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Abstract

The goal of program analysis is to determine automatically properties of the

run-time behavior of a program. Tools of software development, such as compilers,

program-veri�cation systems, and program-comprehension systems, are in large part

based on program analyses. Most semantics-based program analyses model the run-

time behavior of a program as a trace of execution states and compute a property

of these states. Typically, this property is drawn from a predetermined language of

semantic information, such as aliasing descriptions or types of values. The standard

methodology of program analysis is to construct the property as a �xed point, a

single execution step at a time. We explain that these ubiquitous methodological

choices|the a priori choice of the describable program properties and the use of a

�xed-point computation|have some fundamental limitations and can result in poor

precision.

In this dissertation, we present a di�erent approach to semantics-based program

analysis. Our methodology is based on transfer relations that precisely describe

the changes between the state of memory one point during execution and the state

of memory at some later point in the execution. We isolate a language TR of

concise computer-representable presentations of transfer relations. We also give an

algorithm � that, given two transfer relations from TR, symbolically constructs

a third transfer relation in TR that is semantically equivalent to their relational

composition. An analysis designer begins by describing the operational semantics

of a source language as a set of TR-terms that precisely describe the atomic steps

of execution. Then an analysis algorithm repeatedly applies � to build a precise

run-time description of any �nite control path of interest.

We show that TR is expressive enough to describe a wide variety of source-

language features, including heap-allocated mutable data structures, arrays, point-

ers, and �rst-class functions. We then explain how our analysis methodology over-

comes some current limitations of program analysis. The transfer relations them-

selves are useful program properties and would be di�cult or impossible to formulate

with classical approaches to program analysis. But we also describe some classes of

analysis applications that are based on transfer relations. For instance, we explain

that the classical limitation of program analysis to build a property a single execu-

tion step at a time can result in dramatic loss of precision, but may be overcome

by using � to compose multiple steps before applying a classical analysis. Further-

more, we show how to compute precise properties of loops symbolically, avoiding

the inevitable imprecision of a �xed-point computation.
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Chapter 1

Some Topics in Program Analysis

The goal of program analysis is to determine automatically at compile time some properties

about the run-time behavior of a program. There are several major applications of program

analysis.

� Compiler support. It is reasonably straightforward to implement a correct compila-

tion of a program from a high-level language to machine code, but it is not as easy to

implement a high-quality compilation. This is because the program may have a special-

ized run-time behavior that the compiler could exploit, but this run-time behavior may

not be easy to detect from a simple examination of the code. Therefore, the compiler

must invoke a program analysis to uncover this run-time behavior. For instance, most

compilers use data-
ow analysis (e.g., [KU76], [MJ81]) and alias analysis (e.g., [CWZ90],

[Lan91], [Deu94]) to enable classic optimizations such as common-subexpression elimina-

tion, copy propagation, and hoisting of loop-invariant computations [ASU86]. Similarly,

some compilers for languages with �rst-class functions use a control-
ow analysis (e.g.,

[JM79], [Shi91]) to construct a conservative control graph. Compiler support is far and

away the most common application of program analysis.

� Program veri�cation. One would like to check statically that a program will behave

properly at run time. For instance, an analysis might verify that a C program never

attempts to dereference a dangling pointer; or if it cannot verify a property that strong,

it might at least isolate a small number of potential trouble spots in the code. Also,

strongly typed languages such as Standard ML [MTH90] verify at compile time that a

program is well-typed and thus completely eliminate any possibility of a type error at run

time. Furthermore, static type-checking reveals at compile time a remarkable percentage

of programmer errors.

� Program comprehension. A subject that has been gaining interest in recent years

is the use of program analysis to aid the human understanding of code. For instance,

the work in static debugging [Bou93a, Bou93b] allows the user to specify various kinds

of pre- and post-conditions at di�erent points in the program, and then calculates the
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corresponding information about the ranges of numeric variables. Also, program slicing

(e.g., [HRB90], [FRT95]) isolates the parts of a program that contribute to or depend on

a particular variable in the program chosen by the user.

This dissertation presents some new developments in the theory of program analysis. By

\theory of program analysis" we mean that we are concerned less with speci�c analysis problems

or speci�c applications of program analysis, and more with generic semantic tools that are

powerful and yet easy to apply to a variety of real programming languages and analysis tasks.

To put our goals into perspective, we compare them to the goals of abstract interpretation.

Abstract interpretation [CC77] is a general theory of semantics-based program analysis|so

general and wide-ranging that the theory itself intentionally does not provide explicit support for

particular language features, such as data structures and functions, or particular applications,

such as alias or data-shape analysis. A powerful methodology has been constructed around

this theory [CC79, Cou81, Cou90, CC92a, CC92b, CC92d, CC92c, CC94, CC95], including a

wide range of techniques for designing numeric lattices [Kar76, CH78, Gra89, Gra91a, Gra91b].

But when faced with a speci�c analysis task for a speci�c programming language, the analysis

designer is left largely on his own to cope with the overwhelming generality of the framework.

With a deep understanding and skillful use of the methodology, the results can be spectacular,

such as the storeless alias analysis of Deutsch [Deu92, Deu94]. But after 20 years, much of the

staggering potential of abstract interpretation still remains largely untapped.

In contrast, our methodology is designed around real language features, such as pointers,

heap-allocated data structures, arrays, assignment, and to a lesser extent �rst-class functions.

Consequently, although our framework does not have the same level of generality as abstract

interpretation, it is more straightforward to apply our tools to real languages and real analysis

tasks. We aim to strike a balance between analysis theory and analysis design. One of our

goals is to bring some of the power of semantics-based analysis techniques closer to the user.

To accomplish this, we have taken a step back in order to consider the task of program anal-

ysis from a fresh perspective. This new perspective has uncovered some fundamental limitations

in the current methodology of program analysis|limitations that are manifest in real analyses.

By largely reworking semantics-based program analysis from the beginning, this dissertation

provides some technical answers to these basic limitations.
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1.1 Limitations of Single-step Abstract Interpretation

We begin with an anecdote. Imagine that you are asked to report the sum to two decimal

places of the following list of numbers:

2:5548

1:3475 � 10�1

9:971

3:802 � 10�3

2:388 � 102

5:262

Consider these two di�erent approaches:

� Algorithm A: Compute the exact sum of all six numbers and then round that sum to two

decimal places.

� Algorithm B: Begin with 0, and then add the �rst number, round to two decimal places,

add the second number, round to two places, add the third, round again, and so forth.

Algorithm A is the procedure that naturally comes to mind for this task, and of course it returns

the correct answer of 256:73. In contrast, Algorithm B reports a result of 256:71, which is close

but not correct. Why would anyone choose this second approach? One can imagine that the

reduction in computation e�ort is worth the potential for accumulated rounding error.

In fact, these two algorithms are just the endpoints of a spectrum of possibilities. For

instance, one could �rst compute the precise sum of adjacent pairs of numbers in the list,

yielding a list of three exact partial sums:

2:5548 + 1:3475 � 10�1 = 2:68955

9:971 + 3:802 � 10�3 = 9:974802

2:388 � 102 + 5:262 = 2:44062 � 102

Then apply Algorithm B to this list, yielding a better but still not exact 256:72. This suggests

a general approach of rounding only every so often during the accumulation of the sum, where

Algorithm A is the extreme that rounds only at the very end, while Algorithm B is the other

extreme that rounds after every single number in the list.

This simple discourse on how to compute rounded sums illustrates by analogy a remarkably

important limitation of program analyses. As a very simple example, consider the following

program.
while n > 0 do

f

y := x� 3;

x := y+ 5;

n := n� 1

g
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Suppose that at any point during an execution of this program, the variable bindings are

described by an environment

� 2 Env = Var! Int

Say we wish to determine the variable bindings at the termination of this program, given an

environment �0 describing the initial bindings. Because this program always terminates (as

long as n, x, and y are bound in �0), we can in fact just execute the program and return the

�nal environment as the answer.

By analogy, an entire environment � corresponds to a real number, and the execution of a

single step of the program (which may modify the environment) corresponds to the accumulated

addition of one number in the list.1 Thus, executing the program corresponds to accumulating

the exact sum of a list of real numbers (starting with 0). The length of the list is the total

number of execution steps, which in this case is always �nite, but may be quite long.

But suppose that all we want to know about each variable at the end of execution is

information about its sign, expressed as one of the following properties of integers ordered by

implication (in other words, sets of integers ordered by inclusion).

int

% -

nonpos nonneg

% - % -

neg zero pos

- " %

none

Given an environment �, one can abstract � by a sign environment �̂ such that (�̂ x) is the sign

(either neg, zero, or pos) of (� x) for all variables x.

�̂ 2 dEnv = Var! Sign

By analogy, �̂ corresponds to the \rounding" of �. Again, we can just execute the program

and \round" the �nal environment to a sign environment. This is analogous to Algorithm A,

and it will always return the strongest properties.

It is well known, however, that this process is infeasible in general. For one, the program

may take a long time to execute. Even worse, we may not know the exact initial environment

�0. Finally, some programs do not terminate, and even if we do know �0 beforehand, it is

impossible to determine e�ectively if the execution will eventually halt. So in general we must

settle for some approximation of the result.

The standard approach to program analysis is essentially to perform Algorithm B, abstract-

ing at each step. For our example program, the �rst three steps would produce the following

1This analogy has the disadvantage that a real number corresponds to both an environment and a single-step

transformation between environments; it is crucial to distinguish these two very di�erent concepts.
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sign environments from the initial sign environment shown below:

[x; y; n 7! pos; pos; nonneg]

while n > 0 do

f [x; y; n 7! pos; pos; pos]

y := x� 3;

[x; y; n 7! pos; int; pos]

x := y+ 5;

[x; y; n 7! int; int; pos]

n := n� 1

g

Before the �rst assignment, all that is known about x is that it is positive, but the analysis

must calculate x � 3 to determine the value of y. The exact answer is the set of all positive

integers decremented by 3, which is the set f�2;�1; 0; : : :g, but the abstraction \rounds" that

set to the smallest enclosing element in the sign lattice, which is int. Now, in the next step, all

that is known about y is that it is an integer, and so y+5 is the set of all integers incremented

by 5, which is again the set of integers. So the abstract value of x in the next step is int.

However, a little bit of thought reveals that x is actually guaranteed to be positive after

the second assignment. The reason the analysis has already lost this information is because of

the abstraction, or \rounding error", between the two assignments. If the set f�2;�1; 0; : : :g

had not been abstracted to int, then its increment by 5 in the next step would yield the set

f3; 4; : : :g, whose abstraction is pos. Thus, there are two ways to achieve better results.

1. Do not abstract between the �rst and second assignments.

2. Abstract after every step as usual, but beforehand enrich the lattice of integer proper-

ties with an element corresponding to f�2;�1; 0; : : :g, so that the abstraction of this

intermediate property loses no information.

The �rst approach seems promising, but is not in the current repertoire of program analysis

techniques. Most of this dissertation develops a a general foundation that one may use for this

approach; we will return to it shortly.

The second approach seems absurd from a practical standpoint and troublesome from a theo-

retical standpoint. It clearly does not generalize. For instance, elements such as f�2;�1; 0; : : :g

are clearly ad hoc and dependent on the particular run-time behavior of a program. Probably

many new elements would be needed for a reasonably sized program, and for anything more

sophisticated than a sign analysis, the space from which these elements may be chosen becomes

much more complex and rich. Even if one could isolate a small set of useful specialized elements

with which to enrich the property lattice for a given program, it seems di�cult to determine

which properties would be the most useful without actually running the program itself. Never-

theless, there are examples of practical program analyses that essentially use this idea in limited

capacity for the lack of any other solution; we give an example at the end of this section.
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To continue with the analysis of this program, there is the additional complication that the

execution length (corresponding to the length of the list of numbers) may be unbounded, and

so an analysis will typically use some \folding" strategy, usually at every program point, and

compute the solution as an iterative �xed-point calculation. For example, the next step above

is to calculate pos� 1 = nonneg for n, and then to join the resulting sign environment with the

old environment at the loop entry, weakening the properties of x and y to int. The analysis

reaches the following �xed point after a second iteration through the loop:

[x; y; n 7! int; int; nonneg] -

while n > 0 do j

f [x; y; n 7! int; int; pos] j

y := x� 3; j

[x; y; n 7! int; int; pos] j

x := y+ 5; j

[x; y; n 7! int; int; pos] j

n := n� 1 j

[x; y; n 7! int; int; nonneg] %

g

[x; y; n 7! int; int; zero]

The last environment is the answer. But the most precise answer (corresponding to the \correct"

rounded sum) is

[x; y; n 7! pos; int; zero]:

As we have suggested, the reason that the analysis reported the �nal sign of x as int

instead of pos is because it used the equivalent of Algorithm B, which is the extreme approach

of abstracting at every step. Algorithm A is at the other extreme, which as we have explained

is uncomputable for program analysis. But what about the intermediate approach of \rounding

only every so often"? To understand how that applies to program analysis, consider rewriting

the program to use a parallel assignment:

while n > 0 do

f

x; y; n := x+ 2; x� 3; n� 1

g

Now apply the approach of Algorithm B:

[x; y; n 7! pos; int; nonneg] -

while n > 0 do j

f [x; y; n 7! pos; int; pos] j

x; y; n := x+ 2; x� 3; n� 1 j

[x; y; n 7! pos; int; nonneg] %

g

[x; y; n 7! pos; int; zero]
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This returns the most precise answer possible. Note how this approach was able to determine

the precise result for x. Before the assignment, x is pos. So, x + 2 is the set f3; 4; : : :g, which

is then abstracted to pos.

Technically, we are still abstracting after every step and using the same sign analysis to

do it, but by rewriting the three sequential instructions into a single parallel instruction, we

are in e�ect abstracting only after every third step. Recall that in our analogy, a real num-

ber corresponds both to an environment (the accumulated result) and a single-step transition

between environments (an element of the list). Here, the transitions are done by assignment

statements, so this transformation from multiple sequential statements to a single parallel state-

ment corresponds to adding groups of adjacent numbers in the list before applying Algorithm

B.

The above is of course merely a toy example. But it is not hard to �nd examples in real

program analyses that su�er from this same phenomenon of abstracting after every step. For

instance, Ghiya and Hendren describe in [GH96] a shape analysis that attempts to determine

whether data structures in a C program are trees, dags, or graphs. Their paper describes a

di�culty with their analysis:

If a data structure temporarily becomes dag-like or cyclic and then becomes tree-

like again, shape analysis cannot detect this, and continues to report its shape as

dag-like or cyclic. The benchmark reverse that recursively swaps [the children of] a

binary tree represents this case.

Although shape analysis for C is quite a bit more complex than a sign analysis for a simple arith-

metic while-loop language, it turns out that the di�culty that Ghiya and Hendren described

is precisely the same phenomenon that caused the sign analysis above to fail to detect that x

is always positive. The fundamental reason that they cannot detect those temporary changes

of shape is that they abstract at every step. In their case, they abstract a C memory state by

a \direction matrix" and an \interference matrix"; and whereas our problem in the program

above was that our lattice of sign properties could not precisely express the set f�2;�1; 0; : : :g

that came up after the second step, their problem is that their abstract store cannot express

many of the possible forms of non-tree or non-dag shapes that may arise temporarily during

execution.

This is a problem not just with Ghiya and Hendren's shape analysis. At the same con-

ference, Sagiv, Reps, and Wilhelm presented a shape analysis that attempts to address these

issues [SRW96]. They point out that:

The third and fourth common list-manipulation operations|splicing a new element

into a list and removing an element from a list|can, in many cases, be handled

accurately by our shape-analysis algorithm, even if shape-nodes temporarily become

shared!
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But they, too, abstract after every single step. In order to achieve good results for some

programs that temporarily alter data shapes, they instead chose to design a rather unusual

abstraction of a memory state that can actually express certain kinds of temporary shape

alterations that might arise in common programs. In spirit, their solution is item 2 on page 7.

As we suggested there, this approach does not generalize very well and is necessarily limited at

the outset; this is indeed the case for their analysis. Because of their specialized lattice design,

their analysis determines very little information about any program that allocates at least one

pointer that is at some point shared (pointed to by more than one distinct location in memory)

and not itself the binding of any variable. Clearly, this eliminates a great many programs

from consideration|for instance, any program that creates a doubly-linked list or any kind of

dag-like structure. In contrast, the Ghiya/Hendren analysis is not nearly so limited.

Our claim is that the methodology of abstracting at every step is a ubiquitous and serious

limitation of current program-analysis methodology. To understand why, we will revisit abstract

interpretation, the root of semantics-based program analysis, in Chapter 8. This dissertation

will provide a solution, which we will outline in Section 1.3.

1.2 Overuse of Abstraction and Fixed-point Computation

Our discussion of the sign analysis in the previous section centered around how to deal with a

single loop iteration. We only touched upon the \folding" process that was necessary to deal

e�ectively with the unbounded execution length of the program. The issue of how to cope

with in�nite execution sequences is of primary importance in program analysis, and almost all

analyses use a similar technique of computing a �xed point over an abstract semantic domain

(sign environments in the above example).

Our claim that this technique is rather ubiquitous and yet not well suited for many analysis

tasks. The cause of this state of a�airs is, perhaps surprisingly, strongly related to the cause

of the problem described in the previous section: that analyses cannot take multiple steps of

execution between abstraction. Fortunately, the solutions to these two problems are closely

related, as well, and in this dissertation we develop the foundations for both.

In Chapter 8 we will see that the foundation of semantics-based program analysis is based

on an observation that a semantics of a language is usually expressed using a �xed point whose

iterative calculation corresponds in some sense to the execution steps of the program. For

instance, consider the common form of operational semantics as a transition system, in which

program execution is modeled by the single-step transitions from machine state to machine

state. This kind of semantics is particularly useful for program analysis because it expresses

many intensional details of execution that might be of interest to analyze; one might say that

it is \close to the iron", in comparison to a more extensional semantics such as a standard

denotational model that only maps program input to program output. We will say more about

this in Chapter 4.

For now, we are not so much concerned with the appropriateness of a particular semantic

model for the purpose of program analysis, but rather we wish to illustrate that semantic



1.2 Overuse of Abstraction and Fixed-point Computation 11

models of programming languages typically use �xed points that re
ect program execution. For

example, a transition system of a particular program P will have a binary transition relation

7�! � State� State

specifying the pairs of states that may be adjacent in an execution of that program. Then the

semanticsM[[P ]] of program P is de�ned as an unfolding of this relation into a set of unbounded

sequences (where ~ : denotes the extension of state sequence ~ by state  ):

~ : 2M[[P ]]  7�!  0

~ : : 0 2M[[P ]]

If this rule is solved inductively from a base set of initial states, its iterative solution yields all

�nite execution pre�xes.2

One can rephrase the iterative solution of the above rule as the repeated application of a

function

S[[P ]] 2 P(State�)! P(State�)

that, given a partial solution ofM[[P ]], applies the above rule once to enlargeM[[P ]] by a single

execution step.

A program analysis based on this transition-system semantics must analyze these potentially

unbounded sequences. For instance, suppose that in our sign analysis above, a state comprises

a control point specifying the line of the program to be executed next and an environment

specifying the current variable bindings.

State = CtrlPoint� Env

The analysis that we described informally above can now be formalized as an iteration of

(� � S[[P ]] � 
) 2 dState! dState
until a �xed point is reached, where


 2 dState! P(State�)

� 2 P(State�)! dState
and dState = CtrlPoint! dEnv:
Here, a member of dState is a table of abstract environments indexed by control point, just as

we showed next to the program in the examples of Section 1.1. The function 
, given such a

2There are similar ways to express the in�nite executions of a program via coinduction, but for the sake of

simplicity we leave the reader to [CC92b] for a discussion. We do note, however, that the use of coinduction for

program analysis is powerful technique, especially for the analysis of errors, that is currently not well appreciated.

For examples, see [Bou93a].
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table 	̂, describes the set of all execution sequences whose states satisfy the properties given in

	̂. The function � abstracts a set of execution sequences by a table giving the strongest sign

properties of the states in those sequences.

In the analogy of Section 1.1 in which we compared program execution and analysis to the

accumulation of the rounded sum of a list of numbers, a set of execution sequences corresponds

to an \exact" real number, and a member of dState corresponds to a \rounded" real number.

The function 
 is given a rounded number representing the accumulated sum at some point in

the middle of the list. Conceptually, 
 \coerces" this number into an exact number by adding

zeroes onto the end. Then S[[P ]] corresponds to adding the next number in the list to this

sum, and � rounds the resulting sum, usually losing information. The program analysis repeats

this process until it reaches a �xed point (which does not have a clear analog in our list-sum

anecdote).

Almost every kind of program analysis is based on a similar notion of �xed-point calculation

over an abstraction of the properties of interest. This is not always apparent, because many

analysis frameworks, such as data-
ow analysis [MJ81], type inference [KMP84], and constraint-

based analysis [Hei92, AWL94], are phrased in terms of systems of equations or inference rules.

But most of these frameworks reduce to a �xed-point calculation whose iterations correspond

in some sense to abstract execution steps of the program. Abstract interpretation is a �xed-

point-based theory that uni�es these seemingly disparate approaches.

In Section 1.1 we explained that this methodology of abstracting after every step can cause

severe precision problems with the analysis. In our small while-loop example, we illustrated

this problem by rewriting the three individual assignments in the loop body as a single parallel

assignment. In Chapter 8 we will go further into that topic, but for now we suggest that a

multi-step program analysis might amount to �nding the �xed point of

(� � S[[P ]] � S[[P ]] � S[[P ]] � 
) 2 dState! dState
instead of the above function that takes only a single step between applications of the abstraction

function �. The problem is that there is no general methodology to develop program analyses

that have this kind of 
exibility. But we have developed such a methodology, which we outline

in Section 1.3.

Now we may make the following key insight. Once one has a methodology to perform any

number of steps between abstractions, the need to perform the abstractions and compute the

�xed point often evaporates.

For instance, shape analyses are often concerned with detecting computations that are

shape-preserving. It is common for the success or failure of a shape analysis to be measured by

how well it analyzes routines such as list-insert, list-delete, node swapping, and so forth. For

instance, one would like to determine that a routine that destructively inserts a node into a

linked list preserves the invariant that the structure upon which it operates has the shape of a

list. Routines such as these typically take more than one instruction, but still a �nite number

of them. Why would they need an iterative �xed-point calculation to compute their shape-

preserving properties? The answer is that they do not, but because the present methodology of
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program analysis does not o�er any way to combine multiple execution steps, a shape analysis

has no choice but to perform a global �xed point as we did for the sign properties in Section 1.1.

1.3 An Introduction to Our Methodology

This dissertation develops a foundation for a new methodology of program analysis that ad-

dresses the problems that we have described above. This foundation is based on a semantic

methodology of programming languages in which it is possible to compute a simple term de-

scribing the net e�ect of any given �nite execution path.

In Section 1.2 we suggested that an operational semantics based on a transition system

between execution states is particularly useful for program analysis. For the example program

in Section 1.1, an execution state was a pair of a control point and an environment. In general,

environments are not expressive enough because they cannot express pointers and other kinds

of mutable data structures.

In order to address a wide variety of languages, we introduce the notion of a store. A store

is similar to an environment in that it maps variables to values, but it also maps references to

values. A reference is a pair of two values; the reference (v; v0) is written v:v0 and represents

component v0 of data structure v. Actually, it is convenient to think of a store as a graph

whose nodes are values and whose edges are labeled by values. Then v is the root node of some

data structure (record, pointer, array, and so on), and its outgoing edges point to its mutable

subcomponents, labeled by their names v0 (�eld names, the C \*" token, integer array indices,

and so forth). An l-value is an object that may be dereferenced in a store; it is either a variable

x or a reference v:v0. A store is then a map from l-values to values.

� 2 Store = Lval! Val

Lval = Var [ (Val� Val)

The set Val of values is left unspeci�ed because di�erent languages will need di�erent values.

We consider this parameterized notion of a store, however, to be common to all languages.

More speci�cally, the techniques in this dissertation apply to any language in which the

execution(s) of a program can be expressed as a transition relation

7�! � State� State

where

State = CtrlPoint� Store

for some set CtrlPoint of static control points and some set Val of values.

Usually, 7�! is de�ned by meta-rules that specify how the individual pieces of program

syntax induce transitions. For instance, one might imagine the following rule for variable

assignments.

(x := e; t; �) 7�! (t; �[x 7! E [[e]]�])
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Here, e is a basic expression, and E [[e]]� denotes the value to which e evaluates in store �. The

core idea of our technique is to replace these meta-rules with computer-representable composable

descriptions.

Our �rst observation is the isomorphism

P(State� State) ' CtrlPoint� CtrlPoint! P(Store � Store):

This means that a transition relation 7�! is equivalent to a table of binary relations on stores,

indexed by pairs of control points. We write the (C;C 0) entry in this table as
C;C0

7�!, and this

relation de�nes the possible store changes in a single step from C to C 0. Thus,

(C; �) 7�! (C 0; �0) i� �
C;C0

7�! �0:

For example, one can rewrite the above meta-rule as

�
(x:=e; t);t
7�! �[x 7! E [[e]]�]

or, alternatively, as the de�nition

(x:=e; t);t
7�! = f(�; �0) j �0 = �[x 7! E [[e]]�]g:

We call a binary relation on stores a transfer relation. A transfer relation describes a way in

which a store evolves during execution. For example,
C;C0

7�! is a transfer relation that describes

how the store changes in a single step from C to C 0. A nice property of transfer relations is

that one may compose them to express multiple steps of execution. For instance,

C;C0

7�!;
C0;C00

7�!

is a transfer relation that expresses how a store changes in an execution that begins at control

point C, progresses in one step to C 0, and then progresses in the next step to C 00. Here, the

symbol \;" is the relation composition operator. In this manner, one can build the transfer

relation for any �nite control path.

Above, we said that our central approach is to replace the meta-rules of the transition system

with computer-representable composable relations: computer-representable because they will

be directly manipulated and examined by a program analysis, and composable because we

want a 
exible way of processing multiple execution steps in the analysis before abstracting the

result, as we explained in the example of Section 1.1 and more generally in Section 1.2.

Let us examine this more closely. As we explained in Section 1.2, an algorithm for analyzing

program P works by iteratively applying an abstract step function

(� � S[[P ]] � 
) 2 dState! dState
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where dState is a set of abstract properties of state sequences (such as the signs of the numeric

values occurring in the states), and the application of this function to 	̂ 2 dState applies the
transition relation 7�! to extend by one step every execution sequence consistent with 	̂ (as

given by 
) and abstracts the resulting set of execution sequences with �, in general losing

information (i.e., weakening the property) in the process.

However, this function cannot be implemented in these three stages. It is not possible for a

program-analysis algorithm to manipulate the probably in�nite sets of states or state sequences.

Instead, a program analysis performs this three-stage operation in a monolithic fashion, where

� and 
 are \baked into" the transition relation 7�! that forms the core of S[[P ]].

For example, consider again our example meta-rule for variable-assignment transitions:

(x := e; t; �) 7�! (t; �[x 7! E [[e]]�])

The program analysis designer will hand-design an algorithm that \abstractly" performs these

transitions. For instance, if dState is the set of tables of sign environments indexed by control

point, as given in Section 1.2, then a straightforward algorithm to compute (� � S[[P ]] � 
) will

be hard-wired to propagate the sign property of expression e at control point (x := e; t) to

variable x at control point t for each variable assignment in P . This makes intuitive sense|

the algorithm is \abstractly interpreting" the variable assignments. But of course the analysis

designer should justify these intuitions by proving that the algorithm actually implements this

function.

Note that:

1. To apply an existing analysis to a di�erent language, one must separately hand-design a

new algorithm for the meta-rules of that language. This is an engineering disadvantage.

2. Because the abstraction is \baked into" the analysis algorithm, there is no way to perform

multiple execution steps abstracting the result. This is a more serious disadvantage be-

cause, as we have explained, it can have devastating e�ects on the quality of the analysis.

We now consider a di�erent methodology to address these issues. Consider the meta-rule shown

above as the single-step transfer relation

(x:=e; t);t
7�! = f(�; �0) j �0 = �[x 7! E [[e]]�]g:

Imagine a universal computer-representable language of these single-step transfer relations; for

instance the above relation might be written as

x 7! e :

Then, given some analysis task such as sign analysis or shape analysis, one could implement

a universal \back-end" that analyzes this language of transfer relations. Thus, to apply the

analysis to a particular programming language, one merely expresses its semantics in terms of

this language of single-step transfer relations instead of the usual meta-rule formulation.
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Imagine further that this computer-representable language of transfer relations is closed

under composition. For instance, the two successive variable assignments

(y:=x�3; x:=y+5; t);(x:=y+5; t)
7�! = y 7! x� 3

(x:=y+5; t);t
7�! = x 7! y + 5

might be symbolically composed as follows

y 7! x� 3 ; x 7! y + 5 = x; y 7! x� 3; x+ 2

to yield a computer representation of this two-step execution segment. Then, because the

analysis back-end is designed to analyze any member of the language of transfer relations, it has

maximum 
exibility to perform any number of steps before abstracting. We demonstrated the

bene�ts of the above example in Section 1.1; there, we magically rewrote the source program, but

now we are moving toward a universal language-independent methodology of transfer relations.

Of course, the example immediately above is quite simple, as it does not involve important

language features such as arrays, pointers, mutable data structures, or conditionals. The fol-

lowing question remains. Is there a computer-representable language of transfer relations closed

under composition that is both

� expressive enough to handle a wide variety of imperative and applicative language features,

and

� simple enough to be the target of a wide variety of important program analyses, such as

alias, shape, and value analyses?

The answer is yes, and this language of transfer relations is largely the subject of Part II. This

leads to the following general methodology of program analysis.

?
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Language 2

Language 3

Analysis 1

Analysis 2

Analysis 3

Transfer Relations

composition
strategy

Given a language and an analysis task, one �rst describes the semantics of the language

in terms of single-step transfer relations. Then, guided by a strategy to suit the analysis task

and particular program at hand, some of these transfer relations are composed into bigger
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steps, similar to our rewriting of the example program in Section 1.1. Finally, the particular

analysis problem uses these multi-step transfer relations in a manner appropriate to the task.

In some cases, such as the sign analysis of Section 1.1 it is appropriate to apply an abstract

interpretation to compute an abstract �xed point of these transfer relations. In other cases,

such as the analysis of shape-preserving properties of data-structure maintenance routines, it

may be more appropriate to extract the property of interest directly from the multi-step transfer

relations, without designing any abstraction or performing any �xed-point computation.

Note that the compositions occur at the language-independent stage of transfer relations,

so although they are sometimes analogous to rewriting source-program instructions, as in Sec-

tion 1.1, that is not always the case. Also note that the analyses are now de�ned in terms

of transfer relations instead of source programs. This means that large parts of an analysis

do not have to be reimplemented for di�erent languages. In general, however, reengineering is

necessary because the language transfer relations will be parameterized by a set of primitive

operations, and those may change from source language to source language.

1.4 Overview of the Dissertation

� Part II presents the language of transfer relations and the basic algorithms to compose

them and manipulate them, and explains the general procedure for modeling the dynamic

semantics of a programming language with transfer relations.

� Part III shows how to model a variety of imperative and applicative language features

with transfer relations.

� Part IV expands on Section 1.1 and Section 1.2 by sketching some ideas for how to design

program analyses around transfer relations.

� Part V concludes.
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Part II

Foundations





Chapter 2

Stores and Transfer Relations

The foundation of our study is the store. A store is a model of an instantaneous state of the

memory during program execution. As a program executes, it will at various points examine

variables, data structures, stack frames, and so on, and it will at other points change the values

of variables, alter the components of data structures, allocate new data structures, create new

stack frames, and so forth. All of these operations are modeled as examinations or alterations

of the store. Intuitively, there is one global store that evolves during program execution. But

semantically, this \global store" is modeled as a trace of stores. Every time the program takes

another step, another store is added to the sequence. If that execution step modi�ed the store,

then the modi�cation will be re
ected in the latest store. Otherwise, the latest store will just

be a copy of the previous one. In this way, the program leaves a trace of stores.

Now consider the task of analyzing a program's execution. Ideally, one would actually let

the program run, leaving its trace of stores behind. Then, when the program is done, one could

go back to that trace and analyze everything that happened during that execution. The trace

of stores is the entire execution history, and with perfect knowledge of that history all questions

about the program's run-time behavior could be answered. This is sometimes called pro�ling.

This approach to program analysis has some serious problems.

� The execution may not terminate, thus leaving behind an in�nite trace of stores. So it is

impossible in general to run a program and then perform a post-mortem analysis on its

trace.

� If the initial store (initial data, values of free variables, and so on) is unknown, then it

doesn't make sense to analyze the execution trace of just one execution. One would have

to analyze one execution from all possible initial stores, and in general there are an in�nite

number of them.

� Even if the initial store is �xed and the program terminates, the execution may have a

large number of steps, and it is not feasible to record the entire store at every step.
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Program analysis is largely the study of how to cope with these issues. The usual approach

begins with the observation that if there were an e�cient way to represent in a computer some

interesting but in�nite sets of stores, then some interesting questions about a program's run-time

behavior could be answered, or at least approximated, automatically. These representations

of in�nite store sets can be thought of as store properties, and program analysis thus becomes

the computation of properties of the stores that can arise during some execution from a store

satisfying some initial property. For instance, in Section 1.1 we gave an example of an analysis

that determines a sign property of integer-valued variables at every syntactic point in the

program.

Our approach is to begin not by examining the stores themselves, but how stores change

over the course of the execution trace. Suppose that a program analyzer were omnipotent and

could examine and answer any questions about the execution traces, even in�nite ones, from

all possible initial stores. One question of interest might involve examining pairs of stores at

di�erent points along the trace, to see what the di�erences are between the �rst and the second.

This would provide information about what happened during the interval of execution between

those points. Now reconsider the problems listed above:

� The execution may never terminate and thus leave behind an in�nite trace. But even so,

there may be an in�nite number of �nite intervals during the execution that exhibit the

same pattern of how the store at the beginning of the interval relates to the store at the

end. In fact, this is the case with a loop in the program; each interval corresponds to a

single iteration. If this pattern can be isolated, then it is not necessary to examine the

entire in�nite trace. An example of such a pattern is a loop invariant. But this general

concept goes beyond loop invariants. For instance, one may relate the store at any point

during a loop or recursion with the store k iterations later for a given k.

� Even if the initial store is unknown, there may be a commonality in the change between

any initial store and the store at some later point in the trace. This is similar to the

situation with loops; a potentially unbounded number of trace intervals share a common

net e�ect between their initial and �nal stores. Related to this idea is the use of weakest

preconditions to describe the semantics of loops [Dij76, Wan77].

� As a practical matter, even if the initial store is �xed and the program terminates, isolating

the patterns in the trace provides a hope of making the analysis feasible in practice.

Such a pattern or commonality in the way one store evolves into another is simply a relation

between the initial and �nal stores. We call these transfer relations. It turns out that there is

a simple language of transfer relations that covers all the patterns that arise during program

executions. Also, there are ways to compute these transfer relations and use them to reason

about the executions. In this chapter, we introduce the our model of stores and give the

language of transfer relations.
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2.1 Stores

We make the fundamental assumption that during program execution, any instantaneous state

of the memory can be modeled by a store. A store is parameterized by the following disjoint

sets.
x 2 Var a set of variables

v 2 Val a set of values

A store is then a function from l-values to values.

� 2 Store = Lval! Val stores

w 2 Lval = Var [ (Val� Val) l-values

We parameterize a store by Val because we would like to develop a semantic framework that

is suitable for a wide variety of programming languages and analysis tasks. However, we will

require that Val include the booleans true and false and a special value undef.

true; false; undef 2 Val

The most natural notion of a store is a partial function, mapping exactly the l-values that are

de�ned to their respective values. But instead, for technical reasons in Chapter 3, we require a

store to be a total function, mapping all of the \unde�ned" l-values to the distinguished value

undef. Throughout this dissertation, undef refers to an unde�ned or error value. In Chapter 4,

we will discuss further the treatment of errors.

The \l" in l-value means \location". Intuitively, an l-value represents a location in memory

that might be written or mutated as well as read. There are two kinds of l-values. The �rst

kind is simply a variable. The second kind is called a reference; it is a pair of a value v 2 Val,

representing a data structure, and a value v0 2 Val, representing an index into a mutable

component of that data structure. The l-value (v; v0) 2 Lval is written v:v0.

Intuitively, a value represents the contents of a single mutable memory location|or in other

words, the contents of an l-value. A value might be a simple object such as an integer or a

boolean, or it might be a compound object, such as a tuple or vector. In the latter case, however,

the compound object must be immutable because it represents the contents of a single mutable

memory location. So, for instance, one should not model a (mutable) Scheme [ReC86] cons cell

(1 : 2) with a single value, but rather use three values: one for the cons cell itself, one for 1,

and one for 2.

A store is then a function from l-values to values that describes the contents of the memory.

For instance, if v is the cons cell in the previous paragraph, the store would map the references

v:car and v:cdr to 1 and 2, respectively. Intuitively, a program execution begins in some initial

store �0 describing the initial state of memory, input data, and so forth, and then continually

modi�es the memory while it is executing, producing a sequence of evolving stores �1; �2; �3; : : :

corresponding to the steps of the execution.

We stress again the crucial concept that l-values represent the mutable memory locations.

Some programming languages include data structures that are not mutable|for instance, the
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tuples, records, and vectors in Standard ML [MTH90]. One would probably model these objects

simply as compound values rather than breaking them up into their components and indexing

those components by separate l-values in the store.

Example 1 Consider the C programming language. A value v 2 Val might correspond to any

of the di�erent kinds of C data types:

� An integer, real number, or character. In this case, v would be that value.

� A pointer. In this case, v would be a token representing the pointer itself. In addition,

there would be a value * 2 Val, and the l-value v:* would represent the memory location

to which the pointer refers. A store would then map v:* to the contents of the pointer.

� A struct. In this case, v would be a token (pointer) representing the root of the struct. In

addition, there would be a value f 2 Val for each �eld name f in the structure, and the

l-value v:f would represent the memory location of �eld f of the struct. A store would

then map v:f to the contents of that �eld of the struct.

� An array. In this case, v would be a token (pointer) identifying the array. In addition,

every non-negative integer n would be in Val, and the l-value v:n would represent the

memory location of the nth array element. A store would then map v:n to the contents of

the nth element of the array.

The above example illustrates that for some programming languages, the set Val of values

might include, in addition to the base values of the language, a set of pointers to represent

mutable data structures. In some operational semantics, these are called \locations" or \heap

values" [MFH95] and are just taken from an arbitrary in�nite set.

Again, we stress that a store is a total function. This is not intuitive, because at any time

during an execution of a program in any reasonable programming language, there will only be

a �nite amount of data actually allocated and accessible by the rest of the execution. But this

is why we require that Val include the distinguished value undef to represent the unde�ned

value. The intended use of stores is to model the state of memory during an execution of a

computer program. If an l-value w 2 Lval is unde�ned in the memory then the store � modeling

that memory state would map w to undef (i.e., (� w) = undef). Therefore, the fact that we

require stores to be total functions is not a limitation of expressiveness. However, for minor

technical reasons concerning the symbolic composition of transfer relations in Chapter 3, it will

be convenient for stores to be total functions.

Stores as graphs

It is sometimes helpful to think of a store � as a graph with directed labeled edges. The set of

nodes is

Val [ f tg
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where t is a distinguished root node not in Val. The set of labeled directed edges is

f -xt v j � x = vg [ f -v
0

v v00 j �(v:v
0) = v00g:

Note the following properties of any store graph.

� Because a store is a function rather than a general relation, no two outgoing edges of the

same node can have the same label.

� Node thas no incoming edges, and all its outgoing edges are labeled with variables.

At any particular time during program execution, all the l-values that are unde�ned in the store

at that time will point to undef. Because of this choice of stores as total functions, a store

graph will in general be in�nite. We ignore this technical detail, as our perspective of stores as

graphs is solely for expository purposes.

Example 2 Again, consider the C programming language. Assume the set Val includes C

integers and C characters.

� If at some point during an execution, the variable x 2 Var is bound to a pointer to a location

containing the integer 42, then the store � at that point of execution would contain the

following path from the root node:
-xt -*v1 42

Here, v1 2 Val represents the pointer itself.

� If in addition, y is bound to a struct with a �eld index, which is the integer 618, and with

a �eld data, which points to a two-element array whose elements are the chars 0
A
0 and

0
Z
0, then � would also contain the following paths from the root node:

-yt ��
�*

HHHj

index

data

v2
618

-*v3 ��
�*

HHHj

0

1

v4

0
A
0

0
Z
0

Here, v2 2 Val represents the struct, v3 2 Val represents the char-array pointer, and

v4 2 Val represents the char array.

� If in addition, z is bound to a pointer that dereferences to itself, then � would also contain

the following subgraph:
-zt
v5

* �


�6

Here, v5 2 Val represents the pointer itself.



26 Stores and Transfer Relations

These three subgraphs of � describe precisely the data that is reachable from variables x, y, and

z, respectively, at this point of execution.

In the next section, we study ways to generate a value from other values in a store. This is

done with primitive operations.

2.2 Primitive Operations

Our framework is parameterized by a set Primop of primitive operations. Each operation p 2

Primop has an arity, which may be zero or more. A primitive operation describes a way in

which zero or more values evaluate to a single value. The phrase

p(v1; : : : ; vn) ,!� v

means that the n-ary primitive operation p 2 Primop applied to the values v1; : : : ; vn 2 Val

in store � 2 Store evaluates to value v 2 Val. There are several distinct classes of primitive

operations, which we characterize below.

All primitive operations must satisfy the following condition.

Condition 1 (De�nedness of primitives) For any n-ary primitive operation p 2 Primop,

for any n values v1; : : : ; vn 2 Val, and for any store � 2 Store, there is at least one value v 2 Val

such that p(v1; : : : ; vn) ,!� v. In other words,

8p; v1; : : : vn; �:9v: p(v1; : : : ; vn) ,!� v

This condition states that primitive operations must be de�ned everywhere. Conceptually, this

requirement is analogous to the requirement that a store is de�ned everywhere (i.e., for all

l-values). The condition is required for minor technical reasons in the development to follow.

However, as we explained about stores, this condition does not limit the expressiveness of the

framework because Val includes undef representing the \unde�ned value".

Indeed, the two main parameters of our framework|the set Val of values and the set Primop

of primitive operations with associated evaluation relation|truly go hand-in-hand. This will

come out in Chapter 5 when we describe the design of a programming language using our

development.

It is the parameterization of the framework by the set of primitive operations that makes

this methodology particularly 
exible and useful for a variety of applications. Yet, it is not the

case that we are factoring all of the important semantics concepts out along with the primitive

operations. This is because our concept of a primitive operation is a computation without

store modi�cation. The encapsulation of such operations as the main parameter of the analysis

framework turns out to be quite useful and powerful.
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2.2.1 Deterministic and context-independent primitive operations

It will be convenient to introduce some terms for some di�erent classes of primitive operations.

De�nition 1 (Deterministic and nondeterministic primitive operations) A primitive

operation p 2 Primop is said to be deterministic if

p(v1; : : : ; vn) ,!� v

and

p(v1; : : : ; vn) ,!� v
0

implies that v = v0. Otherwise, p is said to be nondeterministic.

A typical programming language will need only deterministic primitive operations, but certain

applications of the framework will make use of nondeterministic operations, and so we include

them in the general framework.

De�nition 2 (Context-independent and -dependent operations) A primitive operation

is said to be context-independent if for any stores � and �0 and values v1; : : : ; vn; v,

p(v1; : : : ; vn) ,!� v () p(v1; : : : ; vn) ,!�0 v:

In other words, the evaluation of p does not depend on the store. In this case, we may use the

abbreviated form

p(v1; : : : ; vn) ,! v

for evaluation. Otherwise, p is said to be context-dependent.

The simplest kinds of primitive operations are deterministic context-independent operations.

These will come up so often that it is worth introducing a de�nition just for them.

De�nition 3 (Simple primitive operations) If primitive operation p is both deterministic

and context-independent, then it is said to be simple.

2.2.2 Examples of primitive operations

We present some examples of each kind of primitive operations. Although they are just examples

for the moment, some of them will play a major role in the development to follow. This section

assumes that

p(v1; : : : ; vn) ,!� undef

unless otherwise de�ned below. (Recall that undef 2 Val is represents the unde�ned value.)

We also assume that Val includes the integers.
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Simple operations

Recall that simple operations are operations that are both deterministic, in that they evaluate

to only a single value, and context-independent, in that their evaluation does not depend on

the store.

Example 3 Each value v 2 Val speci�es a nullary primitive operation v 2 Primop that evalu-

ates to v:

v() ,! v

Example 4 Here are some standard arithmetic primitive operations found in programming

languages. In these de�nitions, n and n0 are integer values.

+(n; n0) ,! (n+ n0)

-(n; n0) ,! (n� n0)

*(n; n0) ,! (n� n0)

<(n; n0) ,! (n < n0)

>(n; n0) ,! (n > n0)

Example 5 Below are boolean operations for conjunction, equality, and inequality. We will

use the �rst two (& and =) internally in our analysis framework.

&(true; v) ,! v

&(v; true) ,! v

&(false; v) ,! false

&(v; false) ,! false

=(v; v0) ,! (v = v0)

<>(v; v0) ,! (v 6= v0)

Note that there are cases in which these operations are given undef and evaluate to a boolean

value. Intuitively, these are error cases that are allowed to \run wild", and so this choice is

reasonable. We will discuss this more in Chapter 4.

Example 6 The operation if implements conditional expressions.

if(true; v; v0) ,! v

if(false; v; v0) ,! v0

Example 7 Example 1 demonstrated the need for pointer values to correspond to the roots of

mutable data structures. Suppose that for every natural number n there is a pointer hni 2 Val,

and ptr is a unary primitive operation that casts an integer n to the pointer hni.

ptr(n) ,! hni

We will return to ptr in Chapter 5.
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Nondeterministic context-independent operations

These operations may evaluate to more than one value, but do not depend upon the store.

These operations are similar to types, and this similarity provides some intuition about why we

include the possibility of nondeterministic operations. After all, one of the major applications

of program analysis is to infer types of data objects and expressions.

Example 8 The nullary operation pos may evaluate to any positive integer:

pos() ,! n if n 2 f1; 2; : : :g

Example 9 The nullary operation bool may evaluate to any boolean:

bool() ,! true

bool() ,! false

Deterministic context-sensitive operations

These operations always evaluate to a single value, but depend on the store in which the

evaluation occurs.

Example 10 The binary operation deref dereferences edges in a store. Given values v and

v0, it evaluates in store � to the value to which � binds the l-value (v:v0):

deref(v; v0) ,!� �(v:v
0)

This last example is important, which we will see in the next section.

The next example hints at an application of our framework to the analysis of the shapes of

data structures, and also illustrates the point that our notion of primitive operations does not

need to be limited to operations that might be available in a programming language.

Example 11 The unary operation tree, when evaluated in store � with value v, evaluates to

true if the subgraph of � rooted at v (possibly representing the root of some data structure) and

not including node undef is a tree (in graph-theoretic terms). Otherwise, it evaluates to false.

Although Primop is a parameter of our analysis framework, we demand that it include the

following operations described above:

true; false; &; =; if 2 Primop

The �rst two simply provide a way of denoting booleans as expressions. (Recall that the

booleans were the only objects other than undef that we demand to be members of Val.) The

second three are used internally in the transfer-relation composition algorithm in Chapter 3.

We further remark that any nontrivial application of our methodology will need deref in order

to build expressions that can perform general examinations of the store.
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2.3 Expressions and L-expressions

Our framework is based upon the study of binary relations between stores, called transfer

relations, that describe how a store at one point of an execution evolves into a store at some

future point of the execution. We want to write down these transfer relations, represent them

in a computer, and analyze them with algorithms. In order to do this, it turns out that we

will need two languages of computer-representable terms, one to describe the nodes in a store

and one to describe the edges in a store. Later, we will use these two languages to develop a

language of transfer relations.

Elements of the �rst language are called expressions; given a store � 2 Store, an expression

e 2 Exp denotes one or more values v 2 Val. If e denotes v in �, then we say that \e evaluates

to v in �". The same expression may evaluate to di�erent values in di�erent stores.

Elements of the second language are called l-expressions; given a store � 2 Store, the l-

expression l 2 Lexp denotes one or more l-values w 2 Lval. If l denotes w in �, then we say that

\l evaluates to w in �". The same l-expression may evaluate to di�erent l-values in di�erent

stores.

The syntax of the language of expressions and l-expressions is parameterized by a set Primop

of primitive operations, described in Section 2.2, and has the following inductive de�nition.

e 2 Exp ::= x j p(e1; : : : ; en) expressions

l 2 Lexp ::= x j e:e0 l-expressions

p 2 Primop primitive operations (given)

x 2 Var variables (given)

There are two types of expressions:

� A variable x 2 Var. This expression evaluates in store � 2 Store to the (unique) value

v 2 Val such that -xt v is an edge in �. In other words, x evaluates in � to (� x).

� An application of an n-ary primitive operation p 2 Primop to n expressions e1; : : : ; en 2

Exp. This expression evaluates in store � 2 Store to value v 2 Val if expression ei evaluates

in store � to value vi, for i 2 f1; : : : ; ng, and p applied to (v1; : : : ; vn) evaluates in store �

to v.

The phrase

p

denotes the nullary primitive application p(). The phrase

e p e0

denotes the binary primitive application p(e; e0).

There are two types of l-expressions:
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� A variable x 2 Var. This l-expression evaluates to itself in any store, and can be thought

of informally as the dangling edge -xt .

� A reference expression e:e0. This l-expression evaluates in store � 2 Store to the l-value

v:v0 2 Lval if e evaluates in � to value v 2 Val and e0 evaluates in store � to value v0 2 Val.

This l-value can be thought of informally as the dangling edge -v
0

v .

Formally, the interpretations of expressions and l-expressions are given by the following rela-

tions.

� The phrase e `� v means that the expression e evaluates in store � to value v.

� The phrase l `� w means that the l-expression l evaluates in store � to l-value w.

Because a variable is both an expression and an l-expression, this notation may seem ambiguous.

But in the former case, the right-hand side will be a value, and in the latter case it will be an

l-value.

The following rules inductively de�ne these relations.

x `� (� x)
ei `� vi p(v1; : : : ; vn) ,!� v

p(e1; : : : ; en) `� v
expression evaluation

x `� x
e `� v e0 `� v

0

(e:e0) `� (v:v
0)

l-expression evaluation

The following lemma states that every expression (l-expression) evaluates to at least one

value (l-value).

Lemma 1 (De�nedness of expressions and l-expressions) For any expression e 2 Exp,

for any store � 2 Store, there is at least one value v 2 Val such that e `� v. For any l-expression

l 2 Lexp, for any store � 2 Store, there is at least one l-value w 2 Lval such that l `� w. In

other words:

� 8e 2 Exp; � 2 Store:9v 2 Val: e `� v

� 8l 2 Lexp; � 2 Store:9w 2 Lval: l `� w

Proof: From Condition 1 on primitive operations and by straightforward induction on ex-

pression and l-expression evaluation. 2

It is important to distinguish expressions and l-expressions that do not contain any appli-

cations of nondeterministic primitive operations.
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De�nition 4 (Deterministic expressions and l-expressions) For expression e 2 Exp (re-

spectively, l-expression l 2 Lexp), if neither e nor any subexpression of e (respectively, if no

subexpression of l) is an application of a nondeterministic primitive operation, then we say that

e (respectively, l) is deterministic. The phrase determ(e) (respectively, determ(l)) denotes this

fact.

The following lemma states that deterministic expressions and l-expressions always evaluate to

exactly one value and l-value, respectively.

Lemma 2 (Deterministic expressions and l-expressions) For any deterministic expres-

sion e 2 Exp, for any store � 2 Store, there is exactly one value v 2 Val such that e `� v. For

any deterministic l-expression l 2 Lexp, for any store � 2 Store, there is exactly one l-value

w 2 Lval such that l `� w. In other words,

� determ(e)) 8� 2 Store:9!v 2 Val: e `� v

� determ(l)) 8� 2 Store:9!w 2 Lval: l `� w

Proof: From Lemma 1, from De�nition 1, and from straightforward induction on expression

and l-expression evaluation. 2

If all primitive operations in Primop are deterministic, then all expressions are deterministic.

But even if there are nondeterministic primitive operations in Primop, it will be important to

distinguish deterministic expressions for the symbolic evaluation of certain primitive operations

in Chapter 3.

At �rst it may seem as if our language of expressions is too restrictive; why not allow arbi-

trary l-expressions instead of just variables. The reason is that one may treat the l-expression

e:e0 as an expression by using the deref primitive operation that we introduced in the previous

section. Consider the C expression *x. On the left-hand side of an assignment statement, *x

refers to a memory location, or an l-value in our terms. But on the right-hand side, it refers to

the contents of that memory location, or a value in our terms. But C has a uniform syntax to

handle both cases; they are both expressions. In contrast, in our framework the term on the left-

hand side would be an l-expression|namely, x:* (where * 2 Val as in Example 1)|whereas

the term on the right-hand side would be an expression|namely, the primitive application

deref(x; *).

Therefore, deref is a rather distinguished primitive operation in that it provides the ability

to examine the store beyond the level of variables. It is likely that one will almost certainly need

it in any analysis application for any language. Therefore, inspired by the above discussion, we

introduce a special syntax for it. The term

e:e0

will, depending on the context in which it appears, refer to either the l-expression e:e0 or the

primitive-application expression deref(e; e0).
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2.4 Simple Transfer Relations

Our central philosophy is that it is advantageous to analyze relations between two stores. These

relations are called transfer relations. The idea of studying transfer relations is a paradigm shift

from most analysis frameworks, as the focus is usually on reasoning about properties of, or sets

of, individual stores. Yet a program fragment relates initial stores to �nal stores, and so it

seems intuitive to study these relations.

2.4.1 Only some relations are natural

At �rst blush, it seems as if the set of transfer relations is the set

P(Store � Store)

of binary relations between stores. But such an unrestricted notion of transfer relation has two

related disadvantages.

� For analysis purposes, we will want to design computer representations of transfer relations

(ideally, concise representations), and it is impossible to do so for general binary relations

between stores.

� Earlier, we gave the intuition that for the purpose of static program analysis, a transfer

relation corresponds to a fragment of the execution of some program in some programming

language. But there are many binary relations between stores that would never come from

any such execution fragment. Indeed, there are many such relations that are not even

computable. These relations are unnatural in that they do not arise during program

execution, and they are thus of no use for reasoning about programs.

The key is to identify the kinds of transfer relations that might actually come about as part of a

computer program's execution. Fortunately, there is a class of such relations that is su�ciently

expressive and yet conducive to automatic reasoning and analysis. We will demonstrate this in

later chapters, where we model real programming languages with transfer relations and then

use those relations to analyze source programs.

Abstractly, apart from any particular language or program, one basic kind of transfer re-

lation is a relation that updates a store graph by assigning or changing the node to which an

edge in the graph points. These relations can describe dynamic actions in a programming lan-

guage that modify memory in some way. We already have both the language of expressions to

denote nodes and the language of l-expressions to denote edges. An assignment relation is then

described by an l-expression, denoting an edge to be assigned or reassigned, and an expression,

denoting a node to which the edge must point.

Another basic kind of transfer relation is a relation that simply �lters through stores that

satisfy a certain property and rejects the stores that do not. This is the most basic kind

of conditional operation, and as such will be necessary to express the dynamic behavior of



34 Stores and Transfer Relations

most programming languages. Again, we can use the language of expressions to specify these

properties, and so a �lter relation is described by an expression.

One can then build bigger relations from these basic relations.

2.4.2 Building natural transfer relations

We wish to describe a set

TrRel � P(Store � Store)

of natural transfer relations. By natural, we mean informally that it is reasonable to imagine

that the transfer relation in question might correspond to a fragment of an execution of some

program in some programming language. In other words, suppose that at a certain point in the

middle of an execution of some program in some language, store �1 describes the state of the

memory at that point. As the execution continues from that point, it will produce a sequence

of evolving stores �2; �3; : : : corresponding to the steps of the execution. Then for each n � 0,

there there should be some transfer relation � 2 TrRel that relates store �1 to store �n; in other

words,

�1��n:

The idea is to keep the set TrRel as small as possible, but still large enough that one could

model the operational semantics of realistic programming languages using only these relations.

Fortunately, this is quite easy to do in a rather satisfactory and intuitive manner.

We will de�ne the set TrRel inductively.

� There are four types of basic relations in TrRel:

{ The empty relation ;.

{ The identity relation �, which relates only between identical stores. Formally:

� � �

{ The assignment relation l 7! e where l 2 Lexp and e 2 Exp. If l-expression l

evaluates to l-value w in � and expression e evaluates to value v in �, then l 7! e

updates store � by assigning w to v. Formally:

l `� w e `� v

� l 7! e (�[w 7! v])

Here, �[w 7! v] is the store that maps w to v and is otherwise identical to �. Formally,

it is de�ned as follows:

(�[w 7! v])w0 =

(
v if w = w0

� w0 otherwise

Note that if :determ(l) (i.e., if a nondeterministic primitive operation appears in l)

then l may evaluate to more than one l-value (and similarly for e), and so l 7! e

can relate a store on the left to several di�erent stores on the right.
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{ The �lter relation e? where e 2 Exp, which relates a store � to itself only if expres-

sion e evaluates to the value true in �. Formally:

e `� true

� e? �

� If �;�0 2 TrRel, then their relational composition �;�0 (alternatively, �0 ��) is in TrRel.

We use the standard de�nition of relational composition:

���0 �0�0 �00

� (�;�0)�0

Note that the identity relation � can be de�ned as the �lter relation true? , where, as

described in Section 2.2.2, true denotes the nullary application of the primitive operation

de�ned by true 2 Val. Similarly, the empty relation ; can be de�ned as the �lter relation

false? . But it is more convenient to have distinguished representations for each of these two

special cases.

2.4.3 Examples of transfer relations

As described at the beginning of this chapter, our goal for the sake of generality is to develop

a framework for expressing data and operations on data in a language-independent manner.

Nevertheless, it is illuminating at this point to look at some examples of transfer relations and

consider how they might arise during the execution of a computer program.

Example 12 The transfer relation

x 7! 2 ; x 7! x + 1

is equal to (in other words, precisely the same relation as) the transfer relation

x 7! 3

that assigns variable x to be 3. In other words, it changes any store by redirecting the edge

-xt v

to
-xt 3

Here, + 2 Primop, and the integers are included in Val and as nullary operations in Primop.

Example 13 The transfer relation

(x < 0)? ; x 7! 0 - x

relates any store in which x is bound to a negative number to a store in which x to be the

absolute value of that number and is otherwise equivalent. Furthermore, it relates every store

in which x is not bound to a negative number to no store at all.
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Example 14 Imagine a use of stores and transfer relations to model a language with heap-

allocated data structures. One way to model data allocation is to maintain a convention that

the semantic variable H holds the index of the next available pointer. Then one can use ptr

from Example 7 to generate that pointer. By convention, we write

ptr(e)

as

hei

Then the transfer relation

x 7! hHi ; x:car 7! y ; x:cdr 7! z ; H 7! H + 1

allocates a new record that has two �elds|car, which is assigned to y's value (which may be

undef), and cdr, which is assigned to z's value (which may be undef)|and assigns x to be this

record.

Example 15 The transfer relation

x 7! x:tl ; x 7! x:tl ; x 7! x:tl

is equal to the transfer relation

x 7! x:tl:tl:tl

which in a store that includes the subgraph

-xt -tlv1 -tlv2 -tlv3 v4

assigns x to be v4, producing a store that includes the subgraph

HHHj

��
�*

x

tl

v4

t

-tl-tlv1 v2 v3

Although we have written the paths as linear pictures, it is not necessarily the case that v1,

v2, v3, and v4 are distinct. Therefore, the paths shown above may actually include cycles. For

instance, if v1 = v3 then the original subgraph would actually look like

-xt -�
tl

tl
v1 v2

and the transfer relation would modify this to

�x-�
tl

tl
v1 v2 t

Example 16 The transfer relation

x:* 7! x
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assigns �eld * of the value bound to x to point to that value itself, thus creating a circular data

structure in the store:
-xt
v

* �


�6

The C statement

*x = x;

performs a performs a similar operation. Before the statement, x is bound to a memory address

v. After the statement, x is still bound to the memory address v, but now that memory address

holds v itself. Our graphical representation above directly re
ects this memory state.

Example 17 The transfer relation

x:y 7! z

transforms a store � as follows. Suppose x is bound to value v, y is bound to value v0, and z is

bound to value v00 in �. Then the outgoing edge of v labeled with v0 is redirected to point to v00.

If v0 is an integer then this is equivalent to the C statement

x[y] = z;

but if v0 is not an integer then this transfer relation has no correspondence in C.

Example 18 The transfer relation

x:car 7! y ; z:car 7! w

acts as follows. For those stores in which x and z are bound to di�erent values, it assigns �eld

car of x's value to be y's value and �eld car of z's value to be w's value. For those stores in

which x and z are bound to the same value, it assigns �eld car of that value to be w's value.

2.5 The Di�culty of Composition

Above, we de�ned a basic relation to be either the empty relation ;, the identity relation �, an

assignment relation l 7! e , or a �lter relation e? . We de�ned any transfer relation that is not

a basic relation to be a �nite composition of basic relations. Note that in Examples 12 and 15,

the composition of more than one basic relation is equal to another basic transfer relation, but

in those cases the single basic transfer relation such as

x 7! 3

exposes information that is not so clear in the composition itself.

Sometimes, though, the composition of more than one basic relation is not a basic relation,

as Examples 13, 14, and 18 demonstrate.
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It would be convenient if there were a reasonably compact and clear representation scheme

for all transfer relations. The explicit composition of 100 basic relations is not only cumbersome

by any reasonable measure, but also quite likely shed little insight on what exactly the transfer

relation does. For instance, the description of the transfer relation

x:car 7! y ; z:car 7! w

in Example 18 is not at all obvious from that representation itself. The exercise of decoding

the net e�ect of the transfer relation

x:tl:tl 7! y:tl ; y:tl 7! x:tl ; x:tl 7! y

is much more di�cult yet. It may seem as if this last example is designed to destructively

insert the �rst element of a linked-list y into the second position of a linked-list x. However,

that behavior only occurs under certain initial aliasing conditions. It is not an easy exercise to

determine the possible behaviors of this example under di�erent initial aliasing conditions.

Fortunately, there is a reasonably simple representation scheme that covers all transfer

relations in TrRel. This scheme actually computes the e�ect of any composition, rather than

leaving the composition operation explicit as written directly above, and hence reveals quite

clearly the e�ect of any transfer relation. But the four kinds of basic relations in TrRel are not

quite su�cient to express these compositions syntactically. Therefore, we have to extend the

language.

2.6 The Full Language of Transfer Relations

The language TR of transfer relations is de�ned inductively as follows.

� 2 TR ::= ; j � j e? � �0

� 2 ATR ::= l1; : : : ; ln 7! e1; : : : ; en

We have already de�ned ; (the empty relation). Assignment relations are generalized to parallel

assignments ATR � TR, de�ned as follows.

li `� wi ei `� vi i 6= j ) wi 6= wj

� l1; : : : ; ln 7! e1; : : : ; en (�[w1 7! v1] : : : [wn 7! vn])

A crucial fact about assignment relations is that the assignment only takes place if all the

l-values to be assigned are actually distinct. One can therefore look at an assignment relation

with n assignments and know that whenever it relates an initial store to a �nal store, it performs

exactly n distinct assignments.

Filter relations are generalized to conditional relations, de�ned as follows.

e `� true ���0

� e? � �0 �0
e `� false ��0 �0

� e? � �0 �0
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We adopt the following syntactic abbreviations.

� The empty parallel assignment (i.e., where n = 0) is simply the identity relation � and

may be written as such.

� The conditional relation e? � ; may be abbreviated as e? � .

� The conditional relation e? ; � may be abbreviated as e> � .

In order to avoid confusion, we introduce di�erent notations for syntactic and semantic

equivalence of transfer relations. If � and �0 are both the same syntactic term, or in other

words the same element of the language TR, then we write � = � and say that they are

syntactically equivalent. If � and �0 denote the same relation, then we write � � �0 and

say that they are semantically equivalent. Note that syntactic equivalence obviously implies

semantic equivalence, but semantic equivalence does not necessarily imply syntactic equivalence

because in this language there may be more than one way to write the same relation. For

instance,

true? � �0 � �;

but

true? � �0 6= �:

In this sense, the language TR is not fully abstract [HP79, Mul87]. If it were fully abstract,

then we would have a decidable way of testing semantic equality of transfer relations, but this

will not be so important for the applications of our analysis framework.

A major property of transfer relations is that if all the primitive operations are deterministic,

then all transfer relations are actually partial functions. Formally, we have the following lemma.

Lemma 3 (Deterministic transfer relations) If Primop is deterministic, then for every

transfer relation � 2 TR and store � 2 Store, there is at most one store �0 2 Store such

that ���0.

Proof: Given �, we proceed by structural induction on �.

� ;: By de�nition, there is no �0 such that � ;�0.

� e? � �0 : Because Primop is deterministic, we know from Lemma 2 that there exists

exactly one v such that e `� v. There are three cases.

{ v = true: Then by the de�nition of conditional relations, � e? � �0 �0 only if

���0, and by induction there is at most one �0.

{ v = false: Analogous, with �0.

{ Otherwise: Then by the de�nition of conditional relations, there is no �0 such that

� e? � �0 �0.



40 Stores and Transfer Relations

� l1; : : : ; ln 7! e1; : : : ; en : Because Primop is deterministic, we know from Lemma 2 that

for i 2 f1; : : : ; ng, there exists exactly one wi such that li `� wi and exactly one vi such

that ei `� vi. Then by the de�nition of assignment relations, � l1; : : : ; ln 7! e1; : : : ; en �0

only if w1; : : : ; wn are all distinct and �0 = �[w1 7! v1] : : : [wn 7! vn]. There is at most

one such �0.

2 This theorem has the following corollary, which is not useful on its own, but which we will

use in some of the proofs in Chapter 3.

Corollary 1 If Primop is deterministic, then for any two transfer relations �;�0 2 TR, the

following two statements are equivalent:

� � � �0

� (���0 ) ��0 �0) ^ (��0 �0 ) 9�00: ���00)

The main result about this language of transfer functions is that under certain conditions it

is closed under composition. In other words, there exists a total syntactic composition function

� 2 TR� TR! TR

that, given two transfer relations in the language TR, builds a third transfer relation in TR that

is semantically equivalent to their composition. In other words,

(� � �0) � (�;�0)

for any two transfer relations �;�0 2 TR. Under weaker circumstances, � � �0 is not guaran-

teed to be semantically equivalent to �;�0, but is guaranteed to be a superset of �;�0. But we

will see that the conditions for semantic equivalence will be met by any application of transfer

relations to model the dynamic semantics of programming language.

In fact, the � function is e�ectively computable, and so we will call it the composition

algorithm. If there were a combinator in the language of transfer relations that represented

composition, then the composition algorithm would be trivial. In other words, if we extend the

language by

� ::= : : : j � � �0

and de�ne � � �0 to be the relation �;�0, then the composition algorithm could be simply

the � combinator. But, as we explained above, our goal for the practical purpose of program

analysis is to avoid a syntactic representation of composition. We present the algorithm in the

next chapter.



Chapter 3

Composing Transfer Relations

The composition algorithm for transfer relations is based on a kind of symbolic evaluation. We

will present the the algorithm in several stages.

� Symbolic evaluation of primitive operations. This part of course depends on the particular

choice of the set Primop of primitive operations and their evaluation semantics. The choice

of Primop and design of the symbolic evaluation algorithms for those operations forms the

core of any program analysis designed with our framework.

� Symbolic evaluation of expressions and l-expressions. These algorithms are de�ned rela-

tive to Primop and its associated symbolic evaluation algorithms.

� Symbolic evaluation of conditional relations. This part is also a parameter to the compo-

sition algorithm.

� Symbolic evaluation of assignment.

� Symbolic evaluation of transfer-relation composition.

3.1 Symbolic Evaluation of Primitive Operations

The �rst step of any application of our analysis methodology is the choice of the set Val of

values and the set Primop of primitive operations, which will largely depend on the language to

be analyzed.1 The second step is the design of an algorithm to symbolically evaluate primitive

application expressions. The heart of our methodology is in this symbolic evaluation, and the

power of our approach comes from the 
exible notion of a primitive operation as potentially

any computation that does not modify the store, including both non-deterministic primitive

operations and context-sensitive primitive operations. Yet, the fact that primitive operations

1Recall that we require Val to include the boolean constants and undef, and we require Primop to include the

boolean constants and the boolean operations &, =, and if.
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are constrained not to modify the store ensures that their symbolic evaluation is never too

complicated.

The framework constructed in this section is for us what the notion of the Galois connection

and associated �xed-point theorem is for abstract interpretation [CC77]. In abstract interpre-

tation, one �rst designs a �xed-point-based semantics for the language to be analyzed and then

designs an abstraction of the semantic domain. Then, for the most part, the framework of

abstract interpretation provides the rest|in particular, a functional for the abstract domain

induced by the semantics whose �xed point is guaranteed to satisfy a certain relation with the

semantics of the language.

In our approach, one �rst chooses a set of primitive operations and then designs symbolic

evaluation algorithms for them. The various algorithms in this chapter provide much of the

remaining work.

In Chapter 2, we gave many examples of useful primitive operations. Some of them were

common and familiar, such as the constants and basic operations over booleans and integers.

Others were rather distinguished, such as deref and pos. We will return to many of these in

this section.

3.1.1 A �rst cut: symbolic evaluation of simple primitive operations

A term like \symbolic evaluation" would tend to imply that we need an algorithm

P 2 Primop! Exp� ! Exp

that satis�es the property that

(P p (e1; : : : ; en)) `� v () p(e1; : : : ; en) `� v:

In other words, P, given an n-ary primitive operation p and n expressions e1; : : : ; en, returns

an expression that is semantically equivalent to the expression p(e1; : : : ; en). The degenerate

function

P p (e1; : : : ; en) = p(e1; : : : ; en)

obviously works, but might not produce optimal results. For instance, that function returns

P + (42; 24) = 42 + 24;

but it is obvious that in this case P could have actually performed the addition, thus producing

the smaller expression

P + (42; 24) = 66

where, again, 66 is technically an application of the nullary primitive operation 66. This is called

\constant folding" in the compiler literature [ASU86]. Even beyond this, one could imagine

that P might try to use a calculus of arithmetic transformations, perhaps yielding results such

as

P + (42; x + 24) = x + 66:
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In fact, however, this notion of symbolic evaluation makes sense only for primitive operations

that are simple, as de�ned in De�nition 3. In the next section, we subsume the notion of

symbolic evaluation in this section with a more general notion that covers all kinds of primitive

operations.

3.1.2 Generalized symbolic evaluation of primitive operations

In this section we present the general notion of symbolic evaluation of primitive operations that

works for all kinds of operations, including non-deterministic operations, de�ned in De�nition 1,

and context-sensitive operations, de�ned in De�nition 2.

The symbolic evaluation of a set Primop of primitive operations is computed by a function

P 2 Primop! Exp� ! ATR! Exp

that, loosely speaking, given

� an n-ary primitive operation p 2 Primop,

� n expressions e1; : : : ; en 2 Exp, and

� an assignment relation � 2 ATR (recall the de�nition of ATR from page 38),

produces an expression e = (P p (e1; : : : ; en) �) that satis�es the following property. If (e1; : : : ; en)

evaluate to values (v1; : : : ; vn) in some store �, and if p applied to these values evaluates to a

value v in a store after the assignment � is applied to �, then e must evaluate to v in �.

The following de�nition formalizes this correctness condition.

De�nition 5 (Symbolic evaluation of primitive operations) If whenever � � �0, 
n̂

i=1

ei `� vi

!
) (p(v1; : : : ; vn) ,!�0 v ) (P p (e1; : : : ; en) �) `� v);

then primitive operation p 2 Primop is said to be symbolically evaluated by P. If every p 2

Primop is symbolically evaluated by P then P is said to be a symbolic evaluation.

It is worth noting that the second implication in the above proposition is not an i�. This means

that if there are nondeterministic primitive operations in Primop then P is allowed to produce

a nondeterministic expression (which, recall, is an expression using nondeterministic primitive

operations) that may evaluate to \extra" values. The reason we allow this is that the only

time that we will need the reverse implication is when there are no nondeterministic primitive

operations in the �rst place, and in that case the reverse implication comes for free. This is

expressed by the following lemma.
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Lemma 4 (Symbolic evaluation of deterministic operations) If all primitive operations

p 2 Primop are deterministic, then the second implication relationship above is strengthened to

an i� relationship.

Proof: Because all primitive operations are deterministic, we know that for any p, v1; : : : ; vn,

e1; : : : ; en, �, �, and �
0:

� There is exactly one v such that p(v1; : : : ; vn) ,!�0 v.

� From Lemma 2, there is exactly one v such that (P p (e1; : : : ; en) �) `� v.

Therefore, an implication relationship between them is equivalent to an i� relationship. 2

Special case: context-independent primitive operations

Because context-independent operations do not use the store, P can safely ignore its assignment-

relation argument � for any such operations. This is described by the following lemma.

Lemma 5 (Symbolic evaluation of context-independent operations) If p 2 Primop is

context-independent and

p(e1; : : : ; en) `� v ) (P p (e1; : : : ; en) �) `� v

then p is symbolically evaluated by P.

Proof: Straightforward. 2

This is similar to the statement of correctness that we suggested above for the simpler notion

of symbolic evaluation. The above lemma suggests the requirement, without any loss of gener-

ality, that for any context-independent primitive operation p, the expression (P p (e1; : : : ; en) �)

must not depend on the particular value of �. Because many primitive operations are context-

independent, this suggests a simpler notation for their symbolic evaluation in which � does not

appear.

De�nition 6 (Notation for context-independent operations) Given P, if p is context-

independent then ep(e1; : : : ; en)
denotes the unique expression P p (e1; : : : ; en) �.

For binary primitive operations, we sometimes abbreviate ep(e; e0) with e ep e0.
3.1.3 Examples

In this section, we give examples of some of the primitive operations given in Section 2.2.2.
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Context-independent primitive operations

There is no reason for any context-independent nullary primitive operation to symbolically

evaluate to anything other than itself. So, for instance, we have:

ev() = v for v 2 Valgpos() = posgbool() = bool (see Example 9)

An application of a unary operation such as ptr from Example 7 also typically symbolically

evaluates to itself. Recall that we write hei for ptr(e). Then:

gptr(e) = hei

These are clearly correct symbolic evaluations. In fact, for all context-independent primitive

operations, the de�nition

ep(e1; : : : ; en) = p(e1; : : : ; en)

is trivially a symbolic evaluation by Lemma 5 because

ep(e1; : : : ; en) `� v () p(e1; : : : ; en) `� v

simply by de�nition.

But there may be some room for simpli�cation. For instance, for binary integer opera-

tions (including comparison operations), we could de�ne their symbolic evaluation to perform

constant-folding when possible, and otherwise default to the above equation. Here, n and n0

denote integers (nullary primitive applications).

n e+ n0 = n + n0

n e- n0 = n � n0

n e* n0 = n � n0

n e< n0 = n < n0

n e> n0 = n > n0

e ep e0 = e p e otherwise (where p 2 f+; -; *; <; >g)

Now, we have to prove that those constant-folding clauses are symbolic evaluations. We prove

the case for +:

(n + n0) `� v

) v = n+ n0 de�nition of `, value primitives, and +

) (n+ n0) `� v de�nition of value primitives

) (n e+ n0) `� v de�nition of e+
The constant-folding rules for the other operations are analogous.
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Just like the standard arithmetic operations above, the symbolic evaluation of & performs

the constant-folding taken straight from its de�nition.

true e& e = e

e e& true = e

false e& e = false

e e& false = false

e e& e0 = e & e0 otherwise

Again, the last line is trivially a symbolic evaluation, and so we need to prove the other four

lines. The proofs are similar to the example shown above for +.

� true e& e (e e& true analogous):

(true & e) `� v

) e `� v de�nition of `, true, and &

) (true e& e) `� v de�nition of e&
� false e& e (e e& false analogous):

(false & e) `� v

) v = false de�nition of `, false, and &

) (false e& e) `� v de�nition of e&
One can go even further for the symbolic evaluation of =. Here is a somewhat subtle

de�nition that depends on whether the argument expressions are deterministic, as de�ned in

De�nition 4:
e e= e = true if determ(e)

e e= e = bool if :determ(e) (see Example 9)

v e= v0 = false if v 6= v0

e e= e0 = e = e0 otherwise

If all primitive operations p 2 Primop are deterministic then all expressions are deterministic,

and so the de�nition simpli�es to:

e e= e = true

v e= v0 = false if v 6= v0

e e= e0 = e = e0 otherwise

But we prove the more general formulation. Again, we need to show that the �rst three lines

yield a symbolic evaluation.

� If determ(e):

(e = e) `� v

) 9v0; v00: [e `� v
0 ^ e `� v

00 ^ =(v0; v00) ,! v] de�nition of `

) 9v0: [e `� v
0 ^ =(v0; v0) ,! v] because determ(e)

) v = true de�nition of =

) true `� v de�nition of true

) (e e= e) `� v de�nition of e=
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� If :determ(e):

(e = e) `� v

) v = true _ v = false de�nition of ` and =

) bool `� v de�nition of bool

) (e e= e) `� v de�nition of e=
� If v 6= v0:

(v = v0) `� v

) =(v; v0) ,! v de�nition of value primitives and `

) v = false de�nition of =

) false `� v de�nition of false

) (v e= v0) `� v de�nition of e=
For now, we present a very simple symbolic evaluation of if:

fif(true; e; e0) = efif(false; e; e0) = e0fif(e; e0; e00) = if(e; e0; e00) otherwise

The proof is straightforward and similar to the proof shown above for &. However, it is often

important to do a better job of simplifying conditional expressions, and we will give a more

sophisticated algorithm in Chapter 9.

Context-dependent primitive operations

The symbolic evaluation of context-dependent primitive operations is much more complicated

than the symbolic evaluation of context-independent operations, such as the ones shown above.

As we explained above, for a context-independent operation p one can always fall back on

ep(e1; : : : ; en) = p(e1; : : : ; en)

which is trivially a symbolic evaluation. But the symbolic evaluation of context-dependent op-

erations needs to compute the e�ect of an arbitrary parallel assignment on the operation. So far,

the only context-dependent operations we have seen are deref and tree. We introduced tree

mainly for illustration, but on the other hand deref is a crucial operation for modeling and

analyzing programing languages because, as we explained in Chapter 2, it is the only way to con-

struct an expression that examines the components of mutable data structures. It has a rather

complex symbolic evaluation because of aliasing possibilities. Let � = l1; : : : ; ln 7! e001 ; : : : ; e
00

n .
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Then

P deref (e; e0) � = fif((e e= e1) e& (e0 e= e01);
e001 ;fif((e e= e2) e& (e0 e= e02);

e002 ;fif(
. . .fif((e e= ek) e& (e0 e= e0k);

e00k;

e:e0) : : :)))

where the indices in the set

f(e1:e
0

1; e
00

1); : : : ; (ek:e
0

k; e
00

k)g = f(li; ei) j i 2 f1; : : : ; ng ^ li 62 Varg:

are ordered arbitrarily. Now we show that this is a symbolic evaluation. Suppose that � � �0,

e `� v1, and e
0 `� v2. By the de�nition of deref, if deref(v1; v2) ,!�0 v then v = �0(v1:v2).

We must show that

(P deref (e; e0) �) `� v:

Recall that we overload the phrase e:e0 to mean not only the l-expression e:e0 but also the

expression deref(e; e0). First, we prove two results. The �rst one shows how to move down the

true arm of the ith branch in the case that there is a possible alias between e:e0 and the l-value

ei:e
0

i assigned by �.

(ei:e
0

i) `� (v1:v2)

) ei `� v1 ^ e
0

i `� v2 de�nition of `

) (e = ei) `� true ^ (e0 e= e0i) `� true de�nition of =

) (e e= ei) `� true ^ (e0 e= e0i) `� true e= symbolically evaluates =

) ((e e= ei) & (e0 e= e0i)) `� true de�nition of &

) ((e e= ei) e& (e0 e= e0i)) `� true e& symbolically evaluates &

) e00 `� v ) if((e e= ei) e& (e0 e= e0i); e00; e000) `� v de�nition of if

) e00 `� v ) fif((e e= ei) e& (e0 e= e0i); e00; e000) `� v fif symbolically evaluates if

The second result shows how to move down the false arm of the ith branch in the case that

there is possibly no alias between e:e0 and the l-value ei:e
0

i assigned by �.

(ei:e
0

i) `� (v
0

1:v
0

2) ^ (v1 6= v01 _ v2 6= v02)

) ei `� v
0

1 ^ e
0

i `� v
0

2 ^ (v1 6= v01 _ v2 6= v02) de�nition of `

) (e = ei) `� false _ (e0 = e0i) `� false de�nition of =

) (e e= ei) `� false _ (e0 e= e0i) `� false e= symbolically evaluates =

) ((e e= ei) & (e0 e= e0i)) `� false de�nition of &

) ((e e= ei) e& (e0 e= e0i)) `� false e& symbolically evaluates &

) e000 `� v ) if((e e= ei) e& (e0 e= e0i); e00; e000) `� v de�nition of &

) e000 `� v ) fif((e e= ei) e& (e0 e= e0i); e00; e000) `� v fif symbolically evaluates if

Now, there are two possibilities.
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� No overwrite: �(v1:v2) = v and � did not assign to v1:v2. Then it must be the case that

for i 2 f1; : : : ; kg, (ei:e
0

i) `� (v01:v
0

2) where v1 6= v01 or v2 6= v02. Therefore, by induction

on the de�nition of (P deref) using the second result above to move down the k false

branches,

e:e0 `� v ) (P deref (e; e0) �) `� v:

And because in this case �(v1:v2) = v, by the de�nition of deref we indeed have that

e:e0 `� v.

� Overwrite: � assigned v1:v2 to be v. Then it must be the case that for some i 2 f1; : : : ; kg,

(ei:e
0

i) `� (v1:v2), and for all j < i, (ej :e
0

j) `� (v
0

1:v
0

2) where v1 6= v01 or v2 6= v2. Therefore,

by induction on the de�nition of (P deref) using the second result above to move down

i� 1 false branches and then the �rst result above to move down the next true branch,

e00i `� v ) (P deref (e; e0) �) `� v:

And because in this case � assigned v1:v2 to be v, it must be the case that e00i `� v.

3.2 Symbolic Evaluation of Expressions and L-expressions

This section describes the following algorithms, which are de�ned relative to a set Primop of

primitive operations with associated symbolic evaluation algorithm P.

E 2 Exp! TR! Exp

L 2 Lexp! TR! Lexp

Loosely speaking, the E algorithm, given an expression e and a transfer relation �, computes

an expression e0 such that if e0 evaluates to a value v in some store � then e evaluates to v in a

store to which � transfers from � (i.e., a store �0 such that ���0). In other words, e0 expresses

the combined e�ects of e and �. The L algorithm is similar, but works on l-expressions rather

than expressions. Intuitively, given an l-expression l and a transfer relation �, L computes an

expression l0 such that if l0 evaluates to an l-value w before � then l evaluates to w in a store

to which � transfers from �. We distinguish two levels of correctness of E and L, given by the

following de�nition.

De�nition 7 (Symbolic evaluation of expressions and l-expressions) We introduce the

following terms to describe correctness properties of E and L.

� If whenever ���0,

e `�0 v ) (E e�) `� v respectively, (l `�0 w ) (L l�) `� w);

then E (respectively, L) is said to be an upper approximation.

� If whenever ���0,

e `�0 v () (E e�) `� v respectively, (l `�0 w () (L l�) `� w);

then E (respectively, L) is said to be a translation.
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3.2.1 The algorithm

The de�nition of E is inductive on the structure of its arguments, and L is de�ned in terms of

E.
E e ; = any e0 2 Exp

E e e0? � = E e�

E e e0> � = E e�

E e e0? � �0 = fif(e0; (E e�); (E e�0))

Ex l1; : : : ; ln 7! e1; : : : ; en =

(
ei if lj = x () j = i

x otherwise

E (p(e1; : : : ; en)) � = P p (E e1 �; : : : ;E en �) �

Lx� = x

L (e:e0)� = (E e�):(E e0�)

Notice that the �rst line allows the choice of any expression. This is because the transfer

relation ; never outputs a store, and so any expression is trivially correct.

Because E is de�ned by structural induction and L is de�ned in terms of E, and because

the only external algorithm they need is the P algorithm to symbolically evaluate primitive

operations, we have that if P always terminates then E and L always terminate.

These algorithms are not only used in the composition algorithm � to come, but they

are also useful in their own right, as stand-alone applications of our analysis methodology.

Chapter 9 gives an application that is centered around the E algorithm.

The next two lemmas prove the correctness of these algorithms. If all primitive operations

p 2 Primop are deterministic then the algorithms are translations, and otherwise we can only

show that they are upper approximations.

Theorem 1 (E and L as upper approximations) If P is a symbolic evaluation then E and

L are upper approximations.

Proof: By the de�nition of upper approximation in De�nition 7, we must prove that whenever

���0, the following properties hold:

� e `�0 v ) (E e�) `� v

� l `�0 w ) (L l�) `� w

We prove this by mutual structural induction on the arguments to E and L, following their

inductive de�nitions above. There are six cases for E.
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� E e ;: By de�nition there is no � and �0 such that � ;�0, and so the theorem statement is

trivially satis�ed.

� E e e0? � : By the de�nition of conditional relations, we know that if � e0? � �0 then

���0.
e `�0 v

) (E e�) `� v induction, with above observation

) (E e e0? �) `� v de�nition of E

� E e e0> � : Analogous to the previous case.

� E e e0? � �0 : By the de�nition of conditional relations, we know that if � e0? � �0 st0

then either e0 `� true and ���0, or e0 `� false and ��0 �0.

e `�0 v

) (e0 `� true ^ (E e�) `� v)

_ (e0 `� false ^ (E e�0) `� v) induction, with above observation

) if(e0; (E e�); (E e�0)) `� v de�nition of if

) fif(e0; (E e�); (E e�0)) `� v P is a symbolic evaluation

) (E e e0? � �0 ) `� v de�nition of E

� Ex l1; : : : ; ln 7! e1; : : : ; en : Note that if li = lj = x then i = j, because otherwise li and

lj could not evaluate to di�erent l-values and it could not be the case that � � �0.

x `�0 v

) �0 x = v de�nition of `

) (li = x ^ ei `� v) _ (� x = v ^ :9i: li = x) de�nition of assignment relations

) (li = x ^ ei `� v) _ (x `� v ^ :9i: li = x) de�nition of `

) (Ex l1; : : : ; ln 7! e1; : : : ; en ) `� v de�nition of E

� E (p(e1; : : : ; en)) �:

(p(e1; : : : ; en)) `�0 v

) 9v1; : : : ; vn: [(
Vn
i=1 ei `�0 vi) ^ p(v1; : : : ; vn) ,!�0 v] de�nition of `

) 9v1; : : : ; vn: [(
Vn
i=1 (E ei �) `� vi) ^ p(v1; : : : ; vn) ,!�0 v] induction

) (P p (E e1 �; : : : ;E en �) �) `� v P is a symbolic evaluation

) (E (p(e1; : : : ; en)) �) `� v de�nition of E

There are two cases for L.

� Lx�:
x `�0 w

) w = x de�nition of `

) x `� w de�nition of `

) (Lx�) `� w de�nition of L
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� L (e:e0)�:

(e:e0) `�0 w

) 9v; v0: [e `�0 v ^ e0 `�0 v0 ^ w = v:v0] de�nition of `

) 9v; v0: [(E e�) `� v ^ (E e0�) `� v
0 ^w = v:v0] induction

) ((E e�):(E e0 �)) `� w) de�nition of `

) (L (e:e0)�) `� w de�nition of L

2

Theorem 2 (E and L as translations) If all primitive operations p 2 Primop are determin-

istic and P is a symbolic evaluation then both E and L are translations.

Proof: We prove the statement for E. Because P is a symbolic evaluation, we have from

Theorem 1 that E is an upper approximation. Because all primitive operations are deterministic,

we know from Lemma 2 that for any e, �, �, and �0:

� There is exactly one v such that (E e�) `� v.

� There is exactly one v such that e `�0 v.

Therefore, the implication relationship in the de�nition of upper approximation of E is equiv-

alent to an i� relationship, and therefore E is a translation. The proof for L is analogous.

2

3.2.2 Examples

The E algorithm not only is required for the composition algorithm � that we will present later

in this chapter, but is also useful on its own for the analysis of how values relate to each other at

di�erent times of program execution. For instance, dependency analysis [ASU86] is concerned

with such properties. In Chapter 9 we will see some example applications of E.

Here, we will give some examples of how E works. The L algorithm is just an application

of E, so we will not demonstrate it separately. The simplest examples are those in which the

expression given to E as input does not contain any context-dependent primitives. Here are
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some examples, where x 6= y are variables.

E x y 7! 3 = x

E y y 7! 3 = 3

E x + y y 7! 3 = x + 3

E y + y y 7! 3 = 6

E x + y x; y 7! 3; 4 = 7

E x (x = 3)? x 7! 4 y 7! 5 = if(x = 3; 4; x)

A more complicated case, however, is when E is given an expression that uses the context-

dependent operation deref to examine the store. Recall that we overload the phrase e:e0

to mean not only the l-expression e:e0 but also the expression deref(e; e0). In the following

examples, v 6= v0 are members of Val that are included as constant (nullary) primitive operations.

Examples of such values that might occur in a real programming language are record �eld

names, the C * token, and integers representing array indices. Also, x 6= y 6= z are variables.

In the following examples, some of the equality terms in the symbolic evaluation of deref are

simpli�ed to true or false due to the symbolic evaluation of equality on values (v and v0 in

this case), and thereby simplify the resulting symbolic evaluation of if.

E x:v x 7! y = y:v

E x:v x:v 7! 3 = 3

E x:v y:v 7! 3 = if(x = y; 3; x:v)

E x:v y:v0 7! 3 = x:v

E x:v y:v; z:v 7! 3; 4 = if(x = y; 3; if(x = z; 4; x:v))

E x:v x:v:v 7! 3 = if(x = x:v; 3; x:v)

E x:v y:v0:v 7! 3 = if(x = y:v0; 3; x:v)

E x:v x:v; y:v 7! 3; 4 = 3

E x:v y:v; x:v 7! 4; 3 = if(x = y; 4; 3)

The last two examples may seem strange. Recall that the symbolic evaluation of deref, given

some assignment relation, chooses an arbitrary order of its assignments and then builds a linear

sequence of nested if expressions. In the above examples, we choose the left-to-right order

to demonstrate that the order does indeed play a practical role in the quality of the output.
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The penultimate example �rst checks x for equality against x, which simpli�es to true and

thus simpli�es the entire result to 3. The justi�cation of this general procedure is given in the

rather intricate proof of the symbolic evaluation of deref. Intuitively, in this case the output

expression does not have to check for aliasing because the semantics of assignment relations

guarantees that if � x:v; y:v 7! 3; 4 �0 then x and y are bound to di�erent values in �. Because

order of assignment is irrelevant, 3 would have thus been a correct output for the last example,

as well. However, E instead outputs if(x = y; 4; 3). The reason that it tests the equality x with

y �rst, which cannot be simpli�ed. This suggests that the symbolic evaluation of deref should

instead choose an order that places �rst any alias test that simpli�es to true. In this case, the

last example would indeed output

E x:v y:v; x:v 7! 4; 3 = 3

If the second argument of a deref expression (i.e., the expression to the right of the dot) is

not a value, then the symbolic evaluations cannot perform as many simpli�cations. An example

of such a case that might occur in a programming language is an array access where the index

is a non-constant expression. Here are some more complicated examples, where e 6= e0 are non-

value expressions. We �rst note that nondeterministic primitive operations may produce a more

complex output expression. For instance, if determ(e) (i.e., if e contains no nondeterministic

primitive operation) then

E x:e x:e 7! 3 = 3

as expected, but if :determ(e) then

E x:e x:e 7! 3 = if(bool; 3; x:e)

where bool is a nondeterministic operation that evaluates to both true and false. The reason

is justi�ed in the proof of the symbolic evaluation of =. Intuitively, because e contains a

nondeterministic primitive operation, it may evaluate to two values v 6= v0, and in that case the

expression e = e evaluates to both true and false.

In the remaining examples, we assume determ(e) and determ(e0).

E x:e x:e0 7! 3 = if(e = e0; 3; x:e)

E x:e y:e 7! 3 = if(x = y; 3; x:e)

E x:e y:e0 7! 3 = if((x = y) & (e = e0); 3; x:e)

3.3 Symbolic Evaluation of Conditional Relations

The remainder of the composition algorithm is parameterized by an algorithm that constructs

a conditional transfer relation from a conditional expression and a transfer relation for each of

the two branches.

C 2 Exp! TR! TR! TR

As for E and L, we distinguish two di�erent correctness conditions.
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De�nition 8 (Symbolic evaluation of conditional relations) We introduce the following

terms to describe correctness properties of C.

� If

� e? � �0 �0 ) � (C e��0) �0

then C is said to be an upper approximation.

� If

� e? � �0 �0 () � (C e��0) �0

then C is said to be a translation.

The following lemma makes it easier to prove the stronger property about C in the case that

all primitive operations are deterministic.

Lemma 6 If all primitive operations p 2 Primop are deterministic, C is an upper approxima-

tion, and

� (C e��0) �0 ) 9�00: � e? � �0 �00

then C is a translation.

Proof: From Corollary 1. 2

The most obvious choice for C is simply

C e��0 = e? � �0 :

But it is sometimes possible to simplify the resulting transfer relation. For example,

C true��0 = �:

3.4 Engineering Flexibility

The P and C algorithms provide an engineering 
exibility for the composition algorithm. There

are many correct choices for the syntactic composition � � �0, but most of the di�erences

involve how far primitive applications are simpli�ed and how far conditionals are simpli�ed.

Di�erent algorithms P and C will allow a tradeo� between the cost of computing a composition

and its quality.
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3.5 Symbolic Evaluation of Assignment Merging

The most di�cult part of the composition algorithm, which we will present in full in Section 3.6,

is the composition of two assignment relations � and �0. Consider the composition

x 7! 3 ; y 7! x :

The �rst issue is that the l-expression y and the expression x that occur in y 7! x are evaluated

in a store after the assignment x 7! 3 takes place. But to build a transfer relation in TR

that is equivalent to this assignment, we must �rst build a corresponding l-expression and a

corresponding expression that are to be evaluated in a store before the assignment x 7! 3 . The

L and E algorithms accomplish this task. First of all, we compute

L y x 7! 3 = y:

This expresses the fact that the l-expression y evaluates to the same l-value (which happens to

be y) both before and after x 7! 3 . Then, we compute

E x x 7! 3 = 3:

This expresses the fact that the expression 3 evaluates before the assignment x 7! 3 to the

same value to which x evaluates after the assignment.

So, we replace y by y and x by 3, yielding the assignment relation

y 7! 3 :

Now we must merge the �rst assignment, x 7! 3 , with this new assignment, yielding

x; y 7! 3; 3

for the composition.

This \merging" is not the same as composition. Simply merging

x 7! 3

with

y 7! x

yields

x; y 7! 3; x

which is not semantically equivalent to their composition

x; y 7! 3; 3 :
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The merging operation is simpler than composition, because it does not use E and L generate

the \adjusted" expressions and l-expressions. This section presents an algorithm to perform

assignment merging, and the composition operation � will use this merging operation as a

subroutine, in the manner we described above.

The reason that we need an algorithm to perform assignment merging is that it is not always

as trivial as merely concatenating two lists of l-expressions and expressions, as we did for the

example above. For example, consider merging

x; y 7! 2; 3

with

x; z 7! w; y :

The literal concatenation of these two is

x; y; x; z 7! 2; 3; w; y

which is semantically equivalent to the empty relation ; because there are two l-expressions x

that always evaluate to the same l-value x. The merging that we are looking for is

x; y; z 7! w; 3; y

that replaces the assignment to x in the �rst relation with the assignment to x in the second

relation.

Note once again that this is not semantically equivalent to the composition of the two

relations because the composition will perform the assignment to y before evaluating y in the

second assignment. In the merging of two assignment relations � and �0, the l-expressions and

expressions in both � and �0 are considered to be evaluated in the same initial store.

The merging of � with �0 is written � 
 �0. (This operator 
 should not be confused with

the composition operator �.) It is not symmetric, because, as in the example above, if � and �0

both assign to the same l-value, the con
ict is resolved in favor of �0. Recall that the semantics

of an assignment relation

� = l1; : : : ; ln 7! e1; : : : ; en

requires that the n l-values to which l1; : : : ; ln evaluate must be distinct in order for the assign-

ment to take place. Given the above assignment relation and a second assignment relation

�0 = l01; : : : ; l
0

m 7! e01; : : : ; e
0

m ;

the relation � 
 �0 de�ned by the following rule:

li `� wi ei `� vi i 6= j ) wi 6= wj

l0i `� w
0

i e0i `� v
0

i i 6= j ) w0i 6= w0j
�0 = �[w1 7! v1] : : : [wn 7! vn][w

0

1 7! v01] : : : [w
0

m 7! v0m]

� (� 
 �0)�0
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Again, note that � 
 �0 is not necessarily semantically equivalent to the concatenation

l1; : : : ; ln; l
0

1; : : : ; l
0

m 7! e1; : : : ; en; e
0

1; : : : ; e
0

m

because the above rule allows wi to be equal to w
0

j for some i and j. Intuitively, � 
 �0 cannot

merely union the assignments in � and �0 because an assignment in the latter may overwrite an

assignment in the former.

In this section, we present an algorithm 
 to compute 
, which is one of the most di�cult

parts of the composition algorithm �. The algorithm 
 is inductive, and for ease of notation in

its correctness proof we generalize 
 to take an additional parameter J to re
ect this induction:

a set of indices of the assignments in the right-hand relation. The following rule de�nes this

generalized 
J .

li `� wi ei `� vi i 6= j ) wi 6= wj

l0i `� w
0

i e0i `� v
0

i i 6= j ) w0i 6= w0j
j 2 J ) w0j 62 fw1; : : : ; wng

�0 = �[w1 7! v1] : : : [wn 7! vn][w
0

1 7! v01] : : : [w
0

m 7! v0m]

� (� 
J �0) �0

In the relation � 
J �
0, J is a set of indices into the list of assignments in �0. If j 2 J , then the

jth l-expression in �0 must not overwrite any assignment in �. The relation � 

;
�0 is simply

� 
 �0. If the length of �0 is m, then the relation � 

f1;:::;mg �

0 is semantically equivalent to the

literal concatenation of � with �0 as we described above.

Before we present 
, we need an auxilliary algorithm

� 2 Lexp� Lexp! Exp

that, given two l-expressions l and l0, generates an expression that tests if the l and l0 can

evaluate to the same l-value or to di�erent l-values. It is de�ned to be false except for the

following cases:
x � x = true

e1:e2 � e01:e
0

2 = (e1 e= e01) e& (e2 e= e02)
Formally, we have the following properties of �.

Lemma 7 If P is a symbolic evaluation, then:

� If 9w: [l `� w ^ l
0 `� w] then (l � l0) `� true.

� If 9w;w0: [w 6= w0 ^ l `� w ^ l
0 `� w] then (l � l0) `� false.

Proof: Straightforward. 2

Now we present the algorithm


 2 ATR� ATR�P�n(Nat)! TR
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to compute 
 as follows:

�
J �
0 = �0

l1; : : : ; ln 7! e1; : : : ; en 
J �
0 = �k

where

� = l2; : : : ; ln 7! e2; : : : ; en

�0 = l01; : : : ; l
0

m 7! e01; : : : ; e
0

m

fj1; : : : ; jkg = f1; : : : ;mg � J ordered arbitrarily

�0 = �
J[fm+1g l
0

1; : : : ; l
0

m; l1 7! e01; : : : ; e
0

m; e1

�i = C (l1 � l0ji) (�
J[fjig �
0)�i�1

The order of j1; : : : ; jk is arbitrary; the correctness proof will make no assumption as to their

order. There may be engineering advantages to choosing a particular order dynamically, because

a particular choice of C might produce di�erent results with di�erent orderings. This is similar

to the situation with the symbolic evaluation of deref that we illustrated with the examples in

Section 3.2.

Intuitively, �
 �0 examines each assignment of � in turn, to see which ones might be over-

written by �0 and thus should be eliminated, and which ones might not be overwritten by �0 and

thus should remain. The assignments in � are so processed from left to right. The l-expression

of each one is tested in turn, via �, against the l-expressions of �0 not already in the set J .

Whenever an l-expression in � might be equal to some l-expression l0j in �
0, that l-expression

never needs to be tested for equivalence again, and so j is added to J . It is this handling of J

that is rather subtle, but the correctness proof explains this in detail.

Because 
 is de�ned by structural induction, and because the only external algorithms

it needs are the P algorithm to symbolically evaluate the primitive operations in � and the

C algorithm to symbolically evaluate conditional relations, we have that if P and C always

terminate then 
 always terminates.

Now we may proceed with the proof of 
. First we show that 
 computes a relation that

includes 
.

Lemma 8 If P is a symbolic evaluation, C is an upper approximation, and � (� 
J �0) �0, then

� (�
J �
0)�0.

Proof: By induction on the size of �. If � = � then the result is immediate. Otherwise,

without loss of generality, let

� = l1; : : : ; ln 7! e1; : : : ; en �0 = l01; : : : ; l
0

m 7! e01; : : : ; e
0

m
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and let fj1; : : : ; jkg = f1; : : : ;mg� J , where the order of j1; : : : ; jk is arbitrary. Let w1; : : : ; wn,

v1; : : : ; vn, w
0

1; : : : ; w
0

m, and v
0

1; : : : ; v
0

m be as given by the de�nition of 
J . By that de�nition,

we know that

� w1 62 fw2; : : : ; wng, and

� w1 62 fw
0

j j j 2 Jg.

There are two cases.

� Case 1: There is some j 62 J such that w1 = w0j. Because P is a symbolic evaluation we

have by Lemma 7 that

(l1 � lj) `� true:

In this case, the update to w1 in store � is overwritten by the later update to w0j, and

so in this case it may be removed from the de�nition of �0 in the rule that de�nes 
J .

Furthermore, because w1 = w0j we have that w
0

j 62 fw2; : : : ; wng, and so j may be added

to J in the rule that de�nes 
J . Therefore,

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fjg �
0)�0:

By induction, we have that

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fjg �
0)�0:

� Case 2: There is no j 62 J such that w1 = w0j, and so^
j 62J

(l1 � l0j) `� false:

In this case, w1 62 fw2; : : : ; wn; w
0

1; : : : ; w
0

mg. Hence, the update of w1 to v1 in store � is

not overwritten and thus may be moved to the end of the list of updates in the de�nition

of 
J . Therefore,

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fm+1g l01; : : : ; l
0

m; l1 7! e01; : : : ; e
0

m; e1 ) �
0:

By induction, we have that

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fm+1g l
0

1; : : : ; l
0

m; l1 7! e01; : : : ; e
0

m; e1 ) �
0:

Therefore, because C is an upper approximation, either all of the branches in �
J �
0 will evaluate

to false in �, in which case � (�
J �
0)�0 by Case 2, or at least one the branches will evaluate

to true in �, in which case � (�
J �
0) �0 by Case 1. 2

Now we show that if all primitive operations are deterministic, 
 computes a relation that

is precisely 
.
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Lemma 9 If all primitive operations p 2 Primop are deterministic, P is a symbolic evaluation,

C is a translation, and � (�
J �
0)�0, then � (� 
J �0) �0.

Proof: By induction on the size of �. If � = � then the result is immediate. Otherwise,

without loss of generality, let

� = l1; : : : ; ln 7! e1; : : : ; en �0 = l01; : : : ; l
0

m 7! e01; : : : ; e
0

m

and let fj1; : : : ; jkg = f1; : : : ;mg�J , where the order of j1; : : : ; jk is arbitrary. Because all prim-

itive operations are deterministic, we know from Lemma 2 that each l-expression (expression)

evaluates to a unique l-value (value). Let w1; : : : ; wn, v1; : : : ; vn, w
0

1; : : : ; w
0

m, and v01; : : : ; v
0

m,

correspond to � and �0 as shown above. There are two cases.

� Case 1: There is some j 62 J such that

(l1 � l0j) `� true

and

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fjg �
0)�0:

By induction,

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fjg �
0)�0:

Hence, by the de�nition of 
J[fjg we have that

{ w2; : : : ; wn are distinct,

{ w01; : : : ; w
0

m are distinct,

{ k 2 J ) w0k 62 fw2; : : : ; wng, and

{ w0j 62 fw2; : : : ; wng.

But because P is a symbolic evaluation, we have by Lemma 7 that w1 = w0j . Hence,

{ w1 62 fw2; : : : ; wng,

{ k 2 J ) w0k 6= w1, and

{ an assignment to w0j overwrites an earlier assignment to w1.

Therefore, by the de�nition of 
J ,

� (� 
J �0) �0:

� Case 2:

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fm+1g l
0

1; : : : ; l
0

m; l1 7! e01; : : : ; e
0

m; e1 ) �
0:

By induction,

� ( l2; : : : ; ln 7! e2; : : : ; en 
J[fm+1g l01; : : : ; l
0

m; l1 7! e01; : : : ; e
0

m; e1 ) �
0:

Hence, by the de�nition of 
J[fm+1g we have that
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{ w2; : : : ; wn are distinct,

{ w01; : : : ; w
0

m; w1 are distinct,

{ k 2 J ) w0k 62 fw2; : : : ; wng, and

{ w1 62 fw2; : : : ; wng.

Therefore, because the assignment to w1 does not overwrite any preceding assignment, it

may be moved to the front, and hence by the de�nition of 
J ,

� (� 
J �0) �0:

2

3.6 The Composition Operation

Finally, we are ready to present the syntactic composition operation

� 2 TR� TR! TR

De�nition 9 (Syntactic composition of transfer relations) We introduce the following

terms to describe correctness properties of �.

� If

� (�;�0)�0 ) � (� � �0) �0;

then � is said to be an upper approximation.

� If

� (�;�0)�0 () � (� � �0) �0;

then � is said to be a translation.

The de�nition of the � algorithm is as follows.

; � � = ;

� � ; = ;

e? � �0 � �00 = C e (� � �00) (�0 � �00)

� � e? � �0 = C (E e �) (� � �) (� � �0)

� � l1; : : : ; ln 7! e1; : : : ; en = �

;
L l1 �; : : : ; L ln � 7! E e1 �; : : : ;E en �

We have shown that if the P and C algorithms terminate then E, L, and 
 algorithms terminate.

So because � is de�ned by structural induction, it thus always terminates.
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We will give some examples of the composition algorithm later when we use transfer relations

to model the semantics of programming languages. For the remainder of this chapter we give

the correctness proofs of �.

Theorem 3 (� as an upper approximation) If P is a symbolic evaluation and C is an

upper approximation then � is an upper approximation.

Proof: Because P is a symbolic evaluation, we have from Theorem 1 that E and L are upper

approximations. We proceed by structural induction. There are �ve cases.

� (;;�) � ; = (; � �)

� (�; ;) � ; = (� � ;)

� ( e? � �0 ;�00):

� ( e? � �0 ;�00)�00

) 9�0: [� e? � �0 �0 ^ �0�00 �00] relation composition

) 9�0:[((e `� true ^ ���0)

_ (e `� false ^ ��0 �0)) ^ �0�00 �00] de�nition of conditional relations

) (e `� true ^ � (�;�00)�00)

_ (e `� false ^ � (�0;�00) �00) relation composition

) (e `� true ^ � (� � �00)�00)

_ (e `� false ^ � (�0 � �00) �00) induction

) � e? (� � �00) (�0 � �00) �00 de�nition of conditional relations

) � (C e (� � �00) (�0 � �00))�00 assumption about C

) � ( e? � �0 � �00)�00 de�nition of �

� (�; e? � �0 ): Let e0 = (E e �).

� (�; e? � �0 )�00

) 9�0: [� � �0 ^ �0 e? � �0 �00] relation composition

) 9�0: [� � �0 ^ ((e `�0 true ^ �0��00)

_ (e `�0 false ^ �0�0 �00))] de�nition of conditional relations

) 9�0: [� � �0 ^ ((e0 `� true ^ �0��00)

_ (e0 `� false ^ �0�0 �00))] E is an upper approximation

) ((e0 `� true ^ � (�;�) �00)

_ (e0 `� false ^ � (�;�0) �00)) relation composition

) ((e0 `� true ^ � (� � �) �00)

_ (e0 `� false ^ � (� � �0) �00)) induction

) � e0? (� � �) (� � �0) �00 de�nition of conditional relations

) � (C e0 (� � �) (� � �0))�00 assumption about C

) � (� � e? � �0 )�00 de�nition of �
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� (�; l1; : : : ; ln 7! e1; : : : ; en ): For i 2 f1; : : : ; ng let l0i = (L li �) and e
0

i = (E ei �).

� (�; l1; : : : ; ln 7! e1; : : : ; en )�00

) 9�0: [� � �0 ^ �0 l1; : : : ; ln 7! e1; : : : ; en �00] relation composition

) 9�0: [� � �0 ^ 9w1; : : : ; wn; v1; : : : ; vn: [

(i 6= j ) wi 6= wj)

^ (
Vn
i=1 li `�0 wi ^ ei `�0 vi)

^ �00 = �0[w1 7! v1] : : : [wn 7! vn]]] de�nition of assignment relations

) 9�0: [� � �0 ^ 9w1; : : : ; wn; v1; : : : ; vn: [

(i 6= j ) wi 6= wj)

^ (
Vn
i=1 l

0

i `� wi ^ e
0

i `� vi)

^ �00 = �0[w1 7! v1] : : : [wn 7! vn]]] E and L are upper approximations

) � (� 
 l01; : : : ; l
0

n 7! e01; : : : ; e
0

n )�00 de�nition of 


) � (�

;
l01; : : : ; l

0

n 7! e01; : : : ; e
0

n )�00 Lemma 8

) � (� � l1; : : : ; ln 7! e1; : : : ; en )�00 de�nition of �

2

Theorem 4 (� as a translation) If all primitive operations p 2 Primop are deterministic, P

is a symbolic evaluation, and C is a translation, then � is a translation.

Proof: We know from Theorem 3 that � is an upper approximation. Therefore, from Corol-

lary 1, we need only show that

� (� � �0)�0 ) 9�00: � (�;�0)�00

to establish that � is a translation. From Theorem 2 we have that E and L are translations.

We proceed by structural induction. There are �ve cases.

� (; � �) = ;, and so � (; � �)�0 must be false.

� (� � ;) = ;, and so � (� � ;) �0 must be false.
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� ( e? � �0 � �00):

� ( e? � �0 � �00)�0

) � (C e (� � �00) (�0 � �00))�0 de�nition of �

) � e? (� � �00) (�0 � �00) �0 C is a translation

) (e `� true ^ � (� � �00) �0)

_ (e `� false ^ � (�0 � �00)�0) defn. of conditional relations

) (e `� true ^ 9�00: � (�;�00)�00)

_ (e `� false ^ 9�00: � (�0;�00)�00 induction

) (e `� true ^ 9�0: ���0 ^ 9�00 �0�00 �00)

_ (e `� false ^ 9�0: ��0 �0 ^ 9�00 �0�00 �00) relation composition

) 9�0; �00: [((e `� true ^ ���0)

_ (e `� false^ ��0 �0)) ^ �0�00 �00] distributivity

) 9�0; �00: [� e? � �0 �0 ^ �0�00 �00] defn. of conditional relations

) 9�00: � ( e? � �0 ;�00) �00 relation composition

� (� � e? � �0 ): Let e0 = (E e �).

� (� � e? � �0 )�0

) � (C e0 (� � �) (� � �0))�0 de�nition of �

) � e0? (� � �) (� � �0) �0 C is a translation

) (e0 `� true ^ � (� � �)�0)

_ (e0 `� false ^ � (� � �0) �0) defn. of conditional relations

) (e0 `� true ^ 9�00: � (�;�) �00)

_ (e0 `� false ^ 9�00: � (�;�0) �00) induction

) 9�0; �00: [� � �0 ^ ((e0 `� true ^ �0��00)

_ (e0 `� false ^ �0�0 �00))] relation composition

) 9�0:�00: [� � �0 ^ ((e `�0 true ^ �0��00)

_ (e `�0 false ^ �0�0 �00))] E is a translation

) 9�0:�00: [� � �0 ^ �0 e? � �0 �00] defn. of conditional relations

) 9�00: � (�; e? � �0 ) �00 relation composition
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� (� � l1; : : : ; ln 7! e1; : : : ; en ): For i 2 f1; : : : ; ng let l0i = (L li �) and e
0

i = (E ei �).

� (� � l1; : : : ; ln 7! e1; : : : ; en ) �0

) � (�

;
l01; : : : ; l

0

n 7! e01; : : : ; e
0

n )�0 de�nition of �

) � (� 

;
l01; : : : ; l

0

n 7! e01; : : : ; e
0

n )�0 Lemma 9

) 9�0; w1; : : : ; wn:

[� � �0 ^ (i 6= j ) wi 6= wj) ^
Vn
i=1 l

0

i `� wi] de�nition of 


) 9�0; w1; : : : ; wn:

[� � �0 ^ (i 6= j ) wi 6= wj) ^
Vn
i=1 li `�0 wi] L is a translation

) 9�0; �00: [� � �0 ^ �0 l1; : : : ; ln 7! e1; : : : ; en �00] de�nition of assignment relations

) 9�00: � (�; l1; : : : ; ln 7! e1; : : : ; en ) �00 relation composition

2



Chapter 4

Semantics via Transfer Relations

In Chapter 2, we introduced the store as an object for modeling the state of memory during

a point of program execution. We also introduced the notion of relating a store at one point

in an execution to some later point in the execution; these relations are called transfer rela-

tions. For the sake of automatic program analysis, we developed in Chapter 3 a computer

representation for the kinds of transfer relations that might naturally correspond to such exe-

cution segments, and we gave an algorithm for composing these representations, to build bigger

execution segments out of smaller ones.

However, those chapters presented these concepts in an abstract manner, apart from any

particular programming language. Although we gave examples designed to spark intuition about

actual programming languages, we never described how these transfer relations correspond to

any kind of a semantics of a programming language. In this chapter, we describe a semantic

methodology of programming languages that is founded upon transfer relations, and as such is

particularly useful as a basis for program analysis.

4.1 Denotational and Operational Semantics

The semantics of programming languages is a topic both broad and deep, and we can only

touch on some of the overarching issues here, in order to put our work in a larger perspective.

A denotational semantics [Sto77] uses structural induction to assign each term in the source

language an object in some abstract model. The spirit of denotational semantics is to model

function terms in the source language with actual functions. This turns out to be di�cult;

Dana Scott solved the underlying problems [Sco70, Sco76, Sco82]. On the other hand, Jean-

Yves Girard in [GLT89] makes the following philosophical observation about the �, �, and �

equations of �-calculus [Bar84]:

In fact, these equations may be read in two di�erent ways, which re-iterate the

dichotomy [in logic] between sense and denotation:
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� as the equations which de�ne the equality of terms, in other words the equality

of denotations (the static viewpoint).

� as rewrite rules which allows us to calculate terms by reduction to a normal

form. That is an operational, dynamic viewpoint, the only truly fruitful view

for this aspect of logic.

Of course the second viewpoint is under-developed by comparison with the �rst

one, as was the case in Logic! For example denotational semantics of programs

(Scott's semantics, for example) abound: for this kind of semantics, nothing changes

throughout the execution of a program. On the other hand, there is hardly any

civilised operational semantics of programs (we exclude the ad hoc semantics which

crudely paraphrase the steps toward normalisation). The establishment of a truly

operational semantics of algorithms is perhaps the most important problem in com-

puter science.

The dichotomy between sense and denotation in logic to which Girard refers is the comparison

between Tarski's classical view, in which for instance the meaning of A ^ B is its truth value

and is given by a truth table on the meanings of A and B, and Heyting's intuitionistic view,

in which the meaning of A ^ B is a proof and is given by a proof of A coupled with a proof

of B. This leads to the study of proof theory, of which the most famous result is the Curry-

Howard isomorphism between natural deduction and the simply-typed �-calculus in which types

correspond to sentences, terms correspond to proofs (meanings, in the Heyting view), and

reduction of terms corresponds to rewriting of proofs. Girard points out that \the fundamental

idea of denotational semantics is to interpret reduction (a dynamic notion) by equality (a static

notion)".

This discussion provides some insight into the role of semantics in program analysis. Strictly

speaking, a program analysis does not answer questions about a program, it answers questions

about a program's semantics. This is a rather specialized and practical application of semantics.

As Girard points out, denotational semantics is concerned with the equality of programs|a

notion that is undecidable for most languages. One of the practical bene�ts of a well-designed

denotational semantics is to shed light upon or otherwise aid in the reasoning about program

equivalence. It stands to reason, then, that the purpose of a program analysis based on a

denotational semantics must be to provide some automatic support for reasoning about program

equivalence.

Almost as soon as abstract interpretation arrived on the scene, to make a connection between

program analyses and the semantics of programming languages, a great amount of e�ort was

spent in adapting it to denotational semantics. For some examples, see [Myc81], [Nie84], [Nie86],

and [AH87]. As one would expect, this body of work o�ers some of the most esthetically

pleasing formulations of program analyses, but it also has found little use beyond a narrow

range of applications such as strictness analysis [BHA86].

In general, however, one would like a program analysis to produce some information about

a dynamic interpretation of a program rather than this static denotation. This is why most
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program analyses are based on an operational semantics that describes how a program reduces

during execution.

This is also perhaps why the �eld of program analysis continues to struggle for acceptance in

programming-language theory. As Girard says, operational semantics tend to be \uncivilised",

and despite the frameworks of structural operational semantics [Plo81] (generalized to in�nite

behaviors in [CC92b]) and natural semantics [Kah87], operational semantics does not have

nearly the developed and re�ned theory of denotational semantics. Even worse, despite an

e�ort by Schmidt in [Sch95] to begin to develop a sub-framework of abstract interpretation for

natural semantics, most program analyses use what Girard calls the \ad hoc semantics that

crudely paraphrase the steps toward normalisation". The reason is that a program analysis

is usually designed to answer questions about \the run-time behavior" of a program, which

requires this crude notion of operational semantics: ad hoc because it is modeling the execution

of a program on some kind of machine, and paraphrasing normalization steps because they are

precisely the steps of execution on this machine.

Therefore, whether they are presented in this manner or not, most useful program analyses

are founded upon semantics based on transition systems. These semantics mimic the execution

of a program on a particular abstract machine that re
ects the properties of interest. In our

work, the store is the heart of such an abstract machine. We designed the store with this

application in mind.

4.2 Modeling a Program as a Transition System

Typically, a dynamic semantics of a programming language must model two components of

execution: data and control. By data, we mean the state of memory. In our framework, the

data is modeled by a store. By control, we mean the state of the code itself. For instance, the

control might be modeled by a label describing the position in the code that is scheduled to be

executed next.

In some operational semantics, the control state and the data state are intertwined. For

instance, in context semantics [FF86], a state of execution is simply a syntactic term; the control

state is encoded in as the next redex to be reduced, and the data state is modeled with syntactic

constructs (such as substitution or the heap variables in [MFH95]) and folded into the term

itself. But much of program analysis is concerned with analyzing the patterns of data access

during execution, and so we wish to keep control and data explicitly separated.

This inspires a semantic methodology in which a program is modeled by a transition system.

As described in Chapter 2, given a set Var of variables and a set Val of values, one can de�ne

the set Store of stores that model the instantaneous states of data. We must introduce a new

set CtrlPoint of control points, such as labels, that model the instantaneous syntactic position

of execution. A transition system is then a tuple

hCtrlPoint;Var;Val; 7�!i
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where

7�! � (CtrlPoint� Store)� (CtrlPoint� Store)

is a single-step binary transition relation between adjacent control-store pairs in an execution,

where Store is de�ned from Var and Val as in Chapter 2:

Store = Lval! Val

Lval = Var [ (Val� Val) l-values

In other words,

(C; �) 7�! (C 0; �0)

if execution can proceed in one step from a state at control point C 2 CtrlPoint and store

� 2 Store to a state at control point C 0 and store �0.

As we described in the Chapter 2, stores have rich structure for analysis. A control point

is typically much simpler. For instance, if the subterms (e.g., commands, expressions) in a

program are uniquely labeled, then a control point often can be simply the label of the next

subterm to be executed. Or the control point might be the unlabeled subterm itself. As another

example, the control point of a machine-language program is the value of the program counter,

while the rest of the registers and memory are modeled by the store.

There are many examples of other kinds of transition systems as models of programming

languages. Most of these systems do not use our precise notions of control and store, but

they all have some notion of a control state and a data state. These systems are also called

abstract machines. Our notion of a store is expressive enough to encompass all of these, with

the appropriate choice of the set Val of values.

The heart of a transition system is the de�nition of the transition relation 7�!. Almost

always, 7�! is de�ned by a set of meta-rules that de�ne how each occurrence of a certain kind

of syntactic term in the program induces a family or families of transitions. We give a concrete

example of this in Section 5.8.2, and the rules in that section are indeed quite standard. But for

the rest of this chapter we instead describe a di�erent approach. This novel approach replaces

the traditional meta-rules with our computer-representable transfer relations, thus opening the

door to a wide range of program-analysis possibilities.

4.3 Modeling a Program as a Table of Transfer Relations

In the previous section, we suggested modeling the semantics of a program with a transition

system. We explained that a transition system is a tuple

hCtrlPoint;Var;Val; 7�!i

where

7�! � (CtrlPoint� Store)� (CtrlPoint� Store)
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is a single-step binary transition relation between adjacent control-store pairs in an execution,

where Store is de�ned from Var and Val as in Chapter 2.

Observe, however, the following isomorphism:

P((CtrlPoint � Store)� (CtrlPoint� Store)) ' CtrlPoint� CtrlPoint! P(Store � Store)

Therefore, given any transition relation

7�! � (CtrlPoint� Store)� (CtrlPoint� Store)

one can view 7�! as a table of binary relations on stores, indexed by pairs of program points.

If we write the (C;C 0) entry of this table as
C;C0

7�! then the correspondence is as follows.

(C; �) 7�! (C 0; �0) i� �
C;C0

7�! �0:

Now, recall that transfer relations are binary relations on stores:

TR � P(Store � Store)

But not all binary relations on stores are transfer relations. In Section 2.4.1, we argued that

some binary relations on stores are not \natural", in that they will not occur in any reasonable

programming language. This notion of naturalness motivated the design of our language TR

of transfer relations, and our claim is that TR is indeed rich enough to model programming

languages.

The implications of that claim now become manifest. We now claim not only that a tran-

sition relation 7�! can be replaced by a table in

CtrlPoint� CtrlPoint! P(Store � Store)

of binary relations on stores, but that it can indeed be replaced by a table in

CtrlPoint� CtrlPoint! TR

of terms in our language of transfer relations, again indexed by the control points before and

after the transition. Ultimately, this is more of a philosophical claim than a provable statement.

The claim is that the language TR of transfer relations is expressive enough to model all possible

store changes that may arise as single execution steps of any reasonable programming language.

To support this claim, we will demonstrate in future chapters that TR is indeed expressive

enough to model a wide variety of programming-language constructs.

Given this claim, one may replace any transition system

hCtrlPoint;Var;Val; 7�!i

by a tuple

hCtrlPoint;Var;Val;Primop; ~�i
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where
~� 2 CtrlPoint� CtrlPoint! TR

and the set TR of transfer relations is de�ned as in Chapter 2 from the sets Var, Val, and Primop.

Now, the heart of a semantic de�nition of a programming language is not a set of meta-rules

de�ning a transition relation 7�!, but is instead a description of how to map a program in

the language to a table ~� of transfer relations, one transfer relation for each pair of control

points in the program, describing the single steps of program execution. By convention, we

write ~�(C;C 0) as

�C;C0

and call these transfer relations the single-step transfer relations of the program.

There are jCtrlPointj2 single-step transfer relations. As described above, CtrlPoint is typically

a set of pointers into the text of a program P , and so jCtrlPointj will usually be linear with the

size of P . If that size is n, then this means that there are O(n2) single-step transfer relations

in the semantics of P . However, the vast majority of these will be the empty relation, because

transitions between most pairs of control points is impossible. For instance, in straight-line

code, the only possible transitions are between adjacent control points, and so there are only

O(n) non-empty single-step transfer relations, as one would expect.

Note that transfer relations thus encode control-
ow information about the program. If

�C;C0 = ; then it is not possible for the program in question to take a single step from control

path C to control path C 0. Similarly, if �C;C0 = e? � then a single step from C to C 0 is

possible only from stores at C in which e evaluates to true.

It is interesting to note that each non-empty single-step transfer relation replaces an in�nite

family of transitions. This is demonstrated with the following simple example.

Example 19 Suppose the transfer-relation semantics of program P is the tuple

hCtrlPoint;Var;Val;Primop; ~�i

and that �C;C0 = x 7! y + 1 for some C;C 0 2 CtrlPoint. Then the transition-system semantics

hCtrlPoint;Var;Val; 7�!i

of P includes the family of transitions

(C; �) 7�! (C 0; (�[x 7! (� y) + 1]))

where � 2 Store is any store.

4.4 Composing Single-Step Transfer Relations

Given the single-step transfer relations ~� for a program, one can use the transfer-relation

composition algorithm � from Chapter 3 to compute the transfer relation for any �nite control

path in a program.
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4.4.1 Two-step transition sequences

Suppose the transfer-relation semantics of program P is the tuple

hCtrlPoint;Var;Val;Primop; ~�i

and, following our convention of notation, we write ~�(C;C 0) as �C;C0 .

The single-step transfer relation �C;C0 de�nes all of the transitions from control point C

to control point C 0. The single-step transfer relation �C0;C00 de�nes all of the transitions from

control point C 0 to control point C 00. Therefore, the relation

�C;C0 ;�C0;C00

de�nes exactly the two-step transition sequences from C through C 0 to C 00.

Suppose that all primitive operations p 2 Primop are deterministic, as will be the case in

most programming languages, and that we are given the symbolic evaluation

P 2 Primop! Exp� ! ATR! Exp

as de�ned by De�nition 5 and translation

C 2 Exp! TR! TR! TR

as de�ned by De�nition 8. Then we know from Theorem 4 that

(�C;C0 � �C0;C00) 2 TR

is equivalent to �C;C0 ;�C0;C00 and thus de�nes exactly the two-step transition sequences from C

through C 0 to C 00. But the profound advantage of �C;C0 � �C0;C00 over �C;C0 ;�C0;C00 is that,

syntactically, the former is a (computer-representable) term in our language TR of transfer

relations, while the latter is not. The advantage of this is illustrated in the following example,

which also serves to remind why we disallowed explicit syntactic composition of transfer relations

in the language TR.

Example 20 Suppose

�C;C0 = x 7! y + 1

�C0;C00 = x 7! x - 1

Suppose also that all primitive operations p 2 Primop are deterministic, and f+; -g � Primop.

Assuming an arbitrary C (because it will not be used here) and the trivial P that is the identity

function on context-independent operations (such as + and -), we have that

x 7! y + 1 � x 7! x - 1 = x 7! (y + 1) - 1
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describes exactly the possible net e�ects of the two-step fragment of execution from control point

C through C 0 to C 00. If P instead performs some better symbolic evaluation, � may yield a

better result such as

x 7! y

Either way, it is more enlightening as to the behavior of this execution fragment than the term

x 7! y + 1 ; x 7! x - 1

By convention we write �C;C0 � �C0;C00 as �C;C0;C00

Suppose that there are nondeterministic primitive operations in Primop. Then from Theo-

rem 3 we have that �C;C0 � �C0;C00 is a superset of �C;C0 ;�C0;C00 and thus de�nes at least all

of the two-step transition sequences from C through C 0 to C 00. It might, however, relate some

initial stores (i.e., at C) to some �nal stores (i.e., at C 00) that cannot be achieved by such a

two-step transition sequence.

We now generalize the above to arbitrary-length sequences of transitions.

4.4.2 Arbitrary-length transition sequences

Single transitions involve two control points, an initial and a �nal. Two-step transition se-

quences involve three control points, an initial, a middle, and a �nal. We generalize this

concept with the following de�nition.

De�nition 10 Given a set CtrlPoint of control points, a control path is a sequence of one

or more control points. The set of control paths is written CtrlPoint+. If � 2 CtrlPoint+

and �0 2 CtrlPoint+ then �;�0 2 CtrlPoint+ is their concatenation. For any � 2 CtrlPoint+,

�0 2 CtrlPoint+, and C 2 CtrlPoint, (�; C); (C;�0) = �; C;�0.

A transfer-relation semantics provides the single-step transfer relations of a program that

de�ne all of the program's valid transitions. Transitions are merely execution sequences through

control paths of length two. Concatenating adjacent transitions, or equivalently, composing

adjacent transfer relations, produces the execution sequences through control paths of length

three. Another composition covers the control paths of length four, and so forth.

Therefore we de�ne from the �nite collection of single-step transfer relations �C;C0 the

in�nite collection of transfer relations �� for all control paths � of length at least 2:

��;�0 = �� � ��0

Note that this de�nition is nondeterministic, because there are n�2 ways to split up a length-n

control path �00 into � and �0 such that �00 = �;�0 because any control point in the path �00

other than the end points can act as the \pivot point". In fact, the choice of pivot point will

in general produce di�erent syntactic transfer relations. But if � is a translation, which by

Theorem 4 will be the case if all primitive operations p 2 Primop are deterministic, then by

associativity of relation composition, all of these transfer relations are semantically equivalent.

If on the other hand � is merely an upper approximation, then they may not all be semantically

equivalent, but they are all supersets of the true composition.



4.5 Treatment of Errors 75

4.5 Treatment of Errors

There are three ways in which an implementation of a programming language treats an error.

1. The error may be caught at compile time. For instance, most languages with static typing,

such as ML, will prevent at compile time all attempts to add an integer and a boolean

value.

2. An error not caught at compile time may be caught at run time. For instance, ML's static

type system cannot detect out-of-bound array references. Instead, all array references

perform a test a run time to check if the index is within bounds of the array, and raise

an exception if the test fails.

3. Finally, an error may not be caught at all. In this case, the semantics of the error is

unspeci�ed, and the execution is allowed to \run wild" after the error. In ML, no errors

reach this stage; they are all caught either at compile time or at run time. But in C,

for instance, it is possible to extract a value from an uninitialized local variable, but the

de�nition of C does not specify this value. Also, one may cast any integer into a pointer

and attempt to write into that address in memory. Depending on the implementation, this

can produce a wide range of errors that are impossible to catch at run time. For instance,

the address of a pointer may happen to correspond to a local variable on the stack, and

so any write into a pointer changes the value of the variable. Similarly, writing past the

boundary of a struct or array may interfere with other data structures. An even more

dramatic example of bad behavior resulting from uncaught errors is the overwriting of

code by bad pointers or out-of-bound array references. The semantics of C is unspeci�ed

for such programs; once such an error occurs, the execution may run wild. Depending

on the implementation, the execution may proceed in an unpredictable manner or may

violate the run-time system, causing a segmentation fault or bus error.

We discuss the way in which our methodology addresses these three kinds of errors.

1. Because our methodology is appropriate only for a dynamic semantics of a language (in

other words, the run-time behavior) and not for a static semantics (for instance, the

static type system), we do not address errors caught at compile time. We assume that

the static semantics has already caught these errors and provided the dynamic semantics

with a program that is free of these errors. A dynamic semantics may, incidentally,

provide a model for programs that contain compile-time errors, but it does not matter

what this model is. For example, in Chapters 5 and 6, we will use our methodology to

model languages with records. These semantics will not model the type of a record (in

other words, the names and types of its �elds), and thus allow type-unsafe uses of the

record (for instance, an attempt to read a non-existent �eld). These semantics do provide

a model for such type-unsafe operations, but it is expected that a static semantics will

ensure that they will never occur.
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2. Because our methodology is for the design of a dynamic semantics, modeling the run-time

behavior of programs, it should be able to provide a treatment of errors caught at run-

time. Typically, when a run-time error is detected, control proceeds to an error handler.

For instance, a run-time error in ML raises an exception which is caught by either a

user-de�ned handler or the run-time system's top-level handler. Nothing prevents our

methodology from dealing with run-time errors in a similar fashion. Suppose that (C; �)

is a state in which a run-time error occurs. For instance, in an ML program, control point

C may reference code to take the head of a list object in store �, and that object is nil.

Then there will be a transition

(C; �) 7�! (C 0; �0)

where C 0 is the entry of some error handler, which in the case of ML will be an exception

handler.

However, in this dissertation we will not give any examples of such run-time errors. In

other words, the languages in Chapters 5, 6, and 7 do not perform any run-time checks.

3. We assume that if an error is not caught at compile time or run time, then the run-time

behavior of the program after the error occurs is unspeci�ed. Therefore, our methodology

treats these errors in the same way as it treats compile-time errors: we assign a behavior

to a program that exhibits such an error, but the particular behavior is unimportant

because conceptually the semantics is unspeci�ed in that case.

Generally, the value undef may come about as the result of errors that are allowed to

\run wild" and thus have unspeci�ed run-time behavior|in other words, the the �rst and third

categories above. For instance, in Chapters 5, 6, and 7 we will give a semantic model in which an

attempt to lookup the value of an unbound variable or �eld of a data structure results in undef,

and primitive operations are de�ned on undef. For instance, (1 + undef) evaluates to undef,

and (undef = undef) evaluates to true. The latter may seem odd, but is perfectly reasonable

because, once again, the run-time behavior of errors that produce unde�ned is unspeci�ed.

Essentially, we need only model the run-time behavior of programs that do not exhibit any

errors in the �rst and third categories above.

It is worth commenting on a phenomenon with transfer relations that should not be confused

with the treatment of errors. Suppose control path � begins with control point C. Given the

transfer relation �� corresponding to control path �, and given a store �, if there is no �0

such that ��� �
0, then it means that execution from the state (C; �) cannot progress through

control path �. For instance, C may be a branching point, with path � proceeding down the

branch for when x > 0, but the value of x in � is not greater than 0. This is not intended to

be a way of modeling errors that may have occurred during control path �.
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Chapter 5

A Case Study: The Language Mini-C

In this chapter, we present Mini-C, a simple imperative language with while loops, assign-

ment, mutable records, and immutable tuples, but without procedures or arrays. We also

give a semantics for Mini-C in terms of a transition system. As suggested in Chapter 4, we

will demonstrate two di�erent techniques for de�ning that transition system|the traditional

approach of meta-rules and our new approach using single-step transfer relations.

The main purpose of this chapter is to develop a relatively straightforward case study of

our approach to program analysis.

5.1 Syntax

A Mini-C program is a list of zero or more statements. A statement is either an assignment,

an allocation of a new record with n named �elds, a conditional with a statement list for each

branch, or a while loop with a statement list for a body.

S ::= fs1; : : : ; sng (ordered) statement list (n � 0)

s ::= L :=E assignment statement

j L := ff1 = E1; : : : ; fn = Eng mutable-record allocation

j if E then S else S0 conditional statement

j while E do S while loop

f 2 Field mutable-record �eld names
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We de�ne the source expressions and source l-expressions slightly di�erently from the expres-

sions and l-expressions in Chapter 2.

E ::= L location lookup

j P (E1; : : : ; En) primitive application

L ::= x variable location

j E:f data subcomponent location

x 2 Var variables

Finally, the source primitive operations are

P ::= c constants (nullary)

j + j - j * integer operations (binary and unary -)

j < j > j = j <> j & boolean operations (binary)

j if conditional expression (ternary)

j tuple immutable-tuple construction (n-ary)

j �i immutable-tuple component selection (unary)

where the set Constant of constants is

c ::= n integers (Int)

j true j false booleans

All of the source primitives are simple (i.e., deterministic and context-independent). We leave

the set Field of �eld names of mutable data structures open for the moment. Note that constants

are nullary primitive operations, as suggested in Chapter 2. We will sometimes use nil as

another name for false. (One could just as easily add nil as another constant.)

We adopt the following syntactic conventions.

� The statement list fsg may be written as s. item The expression c() may be written as c

(our usual convention).

� The expression P (E;E0) may be written in in�x as E P E0.

� The expression tuple(E1; : : : ; En) may be written as (E1; : : : ; En).

5.2 Discussion

Mini-C does not have procedures, but its data features and imperative features of are similar

to C. Allocating a Mini-C record with n �elds corresponds to calling the C malloc operation

to allocate a size-n block of memory on the heap and then immediately �lling the block with

n values. Thus, Mini-C �eld names correspond to structure �eld names in C as well as the *

token for pointers.
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For simplicity,Mini-C does not have arrays, which add an extra element of complexity in two

ways. One, they may be of statically unknown size. Two, the index (which would correspond to

the �eld name of a record) of an array dereference may also be statically unknown. In Chapter 7

we will develop a source language with arrays.

One feature of C that is not present in Mini-C is low-level control over data layout. C's

& operator is not in Mini-C because there is no distinction in Mini-C between an updatable

data structure and a pointer to that structure. Intuitively, all updatable data structures in

Mini-C are pointers, in much the same way that all arrays in C are pointers. In contrast, C

provides a mechanism for distinguishing a struct itself from a pointer to that struct; this is

useful for programmer control of data layout|for instance, the inline allocation of a struct as a

�eld in another struct. Furthermore, there is no pointer arithmetic inMini-C, and nor is there

a notion of casting one updatable data structure to another. All of those features of C exist

to give the programmer low-level control of data layout. In this dissertation, we will not cover

such issues, and so Mini-C does not include those language features.

However, it is in fact possible to model a functionality similar to the C & operator, as

well as pointer arithmetic for an extension of Mini-C with arrays. We discuss this further in

Section 5.9.

5.3 Simpli�cation of Syntax

Above we presented the syntax ofMini-C in a form that is intended to be used by a programmer.

But it will be much more convenient to describe the semantics of Mini-C programs if we �rst

recast the syntax in a form that more closely �ts our development of transfer relations in the

previous chapters.

Our �rst task is to recast source expressions and source l-expressions respectively into the

expressions and l-expressions of the transfer-relation language. We recall their de�nitions here.

e 2 Exp ::= x j p(e1; : : : ; en)

l 2 Lexp ::= x j e:e0

p 2 Primop

x 2 Var

First of all, we include all of the source primitive operations P in the set Primop. For the

purpose of modeling the semantics of Mini-C with transfer relations, we will have to add some

operations to Primop that are not available to the user at source level. First of all, we need to

add the �eld names Field to Primop as nullary primitive operations; then the source l-expression

E:f is a member of Lexp.

Secondly, we need to add the context-dependent binary primitive operation deref of Chap-

ter 2 to Primop in order to consider the source expressionE:f to be the expression deref(E; f) 2
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Exp. Now all source expressions E are in Exp, and all source l-expressions L are in Lexp; hence-

forth we will thus call them expressions and l-expressions and use the metavariables e and l,

respectively.

Our second transformation is to \compile" a statement allocating a record with n �elds into

a statement that allocates new memory followed by n statements that �ll the n �elds with their

values. For this purpose, we need the following, as suggested in Chapter 2:

� for each natural number m, a pointer value hmi 2 Val

� the unary primitive operation ptr that casts an integer m to the pointer hmi (formally,

ptr(m) ,! hmi), where we write hei for ptr(e)

� a distinguished variable H, initialized to 1 at the beginning of execution, to hold the integer

of the next free pointer on the heap

We now perform the following transformation of aMini-C program S. We assume without loss

of generality that H does not appear in S. We �rst add the assignment statement

H := 1

to the beginning of statement list S. Then we rewrite every allocation statement

l := ff1 = e1; : : : ; fn = eng

as the sequence
l := hHi;

hHi:f1 := e1;
...

hHi:fn := en;

H := H + 1

Our resulting program is now in the simpli�ed language

S ::= fs1; : : : ; sng (ordered) statement list (n � 0)

s ::= l := e assignment statement

j if e then S else S0 conditional statement

j while e do S while loop

where l 2 Lexp, e 2 Exp, and Primop includes the source primitive operations as well as deref,

ptr, and f for all f 2 Field.

We now wish to design a transition system to describe the semantics of Mini-C programs

expressed in this simpli�ed language. Recall that a transition system is a tuple

hCtrlPoint;Var;Val; 7�!i:

We already have the set Var of variables; it is one of the syntactic domains of Mini-C. All we

have mentioned about the other three components is that Val includes the collection of pointers

hni. We now describe each of these remaining three components in turn.



5.4 Control Points 83

5.4 Control Points

In order to de�ne a transition system describing the semantics of Mini-C programs, we must

design a way to refer to the control points in a program. The control points are merely the

statements in the program, and execution proceeds from control point to control point as it

processes the statements in order.

A control point of a program is an \index" into the syntax tree of the program. Formally,

a control point is a �nite sequence of natural numbers.

C 2 CtrlPoint = Nat�

The empty sequence is written �. If C 2 CtrlPoint, then C:i 2 CtrlPoint and i:C 2 CtrlPoint

respectively represent the extensions of the sequence C on the right and on the left by i 2 Nat.

Intuitively, the numbers in a control point describe, from left to right, how to descend into

the syntax tree of a program. Formally, this is given below, where S[C] returns the statement

within statement list S at control point C.

fs1; : : : ; sng[i] = si
fs1; : : : ; sng[i:j:C ] = Sj[C] if si = if e then S1 else S2
fs1; : : : ; sng[i:C ] = S[C] if si = while e do S

Example 21 The following Mini-C program is annotated with its control points.

f

1 if n < 0 then

1:1:1 n := -(n)

else

1:2:1 n := n * 2;

2 r := 1;

3 while n > 1 do

f

3:1 r := r * n;

3:2 n := n - 1

g;

4 if r > 60 then

4:1:1 r := r - 1;

5 x := r

g

Recall that a one-armed conditional if e then S is an abbreviation for if e then S else fg.

Note that a traversal into a conditional statement extends the control point by two numbers|an

index identifying one of the two branches and an index into the statement list in that branch|

while a traversal into a while loop extends the control point by only a single number|an index

into the loop body.
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5.5 Values

As described above, the set Var of variables is already given as one of the syntactic domains of

Mini-C. So the next stage of the design of the transition system is the set Val of values. Recall

that the states in the system are pairs

CtrlPoint� Store

where stores are de�ned as in Chapter 2:

Store = Lval! Val

Lval = Var [ (Val� Val) l-values

We thus need to design an appropriate set of values for this store.

5.5.1 Constants, �eld names, and pointers

Recall the set Constant of Mini-C constants:

c ::= n integers (Int)

j true j false booleans

All constants are values.

In Section 5.3 we performed a syntactic transformation where �eld names were considered

as nullary primitive operations. Therefore, we include the set Field in the set of values.

In the same section, we suggested the approach of using pointer values to model the roots

of mutable records. As we described, there is a pointer hmi for every natural number m. The

set of all pointers is denoted Pointer.

5.5.2 Immutable ordered tuples

Recall that Mini-C includes the n-ary primitive operation tuple for tuple construction and

the operations �i for tuple-component selection. Therefore, we would like the set of values to

include all ordered tuples of values. The ordered tuple of the n values v1; : : : ; vn is written

(v1; : : : ; vn).

5.5.3 The unde�ned value undef

As we described in Chapter 2, we demand that the set Val of values include the distinguished

token undef representing the \unde�ned value". As we explained, this requirement comes from

the fact that stores are total functions from l-values to values, and thus require such an explicit

representation. For instance, at any given point in a Mini-C program, it is reasonable for only

a small set of variables to be de�ned, and the store at that point would map all other variables

to undef.
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5.5.4 The set of values

Above, we described the di�erent kinds of values inMini-C. The set Val is their disjoint union

(in order to distinguish pointers from natural-number constants and to distinguish a value from

its unary tuple). It is de�ned inductively as the smallest set satisfying the following equation.

v 2 Val = Constant+ Field+ Pointer + Val� + fundefg

5.6 Semantics of Primitive Operations

The semantics of primitive operations follows the methodology described in Chapter 2. To

review, the phrase p(v1; : : : ; vn) ,!� v means that the n-ary primitive operation p applied to

values (v1; : : : ; vn) in store � evaluates to value v. However, the only primitive operation whose

evaluation depends on � (in other words, the only context-dependent operation, as de�ned in

De�nition 2), is deref, so we omit the � parameter for all other operations.

Recall from Condition 1 that for any n-ary primitive operation p 2 Primop, for any n values

v1; : : : ; vn 2 Val, and for any store � 2 Store, there is at least one value v 2 Val such that

p(v1; : : : ; vn) ,!� v. In other words, all primitive operations must be de�ned everywhere. All

primitive operations in Mini-C are also deterministic; as de�ned in De�nition 1, this means

that they evaluate to only one value. Therefore, all Mini-C primitive operations are total

functions.

We de�ne the primitive operations in Mini-C below. We already gave most of these de�ni-

tions in Chapter 2. A primitive operation evaluates to undef unless otherwise de�ned below.

First, we have the constants and �eld names.

c() ,! c

f() ,! f

Now the integer operations

+(n; n0) ,! (n+ n0)

-(n; n0) ,! (n� n0)

-(n) ,! �n

*(n; n0) ,! (n� n0)
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Next, the boolean operations and if.

&(true; v) ,! v

&(v; true) ,! v

&(false; v) ,! false

&(v; false) ,! false

<(n; n0) ,! (n < n0)

>(n; n0) ,! (n > n0)

=(v; v0) ,! (v = v0)

<>(v; v0) ,! (v 6= v0)

if(true; v; v0) ,! v

if(false; v; v0) ,! v0

Next, the operations for immutable tuples.

tuple(v; : : : ; v0) ,! (v1; : : : ; vn)

�i((v1; : : : ; vn)) ,! vi

Finally, we have the operations to support mutable records.

ptr(n) ,! hni

deref(v; v0) ,!� �(v:v0) (context-dependent)

5.7 Semantics of Expressions and L-expressions

The semantics of expressions and l-expressions are precisely the same as in Chapter 2. We

review that de�nition here. Formally, the interpretations of expressions and l-expressions are

given by the following relations.

� The phrase l `� w means that the l-expression l evaluates in store � to l-value w.

� The phrase e `� v means that the expression e evaluates in store � to value v.

We recall the following rules, which inductively de�ne these relations.

x `� x
e `� v e0 `� v

0

(e:e0) `� (v:v
0)

x `� (� x)
ei `� vi p(v1; : : : ; vn) ,!� v

p(e1; : : : ; en) `� v

We recall Lemma 1, that all expressions (respectively, l-expressions) evaluate to at least one

value (respectively, l-value). In addition, we know from Lemma 2 that because Primop is

deterministic that this value (respectively, l-value) is unique.
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5.8 Transition-system Semantics

In this section we present a transition system that models the executions of Mini-C programs.

We consider two ways to de�ne such a system.

� The usual approach is to give a meta-rule for each kind of syntactic form in the language.

There are one or more meta-rules for each syntactic form in the language (for instance,

conditional, assignment, and so forth). These meta-rules describe how any occurrence of

that syntactic form in the source program induces single-step transitions. The single-step

transitions for the entire program is the collection (union) of all of these transitions.

� The second approach is technically equivalent, but uses the framework that we developed

in Chapters 2, 3, and 4, thus opening up all the possibilities of our program-analysis

methodology for the language. The idea is that each rule introduced by a meta-rule in

the above approach is equivalent to a single transfer relation that describes all of the

possible transitions induced by that rule. Hence, the approach is to give a rule for each

kind of syntactic form in the language that describes how any occurrence of that form

induces a transfer relation describing all of the possible single-step transitions for that

occurrence.

We will illustrate each of these approaches in turn for Mini-C. But �rst, we need a helper

function to manage control points.

5.8.1 The next function

In most languages, much of the control 
ow is syntactically apparent. Conceptually, the dy-

namic semantics of a language should not have to be concerned with syntactically apparent

information. Of course, the program's 
ow of control must be part of the program's semantics,

or else the semantics would not adequately model the program's execution. But for expository

purposes, it is pleasing to factor out information that is a trivial property of the syntax, so

that the rules of the semantics themselves succinctly capture exactly the dynamic properties of

execution.

To this end, we will need a helper function next to manage the syntactically apparent control


ow in a program. Given the control point C of a statement in program S, if C is in the middle

of a statement list then next merely returns the control point of the next statement in the list.

Note that if C points to a conditional or a while loop then the next statement is not necessarily

the next control point in the execution.

nextS(C:i) = C:(i+ 1) if S[C:(i+ 1)] de�ned

If C points to a statement that is the last in a statement list, then nextS(C) will not be de�ned

by the above equation. There are two cases for when this might happen. The �rst case is that

the statement to which C points is the last statement in the outermost statement list in S
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(i.e., the statement list S itself). In this case next returns the empty control point � to signal

program completion.

nextS(i) = �

The second case is that the statement to which C points is not in the outermost statement

list. In that case, we want nextS(C) to return the control point of the next statement to be

executed, which in this language is simply in a lexically-enclosed statement list and is always

syntactically apparent. There are two cases. If C points to the last statement in an arm of a

conditional statement s, then nextS(C) should be the next statement after s.

nextS(C:j:i) = nextS(C) if S[C] = if : : : then : : : else : : :

The second case is that C points to the last statement in a while loop s, in which case nextS(C)

should be s itself, as the loop might need to be executed again.

nextS(C:i) = C if S[C] = while : : : do : : :

The following example demonstrates all of the concepts of the next function.

Example 22 Consider the Mini-C program S in Example 21, shown below on the right. The

complete de�nition of next is:

nextS(0) = 1

nextS(1) = 2

nextS(1:1:0) = 1:1:1

nextS(1:1:1) = 2

nextS(1:2:0) = 1:2:1

nextS(1:2:1) = 2

nextS(2) = 3

nextS(3) = 4

nextS(3:0) = 3:1

nextS(3:1) = 3:2

nextS(3:2) = 3

nextS(4) = 5

nextS(4:1:0) = 4:1:1

nextS(4:1:1) = 5

nextS(4:2:0) = 5

nextS(5) = �

f

1 if n < 0 then

1:1:1 n := -(n)

else

1:2:1 n := n * 2;

2 r := 1;

3 while n > 1 do

f

3:1 r := r * n;

3:2 n := n - 1

g;

4 if r > 60 then

4:1:1 r := r - 1;

5 x := r

g

Note from this example that for every statement list, there is an element in the domain of next

ending with 0 and thus not a real control point in the program. The only reason for this is

because we allow empty statement lists in Mini-C programs. So, for instance, if control point

C points to a conditional expression, then nextS(C:2:0) always returns the next statement in

an execution that takes the else arm. So, nextS(1:2:0) = 1:2:1, which is the �rst (and only)

statement in the else arm of the �rst conditional in the example program, but nextS(4:2:0) = 5,

because the else arm of the second conditional is empty, and thus execution immediately

proceeds to the statement after the conditional.
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5.8.2 Transition system via meta-rules

Now we can de�ne the meta-rules that de�ne the transition relation 7�! for a Mini-C program

S. There are �ve kinds of transitions. Each statement in S of the form

if e then S else S0

induces a two families of transitions: the transitions from a successful test of e into S, and the

transitions from a failed test of e into the S0.

S[C] = if e then : : : else : : : C 0 = nextS(C:1:0) e `� true

(C; �) 7�! (C 0; �)

S[C] = if e then : : : else : : : C 0 = nextS(C:2:0) e `� false

(C; �) 7�! (C 0; �)

Each statement in S of the form

while e do S0

induces two families of transitions: the transitions from a successful test of e into S0, and the

transitions from a failed test of e to the rest of the code after the loop.

S[C] = while e do : : : C 0 = nextS(C:0) e `� true

(C; �) 7�! (C 0; �)

S[C] = while e do : : : C 0 = nextS(C) e `� false

(C; �) 7�! (C 0; �)

Finally, each statement in S of the form

l := e

induces a family of transitions that perform the assignment in the store.

S[C] = (l := e) C 0 = nextS(C) l `� w e `� v

(C; �) 7�! (C 0; �[w 7! v])

Below is an example that illustrates how this transition system models program execution.

Example 23 Recall the Mini-C program in Example 21. The transition system de�nes the

following execution from a state at the beginning of the program and with an initial store in

which n is bound to �4 and all other l-values are bound to undef. (The only store mappings
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shown are the mappings to non-undef values.)

(1 ;fn 7! �4g )

7�! (1:1:1;fn 7! �4g )

7�! (2 ;fn 7! 4g )

7�! (3 ;fn 7! 4; r 7! 1g )

7�! (3:1 ;fn 7! 4; r 7! 1g )

7�! (3:2 ;fn 7! 4; r 7! 4g )

7�! (3 ;fn 7! 3; r 7! 4g )

7�! (3:1 ;fn 7! 3; r 7! 4g )

7�! (3:2 ;fn 7! 3; r 7! 12g )

7�! (3 ;fn 7! 2; r 7! 12g )

7�! (3:1 ;fn 7! 2; r 7! 12g )

7�! (3:2 ;fn 7! 2; r 7! 24g )

7�! (3 ;fn 7! 1; r 7! 24g )

7�! (4 ;fn 7! 1; r 7! 24g )

7�! (5 ;fn 7! 1; r 7! 24g )

7�! (� ;fn 7! 1; r 7! 24; x 7! 24g)

f

1 if n < 0 then

1:1:1 n := -(n)

else

1:2:1 n := n * 2;

2 r := 1;

3 while n > 1 do

f

3:1 r := r * n;

3:2 n := n - 1

g;

4 if r > 60 then

4:1:1 r := r - 1;

5 x := r

g

5.8.3 Transition system via transfer relations

The key idea of using transfer relations to replace meta-rules is that a single transfer relation

can capture the commonalities inherent in each family of transitions de�ned by the meta-rules.

For instance, in the meta-rule approach, every if e then S else S0 statement induces an in�nite

family of transitions, one for each store � in which e evaluates to true, from that statement

into S. Each transition in this in�nite family does exactly the same thing: simply test that e

is true in the store on the left-hand side of the transition before proceeding to S.

This inspires the idea of de�ning a transfer relation �C;C0 for every pair C;C 0 2 CtrlPoint of

control points in a Mini-C program S. Each one will specify exactly the transitions, as de�ned

by the meta-rules above, from C to C. In other words,

(C; �) 7�! (C 0; �0) i� ��C;C0 �0:

Of course, the vast majority of these transfer relations will be the empty relation ;, because

single-step transitions between most pairs of control points are impossible.

The semantics of a Mini-C program S is thus de�ned as a �nite table

~� = f�C;C0 j C;C 0 2 CtrlPointg

of transfer relations, one for each pair of control points in S, such that �C;C0 describes all of the
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transitions between control point C and the control point C 0. This table is de�ned as follows.

�C;C0 =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

e? � if S[C] = (if e then : : : else : : :) and C 0 = nextS(C:1:0)

e> � if S[C] = (if e then : : : else : : :) and C 0 = nextS(C:2:0)

e? � if S[C] = (while e do : : :) and C 0 = nextS(C:0)

e> � if S[C] = (while e do : : :) and C 0 = nextS(C)

l 7! e if S[C] = (l := e) and C 0 = nextS(C)

; otherwise

We recall that e? � is short for e? � ; and e> � is short for e? ; � , where ; is the

empty relation and � is the identity relation (i.e., empty parallel assignment).

Example 24 The semantics de�nes 13 non-empty transfer relations for the Mini-C program

in Example 21.

�1;(1:1:1) = n < 0? � �(3:2);3 = n 7! n - 1

�(1:1:1);2 = n 7! -(n) �3;4 = n > 1> �

�1;(1:2:1) = n < 0> � �4;(4:1:1) = r > 60? �

�(1:2:1);2 = n 7! n * 2 �(4:1:1);5 = r 7! r - 1

�2;3 = r 7! 1 �4;5 = r > 60> �

�3;(3:1) = n > 1? � �5;� = x 7! r

�(3:1);(3:2) = r 7! r * n

Note that this semantics does not need any of the mechanism developed in Chapter 3 for

composing and manipulating transfer relations. Indeed, the transfer relations that it yields

as the model of program execution are quite simple. But the intent is that the output of the

semantics is merely a �rst step in an application of our program-analysis methodology. Once the

single-step transfer relations of a Mini-C program are in hand, one can compose these transfer

relations to yield a single compound relation that expresses the behavior of any �nite segment

of execution. The following example illustrates that composing single-step transfer relations is

analogous to stringing together transitions de�ned by the meta-rules in the previous section.

Example 25 The execution shown in Example 23 has control path

1; (1:1:1); 2; 3; (3:1); (3:2); 3; (3:1); (3:2); 3; (3:1); (3:2); 3; 4; 5; �
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and so its compound transfer relation is

�1;(1:1:1);�(1:1:1);2;�2;3; � � � ;�3;4;�4;5;�5;�

which relates the input store

fn 7! �4g

to the output store

fn 7! 1; r 7! 24; x 7! 24g:

Now, one can use the composition algorithm � of Chapter 3 to perform e�ectively these

compositions, thereby facilitating the analysis of the program. Recall the convention of Chap-

ter 4 of writing �� to represent the transfer relation of control path �, which is a list of control

points. Recall that

��;C;�0 = ��;C � �C;�0 :

Example 26 A transfer relation expressing the above execution is computed as

�1;(1:1:1) � �(1:1:1);2 � �2;3 � � � � � �3;4 � �4;5 � �5;�

which, if the symbolic evaluation P for primitive operations and C for conditional relations are

both simply the identity function, is

(n < 0)? e1? e2? e3? e4> (e0 > 60)? n; r; x 7! e; e0; e0

where
e1 = -(n) > 1

e2 = (-(n) - 1) > 1

e3 = ((-(n) - 1) - 1) > 1

e4 = e > 1

e = ((-(n) - 1) - 1) - 1

e0 = ((1 * -(n)) * (-(n) - 1)) * ((-(n) - 1) - 1)

Adding some logic to P to simplify arithmetic operations could (in principle) yield a result as

simple as
e1 = n < �1

e2 = n < �2

e3 = n < �3

e4 = n < �4

e = -(n) - 3

e0 = (-(n) * (-(n) - 1)) * (-(n) - 2)

Note how the conditional relation expresses the control-
ow constraints on this particular control

path. Note also that the conjunction of the �rst �ve conditions in the above transfer relation can
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only evaluate to true when n is �4. A C algorithm could (in principle) determine this property

automatically, dispense with e1 through e4, pass this value of n onto a simple constant-folding

symbolic evaluation of e and e0, and achieve the extremely simple transfer relation

n = �4? n; r; x 7! 1; 24; 24 :

Such sophisticated symbolic reasoning about integer arithmetic and conjoined comparison tests

may be di�cult to achieve in general. For the most part, we leave this topic as an open issue

and o�er no general algorithms. However, even simple symbolic evaluations can go far whenever

any initial bindings are known. The following example illustrates how this works.

Example 27 Suppose that C is the identity function, performing no simpli�cation of condi-

tional expressions, and P merely performs constant folding. Then

n 7! �4 � �1;(1:1:1) � �(1:1:1);2 � �2;3 � � � � � �3;4 � �4;5 � �5;�

is the transfer relation

n; r; x 7! 1; 24; 24 :

So far, we have introduced only a single example Mini-C program. This example uses only

integer data, and in particular does not allocate or use records. However, much of the sophisti-

cation of our methodology lies in its treatment of heap-allocated mutable data structures. The

following example demonstrates record allocation.

Example 28 Consider the Mini-C program

1 while a <> nil do

f

new := fcar = a:car; cdr = bg;

a := a:cdr;

b := new

g

that constructs a reverse of list a. Let � be the control path that starts at control point 1,

progresses through one iteration of the loop, and ends back at control point 1. Then,

�� = (a <> nil)?
a; b; new; H;

hHi:car; hHi:cdr
7!

a:cdr; hHi; hHi; H + 1;

a:car; b:cdr

represents the transfer relation of one iteration and

��;� = (a <> nil)? (a:cdr <> nil)? �



94 A Case Study: The Language Mini-C

where

� =

a; b; new; H;

hHi:car; hHi:cdr;

hH + 1i:car; hH + 1i:cdr

7!

a:cdr:cdr; hH + 1i; hH + 1i; H + 2;

a:car; b:cdr;

a:cdr:car; hHi

represents the transfer relation of two adjacent iterations

Note how an assignment relation can represent multiple record allocations in parallel via the

expressions hHi, hH + 1i, hH + 2i, and so forth. These expressions evaluate to sequential free

pointers. The assignment to H re
ects the total number of pointers allocated by the execution

segment that the transfer relation models.

Also, note again that the conditional relations encode the conditions under which a partic-

ular control path is taken.

The following example demonstrates the subtlety of unknown initial aliasing.

Example 29 Consider the Mini-C program

1 while (a <> nil) do

f

temp := a;

a := a:cdr;

temp:cdr := b;

b := temp

g

that destructively appends the reverse of list a onto list b. If � is the control path that begins at

control point 1, progresses through one iteration of the loop, and ends back at control point 1,

then

�� = (a <> nil)? a; b; temp; a:cdr 7! a:cdr; a; a:cdr; b

is the transfer relation of one loop iteration, and

��;� = (a <> nil)? (a:cdr <> nil)? (a = a:cdr)? � �0

where

� = a; b; temp; a:cdr 7! if(a = a:cdr; b; a:cdr:cdr); a:cdr; a:cdr; a

�0 = a; b; temp; a:cdr; a:cdr:cdr 7! if(a = a:cdr; b; a:cdr:cdr); a:cdr; a:cdr; b; a

is the transfer relation of two adjacent loop iterations. If C were de�ned to propagate the �rst

test of a = a:cdr into its two branches, then the composition algorithm could simplify the if

expressions and achieve

� = a; b; temp; a:cdr 7! b; a:cdr; a:cdr; a

�0 = a; b; temp; a:cdr; a:cdr:cdr 7! a:cdr:cdr; a:cdr; a:cdr; b; a
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This example is worth some study. It expresses that the net e�ect of executing two adjacent

iterations of the loop in some context (store) depends on whether a was aliased to a:cdr in

that context (in other words, if a is a circular list of length one). If not, then the execution

has the net e�ect of �0, which directly expresses the expected net behavior of two iterations

of a reverse-append routine. On the other hand, if a is initially aliased to a:cdr, then some

examination of � reveals that the net e�ect of two iterations reduces to swapping a and b.

This example thus demonstrates that the e�ect of aliasing on data-structure dereference

and destructive assignment is rather subtle and unpredictable, but the composition operation

� on transfer relations reveals this subtlety. Furthermore, it suggests that it is well worth the

e�ort to design the C algorithm to look for and simplify syntactically redundant conditional

expressions. In this dissertation, we do not describe such an advanced C algorithm, and so this

is left for future work.

5.9 Modeling & and Pointer Arithmetic

The only reason that we did not include arrays in Mini-C was for simplicity. In Chapter 7

we will show how to model arrays in a functional language with our methodology, and it is

straightforward to extend Mini-C in the same manner. In this section, we give a discussion of

how to add some of the features of C's pointers that are not present inMini-C. For generality,

this section will assume that Mini-C includes arrays as described in Chapter 7.

C includes the following expressions.

&x the address of variable x

&(s:f) the address of �eld f of struct s

&(a[i]) the address of element i of array a

Unlike C, Mini-C has no & operator. Related to this is our choice to treat pointers as records

with the single �eld *.

Alternatively, we could have treated a pointer as a pair value (v; v0) representing the l-

value v:v0. In this way, we can treat the latter two of the three cases above via the syntactic

translation

&(e:e0) ) (e; e0)

where e[e0] is represented as e:e0, as we describe in Chapter 7. Then, we would treat an

occurrence of *e not as a reference (as an l-expression) or dereference (as an expression) of the

�eld named * of the record e, but rather as an extraction of the l-value represented by the pair

e. This would be accomplished by the following syntactic transformation.

*e ) (�1(e)):(�2(e))

Recall that an occurrence of e:e0 as an expression (as opposed to an l-expression) is short for

deref(e; e0).
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In this manner, we can treat most of the functionality of C's & and * operators. What we

cannot do is to take the address of a variable, and there is a good reason why this is the case.

Intuitively, & coerces an l-value into a value (so that it may be manipulated as data and so

forth), and * coerces a value back into an l-value. Above, we coerce a reference l-value v:v0 as

the pair value (v; v0), which may then be coerced back into the l-value v:v0 (and dereferenced,

if treated as an expression). We could attempt a similar approach with variables|for instance,

coercing the variable x into the token `x'. In our current formulation, the only l-expression

that evaluates to x is x itself, and so there is no way to translate an arbitrary expression e

into an l-expression that will evaluate to x if e evaluates to `x'. But this is just due to our

particular language of expressions and l-expressions and our choice to model Mini-C variables

with l-expression variables. In principle, there is no di�culty to extend the notion of & for

variables.

With the above model of pointers, it is possible to model C's pointer arithmetic for array

indices. A pointer to an array element is (v; v0), where v is the array and v0 is the index of the

element (as we explain in Chapter 7). Suppose the expression

e " e0

represents the increment of pointer e by e0 (which would be written as e + e0 in C). We would

translate this into the Mini-C expression

(�1(e); �2(e) + e
0):



Chapter 6

First-Class Functions: The Language

Pure

In Chapter 5 we presented the imperative while-loop language Mini-C, the primary purpose of

which was to introduce the methodology of de�ning a transition-system semantics of a program-

ming language with computer-representable transfer relations representing the single steps, and

then using the � algorithm to build multiple steps corresponding to particular control paths

in the program. But Mini-C is a rather simple language, and so in this chapter we consider

more advanced language features. Our purpose is to demonstrate that our methodology of

semantics-based program analysis is reasonably general.

The only control constructs in Mini-C are conditionals and while loops. One can get by

without any other control constructs, but it would be quite inconvenient for most programming

tasks. Real programming languages have some mechanism for de�ning functions. A function

accepts some input data (parameters) from its caller and returns a result value to the caller.

In some languages, such as Haskell [H+92], functions have the same input-output behavior in

any context. This is sometimes known as referential transparency [SS90]. We call this kind

of function \pure". The vast majority of programming languages, however, provide impure

functions. In this chapter we model a programming language with pure functions, and in the

next chapter we will extend this language with imperative features and impure functions.

In some languages, the functions are said to be �rst class. This means that the functions

are semantic values, and as such can be manipulated by a program like any other value. For

instance, they may be assigned to variables, placed in data structures, and passed to other

functions. The functions in most advanced languages, such as Scheme [ReC86] or Standard ML

(SML) [MTH90], are �rst class. In contrast, the functions in C [KR78], Fortran [Knu71], and

Pascal [Bar81] are not �rst class.

In some ways, our methodology must be rather stretched to handle �rst-class functions. We

will see this below and in Chapter 7, and we will give a summary at the end of Chapter 7.
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6.1 Substitution vs. Closures

Consider the syntax of �-calculus terms [Bar84]:

e ::= x j �x: e j e e0

Now consider the following term:

(�x: �y: x) (�z: z)

Via the reduction rules of the �-calculus, this term reduces in a single step to the (unique up

to renaming) normal form:

�y: �z: z

This term represents a function that, given any argument, yields the identity function.

Much of programming-language theory and practice is based on the notion that reduc-

tion of �-calculus terms is a kind of computation. Even further, the Curry-Howard isomor-

phism [How80] introduces the connection between proof theory and computation, and conse-

quently between logical systems and programming languages. (We refer the curious reader to

[GLT89].) Let us consider how the above �-calculus term might correspond to a SML program

(chosen rather arbitrarily, simply as an example of a \real" language), and how its reduction

might correspond to the execution of the program. The SML program

(fn x => (fn y => x)) (fn z => z)

corresponds to the �-calculus term above; indeed, the syntax trees of the two terms are iso-

morphic. Now, consider the execution of this SML program. Everyone who has written SML

programs imagines that the execution of this program will proceed something like this:

1. Evaluate (fn x => (fn y => x)).

(a) Create a closure f in the heap for (fn x => (fn y => x)).

(b) Return f as the result of evaluation.

2. Evaluate (fn z => z).

(a) Create a closure g in the heap for (fn x => (fn y => x)).

(b) Return g as the result of evaluation.

3. Apply f to g.

(a) Bind x to g.

(b) Create a closure h in the heap for (fn y => x) with this binding of x.

(c) Return g as the result of evaluation.

4. Return g as the result of evaluation.
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There seems to be much more going on in the execution of the SML program than in the

single step reduction from

�x: �y: x (�z: z)

to

�y: �z: z:

The overarching reason is that, as we have suggested, reduction of �-terms is an abstract notion

of computation, while SML programs execute on real computers. The salient point that this

example illustrates is that each step of a �-term reduction builds a whole new term, but it

is infeasible to build literally an entire SML program over and over during execution. More

speci�cally, a reduction of a �-term substitutes the argument of a function for every occurrence

of the parameter of the function in the body of the function. In the above example, the reduction

substitutes the literal term �z: z for the single occurrence of x in �y: x to build the �nal normal-

form term. Theoretically, an implementation of a real programming language could be based on

a similar idea. But in practice, it is usually more e�cient to build closures instead of performing

substitution.

The di�erence between closures and substitution lies in the treatment of variables. A pro-

grammer is accustomed to thinking of variables as identi�ers that are bound to values when

the program runs. This deeply ingrained notion that a variable \has a value" is partially an

artifact of this implementation issue, and is supported by the standard denotational model of

the �-calculus which models a term �x: e as a continuous function [Sto77]. In the reduction

of �-terms, one must consider variables in a di�erent light; they are placeholders that during

reduction (execution) are replaced with terms and disappear entirely.

Because the overarching goal of program analysis is to determine information about the

run-time behavior of programs, one must begin by modeling the programming language in a

way that re
ects or abstracts this run-time behavior. Therefore, because real implementations

typically use closures to model �rst-class functions, we will model functions with closures in

our semantics.

6.2 Syntax

We now present the purely functional language called Pure. A program is a member of the

set Term of terms, written in a brand of continuation-passing style [LD93].

t ::= let x = e in t local binding

j rec g in t recursive function binding

j e(~e) function application

j if e then t else t0 conditional

j e simple term (Exp)

g ::= x(~y) = t0 n-ary function de�nitions
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A simple term is an expression as de�ned in Chapter 2.

e ::= x variable lookup

j p(e1; : : : ; en) primitive application

x; y; z 2 Var variables

Usually, we use x for a function name or let binding, y for a function parameter, and z to refer

to a free variable of a term t, the set of which is denoted by FV(t) and de�ned in the usual

fashion. Expressions that appear in Pure terms may use the following primitive operations,

which are members of Primop.

p ::= c constants (nullary)

j + j - j * integer operations (binary)

j < j > j = j <> j & boolean operations (binary)

j tuple ordered-tuple construction (n-ary)

j �i ordered-tuple component selection (unary)

Constants are the integers and booleans, as in Mini-C.

6.3 Discussion

Notice that

e(e0)(e00)

is not a valid program in Pure. For instance, consider a program that de�nes and then calls a

curried addition function.

rec f(x) = (rec g(y) = x + y in g)

in f(24)(42)

This is not a term. One would have to write this by using a continuation function as an

interface between the application f(1) and the application v(2) where v is the result of the

former application.

rec f(x; k) = (rec g(y) = x + y in k(g))

in (rec k(v) = v(42) in f(24; k))

We are moving toward a form of continuation-passing style (CPS). CPS was studied early

as the subset of �-calculus terms for which call-by-name and call-by-value reduction strategies

are equivalent [Plo75]. The �rst major practical use of CPS was in the Scheme Rabbit com-

piler [Ste78], which translated source programs into a restricted syntax much like ours. This was

later done in the Orbit Scheme compiler [Kra88] and then in the SML/NJ compiler [App92].

All translations are based on a universal calling convention in which all source functions take

a continuation argument and all source applications must thus pass a continuation function
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describing the remainder of the computation. So, for instance, an automatic CPS converter

might produce
rec f(x; k) = (rec g(y; k) = k(x + y) in k(g))

in (rec k(v) = v(42; top) in f(24; k))

for the program above.

These translations are well studied, both in theory and practice [Plo75] (see also other

references cited above), and so we will not go any further into CPS here. Su�ce it to say that

our syntactic restriction does not limit the expressivity of the language.

6.4 Semantics

In Chapter 5 we modeled a Mini-C program by a transition system in which a state is a

pair of a control point, representing the current syntactic position of execution, and a store,

representing the state of the memory/data. We gave alternate de�nitions of the single-step

transitions induced by a program, one in terms of meta-rules (the standard practice) and one

in terms of transfer relations. It is the latter formulation that provides a basis for program

analysis with our methodology. In this section, we discuss semantics of Pure in a similar

fashion.

6.4.1 Control, data, and execution states

Actually, both the notion of control point and the notion of store are simpler in Pure than in

Mini-C.

We designed a whole notation for the control points of a Mini-C program, but it turns out

that one can simply use the subterms of a Pure program to function as control points.1 This

is intuitively pleasing because the control point itself has meaning: if an execution is at control

point t, it means that the rest of the execution is the evaluation of t. (This works because of

Pure's CPS-like syntax.) In contrast, a sequence of integers that functions as a control point

of a Mini-C program has no meaning alone; it is only an index into the text of the program.

As for stores, because there are no assignable data structures in Pure, much of the complex-

ity of stores is not needed to model the data. Recall that a store is a map from l-values, which

are either variables or references v:v0, to values. In Pure there is no need for the references,

and so all that is needed is a map from variables to values. This is the familiar notion of an

environment :

� 2 Env = Var! Val environments

Recall that there were �ve di�erent kinds of values (members of Val) in Mini-C:

� constants (members of Constant)

1Actually, in Section 6.4.3 we will need to refer to a function de�nition x(~y) = t as a control point. In this

case, that control point is identi�ed with the control point t. We will discuss this later.
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� �eld names (members of Field)

� pointers to assignable data structures (members of Pointer)

� immutable tuples (members of Val�)

� the unde�ned value undef

Again because there are no assignable data structures in Pure, pointers are not needed, and

neither are �eld names. However, Pure has �rst-class functions, and so there must be values

that model these functions. As we explained in Section 6.1, it is best for many applications of

program analysis to model a function as a closure. A closure has two parts:

� a function g (a phrase of the form x(~y) = t)

� an environment, providing the values for all free variables of g

The set of closures is thus de�ned as follows:

hg; �i 2 Closure

Finally, the set of values is given by the following equation:

v 2 Val = Constant+ Closure+ Val� + fundefg

Note there is a circularity in the equation for Val, and there is another circularity in the equations

for Env, Closure, and Val. The actual sets are de�ned by mutual induction, as the least solution

to these three equations.

As an aside, an infamous di�culty in designing analyses of languages with either �rst-

class functions or data structures lies in how to deal with these circularities in an analysis

algorithm that is guaranteed to terminate. The circularity in the equation for Val arises from

immutable tuples, and indeed most static analyses of even immutable structured values|not

to mention mutable data structures|are quite crude (e.g., [Wad87], [Hei92]). One of the

few satisfactory analyses of structured values is [Deu92], but it is still somewhat ad hoc and

also quite complicated. The other circularity arises from �rst-class functions, and again it is

no coincidence that analysis designers have traditionally encountered trouble with �rst-class

functions. The usual ad hoc approaches are to be found in the work on denotational-based

abstract interpretations, usually applied to strictness analysis [BHA86], the work on �nite

approximations of closures [Shi91], or the work on augmenting higher-order type systems with

\e�ects" [TJ92]. None of this work seems satisfactory. What lies at the root of these problems

is the ubiquitous analysis methodology that begins with the design of a (hopefully clever)

approximation of an in�nite domain. In contrast, because our methodology is centered around

the analysis of the changes to a store (or environment in the case of Pure) rather than the store

(or environment) itself, complexities (induction, recursion, in�nite sets, etc.) in the structure

of values themselves do not cause any a priori di�culty; rather, the focus is on the complexity

of the transitions between states.
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As we explained above, a state of execution comprises the state of control, which is a term,

and the state of data, which is an environment.

State = Term� Env

What remains is to de�ne the transitions induced by a Pure term. These model the single

steps of execution of the term.

6.4.2 Transitions via meta-rules

Here we describe how each kind of term induces transitions. No transition is possible from an

expression term; if an execution reaches the state

(e; �)

then the execution halts, and the result of the execution is the value v such that

e `� v

which is guaranteed to be unique because Pure is deterministic.

Each of the four other kinds of terms take transitions.

� let x = e in t. In this case, x is bound to a value to which e evaluates in the current

environment, and execution proceeds to t.

e `� v

(let x = e in t; �) 7�! (t; �[x 7! v])

Note that an environment is just a store in which all reference l-values (v:v0) are bound

to undef, and so for convenience we use the same de�nition of ` for the evaluation of an

expression in an environment. Similarly, the de�nition of �[x 7! v] is a special case of

store extension, de�ned on page 2.4.2.

(�[x 7! v]) y =

(
v if x = y

� y otherwise

This notion of variable binding may seem strange. Why isn't it necessary to rename the

variable x in order to avoid con
icts with other occurrences of x in � that might be needed

later in the computation? It turns out that these other occurrences of x will always be

captured in closures and so will not interfere with the update of env. We will discuss this

further in Section 6.5.

� rec g in t where g = (x(: : :) = : : :) In this case, x is bound to a closure whose func-

tion component is g and whose environment component is the current environment, and

execution proceeds to t.

g = (x(: : :) = : : :)

(rec g in t; �) 7�! (t; �[x 7! hg; �i])
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� e(~e). For a transition to be possible from this term, e must evaluate to some closure

hx(~y) = t; �0i in the current environment. In that case, the new environment is �0 extended

with the following additional bindings: a binding from x to the closure itself and a binding

from the variables ~y to the corresponding values to which the expressions ~e evaluate in

the current environment. Then execution proceeds to t.

e `� v (~e)i `� (~v)i v = hx(~y) = t; �0i

(e(~e); �) 7�! (t; �0[x 7! v][~y 7! ~v])

Note that � is simply \thrown away" in this transition. This is because Pure terms are

in continuation-passing style, and so an evaluation returns only when the execution of the

entire program is complete. All parts of � that will be needed in the future computation

must be passed through via the arguments ~e, typically in the closure of a continuation

function.

It may at �rst seem unnecessary to have closures in the �rst place. If we appropriately

renamed variables during execution, we could ensure that the bindings of the free variables

of a function g are never overwritten later in the execution. In this way, there would be

no need to save and restore �0; instead, � may simply be threaded through on function

application. We discuss this choice further in Section 6.5.

� if e then t else t0. For a transition to be possible from this term, e must evaluate to

either true, in which case evaluation proceeds to t, or false, in which case evaluation

proceeds to t0.
e `� true

(if e then t else t0; �) 7�! (t; �)

e `� false

(if e then t else t0; �) 7�! (t0; �)

6.4.3 Transitions via transfer relations

Instead of using meta-rules to de�ne the transitions, it is possible to represent them directly in

a computer as transfer relations. The methodology here is exactly the same as for Pure. The

transfer relation

�t;t0

represents all and only the valid single-step transitions from term t to term t0; it is a binary

relation between the environment at t and the environment at t0.

Functions as control points

In Mini-C, the de�nition of the single-step transfer relations precisely corresponded to the

meta-rules that de�ned the transitions. However, there is a subtle issue concerning �rst-class
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functions. It turns out that to de�ne the single-step transfer relations of a Pure term, we need

to have a slightly special treatment for the control points of functions.

In particular, we need to use a phrase x(~y) = t as a control point. In this case, that control

point is identi�ed with t, but in a rather subtle way. For instance, consider two functions with

the same body t2, but di�erent names and parameters:

g = x(~y) = t2
g0 = x0(~y0) = t2

The transfer relation

�t1;g

describes the single steps from term t1 into the function g, and the transfer relation

�t1;g0

describes the single steps from term t1 into the function g0. Both of these may be composed

with the transfer relation

�t2;t3

that describes both the �rst step of function g and the �rst step of function g0.

So, in other words, g and g0 are both identi�ed with t2 for the purpose of relating the

transfer-relation formulation of the semantics with the meta-rule formulation, and thus for

composing a transfer relation that ends with one control point (in this case, g or g0) with a

transfer relation that begins with the same control point (in which case, t2). However, one may

give separate de�nitions for both �t1;g and �t1;g0 .

Primitive operations to support closures

It is necessary to add three new families of primitive operations to Primop in order to build and

examine closures. All of these operations are simple.2

� There is an n-ary simple primitive operation closureg;(z1;:::;zn) for every function g and

variables z1; : : : ; zn that creates a closure whose function is g and whose environment

binds the variables z1; : : : ; zn. It is de�ned as follows:

closureg;(z1;:::;zn)(v1; : : : ; vn) ,! hg; �i

where:
� zi = vi
� z = undef if 81 � i � n: z 6= zi

2Note that in general it makes sense only to have simple primitive operations because Pure is a deterministic

pure language.
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� There is a unary simple primitive operation codeg for every function g that tests whether

the function of a closure is equal to g. It is de�ned as follows:

codeg(hg; �i) ,! true

codeg(v) ,! false otherwise

� There is a unary simple primitive operation envz for every variable z that returns the

value of the variable z in the environment of a closure. It is de�ned as follows:

envz(hg; �i) ,! (� z)

envz(v) ,! undef if v 62 Closure

Free variables and bisimulation

For technical reasons that we will explain below, it is necessary to introduce a kind of equivalence

relation on states.

One can also easily show that the only variables whose values might be needed in the

execution of term t are the free variables of t. The following bisimulation expresses this precisely.

De�nition 11 (Similar values and states) We de�ne the similar relation � on values and

states as follows, where FV(t) denotes the free variables of t, and similarly for FV(g).

� Two values v and v0 are said to be similar (written v � v0) if either v = v0 or v = hg; �i,

v0 = hg; �0i, and

x 2 FV(g)) (� x) � (�0 x):

� Two states (t; �) and (t0; �0) are said to be similar (written (t; �) � (t0; �0)) if t = t0 and

x 2 FV(t)) (� x) � (�0 x)

Proposition 1 (Bisimulation) Let 7�!� be the transitive closure of 7�!. If  1 �  01 and

 2 �  02 then

 1 7�!�  2 ()  01 7�!�  02:

The single-step transfer relations

Now we can de�ne a single-step transfer relation �t;t0 for every two terms t and t0; this relation

speci�es how the environment changes in a transition from t to t0. We also de�ne �t;g for

the transitions into a functions g, as described above. In Mini-C, these transfer relations are

indexed by control points instead of terms; because there are only a �nite number of control

points in aMini-C program, the number of single-step transfer relations for a Mini-C program

is also �nite. The situation is not quite analogous for Pure. A Pure term t does indeed have

only a �nite number of subterms. However, if t is meant to be executed in an environment

that initially contains some (non-undef) values|which would typically be the case for partial
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programs, or in other words for terms t that have free variables|then some of those values

might be closures that contain terms not in t.

In Mini-C the single-step transfer relations precisely mirrored the semantic meta-rules.

This is almost the case here, but there is some di�erence due to functions. Above, we gave the

meta-rules for each of the four kinds of Pure terms. Here, we do the same for the single-step

transfer relations, all of which are ; unless de�ned otherwise below.

� let x = e in t. This case is just like the meta-rule; there is a single-step transfer relation

from this term to t that describes the new binding to the environment:

�(let x=e in t);t = x 7! e

� rec g in t. This case is very much like the meta-rule; there is a single-step transfer relation

from this term to t that describes the binding of the new closure. But there is a subtle

di�erence. The meta-rule builds a closure that contains the entire current environment,

while the transfer relation builds an environment that keeps the bindings only of the free

variables of the function g. The bisimulation proposition above justi�es this change. This

relation uses a primitive operation to create this closure:

�(rec g in t);t = x 7! closureg;(z1;:::;zn)(z1; : : : ; zn)

where fz1; : : : ; zng = FV(g) (ordered arbitrarily).

This di�erence between the meta-rule and the transfer relation is not conceptually deep.

We could very well have de�ned the meta-rule to restrict the environment of the closure

to the free variables of g, as well, but that choice is unnecessarily cumbersome, not to

mention non-standard. On the other hand, there are two reasons why we de�ne the

transfer relation as we do.

{ We have less 
exibility in the design of the transfer relation. Because environments

are not members of Val (in which case we might have imagined a nullary context-

sensitive primitive operation that evaluates in � to � itself), it is necessary to build

the environment explicitly, as we do with closureg;(z1;:::;zn). Therefore, we must

know the set of variables to be bound, and it is both more convenient and more


exible to examine locally g to see what variables it might need than to examine

the lexical context of g within the larger program to see what variables are merely

allowed to be free in g.

{ Transfer relations are actual computer-representable structures, and so for practical

reasons these structures should be as small as possible. Restricting the environment

to the free variables of g is a simple way to reduce potentially the textual size of the

closure.

� e(~e). This case is quite di�erent from the meta-rule. Execution from this term will

transition to the function g of the closure to which e evaluates. Thus, the control part of
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the state after the transition not only depends on the environment part of the state before

the transition, as is the case with conditionals, but is actually taken from the environment.

This relationship is no problem for the meta-rule formulation of a transition system,

because it is just another example of how one state in an execution depends in some

fashion on the previous in the execution. But such transitions are di�cult to express as

a single-step transfer relation because the transfer relation itself is already parameterized

over the two control points, in this case terms. In other words, when de�ning �t;g,

specifying all transitions from a state at t into the function g (recall that the control

point g is identi�ed with g's body), one cannot express how the control point g depends

on the environment at the beginning of the transition, because g is �xed.

In all transitions inMini-C and all other transitions in Pure, the only dependency of the

control part of the latter state on the store part of the former state (or environment part,

in the case of Pure) is for conditionals, in which the store (or environment) in the former

state determines which one of two possible control points is in the latter state. In contrast,

function application is fundamentally more di�cult. The reason is that the control point

(or term, in Pure) to which execution proceeds is part of the store (or environment)

itself. Thus, given an application term t = e(~e), one cannot extract the function g from e

as in the meta-rule; rather, one must de�ne �t;g to implement the appropriate condition

that e will indeed evaluate to a closure whose function is g.

This suggests a de�nition of the form

�(e(~e));g = codeg(e)? �

for some �. The choice of � brings up the second di�culty with functions, and this time

not limited only to �rst-class functions. Namely, the transition from function application

to function body is the only time in which the environment is changed wholesale. This,

too, is somewhat at odds with our particular language of transfer relations. We provided

parallel assignment in the language of transfer relations to express a store modi�cation,

but not to replace an entire store with a new one. It is not as bad as it seems, however,

because Pure uses environments, which contain only variable bindings. Furthermore,

one can easily show that the only variables bound (to a non-undef value) when execution

is at a term t are the variables in the lexical scope of t, a well-known concept that we do

not de�ne formally here.

Therefore, one solution would be to de�ne a new nullary primitive operation undef that

evaluates to value undef and then de�ne � to bind all variables in the scope of e(~e) to

undef and all variables in the scope of g to their appropriate value, with the latter taking

precedence over the former for any variables in both scopes.

However, we choose a di�erent solution, largely for practical reasons. The bisimulation

above tells us that in any transition to g it is su�cient to ensure only that all free variables

of g are bound correctly. The resulting execution may not be identical to the one given by

the meta-rules, but will be equivalent modulo the bisimulation relation �. It is also easy

to see that this does not a�ect the �nal result of the program. So we have the following
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de�nition.

�(e(~e));g = codeg(e)? z1; : : : ; zn 7! e1; : : : ; en

if g = x(~y) = t, fz1; : : : ; zng = FV(t), and

ei =

8><>:
e if zi = x

(~e)j if zi = (~y)j
envzi(e) otherwise

Thus, the assignment relation, instead of replacing the environment wholesale, as done

in the meta-rule, simply ensures that all of the free variables of the function are bound

correctly.

� if e then t else t0. This case is just like the meta-rules; there are two single-step transfer

relations, one from this term to t �ltering the true condition, and the other from this

term to t0 �ltering the false condition:

�(if e then t else t0);t = e? �

�(if e then t else t0);t0 = e> �

Recall that e? � is an abbreviation for e? � ; , and e> � is an abbreviation for

e? ; � .

Symbolic evaluation of codeg and envz

Whenever one adds a new primitive operation to Primop, one needs to de�ne its symbolic

evaluation. Almost all primitives are context-independent, and it is safe to use the identity

function for their symbolic evaluation. This is the case with closureg;~z, codeg, and envz, but in

the case of the latter two it is important to perform some simple but very useful simpli�cations.

We de�ne their symbolic evaluations as follows.

genvzi(closureg;(z1;:::;zn)(e1; : : : ; en)) = ei

gcodeg(closureg0;~z(e)) =

(
true if g = g0

false otherwise

This is similar to the symbolic evaluation of �i that selects the ith component of a tuple.

e�i((e1; : : : ; en)) = ei

We will see why these simpli�cations are important in the following example.
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A small example

Consider the Pure program

rec g in f(1)

where

g = (f(x) = x + y):

By the meta-rule formulation of the transition-system semantics, the execution of this program

in an environment in which y is bound to n proceeds as follows.

(rec g in f(1);fy 7! ng )

7�! (f(1) ;ff 7! hg; fy 7! ngi; y 7! ng )

7�! (x + y ;ff 7! hg; fy 7! ngi; x 7! 1; y 7! ng)

There are two transitions in this execution. The �rst one is described by the transfer relation

�(rec g in f(1));(f(1)) = f 7! closureg;(y)(y)

and the second one is described by the transfer relation

�(f(1));g = codeg(f)? x 7! 1 :

The composition of the two transitions is described by the transfer relation

�(rec g in f(1));(f(1));g = �(rec g in f(1));(f(1)) � �(f(1));g

If the symbolic evaluations of codeg and envz performed no simpli�cations, then the � would

return

codeg(closureg;(y)(y))? f; x; y 7! closureg;(y)(y); 1; envy(closureg;(y)(y))

as this composition, which is correct but extremely cumbersome. However, with the symbolic

evaluations we de�ned above, � returns

f; x; y 7! closureg;(y)(y); 1; y

which exploits the fact that the called function is known in order to both eliminate the dynamic

condition on the control 
ow and to propagate statically the value of y through the closure.

A subtle point that is unrelated to these symbolic simpli�cations concerns the �nal binding

of f. Note that:

� In the execution trace of 3 states shown above, the �nal environment contains a binding

for f.
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� The transfer relation shown immediately above describes that the net e�ect of this length-

3 control path includes an assignment to f.

� The value bound to f is the same in both cases.

This may seem exactly as expected. After all, we did describe the meta-rules and the single-step

transfer relations as alternate formulations of the same transition-system semantics. But as it

turns out, the fact that the net e�ect of both formulations on f are equivalent is an accident in

this case. The explanation lies in the bisimulation relation we de�ned earlier. For this case:

� In the meta-rule formulation, the second transition does a whole-scale replacement of the

caller's environment with the closure of the callee and then extends this environment with

both f and x, representing the passing of those two values to the callee.

� In the transfer-relation formulation, the second transition binds the free variables of the

function body, which is the set fx; yg, but does not remove the binding of f that was

present in the caller's environment.

In this case, the two bindings of f happen to be the same, but this will not generally be the

case. However, the bisimulation relation tells us that in a state at term t we may simply \�lter

out" all bindings of variables not in FV(t), and then the correspondence between the meta-rule

formulation and the transfer-relation formulation will be exact.

In this case, we could thus view the transition trace as

(rec g in f(1);fy 7! ng )

7�! (f(1) ;ff 7! hg; fy 7! ngig)

7�! (x + y ;fx 7! 1; y 7! ng )

and the composed transfer relation as

x; y 7! 1; y :

As a �nal note, we make a note about the �nal state of execution. In general, the �nal state

of an execution is a state

(e; �)

and the resulting value of the execution is a value v such that

e `� v:

In the transfer-relation formulation, we may use E to obtain an expression that represents the

value of a term in terms of the free variables of the term. In the example above, this corresponds

to

E (x + y) f; x; y 7! closureg;(y)(y); 1; y

which returns

1 + y:



112 First-Class Functions: The Language Pure

6.5 Variable Renaming vs. Closures

The semantics that we have given for Pure does not involve variable renaming. For instance,

the term

let x = 1 in x + z

and the term

let y = 1 in y + z

are distinguished apart in Pure, although they di�er merely by the choice of variable name. In

fact, these two distinct terms induce two distinct families of transitions. The �rst term induces

the family of transitions

(let x = 1 in x + z; �) 7�! (x + z; �[x 7! 1])

ranging over environments �, while the second term induces the family of transitions

(let y = 1 in y + z; �) 7�! (y + z; �[y 7! 1]):

But this may seem strange. If � already has a binding for the variable in question (x for

the �rst case and y for the second case) then what assurance do we have that that binding is

no longer needed and may be discarded by the environment update? One may expect instead

a meta-rule for let-binding transitions that looks something like

e `� v � x0 = undef

(let x = e in t; �) 7�! (t[x0=x]; �[x0 7! v])

where t[x0=x] substitutes the variable x0 for all free occurrences of the variable x. Note that the

rule does not have the syntactic non-interference condition x0 62 FV(t) because it is covered by

the semantic non-interference condition that � x0 = undef. The notion of variable renaming is

based on �-conversion of the �-calculus [Bar84].

We can get away without variable renaming, however. First we describe how we achieve this

and compare this choice with a semantics based upon variable renaming, and then we explain

why it is desirable for our purposes of program analysis to avoid the need for variable renaming.

In this section, we will need a notion of how to examine a transition system to determine

that it is reasonable. We will start by de�ning a notion of well formed states, and then we

apply the following test to the transition system.

De�nition 12 (Preservation of well-formedness) Given a notion of well-formedness on

states, a transition system is said to preserve well-formedness if, for all well formed states  ,

 7�!  0 implies that  0 is well formed.

Our semantics for Pure uses the following notion of well formed states.

De�nition 13 (Well formed states (#1)) A state (t; �) is well formed i� � contains the

correct bindings for all free variables of t (in other words, all x 2 FV(t)).
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When we say that a binding is \correct" we mean that it is the binding that one would intuitively

expect from an execution of the program in question.

Now, it is easy to see that the semantics that we have given for Pure preserves well-

formedness. For instance, consider the rule for let-binding transitions.

e `� v

(let x = e in t; �) 7�! (t; �[x 7! v])

Note that x 62 FV(let x = e in t) and FV(t) � (FV(let x = e in t) [ fxg). Therefore, if �

contains the correct bindings for each y 2 FV(let x = e in t), then �[x 7! v] will contain

� the correct bindings for each y 2 FV(let x = e in t) and

� the correct binding for x,

and thus will contain the correct bindings for each y 2 FV(t).

The rule for rec g in t is analogous. It is easy to see that the rule for function application

works.
e `� v (~e)i `� (~v)i v = hx(~y) = t; �0i

(e(~e); �) 7�! (t; �0[x 7! v][~y 7! ~v])

Note that � is discarded in the transition. The well-formedness of the state (e(~e); �) thus

merely ensures that function e and the arguments ~e evaluate to correct values. To show that

the state (t; �0[x 7! v][~y 7! ~v]) is well formed, we must reason that, because �0 came from a

previous well formed state (rec x(~y) = t in t0; �0), that �0 contains the correct bindings for all

z 2 FV(rec x(~y) = t in t0) and thus all z 2 FV(x(~y) = t). Therefore, �0[x 7! v][~y 7! ~v] contains

the correct bindings for FV(t).

This discussion explains the purpose of closures, which save the bindings in �0 that must be

restored upon function application.

Alternatively, we could dispense with closures altogether, representing a function at run

time as the function term g instead of the closure hg; �i. This leads to a more complex notion

of well formed states.

De�nition 14 (Well formed states (#2)) A state (t; �) is well formed i� both

� � contains the correct bindings for all x 2 FV(t), and

� � contains the correct bindings for all x 2 FV(g) such that � y = g for some variable y.

Intuitively, we \
atten out" all the closure environments into a single global environment that

is threaded through the execution. To accomplish this, we will need to create fresh variables

on the 
y, which means that we will need to rename variables at run time.
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For instance, the old rule for let-binding

e `� v

(let x = e in t; �) 7�! (t; �[x 7! v])

no longer works. As, we explained above, x 62 FV(let x = e in t) and thus x may be safely

overwritten under the �rst notion of well formed states. But with this second, more restricted

notion of well formed states, we cannot be sure that x is not a free variable of some function g

in the range of �. Thus, we must rename x to a fresh variable. We showed the resulting rule

earlier in this section:

e `� v � x0 = undef

(let x = e in t; �) 7�! (t[x0=x]; �[x0 7! v])

It is rather easy to see that this rule preserves well-formedness under the second notion because

it never destroys any values in �.

But now we do not need closures, and the rule for function application threads the current

environment � through, again renaming the newly bound variables to avoid clashes with vari-

ables already bound in �. For simplicity of illustration, we show the case for single-argument

functions:
e `� v e0 `� v

0 v = (x(y) = t) � x0 = undef � y0 = undef

(e(e0); �) 7�! (t[x0=x][y0=y]; �[x0 7! v][y0 7! v0])

Once again, it is easy to see that this rule preserves well-formedness, because once again we

rename the bound variables appropriately such that � is extended rather than updated.

We have just presented (most of) a di�erent style of transition-system semantics for Pure

in which we have traded closures for dynamic variable renaming. The resulting semantics is

arguably cleaner and more natural, but we have only considered the meta-rule formulation of

the semantics. To see the fundamental di�culty, consider what the single-step transfer relation

�(let x=e in t);t

should be. Without variable renaming it is

x 7! e ;

but with variable renaming is must be something like

x = undef? x 7! e

to perform the dynamic test that x does not need to be renamed.

But then the composed two-step transfer relation

�(let x=1 in let x=2 in t);(let x=2 in t);t

will be the empty relation

;
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instead of the expected

x 7! 2

because the variable x was not renamed along the given length-three control path.

So, in summary, the semantics based on variable renaming has the following rami�cations

on the transfer-relation form of the semantics:

� Whenever an analysis composes the transfer relation for a control path �, it is the re-

sponsibility of the analysis to rename (statically) the variables in the terms along � in a

way that is guaranteed to capture all possible behaviors of any dynamic renaming of the

terms in the meta-rule semantics. For instance, in the above length-three control path,

the second occurrence of x must be renamed to a variable that is not in FV(t).

� A number of tests of the form x = undef will accumulate during composition of a control

path �, complicating the presentation of the transfer relation. These tests are necessary

for any �xed control path � because the transfer-relation terms in TR have no facility to be

dynamically renamed, and hence each term in TR is de�ned only on initial environments

for which the given choice of variables is already satisfactory. But the accumulation of

these tests is a practical disadvantage.

It is because of these factors that we choose a semantics that does not have variable renaming

and thus needs closures to store multiple dynamic occurrences of the same static variable.

It is possible, however, that there is a di�erent semantic approach, based on a di�erent

treatment of Pure variables in the transfer relations, that would not su�er the above factors.

For instance, perhaps the environment could be represented as a list, accessed by de Bruijn

indices [dB72] instead of variables.
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Chapter 7

Extending Pure with Mutable

Records and Arrays

Imperative features are crucial components of almost all languages, even \functional" languages

such as Scheme and Standard ML. In this chapter we extend Pure with both assignable arrays

and records with assignable �elds. We call the resulting language Impure.

7.1 Syntax

We �rst add some new terms to Pure.

t ::= : : :

j let x = ff1 = e1; : : : ; fn = eng in t record creation

j e:f := e0; t record �eld assignment

j e:f record dereference

j letarray x in t array creation

j e[e0] := e00; t array update

j e[e0] array dereference

f 2 Field �eld names

The array-creation term creates an array whose elements are initially the unde�ned value undef.

For simplicity, arrays do not have bounds and are conceptually in�nite.

7.2 Discussion

Records in Impure are not like records in SML; the former are mutable, but the latter are

immutable. It would be simple to add SML records, because they are just a variant on tuples.
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Like Pure tuples, there would be a special kind of value to model immutable records, supported

by context-independent primitive operations.

In Section 4.5, we gave a discussion of various kinds of errors, and the way in which they

would be handled with our semantic methodology. We now return to some of these points.

It may seem strange that arrays are in�nite, and that its elements are initially undef. In

contrast, the array creation function in SML takes both a size argument and an argument pro-

viding the value to which all elements are initialized. It is not di�cult to add a size component

to our arrays, which could be checked at run time for out-of-bounds errors. But an initialization

value would require a model for arrays that includes an explicit default value. This would render

the dereference and assignment operations nonuniform, and thus their syntactic occurrences in

transfer relations would be cumbersome. Therefore, we require that programmers write their

own initialization routine.

This language is rather primitive in that there is no static typechecking on records and

arrays do not have bounds. For instance, the Impure program

let x = fcar = 1; cdr = 2g

in x:bad := 3; t

�rst creates a two-�eld record and then adds a third �eld. Also, the program

let x = fcar = 1; cdr = 2g

in let y = x:bad in t

actually binds y to the unde�ned value undef and proceeds to execute t. The behavior of arrays

is similar. For instance, the Impure program

letarray x

in let y = x[3]

in x[200] := 55; x[200]

binds y to undef (dereferencing an uninitialized array element), assigns 55 to the array element

200, and then successfully dereferences the element, returning 55 as the result of the program.

Of course no reasonable language would function in this manner. Augmenting this language

with a static type system similar to SML would reject programs that referenced incorrect �eld

names. But the situation with arrays is more serious, as proper handling of both uninitial-

ized elements and bounds checking must be relegated to run-time, and thus to the dynamic

semantics. Our decision to simplify the situation by using in�nite arrays is a compromise aimed

to simplify the transfer relations that we will develop to model the dynamic semantics of the

language. A full language would have a mechanism for exception handlers, to which control

would 
ow in the case of array-bounds errors.

7.3 Syntax Simpli�cation

As with Mini-C, it will be more convenient to de�ne the semantics of these new features if we

rewrite the syntax to conform more closely to our language of transfer relations.
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We would like to consider the terms e:f and e[e0] as expressions. To do this, we need to add

the following primitive operations to Primop.

� All �eld names f 2 Field as constant nullary operations.

� The context-dependent binary operation deref.

Now we rewrite the term e:f as the expression deref(e; f) and the term e[e0] as the expression

deref(e; e0).

Similarly, we consider the e:f on the left-hand side of a record-�eld assignment to be an

l-expression and rewrite the e[e0] on the left-hand side of an array assignment as the l-expression

e:e0.

Our next transformation is to \compile" a record-allocation term in exactly the same way

as we did for Mini-C. To review, we need the following:

� for each natural number m, a pointer value hmi 2 Val

� the unary primitive operation ptr that casts an integer m to the pointer hmi (formally,

ptr(m) ,! hmi), where we write hei for ptr(e)

� a distinguished value � 2 Val, to be used only in the reference �:� (written as 3) which

is initialized to 1 at the beginning of execution and always holds the integer of the next

free pointer on the heap

We now perform the following transformation of a Pure program t. We �rst transform the

program to

let 3 = 1 in t

and then rewrite every subterm

let x = ff1 = e1; : : : ; fn = eng in t

in t as the term
let x = h3i

in x:f1 := e1; x:fn := en; 3 := 3 + 1; t

Next we \compile" arrays in a similar fashion. We rewrite every subterm

letarray x in t

as the term

let x = h3i in 3 := 3 + 1; t:

Note that this treatment of allocation does not equate as many programs as one might

reasonably expect. For instance,

let x = fcar = 3; cdr = 4g in y
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and

let x = fcar = 1; cdr = 2g in let y = fcar = 3; cdr = 4g in y

have di�erent meanings because they use di�erent pointer values to construct the record bound

to y. This is a simple case of the well studied problem with full abstraction for languages that

combine assignment and procedures [OT95, Sie94].

At this point, we have simpli�ed the new imperative constructs into a set of primitive

operations and a generic assignment term. Here is the �nal extension of Pure syntax for

transformed Impure programs.

t ::= : : :

j e:e0 := e00; t assignment

p ::= : : :

j f �eld name (nullary)

j deref dereference (binary)

j ptr allocation (unary)

7.4 Semantics

The semantics of Pure required only an environment mapping variables to values. But like

Mini-C, the mutable data structures require the expressiveness of stores. There are thus two

steps to de�ne the semantics of these new imperative features:

� Recast the semantics of Pure in terms of stores rather than environments, in order to

support the mutable data structures of Impure.

� Give the semantics of the assignment term e:e0 := e00; t.

It is fairly straightforward to recast the semantics of Pure to use stores instead of envi-

ronments. As we described in the design of Pure, an environment is just a restricted form of

store. Indeed, the isomorphism

Store ' Env � Heap

where

Heap = Val� Val! Val

makes this recasting convenient. The \heap" handles the bindings of references.1 Below are

the meta-rules of Pure rewritten such that a state pairs a term with a store rather than with

an environment:

State = Term � Store

1Note that in the literature, a heap is often called a store. But we have already used the term \store" for

something else.
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In the following meta-rules, we freely switch notation between the isomorphic forms � 2 Store

and (�; 
) 2 Env� Heap. The only rules that are not essentially identical to the corresponding

rule of Pure are those for function creation and application. The interesting part about those

rules is that only the environment component of the store is saved in the closure and restored

upon application; the \heap" component is instead threaded through.

e `� v

(let x = e in t; �) 7�! (t; �[x 7! v])

� ' (�; 
)

(rec x(~y) = t in t0; �) 7�! (t; �[x 7! hx(~y) = t0; �i])

e `� v (~e)i `� (~v)i v = hx(~y) = t; �0i � ' (�; 
)

(e(~e); �) 7�! (t; (�0[x 7! v][~y 7! ~v]; 
))

e `� true

(if e then t else t0; �) 7�! (t; �)

e `� false

(if e then t else t0; �) 7�! (t0; �)

All that remains is to give the rule for the generic assignment term, which is quite straight-

forward:
e `� v e0 `� v

0 e00 `� v
00

(e:e0 := e00; t; �) 7�! (t; �[v:v0 7! v00])

Again, we would like to give a formulation of this transition system in terms of single-step

transfer relations instead of meta-rules. Because we designed transfer relations to be relations

on stores and not simply environments, the single-step transfer relations for Pure work without

change for Impure. But recall that those de�nitions made use of the bisimulation relation �

on both values and stores. So, two tasks remain:

� Extend the bisimulation relation to states with stores.

� De�ne the single-step transfer relations for the generic assignment term.

The �rst task is straightforward; two heaps are similar if all corresponding nodes (values) are

similar. This is given by the following de�nition.

De�nition 15 (Similar states with general stores) Two states (t; (�; 
)) and (t0; (�0; 
0))

are said to be similar (written (t; (�; 
)) � (t0; (�0; 
0))) if (t; �) � (t0; �0) and 
(v:v0) � 
0(v:v0)

for all values v; v0 2 Val.
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The second task is also straightforward, as it is very similar to the assignment statement in

Mini-C.

�(e:e0:=e00; t);t = e:e0 7! e00

Note that the transfer relations conceptually treat both let binding and assignment as special

cases of assignment of l-expressions.

7.5 Final Words on First-Class Functions

We have seen several ways in which our model of a language with �rst-class functions is not quite

natural. For one, the transfer relations that save an environment in a closure and restore the

environment upon function application process each free variable separately. This approach is

an artifact of the natural choice to model language variables with store variables. Alternatively,

one could model an environment as a record whose �eld names are the language variables, and

maintain only a single store variable E that is always bound to the environment. This requires

an extra level of indirection, through E, for variable operations. But for that price, one gains

the ability to save and restore environments in closures easily, because they are simply records.

Related to this issue is the l-value 3 that points to the index of the next free heap location,

used for the creation of new records and arrays. In Mini-C, we used the variable H for this

purpose, but we cannot use a variable in a language with �rst-class functions because in that

case it could be saved in a closure and restored on function application. Instead, we need a

global assignable variable. To avoid the need to treat a distinguished variable di�erently from

all others, we instead chose to use a reference 3 = �:�. Again, this problem would have a nicer

solution if we modeled environments as we suggested in the preceding paragraph. Then there

would be only two variable bindings in the store: E, bound to the current environment, and H,

bound to the index of the next free heap location.
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Chapter 8

Multi-step Program Analysis

In Chapter 1 we isolated a methodological di�culty with program analyses: they apply an

abstraction between every execution step of the analyzed program. We explained that this

severely cripples the quality of an analysis on source programs for which a desired property is

temporarily weakened during a period of a few program steps. As an example, we gave a simple

analysis of the signs of integer-valued variables, but we also explained that this is a problem

for other kinds of analyses, such as shape analyses.

For instance, consider the following Impure program that destructively reverses a binary

tree.

1 rec reverse(x; k) =

2 if leaf(x)

3 then k()

4 else rec k1() =

5 rec k2() =

6 let temp = x:l

7 in x:l := x:r;

8 x:r := temp;

9 k()

A in reverse(x:r; k2)

B in reverse(x:l; k1)

C in reverse(x; k)

One would like a shape analysis to determine that when reverse is called with a data structure

that actually is a binary tree, that the data structure is still a tree on termination of the

procedure. Most shape analyses cannot determine this information. To our knowledge, only

[SRW96] can achieve this result, but it is highly specialized for this and similar cases and

requires quite restrictive conditions, as explained in Section 1.1.

But for now we wish to point out why this program is so di�cult to analyze. Consider the
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following informal description of what happens every time execution reaches term 6.

6 : x is a tree with subtrees L and R

7 : x is a tree with subtrees L and R

8 : x is not a tree: its left and right links both point to subtree R

9 : x is a tree with subtrees R and L

Program analyses infer, or abstract, a property at every step, and so it is di�cult to cope with

the states at term 8. An analysis would need to have the ability to describe the special property

at 8 with su�cient detail to infer that the assignment at 8 changes x back to a tree. In fact,

that is what [SRW96] does to solve this particular problem.

But there is a much more general solution, and that is to avoid the necessity to infer a

property at every step, and instead allow multiple steps of execution before abstracting. In

order to explain why this is not already a part of program-analysis methodology, we must take

a step back and examine the foundations of semantics-based program analysis.

8.1 A Review of Abstract Interpretation

Abstract interpretation [CC77] is a general framework for expressing semantics-based program

analyses. In fact it is more than that; it is a general framework for relating di�erent semantics

of a language, some of which may be e�ectively computable for all programs and therefore in

general approximate, or inadequate, as a semantic de�nition of the language. Such computable

\semantics" are program analyses, and with abstract interpretation they are always related to

some adequate semantics of the language.

A semantics of a language is a function

M2 Prog ! SemObj

mapping program texts to semantic objects. The main observation of abstract interpretation

is that M[[P ]] is usually de�ned as a �xed point, and the potential that its iterative de�nition

may be trans�nite directly re
ects the potential that P may not terminate. In other words,

M[[P ]] = �x (S[[P ]])

where

S 2 Prog ! SemObj! SemObj

and SemObj is equipped with a partial order and �x computes some �xed point of its parameter|

usually the least, but sometimes the greatest, depending on the particular semantics.

Abstract interpretation explains how to relate such a semantics to a more abstract semantics.

One �rst designs a partial order dSemObj of abstract semantic objects and then de�nes the

function

� 2 SemObj! dSemObj
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called the abstraction function that projects a semantic object onto the abstract semantic

domain. If � is additive, then one can induce a unique corresponding concretization function


 2 dSemObj! SemObj

de�ned as


 y = tSemObjfx 2 SemObj j (�x) v dSemObj yg
that \coerces" an abstract semantic object into the more concrete semantic domain. Then from

[CC79], the function

Ŝ 2 Prog ! dSemObj! dSemObj

de�ned as

Ŝ[[P ]] = � � S[[P ]] � 


corresponds to S in such a way that the �xed point �x (Ŝ[[P ]]) is an abstraction of the semantics

M[[P ]]. In other words, �(M[[P ]]) implies the property �x (Ŝ [[P ]]). We omit the formal details

of this correspondence and refer the reader to [CC79]. Intuitively, an abstract semantic object

is like a semantic object, but with some information missing, and Ŝ[[P ]] �rst applies S[[P ]] to

the information still present and then abstracts the result. We give an example below.

Sometimes, the information missing from abstract semantic objects is not necessary to

model the language. For instance, much of the study of pure semantics is concerned with

�nding semantic objects that are as abstract as possible while still adequate as a semantic

de�nition; the ultimate goal here is full abstraction [Mul87]. But for the purpose of program

analysis, it is necessary to abstract away crucial information for the sake of computability. The

choice of what to abstract away de�nes the program analysis.

A central intuition is that the function S[[P ]] typically corresponds in some sense to a \step"

of an execution of P . We cannot formalize this correspondence because that would require a

semantic de�nition of \execution step" in the �rst place, resulting in a meaningless circular

de�nition. Nevertheless, this intuition is an invaluable aid in visualizing a semantic de�nition.

In fact, the word \interpretation" in abstract interpretation comes from this intuition, because

one can view the repeated applications of S[[P ]] in its iterative �xed-point computation as the

steps of an interpreter, or an \abstract interpreter" in the case of Ŝ[[P ]].

8.2 Abstract Interpretation of Transition Systems

The preceding discussion does does not specify or even impose any serious limitations on the

semantic objects. Because the seminal work on abstract interpretation ([CC77]) uses a rather

simple transition-system semantics for expository purposes, abstract interpretation is often

misunderstood to be limited to 
owchart-based semantics of while-loop languages. However,

appearing soon after that seminal paper, Patrick Cousot's thesis ([Cou78]) showed the full

maturity of the framework.
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But in Chapter 4 we argued that a transition system is indeed particularly useful as a

basis for program analysis, despite much work elsewhere. Our methodology is designed around

transition-system semantics, and so we would like to examine abstract interpretations based on

transition systems.

As explained in Chapter 4, a state of a transition system is a pair of a control point and a

store:

State = CtrlPoint� Store

The transition relation de�nes the single execution steps of a particular program P as pairs of

states:

7�! � (State� State)

As introduced in Chapter 1, the transition-system semantics of a language is a function

M2 Prog ! P(State�)

that, given a program P , returns a set of �nite execution pre�xes, represented as state sequences,

de�ned inductively by unfolding the transition relation from a base set of initial states (length-

one sequences):
~ : 2M[[P ]]  7�!  0

~ : : 0 2M[[P ]]

Above, we claimed that M[[P ]] should be expressible as a �xed point �x (S[[P ]]). Here,

S[[P ]] 2 P(State�)! P(State�)

is the function

S[[P ]] ~	 = ~	 [ f~ : : 0 j ~ : 2 ~	 ^  7�!  0g

de�ned by the above rule to perform one inductive application of the rule. Then the semantics

M[[P ]] of program P is the least �xed point of S[[P ]] above a set 	0 of initial states, and is

precisely the set of (unbounded) �nite pre�xes of executions starting at 	0.

For the purposes of abstract interpretation, the set SemObj of semantic objects is the set

P(State�) of sets of �nite execution sequences, ordered by inclusion. An abstract interpretation

must provide a partial order dSemObj of abstract semantic objects and an abstraction function

� 2 P(State�)! dSemObj:

The rest of the abstract interpretation is mechanical. Suppose 	̂ is the least �xed point of

(� � S[[P ]] � 
) 2 dSemObj! dSemObj

above an initial abstract semantic object 	̂ 2 dSemObj such that 	0 � (
 	̂). Then as we

explained in the previous section, 	̂ abstracts M[[P ]]. In other words, �(M[[P ]]) implies the

property 	̂, or, equivalently, M[[P ]] � (
 	̂).
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8.3 Invariant Properties

Most program analyses compute invariant properties, or properties of the states that occur

during program execution. In this case, it is convenient to perform the above abstraction in

two steps. The �rst step abstracts a set of execution sequences by the set of states appearing

in the sequences. In other words, the abstract semantic object is P(State), and the abstraction

function

� 2 P(State�)! P(State)

is de�ned as

� ~	 = f j 9~ 2 ~	:  appears in ~ g:

The concretization function


 2 P(State)! P(State�)

is induced from � as described above. Pushing this through abstract interpretation de�nes a

function

S 2 Prog! P(State)! P(State)

de�ned as

S[[P ]] 	 = f 0 j  2 	 ^  7�!  0g

whose least �xed point M[[P ]] 2 P(State) above a set 	0 of initial states is precisely the set of

states reached during an execution from an initial state in 	0.

An invariant property is thus a superset of M[[P ]], which is given by an abstract interpre-

tation.

8.4 An Example

As an example, we consider the example in Chapter 1 of the analysis of the signs of integer

variables. In this example, an execution state comprises a control point, specifying the syntactic

point of execution, and an environment.

 2 State = CtrlPoint� Env

The step function S[[P ]] of a program P maps a set of states to their successors as given in the

previous section. The semanticsM[[P ]] is the least �xed point of S[[P ]] above f(C0; �0)g; it is the

set of states reachable during an execution from the initial control point C0 and environment

�0.

Following the example in Section 1.1, we de�ne an abstract semantic object as a table of

sign environments indexed by control point.

	̂ 2 dState = CtrlPoint! Var! Sign
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Here, Sign is the complete lattice given in Section 1.1. The function � 2 P(State) ! dState
abstracts a set of states by choosing for each control point C and variable x the strongest sign

property satis�ed by all bindings of x in environments at C.

�	C x =
^
fn̂ 2 Sign j (C; �) 2 	) (� x) = n) n 2 n̂g

Here is an example of an abstraction of a set of three states, two of which have the same control

point.

�

0B@f(C1; [x; y 7! 2; 3]);

(C1; [x; y 7! �1; 4]);

(C2; [x; y 7! 0; 0])g

1CA =

"
C1;

C2
!

[x; y 7! int; pos];

[x; y 7! zero; zero]

#

As we explained above, the concretization function 
 2 dState! P(State) in induced from � as


 	̂ = f j � f g v 	̂g

where v is pointwise inclusion (in other words, pointwise property implication), but for illus-

tration we give the alternate de�nition that intuitively expands the sign properties into the

integers that they represent:


 	̂ = f(C; �) j (� x) = n) n 2 (	̂C x)g

Another way of thinking about 
 is that it speci�es the states that are consistent with the given

sign properties.

Next, Ŝ[[P ]] is de�ned mechanically:

Ŝ[[P ]] = � � S[[P ]] � 


In other words, Ŝ[[P ]], given an abstract semantic object 	̂, �rst applies 
, yielding all the states

consistent with the sign properties in 	̂, then applies the transition relation 7�! to these states,

yielding their successors, and �nally applies � to these successor states, abstracting them by a

semantic object 	̂0 describing their sign properties.

Given an initial abstract semantic object 	̂0 such that (C0; �0) 2 (
 	̂0), the least �xed

point of Ŝ[[P ]] above 	̂0 gives sign properties that hold during the execution of P . For example,

if P is the while-loop program presented earlier, the result of the analysis is the the table of

�ve sign environments shown in Section 1.1 next to their respective program points, with the

last one corresponding to the \exit" program point.

It is worth considering again the analogy given in Section 1.1 of computing the rounded sum

of a list of numbers. In this analogy, a semantic object 	 2 P(State) corresponds to a precise

real number, and its abstraction (�	) 2 dState corresponds to the rounding of that number.

There is no equivalent of 
 because a rounded real number is still a real number, but in general

we need 
 to \coerce" a member of dState back into a member of P(State). Then applying Ŝ[[P ]],

to take one step of program execution and then abstract, corresponds to processing (adding)

the next number from the list and then immediately rounding the result.
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8.5 Performing Multiple Steps Between Abstractions

An abstract interpretation computes the �xed point of the abstract step function Ŝ[[P ]]. One

can write this �xed point as the limit of the sequence:

	̂1 = Ŝ[[P ]] 	̂0

	̂2 = Ŝ[[P ]] 	̂1 = (Ŝ [[P ]] � Ŝ[[P ]]) 	̂0

	̂3 = Ŝ[[P ]] 	̂2 = (Ŝ [[P ]] � Ŝ[[P ]] � Ŝ[[P ]]) 	̂0

...

This sequence �rst adds in the objects (for instance, states or state sequences) reachable in one

step from 	̂0, abstracts, adds in the objects reachable in the next step, abstracts, and so forth.

By the de�nition of Ŝ[[P ]],

Ŝ[[P ]] � Ŝ[[P ]] � Ŝ[[P ]]

is equivalent to

� � S[[P ]] � 
 � � � S[[P ]] � 
 � � � S[[P ]] � 
:

This illustrates the abstraction (with �) at every step. But in Section 1.1 we explained that

it is more accurate to defer the abstraction for a few steps. Mathematically, this is easy to

express: simply remove the occurrences of 
 � � during the desired interval. Thus,

� � S[[P ]] � S[[P ]] � S[[P ]] � 
:

performs three steps before abstracting, and consequently may yield more accurate results than

applying Ŝ[[P ]] three times. (The formal justi�cation of this is in [CC92d].) As we explained

above and in Section 1.1, this increase in accuracy can be striking. This technique yielded

better sign properties in our small example of Section 1.1, in which the three steps were the

three assignments of the loop body; but much more importantly, any analysis of properties

that might be temporarily lost during execution, such as data shape properties, stands to gain

from this technique. This class of analyses is quite large.

Implementing this technique would seem to be a simple engineering issue: just remove

the selected occurrences of 
 � �. This is an illusion, however. The problem is that the

function Ŝ[[P ]] is speci�ed to be � � S[[P ]] � 
, but is never implemented that way. Indeed,

it is not possible to manipulate the semantic objects (members of SemObj, perhaps sets of

states or state sequences as described above) themselves because they are usually not computer-

representable. For instance, consider the sign-analysis example. It is not possible to compute 
,

yielding an (almost certainly) in�nite set of states, apply S[[P ]] to �nd their successor states, and

abstract the resulting in�nite set of states. Instead, one always designs a monolithic algorithm

to compute Ŝ[[P ]], or at least a function above Ŝ[[P ]] in its pointwise ordering, along with a

soundness proof. Because this algorithm is cannot be separated into the three stages of 
,

S[[P ]], and �, there is no general engineering solution to omit the computation of 
 �� between

two iterative applications of the algorithm. We give an example to illustrate this in the next

section.
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One might attempt to attack the problem from the di�erent angle of beginning with a

semantics that uses a coarser-grained step function, such as

S3[[P ]] = S[[P ]] � S[[P ]] � S[[P ]]:

Then the function Ŝ3[[P ]] = � � S3[[P ]] � 
 speci�es an analysis that abstracts only after every

third execution step. However, this di�erent line of attack again encounters a barrier in practice.

Although S3[[P ]] is certainly a reasonable mathematical function, any algorithm for Ŝ3[[P ]] must

in general be able to handle all possible combinations of three adjacent steps. For instance,

consider just the two interesting adjacent steps in the example of Section 1.1:

y := x� 3;

x := y+ 5

An algorithm that combines these two steps would have to recognize the special pattern oc-

curring here that preserves the property that x is positive, and this pattern would have to be

included explicitly in the algorithm. Again, there does not seem to be a general approach, or

at least an approach that is combinatorially reasonable to even specify.

To understand this di�culty further, consider a program analysis based on a transition-

system semantics. As we explained in Chapter 4 one typically de�nes the single-step transition

relation 7�! with meta-rules that specify how the individual pieces of program syntax induce

transitions. For instance, the semantics of Pure included the following rule for let-binding

transitions.

(let x = e in t; �) 7�! (t; �[x 7! E [[e]]�])

In the typical approach to program-analysis design, one would \bake" the abstraction into

such a rule. The program analysis designer would hand-design an algorithm that \abstractly"

performs this kind of transition. For instance, if dSemObj is the set of tables of sign environments

indexed by control point, as described above, then a straightforward algorithm to compute Ŝ[[P ]]

for some Pure program P will be hard-wired to propagate the sign property of expression e

at control point (let x = e in t) to variable x at control point t for each let-binding term in

P . This makes intuitive sense|the algorithm is \abstractly interpreting" the let-binding steps.

But of course the analysis designer should justify these intuitions by proving that the algorithm

for Ŝ[[P ]] actually implements the function

� � S[[P ]] � 
:

Hence, the algorithm never directly manipulates states or state sequences, but instead per-

forms the function Ŝ[[P ]] in one go, where � and 
 are \baked into" the transition relation 7�!.

Note that:

1. To apply an existing analysis to a di�erent language, one must separately hand-design a

new algorithm for the meta-rules of that language. This is an engineering disadvantage.
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2. Because the abstraction is included in the analysis algorithm and cannot be separated

as a single module, there is no way to perform multiple execution steps abstracting the

result. This is a more serious disadvantage because, as we explained in Section 1.1, it can

have devastating e�ects on the quality of the analysis.

The preceding discussion formalizes the intuition behind why both the small program in

Section 1.1 and the reverse program at the beginning of this chapter are di�cult to analyze

accurately. Our solution in Section 1.1 was to change the program itself, rewriting the sequence

of instructions in the loop body with a single parallel instruction. In that way, we achieved an

e�ect similar to the S3[[P ]] idea above. Although this \compilation" of the three instructions

into a single instruction was at the time for expository purposes, we now have the semantic

methodology of transfer relations as a general solution.

8.6 Multi-step Abstract Interpretation with Transfer Relations

In previous chapters, we demonstrated that our language of transfer relations is expressive

enough to model advanced language features such as �rst-class functions and mutable data

structures. We now show that it may be used as a \back end" for a generalized program-

analysis methodology based on abstract interpretation in which multiple program steps may be

assimilated between abstractions.

In Section 8.3 we explained that a common choice of concrete semantic object for program

analysis is a state set (or property). As we described in Chapter 4, in semantic methodology

of transfer relations, a state is a pair of a control point and a store.

State = CtrlPoint� Store

A set of states is thus isomorphic to a function from control point C to the set (or property) of

stores occuring in states at C:

	 2 SemObj = P(State) ' CtrlPoint! P(Store)

Let CtrlPoint be the �nite set of control points occuring in a particular program P . Given a

binary relation R, let [R] = �X:fy j x 2 X ^ xRyg. Then

S[[t]] 	C 0 =
[
C

�
�C;C0

�
(	C):

Intuitively, the set of stores at control point C 0 comes from the stores at all control points C that

might precede C 0 by one step in an execution, or in other words by one link in a control-
ow

graph of P . But now we can express multiple steps with relation composition. For instance

S2[[t]] 	C 00 = (S[[t]] � S[[t]])	C 00 =
[
C;C0

�
�C;C0 ��C0;C00

�
(	C) =

[
C;C0

�
�C;C0;C00

�
(	C):
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In general, because the set of control points of a program is �nite, we need only design a join

semilattice dStore of abstract store properties and an abstraction function � 2 P(Store)! dStore,
with induced concretization function 
.

	̂ 2 dState = CtrlPoint! dStore
If � is additive1 then

Ŝ[[t]] 	̂C 0 =
_
C

�
� �

�
�C;C0

�
� 

�
(	̂C):

But now we may perform any number of steps before abstracting. For instance,

Ŝ2[[t]] 	̂C 00 =
_
C;C0

�
� �

�
�C;C0;C00

�
� 

�
(	̂C):

Although the size of this join is O(n2), and in general O(nk) for k steps, a sensible analysis

would only do this in cases such as straight-line code, where it is known beforehand that only

one control path yields a non-? transfer relation.

Thus, an analysis reduces to implementing � � [��] � 
 for any control path � 2 CtrlPoint+.

This is done with an algorithm S that describes how any transfer relation maps a pre abstract

store property to a post abstract store property.

S 2 TR! dStore! dStore
Then S is a function that, given a transfer relation �� describing control path �, describes how

a store property at the control point at the beginning of � propagates through � and yields a

store property at the end of �. Conceptually, because S describes the exact net behavior of �,

the abstraction step only occurs at the end of �, no matter how long � is.

The following picture describes the paradigm of multi-step abstract interpretation.

control point store property

C 	̂C store property at C given by 	̂
...

...

� execution through control path C;�; C 0

...
...

C 0 (S�C;�;C0)(	̂C) store property at C 0 after propagation

through C;�; C 0 and abstraction at C 0

Standard abstract interpretation corresponds to the case in which � is always the empty path,

and so the propagation is through a single step from C to C 0.

As we have described, once one designs the abstract store dStore, the heart of any program

analysis de�ned with the standard methodology of abstract interpretation is the design of an

1Usually, � is additive, but otherwise the equality is a property implication and still yields a correct analysis.
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algorithm to \abstractly" interpret each meta-rule of the transition relation 7�! on dStore. In

our methodology, the heart is the design of the S function, which abstractly interprets the

transfer relations in our language TR over dStore. We want S to satisfy

(� � [�] � 
) v (S�)

where v is pointwise set inclusion. Ideally, the v would be =, but an analysis may always

safely weaken the properties. Because our methodology works on the universal intermediate

representation of transfer relations, we may at least begin to describe how S should be de�ned,

independent of the particular source language or analysis.

We assume that dStore is a join semilattice with the false property as its bottom element,

written as ?. We also assume that there is a function in Exp ! dStore! dStore that given an

expression e and store property �̂ returns a store property (written e?�̂) that is satis�ed by all

stores that both satisfy �̂ and evaluate e to true. In other words,

(� 2 �̂ ^ e `� true)) � 2 (e?�̂):

We also assume that there is a similar function for false:

(� 2 �̂ ^ e `� false)) � 2 (e>�̂)

Note that the de�nitions

e?�̂ = e>�̂ = �̂

trivially satisfy these properties, but in general it may be possible to do better, and so we

provide the facility.

Now we may partially de�ne S, independent of the particular analysis or choice of dStore.
S�? = ?

S ; �̂ = ?

S e? � �0 �̂ = (S�(e?�̂)) _ (S�0 (e>�̂))

The only remaining case is for assignment relations. Therefore, we have the following \recipe"

for the design of a general multi-step abstract interpretation with our methodology.

1. Design a join semilattice dStore of store properties.
2. De�ne e?�̂ and e>�̂ or use the degenerate de�nitions given above.

3. De�ne (S � �̂) for any assignment relation � 2 ATR and store property �̂ 2 dStore such that

((� � [�] � 
) �̂) � (S � �̂).

Then, as we described above, one may perform a classical abstract interpretation by using the

single-step transfer relations de�ned by the semantics of the source language, or one may choose

to compose these transfer relations for better precision over selected control paths. It is up to
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the analysis designer to pick which control paths are of interest, but we suggest a strategy of

composing all paths in the control-
ow graph of the source program in which only the �rst

and last nodes have multiple incoming edges (candidates for looping points) and performing

an abstract interpretation to compute the properties (via �xed-point iteration) for just those

nodes. Such paths roughly correspond to so-called extended basic blocks [ASU86]. Note that

such a strategy would automatically compose the sequence of three assignment statements that

posed a problem in the example at the beginning of this chapter. All that remains to solve that

example, for instance, is to adapt an existing store analysis such as [GH96].

8.7 Value Analysis

In this section, we isolate a subcase of our our methodology for value analyses. The sign analysis

of Section 1.1 and Section 8.4 is a simple kind of value analysis. Recall that a store is a function

from l-value to value. In a value analysis, a store property is de�ned in terms of a set dVal of
value properties (sets) as follows.

�̂ 2 dStore = dLval!dVal
ŵ 2 dLval = Var [ (dVal�dVal)

A member of dLval speci�es an l-value property (set) as follows

x 2 x
v 2 v̂ v0 2 v̂0

(v:v0) 2 (v̂:v̂0)

The abstraction function

� 2 P(Store)! dStore
is de�ned as

�� ŵ =
^
fv̂ 2dVal j (� 2 � ^ w 2 ŵ)) (� w) 2 v̂g

given a lattice dVal of value properties.
In our example of sign analysis, dVal = Sign as given in Section 1.1, and we assumed that

the only l-values were variables (in other words, dLval = Var).

The main algorithm that the analysis designer must provide for a particular value analysis

is a function

P̂ 2 Primop! dStore!dVal� !dVal
that \abstractly evaluates" primitive operations. It must satisfy the following condition

Condition 2 (Safety of P̂) It must be the case that0@ ^
1�i�n

vi 2 v̂i

1A ^ (� 2 �̂)) (p(v1; : : : ; vn) ,!� v)

implies that

v 2 P̂[[p]]� (v̂1; : : : ; v̂n):
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Note that the store parameter of P̂ may be ignored for context-insensitive primitive operations,

which will typically make up the vast majority of primitive operations in any application of our

analysis methodology. For instance, the following is a partial de�nition of P̂ for the (context-

independent) operation + for sign analysis (where we omit the unused store parameter):

P̂[[+]] (pos; int) = int

P̂[[+]] (pos; nonneg) = pos

P̂[[+]] (pos; nonpos) = int

P̂[[+]] (pos; pos) = pos

P̂[[+]] (pos; zero) = pos

P̂[[+]] (pos; neg) = int

P̂[[+]] (pos; none) = none

We mechanically extend this notion of abstract evaluation to expressions and l-expressions as

follows.
Ê 2 Exp! dStore!dVal
L̂ 2 Lexp! dStore!dVal

Ê[[x]] �̂ = �̂ x

Ê[[p(e1; : : : ; en)]] �̂ = P̂[[p]] �̂ (Ê[[e1]] �̂; : : : ; Ê[[en]] �̂)

L̂[[x]] �̂ = x

L̂[[e:e0]] �̂ = (Ê[[e]] �̂):(Ê[[e0]] �̂)

Lemma 10 For all e 2 Exp and v 2 Val,

(� 2 �̂ ^ e `� v)) v 2 Ê[[e]] �̂;

and for all l 2 Lexp and w 2 Lval,

(� 2 �̂ ^ l `� w)) w 2 L̂[[l]] �̂:

Proof: Straightforward induction based on the safety condition of P̂. 2

The next step in our \recipe" is to provide the two boolean �lter functions, which are de�ned

as follows.

e?�̂ =

(
�̂ if true 2 (Ê[[e]] �̂)

? otherwise

e>�̂ =

(
�̂ if false 2 (Ê[[e]] �̂)

? otherwise

The �nal step is to provide the function

S 2 ATR! dStore! dStore
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that describes how, given an assignment relation �, one store property evolves into another

from the assignments in �. To do this, we must assume that we have the following operations

on dVal.
!v̂ test if v̂ 2dVal is a singleton set

v̂ 1 v̂0 test of nonempty intersection in dVal: v̂ \ v̂0 6= ;

We extend the last two to dLval mechanically as follows.

!x (all variables are singletons)

!(v̂:v̂0) if !v̂ ^ !v̂0

x 1 x (all variables intersect with themselves)

v̂1:v̂
0

1 1 v̂2:v̂
0

2 if (v̂1 1 v̂2) ^ (v̂01 1 v̂
0

2)

Now we can de�ne the S algorithm.

S l1; : : : ; ln 7! e1; : : : ; en �̂ ŵ =

8><>:
Ê[[ei]] �̂ if (ŵ 1 ŵ0)^ !ŵ^ !ŵ0

where ŵ0 = L̂[[li]] �̂

(�̂ ŵ) _
W
fÊ[[ei]] �̂ j ŵ 1 L̂[[li]] �̂g otherwise

Some important kinds of analyses are not value analyses. A good example is the shape

analysis with which we began this chapter. We leave the adaption of such analyses to TR as

future work.



Chapter 9

Analyzing Expressions

In Chapters 2 and 3, we gave a framework for designing a language of transfer relations pa-

rameterized by a set Primop of primitive operations, and we gave an algorithm to compose one

transfer relation � with another �0 to get a third transfer relation �00 = � � �0. In Chapter 4

we further described a semantic methodology in which

� �� is a term representing the net behavior (modeled as a modi�cation to a store) of any

segment of execution through control path � (a string of control points),

� ��0 is a term representing the net behavior of a segment corresponding to control path

�0, and

� if � ends with the same control point with which �0 begins, ��;�0 = �� � ��0 represents

the net behavior of the �rst execution segment followed by the second execution segment.

(Recall that a control path �1; C ending with control point C may be combined with a

control path C;�2 beginning with C with the ; operation as (�1; C); (C;�2) = �1; C;�2.)

For program analysis, composing transfer relations thus forms the core of reasoning about

adjacent pieces of code, or even pieces of code that are not syntactically adjacent, but that

might follow each other in an execution. An example of the latter is a piece of code that

leads to a function call, followed by a piece of code at the beginning of the function body.

We formalized these concepts in Chapter 4, which presented a methodology of programming-

language semantics based on transfer relations. This methodology provides a uniform way to

compute the transfer relation for any �nite control path in a program. We demonstrate this

methodology in Chapters 5, 6, and 7 for imperative and functional programming languages.

In this chapter, we show how one can use this methodology to analyze how the values

of an expression change during program execution. This will turn turn out to be relatively

straightforward for �xed �nite control sequences, but rather subtle for executions that are

in�nite, or at least potentially in�nite.
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9.1 Analyzing Finite Control Paths

Given a program in any language that has been de�ned using the semantic methodology of

Chapter 4|and given any �nite control path � 2 CtrlPoint+, one can compute a transfer

relation �� 2 TR that gives a description of how a store at the start of � can change into a

store at the end of �. If all of the primitive operations in the language are deterministic, as is the

case forMini-C, Pure, and Impure, and as will likely be the case for any reasonable language,

then �� will be an exact description, in that it de�nes the semantics of the control path �.

In Chapter 3, we called this a translation. If the language includes nondeterministic primitive

operations, then �� will not necessarily be an exact description, but it will be a superset of the

semantics of the control path �; in other words, all possible executions along control path � will

be represented in ��. In Chapter 3, we called this an upper approximation. In this chapter, we

will assume that all primitive operations in the source language are deterministic.

Much of the �eld of static program analysis is centered around the common motivation of

analyzing the values of variables or expressions. Usually this is done with a �xed-point compu-

tation, as in abstract interpretation. But in this chapter we present an alternate approach.

Suppose that one wants information about the value of x 2 Var when execution reaches the

end of control path �. In our methodology, one computes

Ex��:

The result is an expression e such that in any possible execution fragment through control path

�, e at the beginning of that execution fragment is semantically equivalent to x at the end of

that execution fragment. If Primop is nondeterministic, then e is an upper approximation of

x, in that it is guaranteed to evaluate before the execution fragment to any value to which x

evaluates after the execution fragment. In general, x can be an arbitrary expression; it need

not be a variable. In other words,

E e0��

is an expression e such that in any possible execution fragment through control path �, e at the

beginning of that execution fragment is semantically equivalent to e0 at the end of that execution

fragment. These properties are not new; they are simply rephrasings of Theorem 2. But because

this notion of expression analysis is a central part of this application of our methodology, we

introduce a new term.

De�nition 16 (Transfer of expressions) If

e `� v () e0 `�0 v

whenever execution from store � 2 Store through control path � 2 CtrlPoint+ results in store

�0 2 Store, then we say that � transfers e to e0.

The following theorems and corollary are the keystone of this chapter.
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Theorem 5 For any programming language all of whose primitive operations are deterministic,

if �� is the transfer relation for control path � and (E e0��) = e, then � transfers e to e0.

Proof: Rephrasing of Theorem 2. 2

Theorem 6 If � transfers e to e0 and �0 transfers e0 to e00 then �; �0 transfers e to e00.

Proof: Straightforward from the de�nition of expression transfer. 2

Corollary 2 For any programming language all of whose primitive operations are determinis-

tic, if �� is the transfer relation for control path � and ��0 is the transfer relation for control

path �0, and if (E (E e0��0)��) = e, then �; �0 translates e to e0.

9.2 Analyzing Adjacent Loop Iterations via Exponentiation

Consider the Mini-C program

while e do s

that repeats the execution of the code s until e becomes true. Suppose s is simply a piece

of straight-line code, and � is the control path that tests if e is true and then performs s.

As described in Chapter 5, one can automatically compute a transfer relation �� for � that

represents the net behavior of the test of e and execution of s. So,

� �� represents the net behavior of any single iteration,

� �� � �� represents the net behavior of control path �; �, which is the control path of

any two adjacent iterations,

� �� � �� � �� represents the net behavior of control path �; �; �, which is the control

path of any three adjacent iterations,

� etc.

We adopt the notation �n to mean
n timesz }| {

� � � � � � �

and the notation �n to mean
n timesz }| {
�; : : : ; � :

Then ��n = (��)
n.

Suppose that one wants to analyze how the data in a store � at the beginning of the loop

body gets used and updated over a period of three iterations of the loop|in other words, during
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any segment of execution along the control path �3. Then one simply computes (��)
3, which

gives a description of the store three iterations later1 in terms of �.

It is worth pointing out that this is a fundamentally di�erent|and fundamentally advan-

tageous|approach from those of standard program analyses. Standard approaches cannot

di�erentiate between an in�nite number of loop iterations, but the above approach can. For

instance, suppose the loop is

while x <> nil do x := x:tl

that traverses x down a list to its end. The semantic methodology in Chapter 4 would compute

�� = x <> nil? x 7! x:tl

to describe one iteration of this loop. One could then compute, for instance,

(��)
2 = x <> nil? x:tl <> nil? x 7! x:tl:tl

to describe two adjacent iterations, or

(��)
3 = x <> nil? x:tl <> nil? x:tl:tl <> nil? x 7! x:tl:tl:tl

to describe three adjacent iterations.2 The last transfer relation directly provides the following

information: During any three adjacent iterations of the loop, the third component of the list to

which x is bound before those iterations is bound to x after those iterations. This is computed

and formalized by the E algorithm; one computes:

E x�� = x:tl

E x (��)
2 = x:tl:tl

E x (��)
3 = x:tl:tl:tl

Therefore:

� Whenever the loop goes through any one iteration, the value of x:tl (guaranteed by

Lemma 2 to be unique because all primitive operations are deterministic) at the beginning

of the iteration is equal to the value of x at the end of the iteration. In other words, �

transfers x:tl to x.

� Whenever the loop goes through any two adjacent iterations, the unique value of x:tl:tl

at the beginning of the iteration is equal to the value of x at the end of the iteration. In

other words, �2 (which is �; �) transfers x:tl:tl to x.

1In general, one might want to examine all of the transfer relations that accumulated during a left-associative

calculation of (��)
3|in other words, the transfer relations that correspond to each pre�x of �3. These inter-

mediate transfer relations give descriptions of the store with respect to � at all of the intermediate points of

execution during a sequence of three iterations, as described in Chapter 4.
2These computations assume trivial translations C and P that merely reconstruct their terms.
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� Whenever the loop goes through any three adjacent iterations, the value of x:tl:tl:tl

(again, guaranteed to be unique) at the beginning of the iteration is equal to the value of

x at the end of the iteration. In other words, �3 (which is �; �; �) transfers x:tl:tl:tl to

x.

In this sense, our methodology provides a way of distinguishing between a potentially un-

bounded number of occurrences of the same control path. Even if the length of the list to which

x is bound at the entry of the while loop is unknown, and thus unbounded, the above transfer

relation provides precise information about how the binding of x at iteration k relates to the

binding of x at iteration k+3, and this information is valid for any k. Most approaches to pro-

gram analysis that are based on �xed-point calculation would ultimately have to approximate

the data structure to which x is bound at the entry of the while loop, and therefore inherently

cannot produce precise information for an unbounded number of iterations.

9.3 The Interaction Between E�ects and Exponentiation

Above, we gave some intuition about how to analyze the value of x in the loop

while x <> nil do x := x:tl:

First, one computes the transfer relation

� = x <> nil? x 7! x:tl

describing one iteration of the loop. Then, one can compute

E x� = x:tl

to automatically determine that one iteration of the loop transfers x:tl to x. Indeed, one can

go further by computing

�3 = � � � � � = x <> nil? x:tl <> nil? x:tl:tl <> nil? x 7! x:tl:tl:tl

describing three adjacent loop iterations, and then

E x�3 = x:tl:tl:tl:

to yield the expected result that, of course, if x traverses one element down the list in one

iteration, then it must traverse three elements down the list in three iterations. Or must it? In

this program, it is indeed the case, but in general a result such as

E x� = x:tl
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can be deceptive.

To see why, consider the following Mini-C program.

while x <> nil do

f

y :=x;

x :=x:tl;

y:tl := x:tl

g

One would think that this program is designed to modify the list bound to x by splitting it

into two lists|a list of the odd elements in order and a list of the even elements in order. The

following transfer relation describes one iteration of the loop.

� = x <> nil? y; x; x:tl 7! x; x:tl; x:tl:tl

Now, suppose that one wants to analyze the value of x in this loop. As for the previous program,

one could compute

E x� = x:tl

to automatically determine that one iteration of the loop transfers x:tl to x; in other words, x

progresses to its next element in one iteration. So far, this looks just like the previous program.

Going further, one could examine the value of x after two iterations:

E x�2 = x:tl:tl

This may not seem very surprising. After all, if x moves down one element of the list in one

iteration, then it seems reasonable that it moves down two elements in two iterations. However,

the pattern is broken with the next iteration:

E x�3 = if(x:tl:tl = x;

x:tl:tl;

x:tl:tl:tl)

In other words, suppose that the list is a two-element circular list with elements v1 and v2, and

x is bound to v1. Then:

� After one iteration, x is bound to v2 (i.e., element f2; 4; 6; : : :g of the list).

� After two iterations, x is bound to v1 (i.e., element f1; 3; 5; : : :g of the list).

� After three iterations, x is still bound to v1.

Otherwise, no matter what other kind of circularity or aliasing may be present in the list, x

progresses to the fourth element in its linked structure after three iterations.
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Note that the those two possible behaviors are truly distinct. To illustrate, consider how

each of the two cases appear in a store graph. The �rst case is

-xt -�
tl

tl
v1 v2

where v1 may or may not be equal to v2. The second case is

-xt -tlv1 -tlv2 -tlv3 v4

where we impose only that v1 and v3 are nonequal (and thus v1 and v2 must be nonequal).

After three iterations, x points to v1 in the �rst case and v4 in the second case. But there is no

single non-conditional expression that works for both cases. The expression

x:tl:tl

works for the �rst case, but not the second; the expression

x:tl:tl:tl

works for the second case, but not the �rst. If v4 is equal to v1, then the expression x would

work for both cases, but v4 may not be equal to v1. The E algorithm automatically distinguishes

the cases that need to be distinguished and builds a conditional expression that covers all cases.

9.4 Blowup of Conditional Expressions

These conditional expressions can become large. Let

x:tln = x:

n timesz }| {
tl: : : : :tl

After four iterations of the loop in the previous section, we have

E x�4 = if(e = x:tl;

e;

if(e = x; x:tl2; e:tl))

where

e = if(x:tl2 = x; x:tl2; x:tl3):

Unlike the expression (E x�3) for three iterations, this expression is rather complex for human

understanding (although still much easier than hand-generating all initial aliasing conditions

that might be relevant and hand-executing four iterations of the loop under all such cases).

Some study uncovers the following interpretation for the value of x after four iterations:

� If the second element points to the �rst (special case: the �rst element points to itself),

then the value is x.
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� Otherwise, if the third element points to the second (special case: the second element

points to itself), then the value is x:tl.

� Otherwise, if the third element points to the �rst, then the value is x:tl2.

� Otherwise, the value is x:tl4.

Again, these are all distinct behaviors, and it is probable that the above itemized list is the

shortest description of the value of x after four iterations. But clearly the expression computed

as (E x�4) is bigger than this itemized list. A better symbolic evaluation of if could reduce its

size. For instance note that as long as all primitive operations are deterministic, the following

two expressions are semantically equivalent:

if(e1 = e2; e1; e3) � if(e1 = e2; e2; e3)

Therefore, fif can substitute one for the other, and for instance choose the small x:tl over the

large e above, yielding instead:

E x�4 = if(e = x:tl;

x:tl;

if(e = x; x:tl2; e:tl))

This is better, but not by much. The key is to distribute the conditional expression e nested

in the condition position of (E x�4) over the two branches of the latter. For this, we have the

following rule of semantic equivalence of expressions, where eE denotes any expression that can

be derived from e by optionally replacing occurrences of any subexpression e1 2 E in e by some

other expression e2 2 E:

e = if(e1; e2; e3)

e05 = e5fe; e2; e4g e06 = e6fe; e2g

e005 = e5fe; e3; e4g e006 = e6fe; e3g

if(e = e4; e5; e6) � if(e1; if(e2 = e4; e
0

5; e
0

6); if(e3 = e4; e
00

5 ; e
00

6))

(9.1)

As written, this rule is nondeterministic because there are in general many choices for an

expression eE. But one obvious strategy is simply to pick the smallest expression. This is easy

to implement. For instance to compute e05, pick the smallest of fe; e2; e4g and substitute all

occurrences in e5 of the two larger expressions by this small expression.

Applying this rule to (E x�4) yields:

E x�4 = if(x:tl2 = x;

if(x:tl2 = x:tl; x:tl; x:tl2);

if(x:tl3 = x:tl;

x:tl;

if(x:tl3 = x; x:tl2; x:tl4)))
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This is close to optimal, but it is possible to simplify the �rst arm even further using the

following generalization of the �rst semantic equivalence above:

e03 = e3fe1; e2g

if(e1 = e2; e3; e4) � if(e1 = e2; e
0

3; e4)
(9.2)

Applying this rule to the above expression yields:

E x�4 = if(x:tl2 = x;

if(x = x:tl; x:tl; x);

if(x:tl3 = x:tl;

x:tl;

if(x:tl3 = x; x:tl2; x:tl4)))

Applying the rule again to the conditional in the �rst arm yields:

E x�4 = if(x:tl2 = x;

if(x = x:tl; x; x);

if(x:tl3 = x:tl;

x:tl;

if(x:tl3 = x; x:tl2; x:tl4)))

Finally, we apply the equivalence that

if(e1 = e2; e; e) � e (9.3)

to yield:

E x�4 = if(x:tl2 = x;

x;

if(x:tl3 = x:tl;

x:tl;

if(x:tl3 = x; x:tl2; x:tl4)))

This last expression directly corresponds to the bullet list above, and no more simpli�cations

seem possible; the behavior of four iterations of the loop on the binding of x is inherently this

complex.

Rule 9.3 is subtle; it works only because the primitive operation = returns either true or

false on any pair of values, even undef.

Rule 9.1 of semantic equivalence may seem ad hoc, but it is actually more widely applicable

than it may seem at �rst. Let us look again at the computation of (E x�4), but this time with

the observation that (E x�3) appears in some of its subexpressions.

E x�4 = if((E x�3) = x:tl;

(E x�3);

if((E x�3) = x; x:tl2; (E x�3):tl))
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Now note that the nested conditional in Rule 9.1 occurs exactly where (E x�3) appears above.

This is not an accident; often, the behavior of a piece of code (e.g., one iteration of a loop)

on an expression (e.g., a variable) will function in more than one possible way depending on

properties (e.g., aliasing) of the result of the preceding piece of code (e.g., the previous loop

iteration) on that expression. Hence, it is often the case that (E e�) will appear in the proper

position (i.e., as e) in an application of Rule 9.1 to (E e (� � �0)). The rule thus serves to

incrementally keep the expressions as 
at as possible.

9.5 Computing Closed Forms of Loops

The previous sections showed how to automatically compute that a single iteration of the loop

while x <> nil do x := x:tl

and a single iteration of the loop

while x <> nil do

f

y :=x;

x :=x:tl;

y:tl := x:tl

g

both transfer x:tl to x.

It is not di�cult to see that for any n, n iterations of the �rst loop transfer x:tln to x, but

we did not give an algorithm to compute this closed-form solution. However, we demonstrated

that three iterations of the second loop do not transfer x:tl3 to x, and therefore it is not the case

that for any n, n iterations of the second loop transfer x:tln to x. This section addresses the

question of when such exponentiations are valid, and how to automatically compute a closed-

form representation for those exponentiations. The results that we will achieve are much more

general than the simple traversal of a linear data structure.

9.5.1 An example

We begin at an intuitive level by examining why the closed-form exponentiation works for the

�rst loop, but not for the second. Consider two adjacent iterations of the �rst loop. We know

that iteration 1 transfers x:tl to x and iteration 2 transfers x:tl to x. But to link iteration

1 with iteration 2, the \output expression" of iteration 1 should be the same as the \input

expression" of iteration 2. So what we really need is to compute

E (x:tl)� = x:tl:tl
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which reports that any one iteration (where � is the transfer relation for a single iteration)

transfers x:tl:tl to x:tl. Now we know that iteration 1 transfers x:tl:tl to x:tl, which is then

transferred by iteration 2 to x. This is an application of Corollary 2.

Thus, we have simply veri�ed that two iterations transfer x:tl:tl to x, a fact that is ex-

pressed more directly by

E x�2 = x:tl:tl:

But deriving that result in the two steps of Corollary 2 instead of computing it directly suggests

an approach for deriving a closed-form solution for n steps. Note that in the equation

E (x:tl)� = x:tl:tl

the expression on the right is a dereference of x:tl by tl, the expression on the left is a

dereference of x by tl, and we already have that one iteration transfers x:tl to x. Suppose

an oracle magically provides the statement that for all expressions e and e0, if one iteration

transfers e to e0, then it must be the case that it also transfers e:tl to e0:tl. In other words,

E e0� = e ) E e0:tl� = e:tl:

Then by induction, we have

E x� = x:tl base case

E x:tl� = x:tl2 application of oracle to above

E x:tl2� = x:tl3 application of oracle to above

E x:tl3� = x:tl4 application of oracle to above
...

And then by another induction, we have

E x� = x:tl base case

E x�2 = x:tl2 Corollary 2 with above line and line 2 of previous result

E x�3 = x:tl3 Corollary 2 with above line and line 3 of previous result

E x�4 = x:tl4 Corollary 2 with above line and line 4 of previous result
...

The key to this approach is the oracle that provides the statement that

E e0� = e ) E (e0:tl)� = e:tl:

Now it becomes clear why the closed-form exponentiation works for the �rst program, but not

for the second. The intuition of this statement is that \the tl �elds of all data structures

are preserved by a single iteration". This is clearly true of the �rst program, which does not

perform any assignments to tl �elds. But the second program includes the statement

y:tl := x:tl



150 Analyzing Expressions

which potentially alters the tl �eld of some value in the store. And indeed, the oracle's

statement is false when � is the transfer function of one iteration of the second program. At

�rst, it seems tricky to �nd an expression e0 that makes the statement fail. Neither x nor y

serves the purpose, but x:tl does:

E (x:tl)� = x:tl:tl

but

E (x:tl:tl)� = if(x:tl:tl = x;

x:tl:tl;

x:tl:tl:tl)

:

Fortunately, however, there is a general technique for testing if the above oracle statement

holds. The insight is that an expression that cannot possibly be altered by the program can

act as a \probe" into any point in the store. So one needs merely to choose e to be a variable

x that does not appear in the program. It will always be the case that (Ex�) = x, and if

the oracle statement fails for any e0 then it will fail for x. Furthermore, if the oracle statement

passes for e = e0 = x then it will pass for all expressions e and e0. For instance, for both of our

programs,

E z� = z;

but while

E (z:tl)� = z:tl

for the �rst program, thus implying that the oracle statement holds and thus the closed-form

exponentiation is valid,

E (z:tl)� = if(z = x;

x:tl:tl;

z:tl)

:

for the second program, thus demonstrating that the oracle statement fails and thus the closed-

form exponentiation is not valid.

The above is merely an example of exponentiating a tl dereference. Now we generalize

these results to a much larger class of exponentiations.

9.5.2 Expression constructors

We begin with the observation that x:tln is the result of n repeated applications of the function

�e: (e:tl)

to the expression x. Exponentiating a dereference is thus a special case of exponentiating a

function of type

Exp! Exp:

In this section, we present a foundation for these kinds of functions and how, given a loop, to

automatically �nd such functions that can be exponentiated in the loop.
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De�nition 17 The set ExpConk of expression constructors of arity k is de�ned as follows.

E 2 ExpConk ::= x j p(E1; : : : ; En) j 
1 j : : : j 
k

ExpConk is isomorphic to Expk ! Exp, and these may be used interchangeably.

Intuitively, a k-ary expression constructor is an expression in which \holes" may appear, each

hole labeled with a number from 1 to k. A hole may appear multiple times or not at all. When

a k-ary expression constructor is applied to k expressions (e1; : : : ek), then each occurrence of

hole 
i is \�lled" with ei. Note that ExpCon0, the set of nullary expression constructors, is

just the set Exp of expressions. Also note that ExpConk � Exp for any k because an expression

constructor need not contain any holes.

The de�nition of k-ary expression constructors as Expk ! Exp functions is as follows:

x~e = x

p(E1; : : : ; En)~e = p(E1 ~e; : : : ; En ~e)


i (e1; : : : ; ek) = ei

Unary expression constructors are especially important because they are the only ones that

can be exponentiated, as they are the only ones with matching domain and codomain. Because

they are distinguished, we simply call them expression constructors and use slightly specialized

notation for them:

E 2 ExpCon ::= x j p(E1; : : : ; En) j 
 unary expression constructors

We also specialize the de�nition above for the case of expression constructors as Exp ! Exp

functions:
x e = x

p(E1; : : : ; En) e = p(E1 e; : : : ; En e)


 e = e

In the previous section, we considered loops in which one iteration transfers x:tl to x. We

started by calculating

E x� = x:tl:

and then computing a test to determine if the \:tl" part could be exponentiated. The discussion

in the previous section generalizes elegantly via the following three theorems.

Theorem 7 (Abstraction of expression transfer) Let �� be the transfer relation for con-

trol path �, E and E 0 be k-ary expression constructors, and x1; : : : ; xk be variables that do not

appear in either the syntax of ��, E, or E
0. If

� � transfers E(x1; : : : ; xk) to E
0(x1; : : : ; xk), and

� � transfers ei to ei for all i 2 f1; : : : ; kg
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then � transfers E(e1; : : : ; ek) to E
0(e1; : : : ; ek).

Proof: We need to show that whenever ��� �
0,

(E(e1; : : : ; ek)) `� v () (E 0(e1; : : : ; ek)) `�0 v:

Choose any values v1; : : : ; vk. Because � transfers ei to ei for all i 2 f1; : : : ; kg, we have that

k̂

i=1

ei `� vi ()

k̂

i=1

ei `�0 vi:

Now let
�00 = �[x1 7! v1] : : : [xk 7! vk]

�000 = �0[x1 7! v1] : : : [xk 7! vk]

Because none of x1; : : : ; xk appears in the syntax of ��, we have that

�00�� �
000

and hence, because � transfers E(x1; : : : ; xk) to E
0(x1; : : : ; xk), that

(E(x1; : : : ; xk)) `�00 v () (E 0(x1; : : : ; xk)) `�000 v:

Combining the above, we have that 
k̂

i=1

ei `� vi

!
^ (E(x1; : : : ; xk)) `�00 v ()

 
k̂

i=1

ei `�0 vi

!
^ (E 0(x1; : : : ; xk)) `�000 v:

But because none of x1; : : : ; xk appears in E we have that for any �,

9v1; : : : ; vk:

" 
k̂

i=1

ei `� vi

!
^ (E(x1; : : : ; xk)) `�[x1 7!v1]:::[xk 7!vk]

v

#
() (E(e1; : : : ; en)) `� v

and similarly for E 0. Therefore,

(E(e1; : : : ; en)) `� v () (E 0(e1; : : : ; en)) `�0 v:

2

The above theorem is used primarily for the next two theorems, which we will use to compute

automatically closed solutions in loops.

Theorem 8 (Left closed-form exponentiation) Given a language in which all primitive

operations are deterministic, let �� be the transfer relation for control path �, E be a (unary)

expression constructor, and x be some variable that does not appear in either the syntax of ��

or E. If

E e�� = E e

and

E (E x)�� = E x

then for all n � 0 and k � 0, �n transfers (E(n+k) e) to (Ek e).
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Proof: Straightforward application of Theorems 5, 6, and 6abs-exptr. 2

Theorem 9 (Right closed-form exponentiation) Given a language in which all primitive

operations are deterministic, let �� be the transfer relation for control path �, E be a (unary)

expression constructor, and x be some variable that does not appear in either the syntax of ��

or E. If

E (E e)�� = e

and

E (E x)�� = E x

then for all n � 0 and k � 0, �n transfers (Ek e) to (E(n+k) e).

Proof: Straightforward application of Theorems 5, 6, and 6abs-exptr. 2

The following example illustrates the above development.

Example 30 Let � be the transfer relation for one iteration of the loop:

while x <> nil do x := x:tl

Note that variable z does not appear in �. Let E =
:tl and compute

E x� = x:tl = E x

and

E (E z)� = E (z:tl)� = z:tl = E z:

By Theorem 8, we conclude that any n iterations of the loop transfers En x = x:tln to x, and

further that it transfers x:tln+k to x:tlk for any k � 0.

9.5.3 Computing closed forms automatically

In order to compute these closed forms automatically for expression e and control path �, it is

necessary to determine automatically an expression constructor E such that

E e�� = E e

where �� is the transfer relation for control path �. In general, there may be many choices for

E that make this equation true. For instance, for both of our example while-loops above,

E x� = (
:tl) x

and

E x� = (x:tl) x:
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To understand this nondeterminism, consider the task of determining from any two expressions

e and e0 an expression constructor Eee0 such that Eee0 e = e0. Using the �rst two lines of the above

de�nition of expression constructors as functions, we can derive the following scheme:

Eex = x

Ee
p(e1;:::;en)

= p(Eee1 ; : : : ; E
e
en
)

But this merely reduces to the degenerate Eee0 = e0, an expression constructor without any holes.

Taking into consideration the third line of the de�nition, we can add the following equation:

Eee = 


Now whenever e0 matches e, we have a choice between applying this equation to introduce a

hole or use the �rst two to reconstruct e.

One obvious deterministic strategy is to introduce holes whenever possible, yielding the

following algorithm:

Eee0 =

8><>:

 if e = e0

x if e 6= e0 = x

p(Eee1 ; : : : ; E
e
en) if e 6= e0 = p(e1; : : : ; en)

Example 31 The expression-constructor algorithm computes:

Exx:tl= Exx :E
x

tl

=
:tl

Example 32 The expression-constructor algorithm computes:

E
j

a[j + j]
= E

j

a [E
j

j + j
]

= a[E
j

j + E
j

j ]

= a[
 +
]

This suggests the following algorithm for computing closed forms of expression transfer in

loops.

Algorithm 1 (Closed-forms of expressions in loops) Given the following input:

� A control path � 2 CtrlPoint+.

� An expression e 2 Exp.

Perform the following steps:

1. Compute the transfer relation �� for control path � as described in Chapter 4.

2. Compute the expression (E e��). Call this e
0.
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3. Compute the expression constructor Eee0 as described above. Call this EL.

4. Compute the expression constructor Ee
0

e as described above. Call this ER.

5. Choose a variable x not appearing in ��.

6. Compute the expression (EL x) as described by the de�nition of expression constructors.

Call this eL.

7. Compute the expression (ER x) as described by the de�nition of expression constructors.

Call this eR.

8. Compute the expression (E eL��) and test if it is syntactically equal to eL. If so, output

\left(EL)". Otherwise, output \left-exponentiation not found".

9. Compute the expression (E eR��) and test if it is syntactically equal to eR. If so, output

\right(ER; e
0)". Otherwise, output \right-exponentiation not found".

If this algorithm given � and e outputs \left(EL)" then for all n � 0 and k � 0, �n transfers

(E(n+k) e) to (Ek e). In addition, if it outputs \right(ER; e
0)" then for all n � 0 and k 6= 0, �n

transfers (Ek e0) to (E(n+k) e0).

Example 33 The above algorithm, given the control path corresponding to one iteration of the

program

while x <> nil do x := x:tl

and given the expression x, outputs \left(
:tl)" and \right-exponentiation not found".

Example 34 The above algorithm, given the control path corresponding to one iteration of the

program
while x <> nil do

f

y := x;

x := x:tl;

y:tl := x:tl

g

and given the expression x, outputs \left-exponentiation not found" and \right-exponen-

tiation not found".
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Part V

Conclusion
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In this dissertation, we have presented a new way of approaching the problem of statically

analyzing a program to determine properties of its run-time behavior.

In our methodology, the semantic de�nition of a language is given by a translation from

the source program to an intermediate form in which all single step transitions between two

control points are described by a single transfer relation term in TR. For instance, we have

shown how to translate assignments and let-bindings into assignment relations, conditionals

into �lter relations, allocation into assignment relations that maintain an explicit heap pointer,

and function calls into �lter relations with assignment for argument passing. Our language TR

if transfer relations is thus a universal intermediate representation for programming languages,

parameterized by a set Val of values and Primop of primitive operations.

The semantics itself merely de�nes the single-step transfer relations, which amounts to a

translation of the source program into TR. But the fundamental property of TR that sets it

apart from other intermediate representations and makes it useful for program analysis is that

it is closed under composition. We have given an algorithm � to perform this composition.

Given this view, one way to think of our analysis methodology is as a kind of symbolic

execution. Given the translation of a source program into TR, one uses � to compose the

steps in order to generate a transfer relation (term in TR) of a particular �nite control path.

The single-step transfer relations yielded by the semantics correspond to the length-two control

paths and are simply a rewriting of the program text. But as an analysis composes these steps

with �, it symbolically uncovers more and more dynamic information about the program.

Unlike usual approaches to program analysis that begin by de�ning an abstract language of

run-time properties, our methodology never discards information about the program. In fact,

given a closed program (in other words, no parameters or unknown data), it is possible actually

to execute the program with �. To do this, build the transfer relation for the control path that

starts at the beginning of the program. At each point during this incremental composition,

all information about the run-time state up to that point will be represented precisely in the

transfer relation, and every time a branch point is reached (for instance, conditional or func-

tion call), only one branch will result in a non-; transfer relation. Of course, if the program

never terminates then this process will never terminate. But it demonstrates that our analy-

sis methodology includes all information needed to perform a precise execution of the source

program, which sets it apart from other approaches to program analysis.

But the point of program analysis is usually to analyze a program or program fragment

that is not closed. One may want to analyze a function relative to its parameters, or a segment

of C code apart from its surrounding context. Or the entire program itself may not be closed

because of unknown input data. It is these situations for which our methodology is designed.

As the analysis symbolically builds the transfer relation for a control path, it may encounter

unknown quantities (variables, heap references, and so forth). The analysis represents these

as expressions and l-expressions in the transfer relations, precisely describing quantities that

are relative to the state of execution at the beginning of the control path. Still, no semantic

information is discarded. If a transfer relation that describes the de�nition of a variable or

value on the heap is composed with a transfer relation that includes a reference to that variable
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or heap location, then the � algorithm will inline the data de�ned in the �rst relation into the

references in the second transfer relation and simplify the result.

In short, our primary philosophy is that program analysis should focus on the relationship

between an execution state at the beginning of a given control path and the resulting execution

state at the end of the path. Given this philosophy, our primary technical result is that one

can in fact e�ectively compute a concise symbolic description of this precise relationship for a

�xed control path.

So, our methodology truly is a general framework for program analysis in the sense that it

involves no abstraction or approximation, and so there is nothing in the framework itself that

necessarily prohibits the computation of any given computable program property. Of course,

this is true of the text of the source program itself! But repeated applications of � reveal more

and more dynamic information about the source program, and in the limit actually represent

the entire program execution.

One may view repeated applications of � as an imperative analog of the reduction of terms

in the �-calculus. The redex rules of the �-calculus are symbolic, just like the composition of

transfer relations, and repeated reductions of a �-term reveal in some sense more and more

dynamic information about the original term. The reduction may terminate in a unique (up to

�-conversion) normal form, which is a canonical representation of the original term. One may

think of repeated applications of � in a similar way, gradually moving toward a more canonical

representation of the source program, in principle resulting in a single TR-term in the limit. In

our case, these normal forms are not unique. But this is not surprising, given the wide variety

of languages that we can describe in this way|languages with assignment, heap-allocated data

structures, mutable arrays and records, and pointers.

A new methodology of program analysis opens up numerous avenues for future work. In

this dissertation, we have just begun to explore the applications of our methodology to real

analysis problems, but there is much more work to be done. Some thoughts:

� There is potential for our methodology to help in software development as a debugging

tool. The transfer relation terms in TR have an intuitive presentation as symbolic condi-

tional parallel assignments. Imagine, for instance, dragging a mouse through an execution

path in a source program|around loops, down conditionals, into function calls, and so

forth|and watching the transfer relation describing the precise behavior of that path

build up incrementally. There may arise a few terms in the transfer relation that would

correspond to the internals of the semantics rather than anything appearing explicitly

in the source program|the variable H that we used as a heap pointer in the Mini-C

semantics, for instance|and the user would have to learn these. But for the most part,

the output would appear quite natural. Such a debugger would not only be useful to help

understand what the code does, but could catch bugs or potential sources of bugs. In par-

ticular, because � computes the precise composition, it is guaranteed to cover all aliasing

possibilities, and these are revealed as aliasing tests in the resulting transfer relation.

� We have isolated the problem with existing approaches to program analysis that they

construct an abstract property a single step at a time, often resulting in dramatic loss
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of precision. If an existing analysis is retooled to work for TR, then this fundamental

limitation is eliminated because the analysis is free to apply � to compose multiple steps

and thus build the abstract property multiple steps at a time. The great advantage to

this idea is that it is completely general and can potentially improve the accuracy of any

existing program analysis. For any given existing program analysis, however, there are

the following practical issues.

{ Retooling the analysis for TR. The TR language is fairly simple, but still contains

parallel assignment, and most existing analyses would need to be extended to han-

dle parallel assignment. For some analyses, this is probably not di�cult, and we

described a general approach for value analyses. But for others, such as shape anal-

yses, a general solution may be more di�cult.

{ Designing a strategy of when to apply � to build multiple steps and when to apply

the analysis on those compound steps. The obvious general approach to this task is to

use � on control paths whose endpoints are control points with potentially more than

one incoming edge in a control graph. This is a generalization of composing steps

in a basic block, but still guarantees termination. There may be instances, however,

where further composition would improve precision, and we leave the design of such

strategies as a problem for future work.

� Some analysis problems, such as lifetime analysis and dependency analysis, deal directly

with the relation between one point in the execution and some later point in the execution.

Therefore, these analyses are actually abstractions of transfer relations. This implies

that our methodology may be fundamentally better suited to such problems than the

traditional approach of computing a property of the states reached during execution.

� Our methodology is probably well suited for the analysis of concurrent programs. One

may treat a process-creation point as a branch in the control-
ow graph of a program.

Then one may build the transfer relations for each branch of the path, to relate precisely

the data in the old process with the data in the new process, at least up to a certain

�nite path of execution in each process. For instance, this is useful for determining that

a communication channel is used in a restricted fashion between two processes.

� We have demonstrated that it is possible to achieve some symbolic closed-form solutions

that track data through loops. There may be other ways in which information about

a loop can be computed symbolically. For instance, if we switch the order of the two

arguments of the E function, yielding functionality

E 2 TR! Exp! Exp;

then any �xed point of (E�) is an expression that evaluates to the same value before

and after transfer relation �. If � is the transfer relation of a path through one iteration

of a loop, then these �xed points are loop-invariant expressions, and any binary-valued

�xed point is a loop invariant. The ability to express a single iteration of a loop as a

concise term � gives some hope that there are useful ways to compute e�ectively these

�xed points.
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� Program transformations, such as classical compiler optimizations, are ultimately based

on semantic equivalence of code fragments. One code fragment may be replaced with

another if and only if they are semantically equivalent, for some appropriate notion of

semantic equivalence. We have given a way of producing a term describing the semantic

behavior of any �nite control path in the source program. This term is not canonical,

but it is more abstract than the source program itself and thus is more amenable to

reasoning about semantic equivalence. Indeed, syntactic equivalence of composed transfer

relations can be quite useful in practice as an approximation to semantic equivalence.

There is hope that our methodology could form the basis of a generic calculus of program

transformations for use in optimizing compilers for a wide variety of languages, including

imperative languages.
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