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Abstract

The goal of program analysis is to determine automatically properties of the
run-time behavior of a program. Tools of software development, such as compilers,
program-verification systems, and program-comprehension systems, are in large part
based on program analyses. Most semantics-based program analyses model the run-
time behavior of a program as a trace of execution states and compute a property
of these states. Typically, this property is drawn from a predetermined language of
semantic information, such as aliasing descriptions or types of values. The standard
methodology of program analysis is to construct the property as a fixed point, a
single execution step at a time. We explain that these ubiquitous methodological
choices—the a priori choice of the describable program properties and the use of a
fixed-point computation—have some fundamental limitations and can result in poor
precision.

In this dissertation, we present a different approach to semantics-based program
analysis. Our methodology is based on transfer relations that precisely describe
the changes between the state of memory one point during execution and the state
of memory at some later point in the execution. We isolate a language TR of
concise computer-representable presentations of transfer relations. We also give an
algorithm @ that, given two transfer relations from TR, symbolically constructs
a third transfer relation in TR that is semantically equivalent to their relational
composition. An analysis designer begins by describing the operational semantics
of a source language as a set of TR-terms that precisely describe the atomic steps
of execution. Then an analysis algorithm repeatedly applies @ to build a precise
run-time description of any finite control path of interest.

We show that TR is expressive enough to describe a wide variety of source-
language features, including heap-allocated mutable data structures, arrays, point-
ers, and first-class functions. We then explain how our analysis methodology over-
comes some current limitations of program analysis. The transfer relations them-
selves are useful program properties and would be difficult or impossible to formulate
with classical approaches to program analysis. But we also describe some classes of
analysis applications that are based on transfer relations. For instance, we explain
that the classical limitation of program analysis to build a property a single execu-
tion step at a time can result in dramatic loss of precision, but may be overcome
by using @ to compose multiple steps before applying a classical analysis. Further-
more, we show how to compute precise properties of loops symbolically, avoiding
the inevitable imprecision of a fixed-point computation.
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Introduction






Chapter 1

Some Topics in Program Analysis

The goal of program analysis is to determine automatically at compile time some properties
about the run-time behavior of a program. There are several major applications of program
analysis.

e Compiler support. It is reasonably straightforward to implement a correct compila-
tion of a program from a high-level language to machine code, but it is not as easy to
implement a high-quality compilation. This is because the program may have a special-
ized run-time behavior that the compiler could exploit, but this run-time behavior may
not be easy to detect from a simple examination of the code. Therefore, the compiler
must invoke a program analysis to uncover this run-time behavior. For instance, most
compilers use data-flow analysis (e.g., [KU76], [MJ81]) and alias analysis (e.g., [CWZ90],
[Lan91], [Deu94]) to enable classic optimizations such as common-subexpression elimina-
tion, copy propagation, and hoisting of loop-invariant computations [ASU86]. Similarly,
some compilers for languages with first-class functions use a control-flow analysis (e.g.,
[JMT79], [Shi9l]) to construct a conservative control graph. Compiler support is far and
away the most common application of program analysis.

e Program verification. One would like to check statically that a program will behave
properly at run time. For instance, an analysis might verify that a C program never
attempts to dereference a dangling pointer; or if it cannot verify a property that strong,
it might at least isolate a small number of potential trouble spots in the code. Also,
strongly typed languages such as Standard ML [MTH90] verify at compile time that a
program is well-typed and thus completely eliminate any possibility of a type error at run
time. Furthermore, static type-checking reveals at compile time a remarkable percentage
of programmer errors.

e Program comprehension. A subject that has been gaining interest in recent years
is the use of program analysis to aid the human understanding of code. For instance,
the work in static debugging [Bou93a, Bou93b] allows the user to specify various kinds
of pre- and post-conditions at different points in the program, and then calculates the
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corresponding information about the ranges of numeric variables. Also, program slicing
(e.g., [HRBY0], [FRT95]) isolates the parts of a program that contribute to or depend on
a particular variable in the program chosen by the user.

This dissertation presents some new developments in the theory of program analysis. By
“theory of program analysis” we mean that we are concerned less with specific analysis problems
or specific applications of program analysis, and more with generic semantic tools that are
powerful and yet easy to apply to a variety of real programming languages and analysis tasks.

To put our goals into perspective, we compare them to the goals of abstract interpretation.
Abstract interpretation [CC77] is a general theory of semantics-based program analysis—so
general and wide-ranging that the theory itself intentionally does not provide explicit support for
particular language features, such as data structures and functions, or particular applications,
such as alias or data-shape analysis. A powerful methodology has been constructed around
this theory [CC79, Cou81, Cou90, CC92a, CC92b, CCY2d, CCI2¢, CCY4, CCY5], including a
wide range of techniques for designing numeric lattices [Kar76, CH78, Gra89, Gra9la, Gra91b].
But when faced with a specific analysis task for a specific programming language, the analysis
designer is left largely on his own to cope with the overwhelming generality of the framework.
With a deep understanding and skillful use of the methodology, the results can be spectacular,
such as the storeless alias analysis of Deutsch [Deu92, Deu94]. But after 20 years, much of the
staggering potential of abstract interpretation still remains largely untapped.

In contrast, our methodology is designed around real language features, such as pointers,
heap-allocated data structures, arrays, assignment, and to a lesser extent first-class functions.
Consequently, although our framework does not have the same level of generality as abstract
interpretation, it is more straightforward to apply our tools to real languages and real analysis
tasks. We aim to strike a balance between analysis theory and analysis design. One of our
goals is to bring some of the power of semantics-based analysis techniques closer to the user.

To accomplish this, we have taken a step back in order to consider the task of program anal-
ysis from a fresh perspective. This new perspective has uncovered some fundamental limitations
in the current methodology of program analysis—limitations that are manifest in real analyses.
By largely reworking semantics-based program analysis from the beginning, this dissertation
provides some technical answers to these basic limitations.



1.1 Limitations of Single-step Abstract Interpretation 5

1.1 Limitations of Single-step Abstract Interpretation

We begin with an anecdote. Imagine that you are asked to report the sum to two decimal
places of the following list of numbers:

2.5548

1.3475 x 1071
9.971

3.802 x 1073
2.388 x 102
5.262

Consider these two different approaches:

e Algorithm A: Compute the exact sum of all six numbers and then round that sum to two
decimal places.

e Algorithm B: Begin with 0, and then add the first number, round to two decimal places,
add the second number, round to two places, add the third, round again, and so forth.

Algorithm A is the procedure that naturally comes to mind for this task, and of course it returns
the correct answer of 256.73. In contrast, Algorithm B reports a result of 256.71, which is close
but not correct. Why would anyone choose this second approach? One can imagine that the
reduction in computation effort is worth the potential for accumulated rounding error.

In fact, these two algorithms are just the endpoints of a spectrum of possibilities. For
instance, one could first compute the precise sum of adjacent pairs of numbers in the list,
yielding a list of three exact partial sums:

2.5548 + 13475 x 1071 = 2.68955
9.971 + 3802 x1073 = 9.974802
2.388 x 10> + 5.262 = 2.44062 x 102

Then apply Algorithm B to this list, yielding a better but still not exact 256.72. This suggests
a general approach of rounding only every so often during the accumulation of the sum, where
Algorithm A is the extreme that rounds only at the very end, while Algorithm B is the other
extreme that rounds after every single number in the list.

This simple discourse on how to compute rounded sums illustrates by analogy a remarkably
important limitation of program analyses. As a very simple example, consider the following

program.
whilen > 0 do

{

yi=x—3;
X:=y+95;
n:=n-—1

}
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Suppose that at any point during an execution of this program, the variable bindings are
described by an environment
p € Env = Var—lInt

Say we wish to determine the variable bindings at the termination of this program, given an
environment py describing the initial bindings. Because this program always terminates (as
long as n, x, and y are bound in py), we can in fact just execute the program and return the
final environment as the answer.

By analogy, an entire environment p corresponds to a real number, and the execution of a
single step of the program (which may modify the environment) corresponds to the accumulated
addition of one number in the list.! Thus, executing the program corresponds to accumulating
the exact sum of a list of real numbers (starting with 0). The length of the list is the total
number of execution steps, which in this case is always finite, but may be quite long.

But suppose that all we want to know about each variable at the end of execution is
information about its sign, expressed as one of the following properties of integers ordered by
implication (in other words, sets of integers ordered by inclusion).

int
7N

nonpos nonneg

2N N

neg zero pos

N t 7

none

Given an environment p, one can abstract p by a sign environment p such that (px) is the sign
(either neg, zero, or pos) of (px) for all variables x.

p € Env = Var — Sign

By analogy, p corresponds to the “rounding” of p. Again, we can just execute the program
and “round” the final environment to a sign environment. This is analogous to Algorithm A,
and it will always return the strongest properties.

It is well known, however, that this process is infeasible in general. For one, the program
may take a long time to execute. Even worse, we may not know the exact initial environment
po- Finally, some programs do not terminate, and even if we do know py beforehand, it is
impossible to determine effectively if the execution will eventually halt. So in general we must
settle for some approximation of the result.

The standard approach to program analysis is essentially to perform Algorithm B, abstract-
ing at each step. For our example program, the first three steps would produce the following

!This analogy has the disadvantage that a real number corresponds to both an environment and a single-step
transformation between environments; it is crucial to distinguish these two very different concepts.
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sign environments from the initial sign environment shown below:

[x,y,n +— pos, pos, nonneg]
whilen > 0 do

{ [x,y,n +— pos, pos, pos]

yi=x—3;
[x,y,n +— pos,int, pos]

x:=y+5;
[x,y,n — int, int, pos]

n:=n-—1

}

Before the first assignment, all that is known about x is that it is positive, but the analysis
must calculate x — 3 to determine the value of y. The exact answer is the set of all positive
integers decremented by 3, which is the set {—2,—1,0,...}, but the abstraction “rounds” that
set to the smallest enclosing element in the sign lattice, which is int. Now, in the next step, all
that is known about y is that it is an integer, and so y + 5 is the set of all integers incremented
by 5, which is again the set of integers. So the abstract value of x in the next step is int.

However, a little bit of thought reveals that x is actually guaranteed to be positive after
the second assignment. The reason the analysis has already lost this information is because of
the abstraction, or “rounding error”, between the two assignments. If the set {—2,—1,0,...}
had not been abstracted to int, then its increment by 5 in the next step would yield the set
{3,4,...}, whose abstraction is pos. Thus, there are two ways to achieve better results.

1. Do not abstract between the first and second assignments.

2. Abstract after every step as usual, but beforehand enrich the lattice of integer proper-
ties with an element corresponding to {—2,—1,0,...}, so that the abstraction of this
intermediate property loses no information.

The first approach seems promising, but is not in the current repertoire of program analysis
techniques. Most of this dissertation develops a a general foundation that one may use for this
approach; we will return to it shortly.

The second approach seems absurd from a practical standpoint and troublesome from a theo-
retical standpoint. It clearly does not generalize. For instance, elements such as {—2,—1,0,...}
are clearly ad hoc and dependent on the particular run-time behavior of a program. Probably
many new elements would be needed for a reasonably sized program, and for anything more
sophisticated than a sign analysis, the space from which these elements may be chosen becomes
much more complex and rich. Even if one could isolate a small set of useful specialized elements
with which to enrich the property lattice for a given program, it seems difficult to determine
which properties would be the most useful without actually running the program itself. Never-
theless, there are examples of practical program analyses that essentially use this idea in limited
capacity for the lack of any other solution; we give an example at the end of this section.
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To continue with the analysis of this program, there is the additional complication that the
execution length (corresponding to the length of the list of numbers) may be unbounded, and
so an analysis will typically use some “folding” strategy, usually at every program point, and
compute the solution as an iterative fixed-point calculation. For example, the next step above
is to calculate pos — 1 = nonneg for n, and then to join the resulting sign environment with the
old environment at the loop entry, weakening the properties of x and y to int. The analysis
reaches the following fixed point after a second iteration through the loop:

[x,y,n ~— int, int, nonneg] "\
whilen > 0 do

|

{ [x,y,n +— int, int, pos] |
yi=x—3J; |
[x,y,n +~— int, int, pos] |

X:=y+ 5 |
[x,y,n ~— int, int, pos] |

n:=n-—1 |

[x,y,n +— int, int, nonneg]

[x,y,n +— int, int, zero]

The last environment is the answer. But the most precise answer (corresponding to the “correct”
rounded sum) is
[x,y,n — pos, int, zero|.

As we have suggested, the reason that the analysis reported the final sign of x as int
instead of pos is because it used the equivalent of Algorithm B, which is the extreme approach
of abstracting at every step. Algorithm A is at the other extreme, which as we have explained
is uncomputable for program analysis. But what about the intermediate approach of “rounding
only every so often”? To understand how that applies to program analysis, consider rewriting
the program to use a parallel assignment:

whilen > 0 do

{

x,y,n:=x+2,x—3,n—-1

}

Now apply the approach of Algorithm B:

[x,y,n — pos, int, nonneg] "\
whilen > 0 do |
{ [x,y,n +— pos, int, pos] |

xy,n:=x+2,x—3,n—1 |

[x,y,n +— pos,int, nonneg]

[x,y,n +— pos, int, zero]
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This returns the most precise answer possible. Note how this approach was able to determine
the precise result for x. Before the assignment, x is pos. So, x + 2 is the set {3,4,...}, which
is then abstracted to pos.

Technically, we are still abstracting after every step and using the same sign analysis to
do it, but by rewriting the three sequential instructions into a single parallel instruction, we
are in effect abstracting only after every third step. Recall that in our analogy, a real num-
ber corresponds both to an environment (the accumulated result) and a single-step transition
between environments (an element of the list). Here, the transitions are done by assignment
statements, so this transformation from multiple sequential statements to a single parallel state-
ment corresponds to adding groups of adjacent numbers in the list before applying Algorithm
B.

The above is of course merely a toy example. But it is not hard to find examples in real
program analyses that suffer from this same phenomenon of abstracting after every step. For
instance, Ghiya and Hendren describe in [GH96] a shape analysis that attempts to determine
whether data structures in a C program are trees, dags, or graphs. Their paper describes a
difficulty with their analysis:

If a data structure temporarily becomes dag-like or cyclic and then becomes tree-
like again, shape analysis cannot detect this, and continues to report its shape as
dag-like or cyclic. The benchmark reverse that recursively swaps [the children of] a
binary tree represents this case.

Although shape analysis for C is quite a bit more complex than a sign analysis for a simple arith-
metic while-loop language, it turns out that the difficulty that Ghiya and Hendren described
is precisely the same phenomenon that caused the sign analysis above to fail to detect that x
is always positive. The fundamental reason that they cannot detect those temporary changes
of shape is that they abstract at every step. In their case, they abstract a C memory state by
a “direction matrix” and an “interference matrix”; and whereas our problem in the program
above was that our lattice of sign properties could not precisely express the set {—2,—1,0,...}
that came up after the second step, their problem is that their abstract store cannot express
many of the possible forms of non-tree or non-dag shapes that may arise temporarily during
execution.

This is a problem not just with Ghiya and Hendren’s shape analysis. At the same con-
ference, Sagiv, Reps, and Wilhelmn presented a shape analysis that attempts to address these
issues [SRW96]. They point out that:

The third and fourth common list-manipulation operations—splicing a new element
into a list and removing an element from a list—can, in many cases, be handled
accurately by our shape-analysis algorithm, even if shape-nodes temporarily become
shared!
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But they, too, abstract after every single step. In order to achieve good results for some
programs that temporarily alter data shapes, they instead chose to design a rather unusual
abstraction of a memory state that can actually express certain kinds of temporary shape
alterations that might arise in common programs. In spirit, their solution is item 2 on page 7.
As we suggested there, this approach does not generalize very well and is necessarily limited at
the outset; this is indeed the case for their analysis. Because of their specialized lattice design,
their analysis determines very little information about any program that allocates at least one
pointer that is at some point shared (pointed to by more than one distinct location in memory)
and not itself the binding of any variable. Clearly, this eliminates a great many programs
from consideration—for instance, any program that creates a doubly-linked list or any kind of
dag-like structure. In contrast, the Ghiya/Hendren analysis is not nearly so limited.

Our claim is that the methodology of abstracting at every step is a ubiquitous and serious
limitation of current program-analysis methodology. To understand why, we will revisit abstract
interpretation, the root of semantics-based program analysis, in Chapter 8. This dissertation
will provide a solution, which we will outline in Section 1.3.

1.2 Overuse of Abstraction and Fixed-point Computation

Our discussion of the sign analysis in the previous section centered around how to deal with a
single loop iteration. We only touched upon the “folding” process that was necessary to deal
effectively with the unbounded execution length of the program. The issue of how to cope
with infinite execution sequences is of primary importance in program analysis, and almost all
analyses use a similar technique of computing a fixed point over an abstract semantic domain
(sign environments in the above example).

Our claim that this technique is rather ubiquitous and yet not well suited for many analysis
tasks. The cause of this state of affairs is, perhaps surprisingly, strongly related to the cause
of the problem described in the previous section: that analyses cannot take multiple steps of
execution between abstraction. Fortunately, the solutions to these two problems are closely
related, as well, and in this dissertation we develop the foundations for both.

In Chapter 8 we will see that the foundation of semantics-based program analysis is based
on an observation that a semantics of a language is usually expressed using a fixed point whose
iterative calculation corresponds in some sense to the execution steps of the program. For
instance, consider the common form of operational semantics as a transition system, in which
program execution is modeled by the single-step transitions from machine state to machine
state. This kind of semantics is particularly useful for program analysis because it expresses
many intensional details of execution that might be of interest to analyze; one might say that
it is “close to the iron”, in comparison to a more extensional semantics such as a standard
denotational model that only maps program input to program output. We will say more about
this in Chapter 4.

For now, we are not so much concerned with the appropriateness of a particular semantic
model for the purpose of program analysis, but rather we wish to illustrate that semantic
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models of programming languages typically use fixed points that reflect program execution. For
example, a transition system of a particular program P will have a binary transition relation

—— C State x State

specifying the pairs of states that may be adjacent in an execution of that program. Then the
semantics M[P] of program P is defined as an unfolding of this relation into a set of unbounded
sequences (where 1).1) denotes the extension of state sequence 1 by state 1):

pp € MIP] o — o'
Papap € M[P]

If this rule is solved inductively from a base set of initial states, its iterative solution yields all
finite execution prefixes.?

One can rephrase the iterative solution of the above rule as the repeated application of a
function

S[P] € P(State*) — P(State™)

that, given a partial solution of M[P], applies the above rule once to enlarge M[P] by a single
execution step.

A program analysis based on this transition-system semantics must analyze these potentially
unbounded sequences. For instance, suppose that in our sign analysis above, a state comprises
a control point specifying the line of the program to be executed next and an environment
specifying the current variable bindings.

State = CtrlPoint x Env
The analysis that we described informally above can now be formalized as an iteration of
(o S[P]on) € State — State
until a fixed point is reached, where

v € State — P(State*)
a € P(State*) — State

and
State = CtrlPoint — Env.

Here, a member of State is a table of abstract environments indexed by control point, just as
we showed next to the program in the examples of Section 1.1. The function v, given such a

2There are similar ways to express the infinite executions of a program via coinduction, but for the sake of
simplicity we leave the reader to [CC92b] for a discussion. We do note, however, that the use of coinduction for
program analysis is powerful technique, especially for the analysis of errors, that is currently not well appreciated.
For examples, see [Bou93al.
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table \fl, describes the set of all execution sequences whose states satisfy the properties given in
W. The function « abstracts a set of execution sequences by a table giving the strongest sign
properties of the states in those sequences.

In the analogy of Section 1.1 in which we compared program execution and analysis to the
accumulation of the rounded sum of a list of numbers, a set of execution sequences corresponds
to an “exact” real number, and a member of State corresponds to a
The function -~y is given a rounded number representing the accumulated sum at some point in
the middle of the list. Conceptually, v “coerces” this number into an exact number by adding
zeroes onto the end. Then S[P] corresponds to adding the next number in the list to this
sum, and « rounds the resulting sum, usually losing information. The program analysis repeats
this process until it reaches a fixed point (which does not have a clear analog in our list-sum
anecdote).

‘rounded” real number.

Almost every kind of program analysis is based on a similar notion of fixed-point calculation
over an abstraction of the properties of interest. This is not always apparent, because many
analysis frameworks, such as data-flow analysis [MJ81], type inference [KMP84], and constraint-
based analysis [Hei92, AWL94|, are phrased in terms of systems of equations or inference rules.
But most of these frameworks reduce to a fixed-point calculation whose iterations correspond
in some sense to abstract execution steps of the program. Abstract interpretation is a fixed-
point-based theory that unifies these seemingly disparate approaches.

In Section 1.1 we explained that this methodology of abstracting after every step can cause
severe precision problems with the analysis. In our small while-loop example, we illustrated
this problem by rewriting the three individual assignments in the loop body as a single parallel
assignment. In Chapter 8 we will go further into that topic, but for now we suggest that a
multi-step program analysis might amount to finding the fixed point of

(a0 S[P] o S[P] o S[P] o ) € State — State

instead of the above function that takes only a single step between applications of the abstraction
function . The problem is that there is no general methodology to develop program analyses
that have this kind of flexibility. But we have developed such a methodology, which we outline
in Section 1.3.

Now we may make the following key insight. Once one has a methodology to perform any
number of steps between abstractions, the need to perform the abstractions and compute the
fixed point often evaporates.

For instance, shape analyses are often concerned with detecting computations that are
shape-preserving. It is common for the success or failure of a shape analysis to be measured by
how well it analyzes routines such as list-insert, list-delete, node swapping, and so forth. For
instance, one would like to determine that a routine that destructively inserts a node into a
linked list preserves the invariant that the structure upon which it operates has the shape of a
list. Routines such as these typically take more than one instruction, but still a finite number
of them. Why would they need an iterative fixed-point calculation to compute their shape-
preserving properties? The answer is that they do not, but because the present methodology of



1.3 An Introduction to Our Methodology 13

program analysis does not offer any way to combine multiple execution steps, a shape analysis
has no choice but to perform a global fixed point as we did for the sign properties in Section 1.1.

1.3 An Introduction to Our Methodology

This dissertation develops a foundation for a new methodology of program analysis that ad-
dresses the problems that we have described above. This foundation is based on a semantic
methodology of programming languages in which it is possible to compute a simple term de-
scribing the net effect of any given finite execution path.

In Section 1.2 we suggested that an operational semantics based on a transition system
between execution states is particularly useful for program analysis. For the example program
in Section 1.1, an execution state was a pair of a control point and an environment. In general,
environments are not expressive enough because they cannot express pointers and other kinds
of mutable data structures.

In order to address a wide variety of languages, we introduce the notion of a store. A store
is similar to an environment in that it maps variables to values, but it also maps references to
values. A reference is a pair of two values; the reference (v,v') is written v.v’ and represents
component v of data structure v. Actually, it is convenient to think of a store as a graph
whose nodes are values and whose edges are labeled by values. Then v is the root node of some
data structure (record, pointer, array, and so on), and its outgoing edges point to its mutable
subcomponents, labeled by their names v (field names, the C “*” token, integer array indices,
and so forth). An [-value is an object that may be dereferenced in a store; it is either a variable
x or a reference v.v'. A store is then a map from l-values to values.

o € Store = Lval— Val

Lval = VaruU (Val x Val)
The set Val of values is left unspecified because different languages will need different values.
We consider this parameterized notion of a store, however, to be common to all languages.

More specifically, the techniques in this dissertation apply to any language in which the

execution(s) of a program can be expressed as a transition relation

— C State x State
where

State = CtrlPoint x Store

for some set CtrlPoint of static control points and some set Val of values.

Usually, — is defined by meta-rules that specify how the individual pieces of program
syntax induce transitions. For instance, one might imagine the following rule for variable
assignments.

(z:=e¢; t,0) — (t, o]z — E[e]o])
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Here, e is a basic expression, and £[e]o denotes the value to which e evaluates in store o. The
core idea of our technique is to replace these meta-rules with computer-representable composable
descriptions.

Our first observation is the isomorphism
P(State x State) ~ CtrlPoint x CtrlPoint — P(Store x Store).

This means that a transition relation — is equivalent to a table of binary relations on stores,
indexed by pairs of control points. We write the (C,C’) entry in this table as %, and this
relation defines the possible store changes in a single step from C to C’. Thus,

(C,o) — (C',0") iff o5 o

For example, one can rewrite the above meta-rule as

o CEED 5 1r s Ee]o]

or, alternatively, as the definition

r:=e; t),t
( )

={(0,0") | o' = o[z — E[e]o]}.

We call a binary relation on stores a transfer relation. A transfer relation describes a way in
. . . c,C’ . . .
which a store evolves during execution. For example, — is a transfer relation that describes
how the store changes in a single step from C to C’'. A nice property of transfer relations is
that one may compose them to express multiple steps of execution. For instance,
c,c' cc"
(R St
is a transfer relation that expresses how a store changes in an execution that begins at control
point C, progresses in one step to C’, and then progresses in the next step to C”. Here, the

symbol “” is the relation composition operator. In this manner, one can build the transfer
relation for any finite control path.

Above, we said that our central approach is to replace the meta-rules of the transition system
with computer-representable composable relations: computer-representable because they will
be directly manipulated and examined by a program analysis, and composable because we
want a flexible way of processing multiple execution steps in the analysis before abstracting the
result, as we explained in the example of Section 1.1 and more generally in Section 1.2.

Let us examine this more closely. As we explained in Section 1.2, an algorithm for analyzing
program P works by iteratively applying an abstract step function

(a0 S[P] o7) € State — State
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where State is a set of abstract properties of state sequences (such as the signs of the numeric
values occurring in the states), and the application of this function to U € State applies the
transition relation — to extend by one step every execution sequence consistent with U (as
given by «y) and abstracts the resulting set of execution sequences with «, in general losing
information (i.e., weakening the property) in the process.

However, this function cannot be implemented in these three stages. It is not possible for a
program-analysis algorithm to manipulate the probably infinite sets of states or state sequences.
Instead, a program analysis performs this three-stage operation in a monolithic fashion, where
« and y are “baked into” the transition relation — that forms the core of S[P].

For example, consider again our example meta-rule for variable-assignment transitions:
(x :=e; t,0) —> (t,0lz — E[e]o])

The program analysis designer will hand-design an algorithm that “abstractly” performs these
transitions. For instance, if State is the set of tables of sign environments indexed by control
point, as given in Section 1.2, then a straightforward algorithm to compute (a o S[P] o) will
be hard-wired to propagate the sign property of expression e at control point (z := e; t) to
variable z at control point ¢ for each variable assignment in P. This makes intuitive sense—
the algorithm is “abstractly interpreting” the variable assignments. But of course the analysis
designer should justify these intuitions by proving that the algorithm actually implements this
function.

Note that:

1. To apply an existing analysis to a different language, one must separately hand-design a
new algorithm for the meta-rules of that language. This is an engineering disadvantage.

2. Because the abstraction is “baked into” the analysis algorithm, there is no way to perform
multiple execution steps abstracting the result. This is a more serious disadvantage be-
cause, as we have explained, it can have devastating effects on the quality of the analysis.

We now consider a different methodology to address these issues. Consider the meta-rule shown
above as the single-step transfer relation
=e; t),t
260 1 (0,0") | o' = oz v E[e]o]}-
Imagine a universal computer-representable language of these single-step transfer relations; for
instance the above relation might be written as

T el

Then, given some analysis task such as sign analysis or shape analysis, one could implement
a universal “back-end” that analyzes this language of transfer relations. Thus, to apply the
analysis to a particular programming language, one merely expresses its semantics in terms of
this language of single-step transfer relations instead of the usual meta-rule formulation.
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Imagine further that this computer-representable language of transfer relations is closed
under composition. For instance, the two successive variable assignments

(yi=2=3; o=y 5 D), (@:=y+5: 1) _
s =

might be symbolically composed as follows

y|—>:v—3H:r|—>y+5‘:‘x,y»—>:v—3,:v+2‘

to yield a computer representation of this two-step execution segment. Then, because the
analysis back-end is designed to analyze any member of the language of transfer relations, it has
maximum flexibility to perform any number of steps before abstracting. We demonstrated the
benefits of the above example in Section 1.1; there, we magically rewrote the source program, but
now we are moving toward a universal language-independent methodology of transfer relations.

Of course, the example immediately above is quite simple, as it does not involve important
language features such as arrays, pointers, mutable data structures, or conditionals. The fol-
lowing question remains. Is there a computer-representable language of transfer relations closed
under composition that is both

e expressive enough to handle a wide variety of imperative and applicative language features,
and

e simple enough to be the target of a wide variety of important program analyses, such as
alias, shape, and value analyses?

The answer is yes, and this language of transfer relations is largely the subject of Part II. This
leads to the following general methodology of program analysis.

composition

Language 2 / Transfer Relations \i Analysis 2
Language 3 Analysis 3

Given a language and an analysis task, one first describes the semantics of the language
in terms of single-step transfer relations. Then, guided by a strategy to suit the analysis task
and particular program at hand, some of these transfer relations are composed into bigger
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steps, similar to our rewriting of the example program in Section 1.1. Finally, the particular
analysis problem uses these multi-step transfer relations in a manner appropriate to the task.
In some cases, such as the sign analysis of Section 1.1 it is appropriate to apply an abstract
interpretation to compute an abstract fixed point of these transfer relations. In other cases,
such as the analysis of shape-preserving properties of data-structure maintenance routines, it
may be more appropriate to extract the property of interest directly from the multi-step transfer
relations, without designing any abstraction or performing any fixed-point computation.

Note that the compositions occur at the language-independent stage of transfer relations,
so although they are sometimes analogous to rewriting source-program instructions, as in Sec-
tion 1.1, that is not always the case. Also note that the analyses are now defined in terms
of transfer relations instead of source programs. This means that large parts of an analysis
do not have to be reimplemented for different languages. In general, however, reengineering is
necessary because the language transfer relations will be parameterized by a set of primitive
operations, and those may change from source language to source language.

1.4 Overview of the Dissertation

e Part II presents the language of transfer relations and the basic algorithms to compose
them and manipulate them, and explains the general procedure for modeling the dynamic
semantics of a programming language with transfer relations.

e Part III shows how to model a variety of imperative and applicative language features
with transfer relations.

e Part IV expands on Section 1.1 and Section 1.2 by sketching some ideas for how to design
program analyses around transfer relations.

e Part V concludes.
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Chapter 2

Stores and Transfer Relations

The foundation of our study is the store. A store is a model of an instantaneous state of the
memory during program execution. As a program executes, it will at various points examine
variables, data structures, stack frames, and so on, and it will at other points change the values
of variables, alter the components of data structures, allocate new data structures, create new
stack frames, and so forth. All of these operations are modeled as examinations or alterations
of the store. Intuitively, there is one global store that evolves during program execution. But
semantically, this “global store” is modeled as a trace of stores. Every time the program takes
another step, another store is added to the sequence. If that execution step modified the store,
then the modification will be reflected in the latest store. Otherwise, the latest store will just
be a copy of the previous one. In this way, the program leaves a trace of stores.

Now consider the task of analyzing a program’s execution. Ideally, one would actually let
the program run, leaving its trace of stores behind. Then, when the program is done, one could
go back to that trace and analyze everything that happened during that execution. The trace
of stores is the entire execution history, and with perfect knowledge of that history all questions
about the program’s run-time behavior could be answered. This is sometimes called profiling.

This approach to program analysis has some serious problems.

e The execution may not terminate, thus leaving behind an infinite trace of stores. So it is
impossible in general to run a program and then perform a post-mortem analysis on its
trace.

e If the initial store (initial data, values of free variables, and so on) is unknown, then it
doesn’t make sense to analyze the execution trace of just one execution. One would have
to analyze one execution from all possible initial stores, and in general there are an infinite
number of them.

e Even if the initial store is fixed and the program terminates, the execution may have a
large number of steps, and it is not feasible to record the entire store at every step.
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Program analysis is largely the study of how to cope with these issues. The usual approach
begins with the observation that if there were an efficient way to represent in a computer some
interesting but infinite sets of stores, then some interesting questions about a program’s run-time
behavior could be answered, or at least approximated, automatically. These representations
of infinite store sets can be thought of as store properties, and program analysis thus becomes
the computation of properties of the stores that can arise during some execution from a store
satisfying some initial property. For instance, in Section 1.1 we gave an example of an analysis
that determines a sign property of integer-valued variables at every syntactic point in the
program.

Our approach is to begin not by examining the stores themselves, but how stores change
over the course of the execution trace. Suppose that a program analyzer were omnipotent and
could examine and answer any questions about the execution traces, even infinite ones, from
all possible initial stores. One question of interest might involve examining pairs of stores at
different points along the trace, to see what the differences are between the first and the second.
This would provide information about what happened during the interval of execution between
those points. Now reconsider the problems listed above:

e The execution may never terminate and thus leave behind an infinite trace. But even so,
there may be an infinite number of finite intervals during the execution that exhibit the
same pattern of how the store at the beginning of the interval relates to the store at the
end. In fact, this is the case with a loop in the program; each interval corresponds to a
single iteration. If this pattern can be isolated, then it is not necessary to examine the
entire infinite trace. An example of such a pattern is a loop invariant. But this general
concept goes beyond loop invariants. For instance, one may relate the store at any point
during a loop or recursion with the store k iterations later for a given k.

e Even if the initial store is unknown, there may be a commonality in the change between
any initial store and the store at some later point in the trace. This is similar to the
situation with loops; a potentially unbounded number of trace intervals share a common
net effect between their initial and final stores. Related to this idea is the use of weakest
preconditions to describe the semantics of loops [Dij76, WanT77].

e As a practical matter, even if the initial store is fixed and the program terminates, isolating
the patterns in the trace provides a hope of making the analysis feasible in practice.

Such a pattern or commonality in the way one store evolves into another is simply a relation
between the initial and final stores. We call these transfer relations. It turns out that there is
a simple language of transfer relations that covers all the patterns that arise during program
executions. Also, there are ways to compute these transfer relations and use them to reason
about the executions. In this chapter, we introduce the our model of stores and give the
language of transfer relations.
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2.1 Stores

We make the fundamental assumption that during program execution, any instantaneous state
of the memory can be modeled by a store. A store is parameterized by the following disjoint

sets.
z € Var a set of variables

v € Val a set of values

A store is then a function from l-values to values.

o € Store = Lval — Val stores
w € Lval = Varu(Val x Val) l-values

We parameterize a store by Val because we would like to develop a semantic framework that
is suitable for a wide variety of programming languages and analysis tasks. However, we will
require that Val include the booleans true and false and a special value undef.

true,false,undef € Val

The most natural notion of a store is a partial function, mapping exactly the l-values that are
defined to their respective values. But instead, for technical reasons in Chapter 3, we require a
store to be a total function, mapping all of the “undefined” l-values to the distinguished value
undef. Throughout this dissertation, undef refers to an undefined or error value. In Chapter 4,
we will discuss further the treatment of errors.

The “I” in l-value means “location”. Intuitively, an I-value represents a location in memory
that might be written or mutated as well as read. There are two kinds of I-values. The first
kind is simply a variable. The second kind is called a reference; it is a pair of a value v € Val,
representing a data structure, and a value v’ € Val, representing an index into a mutable
component of that data structure. The l-value (v,v') € Lval is written v.v'.

Intuitively, a value represents the contents of a single mutable memory location—or in other
words, the contents of an l-value. A value might be a simple object such as an integer or a
boolean, or it might be a compound object, such as a tuple or vector. In the latter case, however,
the compound object must be immutable because it represents the contents of a single mutable
memory location. So, for instance, one should not model a (mutable) Scheme [ReC86] cons cell
(1. 2) with a single value, but rather use three values: one for the cons cell itself, one for 1,
and one for 2.

A store is then a function from l-values to values that describes the contents of the memory.
For instance, if v is the cons cell in the previous paragraph, the store would map the references
v.car and v.cdr to 1 and 2, respectively. Intuitively, a program execution begins in some initial
store o( describing the initial state of memory, input data, and so forth, and then continually
modifies the memory while it is executing, producing a sequence of evolving stores o1, 09, 03, . . .
corresponding to the steps of the execution.

We stress again the crucial concept that l-values represent the mutable memory locations.
Some programming languages include data structures that are not mutable—for instance, the
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tuples, records, and vectors in Standard ML [MTH90]. One would probably model these objects
simply as compound values rather than breaking them up into their components and indexing
those components by separate l-values in the store.

Example 1 Consider the C programming language. A value v € Val might correspond to any
of the different kinds of C data types:

e An integer, real number, or character. In this case, v would be that value.

o A pointer. In this case, v would be a token representing the pointer itself. In addition,
there would be o value * € Val, and the l-value v.* would represent the memory location
to which the pointer refers. A store would then map v.* to the contents of the pointer.

e A struct. In this case, v would be a token (pointer) representing the root of the struct. In
addition, there would be a value f € Val for each field name f in the structure, and the
l-value v.f would represent the memory location of field f of the struct. A store would
then map v.f to the contents of that field of the struct.

e An array. In this case, v would be a token (pointer) identifying the array. In addition,
every non-negative integer n would be in Val, and the l-value v.n would represent the
memory location of the nth array element. A store would then map v.n to the contents of
the nth element of the array.

The above example illustrates that for some programming languages, the set Val of values
might include, in addition to the base values of the language, a set of pointers to represent
mutable data structures. In some operational semantics, these are called “locations” or “heap
values” [MFH95] and are just taken from an arbitrary infinite set.

Again, we stress that a store is a total function. This is not intuitive, because at any time
during an execution of a program in any reasonable programming language, there will only be
a finite amount of data actually allocated and accessible by the rest of the execution. But this
is why we require that Val include the distinguished value undef to represent the undefined
value. The intended use of stores is to model the state of memory during an execution of a
computer program. If an l-value w € Lval is undefined in the memory then the store o modeling
that memory state would map w to undef (i.e., (0 w) = undef). Therefore, the fact that we
require stores to be total functions is not a limitation of expressiveness. However, for minor
technical reasons concerning the symbolic composition of transfer relations in Chapter 3, it will
be convenient for stores to be total functions.

Stores as graphs

It is sometimes helpful to think of a store o as a graph with directed labeled edges. The set of
nodes is
ValU {e}
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where @ is a distinguished root node not in Val. The set of labeled directed edges is
{o—2vy |oz=v}U{v—"wyr|o(wy)=0"}.
Note the following properties of any store graph.

e Because a store is a function rather than a general relation, no two outgoing edges of the
same node can have the same label.

e Node @ has no incoming edges, and all its outgoing edges are labeled with variables.

At any particular time during program execution, all the l-values that are undefined in the store
at that time will point to undef. Because of this choice of stores as total functions, a store
graph will in general be infinite. We ignore this technical detail, as our perspective of stores as
graphs is solely for expository purposes.

Example 2 Again, consider the C programming language. Assume the set Val includes C
integers and C characters.

o [f at some point during an execution, the variable x € Var is bound to a pointer to a location
containing the integer 42, then the store o at that point of execution would contain the
following path from the root node:

D Ry
Here, v € Val represents the pointer itself.

o Ifin addition, y is bound to a struct with a field index, which is the integer 618, and with
a field data, which points to a two-element array whose elements are the chars 'A' and
'Z', then o would also contain the following paths from the root node:

index 618
[ —y>1)2 / 0

/A/
dat>*’l)3 Xy 7
}k/z/

Here, vy € Val represents the struct, vs € Val represents the char-array pointer, and
vy € Val represents the char array.

o If in addition, z is bound to a pointer that dereferences to itself, then o would also contain
the following subgraph:

Here, vs € Val represents the pointer itself.
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These three subgraphs of o describe precisely the data that is reachable from variables x, y, and
z, respectively, at this point of execution.

In the next section, we study ways to generate a value from other values in a store. This is
done with primitive operations.

2.2 Primitive Operations

Our framework is parameterized by a set Primop of primitive operations. Each operation p €
Primop has an arity, which may be zero or more. A primitive operation describes a way in
which zero or more values evaluate to a single value. The phrase

p(v1,...,0,) S5 v

means that the n-ary primitive operation p € Primop applied to the values vy,...,v, € Val
in store o € Store evaluates to value v € Val. There are several distinct classes of primitive
operations, which we characterize below.

All primitive operations must satisfy the following condition.

Condition 1 (Definedness of primitives) For any n-ary primitive operation p € Primop,

for any n values vy, ...,v, € Val, and for any store o € Store, there is at least one value v € Val
such that p(vy,...,v,) = v. In other words,
Vp,v1,...0p,0. 0. p(v1,...,0,) 5 U

This condition states that primitive operations must be defined everywhere. Conceptually, this
requirement is analogous to the requirement that a store is defined everywhere (i.e., for all
l-values). The condition is required for minor technical reasons in the development to follow.
However, as we explained about stores, this condition does not limit the expressiveness of the
framework because Val includes undef representing the “undefined value”.

Indeed, the two main parameters of our framework—the set Val of values and the set Primop
of primitive operations with associated evaluation relation—truly go hand-in-hand. This will
come out in Chapter 5 when we describe the design of a programming language using our
development.

It is the parameterization of the framework by the set of primitive operations that makes
this methodology particularly flexible and useful for a variety of applications. Yet, it is not the
case that we are factoring all of the important semantics concepts out along with the primitive
operations. This is because our concept of a primitive operation is a computation without
store modification. The encapsulation of such operations as the main parameter of the analysis
framework turns out to be quite useful and powerful.
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2.2.1 Deterministic and context-independent primitive operations

It will be convenient to introduce some terms for some different classes of primitive operations.

Definition 1 (Deterministic and nondeterministic primitive operations) A primitive
operation p € Primop is said to be deterministic if

p(v1,...,0p) =5 v
and
p(v1,. .., 0n) o ¥
implies that v = v'. Otherwise, p is said to be nondeterministic.
A typical programming language will need only deterministic primitive operations, but certain

applications of the framework will make use of nondeterministic operations, and so we include
them in the general framework.

Definition 2 (Context-independent and -dependent operations) A primitive operation
is said to be context-independent if for any stores o and o' and values vy, ..., v,,v,

p(v1, ... ) Do v = p(v1,...,0p) g V.

In other words, the evaluation of p does not depend on the store. In this case, we may use the
abbreviated form

p(v1,...,0p) = v
for evaluation. Otherwise, p is said to be context-dependent.

The simplest kinds of primitive operations are deterministic context-independent operations.
These will come up so often that it is worth introducing a definition just for them.

Definition 3 (Simple primitive operations) If primitive operation p is both deterministic
and context-independent, then it is said to be simple.

2.2.2 Examples of primitive operations

We present some examples of each kind of primitive operations. Although they are just examples
for the moment, some of them will play a major role in the development to follow. This section
assumes that

p(vi,...,vy) <, undef

unless otherwise defined below. (Recall that undef € Val is represents the undefined value.)
We also assume that Val includes the integers.
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Simple operations

Recall that simple operations are operations that are both deterministic, in that they evaluate
to only a single value, and context-independent, in that their evaluation does not depend on
the store.

Example 3 FEach value v € Val specifies a nullary primitive operation v € Primop that evalu-
ates to v:
v() = v

Example 4 Here are some standard arithmetic primitive operations found in programming
languages. In these definitions, n and n' are integer values.

n,n') <= (nxn

Example 5 Below are boolean operations for conjunction, equality, and inequality. We will
use the first two (& and =) internally in our analysis framework.

&(true,v) — v
&(v,true) — v
&(false,v) — false
&(v,false) — false
=(v,v') = (v="1")
< (v,0') = (v #0)

Note that there are cases in which these operations are given undef and evaluate to a boolean
value. Intuitively, these are error cases that are allowed to “run wild”, and so this choice is
reasonable. We will discuss this more in Chapter 4.

Example 6 The operation if implements conditional expressions.

if(true,v,v') — v
if(false,v,v') — o'

Example 7 Ezample 1 demonstrated the need for pointer values to correspond to the roots of
mutable data structures. Suppose that for every natural number n there is a pointer (n) € Val,
and ptr is a unary primitive operation that casts an integer n to the pointer (n).

ptr(n) — (n)

We will return to ptr in Chapter 5.
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Nondeterministic context-independent operations

These operations may evaluate to more than one value, but do not depend upon the store.
These operations are similar to types, and this similarity provides some intuition about why we
include the possibility of nondeterministic operations. After all, one of the major applications
of program analysis is to infer types of data objects and expressions.

Example 8 The nullary operation pos may evaluate to any positive integer:
pos() &= n ifne{l,2,...}
Example 9 The nullary operation bool may evaluate to any boolean:

bool() < true
bool() — false

Deterministic context-sensitive operations

These operations always evaluate to a single value, but depend on the store in which the
evaluation occurs.

Example 10 The binary operation deref dereferences edges in a store. Given values v and
v', it evaluates in store o to the value to which o binds the l-value (v.v'):

deref(v,v') <, o(v.v)

This last example is important, which we will see in the next section.

The next example hints at an application of our framework to the analysis of the shapes of
data structures, and also illustrates the point that our notion of primitive operations does not
need to be limited to operations that might be available in a programming language.

Example 11 The unary operation tree, when evaluated in store o with value v, evaluates to
true if the subgraph of o rooted at v (possibly representing the root of some data structure) and
not including node undef is a tree (in graph-theoretic terms). Otherwise, it evaluates to false.

Although Primop is a parameter of our analysis framework, we demand that it include the
following operations described above:

true,false,&,=,if € Primop

The first two simply provide a way of denoting booleans as expressions. (Recall that the
booleans were the only objects other than undef that we demand to be members of Val.) The
second three are used internally in the transfer-relation composition algorithm in Chapter 3.
We further remark that any nontrivial application of our methodology will need deref in order
to build expressions that can perform general examinations of the store.
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2.3 Expressions and L-expressions

Our framework is based upon the study of binary relations between stores, called transfer
relations, that describe how a store at one point of an execution evolves into a store at some
future point of the execution. We want to write down these transfer relations, represent them
in a computer, and analyze them with algorithms. In order to do this, it turns out that we
will need two languages of computer-representable terms, one to describe the nodes in a store
and one to describe the edges in a store. Later, we will use these two languages to develop a
language of transfer relations.

Elements of the first language are called expressions; given a store o € Store, an expression
e € Exp denotes one or more values v € Val. If e denotes v in o, then we say that “e evaluates
to v in o”. The same expression may evaluate to different values in different stores.

Elements of the second language are called [-expressions; given a store o € Store, the I-
expression [ € Lexp denotes one or more l-values w € Lval. If [ denotes w in o, then we say that
“l evaluates to w in ¢”. The same l-expression may evaluate to different l-values in different
stores.

The syntax of the language of expressions and l-expressions is parameterized by a set Primop
of primitive operations, described in Section 2.2, and has the following inductive definition.

e € Exp n= x| pler,... ep) expressions

I € Lexp n= x| ed l-expressions

p € Primop primitive operations (given)
x € Var variables (given)

There are two types of expressions:

e A variable x € Var. This expression evaluates in store o € Store to the (unique) value
v € Val such that @ —+ o is an edge in o. In other words, z evaluates in o to (o ).

e An application of an n-ary primitive operation p € Primop to n expressions ey, ..., e, €
Exp. This expression evaluates in store o € Store to value v € Val if expression e; evaluates
in store o to value v;, for s € {1,...,n}, and p applied to (vy,...,v,) evaluates in store o
to v.

The phrase
p

denotes the nullary primitive application p(). The phrase
epe

denotes the binary primitive application p(e, €').

There are two types of l-expressions:
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e A variable z € Var. This l-expression evaluates to itself in any store, and can be thought
of informally as the dangling edge & —2+

e A reference expression e.e/. This l-expression evaluates in store o € Store to the l-value
v.v' € Lval if e evaluates in o to value v € Val and ¢’ evaluates in store o to value v’ € Val.
This l-value can be thought of informally as the dangling edge v —2—~

Formally, the interpretations of expressions and l-expressions are given by the following rela-
tions.

e The phrase e -, v means that the expression e evaluates in store o to value v.

e The phrase [ -, w means that the l-expression [ evaluates in store o to l-value w.

Because a variable is both an expression and an l-expression, this notation may seem ambiguous.
But in the former case, the right-hand side will be a value, and in the latter case it will be an
l-value.

The following rules inductively define these relations.

e Fo v; Viye..yUp) “Fg U ) )
Tty (o) iFo Ui Pl vn) To expression evaluation
pler, ... en) Fo v
eby,v €k 0 . .
o l-expression evaluation

(e.e)) ko (v.0")

The following lemma states that every expression (l-expression) evaluates to at least one
value (l-value).

Lemma 1 (Definedness of expressions and l-expressions) For any expression e € Exp,
for any store o € Store, there is at least one value v € Val such that e -, v. For any l-expression
I € Lexp, for any store o € Store, there is at least one l-value w € Lval such that | -, w. In
other words:

e Ve € Exp,o € Store. dv € Val. e, v

e V] € Lexp,o € Store.dw € Lval. [ F, w

Proof: From Condition 1 on primitive operations and by straightforward induction on ex-
pression and l-expression evaluation. O

It is important to distinguish expressions and l-expressions that do not contain any appli-
cations of nondeterministic primitive operations.
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Definition 4 (Deterministic expressions and l-expressions) For ezpression e € Exp (re-
spectively, l-expression | € Lexp), if neither e nor any subexpression of e (respectively, if no
subexpression of 1) is an application of a nondeterministic primitive operation, then we say that
e (respectively, 1) is deterministic. The phrase determ(e) (respectively, determ(l)) denotes this
fact.

The following lemma states that deterministic expressions and l-expressions always evaluate to
exactly one value and l-value, respectively.

Lemma 2 (Deterministic expressions and l-expressions) For any deterministic expres-
sion e € Exp, for any store o € Store, there is exactly one value v € Val such that e -, v. For
any deterministic l-expression | € Lexp, for any store o € Store, there is exactly one l-value
w € Lval such that | F; w. In other words,

e determ(e) = Vo € Store.3lv € Val. e -, v

e determ(/) = Vo € Store. 3w € Lval. [ -, w

Proof: From Lemma 1, from Definition 1, and from straightforward induction on expression
and l-expression evaluation. O

If all primitive operations in Primop are deterministic, then all expressions are deterministic.
But even if there are nondeterministic primitive operations in Primop, it will be important to
distinguish deterministic expressions for the symbolic evaluation of certain primitive operations
in Chapter 3.

At first it may seem as if our language of expressions is too restrictive; why not allow arbi-
trary l-expressions instead of just variables. The reason is that one may treat the l-expression
e.e’ as an expression by using the deref primitive operation that we introduced in the previous
section. Counsider the C expression *x. On the left-hand side of an assignment statement, *x
refers to a memory location, or an l-value in our terms. But on the right-hand side, it refers to
the contents of that memory location, or a value in our terms. But C has a uniform syntax to
handle both cases; they are both expressions. In contrast, in our framework the term on the left-
hand side would be an l-expression—namely, x.* (where * € Val as in Example 1)-—whereas
the term on the right-hand side would be an expression—namely, the primitive application
deref(x, *).

Therefore, deref is a rather distinguished primitive operation in that it provides the ability
to examine the store beyond the level of variables. It is likely that one will almost certainly need
it in any analysis application for any language. Therefore, inspired by the above discussion, we
introduce a special syntax for it. The term

!
e.c

will, depending on the context in which it appears, refer to either the l-expression e.e’ or the
primitive-application expression deref(e,¢’).
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2.4 Simple Transfer Relations

Our central philosophy is that it is advantageous to analyze relations between two stores. These
relations are called transfer relations. The idea of studying transfer relations is a paradigm shift
from most analysis frameworks, as the focus is usually on reasoning about properties of, or sets
of, individual stores. Yet a program fragment relates initial stores to final stores, and so it
seems intuitive to study these relations.

2.4.1 Only some relations are natural

At first blush, it seems as if the set of transfer relations is the set
P(Store x Store)

of binary relations between stores. But such an unrestricted notion of transfer relation has two
related disadvantages.

e For analysis purposes, we will want to design computer representations of transfer relations
(ideally, concise representations), and it is impossible to do so for general binary relations
between stores.

e Barlier, we gave the intuition that for the purpose of static program analysis, a transfer
relation corresponds to a fragment of the execution of some program in some programming
language. But there are many binary relations between stores that would never come from
any such execution fragment. Indeed, there are many such relations that are not even
computable. These relations are unnatural in that they do not arise during program
execution, and they are thus of no use for reasoning about programs.

The key is to identify the kinds of transfer relations that might actually come about as part of a
computer program’s execution. Fortunately, there is a class of such relations that is sufficiently
expressive and yet conducive to automatic reasoning and analysis. We will demonstrate this in
later chapters, where we model real programming languages with transfer relations and then
use those relations to analyze source programs.

Abstractly, apart from any particular language or program, one basic kind of transfer re-
lation is a relation that updates a store graph by assigning or changing the node to which an
edge in the graph points. These relations can describe dynamic actions in a programming lan-
guage that modify memory in some way. We already have both the language of expressions to
denote nodes and the language of l-expressions to denote edges. An assignment relation is then
described by an l-expression, denoting an edge to be assigned or reassigned, and an expression,
denoting a node to which the edge must point.

Another basic kind of transfer relation is a relation that simply filters through stores that
satisfy a certain property and rejects the stores that do not. This is the most basic kind
of conditional operation, and as such will be necessary to express the dynamic behavior of
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most programming languages. Again, we can use the language of expressions to specify these
properties, and so a filter relation is described by an expression.

One can then build bigger relations from these basic relations.

2.4.2 Building natural transfer relations

We wish to describe a set
TrRel C P(Store x Store)

of natural transfer relations. By natural, we mean informally that it is reasonable to imagine
that the transfer relation in question might correspond to a fragment of an execution of some
program in some programming language. In other words, suppose that at a certain point in the
middle of an execution of some program in some language, store o; describes the state of the
memory at that point. As the execution continues from that point, it will produce a sequence
of evolving stores o3, 03, ... corresponding to the steps of the execution. Then for each n > 0,
there there should be some transfer relation A € TrRel that relates store o7 to store o,,; in other
words,
o1 Aoy,

The idea is to keep the set TrRel as small as possible, but still large enough that one could
model the operational semantics of realistic programming languages using only these relations.
Fortunately, this is quite easy to do in a rather satisfactory and intuitive manner.

We will define the set TrRel inductively.

e There are four types of basic relations in TrRel:
— The empty relation .
— The identity relation e, which relates only between identical stores. Formally:
oceo

— The assignment relation where | € Lexp and e € Exp. If l-expression [

evaluates to l-value w in ¢ and expression e evaluates to value v in o, then
updates store o by assigning w to v. Formally:

lFw ely,0
ol = e|(ofw— v])

Here, o[w — v] is the store that maps w to v and is otherwise identical to 0. Formally,
it is defined as follows:

v ifw=w
ocw' otherwise

(olw — v]))w' = {

Note that if ~determ(l) (i.e., if a nondeterministic primitive operation appears in [)

then [ may evaluate to more than one l-value (and similarly for e), and so
can relate a store on the left to several different stores on the right.
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— The filter relation where e € Exp, which relates a store o to itself only if expres-
sion e evaluates to the value true in 0. Formally:

e bk, true
e
e If A, A’ € TrRel, then their relational composition A; A’ (alternatively, A’oA) is in TrRel.
We use the standard definition of relational composition:
cAd o A'd"

o(A;A") o

Note that the identity relation e can be defined as the filter relation , where, as
described in Section 2.2.2, true denotes the nullary application of the primitive operation
defined by true € Val. Similarly, the empty relation () can be defined as the filter relation
. But it is more convenient to have distinguished representations for each of these two
special cases.

2.4.3 Examples of transfer relations

As described at the beginning of this chapter, our goal for the sake of generality is to develop
a framework for expressing data and operations on data in a language-independent manner.
Nevertheless, it is illuminating at this point to look at some examples of transfer relations and
consider how they might arise during the execution of a computer program.

Example 12 The transfer relation

|xv—>2|;|x»—>x+1|

is equal to (in other words, precisely the same relation as) the transfer relation
x—3

that assigns variable x to be 3. In other words, it changes any store by redirecting the edge

to

Here, + € Primop, and the integers are included in Val and as nullary operations in Primop.

Example 13 The transfer relation

(x<0)?}[x 0 -x]

relates any store in which x 1s bound to a negative number to a store in which x to be the
absolute value of that number and is otherwise equivalent. Furthermore, it relates every store
in which x is not bound to a negative number to no store at all.
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Example 14 Imagine a use of stores and transfer relations to model a language with heap-
allocated data structures. One way to model data allocation is to maintain a convention that
the semantic variable H holds the index of the next available pointer. Then one can use ptr
from Example 7 to generate that pointer. By convention, we write

ptr(e)

{e)

Then the transfer relation

x> (H) j[x.car — y [x.cdr — z}|H— H+ 1|

allocates a new record that has two fields—car, which is assigned to y’s value (which may be
undef ), and cdr, which is assigned to z’s value (which may be undef)—and assigns © to be this
record.

Example 15 The transfer relation

|x»—>x.t1|;|x»—>x.tl |;|x»—>x.t1

15 equal to the transfer relation

[x— x.t1.t1.t1]

which in a store that includes the subgraph

X tl tl
& —U] —VU2 —»u3 —»tl (%

assigns x to be vyg, producing a store that includes the subgraph

() X
\
tl tl /tlv

V] —— V9 —> U3

Vg

Although we have written the paths as linear pictures, it is not necessarily the case that vy,
v, v3, and vy are distinct. Therefore, the paths shown above may actually include cycles. For
instance, if v = vz then the original subgraph would actually look like

b tl
e —1U TqT’UQ

and the transfer relation would modify this to

tl X
(%] ‘T‘ Vg+—"@

Example 16 The transfer relation
X* =X
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assigns field * of the value bound to x to point to that value itself, thus creating a circular data
structure in the store:

o+ v :*
The C statement
*xX = X;

performs a performs a similar operation. Before the statement, x is bound to a memory address
v. After the statement, x is still bound to the memory address v, but now that memory address
holds v itself. Our graphical representation above directly reflects this memory state.

Example 17 The transfer relation

transforms a store o as follows. Suppose x is bound to value v, y is bound to value v', and z is
bound to value v" in o. Then the outgoing edge of v labeled with v' is redirected to point to v".
If v’ is an integer then this is equivalent to the C statement

x[lyl = z;
but if v’ is not an integer then this transfer relation has no correspondence in C.

Example 18 The transfer relation

x.car — yf|z.car — w

acts as follows. For those stores in which x and z are bound to different values, it assigns field
car of x’s value to be y’s value and field car of z’s value to be w’s value. For those stores in
which x and z are bound to the same value, it assigns field car of that value to be w’s value.

2.5 The Difficulty of Composition

Above, we defined a basic relation to be either the empty relation (), the identity relation e, an
assignment relation , or a filter relation . We defined any transfer relation that is not
a basic relation to be a finite composition of basic relations. Note that in Examples 12 and 15,
the composition of more than one basic relation is equal to another basic transfer relation, but
in those cases the single basic transfer relation such as

T3

exposes information that is not so clear in the composition itself.

Sometimes, though, the composition of more than one basic relation is not a basic relation,
as Examples 13, 14, and 18 demounstrate.
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It would be convenient if there were a reasonably compact and clear representation scheme
for all transfer relations. The explicit composition of 100 basic relations is not only cumbersome
by any reasonable measure, but also quite likely shed little insight on what exactly the transfer
relation does. For instance, the description of the transfer relation

r.car — Yy ;| z.car — w

in Example 18 is not at all obvious from that representation itself. The exercise of decoding
the net effect of the transfer relation

‘:v.tl.tl —y.tl H y.tl — z.tl H z.tl — y‘

is much more difficult yet. It may seem as if this last example is designed to destructively
insert the first element of a linked-list y into the second position of a linked-list . However,
that behavior only occurs under certain initial aliasing conditions. It is not an easy exercise to
determine the possible behaviors of this example under different initial aliasing conditions.

Fortunately, there is a reasonably simple representation scheme that covers all transfer
relations in TrRel. This scheme actually computes the effect of any composition, rather than
leaving the composition operation explicit as written directly above, and hence reveals quite
clearly the effect of any transfer relation. But the four kinds of basic relations in TrRel are not
quite sufficient to express these compositions syntactically. Therefore, we have to extend the
language.

2.6 The Full Language of Transfer Relations

The language TR of transfer relations is defined inductively as follows.

A € TR == (0]6]]e? AlA!

§ € ATR u= |l,....ln—er,... e

We have already defined () (the empty relation). Assignment relations are generalized to parallel
assignments ATR C TR, defined as follows.

lito wi ejlov; i#j=w #w;j

(olwy = v1] ... [wy — vy])

a‘ll,...,ln»—>el,...,en

A crucial fact about assignment relations is that the assignment only takes place if all the
l-values to be assigned are actually distinct. One can therefore look at an assignment relation
with n assignments and know that whenever it relates an initial store to a final store, it performs
exactly n distinct assignments.

Filter relations are generalized to conditional relations, defined as follows.

ebytrue o Ao’ ek, false oA'o’
ale? A|A|o! agle? A|A|o!
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We adopt the following syntactic abbreviations.

e The empty parallel assignment (i.e., where n = 0) is simply the identity relation e and
may be written as such.

e The conditional relation [e? A |0 | may be abbreviated as .

e The conditional relation |e? (| A | may be abbreviated as .

In order to avoid confusion, we introduce different notations for syntactic and semantic
equivalence of transfer relations. If A and A’ are both the same syntactic term, or in other
words the same element of the language TR, then we write A = A and say that they are
syntactically equivalent. If A and A’ denote the same relation, then we write A = A’ and
say that they are semantically equivalent. Note that syntactic equivalence obviously implies
semantic equivalence, but semantic equivalence does not necessarily imply syntactic equivalence
because in this language there may be more than one way to write the same relation. For
instance,

true? A|A’

A,

but

true? A|A'|# A.

In this sense, the language TR is not fully abstract [HP79, Mul87]. If it were fully abstract,
then we would have a decidable way of testing semantic equality of transfer relations, but this
will not be so important for the applications of our analysis framework.

A major property of transfer relations is that if all the primitive operations are deterministic,
then all transfer relations are actually partial functions. Formally, we have the following lemma.

Lemma 3 (Deterministic transfer relations) If Primop is deterministic, then for every
transfer relation A € TR and store o € Store, there is at most one store o' € Store such
that o A o',

Proof: Given o, we proceed by structural induction on A.

e (): By definition, there is no o’ such that o o’

e |e? A|A’|: Because Primop is deterministic, we know from Lemma 2 that there exists
exactly one v such that e -, v. There are three cases.

— v = true: Then by the definition of conditional relations, o|e? A|A’|o’ only if

o A o', and by induction there is at most one o’.
— v = false: Analogous, with A’

— Otherwise: Then by the definition of conditional relations, there is no o’ such that
ole? A|A |0
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. ‘ll, eyl rer, ... e, ‘: Because Primop is deterministic, we know from Lemma 2 that

for i € {1,...,n}, there exists exactly one w; such that [; -, w; and exactly one v; such
!/

that e; -, v;. Then by the definition of assignment relations, O" li,...0lp —e1,....ep |0

only if wy,...,w, are all distinct and o' = o[w; — v1]...[w, — v,]. There is at most
one such o'

O This theorem has the following corollary, which is not useful on its own, but which we will
use in some of the proofs in Chapter 3.

Corollary 1 If Primop is deterministic, then for any two transfer relations A, A" € TR, the
following two statements are equivalent:

e A=A

e (cAd'=0A'dYAN(c Ao = Fo". 0 Ad")

The main result about this language of transfer functions is that under certain conditions it
is closed under composition. In other words, there exists a total syntactic composition function

& € TRxTR—=TR

that, given two transfer relations in the language TR, builds a third transfer relation in TR that
is semantically equivalent to their composition. In other words,

(A @A) =(A;4")

for any two transfer relations A, A’ € TR. Under weaker circumstances, A & A’ is not guaran-
teed to be semantically equivalent to A; A’, but is guaranteed to be a superset of A; A’. But we
will see that the conditions for semantic equivalence will be met by any application of transfer
relations to model the dynamic semantics of programming language.

In fact, the @ function is effectively computable, and so we will call it the composition
algorithm. If there were a combinator in the language of transfer relations that represented
composition, then the composition algorithm would be trivial. In other words, if we extend the
language by

A = .. |As A

and define A @ A’ to be the relation A; A, then the composition algorithm could be simply
the @ combinator. But, as we explained above, our goal for the practical purpose of program
analysis is to avoid a syntactic representation of composition. We present the algorithm in the
next chapter.



Chapter 3

Composing Transfer Relations

The composition algorithm for transfer relations is based on a kind of symbolic evaluation. We
will present the the algorithm in several stages.

e Symbolic evaluation of primitive operations. This part of course depends on the particular
choice of the set Primop of primitive operations and their evaluation semantics. The choice
of Primop and design of the symbolic evaluation algorithms for those operations forms the
core of any program analysis designed with our framework.

e Symbolic evaluation of expressions and l-expressions. These algorithms are defined rela-
tive to Primop and its associated symbolic evaluation algorithms.

e Symbolic evaluation of conditional relations. This part is also a parameter to the compo-
sition algorithm.

e Symbolic evaluation of assignment.

e Symbolic evaluation of transfer-relation composition.

3.1 Symbolic Evaluation of Primitive Operations

The first step of any application of our analysis methodology is the choice of the set Val of
values and the set Primop of primitive operations, which will largely depend on the language to
be analyzed.! The second step is the design of an algorithm to symbolically evaluate primitive
application expressions. The heart of our methodology is in this symbolic evaluation, and the
power of our approach comes from the flexible notion of a primitive operation as potentially
any computation that does not modify the store, including both non-deterministic primitive
operations and context-sensitive primitive operations. Yet, the fact that primitive operations

'Recall that we require Val to include the boolean constants and undef, and we require Primop to include the
boolean constants and the boolean operations &, =, and if.
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are constrained not to modify the store ensures that their symbolic evaluation is never too
complicated.

The framework constructed in this section is for us what the notion of the Galois connection
and associated fixed-point theorem is for abstract interpretation [CC77]. In abstract interpre-
tation, one first designs a fixed-point-based semantics for the language to be analyzed and then
designs an abstraction of the semantic domain. Then, for the most part, the framework of
abstract interpretation provides the rest—in particular, a functional for the abstract domain
induced by the semantics whose fixed point is guaranteed to satisfy a certain relation with the
semantics of the language.

In our approach, one first chooses a set of primitive operations and then designs symbolic
evaluation algorithms for them. The various algorithms in this chapter provide much of the
remaining work.

In Chapter 2, we gave many examples of useful primitive operations. Some of them were
common and familiar, such as the constants and basic operations over booleans and integers.
Others were rather distinguished, such as deref and pos. We will return to many of these in
this section.

3.1.1 A first cut: symbolic evaluation of simple primitive operations
A term like “symbolic evaluation” would tend to imply that we need an algorithm

P € Primop — Exp* — Exp
that satisfies the property that

(Pp(er,...,en)) Fov <= pler,...,en) Fov.

In other words, P, given an n-ary primitive operation p and n expressions eq,...,e,, returns
an expression that is semantically equivalent to the expression p(ey,...,e,). The degenerate
function

Pp(er,...,en) =pler,...,epn)

obviously works, but might not produce optimal results. For instance, that function returns
P+(42,24) =42 + 24,

but it is obvious that in this case P could have actually performed the addition, thus producing
the smaller expression
P+ (42,24) = 66

where, again, 66 is technically an application of the nullary primitive operation 66. This is called
“constant folding” in the compiler literature [ASU86]. Even beyond this, one could imagine
that P might try to use a calculus of arithmetic transformations, perhaps yielding results such
as

P+(42,z +24) = z + 66.
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In fact, however, this notion of symbolic evaluation makes sense only for primitive operations
that are simple, as defined in Definition 3. In the next section, we subsume the notion of
symbolic evaluation in this section with a more general notion that covers all kinds of primitive
operations.

3.1.2 Generalized symbolic evaluation of primitive operations

In this section we present the general notion of symbolic evaluation of primitive operations that
works for all kinds of operations, including non-deterministic operations, defined in Definition 1,
and context-sensitive operations, defined in Definition 2.

The symbolic evaluation of a set Primop of primitive operations is computed by a function
P € Primop — Exp* — ATR — Exp

that, loosely speaking, given

e an n-ary primitive operation p € Primop,
e 1, expressions ej,...,e, € Exp, and

e an assignment relation 6 € ATR (recall the definition of ATR from page 38),

produces an expression e = (P p(eq,...,e,) d) that satisfies the following property. If (ey,. .., e;,)
evaluate to values (v1,...,v,) in some store o, and if p applied to these values evaluates to a
value v in a store after the assignment ¢ is applied to o, then e must evaluate to v in o.

The following definition formalizes this correctness condition.

Definition 5 (Symbolic evaluation of primitive operations) If whenever odo’,

n
(/\ ei o v¢> = (p(vi,...,vp) = v= (Pp(e1,...,en)0) Fsv),
i=1

then primitive operation p € Primop is said to be symbolically evaluated by P. If every p €
Primop is symbolically evaluated by P then P is said to be a symbolic evaluation.

It is worth noting that the second implication in the above proposition is not an iff. This means
that if there are nondeterministic primitive operations in Primop then P is allowed to produce
a nondeterministic expression (which, recall, is an expression using nondeterministic primitive
operations) that may evaluate to “extra” values. The reason we allow this is that the only
time that we will need the reverse implication is when there are no nondeterministic primitive
operations in the first place, and in that case the reverse implication comes for free. This is
expressed by the following lemma.
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Lemma 4 (Symbolic evaluation of deterministic operations) If all primitive operations
p € Primop are deterministic, then the second implication relationship above is strengthened to
an iff relationship.

Proof: Because all primitive operations are deterministic, we know that for any p, vy, ..., vy,
€l,...,€n, 0, 0, and o’

e There is exactly one v such that p(vy,...,v,) =4 v.

e From Lemma 2, there is exactly one v such that (Pp(ey,...,e,)9d) by v.
Therefore, an implication relationship between them is equivalent to an iff relationship. |

Special case: context-independent primitive operations

Because context-independent operations do not use the store, P can safely ignore its assignment-
relation argument ¢ for any such operations. This is described by the following lemma.

Lemma 5 (Symbolic evaluation of context-independent operations) If p € Primop is
context-independent and

pler,...,en) Fov=(Ppl(er,...,en)0) Fsv
then p 1s symbolically evaluated by P.

Proof: Straightforward. a

This is similar to the statement of correctness that we suggested above for the simpler notion
of symbolic evaluation. The above lemma suggests the requirement, without any loss of gener-
ality, that for any context-independent primitive operation p, the expression (Pp (e1,...,ey)0)
must not depend on the particular value of 0. Because many primitive operations are context-
independent, this suggests a simpler notation for their symbolic evaluation in which § does not
appear.

Definition 6 (Notation for context-independent operations) Given P, if p is context-
independent then

pler, ... en)

denotes the unique expression Pp(e1,...,ey)0.

For binary primitive operations, we sometimes abbreviate p(e,e') with e p ¢'.

3.1.3 Examples

In this section, we give examples of some of the primitive operations given in Section 2.2.2.
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Context-independent primitive operations

There is no reason for any context-independent nullary primitive operation to symbolically
evaluate to anything other than itself. So, for instance, we have:

() = w for v € Val
pos() = pos
bool() = bool (see Example 9)

An application of a unary operation such as ptr from Example 7 also typically symbolically
evaluates to itself. Recall that we write (e) for ptr(e). Then:

ptr(e) = (e)

These are clearly correct symbolic evaluations. In fact, for all context-independent primitive
operations, the definition

pler,...,en) = pler, ... epn)
is trivially a symbolic evaluation by Lemma 5 because
pler,....en) Fov <= pler,...,en) Fov

simply by definition.

But there may be some room for simplification. For instance, for binary integer opera-
tions (including comparison operations), we could define their symbolic evaluation to perform
constant-folding when possible, and otherwise default to the above equation. Here, n and n’
denote integers (nullary primitive applications).

n+n = n+n
n-n = n-n'
nxn' = nxn
n<n = n<n
n>n = n>n
epe = epe otherwise (where p € {+,-,*,<,>})

Now, we have to prove that those constant-folding clauses are symbolic evaluations. We prove
the case for +:

+n definition of -, value primitives, and +
n+n') b, v definition of value primitives
n+n')Fy v  definition of +

The constant-folding rules for the other operations are analogous.
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Just like the standard arithmetic operations above, the symbolic evaluation of & performs
the constant-folding taken straight from its definition.

true & e = e
e&true = e
false & e = false
e & false = false
eke = e&e otherwise

Again, the last line is trivially a symbolic evaluation, and so we need to prove the other four
lines. The proofs are similar to the example shown above for +.

e true & e (e & true analogous):
(true & e) k5 v
= ek, definition of F, true, and &
= (true &e) by, v definition of &

e false & e (e & false analogous):

(false & e) F, v
= o = false definition of -, false, and &
= (false&e)l, v definition of &

One can go even further for the symbolic evaluation of =. Here is a somewhat subtle
definition that depends on whether the argument expressions are deterministic, as defined in
Definition 4:

e=e = true if determ(e)

e=e = bool if =determ(e) (see Example 9)
v=9' = false ifv#

e=e = e=¢ otherwise

If all primitive operations p € Primop are deterministic then all expressions are deterministic,
and so the definition simplifies to:

e=e = true
v=0v = false if v#0
eze = e=¢ otherwise

But we prove the more general formulation. Again, we need to show that the first three lines
yield a symbolic evaluation.

e If determ(e):

(e=¢€)Fyv
= W ek, v Neby 0" A=(v,0") — v] definition of F
= . [eky v A=(v,0) — 0] because determ/(e)
= v =true definition of =
= truel,v definition of true
= (e=e)F,v definition of =
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e If —determ(e):

(e=e) g
= o =trueV v = false definition of F and =
= booll, v definition of bool
= (e=e)t,v definition of =

o If v #£0v:

v=0v)F,v

=(v,v") < v  definition of value primitives and
v = false definition of =

falset, v  definition of false

(v=2v")Fs v definition of =

R

For now, we present a very simple symbolic evaluation of if:

if(true,e,e) =
if(false,e,€’) ¢
if(e,e',e’) = if(e, e, e") otherwise

The proof is straightforward and similar to the proof shown above for & However, it is often
important to do a better job of simplifying conditional expressions, and we will give a more
sophisticated algorithm in Chapter 9.

Context-dependent primitive operations

The symbolic evaluation of context-dependent primitive operations is much more complicated
than the symbolic evaluation of context-independent operations, such as the ones shown above.
As we explained above, for a context-independent operation p one can always fall back on

pler,...,en) = pler, ... epn)

which is trivially a symbolic evaluation. But the symbolic evaluation of context-dependent op-
erations needs to compute the effect of an arbitrary parallel assignment on the operation. So far,
the only context-dependent operations we have seen are deref and tree. We introduced tree
mainly for illustration, but on the other hand deref is a crucial operation for modeling and
analyzing programing languages because, as we explained in Chapter 2, it is the only way to con-

struct an expression that examines the components of mutable data structures. It has a rather

complex symbolic evaluation because of aliasing possibilities. Let § =|ly,... 0, — €f,... el |
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Then
Pderef (e,€')d = if((e =e1) & (¢ =€),
if((e=ep) & (¢ =¢€b),
if(

where the indices in the set

{(61-6’176,1,)7' ce (ek-e;cae;c’)} = {(llael) | i € {17 s 7n} Nl gvar}'

are ordered arbitrarily. Now we show that this is a symbolic evaluation. Suppose that o do”,
e b, v1, and € F, vo. By the definition of deref, if deref(vi,vs) —>o v then v = o'(v1.v2).
We must show that

(P deref (e,e') ) -, v.

Recall that we overload the phrase e.¢/ to mean not only the l-expression e.e’ but also the
expression deref(e, e'). First, we prove two results. The first one shows how to move down the
true arm of the sth branch in the case that there is a possible alias between e.e¢’ and the 1-value
e;.€; assigned by ¢.

(ej-€]) Fo (v1.02)

= e Fsvi A€y vy definition of

= (e=e¢;) s true A (¢/ =¢€}) I, true definition of =

= (e=e¢;) F, true A (¢' =¢€)) I, true = symbolically evaluates =
= ((e=e¢) & (e =¢€)) by true definition of &

= ((eZ¢) & (e =¢€l)) F, true & symbolically evaluates &
= 'F,v=if((eZe) & (e =el),e", ") Fy v definition of if

= Fouv=if((e=e;) & (¢ =el),e”, e") Fy v if symbolically evaluates if

The second result shows how to move down the false arm of the ith branch in the case that
there is possibly no alias between e.e’ and the l-value e;.¢} assigned by ¢.

(€i.€}) Fo (V].05) A (v1 # V] V vy # vh)

= e o V] ANel by vh A (v) # v Vv # 0h) definition of

= (e=¢;) F, falseV (¢' =€) F, false definition of =

= (e=e;) F, falseV (¢' =¢)) I, false = symbolically evaluates =
= ((e=¢) & (¢ =€) F, false definition of &

= ((eZe) & (e =€), false & symbolically evaluates &
= "Fov=if((e=¢) & (' =el),e" e") Fy v definition of &

= "F,v=1if((eZ¢) & (¢ =¢l),e",e") Fy v if symbolically evaluates if

Now, there are two possibilities.
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e No overwrite: o(vj.v2) = v and ¢ did not assign to v;.v9. Then it must be the case that
for i € {1,...,k}, (e;.€}) Fo (v].vh) where v; # v] or vy # vh. Therefore, by induction
on the definition of (P deref) using the second result above to move down the k false
branches,

e.€ b, v = (Pderef (e,€)0) F, v.
And because in this case o(v;.v2) = v, by the definition of deref we indeed have that
e.e' F, 0.

e Overwrite: J assigned v;.v2 to be v. Then it must be the case that for some i € {1,...,k},
(ei-€;) Fo (v1.v2), and for all j < i, (ej.€}) -, (v].v5) where v1 # v} or v # va. Therefore,
by induction on the definition of (P deref) using the second result above to move down
1 — 1 false branches and then the first result above to move down the next true branch,

el o v = (Pderef (e,€') §) 4 v.

And because in this case ¢ assigned v;.vy to be v, it must be the case that e} -, v.

3.2 Symbolic Evaluation of Expressions and L-expressions

This section describes the following algorithms, which are defined relative to a set Primop of
primitive operations with associated symbolic evaluation algorithm P.

E € Exp— TR —= Exp
L € Lexp— TR — Lexp

Loosely speaking, the E algorithm, given an expression e and a transfer relation A, computes
an expression €' such that if ¢’ evaluates to a value v in some store o then e evaluates to v in a
store to which A transfers from o (i.e., a store o’ such that o A ¢'). In other words, e’ expresses
the combined effects of e and A. The L algorithm is similar, but works on l-expressions rather
than expressions. Intuitively, given an l-expression [ and a transfer relation A, L computes an
expression [’ such that if I’ evaluates to an l-value w before A then [ evaluates to w in a store
to which A transfers from o. We distinguish two levels of correctness of E and L, given by the
following definition.

Definition 7 (Symbolic evaluation of expressions and l-expressions) We introduce the
following terms to describe correctness properties of E and L.

e If whenever o Ao’
ebyrv=(EeA)F,v respectively, (I o w = (LIA) F, w),
then E (respectively, L) is said to be an upper approximation.

e If whenever o Ao’
ek v < (EeA) b, v respectively, (I o w <= (LIA) b, w),

then E (respectively, L) is said to be a translation.
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3.2.1 The algorithm
The definition of E is inductive on the structure of its arguments, and L is defined in terms of

E.
Ee) = anye € Exp

Ee = EeA
Ee = EeA

Eele/? A|A'| = if(¢/,(EeA),(EeA))
o €; iflj::v = j=1
Ea;‘ll,...,lTL»—)el,...,en‘ = {x otherwise

E(p(er,...,en))0 = Pp(Eerd,...,Eeyd)d

LzA = =z

L(e.))A = (EeA).(E€'A)
Notice that the first line allows the choice of any expression. This is because the transfer

relation () never outputs a store, and so any expression is trivially correct.

Because E is defined by structural induction and L is defined in terms of E, and because
the only external algorithm they need is the P algorithm to symbolically evaluate primitive
operations, we have that if P always terminates then E and L always terminate.

These algorithms are not only used in the composition algorithm @ to come, but they
are also useful in their own right, as stand-alone applications of our analysis methodology.
Chapter 9 gives an application that is centered around the E algorithm.

The next two lemmas prove the correctness of these algorithms. If all primitive operations
p € Primop are deterministic then the algorithms are translations, and otherwise we can only
show that they are upper approximations.

Theorem 1 (E and L as upper approximations) If P is a symbolic evaluation then E and
L are upper approximations.

Proof: By the definition of upper approximation in Definition 7, we must prove that whenever
o A o', the following properties hold:

eckyv=(EeA)F,v

o [Fyw= (LIA) F,w

We prove this by mutual structural induction on the arguments to E and L, following their
inductive definitions above. There are six cases for E.
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e Ec(): By definition there is no o and ¢’ such that o () o', and so the theorem statement is
trivially satisfied.

. Ee: By the definition of conditional relations, we know that if O’O’l then
oAo'.
ey v
= (EeA)F,v induction, with above observation

= (E eA) Fo v definition of E

o E e: Analogous to the previous case.

e Ee|e/? A| A’} By the definition of conditional relations, we know that if o|e/? A| A’ |st’
then either €’ -, true and 0 A¢’, or €’ -, false and o A ¢’.

ey v
= (¢, true A (EeA) k4 v)
V (e' k-, false A (EeA’) F, v) induction, with above observation

= if(¢/,(EeA),(EeA")) F, v definition of if
= if(¢/,(EeA),(EeA’)) F, v P is a symbolic evaluation
= (Eele'? A|A ) oo definition of E
. Ea;‘ll, N AT ‘: Note that if [; = [; = z then 7 = j, because otherwise /; and

[; could not evaluate to different l-values and it could not be the case that ocdol.

Ty v
= oz=vw definition of -
= (i=zNejtFysv)V(ocx=vA-Ti.l; =x) definition of assignment relations
= (i=zNejtsv)V(zbyvA=Ti.l;=x) definition of -
= (Ex‘ll,...,lnHel,...,en‘) Fo, v definition of E

e E(pler,...,e,))0:
(p(er,...,en))

= Jv,...,0p. [(/\z 1€ For vi) Ap(vi, ..., vp) =g V] definition of +

= Ju,..., v [(Ajny (E€;0) Fo v5) Ap(vr,...,v,) = v]  induction

= (Pp(Eeio,..., Een 9)0) Fov P is a symbolic evaluation
= (E(p(e1,...,en))0) Fov definition of E

There are two cases for L.

o Lz A:
T kg w
= w==zx definition of +
= zhk,w definition of
= (LzA)F, w definition of L
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o L(ee)A:
e.€) bFor w
= . el vAe g v Aw=v2] definition of
= Ju,v. [(EeA) Fo v A (E€'A) by v Aw =0.0"]  induction
= ((EeA).(Ee'A)) by w) definition of
= (L(ee)A) Fow definition of L

Theorem 2 (E and L as translations) If all primitive operations p € Primop are determin-
istic and P is a symbolic evaluation then both E and L are translations.

Proof: We prove the statement for E. Because P is a symbolic evaluation, we have from
Theorem 1 that E is an upper approximation. Because all primitive operations are deterministic,
we know from Lemma 2 that for any e, A, o, and o’:

e There is exactly one v such that (Ee A) k-, v.

e There is exactly one v such that e -, v.

Therefore, the implication relationship in the definition of upper approximation of E is equiv-
alent to an iff relationship, and therefore E is a translation. The proof for L is analogous.
[

3.2.2 Examples

The E algorithm not only is required for the composition algorithm @ that we will present later
in this chapter, but is also useful on its own for the analysis of how values relate to each other at
different times of program execution. For instance, dependency analysis [ASU86]| is concerned
with such properties. In Chapter 9 we will see some example applications of E.

Here, we will give some examples of how E works. The L algorithm is just an application
of E, so we will not demonstrate it separately. The simplest examples are those in which the
expression given to E as input does not contain any context-dependent primitives. Here are
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some examples, where x # y are variables.

E x = z
E y = 3
E z+y = z+3
E y+y = 6
E z+y [z,y— 3,4 = 7

E =z (x=3)? |z 4|lly— 5| = if(z=3,4,7)

A more complicated case, however, is when E is given an expression that uses the context-
dependent operation deref to examine the store. Recall that we overload the phrase e.e’
to mean not only the l-expression e.e’ but also the expression deref(e,e’). In the following
examples, v # v' are members of Val that are included as constant (nullary) primitive operations.
Examples of such values that might occur in a real programming language are record field
names, the C * token, and integers representing array indices. Also, x # y # z are variables.
In the following examples, some of the equality terms in the symbolic evaluation of deref are
simplified to true or false due to the symbolic evaluation of equality on values (v and v’ in
this case), and thereby simplify the resulting symbolic evaluation of if.

E zw = yw

E zwv |zwv—3 = 3

E zv |yv—3 = if(zr=y,3,z.v)

E zov |yov —3 = zw

E zw ‘y.v, Z.0 3,4‘ = if(r=y,3,if(x = 2,4, z.v))
E zw = if(z=2z.v,3,z.v)

E zw = if(x =y, 3,z.v)

E zw ‘m.v,y.v — 3,4‘ = 3

E zw ‘y.v, w43 ‘ = if(z=y9,4,3)

The last two examples may seem strange. Recall that the symbolic evaluation of deref, given
some assignment relation, chooses an arbitrary order of its assignments and then builds a linear
sequence of nested if expressions. In the above examples, we choose the left-to-right order
to demonstrate that the order does indeed play a practical role in the quality of the output.
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The penultimate example first checks x for equality against x, which simplifies to true and
thus simplifies the entire result to 3. The justification of this general procedure is given in the
rather intricate proof of the symbolic evaluation of deref. Intuitively, in this case the output
expression does not have to check for aliasing because the semantics of assignment relations
guarantees that if O" z.0,y.0 — 3,4 ‘O” then z and y are bound to different values in . Because
order of assignment is irrelevant, 3 would have thus been a correct output for the last example,
as well. However, E instead outputs if(z =y, 4, 3). The reason that it tests the equality = with
y first, which cannot be simplified. This suggests that the symbolic evaluation of deref should
instead choose an order that places first any alias test that simplifies to true. In this case, the
last example would indeed output

E zw y.v,x.v>—>4,3‘ = 3

If the second argument of a deref expression (i.e., the expression to the right of the dot) is
not a value, then the symbolic evaluations cannot perform as many simplifications. An example
of such a case that might occur in a programming language is an array access where the index
is a non-constant expression. Here are some more complicated examples, where e # ¢’ are non-
value expressions. We first note that nondeterministic primitive operations may produce a more
complex output expression. For instance, if determ(e) (i.e., if e contains no nondeterministic
primitive operation) then

E ze |z.e—3 = 3

as expected, but if ~determ(e) then
E ze |z.e— 3] = if(bool,3,x.e)

where bool is a nondeterministic operation that evaluates to both true and false. The reason
is justified in the proof of the symbolic evaluation of =. Intuitively, because e contains a
nondeterministic primitive operation, it may evaluate to two values v # v', and in that case the
expression e = e evaluates to both true and false.

In the remaining examples, we assume determ(e) and determ(e’).

E ze |z —3| = if(e=¢,3,z.€)

E ze = if(z=y,3,z.€)
E ze = if((x=y)&(e=¢€),3,1.€)

3.3 Symbolic Evaluation of Conditional Relations

The remainder of the composition algorithm is parameterized by an algorithm that constructs
a conditional transfer relation from a conditional expression and a transfer relation for each of
the two branches.

C € Exp—=TR—=TR—TR

As for E and L, we distinguish two different correctness conditions.
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Definition 8 (Symbolic evaluation of conditional relations) We introduce the following
terms to describe correctness properties of C.

o If

ole? A|A'|o' = o (CeAA )

then C is said to be an upper approximation.

o If

ole? A|A" o' < o(CeAA")d

then C is said to be a translation.

The following lemma makes it easier to prove the stronger property about C in the case that
all primitive operations are deterministic.

Lemma 6 If all primitive operations p € Primop are deterministic, C is an upper approxima-
tion, and

o (CeAA Yo = Fo". ole? A|A|0”

then C is a translation.

Proof: From Corollary 1. a

The most obvious choice for C is simply

CeAA =|e? A|A|

But it is sometimes possible to simplify the resulting transfer relation. For example,

Ctrue AA' = A.

3.4 Engineering Flexibility

The P and C algorithms provide an engineering flexibility for the composition algorithm. There
are many correct choices for the syntactic composition A & A’, but most of the differences
involve how far primitive applications are simplified and how far conditionals are simplified.
Different algorithms P and C will allow a tradeoff between the cost of computing a composition
and its quality.
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3.5 Symbolic Evaluation of Assignment Merging

The most difficult part of the composition algorithm, which we will present in full in Section 3.6,
is the composition of two assignment relations § and ¢’. Consider the composition

x—= 3|y — x|

The first issue is that the l-expression y and the expression x that occur in are evaluated

in a store after the assignment takes place. But to build a transfer relation in TR
that is equivalent to this assignment, we must first build a corresponding l-expression and a
corresponding expression that are to be evaluated in a store before the assignment . The
L and E algorithms accomplish this task. First of all, we compute

Lyx=3]=y.

This expresses the fact that the l-expression y evaluates to the same l-value (which happens to
be y) both before and after . Then, we compute

Ex[x3]=3.

This expresses the fact that the expression 3 evaluates before the assignment to the
same value to which x evaluates after the assignment.

So, we replace y by y and x by 3, yielding the assignment relation

y3]

Now we must merge the first assignment, , with this new assignment, yielding

for the composition.

This “merging” is not the same as composition. Simply merging

with

< el
]
M w

yields

which is not semantically equivalent to their composition

Fy53)
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The merging operation is simpler than composition, because it does not use E and L generate
the “adjusted” expressions and l-expressions. This section presents an algorithm to perform
assignment merging, and the composition operation @& will use this merging operation as a
subroutine, in the manner we described above.

The reason that we need an algorithm to perform assignment merging is that it is not always
as trivial as merely concatenating two lists of l-expressions and expressions, as we did for the
example above. For example, consider merging

mzo )

The literal concatenation of these two is

with

‘x,y,x,zt—>2,3,w,y‘

which is semantically equivalent to the empty relation () because there are two l-expressions x
that always evaluate to the same l-value x. The merging that we are looking for is

x,y,zr—>w,3,y‘

that replaces the assignment to x in the first relation with the assignment to x in the second
relation.

Note once again that this is not semantically equivalent to the composition of the two
relations because the composition will perform the assignment to y before evaluating y in the
second assignment. In the merging of two assignment relations § and ¢’, the l-expressions and
expressions in both § and ¢’ are considered to be evaluated in the same initial store.

The merging of ¢ with §' is written § ® §'. (This operator ® should not be confused with
the composition operator @.) It is not symmetric, because, as in the example above, if § and ¢’
both assign to the same l-value, the conflict is resolved in favor of ¢’. Recall that the semantics
of an assignment relation

52‘!1,...,lnr—>el,...,en

requires that the n l-values to which [y, ...,[, evaluate must be distinct in order for the assign-
ment to take place. Given the above assignment relation and a second assignment relation

r ' ' [
O =\l = el el

the relation 6 ® ¢’ defined by the following rule:

li|—g’wi €i|—gvi i#j:>wi7éwj
litowi €Fov; % j=w#uw;
o' =owy = vi].. . [w, = oop][w) = vl W), = )]
oc(d® o
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Again, note that 6 ® ¢’ is not necessarily semantically equivalent to the concatenation

/
m

!/ ! !/
by, L, 0,0, e, e, €, e

because the above rule allows w; to be equal to w;- for some 7 and j. Intuitively, § ® ¢’ cannot
merely union the assignments in § and ¢’ because an assignment in the latter may overwrite an
assignment in the former.

In this section, we present an algorithm ® to compute ®, which is one of the most difficult
parts of the composition algorithm @. The algorithm ® is inductive, and for ease of notation in
its correctness proof we generalize ® to take an additional parameter J to reflect this induction:
a set of indices of the assignments in the right-hand relation. The following rule defines this
generalized ®.

lito wi ejlov; i# 7= w #w;
iFow; eibo v i#j = wi# w;

jE€J = wi g {w,...,wn}
o' =owy = vi].. . [w, = oop][w] = vl W), = )]
o0 ®y96)0

o~

)

In the relation § ® 5 ¢', J is a set of indices into the list of assignments in ¢§'. If j € J, then the
jth l-expression in ¢’ must not overwrite any assignment in . The relation § ®p ¢’ is simply
6 ® ¢'. If the length of ¢’ is m, then the relation 0 ®; ., 0 is semantically equivalent to the
literal concatenation of § with ¢’ as we described above.

Before we present ®, we need an auxilliary algorithm
~ € Lexp x Lexp — Exp

that, given two l-expressions [ and [’, generates an expression that tests if the [ and I’ can
evaluate to the same l-value or to different l-values. It is defined to be false except for the
following cases:
r~r = true
er.eg ~eleh = (e =e) & (ex =eh)
Formally, we have the following properties of ~.

Lemma 7 If P is a symbolic evaluation, then:

o If Jw. [, wAl' by w] then (I ~1') F, true.

o If Jw,w'. [w#wW ANl FywAl' by w] then (I ~1') F, false.
Proof: Straightforward. a

Now we present the algorithm

® € ATR x ATR x Pgn(Nat) = TR
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to compute ® as follows:

;8 = ¢
L, e e |80 = A
where
0o = ‘l2,...,lnr—>eg,...,en‘
O = U, 0, —e, el
{j1,--y0kr = {1,....,m}—J ordered arbitrarily
Ag = 0@jugmry|ls---slmsli €], e, €1
A = Cly~ l;l) (6@ ugiy ') Aia
The order of j1,...,J; is arbitrary; the correctness proof will make no assumption as to their

order. There may be engineering advantages to choosing a particular order dynamically, because
a particular choice of C might produce different results with different orderings. This is similar
to the situation with the symbolic evaluation of deref that we illustrated with the examples in
Section 3.2.

Intuitively, d ® ¢’ examines each assignment of § in turn, to see which ones might be over-
written by ¢’ and thus should be eliminated, and which ones might not be overwritten by ¢’ and
thus should remain. The assignments in § are so processed from left to right. The l-expression
of each one is tested in turn, via ~, against the l-expressions of ¢’ not already in the set J.
Whenever an l-expression in § might be equal to some l-expression l;- in ¢', that l-expression
never needs to be tested for equivalence again, and so j is added to J. It is this handling of J
that is rather subtle, but the correctness proof explains this in detail.

Because ® is defined by structural induction, and because the only external algorithms
it needs are the P algorithm to symbolically evaluate the primitive operations in ~ and the
C algorithm to symbolically evaluate conditional relations, we have that if P and C always
terminate then ® always terminates.

Now we may proceed with the proof of ®. First we show that ® computes a relation that
includes ®.

Lemma 8 If P is a symbolic evaluation, C is an upper approzimation, and o (6 ®@; ¢') o', then
o(d®y0") 0.

Proof: By induction on the size of §. If § = e then the result is immediate. Otherwise,
without loss of generality, let

/

— I _ / !/ !
0=1l1,....lp —e1,...,en O =l1,....,—el,....e,
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and let {j1,...,7k} = {1,...,m} — J, where the order of ji,...,ji is arbitrary. Let wy,...,wy,,
VlyeneyUp, WY,...,wh and v],..., v be as given by the definition of ® ;. By that definition,
we know that

o wy & {wy,...,wy}, and
[ ] wlg{wﬂjEJ}
There are two cases.

e Case 1: There is some j ¢ J such that wy = w;-. Because P is a symbolic evaluation we
have by Lemma 7 that
(I ~ 1) o true.

In this case, the update to w; in store ¢ is overwritten by the later update to wg-,

so in this case it may be removed from the definition of ¢’ in the rule that defines ®.
Furthermore, because w; = w;- we have that w;- & {ws,...,wy}, and so j may be added
to J in the rule that defines ® ;. Therefore,

and

U(‘lQ,...,lnHBQ,...,en‘®Ju{j} o'

By induction, we have that

U(‘lg,...,ln Heg,...,en‘gJU{j}(V)o'.

!/

e Case 2: There is no j ¢ J such that wy = wj, and so

N (L ~ 1)) o false.
J¢J
In this case, wy & {wa,...,wp,w!,...,w!,}. Hence, the update of w; to v; in store o is

not overwritten and thus may be moved to the end of the list of updates in the definition
of ® 5. Therefore,

!/ !/ !/
0(‘l2,...,lnHeg,...,en‘@)JU{mH} el li—=el, . e e o

By induction, we have that

= ! ! / /
U(‘lQ,...,ln}—)62,...,671‘®Ju{m+1} Lieeoalmyli—ep, ... e, el )U.

Therefore, because C is an upper approximation, either all of the branches in § ® ; ¢’ will evaluate
to false in o, in which case o (§ ®;0') o’ by Case 2, or at least one the branches will evaluate
to true in o, in which case o (§ ®, ') o’ by Case 1. O

Now we show that if all primitive operations are deterministic, ® computes a relation that
is precisely ®.



3.5 Symbolic Evaluation of Assignment Merging 61

Lemma 9 If all primitive operations p € Primop are deterministic, P is a symbolic evaluation,
C is a translation, and o (0 ®,0") o', then o (6 ®; ¢')o’.

Proof: By induction on the size of §. If § = e then the result is immediate. Otherwise,
without loss of generality, let

— I _ / / ! !/
(5—‘!1,...,ln>—>61,...,en‘ O =l,....,—el,....e,

and let {j1,...,jk} ={1,...,m}—J, where the order of ji,. .., ji is arbitrary. Because all prim-
itive operations are deterministic, we know from Lemma 2 that each l-expression (expression)
evaluates to a unique l-value (value). Let wy,...,wp, v1,...,0p, wi,...,wl, , and v],... v,
correspond to d and ¢’ as shown above. There are two cases.

e Case 1: There is some j ¢ J such that
(I ~ 1) by true

and

U(‘lg,...,ln i—>€2,...,€n‘®JU{j}(5,)UI.

By induction,

U(‘lg,...,ln'—)(iQ,...,en‘®Ju{j} (5,)0',.

Hence, by the definition of ® jy(;; we have that
— wy,...,w, are distinct,
— wh,...,wl, are distinct,

keJ=w, &{ws,...,wy}, and

— wj & {wa, ..., wy}.

But because P is a symbolic evaluation, we have by Lemma 7 that w; = w;-. Hence,

- w1 ¢{w2,...,wn},
- ke J= w, #wp, and

,.

; overwrites an earlier assignment to w;.

— an assignment to w
Therefore, by the definition of ® 7,
o(d @y d)o.

e Case 2:

= ! ! /
U(‘lQ,...,ln}—)62,...,671‘®Ju{m+1} Leeoslp,li—ep, .. e, el )U.

By induction,

!/ !/ !/
0(‘l2,...,lnHeg,...,en‘@)JU{mH} ey li—e, e e ) o

Hence, by the definition of ® j {11} we have that
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— wo,...,w, are distinct,
— wh,...,wl,,w are distinct,
keJ=w, & {ws,...,wy}, and

— w1 ¢{w2,...,wn}.

Therefore, because the assignment to w; does not overwrite any preceding assignment, it
may be moved to the front, and hence by the definition of ®,

o(d ®; )0

3.6 The Composition Operation

Finally, we are ready to present the syntactic composition operation
® € TRxTR—=TR

Definition 9 (Syntactic composition of transfer relations) We introduce the following
terms to describe correctness properties of @.

o If
o(AA) o =0 (A e A,

then @ is said to be an upper approximation.

o If
o (AA) o' = o (A @ A)d,

then @ s said to be a translation.

The definition of the @ algorithm is as follows.

P & A — 0
A @ 0 =0
e? AlA'| @ A" = Ce(A @ A" (A @ A
5 @ |e? AlA = C(Eed) (0@ A)(5 @ A)
§ @ |l ln—ern,..en| = 0@|Lld,... ,LI,d—>Eed,... Ee,0

We have shown that if the P and C algorithms terminate then E, L, and ® algorithms terminate.
So because @ is defined by structural induction, it thus always terminates.
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We will give some examples of the composition algorithm later when we use transfer relations
to model the semantics of programming languages. For the remainder of this chapter we give

the correctness proofs of ®.

Theorem 3 (& as an upper approximation) If P is a symbolic evaluation and C is an

upper approzimation then @ is an upper approximation.

Proof: Because P is a symbolic evaluation, we have from Theorem 1 that E and L are upper

approximations. We proceed by structural induction. There are five cases.

e 0)=0=(0eoA4)
.« (AD)=0=(A®0)
o (|7 AlA[AM:

o(le? A|AT|A") 0"
Jo'. [o|e? A|A" 0" Ao’ A" o]
Jdo'.[((e -, true Ao Ad’)
V (et, false Ao A'o’)) Ao’ A" "]
= (ely true Ao (A;A")0")
V (e, false Ao (A'; A") o)
= (elytrue Ao (A @ A")d")

V (et, false Ao (A" & A")o")
ole? (A @ A" (A" @ A")|o"
o(Ce(A o A")(A" @ A"))o"
= o(e? A|A"|® A")o"

4d

o (6;|e? A|A")): Let ¢ = (Eed).

o(8;e? A|A") o
Jo'. [c60" Ao'|e? A|A|0"]
do’. [cdo' A ((e by true Ao’ Ac”)

V (et false Ao’ Al o”))]
= 3Jo'.[ocdc" A ((e' s true Ao’ Ac”)

V (e 5 false Ao’ A 0”))]
= ((¢'Fy true Ao (0;A)0")
V (¢ ko false Ao (0;A") 0"))
= ((¢'Fytrueno (0 ® A)o")
V (e, false Ao (0 & A') o))

ole? (0@ A0 @ A"
o(Ce (6 ® A)(d @ A"))d"”
o(§@|e? A|A) 0"

4

4

relation composition

definition of conditional relations
relation composition

induction

definition of conditional relations
assumption about C
definition of @

relation composition

definition of conditional relations
E is an upper approximation
relation composition

induction

definition of conditional relations
assumption about C

definition of @
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o (8|l ln—er,... en]): Fori€{l,...,n} let I; = (LI; 6) and ¢} = (Ee; d).
o (0; l1,...,ln»—>61,...,en‘)o"
= do'.[odo' A 0" li,o.oylp—er, ... e, ‘0"] relation composition
= Jo'.[odo" AJwr, ..., wy,v1,..., 00 [

(i # J = wi # wy)
A ( ?:1 lZ l_a’ w; N e; l_a’ 'Ui)
Ao" =0o'lwy — v]...[wy — vy]]] definition of assignment relations
= do'.[odc' AJwy,...,wy,v1,... 0. [
(i # j = w; # wy)
A (Nizi Ui Fo wi A €l 4 v;)
Ac" =0o'lwy — vi]...[wy, — vy]]] E and L are upper approximations

= o(0|l,....IL—=e,....eh)o" definition of ®
= o(0Qy|lh,.... I —el,....e )" Lemma 8
= o0 ®|l,...,lp—>en,....ep|) 0" definition of @

Theorem 4 (& as a translation) If all primitive operations p € Primop are deterministic, P
is a symbolic evaluation, and C is a translation, then @ is a translation.

Proof: We know from Theorem 3 that & is an upper approximation. Therefore, from Corol-
lary 1, we need only show that

o(A @Ao' = 30" o (A;A) 0"

to establish that @ is a translation. From Theorem 2 we have that E and L are translations.
We proceed by structural induction. There are five cases.

e (0 ® A)=10,and so o () ® A)c’ must be false.

e (A®0)=0,and so o (A & 0)o’ must be false.
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-~

o(e

Al

4

vy

e (0 ®

4

44

® A"):

o(le? AlA! GBA")

o (Ce(A @ A") (A @ A"))

ole? (A @ A" (A" @ A")

(eby true Ao (A & A”) o)

V(e
(e, true A do”. o (A;A") o
V (e, false AJo". o (A"; A") 0"
(eby true Ado’. c Ac’ Ado” o' A" 6")
V (e b, false Ado’. o A’ o'
"[((e Fo true Ao Ac’)
V (et, false Ao A’ o)) Ao’ A" 0"

" ole? AlA" |0 A o' A" 0"

o', 0"

do', 0

do”. o (

F, false Ao (A" @

e? A|AT[A") o

e? A

A")): Let ¢/ = (Eed).

o6 @
o(Cé

e? A|A) o
(0@ A0 e A))d

e (0@ A6 ® Ao

(e o

V(¢ F, false Ao (0 & A') o’
"
)
V (¢ by false Ado”. o (5; A) 0"

"[odo" A ((e s true Ao’ Ac”)
V (¢ F, false Ao’ A’ 0”))]

".Jodo" A ((e by true Ao’ Ac”)
V (et false Ao’ Al o”))]

" Joda Ao'le? AA

(e o
do’, 0’
Jo'.o

Jo'.o

Jo". o

true Ao (0 & A)o’)

true Ado”. o (0;A) o

0'
O'

(5;]e? A|A]) 0"

AII) OJ
')

O.II]

A Elo_ll O_I AII O_Il

definition of @

C is a translation

defn. of conditional relations
induction
relation composition

distributivity
defn. of conditional relations

relation composition

definition of @

C is a translation

defn. of conditional relations
induction

relation composition

E is a translation

defn. of conditional relations

relation composition
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o @[l .lnrer,...eq): Forie{l,... ,n}let I = (LI;0) and ¢ = (Ee; 0).

o0 ®|ly,...,lp—>er,...,ep|) 0
= o(0®p|ly,..., 1L —e€,....el o definition of @
= o0 ®|ll,....0IL—eé,....eh )0 Lemma 9
= do’,wi,...,w,.

000" A(i # 5= w; #wj) NNj= I} Fo w;]  definition of ®
= do’,wy,...,w,.
000" A(i #j = w; #wj) NNj=1 li For wi] L is a translation
do’',0". [0d0" A a" li,...)lp—e1, ... e ‘a"] definition of assignment relations

do”. o (6;

4

1

4

relation composition

l1,...,ln»—>el,...,en‘)a




Chapter 4

Semantics via Transfer Relations

In Chapter 2, we introduced the store as an object for modeling the state of memory during
a point of program execution. We also introduced the notion of relating a store at one point
in an execution to some later point in the execution; these relations are called transfer rela-
tions. For the sake of automatic program analysis, we developed in Chapter 3 a computer
representation for the kinds of transfer relations that might naturally correspond to such exe-
cution segments, and we gave an algorithm for composing these representations, to build bigger
execution segments out of smaller ones.

However, those chapters presented these concepts in an abstract manner, apart from any
particular programming language. Although we gave examples designed to spark intuition about
actual programming languages, we never described how these transfer relations correspond to
any kind of a semantics of a programming language. In this chapter, we describe a semantic
methodology of programming languages that is founded upon transfer relations, and as such is
particularly useful as a basis for program analysis.

4.1 Denotational and Operational Semantics

The semantics of programming languages is a topic both broad and deep, and we can only
touch on some of the overarching issues here, in order to put our work in a larger perspective.
A denotational semantics [Sto77] uses structural induction to assign each term in the source
language an object in some abstract model. The spirit of denotational semantics is to model
function terms in the source language with actual functions. This turns out to be difficult;
Dana Scott solved the underlying problems [Sco70, Sco76, Sco82]. On the other hand, Jean-
Yves Girard in [GLT89] makes the following philosophical observation about the «, 3, and 7
equations of A-calculus [Bar84]:

In fact, these equations may be read in two different ways, which re-iterate the
dichotomy [in logic] between sense and denotation:
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e as the equations which define the equality of terms, in other words the equality
of denotations (the static viewpoint).

e as rewrite rules which allows us to calculate terms by reduction to a normal
form. That is an operational, dynamic viewpoint, the only truly fruitful view
for this aspect of logic.

Of course the second viewpoint is under-developed by comparison with the first
one, as was the case in Logic! For example denotational semantics of programs
(Scott’s semantics, for example) abound: for this kind of semantics, nothing changes
throughout the execution of a program. On the other hand, there is hardly any
civilised operational semantics of programs (we exclude the ad hoc semantics which
crudely paraphrase the steps toward normalisation). The establishment of a truly
operational semantics of algorithms is perhaps the most important problem in com-
puter science.

The dichotomy between sense and denotation in logic to which Girard refers is the comparison
between Tarski’s classical view, in which for instance the meaning of A A B is its truth value
and is given by a truth table on the meanings of A and B, and Heyting’s intuitionistic view,
in which the meaning of A A B is a proof and is given by a proof of A coupled with a proof
of B. This leads to the study of proof theory, of which the most famous result is the Curry-
Howard isomorphism between natural deduction and the simply-typed A-calculus in which types
correspond to sentences, terms correspond to proofs (meanings, in the Heyting view), and
reduction of terms corresponds to rewriting of proofs. Girard points out that “the fundamental
idea of denotational semantics is to interpret reduction (a dynamic notion) by equality (a static
notion)”.

This discussion provides some insight into the role of semantics in program analysis. Strictly
speaking, a program analysis does not answer questions about a program, it answers questions
about a program’s semantics. This is a rather specialized and practical application of semantics.
As Girard points out, denotational semantics is concerned with the equality of programs—a
notion that is undecidable for most languages. One of the practical benefits of a well-designed
denotational semantics is to shed light upon or otherwise aid in the reasoning about program
equivalence. It stands to reason, then, that the purpose of a program analysis based on a
denotational semantics must be to provide some automatic support for reasoning about program
equivalence.

Almost as soon as abstract interpretation arrived on the scene, to make a connection between
program analyses and the semantics of programming languages, a great amount of effort was
spent in adapting it to denotational semantics. For some examples, see [Myc81], [Nie84], [Nie86],
and [AH87]. As one would expect, this body of work offers some of the most esthetically
pleasing formulations of program analyses, but it also has found little use beyond a narrow
range of applications such as strictness analysis [BHAS6].

In general, however, one would like a program analysis to produce some information about
a dynamic interpretation of a program rather than this static denotation. This is why most
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program analyses are based on an operational semantics that describes how a program reduces
during execution.

This is also perhaps why the field of program analysis continues to struggle for acceptance in
programming-language theory. As Girard says, operational semantics tend to be “uncivilised”,
and despite the frameworks of structural operational semantics [Plo81] (generalized to infinite
behaviors in [CC92b]) and natural semantics [Kah87], operational semantics does not have
nearly the developed and refined theory of denotational semantics. Even worse, despite an
effort by Schmidt in [Sch95] to begin to develop a sub-framework of abstract interpretation for
natural semantics, most program analyses use what Girard calls the “ad hoc semantics that
crudely paraphrase the steps toward normalisation”. The reason is that a program analysis
is usually designed to answer questions about “the run-time behavior” of a program, which
requires this crude notion of operational semantics: ad hoc because it is modeling the execution
of a program on some kind of machine, and paraphrasing normalization steps because they are
precisely the steps of execution on this machine.

Therefore, whether they are presented in this manner or not, most useful program analyses
are founded upon semantics based on transition systems. These semantics mimic the execution
of a program on a particular abstract machine that reflects the properties of interest. In our
work, the store is the heart of such an abstract machine. We designed the store with this
application in mind.

4.2 Modeling a Program as a Transition System

Typically, a dynamic semantics of a programming language must model two components of
execution: data and control. By data, we mean the state of memory. In our framework, the
data is modeled by a store. By control, we mean the state of the code itself. For instance, the
control might be modeled by a label describing the position in the code that is scheduled to be
executed next.

In some operational semantics, the control state and the data state are intertwined. For
instance, in context semantics [FF86], a state of execution is simply a syntactic term; the control
state is encoded in as the next redex to be reduced, and the data state is modeled with syntactic
constructs (such as substitution or the heap variables in [MFH95]) and folded into the term
itself. But much of program analysis is concerned with analyzing the patterns of data access
during execution, and so we wish to keep control and data explicitly separated.

This inspires a semantic methodology in which a program is modeled by a transition system.
As described in Chapter 2, given a set Var of variables and a set Val of values, one can define
the set Store of stores that model the instantaneous states of data. We must introduce a new
set CtrlPoint of control points, such as labels, that model the instantaneous syntactic position
of execution. A transition system is then a tuple

(CtrlPoint, Var, Val, —)
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where
—> C (CtrlPoint x Store) x (CtrlPoint x Store)

is a single-step binary transition relation between adjacent control-store pairs in an execution,
where Store is defined from Var and Val as in Chapter 2:

Store = Lval — Val
Lval = Varu (Val x Val) l-values

In other words,
(C,0) — (C',0")

if execution can proceed in one step from a state at control point C' € CtrlPoint and store
o € Store to a state at control point C' and store o.

As we described in the Chapter 2, stores have rich structure for analysis. A control point
is typically much simpler. For instance, if the subterms (e.g., commands, expressions) in a
program are uniquely labeled, then a control point often can be simply the label of the next
subterm to be executed. Or the control point might be the unlabeled subterm itself. As another
example, the control point of a machine-language program is the value of the program counter,
while the rest of the registers and memory are modeled by the store.

There are many examples of other kinds of transition systems as models of programming
languages. Most of these systems do not use our precise notions of control and store, but
they all have some notion of a control state and a data state. These systems are also called
abstract machines. Our notion of a store is expressive enough to encompass all of these, with
the appropriate choice of the set Val of values.

The heart of a transition system is the definition of the transition relation —. Almost
always, — is defined by a set of meta-rules that define how each occurrence of a certain kind
of syntactic term in the program induces a family or families of transitions. We give a concrete
example of this in Section 5.8.2, and the rules in that section are indeed quite standard. But for
the rest of this chapter we instead describe a different approach. This novel approach replaces
the traditional meta-rules with our computer-representable transfer relations, thus opening the
door to a wide range of program-analysis possibilities.

4.3 Modeling a Program as a Table of Transfer Relations

In the previous section, we suggested modeling the semantics of a program with a transition
system. We explained that a transition system is a tuple

(CtrlPoint, Var, Val, —)

where
—> C (CtrlPoint x Store) x (CtrlPoint x Store)
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is a single-step binary transition relation between adjacent control-store pairs in an execution,
where Store is defined from Var and Val as in Chapter 2.

Observe, however, the following isomorphism:
P((CtrlPoint x Store) x (CtrlPoint x Store)) ~ CtrlPoint x CtrlPoint — P(Store x Store)
Therefore, given any transition relation
+—> C (CtrlPoint x Store) x (CtrlPoint x Store)

one can view — as a table of binary relations on stores, indexed by pairs of program points.

If we write the (C,C") entry of this table as ©% then the correspondence is as follows.

(C,0) — (C',0') iff o 2% o',

Now, recall that transfer relations are binary relations on stores:
TR C P(Store x Store)

But not all binary relations on stores are transfer relations. In Section 2.4.1, we argued that
some binary relations on stores are not “natural”, in that they will not occur in any reasonable
programming language. This notion of naturalness motivated the design of our language TR
of transfer relations, and our claim is that TR is indeed rich enough to model programming
languages.

The implications of that claim now become manifest. We now claim not only that a tran-
sition relation — can be replaced by a table in
CtrlPoint x CtrlPoint — P(Store x Store)
of binary relations on stores, but that it can indeed be replaced by a table in

CtrlPoint x CtrlPoint — TR

of terms in our language of transfer relations, again indexed by the control points before and
after the transition. Ultimately, this is more of a philosophical claim than a provable statement.
The claim is that the language TR of transfer relations is expressive enough to model all possible
store changes that may arise as single execution steps of any reasonable programming language.
To support this claim, we will demonstrate in future chapters that TR is indeed expressive
enough to model a wide variety of programming-language constructs.

Given this claim, one may replace any transition system
(CtrlPoint, Var, Val, —)

by a tuple

—

(CtrlPoint, Var, Val, Primop, A)



72 Semantics via Transfer Relations

where
A € CtrlPoint x CtrlPoint — TR

and the set TR of transfer relations is defined as in Chapter 2 from the sets Var, Val, and Primop.
Now, the heart of a semantic definition of a programming language is not a set of meta-rules
defining a transition relation ——, but is instead a description of how to map a program in
the language to a table A of transfer relations, one transfer relation for each pair of control
points in the program, describing the single steps of program execution. By convention, we
write A(C,C") as
Ac,cr

and call these transfer relations the single-step transfer relations of the program.

There are |CtrIPoint|? single-step transfer relations. As described above, CtrlPoint is typically
a set of pointers into the text of a program P, and so |CtrIPoint| will usually be linear with the
size of P. If that size is n, then this means that there are O(n?) single-step transfer relations
in the semantics of P. However, the vast majority of these will be the empty relation, because
transitions between most pairs of control points is impossible. For instance, in straight-line
code, the only possible transitions are between adjacent control points, and so there are only
O(n) non-empty single-step transfer relations, as one would expect.

Note that transfer relations thus encode control-flow information about the program. If
Ac,cr = 0 then it is not possible for the program in question to take a single step from control

path C to control path C’. Similarly, if A¢cr = then a single step from C to C' is
possible only from stores at C' in which e evaluates to true.

It is interesting to note that each non-empty single-step transfer relation replaces an infinite
family of transitions. This is demonstrated with the following simple example.

Example 19 Suppose the transfer-relation semantics of program P is the tuple

—

(CtrlPoint, Var, Val, Primop, A)
and that Ac cr = for some C,C" € CtrlPoint. Then the transition-system semantics
(CtrlPoint, Var, Val, —)
of P includes the family of transitions
(C,0) — (¢, (olx = (oy) +1]))

where o € Store is any store.

4.4 Composing Single-Step Transfer Relations

Given the single-step transfer relations A for a program, one can use the transfer-relation
composition algorithm @ from Chapter 3 to compute the transfer relation for any finite control
path in a program.
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4.4.1 Two-step transition sequences

Suppose the transfer-relation semantics of program P is the tuple

—

(CtrlPoint, Var, Val, Primop, A)

and, following our convention of notation, we write A(C’, C') as Ac,cr.

The single-step transfer relation Ac ¢ defines all of the transitions from control point C'
to control point C’. The single-step transfer relation Acr ¢ defines all of the transitions from
control point C’ to control point C”. Therefore, the relation

Ac,cr; Acron

defines exactly the two-step transition sequences from C through C’ to C”.

Suppose that all primitive operations p € Primop are deterministic, as will be the case in
most programming languages, and that we are given the symbolic evaluation

P € Primop — Exp* — ATR — Exp
as defined by Definition 5 and translation
C € Exp—~=TR—=TR—TR
as defined by Definition 8. Then we know from Theorem 4 that
(Ac,cr ® Acror) € TR

is equivalent to A¢ cr; Acr ¢ and thus defines exactly the two-step transition sequences from C'
through C' to C”. But the profound advantage of Ac o @ Acr on over Ag cr; Acr cn is that,
syntactically, the former is a (computer-representable) term in our language TR of transfer
relations, while the latter is not. The advantage of this is illustrated in the following example,
which also serves to remind why we disallowed explicit syntactic composition of transfer relations
in the language TR.

Example 20 Suppose

Ao -
Aerer =

Suppose also that all primitive operations p € Primop are deterministic, and {+,-} C Primop.
Assuming an arbitrary C (because it will not be used here) and the trivial P that is the identity
function on context-independent operations (such as + and -), we have that

x—y+l|®|x—x-1 :‘x>—)(y+l)—l‘
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describes exactly the possible net effects of the two-step fragment of execution from control point
C through C' to C". If P instead performs some better symbolic evaluation, & may yield a
better result such as

Xy

FEither way, it is more enlightening as to the behavior of this execution fragment than the term
x—=y+lilx—x-1

By convention we write Ag cr @ Acr o as Ag,cr o

Suppose that there are nondeterministic primitive operations in Primop. Then from Theo-
rem 3 we have that Ac v @ Ay or is a superset of Ac ¢v; Acr o and thus defines at least all
of the two-step transition sequences from C through C’ to C”. It might, however, relate some
initial stores (i.e., at C) to some final stores (i.e., at C") that cannot be achieved by such a
two-step transition sequence.

We now generalize the above to arbitrary-length sequences of transitions.

4.4.2 Arbitrary-length transition sequences

Single transitions involve two control points, an initial and a final. Two-step transition se-
quences involve three control points, an initial, a middle, and a final. We generalize this
concept with the following definition.

Definition 10 Given a set CtrlPoint of control points, a control path is a sequence of one
or more control points. The set of control paths is written CtrlPoint™. If I' € CtrlPoint™
and I'" € CtrlPoint™ then I, € CtrlPoint™ is their concatenation. For any I' € CtrlPoint™,
IV € CtrlPoint™, and C € CtrlPoint, (I',C); (C,I") =T, C,I".

A transfer-relation semantics provides the single-step transfer relations of a program that
define all of the program’s valid transitions. Transitions are merely execution sequences through
control paths of length two. Concatenating adjacent transitions, or equivalently, composing
adjacent transfer relations, produces the execution sequences through control paths of length
three. Another composition covers the control paths of length four, and so forth.

Therefore we define from the finite collection of single-step transfer relations Ag s the
infinite collection of transfer relations Ar for all control paths I' of length at least 2:

App =Ap @ Ap

Note that this definition is nondeterministic, because there are n—2 ways to split up a length-n
control path I' into I' and I such that I = I'; T because any control point in the path '
other than the end points can act as the “pivot point”. In fact, the choice of pivot point will
in general produce different syntactic transfer relations. But if @ is a translation, which by
Theorem 4 will be the case if all primitive operations p € Primop are deterministic, then by
associativity of relation composition, all of these transfer relations are semantically equivalent.
If on the other hand @ is merely an upper approximation, then they may not all be semantically
equivalent, but they are all supersets of the true composition.
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4.5 Treatment of Errors

There are three ways in which an implementation of a programming language treats an error.

1. The error may be caught at compile time. For instance, most languages with static typing,
such as ML, will prevent at compile time all attempts to add an integer and a boolean
value.

2. An error not caught at compile time may be caught at run time. For instance, ML’s static
type system cannot detect out-of-bound array references. Instead, all array references
perform a test a run time to check if the index is within bounds of the array, and raise
an exception if the test fails.

3. Finally, an error may not be caught at all. In this case, the semantics of the error is
unspecified, and the execution is allowed to “run wild” after the error. In ML, no errors
reach this stage; they are all caught either at compile time or at run time. But in C,
for instance, it is possible to extract a value from an uninitialized local variable, but the
definition of C does not specify this value. Also, one may cast any integer into a pointer
and attempt to write into that address in memory. Depending on the implementation, this
can produce a wide range of errors that are impossible to catch at run time. For instance,
the address of a pointer may happen to correspond to a local variable on the stack, and
so any write into a pointer changes the value of the variable. Similarly, writing past the
boundary of a struct or array may interfere with other data structures. An even more
dramatic example of bad behavior resulting from uncaught errors is the overwriting of
code by bad pointers or out-of-bound array references. The semantics of C is unspecified
for such programs; once such an error occurs, the execution may run wild. Depending
on the implementation, the execution may proceed in an unpredictable manner or may
violate the run-time system, causing a segmentation fault or bus error.

We discuss the way in which our methodology addresses these three kinds of errors.

1. Because our methodology is appropriate only for a dynamic semantics of a language (in
other words, the run-time behavior) and not for a static semantics (for instance, the
static type system), we do not address errors caught at compile time. We assume that
the static semantics has already caught these errors and provided the dynamic semantics
with a program that is free of these errors. A dynamic semantics may, incidentally,
provide a model for programs that contain compile-time errors, but it does not matter
what this model is. For example, in Chapters 5 and 6, we will use our methodology to
model languages with records. These semantics will not model the type of a record (in
other words, the names and types of its fields), and thus allow type-unsafe uses of the
record (for instance, an attempt to read a non-existent field). These semantics do provide
a model for such type-unsafe operations, but it is expected that a static semantics will
ensure that they will never occur.
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2. Because our methodology is for the design of a dynamic semantics, modeling the run-time
behavior of programs, it should be able to provide a treatment of errors caught at run-
time. Typically, when a run-time error is detected, control proceeds to an error handler.
For instance, a run-time error in ML raises an exception which is caught by either a
user-defined handler or the run-time system’s top-level handler. Nothing prevents our
methodology from dealing with run-time errors in a similar fashion. Suppose that (C, o)
is a state in which a run-time error occurs. For instance, in an ML program, control point
C may reference code to take the head of a list object in store o, and that object is nil.
Then there will be a transition

(C,0) — (C',0")

where C’ is the entry of some error handler, which in the case of ML will be an exception
handler.

However, in this dissertation we will not give any examples of such run-time errors. In
other words, the languages in Chapters 5, 6, and 7 do not perform any run-time checks.

3. We assume that if an error is not caught at compile time or run time, then the run-time
behavior of the program after the error occurs is unspecified. Therefore, our methodology
treats these errors in the same way as it treats compile-time errors: we assign a behavior
to a program that exhibits such an error, but the particular behavior is unimportant
because conceptually the semantics is unspecified in that case.

Generally, the value undef may come about as the result of errors that are allowed to
“run wild” and thus have unspecified run-time behavior—in other words, the the first and third
categories above. For instance, in Chapters 5, 6, and 7 we will give a semantic model in which an
attempt to lookup the value of an unbound variable or field of a data structure results in undef,
and primitive operations are defined on undef. For instance, (1 + undef) evaluates to undef,
and (undef = undef) evaluates to true. The latter may seem odd, but is perfectly reasonable
because, once again, the run-time behavior of errors that produce undefined is unspecified.
Essentially, we need only model the run-time behavior of programs that do not exhibit any
errors in the first and third categories above.

It is worth commenting on a phenomenon with transfer relations that should not be confused
with the treatment of errors. Suppose control path I' begins with control point C. Given the
transfer relation Ar corresponding to control path I', and given a store o, if there is no o’
such that o Ar o', then it means that execution from the state (C, o) cannot progress through
control path I'. For instance, C' may be a branching point, with path [’ proceeding down the
branch for when z > 0, but the value of z in o is not greater than 0. This is not intended to
be a way of modeling errors that may have occurred during control path T
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Chapter 5

A Case Study: The Language MINI-C

In this chapter, we present MINI-C, a simple imperative language with while loops, assign-
ment, mutable records, and immutable tuples, but without procedures or arrays. We also
give a semantics for MINI-C in terms of a transition system. As suggested in Chapter 4, we
will demonstrate two different techniques for defining that transition system—the traditional
approach of meta-rules and our new approach using single-step transfer relations.

The main purpose of this chapter is to develop a relatively straightforward case study of
our approach to program analysis.

5.1 Syntax

A MINI-C program is a list of zero or more statements. A statement is either an assignment,
an allocation of a new record with n named fields, a conditional with a statement list for each
branch, or a while loop with a statement list for a body.

S u= {s1,...,sn} (ordered) statement list (n > 0)
s u= L:=F assignment statement

| L:={fi=E,...,fn=Ep} mutable-record allocation

| if E then S else S’ conditional statement

| while £ do S while loop

f € Field mutable-record field names
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We define the source ezpressions and source l-expressions slightly differently from the expres-
sions and l-expressions in Chapter 2.

E == L location lookup
| P(Er,...,E,) primitive application

L = =z variable location
| E.f data subcomponent location
z € Var variables

Finally, the source primitive operations are

P == ¢ constants (nullary)
| +]-]* integer operations (binary and unary -)
| <|>|=]<>|& boolean operations (binary)
| if conditional expression (ternary)
| tuple immutable-tuple construction (n-ary)
| immutable-tuple component selection (unary)

where the set Constant of constants is

c u=n integers (Int)
| true|false booleans

All of the source primitives are simple (i.e., deterministic and context-independent). We leave
the set Field of field names of mutable data structures open for the moment. Note that constants
are nullary primitive operations, as suggested in Chapter 2. We will sometimes use nil as
another name for false. (One could just as easily add nil as another constant.)

We adopt the following syntactic conventions.

e The statement list {s} may be written as s. item The expression ¢() may be written as c
(our usual convention).

e The expression P(E, E') may be written in infix as E P E'.

e The expression tuple(Ey,..., E,) may be written as (Eq,..., E,).

5.2 Discussion

MIiINI-C does not have procedures, but its data features and imperative features of are similar
to C. Allocating a MINI-C record with n fields corresponds to calling the C malloc operation
to allocate a size-n block of memory on the heap and then immediately filling the block with
n values. Thus, MINI-C field names correspond to structure field names in C as well as the *
token for pointers.
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For simplicity, MINI-C does not have arrays, which add an extra element of complexity in two
ways. One, they may be of statically unknown size. Two, the index (which would correspond to
the field name of a record) of an array dereference may also be statically unknown. In Chapter 7
we will develop a source language with arrays.

One feature of C that is not present in MINI-C is low-level control over data layout. C’s
& operator is not in MINI-C because there is no distinction in MINI-C between an updatable
data structure and a pointer to that structure. Intuitively, all updatable data structures in
MinNI-C are pointers, in much the same way that all arrays in C are pointers. In contrast, C
provides a mechanism for distinguishing a struct itself from a pointer to that struct; this is
useful for programmer control of data layout—for instance, the inline allocation of a struct as a
field in another struct. Furthermore, there is no pointer arithmetic in MINI-C, and nor is there
a notion of casting one updatable data structure to another. All of those features of C exist
to give the programmer low-level control of data layout. In this dissertation, we will not cover
such issues, and so MINI-C does not include those language features.

However, it is in fact possible to model a functionality similar to the C & operator, as
well as pointer arithmetic for an extension of MINI-C with arrays. We discuss this further in
Section 5.9.

5.3 Simplification of Syntax

Above we presented the syntax of MINI-C in a form that is intended to be used by a programmer.
But it will be much more convenient to describe the semantics of MINI-C programs if we first
recast the syntax in a form that more closely fits our development of transfer relations in the
previous chapters.

Our first task is to recast source expressions and source l-expressions respectively into the
expressions and l-expressions of the transfer-relation language. We recall their definitions here.

e € Exp m= x| pler,...,en)
I € Lexp n= x| ee

p € Primop

z € Var

First of all, we include all of the source primitive operations P in the set Primop. For the
purpose of modeling the semantics of MINI-C with transfer relations, we will have to add some
operations to Primop that are not available to the user at source level. First of all, we need to
add the field names Field to Primop as nullary primitive operations; then the source l-expression
E.f is a member of Lexp.

Secondly, we need to add the context-dependent binary primitive operation deref of Chap-
ter 2 to Primop in order to consider the source expression E. f to be the expression deref(E, f) €
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Exp. Now all source expressions E are in Exp, and all source l-expressions L are in Lexp; hence-
forth we will thus call them expressions and l-expressions and use the metavariables e and [,
respectively.

Our second transformation is to “compile” a statement allocating a record with n fields into
a statement that allocates new memory followed by n statements that fill the n fields with their
values. For this purpose, we need the following, as suggested in Chapter 2:

e for each natural number m, a pointer value (m) € Val

e the unary primitive operation ptr that casts an integer m to the pointer (m) (formally,
ptr(m) — (m)), where we write (e) for ptr(e)

e a distinguished variable H, initialized to 1 at the beginning of execution, to hold the integer
of the next free pointer on the heap

We now perform the following transformation of a MINI-C program S. We assume without loss
of generality that H does not appear in S. We first add the assignment statement

H:=1
to the beginning of statement list S. Then we rewrite every allocation statement
l'={fi=e1,....,fn=en}

as the sequence

= (H);
(H).f1:=e1;
<H>fn ‘= €n;
H:=H+1

Our resulting program is now in the simplified language

S u= {s1,...,sp} (ordered) statement list (n > 0)
s u= l:=e assignment statement

| if e then S else S’ conditional statement

| whileedo S while loop

where [ € Lexp, e € Exp, and Primop includes the source primitive operations as well as deref,
ptr, and f for all f € Field.

We now wish to design a transition system to describe the semantics of MINI-C programs
expressed in this simplified language. Recall that a transition system is a tuple

(CtrlPoint, Var, Val, —).

We already have the set Var of variables; it is one of the syntactic domains of MINI-C. All we
have mentioned about the other three components is that Val includes the collection of pointers
(n). We now describe each of these remaining three components in turn.
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5.4 Control Points

In order to define a transition system describing the semantics of MINI-C programs, we must
design a way to refer to the control points in a program. The control points are merely the
statements in the program, and execution proceeds from control point to control point as it
processes the statements in order.

A control point of a program is an “index” into the syntax tree of the program. Formally,
a control point is a finite sequence of natural numbers.

C & CtrlPoint = Nat*

The empty sequence is written e. If C' € CtrlPoint, then C.i € CtrlPoint and .C' € CtrlPoint
respectively represent the extensions of the sequence C on the right and on the left by ¢ € Nat.
Intuitively, the numbers in a control point describe, from left to right, how to descend into
the syntax tree of a program. Formally, this is given below, where S[C] returns the statement
within statement list S at control point C.

{81,---,sn}li] = s
{81,...,8n}[i.j.0] = S][C] if S; = if e then Sl else SQ
{s1,...,8n}[0.C] S[C] ifs; =whileedo S

Example 21 The following MINI-C program is annotated with its control points.

{

1 if n <0 then
1.1.1 n:=-(n)
else

1.2.1 n:=n * 2;

2 r:=1;

3 whilen > 1 do
{

3.1 r:=r *n;

3.2 n:=n-1
¥

4 if r > 60 then

4.1.1 r:=r-1;

) X:=r

Recall that a one-armed conditional if e then S is an abbreviation for if e then S else {}.

Note that a traversal into a conditional statement extends the control point by two numbers—an
index identifying one of the two branches and an index into the statement list in that branch—
while a traversal into a while loop extends the control point by only a single number—an index
into the loop body.
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5.5 Values

As described above, the set Var of variables is already given as one of the syntactic domains of
MinNI-C. So the next stage of the design of the transition system is the set Val of values. Recall
that the states in the system are pairs

CtrlPoint x Store
where stores are defined as in Chapter 2:

Store = Lval — Val
Lval = Varu (Val x Val) l-values

We thus need to design an appropriate set of values for this store.

5.5.1 Constants, field names, and pointers

Recall the set Constant of MINI-C constants:

c u=n integers (Int)
| true|false booleans

All constants are values.

In Section 5.3 we performed a syntactic transformation where field names were considered
as nullary primitive operations. Therefore, we include the set Field in the set of values.

In the same section, we suggested the approach of using pointer values to model the roots
of mutable records. As we described, there is a pointer (m) for every natural number m. The
set of all pointers is denoted Pointer.

5.5.2 Immutable ordered tuples

Recall that MINI-C includes the n-ary primitive operation tuple for tuple construction and
the operations 7; for tuple-component selection. Therefore, we would like the set of values to
include all ordered tuples of values. The ordered tuple of the n values vy,...,v, is written

(01, 0n).

5.5.3 The undefined value undef

As we described in Chapter 2, we demand that the set Val of values include the distinguished
token undef representing the “undefined value”. As we explained, this requirement comes from
the fact that stores are total functions from l-values to values, and thus require such an explicit
representation. For instance, at any given point in a MINI-C program, it is reasonable for only
a small set of variables to be defined, and the store at that point would map all other variables
to undef.
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5.5.4 The set of values

Above, we described the different kinds of values in MINI-C. The set Val is their disjoint union
(in order to distinguish pointers from natural-number constants and to distinguish a value from
its unary tuple). It is defined inductively as the smallest set satisfying the following equation.

v € Val = Constant + Field + Pointer + Val* + {undef}

5.6 Semantics of Primitive Operations

The semantics of primitive operations follows the methodology described in Chapter 2. To
review, the phrase p(v1,...,v,) =, v means that the n-ary primitive operation p applied to
values (vy,...,v,) in store o evaluates to value v. However, the only primitive operation whose
evaluation depends on o (in other words, the only context-dependent operation, as defined in
Definition 2), is deref, so we omit the o parameter for all other operations.

Recall from Condition 1 that for any n-ary primitive operation p € Primop, for any n values
v1,...,U, € Val, and for any store o € Store, there is at least one value v € Val such that
p(vi,...,vy) <=5 v. In other words, all primitive operations must be defined everywhere. All
primitive operations in MINI-C are also deterministic; as defined in Definition 1, this means
that they evaluate to only one value. Therefore, all MINI-C primitive operations are total
functions.

We define the primitive operations in MINI-C below. We already gave most of these defini-
tions in Chapter 2. A primitive operation evaluates to undef unless otherwise defined below.
First, we have the constants and field names.

() — ¢
fO = 7
Now the integer operations
+(n,n') — (n+n')
=(n,n') = (n—n')
-(n) = -n
*(n,n') < (nxn')
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Next, the boolean operations and if.

&(true,v) — w
&(v,true) — w
&(false,v) — false
&(v,false) — false
<(n,n') = (n<n)
>(n,n') <= (n>n)
=(v,v) = (v="1)
<>(,0) = (v #0)
if(true,v,v') — w
if(false,v,v') < o
Next, the operations for immutable tuples.
tuple(v,...,v") <= (v1,...,vp)
mi((v1,... ) — v

Finally, we have the operations to support mutable records.
ptr(n) — (n)

deref(v,v') <, o(v.v') (context-dependent)

5.7 Semantics of Expressions and L-expressions

The semantics of expressions and l-expressions are precisely the same as in Chapter 2. We
review that definition here. Formally, the interpretations of expressions and l-expressions are
given by the following relations.

e The phrase [ -, w means that the l-expression [ evaluates in store o to l-value w.

e The phrase e -, v means that the expression e evaluates in store o to value v.

We recall the following rules, which inductively define these relations.

eb,v €k 0
(e.e)) ko (v.0")

Ths

eibovi plvr,...,v) =50
pler, ... en) Fo v

zky (0x)

We recall Lemma 1, that all expressions (respectively, l-expressions) evaluate to at least one
value (respectively, l-value). In addition, we know from Lemma 2 that because Primop is
deterministic that this value (respectively, l-value) is unique.
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5.8 Transition-system Semantics

In this section we present a transition system that models the executions of MINI-C programs.
We consider two ways to define such a system.

e The usual approach is to give a meta-rule for each kind of syntactic form in the language.
There are one or more meta-rules for each syntactic form in the language (for instance,
conditional, assignment, and so forth). These meta-rules describe how any occurrence of
that syntactic form in the source program induces single-step transitions. The single-step
transitions for the entire program is the collection (union) of all of these transitions.

e The second approach is technically equivalent, but uses the framework that we developed
in Chapters 2, 3, and 4, thus opening up all the possibilities of our program-analysis
methodology for the language. The idea is that each rule introduced by a meta-rule in
the above approach is equivalent to a single transfer relation that describes all of the
possible transitions induced by that rule. Hence, the approach is to give a rule for each
kind of syntactic form in the language that describes how any occurrence of that form
induces a transfer relation describing all of the possible single-step transitions for that
occurrence.

We will illustrate each of these approaches in turn for MINI-C. But first, we need a helper
function to manage control points.

5.8.1 The next function

In most languages, much of the control flow is syntactically apparent. Conceptually, the dy-
namic semantics of a language should not have to be concerned with syntactically apparent
information. Of course, the program’s flow of control must be part of the program’s semantics,
or else the semantics would not adequately model the program’s execution. But for expository
purposes, it is pleasing to factor out information that is a trivial property of the syntax, so
that the rules of the semantics themselves succinctly capture exactly the dynamic properties of
execution.

To this end, we will need a helper function next to manage the syntactically apparent control
flow in a program. Given the control point C of a statement in program S, if C' is in the middle
of a statement list then next merely returns the control point of the next statement in the list.
Note that if C' points to a conditional or a while loop then the next statement is not necessarily
the next control point in the execution.

nexts(C.i) = C.(i+1) if S[C.(i + 1)] defined

If C points to a statement that is the last in a statement list, then nextg(C') will not be defined
by the above equation. There are two cases for when this might happen. The first case is that
the statement to which C' points is the last statement in the outermost statement list in S
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(i.e., the statement list S itself). In this case next returns the empty control point € to signal
program completion.
nextg(i) = €

The second case is that the statement to which C points is not in the outermost statement
list. In that case, we want nextg(C') to return the control point of the next statement to be
executed, which in this language is simply in a lexically-enclosed statement list and is always
syntactically apparent. There are two cases. If C' points to the last statement in an arm of a
conditional statement s, then nextg(C') should be the next statement after s.

nexts(C.j.i) = nextg(C) if S[C]=if...then...else...

The second case is that C points to the last statement in a while loop s, in which case nextg(C)
should be s itself, as the loop might need to be executed again.

nextg(C.i) = C if S[C]=while...do...
The following example demonstrates all of the concepts of the next function.

Example 22 Consider the MINI-C program S in Example 21, shown below on the right. The
complete definition of next is:

nextg(0) =1 {
nextg (1) = 2 1 if n <0 then
nextg(1.1.0) = 1.1.1
1.1.1 n:=-(n)
nextg(l.1.1) = 2 else
nextg(1.2.0) = 1.2.1
1.2.1 n:=nx*2;
nextg(1.2.1) = 2
nextg(2) =3 . i
neXtS(g) = .y 3 whilen > 1 do
s =
- {
nextg(3.0) = 3.1 3.1 r:=r *n;
nexts(3.1) = 3.2 3.9 ni=n-1
nexts(3.2) = 3 1 '
Y
nexts(4) =5 4 if r > 60 then
nextg(4.1.0) = 4.1.1
4.1.1 r:=r-1
nextg(4.1.1) = 5 5 ——
nexts(4.2.0) = 5 v
nextg(5) =

Note from this example that for every statement list, there is an element in the domain of next
ending with 0 and thus not a real control point in the program. The only reason for this is
because we allow empty statement lists in MINI-C programs. So, for instance, if control point
C points to a conditional expression, then nextg(C.2.0) always returns the next statement in
an execution that takes the else arm. So, nextg(1.2.0) = 1.2.1, which is the first (and only)
statement in the else arm of the first conditional in the example program, but nextg(4.2.0) = 5,
because the else arm of the second conditional is empty, and thus execution immediately
proceeds to the statement after the conditional.
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5.8.2 Transition system via meta-rules

Now we can define the meta-rules that define the transition relation — for a MINI-C program
S. There are five kinds of transitions. Each statement in S of the form

if e then S else S’

induces a two families of transitions: the transitions from a successful test of e into S, and the
transitions from a failed test of e into the S’.

S[C]=if ethen...else... C' =nextg(C.1.0) et, true
(C,0) — (C',0)

S[C]=if ethen...else... C' =nextg(C.2.0) et, false
(C,0) — (C',0)

Each statement in S of the form
while e do S’

induces two families of transitions: the transitions from a successful test of e into S’, and the
transitions from a failed test of e to the rest of the code after the loop.

S[C] =whileedo ... C'=nextg(C.0) elr, true
(C,0) — (C',0)

S[C] =whileedo ... C'=nextg(C) elr, false
(C,0) — (C',0)

Finally, each statement in S of the form
l:=e¢
induces a family of transitions that perform the assignment in the store.

S[Cl=(l:=e) C'=nexts(C) lF,w elyv
(Cyo) — (C',ofw = v])

Below is an example that illustrates how this transition system models program execution.

Example 23 Recall the MINI-C program in Example 21. The transition system defines the
following execution from a state at the beginning of the program and with an initial store in
which n is bound to —4 and all other l-values are bound to undef. (The only store mappings
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shown are the mappings to non-undef wvalues.)

1 {n~— —4}
1.1.1,{n — —4}

2 J{n—4}

3 fn—4r—1}
31 {n—4,r—1}
32 {n—4,r—4}
3 Ao 3,res4)
An— 3, r— 4}

)

; 1 if n < 0 then

)

)

)

)
1 ) {
2 {n—3,r— 12} )

)

)

)

)

)

)

)

1.1.1 n:=-(n)
else

1.2.1 n:=nx*2;

2 r.=1;

3 whilen > 1 do

3 dne 2,10 12) g; ;f;frll

h

4 if r > 60 then
4.1.1 r:=r-1;

5 X:=r

3.1 {nm2,r— 12}
32 {nm2,r— 24}
3 f{n~—1,r— 24}
4 {n—1,r— 24}
5 {n—1,r— 24}
e Jfn—1l,r— 24 x~— 24}

PITITLLLTITLLT]

5.8.3 Transition system via transfer relations

The key idea of using transfer relations to replace meta-rules is that a single transfer relation
can capture the commonalities inherent in each family of transitions defined by the meta-rules.
For instance, in the meta-rule approach, every if e then S else S’ statement induces an infinite
family of transitions, one for each store o in which e evaluates to true, from that statement
into S. Each transition in this infinite family does exactly the same thing: simply test that e
is true in the store on the left-hand side of the transition before proceeding to S.

This inspires the idea of defining a transfer relation A¢ ¢ for every pair C,C’ € CtrlPoint of
control points in a MINI-C program S. Each one will specify exactly the transitions, as defined
by the meta-rules above, from C' to C. In other words,

(C, O') — (C,,OJ) iff UAC,C’ o'

Of course, the vast majority of these transfer relations will be the empty relation @), because
single-step transitions between most pairs of control points are impossible.

The semantics of a MINI-C program S is thus defined as a finite table
A ={Acc | C,C" € CtrlPoint}

of transfer relations, one for each pair of control points in S, such that A¢ v describes all of the
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transitions between control point C' and the control point C’. This table is defined as follows.

(

e? o if S[C]=(if ethen...else...) and C’ = nextg(C.1.0)
if S[C]=(ifethen...else...) and C'=nextg(C.2.0)
e? o| if S[C]=(whileedo...) and C’ = nextg(C.0)
Accr =
e, o if S[C]=(whileedo...) and C' = nextg(C)
l—e| if S[C]=(l:=¢) and C’" = nextg(C)
[ 0 otherwise

We recall that is short for |e? A|0|and |e; A|is short for |e? @] A}, where 0 is the
empty relation and e is the identity relation (i.e., empty parallel assignment).

Example 24 The semantics defines 13 non-empty transfer relations for the MINI-C program
i Example 21.

Ay = Aipgs =

n—n-1
Agine = |n—-(n) Asy =
Avaan = Agr1) =
Agone = |[nrn*2 Aurns =
sa - e -
A3z (3.1 = As e = [x&r

A3z = [r—r*n

Note that this semantics does not need any of the mechanism developed in Chapter 3 for
composing and manipulating transfer relations. Indeed, the transfer relations that it yields
as the model of program execution are quite simple. But the intent is that the output of the
semantics is merely a first step in an application of our program-analysis methodology. Once the
single-step transfer relations of a MINI-C program are in hand, one can compose these transfer
relations to yield a single compound relation that expresses the behavior of any finite segment
of execution. The following example illustrates that composing single-step transfer relations is
analogous to stringing together transitions defined by the meta-rules in the previous section.

Example 25 The execution shown in Example 23 has control path

1,(1.1.1),2,3,

—~

3.1),(3.2),3,(3.1),(3.2),3,(3.1),(3.2),3,4,5, ¢



92 A Case Study: The Language MINI-C

and so its compound transfer relation is
A1) D)2 Dozs 5 A345 Aa 55 As e

which relates the input store
{n— —4}

to the output store
{n+—1,r— 24,x — 24}

Now, one can use the composition algorithm @ of Chapter 3 to perform effectively these
compositions, thereby facilitating the analysis of the program. Recall the convention of Chap-
ter 4 of writing Ar to represent the transfer relation of control path I', which is a list of control
points. Recall that

Arcr =Arc ® Agr.

Example 26 A transfer relation expressing the above execution is computed as
A1) @ Apane @ Ao @ - @ Azy & Ay @ Ase

which, if the symbolic evaluation P for primitive operations and C for conditional relations are
both simply the identity function, is

(n<0)? [e1? |ex? |e3? |eql, (e’>60)?‘n,r,x>—>e,e',e"

where
e = —(n) >1
e2 = (-(n)-1)>1
es = ((-(m)-1)-1)>1
eq = e>1
= (@)-1)-1)-1

e

¢ = (1*-@)*(-(m)-1)*((-() -1) - 1)
Adding some logic to P to simplify arithmetic operations could (in principle) yield a result as
simple as

eq = n<-1
eo = n<-2
e3 = n<-3
e42 = n<—4

e -(n) -3

e = (=(n) *(-(n) - 1)) * (=(n) - 2)
Note how the conditional relation expresses the control-flow constraints on this particular control
path. Note also that the conjunction of the first five conditions in the above transfer relation can
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only evaluate to true when n is —4. A C algorithm could (in principle) determine this property
automatically, dispense with e; through ey, pass this value of n onto a simple constant-folding
symbolic evaluation of e and €', and achieve the extremely simple transfer relation

= —47 [n,r,x > 1,24,24 |

Such sophisticated symbolic reasoning about integer arithmetic and conjoined comparison tests
may be difficult to achieve in general. For the most part, we leave this topic as an open issue
and offer no general algorithms. However, even simple symbolic evaluations can go far whenever
any initial bindings are known. The following example illustrates how this works.

Example 27 Suppose that C is the identity function, performing no simplification of condi-
tional expressions, and P merely performs constant folding. Then

® A1) © Ay ® Doz @ -+ © Agy & Ay @ Ase

15 the transfer relation

n,r,x+—1,24,24|

So far, we have introduced only a single example MINI-C program. This example uses only
integer data, and in particular does not allocate or use records. However, much of the sophisti-
cation of our methodology lies in its treatment of heap-allocated mutable data structures. The
following example demonstrates record allocation.

Example 28 Consider the MINI-C program

1 while a <> nil do
{
new:= {car = a.car,cdr = b};
a:=a.cdr;
b:=new

}

that constructs a reverse of list a. Let I' be the control path that starts at control point 1,
progresses through one iteration of the loop, and ends back at control point 1. Then,

a,b,new, H, a.cdr, (H), (H),H + 1,

Ap = <>nil)?
t (2 <>nil) (H).car, (H).cdr a.car,b.cdr

represents the transfer relation of one iteration and

App = |(a<>nil)? ‘ (a.cdr <> nil)? A‘

)
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where

a,b,new, H, a.cdr.cdr, (H+ 1), (H+ 1),H + 2,
A = |(H).car, (H).cdr, +— a.car, b.cdr,
(H+1).car, (H+ 1).cdr a.cdr.car, (H)

represents the transfer relation of two adjacent iterations

Note how an assignment relation can represent multiple record allocations in parallel via the
expressions (H), (H+ 1), (H+2), and so forth. These expressions evaluate to sequential free
pointers. The assignment to H reflects the total number of pointers allocated by the execution
segment that the transfer relation models.

Also, note again that the conditional relations encode the conditions under which a partic-
ular control path is taken.

The following example demonstrates the subtlety of unknown initial aliasing.

Example 29 (Consider the MINI-C program

1 while (a <> nil) do
{
temp := a;
a:=a.cdr;
temp.cdr :=Db;
b:=temp

}

that destructively appends the reverse of list a onto list b. If I' is the control path that begins at
control point 1, progresses through one iteration of the loop, and ends back at control point 1,
then

Ar = |(a<>nil)? ‘ a,b, temp, a.cdr — a.cdr, a, a.cdr,b‘

1s the transfer relation of one loop iteration, and

Arr = |[(a<>nil)? |(a.cdr <>nil)? |(a=a.cdr)? A|A’
where
A = ‘ a,b, temp, a.cdr — if(a = a.cdr,b, a.cdr.cdr), a.cdr, a.cdr, a‘
Al = ‘ a,b, temp, a.cdr, a.cdr.cdr — if(a = a.cdr, b, a.cdr.cdr), a.cdr, a.cdr, b, a‘

is the transfer relation of two adjacent loop iterations. If C were defined to propagate the first
test of a = a.cdr into its two branches, then the composition algorithm could simplify the if
expressions and achieve

A = ‘a,b,temp, a.cdr — b, a.cdr, a.cdr,a‘

Al = ‘a,b,temp,a.cdr,a.cdr.cdr|—>a.cdr.cdr,a.cdr,a.cdr,b,a‘
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This example is worth some study. It expresses that the net effect of executing two adjacent
iterations of the loop in some context (store) depends on whether a was aliased to a.cdr in
that context (in other words, if a is a circular list of length one). If not, then the execution
has the net effect of A/, which directly expresses the expected net behavior of two iterations
of a reverse-append routine. On the other hand, if a is initially aliased to a.cdr, then some
examination of A reveals that the net effect of two iterations reduces to swapping a and b.

This example thus demonstrates that the effect of aliasing on data-structure dereference
and destructive assignment is rather subtle and unpredictable, but the composition operation
@ on transfer relations reveals this subtlety. Furthermore, it suggests that it is well worth the
effort to design the C algorithm to look for and simplify syntactically redundant conditional
expressions. In this dissertation, we do not describe such an advanced C algorithm, and so this
is left for future work.

5.9 Modeling & and Pointer Arithmetic

The only reason that we did not include arrays in MINI-C was for simplicity. In Chapter 7
we will show how to model arrays in a functional language with our methodology, and it is
straightforward to extend MINI-C in the same manner. In this section, we give a discussion of
how to add some of the features of C’s pointers that are not present in MINI-C. For generality,
this section will assume that MINI-C includes arrays as described in Chapter 7.

C includes the following expressions.

&x the address of variable x
&(s.f) the address of field £ of struct s
&(a[i]) the address of element i of array a

Unlike C, MiINI-C has no & operator. Related to this is our choice to treat pointers as records
with the single field *.

Alternatively, we could have treated a pointer as a pair value (v,v') representing the I-
value v.v'. In this way, we can treat the latter two of the three cases above via the syntactic
translation

&le.e) = (e )

where e[e’] is represented as e.e’, as we describe in Chapter 7. Then, we would treat an
occurrence of *e not as a reference (as an l-expression) or dereference (as an expression) of the
field named * of the record e, but rather as an extraction of the l-value represented by the pair
e. This would be accomplished by the following syntactic transformation.

xe = (m(e)).(m2(e))

Recall that an occurrence of e.e’ as an expression (as opposed to an l-expression) is short for
deref(e,e').
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In this manner, we can treat most of the functionality of C’s & and * operators. What we
cannot do is to take the address of a variable, and there is a good reason why this is the case.
Intuitively, & coerces an l-value into a value (so that it may be manipulated as data and so
forth), and * coerces a value back into an l-value. Above, we coerce a reference l-value v.v' as
the pair value (v,v'), which may then be coerced back into the l-value v.v' (and dereferenced,
if treated as an expression). We could attempt a similar approach with variables—for instance,
coercing the variable z into the token ‘z’. In our current formulation, the only l-expression
that evaluates to x is x itself, and so there is no way to translate an arbitrary expression e
into an l-expression that will evaluate to z if e evaluates to ‘z’. But this is just due to our
particular language of expressions and l-expressions and our choice to model MINI-C variables
with l-expression variables. In principle, there is no difficulty to extend the notion of & for
variables.

With the above model of pointers, it is possible to model C’s pointer arithmetic for array
indices. A pointer to an array element is (v,v'), where v is the array and v’ is the index of the
element (as we explain in Chapter 7). Suppose the expression

ete

represents the increment of pointer e by ¢’ (which would be written as e + ¢’ in C). We would
translate this into the MINI-C expression

(m1(e), ma(e) + €').



Chapter 6

First-Class Functions: The Language
PURE

In Chapter 5 we presented the imperative while-loop language MINI-C, the primary purpose of
which was to introduce the methodology of defining a transition-system semantics of a program-
ming language with computer-representable transfer relations representing the single steps, and
then using the @ algorithm to build multiple steps corresponding to particular control paths
in the program. But MINI-C is a rather simple language, and so in this chapter we consider
more advanced language features. Our purpose is to demonstrate that our methodology of
semantics-based program analysis is reasonably general.

The only control constructs in MINI-C are conditionals and while loops. One can get by
without any other control constructs, but it would be quite inconvenient for most programming
tasks. Real programming languages have some mechanism for defining functions. A function
accepts some input data (parameters) from its caller and returns a result value to the caller.
In some languages, such as Haskell [HT92], functions have the same input-output behavior in
any context. This is sometimes known as referential transparency [SS90]. We call this kind
of function “pure”. The vast majority of programming languages, however, provide impure
functions. In this chapter we model a programming language with pure functions, and in the
next chapter we will extend this language with imperative features and impure functions.

In some languages, the functions are said to be first class. This means that the functions
are semantic values, and as such can be manipulated by a program like any other value. For
instance, they may be assigned to variables, placed in data structures, and passed to other
functions. The functions in most advanced languages, such as Scheme [ReC86] or Standard ML
(SML) [MTH90], are first class. In contrast, the functions in C [KR78], Fortran [Knu71], and
Pascal [Bar81] are not first class.

In some ways, our methodology must be rather stretched to handle first-class functions. We
will see this below and in Chapter 7, and we will give a summary at the end of Chapter 7.
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6.1 Substitution vs. Closures

Consider the syntax of A-calculus terms [Bar84]:
e = x| A\v.e|ee

Now consider the following term:
(Az. Ay. z) (Az. 2)

Via the reduction rules of the A-calculus, this term reduces in a single step to the (unique up
to renaming) normal form:
AY. 2. 2

This term represents a function that, given any argument, yields the identity function.

Much of programming-language theory and practice is based on the notion that reduc-
tion of A-calculus terms is a kind of computation. Even further, the Curry-Howard isomor-
phism [How80] introduces the connection between proof theory and computation, and conse-
quently between logical systems and programming languages. (We refer the curious reader to
[GLT89].) Let us consider how the above A-calculus term might correspond to a SML program
(chosen rather arbitrarily, simply as an example of a “real” language), and how its reduction
might correspond to the execution of the program. The SML program

(fn x => (fn y => x)) (fn z => z)

corresponds to the A-calculus term above; indeed, the syntax trees of the two terms are iso-
morphic. Now, consider the execution of this SML program. Everyone who has written SML
programs imagines that the execution of this program will proceed something like this:

1. Evaluate (fn x => (fn y => x)).

(a) Create a closure f in the heap for (fn x => (fn y => x)).

(b) Return f as the result of evaluation.
2. Evaluate (fn z => z).

(a) Create a closure g in the heap for (fn x => (fn y => x)).

(b) Return g as the result of evaluation.

3. Apply f to g.
(a) Bind x to g.
(b) Create a closure h in the heap for (fn y => x) with this binding of x.

(c) Return g as the result of evaluation.

4. Return g as the result of evaluation.



6.2 Syntax 99

There seems to be much more going on in the execution of the SML program than in the
single step reduction from
Az Ay. x (Az. 2)

to
Ay. Az, z.

The overarching reason is that, as we have suggested, reduction of A\-terms is an abstract notion
of computation, while SML programs execute on real computers. The salient point that this
example illustrates is that each step of a A-term reduction builds a whole new term, but it
is infeasible to build literally an entire SML program over and over during execution. More
specifically, a reduction of a A-term substitutes the argument of a function for every occurrence
of the parameter of the function in the body of the function. In the above example, the reduction
substitutes the literal term Az. z for the single occurrence of « in Ay. = to build the final normal-
form term. Theoretically, an implementation of a real programming language could be based on
a similar idea. But in practice, it is usually more efficient to build closures instead of performing
substitution.

The difference between closures and substitution lies in the treatment of variables. A pro-
grammer is accustomed to thinking of variables as identifiers that are bound to values when
the program runs. This deeply ingrained notion that a variable “has a value” is partially an
artifact of this implementation issue, and is supported by the standard denotational model of
the A-calculus which models a term Az.e as a continuous function [Sto77]. In the reduction
of A-terms, one must consider variables in a different light; they are placeholders that during
reduction (execution) are replaced with terms and disappear entirely.

Because the overarching goal of program analysis is to determine information about the
run-time behavior of programs, one must begin by modeling the programming language in a
way that reflects or abstracts this run-time behavior. Therefore, because real implementations
typically use closures to model first-class functions, we will model functions with closures in
our semantics.

6.2 Syntax

We now present the purely functional language called PURE. A program is a member of the
set Term of terms, written in a brand of continuation-passing style [LD93].

t == letz=ecint local binding
| recgint recursive function binding
| e(é) function application
| if ethent elset conditional
| e simple term (Exp)

g == z(y) =" n-ary function definitions
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A simple term is an expression as defined in Chapter 2.

e = x variable lookup
| pler,...,en) primitive application
z,y,z € Var variables

Usually, we use x for a function name or let binding, y for a function parameter, and z to refer
to a free variable of a term ¢, the set of which is denoted by FV(¢) and defined in the usual
fashion. Expressions that appear in PURE terms may use the following primitive operations,
which are members of Primop.

p = ¢ constants (nullary)
| +]-]* integer operations (binary)
| <|>]=]<>]& boolean operations (binary)
| tuple ordered-tuple construction (n-ary)
| ordered-tuple component selection (unary)

Constants are the integers and booleans, as in MINI-C.

6.3 Discussion

Notice that
e(e’)(e")

is not a valid program in PURE. For instance, consider a program that defines and then calls a
curried addition function.

rec f(x) = (recg(y) =x+ying)
in £(24)(42)

This is not a term. One would have to write this by using a continuation function as an
interface between the application £(1) and the application v(2) where v is the result of the
former application.

rec £(x,k) = (rec g(y) = x + y in k(g))

in (rec k(v) = v(42) in £(24,k))

We are moving toward a form of continuation-passing style (CPS). CPS was studied early
as the subset of A-calculus terms for which call-by-name and call-by-value reduction strategies
are equivalent [Plo75]. The first major practical use of CPS was in the Scheme Rabbit com-
piler [Ste78], which translated source programs into a restricted syntax much like ours. This was
later done in the Orbit Scheme compiler [Kra88] and then in the SML/NJ compiler [App92].
All translations are based on a universal calling convention in which all source functions take
a continuation argument and all source applications must thus pass a continuation function
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describing the remainder of the computation. So, for instance, an automatic CPS converter
might produce

rec f(x,k) = (rec g(y,k) = k(x +y) in k(g))

in (rec k(v) = v(42, top) in £(24,k))

for the program above.

These translations are well studied, both in theory and practice [Plo75] (see also other
references cited above), and so we will not go any further into CPS here. Suffice it to say that
our syntactic restriction does not limit the expressivity of the language.

6.4 Semantics

In Chapter 5 we modeled a MINI-C program by a transition system in which a state is a
pair of a control point, representing the current syntactic position of execution, and a store,
representing the state of the memory/data. We gave alternate definitions of the single-step
transitions induced by a program, one in terms of meta-rules (the standard practice) and one
in terms of transfer relations. It is the latter formulation that provides a basis for program
analysis with our methodology. In this section, we discuss semantics of PURE in a similar
fashion.

6.4.1 Control, data, and execution states

Actually, both the notion of control point and the notion of store are simpler in PURE than in
Mini-C.

We designed a whole notation for the control points of a MINI-C program, but it turns out
that one can simply use the subterms of a PURE program to function as control points.! This
is intuitively pleasing because the control point itself has meaning: if an execution is at control
point ¢, it means that the rest of the execution is the evaluation of ¢. (This works because of
PURE’s CPS-like syntax.) In contrast, a sequence of integers that functions as a control point
of a MINI-C program has no meaning alone; it is only an index into the text of the program.

As for stores, because there are no assignable data structures in PURE, much of the complex-
ity of stores is not needed to model the data. Recall that a store is a map from l-values, which
are either variables or references v.v’, to values. In PURE there is no need for the references,
and so all that is needed is a map from variables to values. This is the familiar notion of an
environment:

p € Env = Var—Val environments

Recall that there were five different kinds of values (members of Val) in MINI-C:

e constants (members of Constant)

! Actually, in Section 6.4.3 we will need to refer to a function definition x(ij) = t as a control point. In this
case, that control point is identified with the control point ¢t. We will discuss this later.
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e field names (members of Field)
e pointers to assignable data structures (members of Pointer)
e immutable tuples (members of Val*)

e the undefined value undef

Again because there are no assignable data structures in PURE, pointers are not needed, and
neither are field names. However, PURE has first-class functions, and so there must be values
that model these functions. As we explained in Section 6.1, it is best for many applications of
program analysis to model a function as a closure. A closure has two parts:

e a function g (a phrase of the form z(7) = t)

e an environment, providing the values for all free variables of ¢

The set of closures is thus defined as follows:
(g9,p) € Closure
Finally, the set of values is given by the following equation:
v € Val = Constant + Closure + Val* + {undef}

Note there is a circularity in the equation for Val, and there is another circularity in the equations
for Env, Closure, and Val. The actual sets are defined by mutual induction, as the least solution
to these three equations.

As an aside, an infamous difficulty in designing analyses of languages with either first-
class functions or data structures lies in how to deal with these circularities in an analysis
algorithm that is guaranteed to terminate. The circularity in the equation for Val arises from
immutable tuples, and indeed most static analyses of even immutable structured values—not
to mention mutable data structures—are quite crude (e.g., [Wad87], [Hei92]). One of the
few satisfactory analyses of structured values is [Deu92], but it is still somewhat ad hoc and
also quite complicated. The other circularity arises from first-class functions, and again it is
no coincidence that analysis designers have traditionally encountered trouble with first-class
functions. The usual ad hoc approaches are to be found in the work on denotational-based
abstract interpretations, usually applied to strictness analysis [BHA86], the work on finite
approximations of closures [Shi91], or the work on augmenting higher-order type systems with
“effects” [TJ92]. None of this work seems satisfactory. What lies at the root of these problems
is the ubiquitous analysis methodology that begins with the design of a (hopefully clever)
approximation of an infinite domain. In contrast, because our methodology is centered around
the analysis of the changes to a store (or environment in the case of PURE) rather than the store
(or environment) itself, complexities (induction, recursion, infinite sets, etc.) in the structure
of values themselves do not cause any a priori difficulty; rather, the focus is on the complexity
of the transitions between states.
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As we explained above, a state of execution comprises the state of control, which is a term,
and the state of data, which is an environment.

State = Term x Env

What remains is to define the transitions induced by a PURE term. These model the single
steps of execution of the term.

6.4.2 Transitions via meta-rules

Here we describe how each kind of term induces transitions. No transition is possible from an
expression term; if an execution reaches the state

(e, )

then the execution halts, and the result of the execution is the value v such that
ekpv

which is guaranteed to be unique because PURE is deterministic.

Each of the four other kinds of terms take transitions.

e let z = e in t. In this case, x is bound to a value to which e evaluates in the current
environment, and execution proceeds to ¢.
ekpv
(let z =eint,p) —> (¢, plx — v])

Note that an environment is just a store in which all reference l-values (v.v') are bound
to undef, and so for convenience we use the same definition of - for the evaluation of an
expression in an environment. Similarly, the definition of p[z — v] is a special case of
store extension, defined on page 2.4.2.

v ifex=y
oy otherwise

@uwwwz{

This notion of variable binding may seem strange. Why isn’t it necessary to rename the
variable z in order to avoid conflicts with other occurrences of « in p that might be needed
later in the computation? It turns out that these other occurrences of x will always be
captured in closures and so will not interfere with the update of env. We will discuss this
further in Section 6.5.

e rec g in ¢t where ¢ = (z(...) = ...) In this case, z is bound to a closure whose func-
tion component is g and whose environment component is the current environment, and
execution proceeds to t.

g=(z(...)=...)
(rec gint,p) — (t,p[z — (g, p)])
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e ¢(€). For a transition to be possible from this term, e must evaluate to some closure
(x(§) = t, p') in the current environment. In that case, the new environment is p’ extended
with the following additional bindings: a binding from « to the closure itself and a binding
from the variables ¢ to the corresponding values to which the expressions ¢ evaluate in
the current environment. Then execution proceeds to t.

eb,v (€)il, (V)i v=(x(y) =t0p)
(e(€),p) = (t,p'[z = V][ = ])

Note that p is simply “thrown away” in this transition. This is because PURE terms are
in continuation-passing style, and so an evaluation returns only when the execution of the
entire program is complete. All parts of p that will be needed in the future computation
must be passed through via the arguments €, typically in the closure of a continuation
function.

It may at first seem unnecessary to have closures in the first place. If we appropriately
renamed variables during execution, we could ensure that the bindings of the free variables
of a function g are never overwritten later in the execution. In this way, there would be
no need to save and restore p'; instead, p may simply be threaded through on function
application. We discuss this choice further in Section 6.5.

e if ¢ then t else t'. For a transition to be possible from this term, e must evaluate to
either true, in which case evaluation proceeds to ¢, or false, in which case evaluation
proceeds to t'.

e, true
(if e then ¢ else ', p) — (t,p)

e, false
(if e then t else ', p) — (¥, p)

6.4.3 Transitions via transfer relations

Instead of using meta-rules to define the transitions, it is possible to represent them directly in
a computer as transfer relations. The methodology here is exactly the same as for PURE. The
transfer relation

Ay

represents all and only the valid single-step transitions from term ¢ to term ¢'; it is a binary
relation between the environment at ¢ and the environment at ¢'.

Functions as control points

In MiINI-C, the definition of the single-step transfer relations precisely corresponded to the
meta-rules that defined the transitions. However, there is a subtle issue concerning first-class
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functions. It turns out that to define the single-step transfer relations of a PURE term, we need
to have a slightly special treatment for the control points of functions.

In particular, we need to use a phrase () =t as a control point. In this case, that control
point is identified with ¢, but in a rather subtle way. For instance, consider two functions with
the same body t2, but different names and parameters:

g = z(y) =t
g = )=t
The transfer relation
Atl;g

describes the single steps from term ¢; into the function g, and the transfer relation
Athg'

describes the single steps from term ¢; into the function ¢’. Both of these may be composed
with the transfer relation
Aty t3

that describes both the first step of function ¢ and the first step of function ¢'.

So, in other words, g and ¢’ are both identified with ¢» for the purpose of relating the
transfer-relation formulation of the semantics with the meta-rule formulation, and thus for
composing a transfer relation that ends with one control point (in this case, g or ¢') with a
transfer relation that begins with the same control point (in which case, t2). However, one may
give separate definitions for both A, and A4 .

Primitive operations to support closures

It is necessary to add three new families of primitive operations to Primop in order to build and
examine closures. All of these operations are simple.?

e There is an n-ary simple primitive operation closure, (., .. for every function g and
variables zi,...,z, that creates a closure whose function is ¢ and whose environment
binds the variables z1,...,z,. It is defined as follows:

Closureg,(zl,...,zn)(vlu cee 7'Un) — (g, P>
where:

pPzi = U

pz = undef ifV1<i<n. z#z

2Note that in general it makes sense only to have simple primitive operations because PURE is a deterministic
pure language.
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e There is a unary simple primitive operation code, for every function g that tests whether
the function of a closure is equal to g. It is defined as follows:

codey((g,p)) — true
codey(v) — false otherwise

e There is a unary simple primitive operation env, for every variable z that returns the
value of the variable z in the environment of a closure. It is defined as follows:

env;({(g,p)) = (pz)
env,(v) — undef if v ¢ Closure

Free variables and bisimulation

For technical reasons that we will explain below, it is necessary to introduce a kind of equivalence
relation on states.

One can also easily show that the only variables whose values might be needed in the
execution of term ¢ are the free variables of t. The following bisimulation expresses this precisely.

Definition 11 (Similar values and states) We define the similar relation ~ on values and
states as follows, where FV (t) denotes the free variables of t, and similarly for FV(g).

e Two values v and v’ are said to be similar (written v ~ v') if either v =v' or v = (g, p),

o' =(g,¢), and
z € FV(g) = (pz) ~ (0" 2).

e Two states (t,p) and (t',p") are said to be similar (written (t,p) ~ (t',p")) if t =t' and
s EFV() = (o) ~ (o 2)

Proposition 1 (Bisimulation) Let —* be the transitive closure of —. If ¢y ~ ] and

by ~ 1P, then
P — hy = P —" Y.

The single-step transfer relations

Now we can define a single-step transfer relation A, for every two terms ¢ and ¢'; this relation
specifies how the environment changes in a transition from ¢ to t'. We also define A, for
the transitions into a functions g, as described above. In MINI-C, these transfer relations are
indexed by control points instead of terms; because there are only a finite number of control
points in a MINI-C program, the number of single-step transfer relations for a MINI-C program
is also finite. The situation is not quite analogous for PURE. A PURE term ¢ does indeed have
only a finite number of subterms. However, if ¢ is meant to be executed in an environment
that initially contains some (non-undef) values—which would typically be the case for partial
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programs, or in other words for terms ¢ that have free variables—then some of those values
might be closures that contain terms not in .

In MINI-C the single-step transfer relations precisely mirrored the semantic meta-rules.
This is almost the case here, but there is some difference due to functions. Above, we gave the
meta-rules for each of the four kinds of PURE terms. Here, we do the same for the single-step
transfer relations, all of which are () unless defined otherwise below.

e let x = e in t. This case is just like the meta-rule; there is a single-step transfer relation
from this term to ¢ that describes the new binding to the environment:

A(let r=eint),t =|T €

e rec g in t. This case is very much like the meta-rule; there is a single-step transfer relation
from this term to t that describes the binding of the new closure. But there is a subtle
difference. The meta-rule builds a closure that contains the entire current environment,
while the transfer relation builds an environment that keeps the bindings only of the free
variables of the function g. The bisimulation proposition above justifies this change. This
relation uses a primitive operation to create this closure:

A(rec gint)t =|T — Closureg,(zl,...,zn)(zlu s 7Zn)

where {z1,...,2,} = FV(g) (ordered arbitrarily).

This difference between the meta-rule and the transfer relation is not conceptually deep.
We could very well have defined the meta-rule to restrict the environment of the closure
to the free variables of g, as well, but that choice is unnecessarily cumbersome, not to
mention non-standard. On the other hand, there are two reasons why we define the
transfer relation as we do.

— We have less flexibility in the design of the transfer relation. Because environments
are not members of Val (in which case we might have imagined a nullary context-
sensitive primitive operation that evaluates in p to p itself), it is necessary to build
the environment explicitly, as we do with closure, (, ... Therefore, we must
know the set of variables to be bound, and it is both more convenient and more
flexible to examine locally ¢ to see what variables it might need than to examine
the lexical context of ¢ within the larger program to see what variables are merely
allowed to be free in g.

— Transfer relations are actual computer-representable structures, and so for practical
reasons these structures should be as small as possible. Restricting the environment
to the free variables of g is a simple way to reduce potentially the textual size of the
closure.

e ¢(€). This case is quite different from the meta-rule. Execution from this term will
transition to the function g of the closure to which e evaluates. Thus, the control part of
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the state after the transition not only depends on the environment part of the state before
the transition, as is the case with conditionals, but is actually taken from the environment.
This relationship is no problem for the meta-rule formulation of a transition system,
because it is just another example of how one state in an execution depends in some
fashion on the previous in the execution. But such transitions are difficult to express as
a single-step transfer relation because the transfer relation itself is already parameterized
over the two control points, in this case terms. In other words, when defining A,
specifying all transitions from a state at ¢ into the function g (recall that the control
point g is identified with ¢’s body), one cannot express how the control point g depends
on the environment at the beginning of the transition, because g is fixed.

In all transitions in MINI-C and all other transitions in PURE, the only dependency of the
control part of the latter state on the store part of the former state (or environment part,
in the case of PURE) is for conditionals, in which the store (or environment) in the former
state determines which one of two possible control points is in the latter state. In contrast,
function application is fundamentally more difficult. The reason is that the control point
(or term, in PURE) to which execution proceeds is part of the store (or environment)
itself. Thus, given an application term ¢ = e(€), one cannot extract the function g from e
as in the meta-rule; rather, one must define A; 4 to implement the appropriate condition
that e will indeed evaluate to a closure whose function is g.

This suggests a definition of the form

A(e(é'))yg =|codey(e)? A

for some A. The choice of A brings up the second difficulty with functions, and this time
not limited only to first-class functions. Namely, the transition from function application
to function body is the only time in which the environment is changed wholesale. This,
too, is somewhat at odds with our particular language of transfer relations. We provided
parallel assignment in the language of transfer relations to express a store modification,
but not to replace an entire store with a new one. It is not as bad as it seems, however,
because PURE uses environments, which contain only variable bindings. Furthermore,
one can easily show that the only variables bound (to a non-undef value) when execution
is at a term ¢ are the variables in the lexical scope of t, a well-known concept that we do
not define formally here.

Therefore, one solution would be to define a new nullary primitive operation undef that
evaluates to value undef and then define A to bind all variables in the scope of e(€) to
undef and all variables in the scope of g to their appropriate value, with the latter taking
precedence over the former for any variables in both scopes.

However, we choose a different solution, largely for practical reasons. The bisimulation
above tells us that in any transition to ¢ it is sufficient to ensure only that all free variables
of g are bound correctly. The resulting execution may not be identical to the one given by
the meta-rules, but will be equivalent modulo the bisimulation relation ~. It is also easy
to see that this does not affect the final result of the program. So we have the following
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definition.

Ae(e)),g =|codeg(e)? [21,. .., 2n €1, €n

ifg=x(y) =t, {z1,...,2,} = FV(t), and

e if zj==x
ei =19 (0); if 2; = (9);
env, (e) otherwise

Thus, the assignment relation, instead of replacing the environment wholesale, as done
in the meta-rule, simply ensures that all of the free variables of the function are bound
correctly.

e if e then ¢ else ¢’. This case is just like the meta-rules; there are two single-step transfer
relations, one from this term to ¢ filtering the true condition, and the other from this
term to ¢’ filtering the false condition:

A(if e then t else t'),t —

A(if ethentelset'),t’ —|€, ®

Recall that is an abbreviation for [e? A|0] and is an abbreviation for
e? O|A|

Symbolic evaluation of code, and env,

Whenever one adds a new primitive operation to Primop, one needs to define its symbolic
evaluation. Almost all primitives are context-independent, and it is safe to use the identity
function for their symbolic evaluation. This is the case with closure, 7, codey, and env,, but in
the case of the latter two it is important to perform some simple but very useful simplifications.
We define their symbolic evaluations as follows.

eﬁ\v/zi(closuregy(zlrn,zn)(61, o en)) = g
—~ true ifg=g
codeg(closurey #(c)) = false otherwise

This is similar to the symbolic evaluation of m; that selects the ith component of a tuple.

mi((er, ... en)) = €

We will see why these simplifications are important in the following example.
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A small example
Consider the PURE program
rec g in £(1)
where
g=(f(x) =x+y).

By the meta-rule formulation of the transition-system semantics, the execution of this program
in an environment in which y is bound to n proceeds as follows.

(rec g in £(1),{y — n} )
— (£(1) Af = (g, {y = n}),y = n} )
— (x+y Af = (g, {y = n})x = 1Ly —n})

There are two transitions in this execution. The first one is described by the transfer relation

A(rec g in£(1)),(£(1)) = | > closurey ;) (y)

and the second one is described by the transfer relation

Az(ry) g = | codey(£)? [x = 1]}

The composition of the two transitions is described by the transfer relation

Alrec g in £(1)),(2(1)),9 = D(rec g in £(1)),(2(1) D D(£(1)),g

If the symbolic evaluations of code, and env, performed no simplifications, then the & would
return

codeg(closureg,(y) (y)? | £,x,y— closure, (y) (y), 1, envy(closuregy(y) (y))

as this composition, which is correct but extremely cumbersome. However, with the symbolic
evaluations we defined above, & returns

f,%,y = closure, (y)(y), 1,y

which exploits the fact that the called function is known in order to both eliminate the dynamic
condition on the control flow and to propagate statically the value of y through the closure.

A subtle point that is unrelated to these symbolic simplifications concerns the final binding
of £. Note that:

e In the execution trace of 3 states shown above, the final environment contains a binding
for £.
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e The transfer relation shown immediately above describes that the net effect of this length-
3 control path includes an assignment to f.

e The value bound to f is the same in both cases.

This may seem exactly as expected. After all, we did describe the meta-rules and the single-step
transfer relations as alternate formulations of the same transition-system semantics. But as it
turns out, the fact that the net effect of both formulations on f are equivalent is an accident in
this case. The explanation lies in the bisimulation relation we defined earlier. For this case:

e In the meta-rule formulation, the second transition does a whole-scale replacement of the
caller’s environment with the closure of the callee and then extends this environment with
both f and x, representing the passing of those two values to the callee.

e In the transfer-relation formulation, the second transition binds the free variables of the
function body, which is the set {x,y}, but does not remove the binding of f that was
present in the caller’s environment.

In this case, the two bindings of £ happen to be the same, but this will not generally be the
case. However, the bisimulation relation tells us that in a state at term ¢ we may simply “filter
out” all bindings of variables not in FV (¢), and then the correspondence between the meta-rule
formulation and the transfer-relation formulation will be exact.

In this case, we could thus view the transition trace as

(rec g in £(1),{y — n} )
— (£(1) Af = (g, {y = n}H)})
— (x+y {x— 1y~ n} )

and the composed transfer relation as

(7~ 1y}

As a final note, we make a note about the final state of execution. In general, the final state
of an execution is a state

(e,p)

and the resulting value of the execution is a value v such that
ekpwv.

In the transfer-relation formulation, we may use E to obtain an expression that represents the
value of a term in terms of the free variables of the term. In the example above, this corresponds
to

E(x+y)|f,x,y— closure, (y) (y), L,y

which returns
1+y.
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6.5 Variable Renaming vs. Closures

The semantics that we have given for PURE does not involve variable renaming. For instance,
the term
letx=1linx+z

and the term
lety=1iny+z

are distinguished apart in PURE, although they differ merely by the choice of variable name. In
fact, these two distinct terms induce two distinct families of transitions. The first term induces
the family of transitions

(letx=1linx+2zp) — (x+z,p[x—1])
ranging over environments p, while the second term induces the family of transitions

(lety=1liny+z,p) — (y+zply— 1]).

But this may seem strange. If p already has a binding for the variable in question (x for
the first case and y for the second case) then what assurance do we have that that binding is
no longer needed and may be discarded by the environment update? One may expect instead
a meta-rule for let-binding transitions that looks something like

eb,v pa’ =undef
(let z = eint, p) — (t[z'/z], plz' — v])

where [z’ /] substitutes the variable 2’ for all free occurrences of the variable z. Note that the
rule does not have the syntactic non-interference condition z' ¢ FV(t) because it is covered by
the semantic non-interference condition that pz’ = undef. The notion of variable renaming is
based on a-conversion of the A-calculus [Bar84].

We can get away without variable renaming, however. First we describe how we achieve this
and compare this choice with a semantics based upon variable renaming, and then we explain
why it is desirable for our purposes of program analysis to avoid the need for variable renaming.

In this section, we will need a notion of how to examine a transition system to determine
that it is reasonable. We will start by defining a notion of well formed states, and then we
apply the following test to the transition system.

Definition 12 (Preservation of well-formedness) Given a notion of well-formedness on
states, a transition system is said to preserve well-formedness if, for all well formed states 1,
W — ' implies that 1’ is well formed.

Our semantics for PURE uses the following notion of well formed states.

Definition 13 (Well formed states (#1)) A state (t,p) is well formed iff p contains the
correct bindings for all free variables of t (in other words, all x € FV(t)).
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When we say that a binding is “correct” we mean that it is the binding that one would intuitively
expect from an execution of the program in question.

Now, it is easy to see that the semantics that we have given for PURE preserves well-

formedness. For instance, consider the rule for let-binding transitions.

ekpv
(let z =eint,p) — (t,plz — v])

Note that x € FV(let z =eint) and FV(¢) C (FV(let z =eint) U {z}). Therefore, if p
contains the correct bindings for each y € FV(let z = e in t), then p[z — v] will contain

e the correct bindings for each y € FV(let x = e in t) and

e the correct binding for z,

and thus will contain the correct bindings for each y € FV(t).

The rule for rec ¢ in ¢ is analogous. It is easy to see that the rule for function application
works.
ebpv (@it (@) v=(z(g) =t p)
(e(€),p) — (&, p'[z = v][§ — 7))

Note that p is discarded in the transition. The well-formedness of the state (e(€),p) thus
merely ensures that function e and the arguments € evaluate to correct values. To show that
the state (¢, p'[z — v|[§ — ©]) is well formed, we must reason that, because p' came from a
previous well formed state (rec z(%) =t in t/, p'), that p’ contains the correct bindings for all
z € FV(rec z(y) =t in t') and thus all z € FV(z(y) = t). Therefore, p'[z — v][§ — U] contains
the correct bindings for FV(t).

This discussion explains the purpose of closures, which save the bindings in p’ that must be
restored upon function application.

Alternatively, we could dispense with closures altogether, representing a function at run
time as the function term ¢ instead of the closure (g, p). This leads to a more complex notion
of well formed states.

Definition 14 (Well formed states (#2)) A state (t,p) is well formed iff both

e p contains the correct bindings for all x € FV(t), and

e p contains the correct bindings for all x € FV(g) such that py = g for some variable y.

Intuitively, we “flatten out” all the closure environments into a single global environment that
is threaded through the execution. To accomplish this, we will need to create fresh variables
on the fly, which means that we will need to rename variables at run time.
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For instance, the old rule for let-binding

ekpv
(let z =eint,p) —> (¢, plx — v])

no longer works. As, we explained above, x ¢ FV(let x = e¢in t) and thus z may be safely
overwritten under the first notion of well formed states. But with this second, more restricted
notion of well formed states, we cannot be sure that x is not a free variable of some function g
in the range of p. Thus, we must rename z to a fresh variable. We showed the resulting rule
earlier in this section:

eb,v pa’ =undef
(let z = eint, p) — (t[z'/z], plz' — v])

It is rather easy to see that this rule preserves well-formedness under the second notion because
it never destroys any values in p.

But now we do not need closures, and the rule for function application threads the current
environment p through, again renaming the newly bound variables to avoid clashes with vari-
ables already bound in p. For simplicity of illustration, we show the case for single-argument
functions:

ebFpv €Fpv v=(z(y)=t) paz’ =undef py =undef
(e(e), p) —> (' /2]ly' [y], plz" = v][y’ — ])
Once again, it is easy to see that this rule preserves well-formedness, because once again we
rename the bound variables appropriately such that p is extended rather than updated.

We have just presented (most of) a different style of transition-system semantics for PURE
in which we have traded closures for dynamic variable renaming. The resulting semantics is
arguably cleaner and more natural, but we have only considered the meta-rule formulation of
the semantics. To see the fundamental difficulty, consider what the single-step transfer relation

A(let z=c in t),t
should be. Without variable renaming it is
x — el
but with variable renaming is must be something like
x =undef? [z — ¢]

to perform the dynamic test that x does not need to be renamed.

But then the composed two-step transfer relation

A(let z=1 in let =2 in t),(let =2 in t),t

will be the empty relation
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instead of the expected
T 2

because the variable z was not renamed along the given length-three control path.

So, in summary, the semantics based on variable renaming has the following ramifications
on the transfer-relation form of the semantics:

e Whenever an analysis composes the transfer relation for a control path I', it is the re-
sponsibility of the analysis to rename (statically) the variables in the terms along I" in a
way that is guaranteed to capture all possible behaviors of any dynamic renaming of the
terms in the meta-rule semantics. For instance, in the above length-three control path,
the second occurrence of x must be renamed to a variable that is not in FV(¢).

e A number of tests of the form z = undef will accumulate during composition of a control
path ', complicating the presentation of the transfer relation. These tests are necessary
for any fixed control path I" because the transfer-relation terms in TR have no facility to be
dynamically renamed, and hence each term in TR is defined only on initial environments
for which the given choice of variables is already satisfactory. But the accumulation of
these tests is a practical disadvantage.

It is because of these factors that we choose a semantics that does not have variable renaming
and thus needs closures to store multiple dynamic occurrences of the same static variable.

It is possible, however, that there is a different semantic approach, based on a different
treatment of PURE variables in the transfer relations, that would not suffer the above factors.
For instance, perhaps the environment could be represented as a list, accessed by de Bruijn
indices [dB72] instead of variables.
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Chapter 7

Extending PURE with Mutable
Records and Arrays

Imperative features are crucial components of almost all languages, even “functional” languages
such as Scheme and Standard ML. In this chapter we extend PURE with both assignable arrays
and records with assignable fields. We call the resulting language IMPURE.

7.1 Syntax

We first add some new terms to PURE.

t o= ...
| letz={fi=e€1,...,fn=¢€}int record creation
| ef:=¢€;t record field assignment
| ef record dereference
| letarray z int¢ array creation
| ele]:=¢€"; ¢ array update
| ele] array dereference
f € Fied field names

The array-creation term creates an array whose elements are initially the undefined value undef.
For simplicity, arrays do not have bounds and are conceptually infinite.

7.2 Discussion

Records in IMPURE are not like records in SML; the former are mutable, but the latter are
immutable. It would be simple to add SML records, because they are just a variant on tuples.
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Like PURE tuples, there would be a special kind of value to model immutable records, supported
by context-independent primitive operations.

In Section 4.5, we gave a discussion of various kinds of errors, and the way in which they
would be handled with our semantic methodology. We now return to some of these points.

It may seem strange that arrays are infinite, and that its elements are initially undef. In
contrast, the array creation function in SML takes both a size argument and an argument pro-
viding the value to which all elements are initialized. It is not difficult to add a size component
to our arrays, which could be checked at run time for out-of-bounds errors. But an initialization
value would require a model for arrays that includes an explicit default value. This would render
the dereference and assignment operations nonuniform, and thus their syntactic occurrences in
transfer relations would be cumbersome. Therefore, we require that programmers write their
own initialization routine.

This language is rather primitive in that there is no static typechecking on records and
arrays do not have bounds. For instance, the IMPURE program

let x = {car =1, cdr = 2}
in z.bad:=3; ¢t

first creates a two-field record and then adds a third field. Also, the program

let x = {car =1, cdr = 2}
inlet y =x.badint

actually binds y to the undefined value undef and proceeds to execute ¢. The behavior of arrays
is similar. For instance, the IMPURE program

letarray =
in let y = z[3]
in z[200] := 55; z[200]

binds y to undef (dereferencing an uninitialized array element), assigns 55 to the array element
200, and then successfully dereferences the element, returning 55 as the result of the program.

Of course no reasonable language would function in this manner. Augmenting this language
with a static type system similar to SML would reject programs that referenced incorrect field
names. But the situation with arrays is more serious, as proper handling of both uninitial-
ized elements and bounds checking must be relegated to run-time, and thus to the dynamic
semantics. Our decision to simplify the situation by using infinite arrays is a compromise aimed
to simplify the transfer relations that we will develop to model the dynamic semantics of the
language. A full language would have a mechanism for exception handlers, to which control
would flow in the case of array-bounds errors.

7.3 Syntax Simplification

As with MiNI-C, it will be more convenient to define the semantics of these new features if we
rewrite the syntax to conform more closely to our language of transfer relations.
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We would like to consider the terms e.f and e[e’] as expressions. To do this, we need to add
the following primitive operations to Primop.

o All field names f € Field as constant nullary operations.

e The context-dependent binary operation deref.

Now we rewrite the term e.f as the expression deref(e, f) and the term e[e’] as the expression
deref(e,e').

Similarly, we consider the e.f on the left-hand side of a record-field assignment to be an
l-expression and rewrite the e[e'] on the left-hand side of an array assignment as the l-expression
/
e.e.

Our next transformation is to “compile” a record-allocation term in exactly the same way
as we did for MINI-C. To review, we need the following:

e for each natural number m, a pointer value (m) € Val

e the unary primitive operation ptr that casts an integer m to the pointer (m) (formally,
ptr(m) — (m)), where we write (e) for ptr(e)

e a distinguished value ¢ € Val, to be used only in the reference ¢.o (written as &) which
is initialized to 1 at the beginning of execution and always holds the integer of the next
free pointer on the heap

We now perform the following transformation of a PURE program t. We first transform the
program to
let G =1int

and then rewrite every subterm
letz={fi=e1,....,fn=en}int
in ¢ as the term
let z = (<)
inz.fii=ey z.fi=e,; O =0+150 ¢
Next we “compile” arrays in a similar fashion. We rewrite every subterm

letarray x in ¢

as the term
let z =(O)inC:=C+1; ¢t

Note that this treatment of allocation does not equate as many programs as one might
reasonably expect. For instance,

let z = {car =3, cdr =4} iny
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and
let z ={car =1, cdr =2} inlet y = {car =3, cdr =4} iny

have different meanings because they use different pointer values to construct the record bound
to y. This is a simple case of the well studied problem with full abstraction for languages that
combine assignment and procedures [OT95, Sie94].

At this point, we have simplified the new imperative constructs into a set of primitive
operations and a generic assignment term. Here is the final extension of PURE syntax for
transformed IMPURE programs.

t o=
| e :=¢€";¢t  assignment

p o= ...
| f field name (nullary)
| deref dereference (binary)
| ptr allocation (unary)

7.4 Semantics

The semantics of PURE required only an environment mapping variables to values. But like
Mini-C, the mutable data structures require the expressiveness of stores. There are thus two
steps to define the semantics of these new imperative features:

e Recast the semantics of PURE in terms of stores rather than environments, in order to
support the mutable data structures of IMPURE.

e Give the semantics of the assignment term e.e’ := €”; t.

It is fairly straightforward to recast the semantics of PURE to use stores instead of envi-
ronments. As we described in the design of PURE, an environment is just a restricted form of
store. Indeed, the isomorphism

Store ~ Env x Heap

where

Heap = Val x Val — Val

makes this recasting convenient. The “heap” handles the bindings of references.! Below are
the meta-rules of PURE rewritten such that a state pairs a term with a store rather than with
an environment:

State = Term x Store

'Note that in the literature, a heap is often called a store. But we have already used the term “store” for
something else.
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In the following meta-rules, we freely switch notation between the isomorphic forms o € Store
and (p,7y) € Env x Heap. The only rules that are not essentially identical to the corresponding
rule of PURE are those for function creation and application. The interesting part about those
rules is that only the environment component of the store is saved in the closure and restored
upon application; the “heap” component is instead threaded through.

ebgsv
(let z =eint,o) —> (t,0[z — v])

eFov (@b (V)i v= () =tp) o=(p,7)
) > (¢, (p'[z = 0][§ = T],7))

=Y
~
q

e F, true
(if e then t else t/,0) — (t,0)

e, false
(if e then t else t',0) — (¥/,0)

All that remains is to give the rule for the generic assignment term, which is quite straight-
forward:
ebov b0 €0
(e.el :=¢€"; t,0) — (t,0lv.0" — "))

Again, we would like to give a formulation of this transition system in terms of single-step
transfer relations instead of meta-rules. Because we designed transfer relations to be relations
on stores and not simply environments, the single-step transfer relations for PURE work without
change for IMPURE. But recall that those definitions made use of the bisimulation relation ~
on both values and stores. So, two tasks remain:

e Extend the bisimulation relation to states with stores.

e Define the single-step transfer relations for the generic assignment term.

The first task is straightforward; two heaps are similar if all corresponding nodes (values) are
similar. This is given by the following definition.

Definition 15 (Similar states with general stores) Two states (t,(p,7v)) and (t',(p',v"))
are said to be similar (written (t,(p,7)) ~ (t',(p',7"))) if (t,p) ~ (', p') and y(v.v') ~ v (v.0")
for all values v,v" € Val.
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The second task is also straightforward, as it is very similar to the assignment statement in

MinNI-C.
J— ! "
Aeerimer; s =€ e

Note that the transfer relations conceptually treat both let binding and assignment as special
cases of assignment of l-expressions.

7.5 Final Words on First-Class Functions

We have seen several ways in which our model of a language with first-class functions is not quite
natural. For one, the transfer relations that save an environment in a closure and restore the
environment upon function application process each free variable separately. This approach is
an artifact of the natural choice to model language variables with store variables. Alternatively,
one could model an environment as a record whose field names are the language variables, and
maintain only a single store variable E that is always bound to the environment. This requires
an extra level of indirection, through E, for variable operations. But for that price, one gains
the ability to save and restore environments in closures easily, because they are simply records.

Related to this issue is the l-value & that points to the index of the next free heap location,
used for the creation of new records and arrays. In MINI-C, we used the variable H for this
purpose, but we cannot use a variable in a language with first-class functions because in that
case it could be saved in a closure and restored on function application. Instead, we need a
global assignable variable. To avoid the need to treat a distinguished variable differently from
all others, we instead chose to use a reference & = ¢.0. Again, this problem would have a nicer
solution if we modeled environments as we suggested in the preceding paragraph. Then there
would be only two variable bindings in the store: E, bound to the current environment, and H,
bound to the index of the next free heap location.
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Chapter 8

Multi-step Program Analysis

In Chapter 1 we isolated a methodological difficulty with program analyses: they apply an
abstraction between every execution step of the analyzed program. We explained that this
severely cripples the quality of an analysis on source programs for which a desired property is
temporarily weakened during a period of a few program steps. As an example, we gave a simple
analysis of the signs of integer-valued variables, but we also explained that this is a problem
for other kinds of analyses, such as shape analyses.

For instance, consider the following IMPURE program that destructively reverses a binary
tree.

1 recreverse(x,k) =

2 if leaf(x)

3 then k()

4 else rec k() =

5 rec ko() =

6 let temp = x.1
7 in x.1 := x.r;

8 X.r := temp;
9 k()

A in reverse(x.r,ks)
B in reverse(x.1,k;)

C inreverse(x,k)

One would like a shape analysis to determine that when reverse is called with a data structure
that actually is a binary tree, that the data structure is still a tree on termination of the
procedure. Most shape analyses cannot determine this information. To our knowledge, only
[SRWO96]| can achieve this result, but it is highly specialized for this and similar cases and
requires quite restrictive conditions, as explained in Section 1.1.

But for now we wish to point out why this program is so difficult to analyze. Consider the
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following informal description of what happens every time execution reaches term 6.

x is a tree with subtrees L and R
x is a tree with subtrees L and R
x is not a tree: its left and right links both point to subtree R
x is a tree with subtrees R and L

O 0~

Program analyses infer, or abstract, a property at every step, and so it is difficult to cope with
the states at term 8. An analysis would need to have the ability to describe the special property
at 8 with sufficient detail to infer that the assignment at 8 changes x back to a tree. In fact,
that is what [SRW96] does to solve this particular problem.

But there is a much more general solution, and that is to avoid the necessity to infer a
property at every step, and instead allow multiple steps of execution before abstracting. In
order to explain why this is not already a part of program-analysis methodology, we must take
a step back and examine the foundations of semantics-based program analysis.

8.1 A Review of Abstract Interpretation

Abstract interpretation [CCT77] is a general framework for expressing semantics-based program
analyses. In fact it is more than that; it is a general framework for relating different semantics
of a language, some of which may be effectively computable for all programs and therefore in
general approximate, or inadequate, as a semantic definition of the language. Such computable
“semantics” are program analyses, and with abstract interpretation they are always related to
some adequate semantics of the language.

A semantics of a language is a function
M € Prog — SemObj

mapping program texts to semantic objects. The main observation of abstract interpretation
is that M[P] is usually defined as a fixed point, and the potential that its iterative definition
may be transfinite directly reflects the potential that P may not terminate. In other words,

M[P] = fix (S[P])

where
S € Prog — SemObj — SemOb;j

and SemObj is equipped with a partial order and fix computes some fixed point of its parameter—
usually the least, but sometimes the greatest, depending on the particular semantics.

Abstract interpretation explains how to relate such a semantics to a more abstract semantics.
One first designs a partial order SemObj of abstract semantic objects and then defines the
function

o € SemObj — SemObj
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called the abstraction function that projects a semantic object onto the abstract semantic
domain. If « is additive, then one can induce a unique corresponding concretization function

v € SemObj — SemObj

defined as

¥y = Usemobj{® € SemObj | (v x) ESeEBbj y}

that “coerces” an abstract semantic object into the more concrete semantic domain. Then from
[CCT79], the function

S € Prog — SemObj — SemObj

defined as
SIP] = a0 S[Plony

corresponds to S in such a way that the fixed point fix (S[P]) is an abstraction of the semantics
M([P]. In other words, a(M[P]) implies the property fix (S[P]). We omit the formal details
of this correspondence and refer the reader to [CC79]. Intuitively, an abstract semantic object
is like a semantic object, but with some information missing, and S[P] first applies S[P] to
the information still present and then abstracts the result. We give an example below.

Sometimes, the information missing from abstract semantic objects is not necessary to
model the language. For instance, much of the study of pure semantics is concerned with
finding semantic objects that are as abstract as possible while still adequate as a semantic
definition; the ultimate goal here is full abstraction [Mul87]. But for the purpose of program
analysis, it is necessary to abstract away crucial information for the sake of computability. The
choice of what to abstract away defines the program analysis.

A central intuition is that the function S[P] typically corresponds in some sense to a “step”
of an execution of P. We cannot formalize this correspondence because that would require a
semantic definition of “execution step” in the first place, resulting in a meaningless circular
definition. Nevertheless, this intuition is an invaluable aid in visualizing a semantic definition.
In fact, the word “interpretation” in abstract interpretation comes from this intuition, because
one can view the repeated applications of S[P] in its iterative fixed-point computation as the
steps of an interpreter, or an “abstract interpreter” in the case of S [P].

8.2 Abstract Interpretation of Transition Systems

The preceding discussion does does not specify or even impose any serious limitations on the
semantic objects. Because the seminal work on abstract interpretation ([CC77]) uses a rather
simple transition-system semantics for expository purposes, abstract interpretation is often
misunderstood to be limited to flowchart-based semantics of while-loop languages. However,
appearing soon after that seminal paper, Patrick Cousot’s thesis ([Cou78]) showed the full
maturity of the framework.
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But in Chapter 4 we argued that a transition system is indeed particularly useful as a
basis for program analysis, despite much work elsewhere. Our methodology is designed around
transition-system semantics, and so we would like to examine abstract interpretations based on
transition systems.

As explained in Chapter 4, a state of a transition system is a pair of a control point and a
store:
State = CtrlPoint x Store

The transition relation defines the single execution steps of a particular program P as pairs of
states:
— C (State x State)

As introduced in Chapter 1, the transition-system semantics of a language is a function
M € Prog — P(State™)

that, given a program P, returns a set of finite execution prefixes, represented as state sequences,
defined inductively by unfolding the transition relation from a base set of initial states (length-
one sequences):

pip € MIP] ¢ — ¢f
papy) € MIP]
Above, we claimed that M[P] should be expressible as a fixed point fix (S[P]). Here,

S[P] € P(State*) — P(State*)

is the function L . . R
SIP1 ¥ =V U {papap |pap e DAY — o'}

defined by the above rule to perform one inductive application of the rule. Then the semantics
M[P] of program P is the least fixed point of S[P] above a set ¥y of initial states, and is
precisely the set of (unbounded) finite prefixes of executions starting at Wy.

For the purposes of abstract interpretation, the set SemObj of semantic objects is the set
P(State®) of sets of finite execution sequences, ordered by inclusion. An abstract interpretation
must provide a partial order SemObj of abstract semantic objects and an abstraction function

o € P(State*) — SemObj.
The rest of the abstract interpretation is mechanical. Suppose U is the least fixed point of
(a0 S[P] o) € SemObj — SemObj

above an initial abstract semantic object ¥ e Seabbj such that ¥y C (v \if) Then as we
explained in the previous section, ¥ abstracts M[P]. In other words, a(M][P]) implies the
property W, or, equivalently, M[P] C (y¥).
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8.3 Invariant Properties

Most program analyses compute invariant properties, or properties of the states that occur
during program execution. In this case, it is convenient to perform the above abstraction in
two steps. The first step abstracts a set of execution sequences by the set of states appearing
in the sequences. In other words, the abstract semantic object is P(State), and the abstraction
function

a € P(State™) — P(State)

is defined as
al = {¢ | 31/76 0. 1) appears in 1/_1'}

The concretization function
v € P(State) — P(State")

is induced from « as described above. Pushing this through abstract interpretation defines a
function
S € Prog — P(State) — P(State)

defined as
S[P]¥ ={¢' |p € VAp — ¢’}

whose least fixed point M[P] € P(State) above a set ¥ of initial states is precisely the set of
states reached during an execution from an initial state in Wy.

An invariant property is thus a superset of M[P], which is given by an abstract interpre-
tation.

8.4 An Example

As an example, we consider the example in Chapter 1 of the analysis of the signs of integer
variables. In this example, an execution state comprises a control point, specifying the syntactic
point of execution, and an environment.

9 € State = CtrlPoint x Env

The step function S[P] of a program P maps a set of states to their successors as given in the
previous section. The semantics M[P] is the least fixed point of S[P] above {(Co, po)}; it is the
set of states reachable during an execution from the initial control point Cy and environment
Po-

Following the example in Section 1.1, we define an abstract semantic object as a table of
sign environments indexed by control point.

~

¥ e State = CtrlPoint — Var — Sign
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Here, Sign is the complete lattice given in Section 1.1. The function o € P(State) — State
abstracts a set of states by choosing for each control point C' and variable x the strongest sign
property satisfied by all bindings of « in environments at C'.

a\IfC:v:/\{ﬁESign | (C,p) eV = (pr) =n=nen}

Here is an example of an abstraction of a set of three states, two of which have the same control
point.
{(Clv [va = 2, 3])7
« (Cr,[x,y— —1,4]),] =
(027 [Xv y= 0, 0])}

Cla N [Xay = int,pos],
Cy [x,y + zero, zero]

As we explained above, the concretization function v € State — P(State) in induced from « as

y U ={¢|a{p} C T}

where C is pointwise inclusion (in other words, pointwise property implication), but for illus-
tration we give the alternate definition that intuitively expands the sign properties into the
integers that they represent:

YU ={(Cp)|(pz) =n=ne (¥Cx)}

Another way of thinking about -y is that it specifies the states that are consistent with the given
sign properties.

Next, S[P] is defined mechanically:
SIP] = a0 S[P] oy

In other words, S [P], given an abstract semantic object \il, first applies v, yielding all the states
consistent with the sign properties in 0, then applies the transition relation — to these states,
yielding their successors, and finally applies « to these successor states, abstracting them by a
semantic object iz describing their sign properties.

Given an initial abstract semantic object Wy such that (Cp,po) € (v %), the least fixed
point of S [P] above Ty gives sign properties that hold during the execution of P. For example,
if P is the while-loop program presented earlier, the result of the analysis is the the table of
five sign environments shown in Section 1.1 next to their respective program points, with the
last one corresponding to the “exit” program point.

It is worth considering again the analogy given in Section 1.1 of computing the rounded sum
of a list of numbers. In this analogy, a semantic object ¥ € P(State) corresponds to a precise
real number, and its abstraction (a W) € State corresponds to the rounding of that number.
There is no equivalent of y because a rounded real number is still a real number, but in general
we need 7y to “coerce” a member of State back into a member of P(State). Then applying S 1P],
to take one step of program execution and then abstract, corresponds to processing (adding)
the next number from the list and then immediately rounding the result.
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8.5 Performing Multiple Steps Between Abstractions

An abstract interpretation computes the fixed point of the abstract step function S [P]. One
can write this fixed point as the limit of the sequence:

U, = S[P]¥,
by, = S[P1¥ = (S[P]eS[PD Yy
Uy = S[P]¥y = (S[P]oS[P]oS[P]) ¥

This sequence first adds in the objects (for instance, states or state sequences) reachable in one
step from \ifo, abstracts, adds in the objects reachable in the next step, abstracts, and so forth.
By the definition of S[P],

S[P] o S[P] o S[P]

is equivalent to

aoS[PloyoaoS[P]oyoaoS[P]or.

This illustrates the abstraction (with «) at every step. But in Section 1.1 we explained that
it is more accurate to defer the abstraction for a few steps. Mathematically, this is easy to
express: simply remove the occurrences of v o « during the desired interval. Thus,

aoS[P]oS[P]oS[P]or.

performs three steps before abstracting, and consequently may yield more accurate results than
applying S[P] three times. (The formal justification of this is in [CC92d].) As we explained
above and in Section 1.1, this increase in accuracy can be striking. This technique yielded
better sign properties in our small example of Section 1.1, in which the three steps were the
three assignments of the loop body; but much more importantly, any analysis of properties
that might be temporarily lost during execution, such as data shape properties, stands to gain
from this technique. This class of analyses is quite large.

Implementing this technique would seem to be a simple engineering issue: just remove
the selected occurrences of v o . This is an illusion, however. The problem is that the
function S[P] is specified to be o o S[P] o 7y, but is never implemented that way. Indeed,
it is not possible to manipulate the semantic objects (members of SemObj, perhaps sets of
states or state sequences as described above) themselves because they are usually not computer-
representable. For instance, consider the sign-analysis example. It is not possible to compute v,
yielding an (almost certainly) infinite set of states, apply S[P] to find their successor states, and
abstract the resulting infinite set of states. Instead, one always designs a monolithic algorithm
to compute S[P], or at least a function above S[P] in its pointwise ordering, along with a
soundness proof. Because this algorithm is cannot be separated into the three stages of v,
S[P], and «, there is no general engineering solution to omit the computation of -y o & between
two iterative applications of the algorithm. We give an example to illustrate this in the next
section.
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One might attempt to attack the problem from the different angle of beginning with a
semantics that uses a coarser-grained step function, such as

S*[P] = S[P] o S[P] o S[P].

Then the function S?*[P] = a0 S3[P] o 7y specifies an analysis that abstracts only after every
third execution step. However, this different line of attack again encounters a barrier in practice.
Although S3[P] is certainly a reasonable mathematical function, any algorithm for $3[P] must
in general be able to handle all possible combinations of three adjacent steps. For instance,
consider just the two interesting adjacent steps in the example of Section 1.1:

yi=x—3;
X:=y+95

An algorithm that combines these two steps would have to recognize the special pattern oc-
curring here that preserves the property that x is positive, and this pattern would have to be
included explicitly in the algorithm. Again, there does not seem to be a general approach, or
at least an approach that is combinatorially reasonable to even specify.

To understand this difficulty further, consider a program analysis based on a transition-
system semantics. As we explained in Chapter 4 one typically defines the single-step transition
relation — with meta-rules that specify how the individual pieces of program syntax induce
transitions. For instance, the semantics of PURE included the following rule for let-binding
transitions.

(let x =eint,p) — (t,0[z — E]e]p])

In the typical approach to program-analysis design, one would “bake” the abstraction into
such a rule. The program analysis designer would hand-design an algorithm that “abstractly”
performs this kind of transition. For instance, if SemO bj is the set of tables of sign environments
indexed by control point, as described above, then a straightforward algorithm to compute S [P]
for some PURE program P will be hard-wired to propagate the sign property of expression e
at control point (let z = e in ¢) to variable z at control point ¢ for each let-binding term in
P. This makes intuitive sense—the algorithm is “abstractly interpreting” the let-binding steps.
But of course the analysis designer should justify these intuitions by proving that the algorithm
for S[P] actually implements the function

aoS[P]o.

Hence, the algorithm never directly manipulates states or state sequences, but instead per-
forms the function S[P] in one go, where o and 7y are “baked into” the transition relation —.
Note that:

1. To apply an existing analysis to a different language, one must separately hand-design a
new algorithm for the meta-rules of that language. This is an engineering disadvantage.
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2. Because the abstraction is included in the analysis algorithm and cannot be separated
as a single module, there is no way to perform multiple execution steps abstracting the
result. This is a more serious disadvantage because, as we explained in Section 1.1, it can
have devastating effects on the quality of the analysis.

The preceding discussion formalizes the intuition behind why both the small program in
Section 1.1 and the reverse program at the beginning of this chapter are difficult to analyze
accurately. Our solution in Section 1.1 was to change the program itself, rewriting the sequence
of instructions in the loop body with a single parallel instruction. In that way, we achieved an
effect similar to the S*[P] idea above. Although this “compilation” of the three instructions
into a single instruction was at the time for expository purposes, we now have the semantic
methodology of transfer relations as a general solution.

8.6 Multi-step Abstract Interpretation with Transfer Relations

In previous chapters, we demonstrated that our language of transfer relations is expressive
enough to model advanced language features such as first-class functions and mutable data
structures. We now show that it may be used as a “back end” for a generalized program-
analysis methodology based on abstract interpretation in which multiple program steps may be
assimilated between abstractions.

In Section 8.3 we explained that a common choice of concrete semantic object for program
analysis is a state set (or property). As we described in Chapter 4, in semantic methodology
of transfer relations, a state is a pair of a control point and a store.

State = CtrlPoint x Store

A set of states is thus isomorphic to a function from control point C' to the set (or property) of
stores occuring in states at C:

¥ € SemObj = P(State) ~ CtrlPoint — P(Store)

Let CtrlPoint be the finite set of control points occuring in a particular program P. Given a
binary relation R, let [R] = AX.{y | z € X AzRy}. Then

SV’ =J[Ace] (¥O).
C

Intuitively, the set of stores at control point C’ comes from the stores at all control points C' that
might precede C’ by one step in an execution, or in other words by one link in a control-flow
graph of P. But now we can express multiple steps with relation composition. For instance

82[[t]] v C” = (S[[t]] o S[[t]]) v C" = U [AC,C’ o AC’,C’”] (\If C) = U [AC,C”,C”] (\I/ C)
a,cr c,c’
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In general, because the set of control points of a program is finite, we need only design a join
semilattice Store of abstract store properties and an abstraction function o € P(Store) — Store,
with induced concretization function ~.

{ € State = CtrlPoint — Store

If « is additive! then o .
SV C =\/ (o [Ager] 0y) (¥ O).
C

But now we may perform any number of steps before abstracting. For instance,

S2|[t]] \if C” = \/ (Oé o [AC,C’,C”] o) ’y) (\if C)
a,cr

Although the size of this join is O(n?), and in general O(n*) for k steps, a sensible analysis
would only do this in cases such as straight-line code, where it is known beforehand that only
one control path yields a non-_L transfer relation.

Thus, an analysis reduces to implementing o [Ar] oy for any control path I' € CtrlPoint™.
This is done with an algorithm S that describes how any transfer relation maps a pre abstract
store property to a post abstract store property.

S € TR — Store — Store

Then S is a function that, given a transfer relation Ar describing control path I', describes how
a store property at the control point at the beginning of I' propagates through I' and yields a
store property at the end of I'. Conceptually, because S describes the exact net behavior of T,
the abstraction step only occurs at the end of I', no matter how long I is.

The following picture describes the paradigm of multi-step abstract interpretation.

control point  store property

C gel store property at C given by o
r execution through control path C,T", C’
c’ (S AQF,C:)(\TJ C) store property at C' after propagation

through C, T, C' and abstraction at C’
Standard abstract interpretation corresponds to the case in which I is always the empty path,
and so the propagation is through a single step from C to C’.

As we have described, once one designs the abstract store Sae, the heart of any program
analysis defined with the standard methodology of abstract interpretation is the design of an

!Usually, o is additive, but otherwise the equality is a property implication and still yields a correct analysis.
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algorithm to “abstractly” interpret each meta-rule of the transition relation — on Store. In
our methodology, the heart is the design of the S function, which abstractly interprets the
transfer relations in our language TR over Store. We want S to satisfy

(o [AJoy) E(SA)

where C is pointwise set inclusion. Ideally, the C would be =, but an analysis may always
safely weaken the properties. Because our methodology works on the universal intermediate
representation of transfer relations, we may at least begin to describe how S should be defined,
independent of the particular source language or analysis.

We assume that Store is a Join semilattice with the false property as its bottom element,
written as L. We also assume that there is a function in Exp — Store — Store that given an
expression e and store property ¢ returns a store property (written e?6) that is satisfied by all
stores that both satisfy ¢ and evaluate e to true. In other words,

(0 €6 Nely true) = o € (e76).
We also assume that there is a similar function for false:
(c €6 Nel, false) = o € (e,0)

Note that the definitions
el =ej6 =0
trivially satisfy these properties, but in general it may be possible to do better, and so we
provide the facility.
Now we may partially define S, independent of the particular analysis or choice of Store.
SAL = 1
Shé& 1

Sle? A|A"|6 = (SA(e?6))V (SA (e;5))

The only remaining case is for assignment relations. Therefore, we have the following “recipe”
for the design of a general multi-step abstract interpretation with our methodology.

1. Design a join semilattice Store of store properties.
2. Define €76 and e;6 or use the degenerate definitions given above.

3. Define (S0 6) for any assignment relation § € ATR and store property & € Store such that
((wo[d]oy)d) C(Sda).

Then, as we described above, one may perform a classical abstract interpretation by using the
single-step transfer relations defined by the semantics of the source language, or one may choose
to compose these transfer relations for better precision over selected control paths. It is up to
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the analysis designer to pick which control paths are of interest, but we suggest a strategy of
composing all paths in the control-flow graph of the source program in which only the first
and last nodes have multiple incoming edges (candidates for looping points) and performing
an abstract interpretation to compute the properties (via fixed-point iteration) for just those
nodes. Such paths roughly correspond to so-called eztended basic blocks [ASU86]. Note that
such a strategy would automatically compose the sequence of three assignment statements that
posed a problem in the example at the beginning of this chapter. All that remains to solve that
example, for instance, is to adapt an existing store analysis such as [GH96].

8.7 Value Analysis

In this section, we isolate a subcase of our our methodology for value analyses. The sign analysis
of Section 1.1 and Section 8.4 is a simple kind of value analysis. Recall that a store is a function
from l-value to value. In a value analysis, a store property is defined in terms of a set Val of
value properties (sets) as follows.

& € Store = Lval — Val
w € Lval = VaruU(Val x Val)

A member of Lval specifies an l-value property (set) as follows

v veD v ed
(v') € (0.0")

The abstraction function e
a € P(Store) — Store

is defined as -
aXd = \{o €Val| (c €L AwE D)= (cw) € b}
given a lattice Val of value properties.

In our example of sign analysis, Val = Sign as given in Section 1.1, and we assumed that
the only l-values were variables (in other words, Lval = Var).

The main algorithm that the analysis designer must provide for a particular value analysis
is a function
~ — —— —
P € Primop — Store — Val — Val

that “abstractly evaluates” primitive operations. It must satisfy the following condition
Condition 2 (Safety of P) It must be the case that
/\ v, €0; | Ao €0)= (p(vi,...,vn) =4 V)
1<i<n

implies that
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Note that the store parameter of P may be ignored for context-insensitive primitive operations,
which will typically make up the vast majority of primitive operations in any application of our
analysis methodology. For instance, the following is a partial definition of P for the (context-
independent) operation + for sign analysis (where we omit the unused store parameter):

P[+] (pos, int) = int
P[+] (pos,nonneg) = pos
P[+] (pos,nonpos) = int
P[] (pos,pos) = pos
P[+] (pos, zero) = pos
P[+] (pos,neg) = int
P[+] (pos, none) = none

We mechanically extend this notion of abstract evaluation to expressions and l-expressions as
follows.

E € Exp— Store — Val
L € Lexp — Store — Val
Elz]6 = 6«
Elples- . enl6 = Plplo (Ele]a,...,Eleal &)
L[z]6 = =

Lle.]6 = (E[e]5).(E[¢']6)
Lemma 10 For all e € Exp and v € Val,
(c €6 ANetqyv) =veE[e]6d,
and for all | € Lexp and w € Lval,
(€Nl F,w) = weL[l]6.

Proof: Straightforward induction based on the safety condition of P. O

The next step in our “recipe” is to provide the two boolean filter functions, which are defined

as follows. R
6 — g if true € (E[e] &)
1 otherwise
oo — |0 iffalsec (E[e] 6)
v 1  otherwise

The final step is to provide the function

S € ATR — Store — Store
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that describes how, given an assignment relation §, one store property evolves into another
from the assignments in §. To do this, we must assume that we have the following operations

on Val. -
19 test if ¥ € Val is a singleton set

0 X P test of nonempty intersection in Val: 4 N &' # ()
We extend the last two to Lval mechanically as follows.

lz (all variables are singletons)
(0.0')  if 1o AN

Nz (all variables intersect with themselves)
01.0) M 9.9, if (91 M dg) A (D] X D))
Now we can define the S algorithm.
Eles] 6 if (b X ') Al A
where @' = L[l;] 6
(6w)V V{E[e;]o | wXL[l;]6} otherwise

S
Il

S li,...,lp —e1,....en |0

Some important kinds of analyses are not value analyses. A good example is the shape
analysis with which we began this chapter. We leave the adaption of such analyses to TR as
future work.



Chapter 9

Analyzing Expressions

In Chapters 2 and 3, we gave a framework for designing a language of transfer relations pa-
rameterized by a set Primop of primitive operations, and we gave an algorithm to compose one
transfer relation A with another A’ to get a third transfer relation A” = A & A’. In Chapter 4
we further described a semantic methodology in which

e Ar is a term representing the net behavior (modeled as a modification to a store) of any
segment of execution through control path I' (a string of control points),

e Apv is a term representing the net behavior of a segment corresponding to control path
I, and

e if I ends with the same control point with which I begins, Ap,;v = Ap @ Ay represents
the net behavior of the first execution segment followed by the second execution segment.
(Recall that a control path 'y, C' ending with control point C' may be combined with a
control path C, T’y beginning with C' with the ; operation as (I'1, C); (C,T'y) =T'1,C,T'3.)

For program analysis, composing transfer relations thus forms the core of reasoning about
adjacent pieces of code, or even pieces of code that are not syntactically adjacent, but that
might follow each other in an execution. An example of the latter is a piece of code that
leads to a function call, followed by a piece of code at the beginning of the function body.
We formalized these concepts in Chapter 4, which presented a methodology of programming-
language semantics based on transfer relations. This methodology provides a uniform way to
compute the transfer relation for any finite control path in a program. We demonstrate this
methodology in Chapters 5, 6, and 7 for imperative and functional programming languages.

In this chapter, we show how one can use this methodology to analyze how the values
of an expression change during program execution. This will turn turn out to be relatively
straightforward for fixed finite control sequences, but rather subtle for executions that are
infinite, or at least potentially infinite.
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9.1 Analyzing Finite Control Paths

Given a program in any language that has been defined using the semantic methodology of
Chapter 4—and given any finite control path I' € CtrlPoint™, one can compute a transfer
relation Apr € TR that gives a description of how a store at the start of I' can change into a
store at the end of I'. If all of the primitive operations in the language are deterministic, as is the
case for MINI-C, PURE, and IMPURE, and as will likely be the case for any reasonable language,
then Ar will be an ezact description, in that it defines the semantics of the control path I'.
In Chapter 3, we called this a translation. If the language includes nondeterministic primitive
operations, then Ap will not necessarily be an exact description, but it will be a superset of the
semantics of the control path I'; in other words, all possible executions along control path I' will
be represented in Ap. In Chapter 3, we called this an upper approzimation. In this chapter, we
will assume that all primitive operations in the source language are deterministic.

Much of the field of static program analysis is centered around the common motivation of
analyzing the values of variables or expressions. Usually this is done with a fixed-point compu-
tation, as in abstract interpretation. But in this chapter we present an alternate approach.

Suppose that one wants information about the value of € Var when execution reaches the
end of control path I'. In our methodology, one computes

E.’I)AF.

The result is an expression e such that in any possible execution fragment through control path
I', e at the beginning of that execution fragment is semantically equivalent to = at the end of
that execution fragment. If Primop is nondeterministic, then e is an upper approximation of
x, in that it is guaranteed to evaluate before the execution fragment to any value to which z
evaluates after the execution fragment. In general,  can be an arbitrary expression; it need
not be a variable. In other words,

Ee Ar

is an expression e such that in any possible execution fragment through control path I, e at the
beginning of that execution fragment is semantically equivalent to €’ at the end of that execution
fragment. These properties are not new; they are simply rephrasings of Theorem 2. But because
this notion of expression analysis is a central part of this application of our methodology, we
introduce a new term.

Definition 16 (Transfer of expressions) If
ebov < € Fyw

whenever execution from store o € Store through control path T' € CtrlPoint™ results in store
o' € Store, then we say that I’ transfers e to €.

The following theorems and corollary are the keystone of this chapter.
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Theorem 5 For any programming language all of whose primitive operations are deterministic,
if Ar is the transfer relation for control path T' and (Ee’ Ar) = e, then T transfers e to €.

Proof: Rephrasing of Theorem 2. a

Theorem 6 If ' transfers e to €' and I transfers €' to e" then I';1V transfers e to €.

Proof: Straightforward from the definition of expression transfer. O

Corollary 2 For any programming language all of whose primitive operations are determinis-
tic, if Ar is the transfer relation for control path I' and Ay is the transfer relation for control
path I, and if (E(Ee’ Ap) Ar) = e, then I; T translates e to €.

9.2 Analyzing Adjacent Loop Iterations via Exponentiation

Consider the MINI-C program
while e do s

that repeats the execution of the code s until e becomes true. Suppose s is simply a piece
of straight-line code, and I' is the control path that tests if e is true and then performs s.
As described in Chapter 5, one can automatically compute a transfer relation Ap for I' that
represents the net behavior of the test of e and execution of s. So,

e Ar represents the net behavior of any single iteration,

e Ar @ Ar represents the net behavior of control path I';I", which is the control path of
any two adjacent iterations,

o Ar ®& Ar @ Ay represents the net behavior of control path I'; I'; ', which is the control
path of any three adjacent iterations,

e etc.

We adopt the notation A" to mean
n times

——
Ao - ®A

and the notation I'” to mean
n times
—
r;...;T.

Then Ap» = (Ap)".

Suppose that one wants to analyze how the data in a store o at the beginning of the loop
body gets used and updated over a period of three iterations of the loop—in other words, during
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any segment of execution along the control path I'3. Then one simply computes (AF)S, which
gives a description of the store three iterations later! in terms of o.

It is worth pointing out that this is a fundamentally different—and fundamentally advan-
tageous—approach from those of standard program analyses. Standard approaches cannot
differentiate between an infinite number of loop iterations, but the above approach can. For
instance, suppose the loop is

while x <>nil do x:=x.tl

that traverses x down a list to its end. The semantic methodology in Chapter 4 would compute

Ar =[x & ni1?

to describe one iteration of this loop. One could then compute, for instance,

(Ap)? =|x <>nil? |x.t1 <> nil? [x — x.t1.t1

to describe two adjacent iterations, or

(Ar)® =|x <>nil? |x.t1 <> nil? |x.t1.t1 <> nil? [x — x.t1.t1.t1]

to describe three adjacent iterations.? The last transfer relation directly provides the following
information: During any three adjacent iterations of the loop, the third component of the list to
which x is bound before those iterations is bound to x after those iterations. This is computed
and formalized by the E algorithm; one computes:

ExAr = xtl
EX(AF)2 = x.tl.tl
Ex(Ar)? = xtltltl

Therefore:

e Whenever the loop goes through any one iteration, the value of x.t1 (guaranteed by
Lemma 2 to be unique because all primitive operations are deterministic) at the beginning
of the iteration is equal to the value of x at the end of the iteration. In other words, I"
transfers x.t1 to x.

e Whenever the loop goes through any two adjacent iterations, the unique value of x.t1.t1
at the beginning of the iteration is equal to the value of x at the end of the iteration. In
other words, I'? (which is [';T') transfers x.t1.t1 to x.

'Tn general, one might want to examine all of the transfer relations that accumulated during a left-associative
calculation of (Ap)s—in other words, the transfer relations that correspond to each prefix of I'*. These inter-
mediate transfer relations give descriptions of the store with respect to o at all of the intermediate points of
execution during a sequence of three iterations, as described in Chapter 4.

2These computations assume trivial translations C and P that merely reconstruct their terms.
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e Whenever the loop goes through any three adjacent iterations, the value of x.t1.t1.t1
(again, guaranteed to be unique) at the beginning of the iteration is equal to the value of
x at the end of the iteration. In other words, I'* (which is I'; I'; ') transfers x.t1.t1.t1 to
X.

In this sense, our methodology provides a way of distinguishing between a potentially un-
bounded number of occurrences of the same control path. Even if the length of the list to which
x is bound at the entry of the while loop is unknown, and thus unbounded, the above transfer
relation provides precise information about how the binding of x at iteration k relates to the
binding of x at iteration k + 3, and this information is valid for any k. Most approaches to pro-
gram analysis that are based on fixed-point calculation would ultimately have to approximate
the data structure to which x is bound at the entry of the while loop, and therefore inherently
cannot produce precise information for an unbounded number of iterations.

9.3 The Interaction Between Effects and Exponentiation

Above, we gave some intuition about how to analyze the value of x in the loop
while x <> nil do x:=x.t1.

First, one computes the transfer relation

A =[x < 0il? xo xsl]

describing one iteration of the loop. Then, one can compute

ExA =x1tl

to automatically determine that one iteration of the loop transfers x.t1 to x. Indeed, one can
go further by computing

A=A ADA=|x<>nil? |x.t1<>nil? |x.t1.t1 <> nil? [x — x.t1.t1.t1l

describing three adjacent loop iterations, and then
ExA® = x.t1.t1.t1.

to yield the expected result that, of course, if x traverses one element down the list in one
iteration, then it must traverse three elements down the list in three iterations. Or must it? In
this program, it is indeed the case, but in general a result such as

ExA =x.tl
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can be deceptive.

To see why, consider the following MINI-C program.

while x <> nil do

{

y=x
X:=x.tl;
y.tl:=x.tl

}

One would think that this program is designed to modify the list bound to x by splitting it
into two lists—a list of the odd elements in order and a list of the even elements in order. The
following transfer relation describes one iteration of the loop.

A =|x<>nil? |y, x,x.tl— x,xtl, x.tl.tl

Now, suppose that one wants to analyze the value of x in this loop. As for the previous program,
one could compute
ExA =x.tl

to automatically determine that one iteration of the loop transfers x.t1 to x; in other words, x
progresses to its next element in one iteration. So far, this looks just like the previous program.
Going further, one could examine the value of x after two iterations:

ExA? = x.t1.t1

This may not seem very surprising. After all, if x moves down one element of the list in one
iteration, then it seems reasonable that it moves down two elements in two iterations. However,
the pattern is broken with the next iteration:

ExA% = if(x.t1.tl =x,
x.tl.t1,
x.t1.t1.t1)

In other words, suppose that the list is a two-element circular list with elements v; and v2, and
x 1s bound to v;. Then:

e After one iteration, x is bound to v (i.e., element {2,4,6,...} of the list).
e After two iterations, x is bound to v; (i.e., element {1,3,5,...} of the list).

e After three iterations, x is still bound to v;.

Otherwise, no matter what other kind of circularity or aliasing may be present in the list, x
progresses to the fourth element in its linked structure after three iterations.
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Note that the those two possible behaviors are truly distinct. To illustrate, consider how
each of the two cases appear in a store graph. The first case is

X tl
e —1U TqT’UQ

where v; may or may not be equal to vy. The second case is

tl t1 t1

® — U] —>V2 —»U3 ——+ 1y

where we impose only that v; and v3 are nonequal (and thus v; and v must be nonequal).
After three iterations, x points to vy in the first case and vy in the second case. But there is no
single non-conditional expression that works for both cases. The expression

x.tl.tl
works for the first case, but not the second; the expression
x.tl.t1.t1

works for the second case, but not the first. If v4 is equal to vy, then the expression x would
work for both cases, but v4 may not be equal to v;. The E algorithm automatically distinguishes
the cases that need to be distinguished and builds a conditional expression that covers all cases.

9.4 Blowup of Conditional Expressions

These conditional expressions can become large. Let

n times

After four iterations of the loop in the previous section, we have

ExA* = if(e=xtl,
67
if(e =x,x.t1% e.tl))

where
e=if(xt1% =x,x.t1% x.t1%).

Unlike the expression (Ex A?) for three iterations, this expression is rather complex for human
understanding (although still much easier than hand-generating all initial aliasing conditions
that might be relevant and hand-executing four iterations of the loop under all such cases).
Some study uncovers the following interpretation for the value of x after four iterations:

e If the second element points to the first (special case: the first element points to itself),
then the value is x.
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e Otherwise, if the third element points to the second (special case: the second element
points to itself), then the value is x.t1.

e Otherwise, if the third element points to the first, then the value is x.t12.

e Otherwise, the value is x.t1%.

Again, these are all distinct behaviors, and it is probable that the above itemized list is the
shortest description of the value of x after four iterations. But clearly the expression computed
as (Ex A%) is bigger than this itemized list. A better symbolic evaluation of if could reduce its
size. For instance note that as long as all primitive operations are deterministic, the following
two expressions are semantically equivalent:

if(er = e, e1,e3) = if(e; = ez, e9,¢€3)

Therefore, if can substitute one for the other, and for instance choose the small x.t1 over the
large e above, yielding instead:

ExA'=if(e=xtl,
x.tl,
if(e =x,x.t1% e.tl))

This is better, but not by much. The key is to distribute the conditional expression e nested
in the condition position of (Ex A*) over the two branches of the latter. For this, we have the
following rule of semantic equivalence of expressions, where e denotes any expression that can
be derived from e by optionally replacing occurrences of any subexpression e; € E in e by some
other expression ey € F:

e = if(€1,€2,€3)
es = es{e,ex,eq} e = esle, en}
e5 =es{e,es, ea} €5 = es{e es}
if(e=eq,e5,e5) = if(ey,if (e = €4, €f, ¢5), if(e3 = eq, €, €f))

9.1)

As written, this rule is nondeterministic because there are in general many choices for an
expression eF. But one obvious strategy is simply to pick the smallest expression. This is easy
to implement. For instance to compute ef, pick the smallest of {e, ez, es4} and substitute all
occurrences in es of the two larger expressions by this small expression.

Applying this rule to (Ex A*) yields:

ExA* = if(x.t1% = x,
if(x.t1% = x.t1,x.t1, x.t1%),
if(x.t13 = x.t1,
x.tl,
if(x.t1% = x,x.t1% x.t1%)))
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This is close to optimal, but it is possible to simplify the first arm even further using the
following generalization of the first semantic equivalence above:

65 = 63{61762}

- - 9.2
if(e; = ez, e3,e4) = if(e1 = €2, €5, e4) (9:2)
Applying this rule to the above expression yields:
ExA' =if(x.t1% =%,
if(x =x.t1,x.t1,x),
if(x.t13 = x.t1,
x.tl,
if(x.t1% = x,x.t1% x.t1%)))
Applying the rule again to the conditional in the first arm yields:
ExA* = if(x.t1% = x,
if(x = x.t1,x,x),
if(x.t13 = x.t1,
x.tl,
if(x.t1% = x,x.t1% x.t1%)))
Finally, we apply the equivalence that
if(e; = eg,e,e) =e (9.3)
to yield:
ExAt = if(x.t1% = x,
X7
if(x.t13 = x.t1,

x.tl,
if(x.t1% = x,x.t1% x.t1%)))

This last expression directly corresponds to the bullet list above, and no more simplifications
seem possible; the behavior of four iterations of the loop on the binding of x is inherently this
complex.

Rule 9.3 is subtle; it works only because the primitive operation = returns either true or
false on any pair of values, even undef.

Rule 9.1 of semantic equivalence may seem ad hoc, but it is actually more widely applicable
than it may seem at first. Let us look again at the computation of (Ex A?*), but this time with
the observation that (Ex A®) appears in some of its subexpressions.

ExA* = if((ExA%) =x.t1,
(ExA%),
if((ExA3) =x,x.t1%2 (ExA3).t1))
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Now note that the nested conditional in Rule 9.1 occurs exactly where (Ex A3) appears above.
This is not an accident; often, the behavior of a piece of code (e.g., one iteration of a loop)
on an expression (e.g., a variable) will function in more than one possible way depending on
properties (e.g., aliasing) of the result of the preceding piece of code (e.g., the previous loop
iteration) on that expression. Hence, it is often the case that (Ee A) will appear in the proper
position (i.e., as e) in an application of Rule 9.1 to (Ee(A @& A’)). The rule thus serves to
incrementally keep the expressions as flat as possible.

9.5 Computing Closed Forms of Loops

The previous sections showed how to automatically compute that a single iteration of the loop
while x <> nil do x:=x.t1l
and a single iteration of the loop

while x <> nil do

{

y=x
X:=x.tl;
y.tl:=x.tl

}

both transfer x.t1 to x.

It is not difficult to see that for any n, n iterations of the first loop transfer x.t1™ to x, but
we did not give an algorithm to compute this closed-form solution. However, we demonstrated
that three iterations of the second loop do not transfer x.t12 to x, and therefore it is not the case
that for any n, n iterations of the second loop transfer x.t1" to x. This section addresses the
question of when such exponentiations are valid, and how to automatically compute a closed-
form representation for those exponentiations. The results that we will achieve are much more
general than the simple traversal of a linear data structure.

9.5.1 An example

We begin at an intuitive level by examining why the closed-form exponentiation works for the
first loop, but not for the second. Consider two adjacent iterations of the first loop. We know
that iteration 1 transfers x.t1 to x and iteration 2 transfers x.t1 to x. But to link iteration
1 with iteration 2, the “output expression” of iteration 1 should be the same as the “input
expression” of iteration 2. So what we really need is to compute

E(x.tl) A =x.tl.tl
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which reports that any one iteration (where A is the transfer relation for a single iteration)
transfers x.t1.t1 to x.t1. Now we know that iteration 1 transfers x.t1.t1 to x.t1, which is then
transferred by iteration 2 to x. This is an application of Corollary 2.

Thus, we have simply verified that two iterations transfer x.t1.t1 to x, a fact that is ex-
pressed more directly by
ExA% =xtl.tl.

But deriving that result in the two steps of Corollary 2 instead of computing it directly suggests
an approach for deriving a closed-form solution for n steps. Note that in the equation

E(xtl) A =x.t1l.tl

the expression on the right is a dereference of x.t1 by t1, the expression on the left is a
dereference of x by t1, and we already have that one iteration transfers x.t1 to x. Suppose
an oracle magically provides the statement that for all expressions e and €', if one iteration
transfers e to €', then it must be the case that it also transfers e.t1l to ¢/.t1. In other words,

Ed/A=e¢ = EdtlA=c.tl.

Then by induction, we have

ExA = xtl base case
ExtlA = x.tl? application of oracle to above
Ex.t12A = x.t13 application of oracle to above
Extl’A = x.t1? application of oracle to above

And then by another induction, we have

ExA = xtl base case
ExA? = x.t1? Corollary 2 with above line and line 2 of previous result
ExA3 = xt13 Corollary 2 with above line and line 3 of previous result
ExA* = xt1? Corollary 2 with above line and line 4 of previous result

The key to this approach is the oracle that provides the statement that
Ed/A=e¢ = E(tl)A=ctl

Now it becomes clear why the closed-form exponentiation works for the first program, but not
for the second. The intuition of this statement is that “the t1 fields of all data structures
are preserved by a single iteration”. This is clearly true of the first program, which does not
perform any assignments to t1 fields. But the second program includes the statement

y.tl:=x.tl



150 Analyzing Expressions

which potentially alters the tl field of some value in the store. And indeed, the oracle’s
statement is false when A is the transfer function of one iteration of the second program. At
first, it seems tricky to find an expression €' that makes the statement fail. Neither x nor y
serves the purpose, but x.t1 does:

E(x.tl) A =x.tl.tl

but
E(x.tl.tl) A =if(x.tl.tl=x, .
x.tl.tl,
x.t1l.t1l.tl)

Fortunately, however, there is a general technique for testing if the above oracle statement
holds. The insight is that an expression that cannot possibly be altered by the program can
act as a “probe” into any point in the store. So one needs merely to choose e to be a variable
z that does not appear in the program. It will always be the case that (Ez A) = z, and if
the oracle statement fails for any e’ then it will fail for z. Furthermore, if the oracle statement
passes for e = ¢/ = x then it will pass for all expressions e and €’. For instance, for both of our
programs,

EzA =z,
but while
E(z.tl) A =z.t1

for the first program, thus implying that the oracle statement holds and thus the closed-form
exponentiation is valid,
E(z.tl) A = if(z = x,
x.tl.tl,
z.t1)

for the second program, thus demounstrating that the oracle statement fails and thus the closed-
form exponentiation is not valid.

The above is merely an example of exponentiating a t1 dereference. Now we generalize
these results to a much larger class of exponentiations.

9.5.2 Expression constructors

We begin with the observation that x.t1" is the result of n repeated applications of the function
Xe. (e.tl)

to the expression x. Exponentiating a dereference is thus a special case of exponentiating a
function of type
Exp — Exp.

In this section, we present a foundation for these kinds of functions and how, given a loop, to
automatically find such functions that can be exponentiated in the loop.
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Definition 17 The set ExpCon,, of expression constructors of arity k is defined as follows.
E € ExpCon, u= z|p&,....6) | O |...] ®
ExpCony, is isomorphic to Exp® — Exp, and these may be used interchangeably.

Intuitively, a k-ary expression constructor is an expression in which “holes” may appear, each
hole labeled with a number from 1 to k. A hole may appear multiple times or not at all. When
a k-ary expression constructor is applied to k expressions (ey,...ex), then each occurrence of
hole @) is “filled” with e;. Note that ExpConj, the set of nullary expression constructors, is
just the set Exp of expressions. Also note that ExpCon;,, D Exp for any k because an expression
constructor need not contain any holes.

The definition of k-ary expression constructors as Exp® — Exp functions is as follows:

xr
p(gl,...,gn

T
=
I
S
t
A\
™
S
&

) = e

Unary expression constructors are especially important because they are the only ones that
can be exponentiated, as they are the only ones with matching domain and codomain. Because
they are distinguished, we simply call them ezpression constructors and use slightly specialized
notation for them:

E € ExpCon == z|p(&,....&) O unary expression constructors

We also specialize the definition above for the case of expression constructors as Exp — Exp
functions:

re = x
p(&r,-. &) e = plere,... . Ene)
Qe = e

In the previous section, we considered loops in which one iteration transfers x.t1 to x. We
started by calculating
ExA =x.tl.

and then computing a test to determine if the “.t1” part could be exponentiated. The discussion
in the previous section generalizes elegantly via the following three theorems.

Theorem 7 (Abstraction of expression transfer) Let Ap be the transfer relation for con-
trol path T, € and &' be k-ary expression constructors, and x1,...,zy be variables that do not
appear in either the syntazx of Ar, &, or E'. If

o [ transfers E(xq,...,xx) to &' (x1,...,xx), and

o [ transfers e; to e; for alli € {1,...,k}
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then T transfers E(e1,...,ex) to E'(e1,...,ex).
Proof: We need to show that whenever o Ap o,
(E(ery...,ex)) Fov = (E'(e1,...,er)) For v.

Choose any values vy, ...,v;. Because I' transfers e; to e; for all 4 € {1,...,k}, we have that

k k
/\ e Fov, <— /\ e For vj.
=1 =1

Now let
o = oz =] [zg = v
o = U,[.’L‘l — 1)1] - [a;k — vk]
Because none of x1,...,z; appears in the syntax of Ar, we have that
O_H AF O_HI
and hence, because I' transfers £(z1,...,x¢) to &' (z1,...,x), that

(E(z1y. . xp)) For v = (E'(x1,..., 1K) Fom v.

Combining the above, we have that

k k
(/\ e o Ui) /\(5(371,...,3%)) For v <— (/\ e For Ui> /\(8’(371,...,3%)) Fomr v.
i=1 i=1

But because none of x1, ...,z appears in £ we have that for any o,

k
v, ..., Uk [(/\ ei o Ui> A (8($1,,$k)) l_U[Il’—)Ul]---[Ik’—)’Uk} U] <~ (5(61,...,6n)) Fo v
=1

and similarly for £’. Therefore,
(E(er,...,en)) Fov = (E(er,... en)) For v.

|

The above theorem is used primarily for the next two theorems, which we will use to compute
automatically closed solutions in loops.

Theorem 8 (Left closed-form exponentiation) Given a language in which all primitive
operations are deterministic, let Ay be the transfer relation for control path T, € be a (unary)
expression constructor, and x be some variable that does not appear in either the syntaz of Ar

or €. If
EeAF =fe

and

E(x)Ar=Ex
then for all n.> 0 and k > 0, ™ transfers (E™tF) e) to (EFe).
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Proof: Straightforward application of Theorems 5, 6, and 6abs-exptr. O

Theorem 9 (Right closed-form exponentiation) Given a language in which all primitive
operations are deterministic, let Ay be the transfer relation for control path T, € be a (unary)
expression constructor, and x be some variable that does not appear in either the syntaz of Ar
or . If

E(e)Ar=e

and

E(x)Ar=Ex
then for all n >0 and k >0, I transfers (EF e) to (EM1R) ¢).

Proof: Straightforward application of Theorems 5, 6, and 6abs-exptr. O

The following example illustrates the above development.
Example 30 Let A be the transfer relation for one iteration of the loop:
while x <>nil do x:=x.t1l
Note that variable z does not appear in A. Let £ = ().t1 and compute
ExA=xtl=¢&x

and

E(z)A=E(ztl) A=ztl=CEz.

By Theorem 8, we conclude that any n iterations of the loop transfers £™ x = x.t1™ to x, and
further that it transfers x.£1"1* to x.t1% for any k > 0.

9.5.3 Computing closed forms automatically

In order to compute these closed forms automatically for expression e and control path I, it is
necessary to determine automatically an expression constructor £ such that

EeApr=¢€e

where Ar is the transfer relation for control path I'. In general, there may be many choices for
£ that make this equation true. For instance, for both of our example while-loops above,

ExA=(0Otl)x

and
ExA = (x.tl)x.
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To understand this nondeterminism, consider the task of determining from any two expressions

e and €' an expression constructor £5 such that £5 e = ¢’. Using the first two lines of the above

definition of expression constructors as functions, we can derive the following scheme:

& =z
g;(el,...,en) = p(ggp T 7€§n)

But this merely reduces to the degenerate £5 = €/, an expression constructor without any holes.
Taking into consideration the third line of the definition, we can add the following equation:

& = O

Now whenever ¢/ matches e, we have a choice between applying this equation to introduce a
hole or use the first two to reconstruct e.

One obvious deterministic strategy is to introduce holes whenever possible, yielding the
following algorithm:

O ife=¢
=< ife#e =2z
p(ES,...,E) ife#e =ple,..., en)

Example 31 The expression-constructor algorithm computes:

X _ X &X
x.t1l™ 5}(' tl

=(.tl
Example 32 The expression-constructor algorithm computes:
3 _ cired
ga[j +3 €a [53 + J'].
= a[f] + &)
=al0+ 0]

This suggests the following algorithm for computing closed forms of expression transfer in
loops.

Algorithm 1 (Closed-forms of expressions in loops) Given the following input:

e A control path I’ € CtrlPoint™.

e An expression e € Exp.
Perform the following steps:

1. Compute the transfer relation Ar for control path ' as described in Chapter 4.

2. Compute the expression (EeAr). Call this €.
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3. Compute the expression constructor £ as described above. Call this £,.
4. Compute the expression constructor 55’ as described above. Call this Eg.
5. Choose a variable © not appearing in Arp.

6. Compute the expression (Ep x) as described by the definition of expression constructors.
Call this eg,.

7. Compute the expression (Er ) as described by the definition of expression constructors.
Call this eg.

8. Compute the expression (Eer Ar) and test if it is syntactically equal to er. If so, output
“9eft(EL)”. Otherwise, output “left-exponentiation not found”.

9. Compute the expression (Eer Ar) and test if it is syntactically equal to eg. If so, output
“right(Eg, €') 7. Otherwise, output “right-exponentiation not found”.

If this algorithm given I' and e outputs “left(€1)” then for all n > 0 and & > 0, I'" transfers
(EHK) e) to (EF e). In addition, if it outputs “right(Ex,e’)” then for all n > 0 and k # 0, ™
transfers (£F ¢') to (£("HF) ¢/).

Example 33 The above algorithm, given the control path corresponding to one iteration of the
program
while x <> nil do x:=x.t1

and given the expression x, outputs “left(().t1)” and ‘right-exponentiation not found”.

Example 34 The above algorithm, given the control path corresponding to one iteration of the
program
while x <> nil do

{

y=x
X:=x.tl;
y.tl:=x.tl

}

and given the expression x, outputs “left-exponentiation not found” and ‘“right-exponen-
tiation not found”.
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Part V

Conclusion






159

In this dissertation, we have presented a new way of approaching the problem of statically
analyzing a program to determine properties of its run-time behavior.

In our methodology, the semantic definition of a language is given by a translation from
the source program to an intermediate form in which all single step transitions between two
control points are described by a single transfer relation term in TR. For instance, we have
shown how to translate assignments and let-bindings into assignment relations, conditionals
into filter relations, allocation into assignment relations that maintain an explicit heap pointer,
and function calls into filter relations with assignment for argument passing. Our language TR
if transfer relations is thus a universal intermediate representation for programming languages,
parameterized by a set Val of values and Primop of primitive operations.

The semantics itself merely defines the single-step transfer relations, which amounts to a
translation of the source program into TR. But the fundamental property of TR that sets it
apart from other intermediate representations and makes it useful for program analysis is that
it is closed under composition. We have given an algorithm & to perform this composition.

Given this view, one way to think of our analysis methodology is as a kind of symbolic
execution. Given the translation of a source program into TR, one uses & to compose the
steps in order to generate a transfer relation (term in TR) of a particular finite control path.
The single-step transfer relations yielded by the semantics correspond to the length-two control
paths and are simply a rewriting of the program text. But as an analysis composes these steps
with @, it symbolically uncovers more and more dynamic information about the program.

Unlike usual approaches to program analysis that begin by defining an abstract language of
run-time properties, our methodology never discards information about the program. In fact,
given a closed program (in other words, no parameters or unknown data), it is possible actually
to execute the program with @. To do this, build the transfer relation for the control path that
starts at the beginning of the program. At each point during this incremental composition,
all information about the run-time state up to that point will be represented precisely in the
transfer relation, and every time a branch point is reached (for instance, conditional or func-
tion call), only one branch will result in a non-{) transfer relation. Of course, if the program
never terminates then this process will never terminate. But it demonstrates that our analy-
sis methodology includes all information needed to perform a precise execution of the source
program, which sets it apart from other approaches to program analysis.

But the point of program analysis is usually to analyze a program or program fragment
that is not closed. One may want to analyze a function relative to its parameters, or a segment
of C code apart from its surrounding context. Or the entire program itself may not be closed
because of unknown input data. It is these situations for which our methodology is designed.
As the analysis symbolically builds the transfer relation for a control path, it may encounter
unknown quantities (variables, heap references, and so forth). The analysis represents these
as expressions and l-expressions in the transfer relations, precisely describing quantities that
are relative to the state of execution at the beginning of the control path. Still, no semantic
information is discarded. If a transfer relation that describes the definition of a variable or
value on the heap is composed with a transfer relation that includes a reference to that variable
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or heap location, then the @ algorithm will inline the data defined in the first relation into the
references in the second transfer relation and simplify the result.

In short, our primary philosophy is that program analysis should focus on the relationship
between an execution state at the beginning of a given control path and the resulting execution
state at the end of the path. Given this philosophy, our primary technical result is that one
can in fact effectively compute a concise symbolic description of this precise relationship for a
fixed control path.

So, our methodology truly is a general framework for program analysis in the sense that it
involves no abstraction or approximation, and so there is nothing in the framework itself that
necessarily prohibits the computation of any given computable program property. Of course,
this is true of the text of the source program itself! But repeated applications of @ reveal more
and more dynamic information about the source program, and in the limit actually represent
the entire program execution.

One may view repeated applications of @ as an imperative analog of the reduction of terms
in the A-calculus. The redex rules of the A-calculus are symbolic, just like the composition of
transfer relations, and repeated reductions of a A-term reveal in some sense more and more
dynamic information about the original term. The reduction may terminate in a unique (up to
a-conversion) normal form, which is a canonical representation of the original term. One may
think of repeated applications of @ in a similar way, gradually moving toward a more canonical
representation of the source program, in principle resulting in a single TR-term in the limit. In
our case, these normal forms are not unique. But this is not surprising, given the wide variety
of languages that we can describe in this way—languages with assignment, heap-allocated data
structures, mutable arrays and records, and pointers.

A new methodology of program analysis opens up numerous avenues for future work. In
this dissertation, we have just begun to explore the applications of our methodology to real
analysis problems, but there is much more work to be done. Some thoughts:

e There is potential for our methodology to help in software development as a debugging
tool. The transfer relation terms in TR have an intuitive presentation as symbolic condi-
tional parallel assignments. Imagine, for instance, dragging a mouse through an execution
path in a source program—around loops, down conditionals, into function calls, and so
forth—and watching the transfer relation describing the precise behavior of that path
build up incrementally. There may arise a few terms in the transfer relation that would
correspond to the internals of the semantics rather than anything appearing explicitly
in the source program—the variable H that we used as a heap pointer in the MINI-C
semantics, for instance—and the user would have to learn these. But for the most part,
the output would appear quite natural. Such a debugger would not only be useful to help
understand what the code does, but could catch bugs or potential sources of bugs. In par-
ticular, because @ computes the precise composition, it is guaranteed to cover all aliasing
possibilities, and these are revealed as aliasing tests in the resulting transfer relation.

e We have isolated the problem with existing approaches to program analysis that they
construct an abstract property a single step at a time, often resulting in dramatic loss
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of precision. If an existing analysis is retooled to work for TR, then this fundamental
limitation is eliminated because the analysis is free to apply @ to compose multiple steps
and thus build the abstract property multiple steps at a time. The great advantage to
this idea is that it is completely general and can potentially improve the accuracy of any
existing program analysis. For any given existing program analysis, however, there are
the following practical issues.

— Retooling the analysis for TR. The TR language is fairly simple, but still contains
parallel assignment, and most existing analyses would need to be extended to han-
dle parallel assignment. For some analyses, this is probably not difficult, and we
described a general approach for value analyses. But for others, such as shape anal-
yses, a general solution may be more difficult.

— Designing a strategy of when to apply @ to build multiple steps and when to apply
the analysis on those compound steps. The obvious general approach to this task is to
use @ on control paths whose endpoints are control points with potentially more than
one incoming edge in a control graph. This is a generalization of composing steps
in a basic block, but still guarantees termination. There may be instances, however,
where further composition would improve precision, and we leave the design of such
strategies as a problem for future work.

Some analysis problems, such as lifetime analysis and dependency analysis, deal directly
with the relation between one point in the execution and some later point in the execution.
Therefore, these analyses are actually abstractions of transfer relations. This implies
that our methodology may be fundamentally better suited to such problems than the
traditional approach of computing a property of the states reached during execution.

Our methodology is probably well suited for the analysis of concurrent programs. One
may treat a process-creation point as a branch in the control-flow graph of a program.
Then one may build the transfer relations for each branch of the path, to relate precisely
the data in the old process with the data in the new process, at least up to a certain
finite path of execution in each process. For instance, this is useful for determining that
a communication channel is used in a restricted fashion between two processes.

We have demonstrated that it is possible to achieve some symbolic closed-form solutions
that track data through loops. There may be other ways in which information about
a loop can be computed symbolically. For instance, if we switch the order of the two
arguments of the E function, yielding functionality

E € TR — Exp — Exp,

then any fixed point of (EA) is an expression that evaluates to the same value before
and after transfer relation A. If A is the transfer relation of a path through one iteration
of a loop, then these fixed points are loop-invariant expressions, and any binary-valued
fixed point is a loop invariant. The ability to express a single iteration of a loop as a
concise term A gives some hope that there are useful ways to compute effectively these
fixed points.
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e Program transformations, such as classical compiler optimizations, are ultimately based
on semantic equivalence of code fragments. One code fragment may be replaced with
another if and only if they are semantically equivalent, for some appropriate notion of
semantic equivalence. We have given a way of producing a term describing the semantic
behavior of any finite control path in the source program. This term is not canonical,
but it is more abstract than the source program itself and thus is more amenable to
reasoning about semantic equivalence. Indeed, syntactic equivalence of composed transfer
relations can be quite useful in practice as an approximation to semantic equivalence.
There is hope that our methodology could form the basis of a generic calculus of program
transformations for use in optimizing compilers for a wide variety of languages, including
imperative languages.
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