendend

functorfunctorfunctor StringContOps (structurestructurestructure R : RMONAD sharingsharingsharing R.M = StringContMonad):
sigsigsig

valvalval mycallcc : (('1a -> '1b) -> '1a) -> '1a
valvalval myshift : (('1a -> string) -> string) -> '1a
valvalval myreset : (unit -> string) -> string

endendend =
structstructstruct

funfunfun mycallcc h =
R.reflect (fnfnfn k => letletlet funfunfun c a = R.reflect (fnfnfn k' => k a)

ininin R.reify (fnfnfn () => h c) k endendend)
funfunfun myshift h =

R.reflect (fnfnfn k => R.reify (fnfnfn () => h k) (fnfnfn x => x))
funfunfun myreset t = R.reify t (fnfnfn x => x)

endendend;

structurestructurestructure StringContRep = Represent (structurestructurestructure M = StringContMonad)
structurestructurestructure FX = StringContOps (structurestructurestructure R = StringContRep) openopenopen FX;

StringContRep.run (fnfnfn () => makestring (3 + mycallcc (fnfnfn k => 6 * k 1)));
(* val it = "4" : string *)

StringContRep.run (fnfnfn () => "a" ^ myreset (fnfnfn () =>
"b" ^ myshift (fnfnfn k => k (k "c"))));

(* val it = "abbc" : string *)

4.6 Related work

Di�erent notions of functional or composable continuations have been studied by a num-

ber of researchers. Early work [JD88, FWFD88, DF90] presumed explicit support from

the compiler or runtime system for the actual implementation, such as the ability to mark

or splice together delimited stack segments. However, an encoding in standard Scheme

of one variant was devised by Sitaram and Felleisen [SF90]. Still, this embedding was

quite complex, relying on dynamically-allocated, mutable data structures, eq?-tests, and

the dynamic typing of Scheme.

Another explicitly Scheme-implementable notion of partial continuations was pro-

posed by Queinnec and Serpette [QS91]; the code required is perhaps even more intric-

ate. And more recently, an implementation of a related construct in Standard ML of

New Jersey was presented by Gunter, R�emy and Riecke [GRR95].
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At least initially, most of these operators appear more general than monadic re
ection

for continuations, but it is not clear if the additional expressive power is su�ciently

useful in practice to justify their fairly complex implementations. The much simpler

construction presented in this chapter uses only a single, statically-typed cell holding a

continuation, perhaps the minimal increment over call=cc alone.

Much more signi�cantly, however, this implementation is directly derived from and

related to the original speci�cation; other e�orts gave at most an informal argument that

the (usually operationally speci�ed) control construct was correctly implemented by the

code. Given the relatively complex correctness proof for even the very simple control

operators used in this chapter (A and #), it is not likely that any of the alternatives

would be easier to verify.

The term metacontinuation, with a fairly broad meaning, was �rst used in giving a

formal semantics to a notion of computational re
ection by Wand and Friedman [WF88].

The more restrictive usage of the term, where the metacontinuation actually arises from

a standard continuation-passing transform of an \almost-cps" term, is due to Danvy and

Filinski [DF90].

The further observation that the metacontinuation can be represented by a storage

cell was �rst exploited in a preliminary version of the present work [Fil94]. An application

of this technique for continuation-based partial evaluation was reported by Lawall and

Danvy, who found that a call=cc-based implementation of composable continuations uni-
formly outperformed the equivalent explicit continuation-passing translation, especially

with respect to heap usage [LD94].

The main di�erence between the variant of composable continuations considered in

this chapter and the previous formulations is that we start with an even more abstract

speci�cation of the original operators, distinguishing in the type system between com-

putations with and without control e�ects. Correspondingly, the de�nitional translation

only has a non-trivial e�ect on computations of the former kind.

This distinction gives us a very simple correspondence between composable continu-

ations and monadic re
ection for the continuation monad, further motivating composable

continuations as the canonical control e�ect. (The change was also partially necessitated

by the introduction of ambient e�ects; in [Fil94], the target language of the de�nitional

translation was assumed to be e�ect-free in the present terminology.)



Chapter 5

Conclusions

5.1 Summary

We have analyzed a new approach to incorporating computational e�ects in a functional

language. In many ways, it combines the best features of the existing \purely functional"

and \imperative" models for e�ects, as well as providing a basis for introducing e�ects

incrementally. Let us recapitulate the main properties of the construction:

Convenience. An important advantage of monadic re
ection is the ease with which it

�ts into the familiar programming paradigm of ML-like languages. There is essen-

tially no up-front cost: programs do not have to be (re)written in any particular

style, the e�ects used do not have to be settled upon in advance, and we can directly

use the existing type checker, module system, etc.

In fact, there is no need to even explicitly mention monads when writing the bulk

of the program. Typically, the programmer simply de�nes the desired operations

(such as raise and handle for exceptions, pick and results for nondeterminism, or

spawn and yield for resumptions) using monadic re
ection for a suitable monad,

then expresses the program in terms of those new primitives alone.

The visible di�erence from a \manual" implementation of the e�ects in terms of

continuations and state (or, even more markedly, as part of the compiler) is the

amount of e�ort and ingenuity required. Usually, the monad speci�cation consists

of only a few lines of simple, e�ect-free code. Likewise, the exported operations

are generally a simple combination of the re
ection and/or rei�cation operators.

We never have to think about capturing, storing, retrieving, and invoking continu-

ations to implement, say, a backtracking search; all the required low-level code is

synthesized mechanically from an abstract speci�cation of nondeterministic choice.

Ease of reasoning. Despite its apparent \imperative" nature, monadic re
ection can

equally well be viewed as a technique for writing \purely functional" programs

in a more concise notation, much like monad comprehensions [Wad92a]. In fact,

any imperative program fragment is extensionally equivalent to its monadic-style

counterpart, in the sense that there exist language-de�nable isomorphisms between

the two representations.

114



5.1. SUMMARY 115

A crucial point, however, is that this correspondence to monadic style is a means,

not an end, for reasoning about programs. Simply \being expressible with a mon-

ad", or \having a translation into purely functional code" are vacuous properties,

true of any program using continuations and state (since both are monadic e�ects),

and do not help us prove anything new. Rather, we must exploit the knowledge that

a program is expressible with a particular monad, with a more restrictive notion of

e�ects than the continuation-state monad into which it happens to be embedded

for implementation purposes.

For example, in an ML-like language de�ned by exception-passing on top of par-

tiality, it is easy to argue correctness of a source-level transformation such as

f x + f x = 2 � f x: the subcomputation f x must either succeed with a value,

raise an exception, or diverge; in all three cases, the two expressions are equivalent.

On the other hand, if we examine only a hand-coded implementation of exceptions

in terms of escapes and state { even if the latter e�ects are used for no other purpose

in the program { we cannot argue nearly as directly that common-subexpression

elimination is a valid optimization principle.

E�ciency. Execution e�ciency is an important concern for practical uses of e�ects, and

monadic re
ection usually fares signi�cantly better than an actual translation into

monadic style. If e�ects are rare, programs run at full speed without the overhead

of explicitly performing the administrative manipulations speci�ed by the monad,

such as tagging and checking return values for exceptions.

To ensure good performance of the re
ection and rei�cation operators as well, we

do need to assume a reasonably e�cient implementation of call=cc in the host

language. In cps-based compilers, providing a cheap �rst-class continuation facility

is generally straightforward [App92]. And even in stack-based implementations,

good techniques exist for keeping at least the amortized cost per call=cc acceptably
low [HDB90].

Still, if a particular e�ect is heavily used, it may be preferable to rewrite the program

in the corresponding monadic style. For example, if the parameter provided by

an environment monad changes very frequently, we should make it an explicit

argument to all functions using it. Not only is this likely to be faster than going

through the store on every access, but it will probably result in a clearer program as

well. Conversely, of course, rarely-used arguments can be made implicit, improving

both execution speed and clarity { the latter by focusing attention on the few

cases where some value changes, rather than on all the ones where it is merely

propagated.

In either case, however, the changeover need not be done all at once, because we

can use re
ection and rei�cation to interface between program fragments using the

two approaches. Indeed, the best solution may well be to make the e�ect explicit in

parts of the program that use it heavily, and implicit in those that are not directly

a�ected by it.
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5.2 Future work

Several opportunities for extensions and future investigation arise naturally:

Recursive types in the speci�cation language. Even though our language for de-

�ning monadic e�ects was simply typed, there do not appear to be any fundamental

problems in allowing general recursive types. In fact, the logical-relations proofs in

Chapter 4 already handle recursion in the answer type for the continuation monads

using invariant relations, and similar techniques could in all likelihood be used in

Chapter 3 as well.

However, a proper treatment of recursive types would probably include more than

merely adding the �-types from Section 3.2.1 to the speci�cation language. For

example, it might be appropriate to also allow recursively-de�ned computation-

types, i.e., types of the form �b: �, with an explicit notion of computation-type

variables and the associated extensions to generalized let, etc.

Even more important, we would want a general treatment of recursive monad spe-

ci�cations, such as used in the continuation-passing translation of De�nition 3.34.

The required structure seems to be an L0-monad in the usual sense, but parameter-

ized by an L?0-type. This would allow us to express, for example, ML-style ref -cells

storing procedures, or exceptions carrying non-ground data, without introducing

explicit isomorphisms.

Layering e�ects. Although its potential was not fully realized in this thesis, the organ-

ization in terms of ambient and focus e�ects should generalize directly to multiple,

layered e�ects. In other words, we should be able to integrate di�erent notions of

e�ects in a single language by a series of nested monadic translations, at each step

taking the previous focus e�ect as the new notion of ambient e�ect.

Moreover, this layered strategy for modularly specifying e�ects promises to general-

ize to a modular implementation of such e�ects in terms of continuations and state.

More speci�cally, we would �rst relate a heterogeneous tower of monads to a tower

of continuation-monads (applying at each level the construction in Chapter 3), then


atten this cps tower into a single-level implementation (as in Chapter 4), with a

collection of cells, each holding one meta-continuation of the hierarchy.

Indeed, an apparently-working implementation based on this strategy already ex-

ists, and preliminary investigations into both its theoretical justi�cation and prac-

tical usefulness have been very encouraging. However, time constraints made it

infeasible to include a treatment this generalized construction in the thesis. Fully

formalizing and analyzing the multiple-e�ect case is therefore left as future work.

Practical e�ect-typing for monadic e�ects. While one of the goals of the construc-

tion was to permit a direct embedding of the e�ect-enriched language into ML,

this does not mean that we could not take advantage of a more re�ned type sys-

tem. Some discipline is required when writing programs with e�ects, and it would

be useful to detect violations of e�ect-strati�cation statically, rather than during

program execution.
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Accordingly, there should be a way to optionally make the e�ects used by a piece

of code manifest in its type, especially at module boundaries. We could of course

achieve this by always exporting procedures in their \fully rei�ed" form. Such an

approach, however, tends to be impractically verbose, and the additional conver-

sions, although semantically transparent, may impose a non-negligible overhead.

We would want a concise and unobtrusive way of representing that same informa-

tion in direct style.

Existing work in this area tends to consider mainly low-level notions of e�ects

(jumps and state manipulation) [JG89, KJLS87], rather than application-speci�c,

higher-level concepts. But given the often complex relationship between a monadic

speci�cation and its imperative implementation, it seems highly unlikely that an

automated analysis based on the latter would be able to detect a higher-level pattern

such as an exception-handling system.

Moreover, current e�ect-type systems are generally phrased in terms of Curry-style

type inference (i.e., with the semantics of a program given a priori, and independ-

ently of its type). The re
ection-based approach to e�ects, on the other hand, also

seems well suited for Church-style type reconstruction (where type information is

considered an inherent part of the program, only elided for conciseness), as already

advocated for ML in [HM93].

5.3 Closing remarks

Perhaps the most concise way of stating the main conclusion of this work is that a func-

tional program can and should distinguish between speci�cation and implementation of

computational e�ects { as it already would for any other abstract data type. Oversim-

plifying grossly, we could summarize the alternatives by following Hegelian triad:

� Thesis: the implementation is the speci�cation. The meaning of an e�ect is fully

determined by a reference implementation. For example, a Scheme program could

be written with intuitive but informal abstractions such as error handlers, back-

tracking, or threads, ultimately de�ned only by their expansions into call=cc and

set!.

� Antithesis: the speci�cation is the implementation. The behavior of an e�ect

is fully determined by a purely functional executable speci�cation. For example,

a Haskell program could be written in monadic style, expanding into explicit

exception-passing, success lists, or resumptions.

� Synthesis: the implementation is related to the speci�cation. An e�ect has a

declarative meaning and an imperative behavior, with the latter obtained from the

former in a systematic, but not necessarily direct way. For example (but by no

means exclusively), a program could be written and analyzed in terms of monadic

re
ection, but eventually executed using e�ects built out of escapes and state.

In other words, the tension between Haskell-style monads and Scheme-style primitive

e�ects need not and should not be resolved in unilateral favor of one or the other; it is

precisely through their interplay that the best qualities of both are exposed.



Appendix A

Properties of the Predomain Model

In this chapter we summarize a few auxiliary results about the predomain semantics,

needed in Chapters 3 and 4, but somewhat tangential to the main development. Most are

fairly simple adaptations of standard domain-theoretic results to our predomain setting.

A.1 Recursive type de�nitions

The proof that all recursive type equations have solutions in the predomain semantics

hinges on exhibiting for any type constructor a suitable functorial action in the category

of domains and strict continuous functions. That is, in addition to the evident action on

objects, we need an action on morphisms.

Although we could construct such functors directly in the model, using the standard

notation for continuous functions, it seems more convenient and consistent to use the

existing term syntax for e�ects (�xed to be partiality) in the de�nitions, and only consider

the denotations of the constructed terms in the end.

For the purposes of this appendix only, let us therefore extend our term syntax by

introducing the additional computation-type constructor ?� and term constructors ?M
and let? x(M1 in M2 with types:

� `M : �

� ` ?M : ?�

� `M1 :
?� �; x:� `M2 : �

� ` let? x(M1 in M2 : �

analogous to the existing ambient e�ects, but always referring to the partiality monad.

The let? is actually more like the generalized let�� than like let�, because the result can be

of any computation-type. We omit the explicit type subscript in let?, however, because

we already have a uniform semantic characterization of its meaning at all pointed types:

L[[?�]]� = L[[�]]�?

L[[?M ]]�(�) = up(L[[?M ]]�(�))

L[[let? x(M1 in M2]]
�(�) = (�a:L[[M2]]

�(�[x 7! a]))z(L[[M1]]
�(�))

where f z is the generalized strict extension from Section 2.1.3(lifting).

118
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For embedding-types, we also de�ne a general case-construct, dispatching among all

the possibilities in @:

� `M : �@ 8i 2 I: �; x:@(i) `M(i) : �

� ` case(M; i: xi:M(i)) : �

with semantics

L[[case(i:M; i: xi:M(i))]]�(�) = L[[M(i)]]�(�[xi 7! ai]) when L[[M ]]�(�) = (i; ai)

Again, this case is never used in writing actual programs; it merely gives us a convenient

way of referring to semantic entities in the predomain model.

De�nition A.1 For any value-type � and computation-type � over fag in L1 (i.e., L�
0

extended with an empty type), we de�ne a type constructor �a:�( ; ) and a computation-

type constructor 	a:�( ; ) by

�a:�(�
�; �+) = �f��=a�; �+=a+g and 	a:�(�

�; �+) = �f��=a�; �+=a+g

where �f�0=a+g means � with �0 substituted for all positive occurrences of a, and ana-

logously for negative occurrences.

Further, we de�ne term constructors �a:�( ; ) and 	a:�( ; ) with types:

f� : ��1 !
?��2 f+ : �+

1 !
?�+

2

�a:�(f
�; f+) : �a:�(�

�
2 ; �

+
1 )!

?�a:�(�
�
1 ; �

+
2 )

f� : ��1 !
?��2 f+ : �+

1 !
?�+

2

	a:�(f
�; f+) : 	a:�(�

�
2 ; �

+
1 )!	a:�(�

�
1 ; �

+
2 )

as follows:

�a:a(f
�; f+) = �a:f+a

�a:�(f
�; f+) = �n:?n

�a:1(f
�; f+) = �u:?hi

�a:�1��2(f
�; f+) = �p: let? x1( �a:�1(f

�; f+)( fst p)
in let? x2( �a:�2(f

�; f+)(snd p) in ?hx1; x2i

�a:0(f
�; f+) = �z:?z

�a:�1+�2(f
�; f+) = �s: case(s; x1:let

? y1(�a:�1(f
�; f+)x1 in

?( inl y1);
x2:let

? y2(�a:�2(f
�; f+)x2 in

?( inr y2))

�a:�@(f
�; f+) = �s: case(s; i: xi: let

? yi( �a:@(i)(f
�; f+)xi in

?(ini yi))

�a:�(f
�; f+) = �b:?(	a:�(f

�; f+)b)

	a:��(f
�; f+) = �m: let�x(m in let? y(�a:�(f

�; f+)x in�y

	a:1(f
�; f+) = �u:hi

	a:�1��2(f
�; f+) = �p:h	a:�1(f

�; f+)( fst p);	a:�2(f
�; f+)(snd p)i

	a:�!�(f
�; f+) = �g:�x: let? y( �a:�(f

+; f�)x in 	a:�(f
�; f+)(g y)
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A few simple properties of these de�nitions are:

Lemma A.2 (1) When a does not occur free in � or � then

�a:�(f
�; f+) = �a:?a 	a:�(f

�; f+) = �b:b

More generally, (2) the type-directed actions are compositional:

�a:�(�a:�0(f
+; f�);�a:�0(f

�; f+)) = �a:�f�0=ag(f
�; f+)

	a:�(�a:�0(f
+; f�);�a:�0(f

�; f+)) = 	a:�f�0=ag(f
�; f+)

Finally, (3) the de�nitions are functorial in the following sense:

�a:�(�x:
?x; �x:?x) = �a:?a 	a:�(�x:

?x; �x:?x) = �b:b

�a:�(�x: let
? y( f�1 x in f�2 y; �x: let

? y( f+
1 x in f+

2 y)
= �a: let? r( �a:�(f

�
2 ; f

+
1 )a in �a:�(f

�
1 ; f

+
2 )r

	a:�(�x: let
? y( f�1 x in f�2 y; �x: let

? y( f+
1 x in f+

2 y)
= �b:	a:�(f

�
1 ; f

+
2 )(	a:�(f

�
2 ; f

+
1 )b)

(i.e., �a:�( ; ) is an endofunctor in the Kleisli category of the lifting monad, while

	a:�( ; ) is a functor from the Kleisli category to the underlying one).

Proof. Simple induction on � and � in all cases. Note, however, that veri�cation of

the value-product case of (3) relies on partiality being a commutative e�ect.

We can also de�ne an \ordinary" functorial operation on functions between lifted

types:

De�nition A.3 When g� and g+ are strict functions (i.e., rigid with respect to
?
-

e�ects), we de�ne the term constructor

g� : ?��1 !
?��2 g+ : ?�+

1 !
?�+

2

�d

a:�(g
�; g+) : ?�a:�(�

�
2 ; �

+
1 )!

?�a:�(�
�
1 ; �

+
2 )

by

�d

a:�(g
�; g+) = �m: let? x(m in �a:�(�x:g

� (?x); �x:g+ (?x))x

We then have:

Lemma A.4 �d

a:�( ; ) is functorial in the following sense:

�d

a:�(id; id) = id

�d

a:�(g
�
2 � g

�
1 ; g

+
2 � g

+
1 ) = �d

a:�(g
�
1 ; g

+
2 ) � �

d

a:�(g
�
2 ; g

+
1 )

Proof. Simple veri�cation, using Lemma A.2(3):

�d

a:�(id; id) = �m: let? x(m in �a:�(�x:
?
x; �x:

?
x)x = �m: let? x(m in (�a:?a)x

= �m: let? x(m in ?
x = �m:m = id
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�d

a:�(g
�
2 � g�1 ; g

+
2 � g+1 ) = �m: let? x(m in �a:�(�a:g

�
2 (g�1 (?a)); �a:g+2 (g+1 (?a)))x

=y
�m: let? x(m

in �a:�(�a: let
?
y( g

�
1 (?a) in g

�
2 (?y); �a: let? y( g

+
1 (?a) in g

+
2 (?y))x

= �m: let? x(m

in let? r( �a:�(�y:g
�
2 (?y); �a:g+1 (?a))x in �a:�(�a:g

�
1 (?a); �y:g+2 (?y))r

= �m: let? r( (let? x(m in �a:�(�y:g
�
2 (?y); �a:g+1 (?a))x)

in �a:�(�a:g
�
1 (?a); �y:g+2 (?y))r

= �m:�d

a:�(g
�
1 ; g

+
2 )(�

d

a:�(g
�
2 ; g

+
1 )m) = �d

a:�(g
�
1 ; g

+
2 ) � �

d

a:�(g
�
2 ; g

+
1 )

where y uses that for a strict g,

gm = g (let? x(m in ?
x) = let? x(m in g (?x)

Let us also recall some elementary properties of least �xed points:

Lemma A.5 Let �xB : (B!B)!B denote the least-�xed-point operator for a pointed

cpo B. Then

1. For any continuous f : B! B and g : B0!B0
, and strict continuous h : B0! B

with f � h = h � g, �xB(f) = h(�xB0(g)).

2. For any continuous f : B!B0
and g : B0!B, �xB(g � f) = g(�xB0(f � g)).

Proof.

1. Follows directly from the de�nition of �x:

h(�xB0(g)) = h(
G

i
gi(?B0)) =

G
i
h(gi(?B0)) =

G
i
f i(h(?B0)) =

G
i
f i(?B)

= �xB(f)

2. (We cannot simply use the above result here, because g is not necessarily strict.)

Let x = �xB0(f � g) and y = �xB(g � f). First, since g(x) is a �xed point of g � f
(because (g � f)(g(x)) = g((f � g)(x)) = g(x)), we have y v g(x). Analogously,

since f(y) is a �xed point of f � g, x v f(y), and hence by monotonicity of g,
g(x) v g(f(y)) = y. And thus, since v is a partial order, we get g(x) = y.

Although for the purposes of Chapter 3, all we need is a solution to the type equa-

tion (not necessarily the least one), for Chapter 4 we will also need that the relevant

isomorphism satis�es an additional equational property:

De�nition A.6 Let Cpo? be the category of pointed cpos (domains) and strict continu-

ous functions. Let F : Cpoop? �Cpo?!Cpo? be a functor (we call such an F a mixed

functor in Cpo?); it is locally continuous if its action on morphisms is continuous. A

minimal invariant for F is an object X together with an isomorphism i : F (X;X)!X
such that

�xX!X (�h:i � F (h; h) � i�1) = idX
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One can show that the standard inverse-limit construction for solving recursive do-

main equation actually yields minimal invariants:

Theorem A.7 Every locally continuous mixed functor in Cpo? has a minimal invari-

ant.

Proof. See [Pit99].

Using this, we get for our predomain language:

Corollary A.8 Every recursive type equation in L1 has a solution in the predomain

model, i.e., for any parameterized type `fag � type, there exists a cpo A with an iso-

morphism i : L[[�]]a 7!A!A. Moreover, interpreting �a: � as A, rolla:� as i, and unrolla:�
as i�1

, the following equation is satis�ed in the model:

�x(�a:�)!?�a:� (�f:�a: let
? x( �a:�(f; f)(unrolla:�a) in

?(rolla:�x)) = �a:?a

Proof. Every pointed cpo is isomorphic to a lifted cpo. So we can use Theorem A.7

with the functor given by

F (A�
?; A

+
?) = (L[[�a:�(a

�; a+)]]a
� 7!A�;a+ 7!A+

)?;

F (g� : A�
1 ?!A�

2 ?; g
+ : A+

1 ?! A+
2 ?)

= L[[�d

a:�(x
�; x+)]]a

�

1 7!A
�

1 ;:::;a
+
2 7!A

+
2 (�[x� 7! g�; x+ 7! g+])

to obtain a pointed cpo A? with an isomorphism j : (L[[�]]a 7!A)?!A?. Moreover, since

j is an isomorphism, it both preserves and re
ects ?, and must hence be expressible as

j = i? = �m: let? x(m in ?(ix) for some isomorphism i : L[[�]]a 7!A! A.
Further, we get the minimal invariant property for i from the minimal invariant

property of j wrt. �d

a:�( ; ), using Lemma A.5(2) to rearrange the �x body:

�x (�f:�x: let? r( �a:�(f; f)( x) in
?(�r))

= �x ((�g:�x:g (?x)) � (�f:�m: let? x(m in let? r( �a:�(f; f)( x) in
?(�r)))

= (�g:�x:g (?x))

(�x ((�f:�m: let? x(m in let? r( �a:�(f; f)( x) in
?(�r)) � (�g:�x:g (?x))))

= �x: �x (�g:�m: let? x(m

in let? r( �a:�(�x:g (
?
x); �x:g (?x))( x) in ?(�r))(?x)

= �x: �x (�g:�m: let? x(m in let? r( �d
a:�(g; g)(

?( x)) in ?(�r))(?x)

= �x: �x (�g:�m:(�m: let? r(m in ?(�r))(�d

a:�(g; g)(let
?
x(m in ?( x))))(?x)

= �x: �x (�g:�m:j (�d

a:�(g; g)(j
�1
m)))(?x) = �x: id (?x) = �x:

?
x

A.2 Admissible relations

In this section we review the properties of (computation-)admissbile relations in the cpo

semantics; in particular, we show admissibility of the key relation-forming constructs.

Let there be given a relational correspondence between predomain interpretations L

of L and L0 of L0 (De�nition 3.16). Most notably, admissibility is then preserved by

formation of inverse images and intersections (e.g., [Pit99]):
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Lemma A.9 Recall that a (computation-)admissibile relations between closed types �
and �0 is a (pointed) chain-complete relation between cpos L[[�]] and L0[[�0]]. We then

have:

1. When R 2 ARel(�; �0), (x1:�1; : : : ; xn:�n) ` M : � and (x01:�
0
1; : : : ; x

0
n0
:�0

n0
) `

M 0 : �0 are terms of L and L0 respectively, and for all i � 2, �xi 2 ValL(�i) and
�0x0

i
2 ValL0(�

0
i
), the relation R1 2 Rel(�1; �

0
1) given by

a1 R1 a
0
1 () M (a1=x1;�) R M 0(a01=x

0
1;�

0)

is admissible.

Moreover, when �1 and �01 are computation-types, R is computation-admissible,

and the functions �x1:M
�
and �x01:M

0�0
are rigid, then R1 is also computation-

admissible.

2. When (Rj)j2J is an arbitrary (not necessarily �nite or even countable) family of

admissible relations between � and �0, the relation
T
j2J Rj is admissible, where

a (
\

j2J
Rj) a

0 () 8j 2 J: a Rj a
0

Moreover, if each Rj is computation-admissible then so is
T
j2J Rj.

Proof. Both parts are fairly simple:

1. De�ne the continuous functions f : L[[�1]]!L[[�]] and f
0 : L0[[�01]]!L

0[[�0]] by

f = �a1:L[[M ]](�[x1 7! a1; x2 7!�x2: : : ; xn 7!�xn])

and

f 0 = �a01:L
0[[M 0]](�[x01 7! a01; x

0
2 7! �0x02; : : : ; xn0 7!�0x0

n0
])

Then a1 R1 a
0
1 i� f(a1) R f 0(a01).

Now let (a1i)i2! and (a01i)i2! be chains in L[[�1]] and L
0[[�01]], respectively, such that

for all i 2 !, a1i R1 a
0
1i, i.e., f(a1i) R f 0(a01i). By monotonicity of f , the sequences

(f(a1i))i2! and (f 0(a01i))i2! then form chains in L[[�]] and L0[[�0]], and since R was

assumed chain-complete, we have

G
i
f(a1i) R

G
i
f 0(a01i)

By continuity of f and f 0, this is equivalent to

f(
G

i
a1i) R f 0(

G
i
a01i)

which says that
F
i a1i R1

F
a01i, meaning that R1 is chain-complete.

Further, to show R1 pointed, we must show f(?) R f 0(?), which follows from

pointedness of R and the fact (Proposition 2.13) that a rigid function is strict.
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2. Let Rj be a family of chain-complete relations between cpos L[[�]] and L0[[�0]], and
let (ai)i2! and (a0

i
)i2! be chains componentwise related by the intersection R of all

the Rj. That is,

8i 2 !: 8j 2 J: ai Rj a
0
i

Exchanging the two universal quanti�ers, we get

8j 2 J: 8i 2 !: ai Rj a
0
i

Now, since each Rj was assumed chain-complete, this implies

8j 2 J:
G

i
ai Rj

G
i
a0
i

And thus,
F
i ai (

T
j2J Rj)

F
i a

0
i
as required to show chain-completeness of R.

Similarly, if each Rj relates ?L[[�]] and ?L0[[�0]], then so must their intersection, and

thus
T
j2J Rj is pointed.

We can also show admissibility of the standard relational actions of the type con-

structors (where it does not already follow directly from the previous lemma):

Lemma A.10 If the R's are admissible relations, then so are (1) �r and (2) R1 +
r R2

(de�ned as in Lemma 3.18), and (3) the �r
i
Ri, given by

s (�r
i
Ri) s

0 () 9i 2 I: 9ai Ri a
0
i
: s = iniai ^ s

0 = inia
0
i

Moreover, if relation extension is taken as relation-lifting (from Proposition 3.21), then

(4)�R is computation-admissible.

Proof. The relations determined by the de�nitions in each case can be written as:

�r = f(n; n) j n 2 Ng

R1 +
r R2 = f((1; a1); (1; a

0
1)) j (a1; a

0
1) 2 R1g [ f((2; a2); (2; a

0
2)) j (a2; a

0
2) 2 R2g

�r
i
Ri = f((i; ai); (i; a

0
i
)) j i 2 I; (ai; a

0
i
) 2 Rig

�R = f(up(a); up(a0)) j (a; a0) 2 Rg [ f(?;?)g

We then check each case:

1. Case �r. Since the cpo N of natural numbers was discretely ordered, any chain in

N must be constant, so least upper bounds of componentwise related chains are

obviously also related.

2. Case R1+
rR2. A chain in A1+A2 must lie entirely within one of the injects. Assume

wlog. that it is of the form ((1; ai))i2! for some chain (ai)i2! in A1. Analogously,

the related chain must be of the form ((1; a0
i
))i2!, with ai R1 a

0
i
. By assumption on

R1,
F
i ai R1

F
i a

0
i
. The result then follows by observing that

G
i
(1; ai) = (1;

G
i
ai) (R1 +R2) (1;

G
i
a0
i
) =

G
i
(1; a0

i
)
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3. Case �r
i
Ri is analogous to +

r, only with the set of tags taken as I instead of f1; 2g.

4. Case�R. Let (mi)i2! and (m0
i
)i2! be chains such that mi (�R) m

0
i
. There are then

two possibilities. It could be that for all i, mi = ?A?
and m0

i
= ?A0

?
. In this case,

G
i
mi = ?A?

(�R) ?A0
?
=
G

i
m0

i

by the second disjunct of the de�nition, and we are done. Or there exists an i0 � 0,

such that for all i � i0, mi = up(ai) and m0
i
= up(a0

i
) for some ai R a0

i
. By

de�nition of the ordering in A?, the ai form a chain (if up(ai) v up(ai+1) then

ai v ai+1). Analogously for the a0
i
. Because R was assumed chain-complete, we

have
F
i�i0 ai R

F
i�i0 a

0
i
. And since the initial segment of ?s in a chain does not

a�ect its least upper bound, we get

G
i
mi =

G
i�i0

up(ai) = up(
G

i�i0
ai) (�R) up(

G
i�i0

a0
i
) =

G
i�i0

up(a0
i
) =

G
i
m0

i

Also, directly by the second component of the de�nition,�R is pointed.

And �nally, we can verify our �xed-point induction principle:

Lemma A.11 Let S be a computation-admissible relation between � and � 0. Let f 2
ValL(�!�) and f 0 2 ValL0(�

0!� 0) be such that 8b S b0: f b S f 0 b0. Then �x� f S �x�0 f
0
.

Proof. We have L[[�x� x]](�[x 7! f ]) =
F
i f

i(?L[[�]]), and analogously for f 0. Since in

particular S is admissible, i.e., chain-complete in the model, it su�ces to show that for

all i � 0,

f i(?L[[�]]) S f
0i(?L[[�0]])

This follows by a simple induction on i. For i = 0, we get the result from pointedness

(computation-admissibility) of S. And for the inductive step, we use that if f i(?) S f 0i(?)
then by assumption on f and f 0,

f i+1(?) = f(f i(?)) S f 0(f 0i(?)) = f 0i+1(?)

A.3 Isomorphisms of recursive types

The de�nition of �a:�(f
�; f+) allows it to act on partial functions (i.e., total functions

into a lifted cpo); we need this generality for solving recursive type equations, because

the approximants will not be total. But when the type-directed functor acts on known

isomorphisms between cpos (not necessarily pointed), a simpler de�nition is possible:

De�nition A.12 When ' is a term constructor denoting an isomorphism (e.g., roll or

unroll), we de�ne term constructors �i
a:�(') and 	i

a:�(') with types:

' : �1
�
! �2

�i
a:�(') : �f�1=ag

�
! �f�2=ag

and
' : �1

�
! �2

	i
a:�(') : �f�1=ag

�
! �f�2=ag
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as follows:

�i
a:a(')a = 'a

�i
a:�(')n = n

�i
a:1(')u = hi

�i
a:�1��2(')p = h�i

a:�1(')( fst p);�
i
a:�2(')(snd p)i

�i
a:0(')z = z

�i
a:�1+�2(')s = case(s; a1: inl (�

i
a:�1(')a1); a2: inl (�

i
a:�2(')a2))

�i
a:�@(')s = case(s; i: ai: ini (�

i
a:@(i)(')ai))

�i
a:�(')b = 	i

a:�(')b

	i
a:��(')m = let�x(m in�(�i

a:�(')x)

	i
a:1(')o = hi

	i
a:�1��2(')p = h	i

a:�1(')( fst p);	
i
a:�2(')(snd p)i

	i
a:�!�(')g = �x:	i

a:�(')(g (�
i
a:�('

�1)x))

Lemma A.13 The functorial actions on isomorphisms are related to their general coun-

terparts as follows:

?(�i
a:�(')a) = �a:�(�x:

?('�1x); �y:?('y))a

	i
a:�(')b = 	a:�(�x:

?('�1x); �y:?('y))b

Proof. Straightforward induction on � and �.

Note also that we have �i
a:�(�

i
a0:�0(')) = �i

a0:�f�0=ag(').

Lemma A.14 Let F and G be type constructors of L1 (not necessarily covariant), and

let � = �a: F (Ga) and �0 = �a0: G(Fa0) be the solutions to the corresponding recursive

type equations. Then in the predomain model, there exists an isomorphism � : G� �
! �0,

which further satis�es the following two (equivalent) coherence equations:

x:G� ` roll a0:G(Fa0) (�
i
a0:G(Fa0)(�)(�

i
a:Ga(unrolla:F (Ga))x)) = �x : �0

y:�0 ` �i
a:Ga(rolla:F (Ga))(�

i
a0:G(Fa0)(�

�1)(unroll a0:G(Fa0) y)) = ��1 y : G�

Proof. When ' : �1
�
! �2 is a term constructor, we de�ne the function

'] : ?�1!
?�2 = �m

?
�1 : let? x(m in ?('x)

For terms, take F (f�; f+) = �d

a:Fa(f
�; f+) and also write F̂ (f) for F (f; f). Analogously

for G. Further, we de�ne the usual abbreviations � = rolla:F (Ga) and �0 = rolla0:G(Fa0),

with  and  0 for the inverses.
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Now let i = �] : ?F (G�)! ?� and j = �0] : ?G(F�0)! ?�0 be the minimal in-

variants for the corresponding functors. We �rst show that there exists an isomorphism

l : ?G(�)! ?�0. Take

(l0; l) = �x (�(h
?
�
0!?

G�; k
?
G�!?

�
0

):
(G(i�1; i) �G(F (h; k); F (k; h)) � j�1; j �G(F (k; h); F (h; k)) �G(i; i�1)))

We want to show that l0 is actually the two-sided inverse of l. Accordingly, consider the
strict function c = �(h; k): k � h. Lemma A.4 then gives us:

c � (�(h; k): (G(i�1
; i) �G(F (h; k); F (k; h)) � j�1

; j �G(F (k; h); F (h; k)) �G(i; i�1)))

= �(h; k): j �G(F (k; h); F (h; k)) �G(i; i�1) �G(i�1
; i) �G(F (h; k); F (k; h)) � j�1

= �(h; k): j �G(F (k; h); F (h; k)) �G(i�1 � i; i�1 � i)) �G(F (h; k); F (k; h)) � j�1

= �(h; k): j �G(F (k; h); F (h; k)) �G(id?FG�; id?FG�) �G(F (h; k); F (k; h)) � j
�1

= �(h; k): j �G(F (k; h); F (h; k)) � id?GFG� �G(F (h; k); F (k; h)) � j
�1

= �(h; k): j �G(F (h; k) � F (k; h); F (h; k) � F (k; h)) � j�1

= �(h; k): j �G(F (k � h; k � h); F (k � h; k � h)) � j�1 = �(h; k): j � Ĝ(F̂ (k � h)) � j�1

= �(h; k): (�f:j � Ĝ(F̂ (f)) � j�1)(k � h) = (�f:j � Ĝ(F̂ (f)) � j�1) � c

From Lemma A.2(2) and a let-simpli�cation, we obtain that

�d

a:Ga(�
d

a:Fa(f; f);�
d

a:Fa(f; f)) = �d

a:G(Fa)(f; f)

so by Lemma A.5(1) and the fact that j is a minimal invariant for GF , we get

l
0 � l = c(�x (�(h; k): � � �)) = �x (�f:j � Ĝ(F̂ (f)) � j�1) = id?�0 = id

]

�0

In the other direction, taking c0 = �(h; k): h � k, we similarly get:

c
0 � (�(h; k): (G(i�1

; i) �G(F (h; k); F (k; h)) � j�1
; j �G(F (k; h); F (h; k)) �G(i; i�1)))

= �(h; k): G(i�1
; i) �G(F (h; k); F (k; h)) � j�1 � j �G(F (k; h); F (h; k)) �G(i; i�1)

= �(h; k): G(i�1
; i) �G(F (h; k); F (k; h)) �G(F (k; h); F (h; k)) �G(i; i�1)

= �(h; k): G(i�1
; i) �G(F (h � k; h � k); F (h � k; h � k)) �G(i; i�1)

= (�g:G(i�1
; i) �G(F (g; g); F (g; g)) �G(i; i�1)) � c0

= (�g:G(i � F (g; g) � i�1
; i � F (g; g) � i�1)) � c0 = (�g: Ĝ(i � F̂ (g) � i�1)) � c0

And thus we have, using both parts of Lemma A.5 and the minimal-invariant property

of i:

l � l0 = c
0 (�x (�(h; k): � � �)) = �x (�g: Ĝ(i � F̂ (g) � i�1)) = Ĝ(�x (�f: i � F̂ (Ĝ(f)) � i�1))

= Ĝ(id?�) = id?G� = id
]

G�

We can thus take � to be the unique isomorphism such that �] = l.

Further, knowing that l and l0 are actually inverses, we get the second part of the

result by unrolling their �xed-point de�nition once:

(l0; l) = (G(i�1
; i) �G(F (l0; l); F (l; l0)) � j�1

; j �G(F (l; l0); F (l0; l)) �G(i; i�1))

Now, take advantage of the following simple relationship between the functorial ac-

tions on an isomorphisms:

�d

a:�('
�1]

; '
]) = �d

a:�(�m: let
?
x(m in ?('�1

x); �m: let? x(m in ?('x))

= �m: let? x(m in �a:�(�x: let
?
x( ?

x in ?('�1
x); � � �' � � �)x

= �m: let? x(m in �a:�(�x:
?('�1

x); �x:?('x))x

= �m: let? x(m in ?(�i
a:�(')x) = �i

a:�(')
]
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From this we get:

�
] = l = j �G(F (l; l0); F (l0; l)) �G(i; i�1)

= �
0] � �d

a:Ga(�
d

a:Fa(�
]
; �

�1]);�d

a:Fa(�
�1]

; �
])) � �d

a:Ga(�
]
;  

])

= �
0] � �d

a:Ga(�
i
a:Fa(�

�1)];�i
a:Fa(�)

]) � �i
a:Ga( )

] = �
0] � �i

a:Ga(�
i
a:Fa(�))

] � �i
a:Ga( )

]

So, in particular,

?(�0 (�i
a:G(Fa)(�)(�

i
a:Ga( )x))) = (�0] � �i

a:Ga(�
i
a:Fa(�))

] � �i
a:Ga( )

])(?x) = �
] (?x)

= ?(�x) ;

and since lifting is injective, we get the �rst coherence equation. The second one is

analogous.

A.4 Invariant relations over recursive types

We now want to show that certain principles for constructing relations over recursive

types are valid; speci�cally, that a class of well-behaved relational actions allows us to

solve \recursive relation equations". The following presents only the speci�c results we

need for the proofs in Chapter 4; for a general treatment of the subject, see [Pit99].

Throughout this section, let us assume a �xed relational correspondence between

predomain interpretations L of L and L0 of L0, with a computation-extension of relations.
In keeping with the general convention in this appendix, we also write ?R for relation-

lifting. We �rst characterize a particularly well-behaved way of constructing admissible

relations:

De�nition A.15 Let F and F 0
be type constructors. A (mixed) relational action F for

F and F 0
assigns to every pair of relations R� 2 ARel(��; �0�) and R+ 2 ARel(�+; �0+)

a relation F(R�; R+) 2 ARel(�a:Fa(�
�; �+);�a:F 0a(�

0�; �0+)). We say that this action is

admissible if it satis�es:

(8x R�
1 x0: f�x (?R�

2 ) f
0�x0) ^ (8x R+

1 x0: f+x (?R+
2 ) f

0+x0)
)8y F(R�

2 ; R
+
1 ) y

0:�a:Fa(f
�; f+)y (?F(R�

1 ; R
+
2 )) �a:F 0a(f

0�; f 0+)y0

Likewise, for computation-type constructors G and G0
, a relational action is called

computation-admissible if it maps R� 2 ARel(��; �0�) and R+ 2 ARel(�+; �0+) to a

relation G(R�; R+) 2 CARel(	a:Ga(�
�; �+);	a:G0a(�

0�; �0+)) such that

(8x R�
1 x0: f�x (?R�

2 ) f
0�x0) ^ (8x R+

1 x0: f+x (?R+
2 ) f

0+x0)
)8y G(R�

2 ; R
+
1 ) y

0:	a:Ga(f
�; f+)y G(R�

1 ; R
+
2 ) 	a:G0a(f

0�; f 0+)y0

It is easy to see from the de�nition of �a:�(f
�; f+) that any computation-admissible

action is also admissible. Moreover, we have a number of standard ways of constructing

(computation-)admissible relational actions:

Lemma A.16 The following relational actions are all admissible (and computation-

admissible where noted):

1. F(R�; R+) = R+
for Fa = F 0a = a.
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2. F(R�; R+) = R0 for Fa = �0 and F 0a = �00, where �0 and �
0
0 do not depend on a,

and R0 2 ARel(�0; �
0
0) is an arbitrary admissible relation. F is also computation-

admissible if R0 is.

3. F(R�; R+) = F1(R
�; R+)�rF2(R

�; R+) for Fa = F1a�F2a and F
0a = F 0

1a�F
0
2a,

where F1 is admissible for F1 and F 0
1, and F2 is admissible for F2 and F 0

2. F is

also computation-admissible if both F1 and F2 are.

4. F(R�; R+) = F1(R
�; R+)+rF2(R

�; R+) for Fa = F1a+F2a and F
0a = F 0

1a+F
0
2a,

where F1 is admissible for F1 and F 0
1, and F2 is admissible for F2 and F 0

2.

5. F(R�; R+) = �r
i
Fi(R

�; R+) for Fa = �iFia and Fa = �iF
0
i
a, where for every

i 2 I, Fi is admissible for Fi and F
0
i
.

6. G(R�; R+) = F(R+; R�)!rG1(R
�; R+) for Ga = Fa!G1a and G

0a = F 0a!G0
1a,

where F is admissible for F and F 0
, and G1 is computation-admissible for G1 and

G0
1. G is also computation-admissible.

7. G(R�; R+) =�F(R�; R+) for Ga =�(Fa) and G0a =�(F 0a), where F is admissible

for F and F 0
. G is also computation-admissible.

8. F(R�; R+) =
T
j2J Fj(R

�; R+) for any F and F 0
, when for every j 2 J , Fj is

admissible for F and F 0
. F is also computation-admissible if each Fj is.

Proof. Simple veri�cation in all cases. For example, and since it is somewhat non-

standard, let us go through the details of (7), i.e.,�F(R�; R+). First, we note that for

any computation-extension of relations we have that if 8a R1 a
0: f a (�R2) f

0a0 then

8m (?R1) m
0: let? x(m in f x (�R2) let

? x0(m0 in f 0x0

(Note that this is simply condition (0) of a monad relation from De�nition 3.26 in the case

where the ambient e�ect is partiality, and�R2 is taken as the R2 of the de�nition.) This

holds because�R2 is by de�nition computation-admissible and hence pointed. Thus, since

m (?R1) m
0 means that either both m and m0 are ?, or both are liftings of R1-related

elements, we get the required relationship in either case.

We can now verify admissibility of the action (R�; R+) 7!�F(R�; R+) for the type

constructors Ga =�(Fa) and G0a =�(F 0a) when F is an admissible action for F and F 0.

Let the Rs and fs be as in De�nition A.15; we must then show:

8y (�F(R�
2 ; R

+
1 )) y

0:	a:�Fa(f
�; f+)y (�F(R�

1 ; R
+
2 )) 	a:�F 0a(f

0�; f 0+)y0

So assume y (�F(R�
2 ; R

+
1 )) y

0. Expanding 	a:�Fa(f
�; f+) according to De�nition A.1, we

must then establish that

let�x( y in let? r( �a:Fa(f
�; f+)x in�r (�F(R�

1 ; R
+
2 )) let�x

0( y0 in � � �

By property (2) of relation-extension and the assumption on y and y0, it su�ces to show
that
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8x F(R�
2 ; R

+
1 ) x

0:
let? r( �a:Fa(f

�; f+)x in�r (�F(R�
1 ; R

+
2 )) let

? r0( �a:F 0a(f
0�; f 0+)x0 in�r0

Let x F(R�
2 ; R

+
1 ) x

0 be given. By assumption on F , we then have that

�a:Fa(f
�; f+)x (?F(R�

1 ; R
+
2 )) �a:F 0a(f

0�; f 0+)x0

And hence, by the observation at the beginning of the proof, it su�ces to show

8r F(R�
1 ; R

+
2 ) r

0:�r (�F(R�
1 ; R

+
2 ))�r

0

which follows immediately from property (1) of relation extension.

We also have the following principle for constructing new computation-admissible actions

from old ones:

Lemma A.17 Let G1 be a computation-admissible relational action for G1 and G
0
1, and

let G and G0
be another pair of computation-type constructors. Further let h be a rigid

natural transformation from G to G1, i.e., satisfying

h(	a:Ga(f
�; f+)x) = 	a:G1a(f

�; f+)(hx)

and analogously for h0. Then the relational action G for G and G0
de�ned by

x G(R�; R+) x0 () hx G1(R
�; R+) h0x0

is computation-admissible.

Proof. We �rst note that G(R�; R+) is a computation-admissible relation by assump-

tion on G1 and rigidity of h and h0. Further, let the Rs and fs be as in De�nition A.15;

we must show that

8y G(R�
2 ; R

+
1 ) y

0:	a:Ga(f
�; f+)y G(R�

1 ; R
+
2 ) 	a:G0a(f

0�; f 0+)y0

I.e., that

8y; y0: hy G1(R
�
2 ; R

+
1 ) h

0 y0) h(	a:Ga(f
�; f+)y) G1(R

�
1 ; R

+
2 ) h

0 (	a:G0a(f
0�; f 0+)y0)

Now, by assumption on h and h0, this is equivalent to

8y; y0: hy G1(R
�
2 ; R

+
1 ) h

0 y0)	a:G1a(f
�; f+)(hy) G1(R

�
1 ; R

+
2 ) 	a:G01a

(f 0�; f 0+)(h0 y0)

and that follows form the assumption that G1 was admissible (taking y and y0 in the

de�nition of admissibility to be the hy and h0 y0 above).

From this, we get admissibility of the action relating ambient computations to their

continuation-passing counterparts:
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Lemma A.18 Let 
 be a type of L0, and for any R 2 ARel(�; �0) let the relation ��R 2
CARel(��; (�0!�
)!�
) be given by:

m (��R) u
() 8�0 typeL; O 2 ARel(�0; 
): �k

�!��0 : let�x(m in kx ((R!�O)!�O) u

Further, let F and F 0
be type constructors, with an admissible relational action F . Then

the relational action G given by

G(R�; R+) =��F(R�; R+)

is computation-admissible for Ga =�(Fa) and G0a = (F 0a!�
)!�
.

Proof. First note that for any �0 and O 2 ARel(�0; 
), the action G
O

1 given by

GO1 (R
�; R+) = (F(R�; R+)!r�O)!r�O

is computation-admissible for G�0
1 a = (Fa!��0)!��0 and G

0 by Lemma A.16(2,6).

Let h = �m:�k: let�x(m in kx. This mapping is a natural transformation between
the functors derived from G and G�0

1 :

h(	a:�Fa(f
�
; f

+)m) = h(let�r(m in let? y( �a:Fa(f
�
; f

+)r in�y)

= �k: let�x( (let�r(m in let? y( �a:Fa(f
�
; f

+)r in�y) in kx

= �k: let�r(m in let? y( �a:Fa(f
�
; f

+)r in ky

= �k:(hm)(�r: let? y( �a:Fa(f
�
; f

+)r in ky) = �k:(hm)(	a:Fa!��0(f
+
; f

�)k)

= �k: let? y( ?(	a:Fa!��0(f
+
; f

�)k) in (hm) y = 	a:(Fa!��0)!��0(f
�
; f

+)(hm)

(using that 	a:��0(f
�; f+) = id��0 by Lemma A.2(1), because a cannot appear free in �0).

Thus, taking h0 as the identity in Lemma A.17, we get that the action given by GO,

m (GO(R�; R+)) u = �k: let�x(m in ka (GO1 (R
�; R+)) u

is computation-admissible for G and G0. And �nally, since G(R�; R+) is the intersection

of all GO(R�; R+), we get the result by Lemma A.16(8).

We can now state the main result motivating the de�nition of admissible actions:

Theorem A.19 Let F be an admissible relational action for type constructors F and F 0
.

Then there exists an invariant relation for F , i.e., a relation � 2 ARel(�a: Fa; �a: F 0a)

such that a � a0 () unrolla:Faa F(�;�) unrolla:F 0a a
0
.

Proof. (The proof technique is due to Pitts and can essentially be found in [Pit99].

However, since we are working with binary relations instead of unary ones, and a few

details are slightly more involved for predomains than for domains, it seems worth spelling

out the construction.)

As usual, we abbreviate roll as � and unroll as  .
We �rst note that a functorial action on relations preserves inclusions. For let R�

1 �

R�
2 and R+

1 � R+
2 . Take f� = f+ = �a:?a and f 0� = f 0+ = �a0:?a0. Then clearly
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f� (R�
1 !

?R�
2 ) f

0� and f+ (R+
1 !

?R+
2 ) f

0+. Hence for any y F(R�
2 ; R

+
1 ) y, we get

from Lemma A.2(3) that

?y = �a:Fa(�a:
?a; �a:?a)y (?F(R�

1 ; R
+
2 )) �a:F 0a(�a

0:?a0; �a0:?a0)y0 = ?y0 :

Moreover, we easily see that ?x (?R) ?x0 i� x R x0 (by de�nition of relation-lifting speci�c-
ally, not true for computation-extension of relations in general), so we get y F(R�

1 ; R
+
2 ) y

0,

i.e., F(R�
2 ; R

+
1 ) � F(R

�
1 ; R

+
2 ). In other words, F is monotone in its second argument

and antimonotone in the �rst one.

Let R� and R+ be arbitrary relations in ARel(�a: Fa; �a: F 0a), and de�ne the rela-

tions R�; R� 2 ARel(�a: Fa; �a: F 0a) by

a R� a0 ()  a F(R+; R�)  0 a0 and a R� a0 ()  a F(R�; R+)  0 a0 :

We can then de�ne an operator �, mapping (R�; R+) to (R�; R�), antimonotone in

the �rst position and monotone in the second. Further, the set of admissible relations

between two types is closed under arbitrary intersection, so ARel(�a: Fa; �a: F 0a)op �

ARel(�a: Fa; �a: F 0a) forms a complete lattice. Hence, by the Knaster-Tarski �xed-point

theorem, � has a least �xed point (��;�+), with ��;�+ 2 ARel(�a: Fa; �a: F 0a)

satisfying

a �� a0 ()  a F(�+;��)  0a0 and a �+ a0 ()  a F(��;�+)  0a0 :

Moreover, (�+;��) is clearly also a �xed point of �, and so must be greater than the

least one, giving (for both components) the inclusion �+ � ��.

It thus remains to show containment in the other direction. Consider the relation

r 2 CARel(�a: Fa! ?�a: Fa; �a: F 0a! ?�a: F 0a) determined by

h r h0 () 8a �� a0: ha (?�+) h0a0

(r is computation-admissible because it is given by an intersection over inverse images

(by application, which is rigid) of the computation-admissible ?�+.) Now de�ne the

functional H : (�a: Fa! ?�a: Fa)! (�a: Fa! ?�a: Fa) by:

H = �h�a:Fa!?
�a:Fa:�a�a:Fa: let? x( �a:Fa(h; h)( a) in

?(�x)

and analogously for H 0. We want to show that when h r h0 then also Hh r H 0h0, i.e.,
that

8a �� a0: let? x( �a:Fa(h; h)( a) in
?(�x)

(?�+) let? x0( �a:F 0a(h
0; h0)( 0a0) in ?(�0x0)

This follows from the usual properties of relation-extension, the equations de�ning ��

and �+ above, and the functorial action of F (taking f� = f+ = h, f 0� = f 0+ = h0,
R�

1 = R+
1 = ��, and R�

2 = R+
2 = �+).

Thus, since the relation r was computation-admissible, we get by �xed-point induc-

tion (Lemma 3.19) that �xH r �xH 0. And because �xH = �x:?x by the minimal-

invariant property (Corollary A.8), we have

8a �� a0: ?a (?�+) ?a0 :
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Finally, by the same argument about ?R as at the beginning of the proof, this simpli�es

to �� � �+, completing the proof that we can take � = �� = �+ as the invariant

relation for F .

From this, we immediately get that { much like recursive type equations { a large

class of recursive relation equations has solutions:

Corollary A.20 Let F and F 0
be type constructors, and let

�
be a formal relation con-

structor, built out of (1) the standard relational actions of L1-type constructors, (2)

constant admissible relations (computation-admissible for computation-types), and (3)

the relation constructor �� (for any 
); so that
�
maps any relation R 2 ARel(�; �0) to

�R 2 ARel(F�; F 0�0).
Then there exists a relation �R: �R 2 ARel(�a: Fa; �a: F 0a) such that

a (�R: �R) a0 () unrolla:Faa
�(�R: �R) unrolla:F 0aa

0 :

Proof. By induction on �, using Lemmas A.16 and A.18, we directly obtain an admiss-

ible mixed relational action F , such that

F(R;R) = �R

By Theorem A.19, this F has an invariant relation �. And because of the equation

above, we can simply take �R: �R to be �.
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