
Self-Adjusting Computation

Umut A. Acar

May 2005
CMU-CS-05-129

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Guy Blelloch, co-chair
Robert Harper, co-chair

Daniel Dominic Kaplan Sleator
Simon Peyton Jones, Microsoft Research, Cambridge, UK

Robert Endre Tarjan, Princeton University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

c© 2005 Umut A. Acar

This research was sponsored in part by the National Science Foundation under grant CCR-0085982, CCR-0122581 and EIA-
9706572, and the Department of Energy under contract no. DE-FG02-91ER40682. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

Keywords: Self-adjusting computation, dynamic algorithms, dynamic data structures, kinetic data
structures, dynamic dependence graphs, memoization, change propagation, trace stability, functional pro-
gramming, lambda calculus, type systems, operational semantics, modifiable references, selective memo-
ization, sorting, convex hulls, parallel tree contraction, dynamic trees, rake-and-compress trees.

Abstract

This thesis investigates a model of computation, called self-adjusting computation, where computations
adjust to any external change to their data (state) automatically. The external changes can change any data
(e.g., the input) or decisions made during the computation. For example, a self-adjusting program can
compute a property of a dynamically changing set of objects, or a set of moving objects, etc. This thesis
presents algorithmic and programming-language techniques for devising, analyzing, and implementing self-
adjusting programs.

From the algorithmic perspective, we describe novel data structures for tracking the dependences in
a computation and a change-propagation algorithm for adjusting computations to changes. We show that
the overhead of our dependence tracking techniques is O(1). To determine the effectiveness of change
propagation, we present an analysis technique, called trace stability, and apply it to a number of applications.

From the languages perspective, we describe language facilities for writing self-adjusting programs
in a type-safe and correct manner. The techniques make writing self-adjusting programs nearly as easy as
ordinary (non-self-adjusting) programs. A key property of the techniques is that they enable the programmer
to control the cost of dependence tracking by applying it selectively. Using language techniques, we also
formalize the change-propagation algorithm and prove that it is correct.

We demonstrate that our techniques are efficient both in theory and in practice by considering a number
of applications. Our applications include a random sampling algorithm on lists, the quick sort and merge sort
algorithms, the Graham’s Scan and the quick algorithm for planar convex hull, and the tree-contraction al-
gorithm. From the theoretical perspective, we apply trace stability to our applications and show complexity
bounds that are within an expected constant factor of the best bounds achieved by special-purpose algo-
rithms. From the practical perspective, we implement a general purpose library for writing self-adjusting
programs, and implement and evaluate self-adjusting versions of our applications. Our experiments show
that our techniques dramatically simplify writing self-adjusting programs, and can yield very good perfor-
mance even when compared to special-purpose algorithms, both in theory and in practice.

For my parents Dürdane and İsmail Acar

Acknowledgments

This thesis would not have been possible without the support and encouragement of my advisors Guy Blel-
loch and Robert Harper. Many of the results in this thesis have come out of long conversations and meetings
with Bob and Guy. I thank you both very much.

I thank Simon Peyton Jones and Bob Tarjan for supporting my research endevours and for giving me
feedback on the thesis. Simon’s feedback was critical in tying the different parts of the thesis together. Bob’s
feedback helped simplify the first three parts of the thesis and started us thinking about some interesting
questions.

My colleague Maverick Woo helped with the proofs in the third part of the thesis, especially on the
stability of tree contraction. Maverick also uncovered a body of related work that we were not aware of.

I thank Renato Werneck (of Princeton) for giving us his code for the Link-Cut trees, and for many
discussions about dynamic-trees data structures.

I thank Jernej Barbic for his help with the graphics library for visualizing kinetic convex hulls.
I have had the chance to work with bright young researchers at CMU. Jorge Vittes (now at Stanford) did

a lot of the hard work in implementing our libraries for kinetic data structures and for dynamic trees. Kanat
Tangwongsan helped implement key parts our SML library and helped with the experiments. I thank Jorge
and Kanat for their enthusiasm and dedication.

Matthias Blume (of Toyota Technological Institute) helped with the implementation of the SML li-
brary. Matthias and John Reppy (of the University of Chicago) helped in figuring out the intricacies of the
SML/NJ’s garbage collector.

Many colleagues and friends from CMU enriched my years in graduate school. I thank them for their
friendship: Konstantin Andreev, Jernej Barbic, Paul Bennett, Mihai Budiu, Armand Debruge, Terry Derosia,
Derek Dreyer, Jun Gao, Mor Harchol-Balter, Stavros Harizopolous, Rose Hoberman, Laurie Hiyakumoto,
Yiannis Koutis, Gary Miller, Aleks Nanevski, Alina Oprea, Florin Oprea, Lina Papadaki, Spriros Papadim-
itrou, Sanjay Rao, Daniel Spoonhover, Srinath Sridhar, Mike Vandeweghe, Virginia Vassilevska, Maverick
Woo, Shuheng Zhou.

Outside CMU, I thank Yasemin Altun (of TTI), Görkem Çelik (of UBC), Thu Doan (of IBM Austin),
Burak Erdogan (of UIUC), Ram Mettu (of Dartmouth College) for their friendship and for the great times
biking, rock-climbing, snowboarding, or just enjoying. I had great fun hanging out with the RISD crowd;
thanks to you Jenni Katajamäki, Celeste Mink, Quinn Shamlian, Amy Stein, and Jared Zimmerman.

I thank my family for their unwavering support. My parents Dürdane and İsmail, my brother Uǧur, and
my sister Aslı have always been there when I needed them. Finally, I thank my wife Melissa for her love
and support over the years and for help in proofreading this thesis.

vii

viii ACKNOWLEDGMENTS

Contents

1 Introduction 1
1.1 Overview and Contributions of this Thesis . 4

1.1.1 Part I: Algorithms and Data Structures . 4
1.1.2 Part II: Trace Stability . 5
1.1.3 Part III: Applications . 5
1.1.4 Part IV: Language Techniques . 5
1.1.5 Part V: Implementation and Experiments . 6

2 Related Work 9
2.1 Algorithms Community . 9

2.1.1 Design and Analysis Techniques . 10
2.1.2 Limitations . 10
2.1.3 This Thesis . 12

2.2 Programming Languages Community . 13
2.2.1 Static Dependence Graphs . 13
2.2.2 Memoization . 13
2.2.3 Partial Evaluation . 14
2.2.4 This Thesis . 14

I Algorithms and Data Structures 17

3 The Machine Model 21
3.1 The Closure Machine . 22
3.2 The Normal Form . 24

3.2.1 The Correspondence between a Program and its Normal Form 26

4 Dynamic Dependence Graphs 29
4.1 Dynamic Dependence Graphs . 29

ix

x CONTENTS

4.2 Virtual Clock and the Order Maintenance Data Structure 30
4.3 Constructing Dynamic Dependence Graphs. 31
4.4 Change Propagation . 33

4.4.1 Example Change Propagation . 35

5 Memoized Dynamic Dependence Graphs 37
5.1 Limitations of Dynamic Dependence Graphs . 38
5.2 Memoized Dynamic Dependence Graphs . 39
5.3 Constructing Memoized Dynamic Dependence Graphs. 40
5.4 Memoized Change Propagation . 42
5.5 Discussions . 44

6 Data Structures and Analysis 45
6.1 Data Structures . 45

6.1.1 The Virtual Clock . 45
6.1.2 Dynamic Dependence Graphs . 45
6.1.3 Memo Tables . 46
6.1.4 Priority Queues . 46

6.2 Analysis . 46

II Trace Stability 51

7 Traces and Trace Distance 55
7.1 Traces, Cognates, and Trace Distance . 55
7.2 Intrinsic (Minimum) Trace Distance . 58
7.3 Monotone Traces and Change Propagation . 58

7.3.1 Change Propagation for Monotone Traces . 60

8 Trace Stability 65
8.1 Trace Models, Input Changes, and Trace Stability . 65
8.2 Bounding the priority queue overhead . 67

8.2.1 Dependence width . 67
8.2.2 Read-Write Regular Computations . 69

8.3 Trace Stability Theorems . 71

III Applications 73

9 List Algorithms 77

CONTENTS xi

9.1 Combining with an Arbitrary Associative Operator . 77
9.1.1 Analysis . 78

9.2 Merge sort . 82
9.2.1 Analysis . 83

9.3 Quick Sort . 85
9.3.1 Analysis . 86

9.4 Graham’s Scan . 91
9.4.1 Analysis . 91

10 Tree Contraction 97
10.1 Tree Contraction . 97
10.2 Self-Adjusting Tree Contraction . 99
10.3 Trace Stability . 101

IV Language Techniques 107

11 Adaptive Functional Programming 111
11.1 Introduction . 112
11.2 A Framework for Adaptive Computing . 113

11.2.1 The ML library . 113
11.2.2 Making an Application Adaptive . 114
11.2.3 Adaptivity . 114
11.2.4 Dynamic Dependence Graphs . 116
11.2.5 Change Propagation . 117
11.2.6 The ML Implementation . 120

11.3 An Adaptive Functional Language . 122
11.3.1 Abstract Syntax . 122
11.3.2 Static Semantics . 124
11.3.3 Dynamic Semantics . 124

11.4 Type Safety of AFL . 128
11.4.1 Location Typings . 129
11.4.2 Trace Typing . 130
11.4.3 Type Preservation . 131
11.4.4 Type Safety for AFL . 135

11.5 Change Propagation . 136
11.5.1 Type Safety . 138
11.5.2 Correctness . 140

xii CONTENTS

12 Selective Memoization 153
12.1 Introduction . 153
12.2 Background and Related Work . 154
12.3 A Framework for Selective Memoization . 155
12.4 The MFL Language . 161

12.4.1 Abstract Syntax . 161
12.4.2 Static Semantics . 162
12.4.3 Dynamic Semantics . 163
12.4.4 Soundness of MFL . 165
12.4.5 Performance . 170

12.5 Implementation . 170
12.6 Discussion . 174

13 Self-Adjusting Functional Programming 177
13.1 The Language . 178
13.2 An Example: Quicksort . 181
13.3 Static Semantics . 182
13.4 Dynamic Semantics . 187
13.5 Type Safety . 191
13.6 Correctness . 191
13.7 Performance . 192

14 Imperative Self-Adjusting Programming 197
14.1 The Language . 197

14.1.1 Static Semantics . 198
14.1.2 Dynamic Semantics . 199

14.2 Change Propagation . 201

V Implementation and Experiments 209

15 A General-Purpose Library 213
15.1 The Library . 213
15.2 Applications . 216

15.2.1 Modifiable Lists . 216
15.2.2 Combining Values in a Lists . 217
15.2.3 Sorting . 217
15.2.4 Convex Hulls . 218

15.3 Implementation and Experiments . 226

CONTENTS xiii

15.3.1 Implementation . 226
15.3.2 Experiments . 226
15.3.3 Generation of inputs . 227
15.3.4 Experimental Results . 227

16 Kinetic Data Structures 233
16.1 Background . 233
16.2 Our Work . 234

17 Dynamic Trees 237
17.1 Overview . 238
17.2 Rake-and-Compress Trees . 239

17.2.1 Tree Contraction and RC-Trees . 239
17.2.2 Static Trees and Dynamic Queries . 242
17.2.3 Dynamic Trees and Dynamic Queries . 243

17.3 Applications . 243
17.3.1 Path Queries . 244
17.3.2 Subtree Queries . 245
17.3.3 Diameter . 245
17.3.4 Distance to the Nearest Marked Vertex . 245
17.3.5 Centers and Medians . 246
17.3.6 Least Common Ancestors . 246

17.4 Implementation and the Experimental Setup . 247
17.4.1 The Implementation . 247
17.4.2 Generation of Input Forests . 248
17.4.3 Generation of Operation Sequences . 248

17.5 Experimental Results . 249
17.5.1 Change Propagation . 249
17.5.2 Batch Change Propagation . 250
17.5.3 Application-Specific Queries . 252
17.5.4 Application-Specific Data Changes . 254
17.5.5 Comparison to Link-Cut Trees . 254
17.5.6 Semi-Dynamic Minimum Spanning Trees . 256
17.5.7 Max-Flow Algorithms . 257

18 Conclusion 259
18.1 Future Work . 260

A The Implementation 263

xiv CONTENTS

A.1 Boxes . 264
A.2 Combinators . 264
A.3 Memo Tables . 266
A.4 Meta Operations . 266
A.5 Modifiables . 267
A.6 Order Maintenance . 270
A.7 Priority Queues . 274

List of Figures

3.1 The instruction set. 23
3.2 Transforming function to destination-passing style. 25
3.3 Splitting function calls at reads and jumps. 26
3.4 An ordinary program and its normal-form. 27
3.5 Example call tree for a native program and its primitive version. 27

4.1 An example dynamic dependence graph. 30
4.2 The operations on time stamps. 31
4.3 The pseudo-code for write, call, and read instructions. 32
4.4 The change-propagation algorithm. 34
4.5 Dynamic dependence graphs before and after change propagation. 35

5.1 Dynamic dependence graphs before and after change propagation. 38
5.2 Call trees in change propagation. 39
5.3 The pseudo-code for write, read, ccall, and call instructions. 41
5.4 The change-propagation algorithm. 43

7.1 Example traces. 56
7.2 Example monotone traces. 60
7.3 The primitives of û and v̂ and their ancestors. 61
7.4 The call trees of a computation before and after a change. 62

9.1 Combining with the associative operator + and with identity element Identity. 78
9.2 The lists at each round before and after inserting the key f with value 7. 79
9.3 Merge Sort . 83
9.4 The code for quick sort . 86
9.5 Pivot trees for quick sort before and after the deletion of q. 86
9.6 Code for Graham’s Scan. 92
9.7 Inserting p∗ into the hull. 93

xv

xvi LIST OF FIGURES

9.8 The half planes defined by
→
de,

→
ap∗,

→
ef , and

→
p∗b. 94

10.1 Randomized tree-contraction algorithm of Miller and Reif. 98
10.2 Randomized tree-contraction in the closure model. 100
10.3 An example trace of tree-contraction at some round. 101

11.1 Signature of the adaptive library. 113
11.2 The complete code for non-adaptive (left) and adaptive (right) Quicksort. 115
11.3 Example of changing input and change propagation for Quicksort. 116
11.4 The DDG for an application of filter’ to the modifiable list 2::3::nil. 117
11.5 The change-propagation algorithm. 118
11.6 Snapshots of the DDG during change propagation. 119
11.7 The adaptive code for factorial. 119
11.8 The signature for virtual clocks. 120
11.9 The implementation of the adaptive library. 121
11.10The abstract syntax of AFL. 123
11.11Function sum written with the ML library (top), and in AFL (bottom). 123
11.12Typing of stable expressions. 125
11.13Typing of changeable expressions. 126
11.14Evaluation of stable expressions. 127
11.15Evaluation of changeable expressions. 128
11.16Typing of Traces. 131
11.17Change propagation rules (stable and changeable). 137
11.18Change propagation simulates a complete re-evaluation. 140
11.19Application of a partial bijection B to values, and stable and changeable expression. 142

12.1 Fibonacci and expressing partial dependences. 156
12.2 Memo tables for memoized Knapsack can be discarded at completion. 158
12.3 The Quicksort algorithm. 159
12.4 Quicksort’s recursion tree with inputs L = [15, 30, 26, 1, 3, 16, 27, 9, 35, 4, 46, 23, 11, 42, 19]

(left) and L′ = [20, L] (right). 160
12.5 The abstract syntax of MFL. 161
12.6 Typing judgments for terms. 163
12.7 Typing judgments for expressions. 164
12.8 Evaluation of terms. 166
12.9 Evaluation of expressions. 167
12.10The signatures for the memo library and boxes. 171
12.11The implementation of the memoization library. 172

LIST OF FIGURES xvii

12.12Examples from Section 12.3 in the SML library. 175

13.1 The abstract syntax of SLf. 179
13.2 The code for ordinary, adaptive, and self-adjusting filter functions f. 181
13.3 The complete code for ordinary (left) and self-adjusting (right) Quicksort. 183
13.4 Typing of values. 184
13.5 Typing of stable (top) and changeable (bottom) terms. 185
13.6 Typing of stable (top) and changeable (bottom) expressions. 186
13.7 Evaluation of stable terms. 189
13.8 Evaluation of changeable terms. 190
13.9 Evaluation of stable expressions. 193
13.10Evaluation of changeable expressions. 194
13.11The rules for memo look up changeable (top) and stable (bottom) traces. 195
13.12Change propagation for stable (top) and changeable (bottom) traces. 196

14.1 The abstract syntax of SLi. 198
14.2 Typing judgments for values. 199
14.3 Typing of terms (top) and expressions (bottom). 203
14.4 Evaluation of terms. 204
14.5 Evaluation of expressions. 205
14.6 The rules for memo look up. 206
14.7 Change propagation. 207

15.1 Signatures for boxed values, combinators, and the meta operations. 214
15.2 The signature for modifiable lists and an implementation. 220
15.3 Self-adjusting list combine. 221
15.4 Self-adjusting quick sort. 222
15.5 Self-adjusting merge sort. 223
15.6 Self-adjusting Graham Scan. 224
15.7 Self-adjusting Quick Hull. 225
15.8 Timings for quick sort. 229
15.9 Timings for merge sort. 230
15.10Timings for Graham’s Scan. 231
15.11Timings for quick hull. 232

16.1 Snapshots from a kinetic quickhull simulation. 235

17.1 A weighted tree. 240
17.2 An example tree-contraction. 240

xviii LIST OF FIGURES

17.3 A clustering. 241
17.4 An RC-Tree. 241
17.5 An RC-Tree with tags. 244
17.6 Change Propagation & chain factor. 250
17.7 Change propagation & input size. 251
17.8 Batch change propagation. 251
17.9 Queries versus chain factor and input size. 252
17.10Weight changes vs chain factor & forest size. 253
17.11Link and cut operations. 255
17.12Data Changes. 255
17.13Path queries. 255
17.14Semi-dynamic MST. 256
17.15Max-flow . 257

Chapter 1

Introduction

This thesis investigates a model of computation, called self-adjusting computation, where computations
adjust to any external change to their data (state) automatically. The external changes can take any form.
For example, they can change the input or the outcome of the decisions made during the computation.
As an example, consider the convex-hull problem from computational geometry. This problem requires
finding the convex hull of a given set of points, i.e. smallest polygon enclosing the points. A self-adjusting
convex-hull computation, for example, enables the user to insert/delete points into/from the input while it
adjusts the output to that change. Like a dynamic convex-hull algorithm [75, 69, 20], this computation can
compute the convex hull of a dynamically changing set of points. Similarly a self-adjusting convex-hull
computation enables the user to change the outcome of a computed predicate. Like a kinetic convex-hull
data structure[13], this computation can be used to compute the convex-hull of a set of points in motion.

The problem of adjusting computations to external changes has been studied extensively in both the
algorithms community and the programming-languages community.

The algorithms community has focused on devising so-called dynamic algorithms (or data structures)
and kinetic algorithms (or data structures) that would give the fastest update times under external changes.
Although dynamic/kinetic algorithms often achieve fast, even optimal, updates they have some important
limitations that make them difficult to use in practice.

Inherent complexity: Dynamic algorithms can be very difficult to devise, even for problems that are easy
in the static case (when the input does not change). Furthermore, dynamic algorithms are often very
sensitive to the definition of the problem. For example, a problem can be easy for certain kinds of
changes, but very difficult for others; or a slight extension to the problem can require substantial
revisions to the algorithm.

As an example consider the problem of computing the minimum-spanning tree (MST) of a graph. In
the static case (when the graph does not change) giving an algorithm for computing MSTs is easy.
When the graph is changed by insertions only, it is also easy to give an algorithm for MSTs. When the
graph is changed by deletions, however, the problem becomes very difficult. Indeed, it took nearly two
decades [36, 33, 45, 46, 49] to devise an efficient solution to this problem. Many dynamic algorithms
exhibit this property. Another example is the dynamic trees problem of Sleator and Tarjan [91] whose
many variants have been studied extensively [91, 92, 23, 84, 46, 96, 10, 38, 11, 95, 6].

1

2 CHAPTER 1. INTRODUCTION

Lack of support for broad set of changes: Most dynamic algorithms are designed to support one in-
sertion and/or one deletion at a time. More complex changes, such as batch changes where multiple
insertions and deletions can take place simultaneously, must be handled separately. Similarly, kinetic
data structures are often designed to support one kinetic change that changes the outcome of a pred-
icate, but not insertions and deletions, or batch changes [43, 13]. As Guibas points out [43], these
are important limitations. To address these limitations, Guibas suggests that “the interaction between
kinetic and dynamic data structures needs to be better developed” [43].

Lack of support for composition: Dynamic and kinetic data structures are not composable—it is not
possible to take two dynamic and/or kinetic algorithms and feed the output of one into the other. The
key reason for this is that dynamic algorithms cannot detect change; rather, they assume that changes
take place only through a predefined set of operations. Another reason is that through composition, a
small change can propagate to more complex changes. For example, to be composable, kinetic data
structures must support insertions and deletions [43]—not just kinetic changes.

These limitations make it difficult to use dynamic/kinetic algorithm in practice. In practice solving a
problem often requires adapting an existing algorithm to the needs of the particular problem, extending the
algorithm for different kinds of changes, and composing algorithms. Because of the limitations of existing
dynamic/kinetic algorithms and the inherent complexity of these problems, it is not reasonable to expect the
practitioner to employ dynamic/kinetic algorithms.

The programming language community has focused on developing general-purpose techniques for trans-
forming static (non-dynamic) programs into dynamic programs. This is known as incremental computation.
Previous work on incremental computation addresses some of the limitations of the approach preferred in the
algorithms community. In particular, incremental computation helps reduce the inherent complexity prob-
lem by providing programming abstractions. The techniques often support a broad range of changes and
support composition. However, all previously proposed incremental computation techniques have a critical
limitation: they either apply only to certain restricted classes of computations, or they deliver suboptimal,
often inadequate, performance.

The most successful incremental computation techniques are based on static dependence graphs and
memoization (or function caching). Static dependence graphs, introduced by Demers, Reps, and Teitel-
baum [29], can provide efficient updates. The key problem with the technique is that it is applicable only to
certain class of computations [81]. Memoization, first applied to incremental computation by Pugh and Teit-
elbaum [83], is a general-purpose technique. The key problem with memoization is that it is not efficient.
For example, the best bound for incremental list sorting with memoization is linear [57].

This thesis develops general-purpose techniques for self-adjusting computation. The techniques enable
writing self-adjusting programs like ordinary programs. In particular, an ordinary program can be trans-
formed into a self-adjusting program by applying a methodical transformation. Self-adjusting programs
support any change to their state whatsoever, and they are composable. The techniques have O(1)-time
overhead and yield self-adjusting programs that are efficient both in theory and in practice. We achieve our
results by combining algorithmic and programming-languages techniques. We show that our techniques are
effective in practice by implementing and evaluating them.

From the algorithmic perspective, we introduce efficient data structures for tracking dependences in a
computation and a change-propagation algorithm for adjusting computations to external changes. We prove
that the overhead of our dependence tracking techniques is O(1). To bound time for change-propagation,

3

we present an analysis technique, called trace stability. Trace stability enables bounding the time for change
propagation in terms of the distance between computation traces. To determine the effectiveness of change-
propagation, we consider a number of applications including

• a random-sampling algorithm for combining the elements of a list,

• the quick sort and the merge sort algorithms,

• the Graham’s Scan [42] and the quick hull algorithms for planar convex hulls,

• the parallel tree-contraction algorithm of Miller and Reif [62, 63], and

• kinetic data structures.

These applications are chosen to span a number of problem solving paradigms such as random-sampling,
divide-and-conquer, incremental result construction, and parallel, bottom-up result construction. Using trace
stability, we show complexity bounds for these applications (except for kinetic data structures) under inser-
tions and deletions to their input. The trace-stability results yield upper bounds that are within an expected
constant factor of the best bounds achieved by special-purpose dynamic algorithms.

From the programming-languages perspective, we present techniques for writing self-adjusting pro-
grams. Using our techniques, the programmer can transform an ordinary program into a self-adjusting
program by applying a methodical transformation technique. The key properties of the techniques are that

• they are general purpose,

• they enable applying dependence tracking selectively,

• they yield type safe programs,

• they yield correct self-adjusting programs, and

• they accept an efficient implementation.

Our language techniques apply to all programs both purely functional, and imperative. Selective depen-
dence tracking enables the programmer to identify parts of the computation data as changeable, i.e., can be
affected by an external change, and other parts as stable. The techniques then track only the dependences
pertaining to changeable data. This enables the programmer to control the cost of dependence tracking by
controlling the granularity of dependence tracking. We employ type theory to ensure that type-safe programs
written in the language are safe, i.e., do not “go wrong” during execution.

A key property of our techniques is that they yield correct self-adjusting programs, i.e., self-adjusting
programs adjust to any permissible change correctly. To study correctness of our techniques, we formalize
our change-propagation algorithm and memoization techniques, and show that they are correct. To prove
that change propagation is correct, we show that the algorithm and a from-scratch execution are semantically
equivalent (performance, of course, is different).

To study the practical effectiveness of self-adjusting computation, we perform an experimental evalua-
tion in two contexts. On the one hand, we implement a general-purpose ML library for writing self-adjusting
programs, and present an experimental evaluation based on our applications. Our experiments confirm our

4 CHAPTER 1. INTRODUCTION

asymptotic complexity bounds and show that the constant factor hidden in our O(1) overhead bound is
small. For the input sizes that we consider, we measure up to three orders of magnitude time difference be-
tween self-adjusting programs and recomputing from scratch—since the gap is asymptotically significant,
the gap grows with the input size. On the other hand, we implement a specialized version of our library
for dynamic-trees problem of Sleator and Tarjan [91]. We solve the dynamic-trees problem by applying
self-adjusting computation to the tree-contraction algorithm of Miller and Reif [62] and perform an exten-
sive experimental evaluation by considering a broad range of applications. When applicable, we compare
our implementation to Werneck’s implementation of the fastest dynamic-trees data structure [98], known
as Link-Cut Tress [91, 92]. Our experiments show that for certain operations, Link-Cut trees are faster;
for other operations, self-adjusting tree contraction is faster. We note that self-adjusting tree contraction
supports a broader set of changes and applications than Link-Cut trees. The experimental results show that
self-adjusting computation performs very well even when compared to special-purpose algorithms.

1.1 Overview and Contributions of this Thesis

This section presents an overview of the thesis and describes its key contributions. The thesis consists of five
parts: algorithms and data structures, trace stability, applications, language techniques, and implementation
and experiments. Some of the work reported in this thesis has been published in conference proceedings
and journals in the areas of algorithms [6, 5] and programming languages [2, 4, 3].

1.1.1 Part I: Algorithms and Data Structures

We introduce the key data structures and algorithms that self-adjusting computation relies on. The data
structures, called dynamic dependence graphs (DDGs) and memoized dynamic dependence graphs (MD-
DGs), are described in Chapters 4 and 5 respectively. In Chapter 6 we present complexity bounds for the
overhead and the effectiveness of these data structures.

Dynamic Dependence Graphs (DDGs)

We introduce dynamic dependence graphs (DDGs) for representing computations and provide a change-
propagation algorithm for them. Given the DDG of a computation and any change to the state of the
computation, the change-propagation algorithm adjusts the computation to that change. In Chapter 6, we
show that the DDG of a computation can be constructed with O(1) overhead.

Memoized Dynamic Dependence Graphs (MDDGs)

We point out the limitations of DDGs and address these limitations by introducing Memoized Dynamic De-
pendence Graphs (MDDGs) and the memoized change-propagation algorithm for them. Given the MDDG
of a computation, and any change to the state of the computation, the memoized change-propagation al-
gorithm adjusts the computation to that change. A key property of memoized DDGs is that they enable
memoization under side-effects (mutations) to the memory. In Chapter 6, we show that the MDDG of a
computation can be constructed with O(1) overhead and present a bound on the complexity of memoized
change propagation.

1.1. OVERVIEW AND CONTRIBUTIONS OF THIS THESIS 5

1.1.2 Part II: Trace Stability

Although the complexity bound for change propagation developed in the first part of this thesis applies to all
programs, it is somewhat unsatisfactory. This is because it relies on a low level understanding of memoized
dynamic dependence graphs. In this part of the thesis, we develop a higher level analysis technique for
determining the complexity of change propagation. The analysis technique called trace stability, relies on
representing computations with traces. To determine the complexity of change propagation, it suffices to
measure the distance between two traces. In particular, if the trace distance between two computations is
O(f(n)) (for some measure n), then we show that change propagation can transform one computation into
the other in O(f(n) log f(n)) time, in general, and in O(f(n)) time in certain cases. Chapter 7 defines the
notions of traces and trace distance. Chapter 8 defines and proves our trace stability theorems.

1.1.3 Part III: Applications

We consider a number of algorithms on lists (Chapter 9) and an algorithm on trees (Chapter 10), and show
trace stability bounds for them. The list algorithms include a random-sampling algorithm for combining the
values in a list, the merge sort and the quick sort algorithms, the Graham’s Scan and quick hull algorithms
for planar convex hulls. For trees, we consider the tree-contraction algorithm of Miller and Reif [62]. These
algorithms are chosen to span a number of computing paradigms such as random sampling, divide-and-
conquer, incremental results construction, and parallel, bottom-up result construction.

All our bounds are for insertions/deletions to the input and are parameterized by the size of the input. For
combining values in a list, we show an expected O(log n) bound, where the expectation is taken over internal
randomization of the algorithm. A self-adjusting version of this algorithm can compute the minimum,
maximum, sums, etc., of a list in expected O(log n) time under insertions/deletions. For the quick sort
algorithm we show an expected O(log n) bound, where the expectation is taken over all possible positions of
insertions/deletions into/from the input. For the randomized merge sort algorithm that uses random splitting,
we show an expected O(log n) bound, where the expectation is taken over the internal randomization of the
algorithm. For the Graham’s Scan algorithm we show an expected O(1) stability bound for line-side tests
under insertions/deletions into the list—the expectations are taken over all points in the input. For the tree-
contraction algorithm, we show an expected O(log n) stability bound under edge insertions/deletions. Using
self-adjusting tree contraction, the dynamic-trees problem can be solved in expected O(log n) time.

All of the stability bounds directly yield complexity bounds for insertions/deletions. These bounds are
within an expected constant factor of the best bounds achieved by special-purpose dynamic algorithms.

1.1.4 Part IV: Language Techniques

In this part of the thesis, we present language techniques for writing self-adjusting programs. The techniques
make it possible to transform an ordinary (non-self-adjusting program) into a safe, correct, and efficient self-
adjusting program by making small, methodical changes to the code.

6 CHAPTER 1. INTRODUCTION

Adaptive Functional Programming and the AFL Language

Adaptive functional programming (Chapter 11) enables writing self-adjusting programs based on (non-
memoized) dynamic dependence graphs. A key property of the techniques is that it enables the programmer
to apply DDG-based techniques selectively. We study the techniques in the context of a purely functional
language called the Adaptive Functional Language (AFL). We give a static and dynamic semantics for the
language and show that the language is type safe. Based on the dynamic semantics, we prove that the
change-propagation algorithm on dynamic dependence graphs is correct.

Selective Memoization and the MFL Language

Selective memoization (Chapter 12) enables the programmer to control the effectiveness of memoization
by providing control over the cost of equality tests, the input-output dependences, and space consumption.
The most important aspect of selective memoization is the mechanisms for supporting memoization with
precise-input output dependences. We study the technique in the context of a function language, called
Memoizing Functional Language (MFL). We present the static and dynamic semantics for the language. We
prove that the language is type-safe and the result re-use technique with precise dependences is correct.

Self-Adjusting Functional Programming and the SLf Language

Self-adjusting functional programming (Chapter 13) enables writing self-adjusting programs based memo-
ized dynamic dependence graphs. We study the techniques in the context of a purely functional language,
called Self-adjusting functional Language (SLf). The key property of the SLf language is that it supports
efficient change propagation. In particular, SLf enables matching the change-propagation bounds obtained
in the algorithmic setting. Note that these bounds rely on an imperative computation model that provides ex-
plicit management of memory. To achieve this, the SLf language combines the AFL and the MFL languages
and extends them with support for non-strict and strict dependences. We demonstrate the effectiveness of
SLf by implementing it as an ML library and presenting an experimental evaluation based on our applica-
tions.

Imperative Self-Adjusting Programming and SLi language

We present an imperative language, called SLi, for writing self-adjusting programs (Chapter 14). The lan-
guage extends the SLf language with constructs to enable memory locations to be written multiple times.
This shows that the techniques presented here apply beyond the domain of single-assignment or purely
functional programs.

1.1.5 Part V: Implementation and Experiments

In this part of thesis, we study the practical effectiveness of self-adjusting computation in the context of a
general-purpose ML library (Chapter 15), and an implementation of self-adjusting tree contraction in the
C++ language (Chapter 17). Based on our general-purpose library we implement a library for transforming
ordinary programs into kinetic programs and show snapshots of a kinetic simulation based on our techniques
(Chapter 16).

1.1. OVERVIEW AND CONTRIBUTIONS OF THIS THESIS 7

A Library for Self-Adjusting Computation

We show that our techniques are practical by implementing an ML library to support self-adjusting compu-
tation, implementing our list applications based on this library, and presenting an experimental evaluation
(Chapter 15). Our experiments show that the overhead of our library over non-self-adjusting programs is
between four and ten, and the overhead of change propagation is no more than six. The experiments confirm
the theoretical bounds obtained by trace-stability analysis. In our experiments, we observe that self-adjusting
programs are up to three orders of magnitude faster than recomputing from scratch for the input sizes that
we consider (due to asymptotic difference, the gap can be arbitrarily large).

Kinetic Data Structures

In Chapter 16, we describe a library for transforming ordinary programs into kinetic programs. The trans-
formation involves two steps. In the first step, the programmer transforms the ordinary program into a
self-adjusting program. In the second step, the comparisons employed by the program are replaced by
kinetic comparisons test. The second step is trivial and can easily be performed automatically. As an ex-
ample, we implement kinetic geometry tests for computing convex hulls and apply the technique to our
self-adjusting convex hull algorithm. We show some snapshots of our kinetic simulations. Our work ad-
dresses two key limitations of previous work. Our kinetic programs directly support insertions/deletions,
changes to the motion parameters (flight-plan updates), and batch changes. Furthermore, our programs are
directly composable.

Self-Adjusting Computation in Dynamic Trees

In Chapter 10, we solve the dynamic-trees problem of Sleator and Tarjan [91] by applying self-adjusting
computation to the tree-contraction algorithm of Miller and Reif [62]. In Chapter 17, we present an im-
plementation of our solution in the C++ language and perform an extensive experimental evaluation. When
possible, we compare our implementation to an implementation of the fastest dynamic-trees data structure,
known as Link-Cut Tress [91, 92]. Our experiments show that for certain external changes self-adjusting
tree contraction is up to five time slower than Link-Cut Trees, whereas for certain other changes and queries,
it is up to three times faster. It is also important to note that self-adjusting tree contraction supports a broader
range of applications and a broader range of input changes than LC-Trees. For example, self-adjusting tree
contraction supports subtree queries directly, whereas LC-Trees require a sophisticated extension for sub-
tree queries [23, 84]. Similarly, self-adjusting tree contraction supports batch, i.e. multiple simultaneous,
changes directly, whereas LC-Trees only support one-by-one processing of changes. These results demon-
strate that self-adjusting computation performs well even compared to special-purpose algorithms.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

The problem of adjusting a computation to external changes has been studied extensively in both the algo-
rithms/theory community and the programming-languages community. This chapter reviews the previous
work, discusses its limitations, and how it relates to this thesis. Section 2.1 reviews the work of the algo-
rithms and the theory community, Section 2.2 reviews the work of the programming-languages community.

2.1 Algorithms Community

The related work in the algorithms community has focused on devising dynamic algorithms (or data struc-
tures) and kinetic algorithm (or data structures). This section discusses previously proposed design and
analysis techniques (Section 2.1.1), and discusses the limitations of these approaches (Section 2.1.2). Sec-
tion 2.1.3 discusses the relationship between the work in this thesis and the previous work and how our work
addresses the limitations of the previous work.

A dynamic algorithm (or data structure) computes a property of its input while allowing the user to
change the input. For example, a typical dynamic convex hull algorithm computes the convex hull of a set
of points while also allowing the user to insert and delete points to the input. An enormous amount work
has been done on dynamic algorithms. The problems that are considered in this thesis have been studied
extensively since the early eighties [17, 74, 75, 91, 92, 67, 69, 68, 89, 21, 37, 38, 10, 32, 46, 49, 95]. Dynamic
algorithms have also been studied extensively within particular fields. For examples of dynamic algorithms
in graphs, and in computational geometry, we refer the interested reader to the papers by Eppstein, Galil,
and Italiano [32], and Chiang and Tamassia [21].

Kinetic data structures[13] compute properties of continuously moving objects. For example, a kinetic
convex hull algorithm computes (or maintains consistent) the convex hull of a set of points as they move
continuously in the plane. By using the continuity of motion, kinetic data structures compute a discrete event
space, where an event corresponds to a change in the result of a predicate. Every time an event takes place,
the data structure is adjusted to that event by using techniques specific to the problem. For other examples
of kinetic data structure, we refer the interested reader to other papers [14, 43, 7, 55, 25, 54].

9

10 CHAPTER 2. RELATED WORK

2.1.1 Design and Analysis Techniques

Most of the fastest dynamic algorithms rely on techniques that exploit the particular structure of the problem
considered [91, 92, 37, 38, 10, 46, 49, 95]. Other dynamic algorithms are constructed from static (non-
dynamic) algorithms by applying somewhat more general design principles; this is known as dynamization.
These techniques include rebuilding and decomposition strategies, and explicit maintenance of the history
of computations.

Rebuilding strategies [74, 75, 21] rely on maintaining a static data structure and allowing dynamic
updates to violate the invariants of the static data structure for shorts periods of time. Periodically, the data
structure is rebuilt to reinforce the invariants. By controlling the number of operations in between periodic
rebuilds, and the cost of rebuilding, these techniques can handle dynamic changes reasonably efficiently for
certain applications [75, 69, 89, 21].

Decomposition strategies rely on decomposing a problem into smaller problems that are solved using
some static algorithm. When a dynamic update occurs, the parts of the problem affected by the update
are reconstructed using the static algorithm. The idea is that a small change to the input will affect a
small number of the subproblems. This idea dates back at least to the 70s. Bentley and Saxe [17] and
Overmars [74, 75] described how saving partial results can be used to efficiently dynamize any algorithm
that belong to certain classes of computations. Overmars used the approach, for example, to design a
dynamic algorithm for convex hulls that supports insertions and deletions of points in O(log2 n) time.

Another approach to dynamization relies on maintaining the history of a computation and updating the
history when the input changes. Intuitively, the history is thought of as the trace of the execution of some
static, often incremental, algorithm. The update is performed by going back in time and propagating the
change forward to reconstruct the history. Mulmuley [67, 69, 68, 70], and Schwarzkopf [89] apply this
technique to a number of computational geometry problems In this approach, history and propagation are
devised, analyzed, and implemented on a per-problem basis.

Kinetic data structures [43, 13] rely on an approach similar to the history maintenance. In a kinetic
data structure, the history of a computation consists of some representation of the predicates determined by
the execution of a static (non-kinetic) program. Kinetic data structures simulate motion by determining the
time for the earliest predicate failure, and rebuilding the history according to the new value of the failed
predicate(s). As with the work of Mulmuley and Schwarzkopf, the structure of the history and the algorithm
for rebuilding the history are devised and implemented on a per problem basis.

2.1.2 Limitations

The focus of the algorithms community has been to devise fast dynamic/kinetic algorithms. Indeed, many of
the devised algorithms achieve optimal or near optimal update times under external changes. The resulting
algorithms, however, have important limitations.

Inherent Complexity

Dynamic algorithms can be very difficult to devise, even for problems that are easy in the static case (when
the input does not change). Furthermore, dynamic algorithms are often very sensitive to the input changes
considered and to the definition of the problem. A problem can be easy for certain kinds of changes and

2.1. ALGORITHMS COMMUNITY 11

very difficult for others, or a slight extension to the problem can require substantial, sophisticated revisions
to the algorithm.

As an example consider the problem of computing the minimum-spanning tree (MST) of a graph. In the
static case, i.e., when the graph does not change, giving algorithm for computing MSTs is easy. Similarly,
when the graph is restricted to be changed only by insertions, it is easy to give algorithm for MSTs. When
the graph changes by insertions and deletions, however, the problem becomes very difficult. Indeed, it took
nearly two decades of research [36, 33, 45, 46, 49] to devise an efficient solution to this problem.

As another example consider the dynamic trees problem [91]. Since Sleator and Tarjan proposed and
solved the problem by proposing Link-Cut trees data structure, much research has been done on solving
various variations of the problem [91, 92, 23, 84, 46, 96, 10, 38, 11, 95, 6]. A look through these papers
should convince the reader that these data structures are very complex and differ significantly from each
other, even though they all address variations of the original problem.

Real-world applications often require extending/modifying an existing algorithm to support the needs
of an application. Because of the inherent complexity of dynamic algorithms, it is not reasonable to expect
a practitioner or a non-expert to extend an existing dynamic/kinetic algorithm. The dynamic trees example
mentioned above is an example to this. A look through previously proposed dynamic-trees data structures
should convince the reader that a practitioner (even a non-expert) in this area cannot possibly adapt an
existing solution for the problem easily, let alone implement it correctly.

Lack of Support for Broad Set of Changes

A key limitation of dynamic algorithms is that they are designed to support a small predefined set of changes
to the input. For example, almost all algorithms in the literature support a single insertion or deletion to their
input. To be practical, however, a dynamic algorithm or kinetic data structure must support a broader set of
changes. This is because 1) in practice applications require support for a broad set of changes, 2) arbitrary
changes can arise due to composition of dynamic/kinetic algorithms.

In many application domains, it is important to support multiple simultaneous changes as a batch. For
example, the user can make multiple changes at a time, or multiple changes can arise within a dynamic
algorithm itself. For example, the dynamic connectivity and the Minimum-Spanning Tree algorithms of
Holm et. al. [49], maintain a hierarchy of dynamic trees. When a single edge is deleted from the input
graph, a number of edges in one level of the hierarchy can be inserted into the next level. This data structure
can benefit significantly from a dynamic-tree data structure that supports batch changes. As Guibas points
out [43], in kinetic data structures, multiple events can take place in a small time interval. In such cases, it
is desirable to process all events together as a batch [43]. Why composition requires support for arbitrary
changes is discussed in the next paragraph.

Lack of support for composition

When building practical systems, it is often necessary to compose algorithms, i.e., to run an algorithm on the
output of another algorithm. Composition is arguably very important to computation. Algorithms use other
algorithms as sub-steps. Unfortunately it is not possible to combine dynamic/kinetic algorithms, because
these algorithms

12 CHAPTER 2. RELATED WORK

1. cannot detect an external change—rather, they assume that an external change takes place only
through a set of operations that they provide, and

2. support only a narrow, predefined set of changes.

Consider for example, a program that counts the number of points in the convex hull of set of points.
One way to write such a program is to compute the convex hull first, and call a length function on
the hull. Suppose inserting a single point to the input of this program. Since the convex hull algorithm
is dynamic it will update the convex hull accordingly. One problem is that the length function cannot
detect the change in the convex hull (its input). It must be given the change, but the dynamic convex hull
algorithm does not provide such information. To solve this problem, the programmer must either eliminate
composition by changing the internals of the convex hull program to have it output the length of the hull.
Or the programmer must devise some way of computing the change in the hull. The second problem is
that the length function will in general see an arbitrary number of changes to its input. This is because
inserting one point to the input can change the convex hull dramatically. Since dynamic algorithms are
not designed to process arbitrary changes, the programmer needs to implement a mechanism for splitting
up large changes into smaller changes. To the best of our knowledge, no previous work that addresses the
issues of composition.

Similarly, when composing kinetic data structures, a kinetic change can propagate to an insertion or
deletion, or a change to the motion parameters of objects. To be composable kinetic data structures must be
combined with dynamic algorithms [43]. Guibas points out that composition is critical and suggests that the
“interaction between kinetic and dynamic data structures needs to be better developed” [43].

2.1.3 This Thesis

In terms of design techniques, the approaches based on maintaining a history of the computation as proposed
by Mulmuley [67, 69, 68, 70], and Schwarzkopf [89], and as used in kinetic data structures [43, 13] are clos-
est to the approach presented in this thesis. As with these proposal, we maintain a history of a computation
and update the computation by propagating a change through the history. The key difference between our
approach and the previously proposed approaches is that, in our approach, the notion of history is defined
for general computations. We construct the history automatically as a static (non-dynamic, non-kinetic)
program executes, and keep it up to date by using a general-purpose change propagation algorithm.

Our approach does not have the limitations discussed the previous section. Self-adjusting programs
can be obtained from ordinary programs by applying a methodical transformation. This addresses the
inherent-complexity problem by dramatically simplifying the implementation of self-adjusting programs.
For example, it generally takes the author one hour to transform an ordinary planar convex hull algorithm
into a self-adjusting convex hull algorithm. Self-adjusting computations adjusts to any external change,
including batch changes, or any combination of kinetic and dynamic changes automatically, and correctly.
Furthermore, self-adjusting programs are composable.

2.2. PROGRAMMING LANGUAGES COMMUNITY 13

2.2 Programming Languages Community

In the programming-languages community, the related work has been done in the area of incremental com-
putation. For a broad set of references on incremental computation, we refer the interested reader to Ra-
malingam and Reps’s bibliography [85]. Also previous theses on incremental computation all give a good
account of related work [87, 50, 81, 34, 56]. Much of the previous work on incremental computation can
be broadly divided into three classes based on the approach. The rest this section reviews each approach
separately and discusses their limitations. Section 2.2.4 describes how our work addresses the limitations of
the previously proposed techniques.

2.2.1 Static Dependence Graphs

Static-dependence-graph techniques rely on representing a computation in the form of a circuit. When
the input to the computation changes, the change is propagated through the circuit by recomputing the
values affected by the change. Demers, Reps and Teitelbaum [29], and Reps [87] introduced the idea of
using dependence graphs for incremental computation in the context of attribute grammars. Reps then
showed an algorithm to propagate a change optimally through the circuit [88], and Hoover generalized the
techniques outside the domain of attribute grammars [50]. Yellin and Strom applied the static-dependence-
graph ideas within the INC language [99], and extended it by having incremental computations within the
array primitives. The main limitation of the INC language is that it is not general-purpose—it does not
support recursion or looping.

The chief limitation of static-dependence-graph techniques is that the dependence graphs are static: the
dependence structure remains the same during change propagation. As Pugh points out [81], this severely
limits the effectiveness of this approach, because it is undecidable to determine how the dependences of
an arbitrary program changes without executing the program. For certain classes of computations, such as
syntax-directed computations, however, it is possible to update the dependences by exploiting the structure
of the computation.

2.2.2 Memoization

Memoization, or function caching, [15, 61, 60] is based on the idea of caching the results of each function
call indexed by the arguments to that call. If a function is called with the same arguments a second time,
the result from the cache is re-used and the call is skipped. Since in general the result of a function call may
not depend on all its arguments, caching results based on precise input-output dependences can dramatically
improve result re-use. Abadi, Lampson, Levy [1] and Heydon, Levin, Yu [47] introduced techniques for
memoizing function call based on precise input-output dependences.

Pugh [81], and Pugh and Teitelbaum [83] were the first to apply memoization to incremental com-
putation. They were motivated by the lack of a general-purpose approach to incremental computation—
previously proposed techniques based on static-dependence-graphs apply only to a restricted class of ap-
plications. They developed techniques for implementing memoization efficiently and studied incremental
algorithms using memoization. They showed complexity bounds on incremental computation for certain
class of divide-and-conquer algorithms based on so called stable decompositions.

Unlike static dependence graphs, memoization is general. Any purely functional program can be made

14 CHAPTER 2. RELATED WORK

incremental using memoization. The effectiveness of memoization, however, crucially depends on the
management of memo tables, or function caches. For efficiency it is critical to evict elements from the
cache. It is difficult, however, to decide what elements should be kept and what elements should be evicted
from the cache. Liu and Teitelbaum made some progress on this problem by using program-analysis tech-
niques [59, 56]. Their techniques automatically determine what results should be memoized and use trans-
formations to make programs incremental.

The main limitation of memoization is its effectiveness. For memoization to be effective, making a
small change to the input must affect only a small number of functions calls. Although this may sound to
be true at an intuitive level, it is not. In fact, for many applications, most changes will affect a large number
of function calls. Consider for example, a program that computes some property of a list by recursively
walking down the list. Imagine now changing the input list by inserting a new element in the middle. Since
the new element is in the input to half of all the recursive calls, many recursive calls will not find their result
in the memo—the update will take linear time on average. Similar scenario’s arise in many applications.
For example, the best asymptotic bound for sorting with memoization is linear [56].

2.2.3 Partial Evaluation

Other approaches to incremental computation are based on partial evaluation [35, 94]. Sundaresh and Hu-
dak’s approach [94] requires the user to fix the partition of the input that the program will be specialized on.
The program is then partially evaluated with respect to this partition and the input outside the partition can
be changed incrementally. The main limitation of this approach is that it allows input changes only within
a predetermined partition [56, 34]. Field [34], and Field and Teitelbaum [35] present techniques for incre-
mental computation in the context of lambda calculus. Their approach is similar to Hudak and Sundaresh’s
but they present formal reduction systems that use partially evaluated results optimally.

2.2.4 This Thesis

Like previous work on incremental computation, our goal is to develop techniques for transforming ordinary
programs to programs that can adjust to external changes efficiently. Compared to previous work, our
techniques take important steps towards achieving this goal. The key difference between our work and
previously proposed techniques are that

• our techniques are general purpose,

• the computational complexity of self-adjusting programs can be determined using analytical tech-
niques, and

• our techniques are efficient both in theory and in practice.

One of the main contributions of this thesis is a data structure that overcomes the limitations of static
dependence graphs. The data structure, called dynamic dependence graphs (DDGs), allows the dependence
structure to change during change propagation. This enables representing arbitrary computations using
dynamic dependence graphs. Although dynamic dependence graphs are general purpose, they alone do
not suffice for efficient incremental computation. To achieve efficiency, we introduce memoized dynamic

2.2. PROGRAMMING LANGUAGES COMMUNITY 15

dependence graphs (MDDGs) and a change-propagation algorithm for them. A key property of memoized
DDGs is that they enable memoization under side-effects (mutations) to the memory.

We present language techniques for writing programs so that memoized DDGs of graphs can be con-
structed by a run-time system. Using these techniques the programmer can transform an ordinary program
into a self-adjusting program by making small methodical changes to the code.

A key property of our techniques is that their computational complexity can be determined using analyt-
ical techniques. We present complexity bounds for change propagation and present an analysis technique,
called trace stability, for determining the computational complexity of self-adjusting programs. Informally
we show that a program that has “stable traces” adjust to changes efficiently.

We show that our techniques are effective by considering a number of applications. From a theoretical
perspective, we show bounds on the complexity of our applications under certain classes of input changes.
These bounds closely match (within an expected constant factor), complexity bounds obtained in the al-
gorithms field. None of the previously proposed incremental computation techniques can achieve these
theoretical bounds. From a practical perspective, we implement our techniques and present an experimental
evaluation. Our experiments show that our techniques have low practical overhead and perform well even
when compared to solutions developed in the algorithms community.

16 CHAPTER 2. RELATED WORK

Part I

Algorithms and Data Structures

17

Introduction

This part of the thesis describes the key algorithms and the data structures for supporting self-adjusting
computation. Chapter 4 describes dynamic dependence graphs or DDGs for representing computations and
a change-propagation algorithm for propagating changes through this graph. Although DDGs and change
propagation are general-purpose techniques, they rarely yield optimal update times under external changes.
Chapter 5 introduces memoized dynamic dependence graphs (MDDGs) and a memoized change propagation
algorithm that addresses this problem. Memoized DDGs and the memoized change propagation algorithm
constitute the key data structure and the algorithm behind our techniques.

Chapter 6 presents data structures for memoized DDGs, and memoized change propagation on the stan-
dard RAM model. Based on these data structures, we present complexity bounds for the overhead of con-
structing memoized DDGs and for the memoized change-propagation algorithm. The complexity bound
for memoized change propagation applies only to programs written in the so-called normal form. This
causes no loss of generality, because any program can be transformed to the normal form. Part II provides a
higher-level analysis techniques called trace stability for determining the complexity of change propagation.

To facilitate a precise description of (memoized) dynamic dependence graphs and (memoized) change
propagation, we define a machine model called the closure machine. The closure machine extends the
standard RAM model with direct functionality for function calls. This enables remembering the state of
function calls in the form of closures (i.e., closed functions represented by code plus data). Chapter 3
describes the machine model, defines the normal form, and describes how to transform an arbitrary program
into the normal form.

19

20

Chapter 3

A Machine Model for Self-Adjusting
Computation

This chapter describes a Turing-complete machine model, called the closure machine (CM) model, and
defines the notion of normal form. Programs expressed in the model are called self-adjusting, because they
can be made to self-adjust to changes by running a change-propagation algorithm. Normal-form programs
are written in a specific form to enable efficient dependence tracking and change propagation.

Self-adjusting computation relies on tracking the data and control dependences of programs as they
execute. Once a self-adjusting program completes its execution, the user can perform a revision by changing
the values stored the memory, and update the execution by running a change-propagation algorithm. This
revise-and-update step can be repeated as desired. The change-propagation algorithm takes a dependence
structure representing an execution and adjusts the execution, the dependence structure, and the memory
according to the changes performed during the revision.

The key difference between the standard RAM model and the CM model is that the CM model provides
direct support for function calls. This is critical, because the change-propagation algorithm relies on the
ability to identify and re-execute function calls affected by an external change. Functions delimit the piece
of code that needs to be re-executed when a change takes place.

The CM model provides two different mechanisms for allocating memory. One mechanism is identical
to the standard memory allocation, where memory is allocated in blocks by a memory allocator. From the
point of the view of the program, the memory allocator is non-deterministic, because there is no control
over where an allocated block may be placed in memory. The other mechanism provides for labeled mem-
ory allocation. Each memory allocation specifies a unique label to identify the block being allocated. The
labels are then used to ensure that blocks with the same label are allocated at the same address in memory.
Since labels are unique throughout an execution, no two allocations return the same block. Labels prove
important when analyzing the performance of CM programs under change propagation. It is also possible
to omit labels. We take this approach from the language perspective (Chapter 13). From a practical perspec-
tive omitting labels is preferable because it is difficult to check statically that labels are unique. From an
algorithmic perspective, however, labeled memory allocation enables cleaner analysis and is therefore the
preferred approach in this part of the thesis.

A program for the closure model must write to each memory location at most once. This restriction,

21

22 CHAPTER 3. THE MACHINE MODEL

also known as the write-once or single-assignment restriction, ensures that the programs written in the
model are persistent [31]. Persistence enables tracing the history of an execution and revising it upon an
input change. This chapter does not address the issues of statically checking that a program writes to each
memory locations at most once. The third part of thesis presents language techniques that address this issue.

The write-once restriction can be eliminated by maintaining a version list for each memory location.
Driscoll et. al. uses this idea to make data structures persistent automatically. It is possible to extend the
techniques presented here for multiple writes. Chapter 14 presents a language and its semantics based on
the versioning idea. Multiple writes, however, is not the focus of this thesis.

3.1 The Closure Machine

As the RAM model, the closure machine consists of a random-access memory, and a finite set of registers.
Memory consists of a finite but expandable set of locations. Every register or location can contain a primitive
value which is either a reference (pointer) or a primitive type, such as an integer, a floating point number,
etc. The special value null represents an empty reference and the special value ⊥ represents an undefined
value. When the machine attempts to use the contents of a register or memory location containing ⊥, it
halts.

A program for a closure machine consists of a set of function definitions containing a main function
where the execution starts and ends. Each function is defined as a sequence of instructions and the in-
structions of a program are consecutively numbered from one. Figure 3.1 shows the kinds of instructions
available in the model. The first kind provides for operations on register data. The second kind provides for
conditional branches based on a predicate on the registers. The read and write instructions read from
and write to memory locations specified by the contents of two registers, one specifying the beginning of
the memory block and the other specifying the particular location inside that block. Memory is allocated in
blocks by two kinds of alloc instructions. A block of size n contains n memory locations which can be
randomly accessed for reading or writing.

The machine provides two mechanisms for allocating memory. The alloc r instruction performs non-
deterministic memory allocation by allocating a memory of blocks whose size is specified by the contents
of r. This allocation mechanism is called non-deterministic because the program has no control over where
the allocated block may reside in memory. The alloc[r3, . . . , rm] r performs labeled memory allocation
by allocating a memory block whose size is specified by the contents of r and labeling it with the contents of
r3, . . . , rm. This allocation mechanism is called labeled allocation and provides for deterministic allocation.

The model does not provide an instruction for freeing memory. Unused memory can be recovered via
garbage collection without affecting asymptotic performance [44].

To support function calls, the closure machine maintains a call-stack. The call instructions performs
a function call by pushing the address of the next instruction onto the stack, setting all registers that are
not passed as arguments to undefined (⊥), and passing control to the first instruction of the function. The
ccall instruction performs a continuation-call or a tail-call. A continuation call does not push the return
address to the stack. Otherwise, a continuation call is like an ordinary function call. Informally speaking,
a continuation call is a function call that does not return to its call site. The return instruction passes the
control to the address at the top of the call stack after setting all but returned registers to undefined.

Setting unused registers to undefined (⊥) before a function call ensures that the function does not use

3.1. THE CLOSURE MACHINE 23

Instruction Description
r1 ← r2 ⊕ r3 Combine the contents of the registers r2 and r3 by applying the operation ⊕

and place the result in register r1.
if p(r1, r2) then jump i If the contents of r1 and r2 satisfies the predicate p, then jump to instruc-

tion i.

r1 ← read r2[, r3] Place the contents of the memory location specified by the contents of r3 in
memory block specified by the contents of r2 in r1. If r3 is not specified,
the first location in the block specified by r2 is taken.

r1, r2 ← write r3 Place the contents of the register r3 in the memory location specified by the
contents of r2 in the memory block specified by the contents of r1. If r2 is
not specified, the first location in the block specified by r1 is written.

r1 ← alloc r2 Allocate a memory block and place a reference to the start of the block
to r1. The number of location in the block is specified by the contents of r2.
All locations in the allocated block have the initial value ⊥.

r1 ← alloc[r3, . . . , rm] r2 Allocate a memory block and place a reference to the start of the block to r1.
The number of location in the block is specified by the contents of r2 and
the allocated block is labeled with the contents of r3, . . . , rm. All locations
in the allocated block have the value ⊥.

call f, r1, . . . , rn Call function f with arguments r1, . . . , rn. Push the return address to the
call-stack and set all registers except for the arguments (r1, . . . , rn) to ⊥
before passing the control to f .

ccall f, r1, . . . , rn Continuation-call (tail-call) function f with arguments r1, . . . , rn. Set all
registers except for the arguments (r1, . . . , rn) to ⊥ and pass the the control
to f . Do not push the return address to the call-stack (continuation-calls do
not return to their call site).

return r1, . . . , rn Return r1, . . . , rn from function call by passing control to the return-address
at the top of the call-stack and setting all registers except for r1, . . . , rn to⊥.

Figure 3.1: The instruction set.

any values other than those accessible by its own arguments. Similarly, setting unused registers to undefined
after function calls (before the return) ensures that the caller does not use values that it is not returned. These
properties enable tracking dependences between data and function calls by observing function arguments
and values returned from functions.

The closure machine enables remembering the “state” of a function call by remembering the function
and its arguments. This state consisting of the function and the arguments is called a closure. The ability to
create closures of function calls is critical to change propagation because the change-propagation algorithm
operates by identifying and re-executing closures that are affected by input changes.

All valid closure-machine program must satisfy the following restrictions.

1. Write-once restriction: Each memory location is written exactly once.

24 CHAPTER 3. THE MACHINE MODEL

2. Unique labeling restriction: All memory blocks have a unique label—no two or more memory blocks
are given the same label.

The write-once restriction can be checked statically by using type systems. Chapter 11 presents language
facilities for writing self-adjusting programs that are guaranteed to be write once. The uniqueness of labels
is more difficult to enforce without significantly restricting the set of acceptable programs. Requiring that all
labels be unique, however, is stronger than required. Chapter 13 presents language facilities that do not rely
on labeling. We chose to support labeled memory allocation because it dramatically simplifies complexity
analysis of self-adjusting programs under change propagation.

3.2 The Normal Form

This section defines normal-form programs and describes how an arbitrary program can be transformed into
the normal-form. The motivation for introducing normal-form programs is to enable efficient dependence
tracking and change propagation. By restricting the kinds of values that can be returned from functions,
and by restricting where memory reads and jumps take place, the normal-form ensures that all dependences
in a computation can be determined by tracking just the memory operations, and the change-propagation
algorithm can update a computation in a single pass.We define normal-form programs as follows.

Definition 1 (Normal Form)
A program is in normal-form if

1. each function returns either no value, or it returns a number of locations that are allocated at the very
beginning of the function;

2. all reads take place at the beginning of function calls, more precisely no instruction other than a read
or alloc precedes a read inside a function; and

3. all branches perform local jumps, i.e., the branch instruction and the instruction that the branch may
jump are within the same function call.

The condition that functions return only memory locations forces all data dependences to arise due to
reading and writing of memory. This enables tracking of dependences by observing only memory opera-
tions. The condition that all reads take place at the beginning of function calls helps establish a total order
on the dependences based on the ordering of function calls. This enables a change-propagation algorithm to
update a computation in a single pass over the computation. The condition that all branches be local ensures
that the dependences between code and data can be tracked by tracking function calls only.

The transformation of an ordinary program for the closure machine into the normal-form involves

1. converting the functions into destination-passing style, and

2. splitting functions at memory reads and branches with continuation-calls.

This transformation can be performed in linear time (in the size of the code) by a compiler. The rest of this
section describes the transformation via an example.

3.2. THE NORMAL FORM 25

1 fun f() =
2 A
3 call g(r2, r3)
4
5
6
7 if r0 < 0 then jump 10
8 add r0,−1
9 jump 7
10 B

11 fun g(r2, r3) =
12
13
14 A
15
16
17 return r0, r1

1 fun f() =
2 A
3 call g(r2, r3)
4 r0 ← read d0

5 r1 ← read d1

6
7 if r0 < 0 then jump 10
8 add r0,−1
9 jump 7
10 B

11 fun g(r2, r3) =
12 d0 ← alloc word size
13 d1 ← alloc word size
14 A
15 d0 ← write r0

16 d1 ← write r1

17 return d0, d1

Figure 3.2: Transforming function to destination-passing style.

The first step of the transformation forces function calls to return their result through memory instead of
registers by using a form of destination passing. Consider a function that returns some values. The function
is rewritten so that it first allocates a number of destinations (locations), and then writes its return values to
these destinations. All callers of the function are then rewritten to read the returned destinations.

Figure 3.2 shows an example for this transformation. For the example, assume that A and B denote basic
blocks of straightline code with no function calls or branches. The transformation rewrites function g so
that it creates two destinations d0 and d1 and writes its results to these destinations and returns them. The
caller f, is rewritten so that the destinations are read into the registers that the f expects g to return. To
denote destinations, we use special registers written as d0, d2, Since each function can return no more
than n values where n is the number of registers available to the original program, the transformed program
requires no more than 2n registers.

The second step of the transformation divides functions so that (1) all reads take place at the beginning
of function calls, and (2) all branches are local. The transformation is similar to the well-known transfor-
mation of arbitrary programs into the continuation-passing style, or c.p.s. The main difference is that the
continuations are not passed as arguments but instead are called explicitly.

Figure 3.3 shows an example for the second step of the transformation. The function f is split into three
functions f 0, f 1, f 2 and f 3. Functions f 1, f 2 and f 3 take all registers and destinations, denoted
r1, . . . , rn, as arguments (for brevity, we do not differentiate between registers and destinations in argument
positions). The function f 1 is created to ensure that the reads take place at the start of a function call. The
functions f 2 and f 3 are created to ensure that branches are local. These two functions start at instructions
that are targets of branches. The functions are connected via continuation-calls (ccall instructions) and
non-local jumps are replaced with continuation calls. Figure 3.4 shows the example program and its normal
form yielded by the transformation.

26 CHAPTER 3. THE MACHINE MODEL

1 fun f() =
2 A
3 call g(r2, r3)
4
5
6
7 r0 ← read d0

8 r1 ← read d1

9
10
11
12 if r0 < 0 then jump 17
13 add r0,−1
14 jump 12
15
16
17 B

18 fun g(r2, r3) =
19 d0 ← alloc word size
20 d1 ← alloc word size
21 A
22 d0 ← write r0

23 d1 ← write r1

24 return d0, d1

1 fun f 0() =
2 A
3 call g(r2, r3)
4 ccall f 1(r1, . . . , rn)
5
6 fun f 1(r1, . . . , rn)
7 r0 ← read d0

8 r1 ← read d1

9 ccall f 2(r1, . . . , rn)
10
11 fun f 2(r1, . . . , rn)
12 if r0 < 0 then ccall f 3(r1, . . . , rn)
13 add r0,−1
14 jump 12
15
16 fun f 3(r1, . . . , rn)
17 B

18 fun g 0(r2, r3) =
19 d0 ← alloc word size
20 d1 ← alloc word size
21 A
22 d0 ← write r0

23 d1 ← write r1

24 return d0, d1

Figure 3.3: Splitting function calls at reads and jumps.

3.2.1 The Correspondence between a Program and its Normal Form

The dependence tracking techniques and the change propagation algorithms described in this thesis assume
that programs are written in the normal form. For the purposes of complexity analysis of self-adjusting
programs under change propagation, we consider not just normal but also ordinary programs. Our analysis
techniques, therefore, must relate the normal form of a program to the ordinary version of that program.
This section describes the correspondence between a program and its normal form and introduces some
terminology to be used in later chapters (in particular in Section 7.3).

Consider some program P its normal form Pn obtained by the normal-form transformation. We say
that P is a native program and Pn is a primitive program. Similarly, we call functions of P and Pn native
and primitive functions respectively. The normal-form transformation splits each native function into one
primary primitive function and a number of secondary primitive functions. The primitive functions derived
from a native function f are called the primitives of f. The primary primitive function for a native function
f is consistently given the name f 0.

For example, in Figure 3.4, the function f is split into the primitive functions f 0, and f 1, f 2, and
f 3. The primitives of the native function f consists of the functions f 0, f 1, f 2, and f 3. The function
f 0 is a primary primitive function, whereas f 1, f 2, and f 3 are secondary functions.

The dependence tracking techniques rely on representing the function calls in an execution as a function-

3.2. THE NORMAL FORM 27

1 fun f() =
2 A
3
4
5 call g(r2, r3)
6
7
8
9
10
11
12 if r0 < 0 then jump 17
13 add r0,−1
14 jump 12
15
16
17 B

18 fun g(r2, r3) =
19
20
21 A
22
23
24 return r0, r1

1 fun f 0() =
2 A
3 call g(r2, r3)
4 ccall f 1(r1, . . . , rn)
5
6 fun f 1(r1, . . . , rn)
7 r0 ← read d0

8 r1 ← read d1

9 ccall f 2(r1, . . . , rn)
10
11 fun f 2(r1, . . . , rn)
12 if r0 < 0 then ccall f 3(r1, . . . , rn)
13 add r0,−1
14 jump 12
15
16 fun f 3(r1, . . . , rn)
17 B

18 fun g 0(r2, r3) =
19 d0 ← alloc word size
20 d1 ← alloc word size
21 A
22 d0 ← write r0

23 d1 ← write r1

24 return d0, d1

Figure 3.4: An ordinary program and its normal-form.

f

g

f_2

f_0

f_1

f_3

g

f

Figure 3.5: Example call tree for a native program and its primitive version.

call tree. The function-call tree or the call tree of an execution consists of vertices that represent the function
calls and edges that represent the caller-callee relationships—an edge (u, v) represents the function call u
that performs the call v. The function-call tree of an execution is constructed by tracking the call and
ccall instructions.

When analyzing the performance of change propagation, we argue about the correspondence between
function-call trees of native and primitive programs. Consider executing a native program P on some inputs
I , and executing the normal-form Pn of P on the same input. Let T be the function call tree for the execution
with P and let Tn be the function call tree for the execution with Pn. For example, Figure 3.5 shows the
function-call trees of the programs shown in Figure 3.4 for a hypothetical run with the same inputs. Each
function call in the native call-tree (the call tree for the native program P), is represented by a sequence

28 CHAPTER 3. THE MACHINE MODEL

of calls in the primitive call-tree (the call tree for the normal program Pn). For example in Figure 3.4, the
function call to f is represented by the sequence of calls f 0, f 1, f 2, and f 3. Of the sequence of
calls representing f, f 0 is special because it is created by a call instruction; the calls to f 1, f 2,
f 3 are created by ccall instructions. We refer to the call to f 0 as the primary (primitive) call of f.
Similarly, we refer to the calls to f 1, f 2, f 3 as the secondary (primitive) calls of f. It is a property
of the transformation that

1. all primary calls are executed via the call instruction,

2. all secondary calls are executed via the ccall instruction, and

3. each native function call corresponds to one primary call, and a number of secondary calls.

Chapter 4

Dynamic Dependence Graphs

This chapter introduces the Dynamic-Dependence-Graph (DDG) data structure for representing compu-
tations and a change-propagation algorithm for adjusting computations to external change. The change-
propagation algorithm takes as input the DDG of a computation and a set of external changes to the mem-
ory, and adjusts the computation and the DDG to that change. It is a property of the change-propagation
algorithm that the DDG and the memory after an execution of the algorithm are identical to those that would
be obtained by running the program from scratch on the changed memory.

4.1 Dynamic Dependence Graphs

The dynamic dependence graph of an execution represents the control and data dependences in an execu-
tion. The nodes of a dynamic dependence graph consists of vertices and locations. The vertices represent
the function calls and locations represent memory locations allocated during the execution. The edges are
partitioned into call edges and dependence edges. Call edges represent control dependences between func-
tions, and dependence (or read) edges represent data dependences between memory locations and function
calls. Formally, a dynamic dependence graph DDG = ((V,L), (E,D)) consists of nodes partitioned into
vertices V and locations L, and a set of edges partitioned into call edges E ⊆ V × V , and dependences:
D ⊆ L× V . The tree (V,E) is the (function-)call tree for the execution.

To enable change propagation, DDGs are augmented with a tag function, denoted α, and a memory,
denoted σ.

Tags(α): The function α maps each vertex in V to a tag consisting of a triple of (1) the function being
called, (2) the values of the arguments, and (3) a time interval consisting of a pair of time stamps. The
time-interval of a vertex corresponds to the execution-time interval that the corresponding function-
call is executed. The next section motivates and describes time-intervals.

Memory(σ): The function σ, called the memory, maps each location to a value.

Figure 4.1 shows the dynamic dependence graph of an execution of a hypothetical program on some
input. The memory is drawn as an array of locations. The vertices are drawn as circles and are labeled with
their time interval consisting of two time stamps. Each time stamp is represented by an integer. The curved

29

30 CHAPTER 4. DYNAMIC DEPENDENCE GRAPHS

7 4 3 8 9 1 6 5 0 7

4−5

3−6

8−9

7−10

2−11

13−14

16−17

15−18

12−19

1−20

Figure 4.1: An example dynamic dependence graph.

edges between locations and the vertices are the read edges. The straight edges between vertices are the call
edges. The tags other than the time stamps are not shown in this example. Throughout this thesis, we omit
time stamps drawing DDGs and assume that a preorder traversal of the call tree corresponds to the execution
order (and thus the time order) of function calls.

4.2 Virtual Clock and the Order Maintenance Data Structure

To enable change propagation and to construct the DDG of an execution efficiently, the run-time system
relies on a virtual clock data structure. The data structure maintains the current time, dispenses time-stamps,
and provides a number of operations on time stamps. Figure 4.2 shows the operations supported by the
virtual clock. The data structure maintains the current time, currentTime explicitly. The init opera-
tion initializes the virtual clock by creating the initial time stamp and setting the current time to this time
stamp. Every time stamp created will be inserted after the initial time stamp. The advanceTime oper-
ation advances the current time and the next operation returns the first time stamp following the current
time. The compare operation compares two time stamps, and the delete operation deletes a given time
stamp. All but the next operation are directly supported by the order-maintenance data structure of Dietz
and Sleator [30] in constant time. It is straightforward to extend this order-maintenance data structure to
support next operations in constant time.

The run-time system uses the virtual clock to time stamps function calls. For each function call, the
system creates two time stamps, one in the beginning, and one at the end of the call. The time stamps of
a call are called the start time stamp, and the stop time stamp. The start and stop time stamps of a call
together define the time interval for that call. For example, in Figure 4.1, the root call has the start time 1
and stop time 20; the left child of the root has the start time 2 and stop time 11. The system ensures that
the ordering of start and stop time stamps accurately represent the time intervals in which functions execute.
The system uses time-stamps for determining (1) the sequential execution order of function calls, and (2)
the containment relation between function calls.

Sequential execution order: The sequential execution order of function calls is defined by the time at
which they start executing. For example, if the call f(a) starts executing before the call g(b), we say
that f(a) comes before g(b) in sequential execution order. The sequential execution order of function

4.3. CONSTRUCTING DYNAMIC DEPENDENCE GRAPHS. 31

currentTime : the current time (stamp).
init() : initialize the data structure.
advanceTime() : insert a new time stamp t immediately after the current time (be-

fore any other time stamp that comes after the current time); re-
turn t.

delete(t) : delete time stamp t.
compare(t 1, t 2) : compare the time stamps t 1 and t 2.
next (t) : return the time stamp that comes immediately after the time stamp t.

Figure 4.2: The operations on time stamps.

calls can be determined by comparing their start time stamps.

Containment relation: We say that a function call g(b) is contained in some other function call f(a)
if g(b) is a descendant of f(a) in the call tree. The containment relation between two calls can be
determined by comparing their time intervals. In particular if the time-interval of g(b) lies within the
time interval of another function f(a), then g(b) is contained in f(a). For example, in Figure 4.1,
the left child of the root is contained in the root. Indeed, the interval of the left child, 2-11, is contained
in the interval of the root, 1-20.

4.3 Constructing Dynamic Dependence Graphs.

As a program executes, a run-time system constructs the DDG of the execution by tracking the read,
write, call, and ccall instructions. To enable the construction and change propagation, the
system globally maintains the following:

1. a virtual clock,

2. the DDG being built, denoted DDG = ((V,L), (E,D)),

3. the tags α for function calls,

4. the memory σ, and

5. an active-call queue Q, containing function calls.

The run-time system initializes V,E, D, Q to the empty set and initializes the virtual clock via the init
operation. The input of the execution determines the initial values for the set of locations L, and the memory
σ. The construction is performed by the alloc, write, call, ccall, and read instructions; other
instructions execute as usual. Executing an alloc instruction extends the set of locations, with the allocated
location. Figure 4.3 shows the pseudo-code for the functions specifying the executions of write, call,
ccall, and read instructions. The instructions call and ccall execute identically.

32 CHAPTER 4. DYNAMIC DEPENDENCE GRAPHS

Memory = σ
DDG = ((V, L), (E, D))
Tags = α
Queue = Q

1 write l, a
2 if σ[l] 6= a then
3 σ[l]← a
4 Q← Q ∪ {v | (l, v) ∈ D}

5 u : call(ccall) f, a1, . . . , an

6 v ← newVertex()
7 V ← V ∪ {v}
8 E ← E ∪ {(u, v)}
9 ts ← advanceTime()
10 execute f(a1, . . . an)
11 te ← advanceTime()
12 α(v)← (f, (a1, . . . , an), (ts, te))

13 u : read l
14 D ← D ∪ {(l, u)}
15 return σ[l]

Figure 4.3: The pseudo-code for write, call, and read instructions.

For the pseudo code, we assume that the parameters to instructions are the contents of the registers. For
read and write instructions, we assume that the location being written and read is provided explicitly.
Throughout, we denote locations by the letter l and its variants, denote primitive values by the letter a and its
variants. The notation u : 〈instruction〉means that function call corresponding to vertex u is executing
the instruction.

The write instruction:

The write instruction extends the memory σ and updates the active-call queue. Execution of
“write l, a” first checks if the value a being written to l is the same as σ[l], the value currently
in memory, by comparing their bit patterns. If the two values have the same bit pattern, they are
considered equal, and no action is taken. Otherwise, σ[l] is set to a and all functions that read l are
inserted into the active-call queue.

Since all locations can be written at most once during an execution, the active-call queue is always
empty during an initial execution. During change propagation, however, the active-call queue be-
comes non-empty due to input changes or writes to memory locations.

The call and ccall instructions:

The executed call and ccall instructions build the call tree and advance the time. Figure 4.3
shows the pseudo code for these instructions. The vertex u denotes the function-call executing the
instruction. Execution of “call(ccall) f, a1, . . . , an” creates a new vertex v and extends V with v

4.4. CHANGE PROPAGATION 33

(V = V ∪ {v}), inserts a call-tree edge from the caller u to v (E = E ∪ {(u, v)}), advances the
time by creating two time stamps before and after the execution of the function call, and extends α by
mapping v to the triple consisting of the function being called f , the arguments, and the time-interval
(ts, te), i.e., α(v) = (f, (a1, . . . , an), t).

The read function:

The executed read instructions build the dependence edges. Execution of “read l” inserts a de-
pendence edge from the location l to the vertex u of the function that performs the read, i.e., D =
D ∪ {(l, u)}.

4.4 Change Propagation

Self-adjusting computation hinges on a change propagation algorithm for adjusting a program to external
changes. The pseudo-code for change propagation is shown in Figure 4.4. The algorithm takes a set of
changes χ that maps locations to new values. First, the algorithm changes the memory. For each pair
(l, v) ∈ χ, the algorithm set the value stored in σ[l] to the v (line 19). Second, the algorithm inserts the
vertices reading the changed locations into the priority queue(line 20). A vertex is called active during
change propagation if the values of one or more of the locations that it reads has changed since the last
execution.

After initializations, the algorithm proceeds to re-execute the active vertices via the
propagateLoop function. The propagateLoop function re-executes the active vertices in order of
their start time stamps. Since the start time stamps correspond to the sequential execution order of the
vertices, the vertices are re-executed in the sequential execution order. Each iteration of the while loop
processes an active vertex v. To process a vertex, the algorithm

1. rolls the virtual clock back to the start time ts of the function,

2. identifies the vertices, V −, whose start time stamps are within the interval of the time interval of v,
and deletes V − and all the edges incident to V − from the DDG by using the delete function,

3. determines the caller u of v and re-executes the function-call for v. Re-executing v inserts the call
tree and the dependences obtained by the re-execution into the dynamic dependence graph.

The set of vertices V − deleted in the second step is the descendants of the re-executed vertex v including
v itself. As described in Section 4.2, this is because the time-interval of a vertex u is contained in another
vertex v if and only if u is a descendant of v in the call tree (or u is contained in v). Since the time-intervals
are properly nested—two time intervals are either disjoint, or one falls within the other—checking that the
start time stamps are within the interval of the vertex being re-executed suffices to determine containment.
The second and third steps replace the dependences created by the previous execution of v with those
obtained by the re-execution.

The delete function takes a set of vertices and deletes all information pertaining to them. To this end
delete (1) deletes the vertices and their tags, (2) deletes the call edges adjacent to the vertices, (3) deletes
the dependence edges leading into the vertices, (4) deletes the time stamps of the vertices, and (5) deletes
the vertices from the queue. The deleted vertices are called deleted.

34 CHAPTER 4. DYNAMIC DEPENDENCE GRAPHS

Memory = σ
DDG = ((V, L), (E, D))
Tags = α
Queue = Q

1 delete (V −)
2 E− ← {(u, v) ∈ E | u ∈ V − ∨ v ∈ V −}
3 V ← V \ V −

4 E ← E \ E−

5 D ← D \ {(l, u) | u ∈ V − ∧ (l, u) ∈ D}
6 α← {(v, tag) | (v, tag) ∈ α ∧ v 6∈ V −}
7 ∀u ∈ V −. delete timeStamps(u)
8 Q = Q \ V −

9 propagateLoop ()
10 while (Q 6= ∅)
11 v ← findMin(Q)
12 (f, a, [ts, te]) = α(v)
13 currentTime ← ts

14 V − ← {y | ts ≤ startTime(y) < te}
15 delete (V −)
16 u← parent(v)
17 u : call f, a

18 propagate (χ)
19 σ ← (σ \ {(l, σ(l)) | (l,) ∈ χ}) ∪ χ
20 Q← {v | (l,) ∈ χ, (l, v) ∈ D}
21 propagateLoop ()

Figure 4.4: The change-propagation algorithm.

Re-executing active function calls in sequential-execution order, or in the order of their start time stamps,
ensures that

1. values read from memory are up-to-date. For example, consider function-calls f and g such that f
writes to a memory location that g reads. If f were not re-executed before g, then g may read a
location that has not been updated.

2. function calls that do not belong to the computation are not re-executed. When a vertex is re-executed
all vertices that are descendants of that vertex are removed from the queue by the delete function.
This is critical because the function calls corresponding to these vertices may not belong to the revised
computation (due to conditionals). Since descendants of a vertex have larger start time stamps than
the vertex itself, re-executing vertices in order of their start time stamps ensures that vertices that do
not belong to the revised computation are deleted from the queue before they are re-executed.

4.4. CHANGE PROPAGATION 35

�
�
�
�

�
�
�
�

b
c

d

a

7 4 3 8 9 1 6 5 0 7

f

e

g

h
j

i�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

b
c

d

4

k

a

58

7 4 3 8 9 1 6 5 0 7

g’
e’

l

m

Figure 4.5: Dynamic dependence graphs before and after change propagation.

4.4.1 Example Change Propagation

Figure 4.5 shows an example for change propagation. The dynamic dependence graph for an execution of a
hypothetical program with some input is shown on the left. The dynamic dependence graph after changing
the input value 8 to 4 is shown on the right. The change propagation takes as input the DDG on the left and
the external change and yields the DDG on the right. Since the function call e reads the changed location,
the change-propagation algorithm first re-executes e. Assume that this changes the value 5 in memory to 8
and the value 0 to 5. Since these locations are read by g and i, these vertices become active. Since g has the
smaller start time (comes earlier than i in a pre-order traversal), the change algorithm re-executes g next.
Since i is a descendant of g, re-execution of g deletes i and removes it from the active call queue. Since
there are no more active vertices, change propagation terminates.

In this example, some of the vertices are not affected by the change. These vertices are drawn as
dark circles. All deleted vertices are drawn as squares, and all fresh vertices, which are created during re-
execution are shown as empty circles. All data dependences created during change propagation are drawn
as thick lines.

A property of the change-propagation algorithm is that the DDG after change propagation is identical to
the DDG that would have been given by a from-scratch re-execution of the program on the changed input.
We prove this claim in Chapter 11 by giving a semantics for change propagation and proving its correctness.

36 CHAPTER 4. DYNAMIC DEPENDENCE GRAPHS

Chapter 5

Memoized Dynamic Dependence Graphs

Dynamic dependence graphs (DDGs) enable a change-propagation algorithm to adjust a computation to an
external change by re-executing the function calls that are affected by the change. Since change-propagation
algorithm re-executes affected function calls from scratch, its running time depends critically on how ex-
pensive the re-executed function calls are. For certain classes of applications and external changes, the
change-propagation algorithm on DDGs suffices to yield efficient updates. For most applications, however,
it performs poorly, because a change often affects an expensive function call. It can be shown for example,
that for quick sort and merge sort algorithms, an insertion/deletion of a key can take Θ(n log n) time.

To address this problem, we combine memoization and DDGs by introducing memoized dynamic depen-
dence graphs (MDDGs) and the memoized change-propagation algorithm. Memoized DDGs are annotated
DDGs whose vertices can be re-used via memoization. The memoized change-propagation algorithm is an
extension of the change-propagation algorithm that performs memo look ups before executing function calls.
Self-adjusting computation relies on MDDGs and memoized change propagation for adjusting computations
to external changes. The rest of this thesis concerns these techniques unless otherwise stated.

Memoized DDGs and memoized change propagation address the fundamental challenge of performing
memoization under side effects. Since memoization relies on remembering and re-using results of func-
tion calls, the underlying computation must be pure, i.e., the values stored in memory locations cannot be
changed via side effects. This is critical because otherwise, there is no effective way of knowing if a result
can be re-used.1 Self-adjusting computation, however, critically relies on side effects. Once a program is
executed, any memory location can be changed, and furthermore, memory locations can be written (side-
effected) during change propagation.

To provide result re-use under side effects, we rely on DDGs and change propagation. We allow a
function call to be re-used only if its DDG is also available for re-use. When a function call is re-used, we
perform a change propagation on the DDG of that call. This change propagation adjusts the function call to
the side effects that took place since the call was first computed.

Memoized DDGs and memoized change-propagation have the following properties.

• Side effects: Memoized DDGs enable re-use of function calls under side effects to memory.

1In principle, all memory locations that the function call may read can be checked, but this is prohibitively expensive both in
theory and in practice. For example, checking if a function that computes the length of a list can be re-used takes linear time.

37

38 CHAPTER 5. MEMOIZED DYNAMIC DEPENDENCE GRAPHS

�
�
�
�

� �
� �

�
� � �

� �
�
�

b
c

d

a

7 4 3 8 9 1 6 5 0 7

f

e

g

h
j

i�
�
�
�

�
�
	
	

�
�
�
�

b
c

d

4

f

e

g

k

a

58

7 4 3 8 9 1 6 5 0 7

0

j�
�
�
�

�
�
�
�

Figure 5.1: Dynamic dependence graphs before and after change propagation.

• Equality checks: To check if a function call can be re-used, it suffices to use shallow equality.

• Efficient Re-use: Memoized change-propagation supports efficient result re-use.

• Efficiency: Memoized DDGs requires O(1) overhead and the same space (asymptotically) as DDGs.

Since memoized DDGs enable adjusting function calls to side effects, shallow equality can be used to
determine when function calls can be re-used. Shallow equality deems two locations equal if they have the
same address, regardless of the values stored in the locations. Note that, due to side effects, a location can
contain different values at different times. The key property of shallow equality is that it requires constant
time. For example, two lists are equal as long as they reside at the same location, regardless of their contents.

A key property of memoized DDGs is that they enable efficient re-use of computations and they yield
to asymptotic analysis techniques. In Chapter 6 and Part II, we present techniques for analyzing the per-
formance of change propagation. In Section 17.3, we apply trace stability to a number of applications and
show complexity bounds that closely match best known bounds for these applications.

Memoized DDGs can be implemented efficiently both in terms of time and space. In terms of both time
and space, the technique introduces O(1) overhead over dynamic-dependence graphs. Chapter 6 proves
these efficiency claims.

5.1 Limitations of Dynamic Dependence Graphs

As an example of how an external change can require an expensive change propagation, consider the DDGs
of an hypothetical program shown in Figure 5.1.

Assume for this example that the labels of vertices denote the names of the function being called, and
each function takes the location that it reads as the argument. If we are given the DDG on the left, then
we can obtain the DDG on the right by changing the appropriate memory locations and running a change
propagation algorithm. Since the root labeled with a reads one of the changed locations, change-propagation
algorithm will re-execute a after deleting the tree rooted at a (the whole tree). Change propagation will
therefore recompute the whole computation from scratch.

This example demonstrates a typical problem that arises when using DDGs. Especially when functions
are combined, a simple change to the input can propagate to changes that affect expensive function calls. It

5.2. MEMOIZED DYNAMIC DEPENDENCE GRAPHS 39

� �
� �

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

�
� �

�

a

e

gb
c

d

a

f

e

g

h i
j

�
�
�
�

�
�
�
�

Figure 5.2: Call trees in change propagation.

can be shown for example that the merge sort and the quick sort algorithms both perform no better than a
from-scratch executions for nearly all insertions and deletions.

5.2 Memoized Dynamic Dependence Graphs

Consider the example in Figure 5.1, and note that change-propagation can be performed more effectively if
the function calls b,c,d,f,j, which remain unaffected by the change, can be re-used. These calls are not
affected because the memory locations that they read have not been changed. Memoization DDGs enable
such re-use.

Change-propagation with (ordinary) DDGs maintains a queue of affected function calls and re-executes
these calls. Before re-executing a call, the algorithm deletes the subtree rooted at that call. In the example
shown in Figure 5.1, the algorithm deletes the whole tree before re-executing a. The deletion of the subtree
is critical for correctness because the function a can now take an entirely different execution path on the
new value read from memory. Often however, re-executing a function call on a slightly different input will
perform a computation similar to the previous computation. In the example (Figure 5.1), the subtrees rooted
at a are quite similar. The idea behind memoized DDGs is to enable vertices of the deleted subtree to be
re-used.

The memoized change-propagation algorithm maintains a queue of affected functions and re-executes
them. When re-executing a function call, the algorithm does not delete the subtree. Instead, every time a
function call is executed, it checks if the call is already in the subtree. If so, the call is re-used and change
propagation is performed on the subtree of the call recursively. This change propagation ensures that the
re-used call is adjusted to the side-effects appropriately.

As an example consider the memoized dynamic dependence graphs shown in Figure 5.1. Suppose we
are given the memoized DDG on the left and suppose that the memory location containing the value 1 is
changed to 0. Since this change only affects a, we re-execute a. Figure 5.2 shows the call-tree being build
during change-propagation. During re-execution, suppose that a changes the value 8 to 4 and makes a call
to function b. Changing 8 to 4 inserts e into the queue of calls to be re-executed. Since the call to b is
already in the subtree being re-executed, it is re-used, and a change-propagation is performed on the subtree
rooted at b recursively. During this change-propagation, the function e is re-executed. Suppose that this
function changes the value 5 in memory to 8 and inserts g to the call queue, and performs a call to k and
f. Since f is in the subtree being re-executed (the subtree rooted at e), it is re-used. This completes the

40 CHAPTER 5. MEMOIZED DYNAMIC DEPENDENCE GRAPHS

recursive change-propagation on the subtree rooted at b. Note that the function call b is re-used even though
it needs to be adjusted to changes. The control now passes to function call a that was being re-executed.
Now a calls g which is found in the subtree rooted at a, and a change-propagation on g takes place. This
change propagation re-executes g. Re-executing g calls j and that call is also re-used. Since there are no
more function calls in the call queue, change-propagation terminates.

Memoized change propagation creates the complete memoized DDG for a computation by a mixture of
“new” and “old” function calls. The new function calls are those that take place during change propagation
and the old function calls are those that are re-used from the memoized DDG of the computation. In
Figure 5.2, the new calls are drawn on the right, and the old calls are drawn on the left to emphasize the
distinction. The calls of the (old) memoized DDG that are not used are deleted. Figure 5.2 shows these calls
with dashed lines.

5.3 Constructing Memoized Dynamic Dependence Graphs.

The memoized DDG of an execution is built by a run-time system and is adjusted to external changes by
a change propagation algorithm. To enable the construction and change propagation, the system globally
maintains the following:

1. a virtual clock,

2. the DDG being built, denoted DDG = ((V,L), (E,D)),

3. the tags α for function calls,

4. the memory σ, and

5. an active-call queue Q, consisting of function calls.

6. a memo finger Φ, which is the last time stamp of the current memo window.

The only difference between this global information and the information maintained in the original
construction (Chapter 4) is the memo finger Φ. The memo finger and the current-time stamp together define
the current memo window, which is defined as the interval [currentT ime, Φ]. The current memo window
is used to determine if a function call can be re-used. A function-call is re-used in place of another call, if
the two calls are equal, and if the interval of the function call is within the current memo window. We say
that an interval [t1, t2] is within another interval [t3, t4], written [t1, t2] @ [t3, t4] if t1 is greater than t3 and
t2 is less than t4.

The run-time system initializes V,E, D, Q to the empty set and initializes the virtual clock and sets the
memo finger to the initial time stamp created. The input to the computation determines the set of locations
L and the memory σ. As in the original construction, the dependence graph and the active-call queue is
built by alloc, write, ccall, call, and read instructions. Executing an alloc instruction extends
the set of locations with the allocated location. Figure 5.3 shows the pseudo-code for write, ccall,
call, and read instructions. The algorithm for write, read, and ccall instructions remain the same
as in the original construction; the call instruction is different. When writing pseudo-code, we use the
v : 〈instruction〉 notation, where the vertex v is the function call executing the instruction.

5.3. CONSTRUCTING MEMOIZED DYNAMIC DEPENDENCE GRAPHS. 41

Memory = σ
DDG = ((V, L), (E, D))
Tags = α
Queue = Q
Memo Finger = Φ

1 write l, a
2 if σ[l] 6= a then
3 σ[l]← a
4 Q← Q ∪ {v | (l, v) ∈ D}

5 v : read l
6 D ← D ∪ {(l, v)}
7 return σ[l]

8 u : ccall f, a1, . . . , an

9 v ← newVertex()
10 V ← V ∪ {v}
11 E ← E ∪ {(u, v)}
12 ts ← advanceTime()
13 execute f(a1, . . . an)
14 te ← advanceTime()
15 α(v)← (f, (a1, . . . , an), (r1, . . . , rn), (ts, te))

16 u : call f, a1, . . . , an

17 if (∃v ∈ V.fun(v) = f ∧ (a1, . . . , an) = args(v) ∧
18 timeInterval(v) @ [currentTime, Φ])

19 then (* Memo match *)

20 (f, , (a′1, . . . , a
′
n), [ts, te]) = α(v)

21 E ← E ∪ {(u, v)})
22 V − ← {y ∈ V | currentTime < startTime(y) < ts}
23 delete (V −)
24 propagateLoop (te)
25 currentTime← te

26 r1 ← a′1 . . . rn ← a′n
27 else (* No memo match *)

28 v ← newVertex()
29 V ← V ∪ {v}
30 E ← E ∪ {(u, v)}
31 ts ← advanceTime()
32 execute f(r1, . . . rn)
33 te ← advanceTime()
34 α(v)← (f, (a1, . . . , an), (r1, . . . , rn), [ts, te])

Figure 5.3: The pseudo-code for write, read, ccall, and call instructions.

The executed ccall and call instructions build the call tree and advance the time. Figure 5.3 show the
pseudo code for these instruction. The algorithm for ccall remains the same as in the original construction
but the call is extended to perform memo look ups. Execution of call f, r1, . . . , rn first checks if there
is a matching call to f with the current arguments that lie within the current memo window. The algorithm

42 CHAPTER 5. MEMOIZED DYNAMIC DEPENDENCE GRAPHS

then proceeds based on the outcome of the memo lookup.

No memo match: If no matching result is found within the current memo window, then the algorithm
proceeds as usual. It extends V with a new vertex v, inserts a call-tree edge from the caller u to v
(E = E ∪ {(u, v)}), advances the time, and performs the function call. When the call completes, v is
tagged with the tuple consisting of the function being called, f , the arguments, (r1, . . . rn), the result
currently in the registers, and the time interval for the call.

Memo match: There is matching result if there exists some v ∈ V such that fun(v) = f , and (a1, . . . , an) =
args(v), and the time interval of v lies within the current memo window. In this case, the algorithm
inserts an edge from the caller u to v (E = E ∪ {(u, v)}); this connects the caller to the call tree of
the re-used call. The algorithm then determines the set V − of vertices whose start times are within
the interval defined by the current time and ts (the first time-stamp of v), and removes V − using the
delete subroutine. As in the original construction, the delete subroutine deletes the subgraph of
DDG induced by V −. The pseudo-code for delete is shown in Figure 4.4

Since equality of arguments is checked using shallow equality and since shallow equality defines two
locations equal if their addresses are the same (even if their contents may not be), the algorithm can
decide to re-use a function call that is not identical to the call being performed. The algorithm there-
fore performs change propagation until te, the last time-stamp of the call. This change propagation
ensures correctness by adjusting the function call to mutations that has been performed since the last
execution of the call.

The algorithm completes by recovering the contents of the registers to those at the end of the re-used
function call.

An important point of the memo look up mechanism is that it takes place with respect to the current
memo window defined by the interval [currentT ime,Φ]. A function-call with interval [ts, te] can be re-
used only if its interval lies within the current memo window, i.e. [ts, te] @ [currentT ime,Φ] (line 17
in Figure 5.3). The memo finger is initialized to the base time stamp by the run time-system and can be
changed only by the change-propagation algorithm.

A key property of the techniques it that function calls are only re-used during change propagation. This
is ensured by setting the memo finger to the initial time stamp. As we will see in the next section, the change-
propagation algorithm sets the memo finger to the last time stamp of the call currently being re-executed.
This makes all calls that are in the subtree of the call currently being re-executed available for re-use.

When a function call is found in the memo, the call subroutine removes all function calls whose start
times are between the current time and the beginning time of the function call being re-used (line 22 in
Figure 5.3). This effectively slides the windows past the function call being re-used. Sliding the window
ensures that no function call prior to this call is re-used. Note also that the function call itself can never be
re-used.

5.4 Memoized Change Propagation

The pseudo-code for memoized change propagation is shown in Figure 5.4. The algorithm takes a set of
changes χ that maps locations to values. First, the algorithm changes the memory. For each pair (l, v) ∈ χ,

5.4. MEMOIZED CHANGE PROPAGATION 43

Memory = σ
DDG = ((V, L), (E, D))
Tags = α
Queue = Q
Finger = φ

propagateLoop (t)
1 while (Q 6= ∅)
2 v ← findMin(Q)
3 (f, a, r, (ts, te)) = α(v)
4 if (ts ≤ t) then
5 φ← te

6 currentTime← ts

7 u← parent(v)
8 u : call f, r
9 V − ← {y ∈ V | currentTime ≤ startTime(y) < te}
10 delete (V −)

propagate (χ)
11 σ ← (σ \ {(l, σ(l)) | l ∈ χ}) ∪ χ
12 Q← {v | (l,) ∈ χ, (l, v) ∈ D}
13 propagateLoop (t∞)

Figure 5.4: The change-propagation algorithm.

the algorithm sets σ[l] to v (line 11). Second, the algorithm inserts the vertices reading the changed locations
into the priority queue(line 12). A vertex is called active during change propagation if it reads a reads a
location that has changed since the last execution.

After the initialization, the algorithm proceeds to re-execute all active vertices by calling propagateLoop.
The propagateLoop subroutine takes a time-stamp t and performs change propagation until t by re-
executing the active vertices before t. The change propagation algorithm calls propagateLoop with the
largest time stamp t∞; the subroutine is called with other time-stamps when a memo match occurs (line 24
in Figure 5.3). The subroutine re-executes the active vertices in order of their start time stamps. Since the
start time stamps correspond to the sequential execution order of the vertices, this mimics the sequential
execution order. Each iteration of the while loop processes an active vertex v. If the start time of v is greater
than t, then the algorithm returns. Otherwise, the algorithm

1. sets the memo finger to the end-time te of v,

2. rolls the virtual clock back to the start time t of the function,

3. determines the caller u of v and re-executes the function-call for v,

4. determines the function calls in the current memo window, and deletes them by calling the subroutine
delete.

Note that re-execution of v adds the call tree for the re-execution and dependences into the dynamic depen-
dence graph.

44 CHAPTER 5. MEMOIZED DYNAMIC DEPENDENCE GRAPHS

The delete subroutine takes a set of vertices V − and removes all call edges induced by the vertices
in V −, removes all dependence edges leading into the vertices in V −, deletes the time stamps of the vertices
in V −, and deletes each vertex in V − from the queue. The code for delete (Figure 4.4) remains the same
as with the original change-propagation algorithm.

The key difference between the memoized change-propagation algorithm and the original (non-memoized)
algorithm from Section 4.4 is the use of delete. Before re-executing some function call v, the non-
memoized algorithm deletes all vertices contained in the interval of v from the graph by calling the delete
subroutine. This effectively deletes all descendants of v from the DDG. The memoized change-propagation
algorithm makes the descendants of the re-executed function available for re-use by setting the memo finger
to the end time stamp of v. When the re-execution of a vertex completes, the algorithm deletes only those
vertices that have not be re-used. Since the call subroutine slides the window past the re-used vertices by
deleting all vertices that start between the current time and the re-used vertex (line 22 in Figure 5.3), the
vertices that have not been re-used during re-execution have start times between the current time and te.

A relatively small difference between the memoized and non-memoized change-propagating algorithms
is that, in memoized propagation, the propagateLoop subroutine now takes a time stamp and performs
change propagation only up to that time stamp. This is important to enable the call instruction to adjust a
re-used function call by performing change propagation on the re-used call (until the re-used call is updated
and no further). This ensures that the memoized change-propagation algorithm simulates a complete se-
quential execution by sweeping the execution time-line from beginning to the end, skipping over unaffected
parts, and rebuilding the affected parts of the execution.

5.5 Discussions

Memoized DDGs and the change-propagation algorithm described has two key limitations. First, re-use of
function calls take place only during change propagation. Second, when a call is re-used, all calls that are
executed between the current time and a re-used call are deleted (and cannot be re-used).

The first limitation ensures that the subgraph of a memoized DDG induced by the call edges is a tree.
In other words, there is no sharing of function calls within a computation. It is conceivable that memoized
DDGs can be extended to support sharing. With this extension, the call graph would take the form of a
directed acyclic graph (DAG) instead of a tree.

The second limitation ensures that the function calls are re-used in the same order as they are originally
executed. This is critical to ensure that time stamps of re-used function calls respect their existing ordering
as defined by virtual clock. It is possible to eliminate this limitation by a using virtual clock data structure
that allows time stamps to be exchanged (swapped). Such a data structure can be implemented in logarithmic
time based on balanced trees but it is likely difficult, if not impossible, to achieve this in constant time.

Chapter 6

Data Structures and Analysis

This chapter presents efficient data structures for memoized dynamic dependence graphs and memoized
change propagation. The data structures assume the standard RAM model of computation. Based on these
data structures, we present complexity bounds on the overhead of constructing memoized DDGs and the
time for memoized change propagation.

This chapter concerns only memoized DDGs and memoized change propagation unless otherwise states.
The terms “memoized” is often omitted for the purposes of brevity.

6.1 Data Structures

This section describes the data structures for representing virtual clocks, memoized dynamic dependence
graphs, and priority queues. We represent memoized dynamic dependence graphs by a combination of
dependence graphs and memo tables. The memo tables map the function calls of dynamic dependence
graphs to their results.

6.1.1 The Virtual Clock

Section 4.2 describes the virtual-clock data structure required for (memoized) dynamic dependence graphs
and (memoized) change propagation. In addition to operations for creating, deleting, and comparing time
stamps, the data structure supports a next operation for retrieving the time stamp that comes immediately
after a given time stamp. These operations can be supported efficiently by using the order maintenance
data structure of Dietz and Sleator [30]. Order-maintenance data structures support creating, deleting, and
comparing time stamps in constant time. The Dietz-Sleator order-maintenance data structures can be easily
extended to support the next operation in constant time.

6.1.2 Dynamic Dependence Graphs

To represent dynamic dependence graphs, we maintain a set of locations and set of vertices for the function
calls. Data-dependence (read) edges between locations and vertices are represented by maintaining a list of
pointers from each location to the vertices that read that location. Since the change-propagation algorithm

45

46 CHAPTER 6. DATA STRUCTURES AND ANALYSIS

relies on the time stamps to determine the containment relation between vertices, we do not represent the
call edges explicitly.

The call instruction and the change propagation algorithm both rely on the ability to determine the
set of vertices whose start times are within a particular interval. To support this operation, we maintain a
pointer at each time-stamp t that points to the vertex for which t is the start time. For a specified interval,
we traverse interval from start to end using the next operation of virtual clocks and collect the vertices that
are pointed by the time stamps.

6.1.3 Memo Tables

We use hash tables for representing memo tables. Each function is associated with its own memo table.
Each memo table entry corresponds to a function call and maps the arguments to the result and the time
interval for that call. Since a function can be called with the same arguments more than once, there can be
multiple entries for the same call—these entries have different time intervals.

A memo lookup first performs a usual hash-table look up to determine the set of time-intervals for that
call, and selects the earliest interval that is within the current memo window. Checking that an interval
is contained within the current memo window requires comparing the start and the end time stamp of the
interval to those of the current memo window, and therefore takes constant time.

When a vertex is deleted during change propagation, the memo table entry for that call is deleted. This
ensures that the number of memo table entries are never more than the number of vertices in the dynamic
dependence graph. Memo tables therefore add a constant factor space overhead to dynamic dependence
graphs.

If each function is called with the same arguments no more than a constant number of times, then all
memo table operations can be implemented with expected constant-time overhead using standard hashing
techniques [66, 24]. This assumption holds for the classes of programs that we consider. In this thesis, we
assume that memo table operations take constant time.

6.1.4 Priority Queues

The change-propagation algorithm requires a priority queue data structure that supports insert, remove,
and find-minimum operations. For the analysis, we assume a priority-queue data structure that supports
the find-minimum operation in constant, and all other operations in p(·) time as a function of the size of
the priority queue.

We assume that it is ensured that the same vertex is not inserted into the priority queue multiple times.
This is easily achieved by maintaining a flag for each vertex that indicates whether the vertex is in the priority
queue or not.

6.2 Analysis

We show that the (memoized) DDG of a program can be constructed with constant time overhead and present
time bounds for change propagation.

6.2. ANALYSIS 47

We first show a theorem that bounds the overhead of constructing (memoized) DDGs during a from-
scratch execution of a program. We refer to such an execution as initial execution.

Theorem 2 (Overhead for Constructing (Memoized) DDGs)
A self-adjusting program can be executed on the standard RAM model while constructing its (memoized)
DDG with constant-time overhead.

Proof:
We show that each closure-machine instruction can be simulated on the standard RAM model with

constant-time overhead.
The register-to-register instructions of closure model can be performed directly on the standard RAM

model with no overhead.
The non-labeled memory allocation instruction alloc can be performed in constant time using stan-

dard allocation techniques. The labeled memory allocation alloc can be performed in constant time by
memoizing the standard allocation instruction.

The read instruction creates a pointer from the location being read to the vertex that reads that location.
This requires constant time.

The write instruction changes the value at a given location. Since each location is written at most
once during an initial execution, and the read of a location can take place only after that location is written,
a location has no reads when it is written. Executing a write instruction therefore takes constant time.

The ccall instruction creates a vertex and two time stamps and executes the function call. Since
creating a vertex and a time stamp takes constant time, the overhead of the ccall instruction is constant.

Since the memo-window is empty during an initial execution, no memo-matches take place. The over-
head for an call instruction is therefore constant. Note that in an initial execution, the call instructions
with memoized and non-memoized DDGs execute identically.

We conclude that the (memoized) DDG of a program can be constructed with constant time overhead.
�

We now present a bound on the time for memoized change propagation. For brevity, we refer to mem-
oized change propagation simply as change propagation. For the analysis, we distinguish between a few
types of vertices.

Definition 3 (Active, Deleted, and Fresh Vertices)
Consider executing change propagation on some program and let (V,E) and (V ′, E′) denote the function-
call trees before and after the change propagation algorithm. We call certain vertices of V and V ′ active,
deleted, or fresh as follows.

Active: A vertex v ∈ V is called active if it is inserted into the priority queue during change propagation
(line 4 in Figure 5.3, or line 12 in Figure 5.4).

Deleted: A vertex v ∈ V is said to be deleted if it is deleted from the call tree by the delete subroutine
(Figure 4.4).

Fresh: A vertex v ∈ V ′ is called fresh if it is created by a function call during change propagation (lines 28
and 9 in Figure 5.3).

48 CHAPTER 6. DATA STRUCTURES AND ANALYSIS

Lemma 4 (Active Vertices)
All active vertices are deleted.

Proof: By definition, an active vertex is inserted into the priority queue. Since change propagation contin-
ues until the priority queue becomes empty and since only the delete subroutine removes vertices from
the queue, all active vertices are deleted. �

For the analysis, we assume a priority queue data structure that supports find-minimum operations
in constant, and all other operations in p(·) time in the size of the priority queue. We analyze the time for
priority-queue operations separately from the time spent for change propagation. We charge the cost of the
find-minimum operations to the change-propagation algorithm. To account for all other operation, we
define the priority queue overhead as the total time spent by the remove, insert, and find-minimum
operations.

Lemma 5 (Priority-Queue Overhead)
Let NA be the number of active vertices during change propagation. The priority-queue overhead is O(NA ·
p(m)), where m is maximum size of the base priority queue during change propagation.

Proof: Consider the first time an active vertex v is inserted into the priority queue. Since the change-
propagation algorithm ensures that the priority queue consists of distinct vertices, v, will never be inserted
into the priority queue until it is removed. When removed from the priority queue, v is either discarded
or it is re-executed. If discarded v will never be inserted into the priority queue again. Suppose now v is
re-executed. After v starts re-executing, no memory location that is read by v can be written to, because
otherwise v would be reading a location that has not been written, or a location must be written more than
once. Therefore, v is inserted into the priority queue once, and removed once. We therefore conclude that
the priority queue overhead is bounded by O(NA · p(m)), where m is maximum size of the priority queue
during change propagation. �

The analysis bounds the time for change propagation in terms of the number of active vertices and the
total execution time of all fresh and deleted vertices. In our bounds, we disregard the cost of initializing
the active-call queue. Since initializations are performed only at the beginning of change-propagation, it is
straightforward to generalize the theorems to take the initialization cost into account.

The analysis assumes that the number of read edges going into a vertex is proportional to the execution
time of that vertex. This is a conservative assumption, because the number of read edges can be less than
the execution time. It is therefore possible to tighten the analysis by considering the read edges separately.
For all applications we consider, however, this bound is tight.

We define the weight of a vertex as follows.

Definition 6 (Weight of a Vertex)
The weight of a vertex v, denoted w(v) is the execution time for the corresponding function call excluding
the time spent by the callees of the function.

Theorem 7 (Change Propagation)
Consider executing change propagation on some program and let (V,E) and (V ′, E′) denote the function-
calls trees before and after the change propagation algorithm. Let

6.2. ANALYSIS 49

1. NA be the number of active vertices,

2. VD ⊆ V be the set of deleted vertices and WD be their total weight WD =
∑

v∈VD
w(v),

3. VF ⊆ V ′ be the set of fresh vertices and WF be their total weight, WF =
∑

v∈VF
w(v),

4. p(·) be the time for a priority queue operation,

5. m be the maximum size of the priority queue during change propagation.

The time for change propagation is

1. O (WD + WF + NA · p(m)), and

2. amortized O (WF + NA · p(m)).

Furthermore, m ≤ NA ≤WD.

Proof: Consider the change-propagation algorithm, we separate the total time for change propagation into
the following disjoint items:

I. the cost of finding the vertices to be deleted,

II. the cost of delete,

III. the cost for the iteration of the main loop of propagateLoop,

IV. the cost of calls to ccall subroutine,

V. the cost of calls to call subroutine,

VI. the cost of finding the active vertices, and

VII. the priority queue overhead.

As described in Section 6.1.2, the vertices to be deleted are found by traversing the time-interval that
contain them. This takes time proportional to the number of deleted vertices. Item I is therefore O(WD).
Since a vertex can be deleted in constant time, and the number of dependences leading into a vertex is
bounded by its execution time, Item II, the cost of delete operations, is bounded by the total the weight of
the deleted vertices O(WD). This cost excludes the priority-queue operations, which will be cumulatively
accounted for. Item III, the cost of the iteration of the change-propagation loop, is bounded by the number
of active vertices. Since each active vertex is deleted by Lemma 4, the cost for the main loop is O(WD).
The ccall subroutine creates a vertex and the time stamps for the function being executed and executes
the function call. Since vertices, and time stamps are created in constant time and each ccall creates a
fresh vertex whose weight is equal to the execution time for the function call being executed, the total time
for ccall instructions is bounded by O(WF).

To analyze the cost for call instructions, we divide the cost into three disjoint items

1. the cost for executing the function being called,

50 CHAPTER 6. DATA STRUCTURES AND ANALYSIS

2. the cost for memo lookups, and

3. the cost for finding and deleting the vertices prior to the re-used vertex.

Item 1 is the cost of performing an ordinary non-memoized call and is incurred only when a memo miss
occurs. Since each call that misses the memo creates a fresh vertex, Item 1 is bounded by O(WF). To bound
Item 2, we will consider the memo looks that miss and hit separately. The cost for the memo look ups that
miss is bounded by O(WF) because each miss performs a fresh call, and memo look ups take constant time.
Consider now a function call that is found in the memo. If the caller of this function is a fresh call, then the
cost of performing the memo lookup, which is constant, is charged to the caller. The cost for this case is
therefore bounded by expected O(WF). If the caller is the change propagation algorithm itself, then this is
an active call. Since each active call is deleted, the cost for performing the memo lookup is charged to the
cost of deleting that vertex. The cost for this case is therefore O(WD). Item 3 is bounded by O(WD) as
discusses previously (Items I and II).

To bound Item VI, the time for finding the active vertices (line 4, note that the cost of finding the active
vertices is proportional to the total number of dependences leading into them. Since this is no more than the
execution time of the active vertices, and all active vertices are deleted, Item VI is bounded by O(WD).

We bound Item VII, the time for the priority queue operations (line 2 in Figure 5.4 and line 8 in Fig-
ure 4.4), over the complete execution of change propagation. By Lemma 5, the overhead of the base priority
queue operations is O(NA · p(m)). Since the time for find-minimum operations is constant, the cost of
these operations can be charged to the cost of executing the main loop. Since the priority queue contains
distinct vertices, size of the priority queue m is bounded by NA, m ≤ NA. By Lemma 4, each active vertex
is deleted and therefore NA ≤WD.

The total time for change propagation is therefore bounded by O(WD + WF + NA · p(m)). Since
a vertex can be deleted exactly once through a sequence of change propagations, the cost of deleting a
vertex can be charged to performing the execution that created the vertex. This yields the amortized bound
O(WF + NA · p(m)).

�

Part II

Trace Stability

51

Introduction

This chapter presents an analysis technique, called trace stability, for bounding the time for memoized
change propagation under a class of input changes. Since the memoized change-propagation algorithm
is more powerful than the non-memoized change-propagation algorithm, the rest of this thesis considers
only the memoized change-propagation algorithm. For brevity, the term “change propagation” refers to
“memoized change propagation” unless otherwise stated.

Trace stability applies to a large class of computations, called monotone computations, and does not
require that programs be written in the normal-form. Most programs are either naturally monotone, or are
easily made monotone by small changes to the program. For example, all applications that we consider
in this thesis are monotone. The techniques can be generalized to arbitrary, non-monotone programs by
incurring an additional logarithmic factor slowdown.

Trace stability relies on representing a computation with a trace consisting of function calls performed
in that computation. The distance between two computations is measured as the symmetric set difference
between the sets of function calls. The chapter shows that for two computations, the change-propagation
algorithm will transform one computation to the other in time proportional to the distance between the traces
of the computations. More precisely, if the distance between the traces T and T ′ of the computations is d,
then the change-propagation algorithm requires O(d · p(m)) time for transforming one computation to the
other, where p(m) is the priority-queue overhead during change propagation with m ≤ d. Using a standard
priority queue, this yields a O(d log d) bound on change propagation. Chapter 7 makes precise the notion
of traces and proves this bound. Chapter 8 generalizes this bound for a class of input changes.

To present tight asymptotic bounds for change propagation, it is often necessary to bound the priority-
queue overhead carefully. Chapter 8 presents two techniques for this. We introduce the notion dependence
width between two computations, and show that the dependence width gives a bound on the size of the pri-
ority queue when transforming one computation to the other. By analyzing the dependence width, it is often
possible to show that the size of the priority queue, and therefore the priority-queue overhead, is constant. As
a second technique, we define a class of computations, called read-write regular, for which a constant-time
FIFO queue extended with priorities, called FIFOP queue, can be used during change propagation. Since
the data structure requires constant time per operation, the priority queue overhead for read-write regular
computations is bounded by a constant.

53

54

Chapter 7

Traces and Trace Distance

This chapter defines the notions of traces and trace distance, and presents time bounds for memoized change
propagation in terms of the distance between traces. We define the trace of a computation as the function call
tree of the computation annotated with certain information. For two traces that satisfy certain requirements,
we define the distance based on the symmetric set difference of the set of function calls of the traces.

7.1 Traces, Cognates, and Trace Distance

We define the trace of an execution (or a computation) as the ordered function-call tree of the execution,
where each function-call is tagged with certain information. Each vertex of a trace represents a function call
and each edge represents the caller-callee relationship between the parent and the child.

Definition 8 (Trace)
A trace is an ordered tree representing the function-call tree of an execution. The children of a vertex are
ordered in their execution order. Every vertex is annotated with a sequence of values that together constitute
a tag. The tag of a vertex v consists of

1. the function being called, denoted fun(v),

2. the arguments (a1, . . . , ak) to the function call, denoted args(v),

3. the tuple (a1, . . . , am) of values read in the body of the function (the value extracted not the location
being read), denoted reads(v),

4. the tuple (a1, . . . , an) of values returned to the function from its callees, denoted returns(v), and

5. the weight of the function, which is equal to its execution time (not including the running time of its
callees), denoted w(v).

Figure 7.1 shows two traces of two hypothetical executions. Each vertex is labeled with the function call
and the arguments, the reads, and the returns. For example, the root represents the call to function a with
argument 1, reads 2, and returns 3 and 4.

55

56 CHAPTER 7. TRACES AND TRACE DISTANCE

b(2),(3),(4,5)

d(5),(6),(7)c(3),(4),(5)

e(6),(7),()

f(9),(10),(11)

e(10),(11),()

a(1),(2),(3,4)

f(7),(8),(9,10)

e(8),(9),()

d(4),(5),()

d(5),(7),(7,7)

b(2),(3),(4,5)

c(3),(4),(5)

f(7),(7),(7)

d(4),(5),() g(1),(),() g(2),(),()

e(10),(),()

a(1),(2),(3,4)

�
�
�
�

�
�
�
�

Figure 7.1: Example traces.

Our analysis techniques rely on a notion of similarity and equality between function calls. We say
that two function calls are similar if they call the same function and the arguments are equal. Given two
arguments (a1, . . . , am) and (b1, . . . , bn), we say that the arguments are equal if m = n and ∀i. 1 ≤ i ≤
m.ai = bi. We determine equality of values, i.e., ai’s and bi’s, using shallow equality. Two primitive values,
such as integers, booleans, etc., are equal if they are the same value, e.g., 1 = 1, true = true. Two locations
are equal if they have the same labels. Note that, since locations are considered equal based on their labels
or addresses, two functions can be similar even if the values stored at their arguments are different. Since the
closure machine allocates locations that have the same labels at the same memory address, at the machine
level, shallow equality is the same as bit-pattern equality.

Definition 9 (Call Similarity)
The calls v and v′ are similar, denoted v ∼ v′, if

1. fun(v) = fun(v′), and

2. args(v) = args(v′).

We say that two function-calls equal if they are similar, they read the same values from the memory,
and they receive the same values from the functions that they call. As with arguments, we define equality of
returns and reads based on shallow equality.

Definition 10 (Call Equality)
Two function calls v and v′ are equal, denoted v ≡ v′, if

1. v ∼ v′,

2. reads(v) = reads(v′), and

3. returns(v) = returns(v′).

Since the arguments, the values read, and the values returned completely specify the values that the
execution of the function depends on, two equal function calls execute identically. Note that this is true only
for the part of the execution that takes place inside the body of the function—not for its subcalls.

Given two traces T and T ′, we will pair up equal vertices from T and T ′ and define the distance between
the traces as the total weight of the vertices that do not have a pair. The notion of cognates formalizes this
idea.

7.1. TRACES, COGNATES, AND TRACE DISTANCE 57

Definition 11 (Cognates)
Consider the traces T and T ′ of a program on two inputs and let V and V ′ be the set of vertices of T and T ′

respectively. A cognates, C, of T and T ′ is a relation such that

1. C ⊂ V × V ′,

2. each pair of cognates consists of equal vertices: if (v, v′) ∈ C then v ≡ v′, and

3. no vertex of V or V ′ is paired up with more than one vertex: if (v, v′1) ∈ C and (v, v′2) ∈ C, then
v′1 = v′2. Similarly if (v1, v

′) ∈ C and (v2, v
′) ∈ C, then v1 = v2.

For example, in Figure 7.1, the set of vertices with labels
{(a(1),a(1)),(b(2),b(2)),(c(3),c(3)),(d(4),d(4)),(e(10),e(10))} is a well-defined
set of cognates for the two traces.

To see how cognates formalize the notion of sharing between traces, consider two traces T and T ′ and a
cognate relation C between the vertices V and V ′ of T and T ′ respectively. Color the vertices in V and V ′

with blue, yellow, or red as follows.

Blue Vertices: The set of blue vertices B consists of vertices of T that have a cognate, B = {v | v ∈
V ∧ ∃v′. (v, v′) ∈ C}.

Yellow Vertices: The set of yellow vertices Y consists of vertices of T that have no cognates, Y = V \B.

Red Vertices: The set of red vertices R consists of vertices of T ′ that have no cognates, R = V ′ \{v′ |v′ ∈
V ′ ∧ ∃v. (v, v′) ∈ C}.

If we are given the trace T , then we can construct T ′ by deleting the yellow vertices from T , re-using the
blue vertices (of T), and creating the red vertices by executing the corresponding function calls. For exam-
ple, in Figure 7.1, the trace on the right can be obtained from the trace of the left by re-using the vertices
labeled with {a(1),b(2),c(3),d(4),e(10)}, deleting the vertices labeled with
{d(5),e(6),f(7),e(8),f(9)}, and executing the vertices labeled with {d(5),g(1),g(2),f(7)}.

Based on this re-use technique, we can obtain T ′ from T by performing work proportional to the execu-
tion time of red vertices plus the time for deleting the yellow vertices. Deleting a yellow vertex requires time
proportional to the number of edges incident to it. Since the number of edges incident on a vertex is bounded
by the weight (execution time) of the vertex, the time for deletion is upper bounded by the execution time.1

The following distance metric defines the distance between two traces based on this idea.

Definition 12 (Trace Distance)
Let T and T ′ be the traces of a program on two inputs and let V and V ′ denote the set of vertices of T and T ′

respectively. Let C ⊆ V ×V ′ be a cognate relation for V and V ′. Let Y (yellow) and R (red) be the subsets
of V and V ′ consisting of vertices that do not have cognates, i.e., Y = V \ {v | v ∈ V ∧ ∃v′. (v, v′) ∈ C},
and R = V ′ \ {v′| v′ ∈ V ′ ∧ ∃v. (v, v′) ∈ C}. The distance from T to T ′ with respect to C, denoted
δC(T, T ′) is defined as

δC(T, T ′) =
∑
v∈Y

w(v) +
∑
v′∈R

w(v′).

1This upper bound is tight for all the applications that we consider in this paper, but may not be in general.

58 CHAPTER 7. TRACES AND TRACE DISTANCE

For example, in Figure 7.1, the distance between the two traces is 9 if we assume that the each function
call has weight 1.

Since all yellow vertices are deleted exactly once, and the time for their deletion can be bounded by their
execution time, the cost of deleting yellow vertices can be amortized to the cost of creating them. Based
on this amortization, another notion of trace distance can be defined as the total weight of red vertices.
We prefer the above-defined measure, because it is symmetric and it helps present real-time, instead of
amortized, bounds.

7.2 Intrinsic (Minimum) Trace Distance

We define the intrinsic distance between two traces as the minimum distance over all possible cognates.
The intrinsic distance gives a lower bound for the technique of updating traces by re-using blue, deleting
yellow, and re-executing red vertices under the assumption that deleting a vertex takes time proportional to
its execution time. In the next section, we show that the distance between two traces is equal to the intrinsic
distance between them, if the traces are monotone. For monotone traces, we show that the time for change
propagation can be bounded as a function of the intrinsic distance between them.

Definition 13 (Intrinsic Distance and Maximal Cognates)
Let T and T ′ be the traces of a deterministic program on two inputs and let V and V ′ denote the set

of vertices of T and T ′ respectively. The intrinsic distance from T to T ′, denoted δmin(T, T ′), is equal
to the minimum distance from T to T ′ over all possible cognates between T and T ′. More precisely,
δmin(T, T ′) = minC⊆V×V δC(T, T ′). We say that a cognate relation Cmax is maximal, if δCmax(T, T ′) =
δmin(T, T ′).

Given two traces T and T ′, a maximal cognate relation can be constructed by greedily pairing equal
vertices from T and T ′. We start with an empty cognate set C = ∅, and add pairs to C by considering the
vertices of T in an arbitrary order. For each vertex v of T , we check there is any vertex v′ of T ′ that is equal
to v, v ≡ v′, and that has not yet been paired with another vertex, i.e. ∀u. (u, v) 6∈ C. If such a vertex v′

exists, we extend C with the pairing (v, v′), C ← C ∪ (v, v′). If there are multiple choices for v, we pick
one arbitrarily.

This greedy-pairing algorithm yields a maximal relation. To see this, note first that the algorithm pairs
equal vertices, and it pairs a vertex with at most one other vertex. The algorithm therefore constructs a
well-defined cognate relation. Since any vertex can have at most one cognate, the relation is maximal in
size (the number of pairs). Since all equal vertices have the same weight, the algorithms yields a maximal
cognate relation.

7.3 Monotone Traces and Change Propagation

This section presents a bound on the time for change propagation in terms of the intrinsic distance between
the traces of a computation. The bound holds only for certain computations that we call monotone. We start
by defining concise programs and monotone traces. We then prove the main theorem of this section.

7.3. MONOTONE TRACES AND CHANGE PROPAGATION 59

Definition 14 (Concise Programs)
Let P be a program and let I be the set of all inputs that are valid for P . We say that P is concise if it
satisfies the following properties:

1. all memory allocation instructions are uniquely labeled, and

2. any function call that is performed in an execution of P with any input I ∈ I is unique, i.e., for any
two function calls f(a) and f(b), of the same function f , the arguments a and b are different.

We say that the traces of a concise program are monotone, if they satisfy certain properties. Let P be
a concise program with input domain I and let T and T ′ be traces of P with two inputs from I. We say
that T and T ′ are (relatively) monotone, if the execution order, and the caller callee relationships between
similar functions are the same in both T and T ′. Formally, we define monotone traces as follows.

Definition 15 (Monotone Traces)
Let P be a concise program with input domain I and let T and T ′ be the traces of P with two inputs from I.
We say that T and T ′ are monotone if for any u and v, for which there exists two vertices u′ and v′ from T ′,
such that u ∼ u′ and v ∼ v′, the following are satisfied

1. if u comes before v in a preorder traversal of T , then u′ comes before v′ in a preorder traversal of T ′,
and

2. if u is an ancestor of v, then u′ is an ancestor of v′.

Throughout this thesis, we only compare traces belonging to the same program. For brevity, we often
omit the reference to the program.

Definition 16 (Monotone Cognates and Monotone Distance)
Consider two monotone traces T and T ′ and let V and V ′ be the set of vertices of T and T ′ respectively. The
monotone cognates of T and T ′, denoted CMonotone(T, T ′), is CMonotone(T, T ′) = {(v, v′) | v ∈ V ∧ v′ ∈
V ∧ v ≡ v′}. The monotone distance between T and T ′ is the distance with respect to monotone cognates,
i.e., δCMonotone(T,T ′)(T, T ′).

We first show that monotone cognates satisfy Definition 11 and therefore are well defined. It is easy to see
that Definition 16 satisfies the first and the second conditions of Definition 11. The third condition that no
vertex is paired with more than one vertex follows from the fact that the monotone traces consists of unique
function calls.

We show that monotone cognates are maximal and therefore the distance measure defined based on
monotone cognates is equal to the intrinsic (minimum) distance.

Theorem 17 (Monotone Cognates are Maximal)
Consider two monotone traces T and T ′. The set C of monotone-cognates of T and T ′, C = CMonotone(T, T ′)
is maximal, and the monotone distance between T and T ′ is equal to the intrinsic distance between them,
i.e., δC(T, T ′) = δmin(T, T ′).

Proof: Since T and T ′ both consist of unique function calls, each vertex v of T can have at most one
cognate in any possible cognate relation between T and T ′. The maximal cognate Cmax relation between

60 CHAPTER 7. TRACES AND TRACE DISTANCE

b(2),(3),(4,5)

d(5),(6),(7)c(3),(4),(5)

e(6),(7),()

f(9),(10),(11)

e(10),(11),()

a(1),(2),(3,4)

f(7),(8),(9,10)

e(8),(9),()

d(4),(5),()

d(5),(7),(7,7)

b(2),(3),(4,5)

c(3),(4),(5)

f(7),(7),(7)

d(4),(5),() g(1),(),() g(2),(),()

e(10),(),()

a(1),(2),(3,4)

�
�
�
�

�
�
�
�

Figure 7.2: Example monotone traces.

T and T ′ will therefore consists of all equal vertices from T and T ′. Therefore Cmax = CMonotone(T, T ′)
and the intrinsic distance is equal to the distance with respect to Cmax. �

Figure 7.2 shows a pair of traces that are monotone (this is the same example as shown in Figure 7.1). To
determine if two traces are monotone or not, it suffices to consider just the function names and arguments—
the reads and returns can be ignored. The function calls that are similar in both traces are drawn as full
circles, other function calls are drawn as empty circles. To see that the traces are monotone, it suffices
to consider the dark circles and show that they have the same ancestor-descendant, and execution order
relationships. An easy way to check for monotonicity is to check that the traces are equal when the empty
circles are contracted away.

To compute the distance between the traces shown in Figure 7.2, we ignore the structure of the traces
and compare the sets of function calls. Assuming that the weights of each function call is 1, the distance
between these traces is 9—the function call contributing to the distance are the set of calls
{d(5),e(6),f(7),e(8),f(9)} from the first trace, and {d(5),g(1),g(2),f(7)} from the sec-
ond trace, because these vertices do not have a cognate.

7.3.1 Change Propagation for Monotone Traces

This section presents a bound on the time for change propagation in terms of the distance between monotone
traces. For the analysis, we consider programs written for the closure model, called native programs, and
transform native program programs into primitive programs by applying the normal-form transformation
described in Section 3.2. This is necessary because dynamic dependence graphs and change propagation is
defined only for normal-form programs.

We use different notation for denoting trace vertices, which represent native function calls, and MDDG
vertices, which represent primitive function calls. We say that a vertex or the corresponding function call
is primitive if the vertex is created during the execution of a primitive program. Similarly, we say that a
vertex or the corresponding function call is native if the vertex is created during the execution of a native
program. We use lower case letters u, v, . . . , x’s for primitive function calls and use lower case letters with
a hat, û, v̂, . . . , x̂’s for native function calls. When not ambiguous, we use the same letter for a primitive call
and the native call (distinguished by the presence of the hat) that the primitive call belongs to.

The analysis often requires checking the similarity and equality of primitive vertices. We define similar-
ity and equality of primitive vertices the same way as native (trace) vertices.

As described in Section 3.2.1, the normal-form transformation splits a function into one primary and
a number of secondary functions. The primary function is always called via the call instruction and the

7.3. MONOTONE TRACES AND CHANGE PROPAGATION 61

c

y

u

a

z

v

d

b

u
v

Figure 7.3: The primitives of û and v̂ and their ancestors.

secondary functions are always called via the ccall instruction. It is a property of the transformation
that each native function call corresponds to one primary function call (vertex), and a number of secondary
function calls. We say that the primitive function calls belong to the native function call that they correspond
to. Section 3.2.1 describes the correspondence between native and primitive function calls and the properties
of primitive programs in more detail.

The main idea behind the proof is to show that each vertex deleted during change propagation and each
fresh vertex created during change propagation corresponds to a native function call in the trace that does
not have a cognate. We start by proving a key lemma that shows that vertices related by re-execution are
similar.

Lemma 18 (Re-Execution Yields Similar Vertices)
Let P be a concise program and G be the dynamic dependence graph of P with some input I . Consider
changing the input to I ′ and performing change propagation on G. Let G′ be the dynamic dependence graph
obtained after change propagation. Let T and T ′ be the traces of P with inputs I and I ′. Let u be a primitive
vertex that is re-executed during change propagation and let v be the vertex created by the re-execution of
u. Let û and v̂ denote the native vertices corresponding to u and v respectively. The vertices û and v̂ are
similar.

Proof: For the proof, we will consider the primitive vertices of G and G′ in relation to the native vertices
of T and T ′. Figure 7.3 illustrates the call trees of G and G′, û, v̂, and other vertices considered in the proof.

Let y and z be the primary vertices for û and v̂ respectively. By the normal-form transformation, we
know that y and û are tagged with the same function call, and that z and v̂ are tagged with the same function
call. That is, we know that y ∼ û and z ∼ v̂. To show that û ∼ v̂, we will show that y ∼ z.

Since primary vertices are never re-executed, y and u are distinct vertices, and so are v and z, i.e., u 6= y
and v 6= z. Suppose now that y or some other ancestor of u that is a descendant of y is re-executed. Since
all secondary vertices are performed via ccall instructions, and these instructions do not perform memo
lookups, the vertex u will be deleted. But then u cannot be re-executed. We therefore conclude that no
proper ancestor of u that is a descendant of y is re-executed.

Consider all the ancestors of u and v in G and G′ respectively. If none of the ancestors of u is re-
executed, then we know that all proper ancestors of u and v read the same values. Since the primary vertices
y and z are ancestors of u and v, we know that y ∼ z.

Suppose now that an ancestor of u is re-executed, and let a be the least re-executed ancestor of u and
let b be the vertex created by the re-execution of a. Since u is re-executed, some ancestor c of u is found
in the memo during the execution of b. Let d be the descendant of b that finds c in the memo. Since memo

62 CHAPTER 7. TRACES AND TRACE DISTANCE

a

u u

a

b
b

v v

Figure 7.4: The call trees of a computation before and after a change.

re-use take place between similar function calls, we know that c ∼ d. Since only primary function calls can
perform memo lookups, we know that c is an ancestor of y. Since a is the least re-executed vertex, we know
that no other vertex on the path between c and u is re-executed. Since c ∼ d, we know that the vertices on
the path from c to u are similar to the vertices from d to v. We therefore conclude that the primary vertices
y ∼ z.

�

We prove a lemma that shows that the weight of deleted and fresh vertices during change propagating
can be bounded by the total weight of the vertices of T and T ′ that do not have a cognate. Since the trace
distance is the sum of all vertices of T and T ′ that have no cognates, the main theorem follows directly from
this lemma and the change-propagation theorem (Theorem 7).

Lemma 19 (Cognates versus Fresh and Deleted Vertices)
Let P be a program and let G be the dynamic-dependence graph of P with some input I . Consider changing
the input to I ′ and performing change propagation on G. Let T and T ′ be the traces of P with inputs I and
I ′ and let V̂ and V̂ ′ be the set of vertices of T and T ′ respectively. If T and T ′ are respectively monotone,
and C is monotone-cognates of T and T ′, then

1. the total weight of the vertices deleted during change propagation, denoted WD, is no more than the
total weight of the vertices from V̂ that does not have cognate, i.e.,
WD ≤

∑
v̂∈(V̂ \{û | ∃û′. (û,û′)∈C}) w(v̂).

2. the total of the fresh vertices created during change propagation, denoted WF , is no more than then
the total weight of the vertices from V̂ ′ that does not have cognate, i.e.,
WF ≤

∑
v̂∈(V̂ ′\{û′ | ∃û. (û,û′)∈C}) w(v̂′).

Proof:
Consider two native vertices û and v̂ of T and T ′ respectively. We show that if û and v̂ are cognates,

then none of the primitive vertices that belong to û and v̂ are fresh or deleted.
The proof relies on the correspondence between the call trees of the native program P and the its normal

form Pn as described in Section 3.2.1. Figure 7.4 illustrates the call trees of G and G′ respectively and the
primitive, and native vertices defined in this proof.

Let u and v denote the primary vertices of û and v̂ respectively. There are two cases depending on
whether u has an ancestor that is re-executed.

7.3. MONOTONE TRACES AND CHANGE PROPAGATION 63

In the first case, none of the ancestors of u is re-executed. Since û ≡ v̂, none of the primitives that belong
to û are re-executed either, and thus none of the primitives of û are deleted and none of the primitives of v̂
are fresh.

In the second case, some ancestor of u is re-executed. Let a be the greatest ancestor of u that is re-
executed during change propagation and let b denote the vertex created by the re-execution of a.

Let â and b̂ denote the native vertices for a and b respectively. Since a is re-executed, the native of a, â,
and the native of b, b̂, are similar, by Lemma 18. Since the traces T and T ′ are monotone, and â ∼ b̂ and
û ∼ v̂, and â is an ancestor of û, it follows that b̂ is ancestor of v̂.

Since û ≡ v̂, and since the primaries u and v perform the same function call as û and v̂ respectively, we
know that u ∼ v. Consider the execution of b during change propagation. Since the traces are monotone, no
other primary call in the subtree rooted at b that comes before v can have a similar primary call that comes
after u in the preorder traversal. Therefore when v is executed u will be found in the memo. Since û ≡ v̂
all values read by the primitives of û are unchanged in the memory, and therefore no other secondary of û
is executed. We therefore conclude that no primitives of û are deleted, and no primitives of v̂ are fresh.

Therefore the total weight of deleted vertices is bounded by the weight of vertices of T that have no
cognates, and similarly, the total weight of fresh vertices is bounded by the weight of vertices of T ′ that
have no cognates. �

We are ready to prove the main result of this section.

Theorem 20 (Change Propagation and Trace Distance)
Let P be a program for the closure machine and let G be the dynamic dependence graph of P with some
input I . Consider changing the input to I ′ and performing change propagation. Let

1. T and T ′ be the traces of P with I and I ′ respectively,

2. m be the maximum size of the active-call queue during change propagation,

3. p(·) be the time for priority queue operations,

4. NA be the number of active vertices,

5. d = δmin(T, T ′).

If T and T ′ are respectively monotone, then the time for change-propagation is bounded by the following,

1. O(d + NA · p(m)),

2. O(d + d · p(m)),

3. O(d · p(d)).

Proof: Let WF and WX be the total weight of fresh vertices that are created during change propagation
and the total weight of vertices that are deleted during change propagation. By Lemma 19 and Defini-
tion 12, we know that WF +WO ≤ δ(T, T ′). Since the traces are monotone, we know, by Theorem 17, that
WF + WO ≤ δmin(T, T ′). The theorem follows from this inequality and from Theorem 7. �

64 CHAPTER 7. TRACES AND TRACE DISTANCE

Chapter 8

Trace Stability

This chapter formalizes the notion of trace stability. Informally, a program is said to be O(f(n))-stable for
some class of input changes ∆, if the distance between the traces for that program before and after a change
consistent with ∆ is bounded by O(f(n)). We show that if a program is O(f(n)) stable, then it self-adjusts
in O(f(n) · p(m)) time, where p(m) is the priority-queue overhead. We show that p(m) ∈ O(log f(n)),
and therefore time for change propagation is O(f(n) log f(n)).

To enable tighter bounds on the priority-queue overhead, we identify two classes of computations, called
bounded-width computations, and read-write regular computations. We show that for these computations,
the priority-queue overhead can be reduced to O(1). This yields the improved bound of O(f(n)) for change
propagation.

8.1 Trace Models, Input Changes, and Trace Stability

We define a trace model as a triple consisting of a machine model, a set of traces, and a trace generator that
maps programs and inputs to their traces. For the definition, letM denote a machine model, P be the set of
valid programs, and I the set of possible start states (inputs) for the model.

Definition 21 (Trace Model)
A trace model for a machineM consists of a set of possible traces T , a trace generator, T : P × I → T ,
that maps the set of all valid programs P and the set of all possible start states (inputs) I to traces, and a
trace distance δ(·, ·) : T × T → IN.

Given some trace model, we are interested in measuring the distance between the traces of a program
under some class of input changes. We define a class of input changes as follows.

Definition 22 (Class of Input Changes)
A class of input changes is a relation ∆, whose domain and co-domain are both the input space, i.e.,
∆ ⊆ I × I . If (I, I ′) ∈ ∆, then we say that I and I ′ are related by ∆, and that the modification of I
to I ′ is a consistent with ∆.

For the purposes of analysis, we often partition ∆ into disjoint subclasses of the same size for some
notion of size. We say that ∆ is indexed, if ∆ can be partitioned into ∆0,∆1, . . . such that ∀i, j ∈ IN. i 6=

65

66 CHAPTER 8. TRACE STABILITY

j. ∆i ∩ ∆j = ∅ and
⋃∞

i=0 ∆i = ∆. We write an indexed ∆ as ∆ = ∆0,∆1, . . ., where ∆i denotes the
ith partition. In all our uses, ∆ is partitioned and indexed according to the size of one of the two inputs.
In general, ∆ can be indexed in any way. For example, for output-sensitive programs, ∆ can be indexed
according to the size of change in the output.

As an example, consider a sorting program. For this program, we may want to consider the class of
input changes ∆ consisting of single insertions. To analyze the stability of such a program under ∆, we will
partition ∆ into ∆0,∆1, . . . indexed by the length of the first list. Assuming that the lists contain natural
numbers, the partition ∆0 is the infinite set ∆0 = {([], [0]), ([], [1]), ([], [2]), . . .}.

We define trace stability as a measure of the similarity of traces of a program on inputs related by some
class of inputs changes.

Definition 23 (Worst-Case Stability)
For a particular trace model, let P be an program, and ∆ = ∆0,∆1, . . . be an indexed class of input changes.
For all n ∈ IN, define

d(n) = max
(I,I′)∈∆n

δ(T (A, I), T (A, I ′)).

We say that P is S stable for ∆ if d(·) ∈ S.

Note that O(f(·)) stable, Ω(f(·)) stable, and {f(·)} stable are all valid uses of the stability notation.
For randomized programs, it is important to use the same random bits on inputs related by some class

of input changes—because otherwise, traces will certainly not be stable. We use Tr(P, I) to denote the
trace generator for a randomized program that uses the random bits r on input I . When analyzing stability
of randomized programs, we assume that the same random bits are used on inputs related by a class of
input changes, and take expectations over all possible choices of the random bits based on some probability
distribution on the initial random bits.

We define the expected distance between the traces of some program P on inputs I and I ′ with respect
to some probability-density function φ on the initial random bits, written Eφ[δ(T (P, I), T (P, I ′))], as

Eφ[δ(T (P, I), T (P, I ′))] =
∑

r∈{0,1}∗
δ(Tr(P, I), Tr(P, I ′)) · φ(r).

Based on this notion of expected distance, we define the expected-case stability as follows.

Definition 24 (Expected-Case Stability)
For a particular trace model, let P be a randomized program, and ∆ = ∆0,∆1, . . . be an indexed class of
input changes, and let φ(·) be a probability-density function on random bit strings {0, 1}∗. For all n ∈ IN,
define

d(n) = max
(I,I′)∈∆n

Eφ[δ(T (P, I), T (P, I ′))].

We say that P is expected S stable for ∆ and φ if d(·) ∈ S.

Note that expected O(f(·)) stable, Ω(f(·)) stable, and {f(·)}-stable are all valid uses of the stability nota-
tion.

All of our trace-stability results apply to monotone programs that are defined as follows.

8.2. BOUNDING THE PRIORITY QUEUE OVERHEAD 67

Definition 25 (Monotone programs)
We say that P is monotone with respect to some class of input changes ∆, if P is concise and if for any
(I, I ′) ∈ ∆, the traces T = T (P, I) and T ′ = T (P, I ′) are respectively monotone.

8.2 Bounding the priority queue overhead

This section presents two techniques for bounding the priority-queue overhead of change propagation.
The first technique introduces the notion of dependence width between two computations. We show

that, for monotone programs, the dependence width gives a bound on the size of the priority queue during a
change propagation. This result implies that if the dependence width of a computation is constant, then the
priority-queue overhead of that execution is constant even when using a general purpose priority-queue data
structure. Many of the applications that we consider in this thesis have constant dependence width under a
constant-size change to the input.

The second technique introduces a class of computations called read-write regular. The memory reads
and writes in a read-write-regular computation exhibit a particular structure. By exploiting this structure,
we show that it is possible to use a constant-time first-in-first-out (FIFO)-based queue for change propaga-
tion instead of a general purpose queue. Since all queue operations take constant time, the priority queue
overhead for read-write regular computations is constant.

8.2.1 Dependence width

Let P be a program and I be an input for P . We define the ordered vertex set of the execution of P with
I , denoted V (P, I) as the set of vertices in the trace of the execution T = T (P, I) ordered with respect to
their execution times. The ordering on the vertices is also given by a preorder traversal of T . For the rest of
this section, we treat V (P, I) as an ordinary set and use the terms “come after/before” when referring to the
ordering relation between the vertices.

For an execution of P with input I , we define the memory, denoted σ(P, I), as the function that maps
all locations created during the execution to their values. Given a vertex v ∈ V (P, I), we define the prefix
(memory) of a memory σ at v, denoted σv as a subset of σ, σv ⊆ σ, that consists of location value pairs
(l, a) ∈ σ, such that l is written before v starts to execute; more precisely l is written during the execution
of some vertex that comes before v.

Consider some program P that is monotone under some class of input changes ∆. Let (I, I ′) ∈ ∆, be
a pair of inputs, and define V = V (P, I), V ′ = V (P, I ′). We define the ordered set of shared vertices of
V and V ′, denoted S(V, V ′) as the set S(V, V ′) = {(v, v′) | v ∈ V ∧ v′ ∈ V ′ ∧ v ∼ v′}, where the pairs
are ordered with respect to one of their elements. That is for any pair of vertices (u, u′) ∈ S(V, V ′), and
(v, v′) ∈ S(V, V ′), (u, u′) comes before (v, v′) if u comes before v or u′ comes before v′. We call a pair
(v, v′) ∈ S(V, V ′) a shared pair, and say that each of v and v′ is shared.

Note that shared vertices are defined only for monotone programs. To see that the total order on the
shared vertices is well defined, recall that executions of monotone programs do not contain two similar
vertices, and that the relative order of similar vertices in two executions remains the same. More precisely,
since P is monotone for ∆, the set V contains no distinct vertices u, v ∈ V such that u ∼ v; the same holds
for V ′. Therefore, the shared pairs each vertex from V and V ′ with at most one other vertex. Also for any

68 CHAPTER 8. TRACE STABILITY

u, v ∈ V , u′, v′ ∈ V ′ such that u ∼ v and v ∼ v′, the ordering of u and v is the same as the ordering
of u′ and v′; if u comes before v, then u′ comes before v′. Therefore given any (u, u′) ∈ S(V, V ′) and
(v, v′) ∈ S(V, V ′), we know that either u comes before v (and u′ comes before v′), or u comes after v (and
u′ comes after v′).

For two executions, we define the set of affected locations at a shared vertex as follows.

Definition 26 (Affected Locations)
Let P be a program that is monotone for some class of input changes ∆. Consider the executions of P with
inputs I and I ′ and let V = V (P, I), V ′ = V (P, I ′), S = S(V, V ′), σ = σ(P, I), and σ′ = σ(P, I ′).
The set of affected locations at (v, v′) ∈ S(V, V ′), denoted A(σv, σ

′
v′), consists of the locations that have

different values in σv and σ′v′ , i.e., A(σv, σ
′
v′) = {l | l ∈ dom(σv) ∧ l′ ∈ dom(σ′v′) ∧ label(l) = label(l′)}.

As an example, consider the prefix memories σv = {(l1, 1), (l2, 2), (l3, 3))} and σ′v′ = {(l′1, 0), (l′2, 2), (l′3, 4))}.
Suppose that the label of li is equal to the label of l′i for i = 1, 2, 3, then the set of affected locations at v is
{l1, l3}.

Definition 27 (Active Vertices)
Let P be a monotone program for ∆ and consider the executions of P with inputs I and I ′, (I, I ′) ∈ ∆. Let
V = V (P, I) and V ′ = V (P, I ′) and S = S(V, V ′). Let (u, u′) ∈ S be a shared pair and let (v, v′) ∈ S be
the first shared pair that comes after (u, u′) in S. We say that a vertex w, w ∈ V , is active at (u, u′), if w
reads a location that is affected at (v, v′) and w comes after u.

Note that the definition is not symmetric, it is defined only with respect to the first set of vertices (V).
For two executions, we define the dependence width of a as the maximum number of active vertices over

all shared vertices.

Definition 28 (Dependence Width)
Let P be a program that is monotone for some class of input changes ∆ and consider the executions of P
with inputs I and I ′, (I, I ′) ∈ ∆. Let V = V (P, I) and V ′ = V (P, I ′). The dependence width of the
executions is the maximum number of affected vertices over all shared vertices S(V, V ′).

Consider the execution of P with I and suppose that we change the input to I ′ and perform a change
propagation. We show that the size of the priority queue during change propagation can be asymptotically
bounded by the dependence width of the executions with I and I ′.

Theorem 29 (Dependence Width and Queue Size)
Let P be a program monotone for some class of input changes ∆ and consider executing P with input
I and changing the input to I ′ and performing a change propagation. The size of the priority queue is
asymptotically bounded by the dependence with of the executions of P with I and I ′.

Proof:
Since change propagation is only defined for programs written in the normal form, we need to consider

the primitive versions of native programs. Note first that the executed alloc, write, and read operations
of a native program and its primitive are identical except for the operations that allocate, read, and write
destinations. Recall that destinations are created by the primitive programs to force all functions return their
values through memory.

8.2. BOUNDING THE PRIORITY QUEUE OVERHEAD 69

We first show that the size of the priority-queue is increased by at most a constant due to operations per-
formed on destinations. The normal-form transformation ensures that destinations 1) are read immediately
after they are written, 2) are read by one primitive function, and 3) are read exactly once. These properties
ensure that there is at most one function call that reads an affected destination, and that there is at most one
affected destination whose readers are not re-executed. The memory operations on destinations can there-
fore increase the size of the priority queue at most by one. For the rest of the proof, we therefore consider
operations performed by both the native and the primitive programs.

Since only insertions into the queue increase the size of the priority queue, we will only consider inser-
tions. For the rest of the proof, let V̂ = V (P, I), V̂ ′ = V (P, I ′), and Ŝ = S(V, V ′).

Consider the execution of a write instruction that inserts a vertex into the priority queue. Let v′ be the
vertex currently being executed and let v̂′ be the native of v′. Let (û, û′) ∈ S and (ŵ, ŵ′) ∈ S be shared
vertices such that û′ is the latest shared vertex that comes before v̂′ and ŵ′ is the first shared vertex that
comes after v̂′ such that ŵ′ 6= v̂′. Let u, u′ be the primaries of û and û′, and w,w′ be the primaries of ŵ and
ŵ′.

Consider the set of all affected locations A during the execution of the write instruction. Since v
comes before w, and since the set of affected locations grows monotonically during change propagation, we
know that A ⊆ A(σw, σ′w). Since v comes after u, and since the priority queue only contains vertices that
come after v, the vertices in the priority queue are the primitives of û or the primitives of the vertices that
come after û. Therefore, the vertices in the priority queue belong to the active vertices at (û, û′).

Since each native vertex has a constant number of primitive vertices, and since the dependence with of
the executions is defined as the maximum number of active vertices over all shared pairs in S, the lemma
follows.

�

Definition 30 (Constant-Width Programs)
Let P be a program that is monotone with respect to a class of inputs changes ∆. The program has con-
stant width for ∆, if for any (I, I ′) ∈ ∆, the dependence width of the executions of P with I and I ′ is
asymptotically bounded by a constant.

By Theorem 29, we know that the priority-queue overhead for constant-width programs is constant.

Theorem 31 (Priority-Queue Overhead for Constant-Width Programs)
Let P be a program that is monotone with respect to a class of inputs changes ∆ and suppose that P is
constant-width for ∆. The priority queue overhead of change propagation for P under ∆ is constant.

8.2.2 Read-Write Regular Computations

We show that for read-write regular computations, a O(1)-time, FIFO-like queue can be used for change
propagation instead of a general-purpose logarithmic-time priority queue.

Definition 32 (Read-Write Regular Computation)
A program P with input domain I is read-write regular for a class of input changes ∆ ⊆ I × I, if the
following conditions are satisfied:

70 CHAPTER 8. TRACE STABILITY

1. in an execution of P with any input I ∈ I, all locations are read by a constant number of times,

2. for an execution of P with any input I ∈ I, if a location l1 is written before another location l2, then
all function calls that read l1 start to execute before any function call that read l2.

3. for any (I, I ′) ∈ ∆, if l1 and l2 are locations allocated in both the executions of P with I and I ′, then
l1 and l2 are written in the same order in both executions.

For read-write regular computations, we will use a specialized version of the change-propagation algo-
rithm that inserts active function calls into the priority queue in sorted order. In particular, when a location is
changed, the algorithm will first sort all function calls that read that location and insert them into the priority
queue in that order. Since each location is read by a constant number of times, sorting the function calls
does not change the asymptotic running time.

We show that if a program is read-write regular for some class of input changes, then the specialized
change-propagation algorithm can use a constant-time priority queue. The priority queue, called FIFOP
(FIFO with Priorities), extends a standard first-in-first-out (FIFO) queue with priorities. Deletions from a
FIFOP queue only occur from the front of the queue as with FIFO queues. Insertions are slightly different.
To insert an item i, we compare the priority of i and the item f at the front of the queue. If the priority of i
is less than that of f , then i is inserted at the front. Otherwise, i is inserted at the tail of the queue.

Theorem 33 (Priority Queue Overhead for Read-Write-Regular Computations)
If a program is read-write regular for some class of input changes ∆, then the priority queue overhead for
change-propagation under ∆ is O(1).

Proof: Consider the normal form Pn of P obtained from the normal form transformation described in
Section 3.2. We will show that a FIFOP queue with priorities as time stamps suffices for change propagation
with Pn. We first show that the following invariant holds: during change propagation, the priorities of the
items in the FIFOP queue increase from the front to the tail of the queue.

The invariant holds at the beginning of change propagation, because the priority queue is initialized by
inserting the function calls reading the changed locations in sorted order. Assume now that the invariant
holds at some time during change propagation. We will show that it holds after the next remove or insert
operation. Since the remove operation deletes the item at the front of the queue, the invariant holds trivially.

For insertions, we will distinguish between two kinds of locations, destination that are allocated only by
Pn for the purposes of supporting function-call returns, and all other locations. Consider an insertion. In
change propagation, an insertion occurs only when some location, say l, is written. Let f be the front of the
queue and let t be the item at the tail of the priority queue, and let i be the item being inserted. If t and i both
read l, then l is not a destination, because destinations are read by exactly one function call. Since function
calls reading the same location are all inserted in order of their time stamps, the time stamp of i is greater
than the time stamp of t. Item i will therefore be inserted immediately after t. In this case the invariant is
satisfied. Suppose now that t and i read different location. Let l′ be the location read by t. We will consider
two cases, depending on whether l is a destination or not. If l is not destination, then we know that l′ is
written before l. Since the program is read-write regular, all read of l′ start before the reads of l. Therefore,
the time stamp of i is greater than that of t. In this case, i will be inserted at the tail of the queue, and the
invariant is satisfied. Suppose now l is a destination. Since a destination is written only at the end of some
function call, and read immediately after that function call returns, none of the reads that are currently in the

8.3. TRACE STABILITY THEOREMS 71

queue can have a time stamp that is less than that of i. Therefore, i will be inserted at the front of the queue
and the invariant is satisfied.

As a result of this invariant, we know that using this FIFOP queue instead of a general priority queue
is correct. Since all locations are read by a constant number of function calls, the change propagation algo-
rithm will be slowed down by a constant factor when using a FIFOP queue. Since inserts and removes with
FIFOP queues take constant time, the theorem follows. �

8.3 Trace Stability Theorems

This section presents two trace-stability theorems that bound the time for change propagation in terms of
the trace stability of monotone programs.

Theorem 34 (Worst-Case Trace Stability)
Consider the trace model for closure machine consisting of all set of traces and the minimum trace-distance

measure δmin(·, ·). If a program P in the closure model is monotone for a class of input changes ∆ and P is
O(f(n))-stable for ∆, then P self-adjusts for ∆ in O(f(n) log f(n)) time. In general, if the priority-queue
overhead is bounded by O(p(m)), then P self-adjusts in O(f(n) p(m)) time. If P is read-write regular, or
if P has constant-width under ∆, then P self-adjusts for ∆ in O(f(n)) time.

Proof: Consider a program P that is O(f(n)) stable for some class of input changes ∆. Let T and T ′ be
the traces of P on inputs I and I ′ where (I, I ′) ∈ ∆. Since P is O(f(n)) stable, δmin(T, T ′) ∈ O(f(n)).
The general case bound follow directly from Theorem 20 and from the fact that the priority queue overhead
is bounded by the logarithm of the size of the queue. By Theorems 31 and 33, the priority-queue overhead
for constant-width and read-write regular computations is bounded by constant. The bounds for these com-
putations is therefore equal to the stability bound itself. �

Theorem 35 (Expected-Case Trace Stability)
Consider the trace model for closure machine consisting of all set of traces and the minimum trace-distance

measure δmin(·, ·). Let P be a monotone program with respect to a class of input changes ∆. If P is
expected O(f(n)) stable for ∆ and the priority-queue overhead is bounded by O(1), then P self-adjusts
under ∆ in expected O(f(n)) time. In particular, if P is read-write regular for ∆, or if P has constant-width
under ∆, then P self-adjusts under ∆ in expected O(f(n)) time.

Proof: Consider a program P that is expected O(f(n)) stable for some class of input changes ∆. Let T and
T ′ be the traces of P on inputs I and I ′ with the same initial random bits where (I, I ′) ∈ ∆. If the priority-
queue overhead is bounded by O(1), then the time for change propagation is bounded by O(δmin(T, T ′)) by
Theorem 20. Since P is expected O(f(n)) stable, δ((, T), T ′) is expected O(f(n)), where the expectation
is taken over all initial random bit strings r. Change propagation therefore takes expected O(f(n)) time.
The special case for constant-width and read-write regular programs follows by Theorems 31 and 33. �

72 CHAPTER 8. TRACE STABILITY

Part III

Applications

73

Introduction

This chapter proves trace-stability results for a range of algorithms under insertions and deletions to their
inputs. Based on these bounds and the trace-stability theorems (Theorems 34 and 35), we obtain time
bounds for change-propagation under the considered classes of input changes. Our bounds are randomized
and match the best known bounds within an expected constant factor.

We consider a number of algorithms on lists including combining of data in a list with an arbitrary as-
sociative operator, the merge sort and quick sort algorithms, and the Graham’s Scan algorithm for planar
convex hulls. In Chapter 9, we study the list algorithms. As an algorithm on trees, we consider, in Chap-
ter 10, tree-contraction algorithm of Miller and Reif [62, 63]. To show the effectiveness of the technique, we
choose algorithms that span a number of design paradigms including random sampling (list combination),
two forms of divide and conquer (merge sort and quick sort), incremental result construction (the Graham’s
Scan algorithm), and bottom-up, data-parallel computing (tree-contraction).

75

76

Chapter 9

Algorithms on Lists: Combining, Sorting,
and Convex Hulls

This chapter considers a number of algorithms on lists including an algorithm for combining the values in
a list with an arbitrary associative operator (Section 9.1), merge sort (Section 9.2), quick sort (Section 9.3),
and the Graham’s Scan algorithm for convex hulls (Section 9.4). For each considered algorithm, we show
a bound that is within an expected constant factor of the best known upper bound for the corresponding
problem.

9.1 Combining with an Arbitrary Associative Operator

We consider combining the elements of a list using any associative operator. We do not require commu-
tativity or an inverse. In addition to the obvious operators such as addition and maximum, combining can
be used for many other applications including finding the longest increasing sequence or evaluating a linear
recurrence.

Scanning the list from the head is not stable because inserting an element anywhere near the front of the
list can propagate through all the rest of the partial sums. Building a tree will alleviate this problem, but it
is important that the tree structure is balanced and stable with respect to insertions and deletions to arbitrary
positions in the list. Any deterministic method for building the tree based on just list position is not going
to be stable—a single insert can change everyone’s position. Instead we use a randomized approach.

The code for the approach is shown in Figure 9.1. It is based on a function HalfList which takes a
list of pairs consisting of a value and a key, and returns a list of key-value pairs which is expected to be half
as long. We assume that the keys are unique. For each key in the input, HalfList flips an unbiased coin
an keeps the key if the coin comes up heads. The value of a kept key is the partial sum of all input keys
from the kept element up to, but not including, the next kept key. To account for keys up to the first kept
key, HalfList also returns the partial sums of those keys. HalfList is applied repeatedly in Combine
until the list is empty.

To generate random coin flips, the code uses a family H of random-hash functions. The family H is a
collection of 2-wise independent hash functions mapping the identifiers to {0,1}. We randomly select one

77

78 CHAPTER 9. LIST ALGORITHMS

function Combine (l, round)
case ∗l of

nil =>
return Identity

| cons(,) =>
(v, l′)← HalfList(l, round)
v′ ← Combine(l′, round + 1)
return (v + v′)

function HalfList(l, round) =
case ∗l of

nil =>
return (Identity, l)

| cons((key, v), t) =>
(v′, t′)← HalfList(t, round)
if binaryHash(key, round) = 1

l′ ← allocate{key, round}(3)
∗l′ ← cons((key, v + v′), t′)
return l′

else
return (v + v′, t′)

Figure 9.1: Combining with the associative operator + and with identity element Identity.

member of H per round. Since there are families H with |H| polynomial in n [97], we need O(log2 n)
random bits. We analyze trace stability assuming fixed selection of random bits and take expectations over
all selections of bits. For fixed random bits, the algorithm will generate the same coin flip on round r for
any key k in any two executions. This ensures that the trace remains stable in different executions.

9.1.1 Analysis

Consider the class of single insertions or deletions, denoted ∆, to be the pair of inputs that differ by a single
insertion or deletion. We show that the algorithm is expected O(log n)-stable for ∆ where the expectation
is over the initial randomness.

To simplify the analysis and to establish an analogy to skip lists [82], we consider a slightly different
version of the Combine function. We assume that the input list contains a head item that initially contains
the identity element. We refer to this cell and its copies as the sentinel. The modified Combine functions
calls HalfList with the tail of the first cell and adds the value returned by HalfList to the value stored
in the sentinel. No modifications are required to HalfList. The modified Combine code is shown below.

9.1. COMBINING WITH AN ARBITRARY ASSOCIATIVE OPERATOR 79

c 5 d 3b 8 g 9a 0

a 0 g 15

g 15

g 20

a 38

a 18

b 18

b 13 d 3 e 2

e 2

a 0

h 6 i 4

4

5

1

1

i

i

j

j

c 5 d 3b 8 g 9a 0

a 0 g 15

g 15

g 20

a 45

a 25

b 13 d 3 e 2 f 7

f 7e 2

b 25a 0

6 4

4

5

h i

i

i

1

1

j

j

Figure 9.2: The lists at each round before and after inserting the key f with value 7.

function Combine(cons((key, v), t), round)
case (∗t) of

nil => return
| cons(,) =>

(v′, t′)← HalfList(t, round)
Combine(cons((key, v + v′), t′), round + 1)
return

As an example, Figure 9.2 shows an execution of Combine with the lists
[(a, 0), (b, 8), (c, 5), (d, 3), (e, 2), (g, 9), (h, 6), (i, 4), (j, 1)], and
[(a, 0), (b, 8), (c, 5), (d, 3), (e, 2), (f ,7), (g, 9), (h, 6), (i, 4), (j, 1)], which differ by the key f , with value 7.
The keys are a, . . . , k. The head of both lists is the sentinel cell with key a.

The trace for the algorithm consists of calls to Combine and HalfList. Recall that the calls are
tagged with the arguments, the values read, and value returned from subcalls. The calls to Combine are
tagged with the round number, the value of the first key, the second key (if any), and the value and the list
returned from the call to HalfList. The second key is needed because the tail is labeled with that key.
The calls to HalfList are tagged with the round number, first cell in the input, and the value and the list
returned from the recursive call.

Theorem 36
The combine application is monotone for single insertions and deletions.

Proof: First note that all memory allocations are labeled. Since all calls to HalfList take the round
number as an argument and the list, and since the list cells are labeled with the key of the first cell, calls
to HalfList are unique. Calls to Combine are also unique, because Combine is called exactly once in

80 CHAPTER 9. LIST ALGORITHMS

each round, and each call to Combine takes the round number as an argument. The program is therefore
concise.

For the monotonicity of execution order, and calling relationships, we consider the calls to Combine
and HalfList separately. Since Combine calls HalfList deterministically exactly once in each round,
the interaction between the two obeys the monotonicity requirements.

Both the calling order and the caller-callee relationships between HalfList calls in each round are
determined by the ordering of keys in the input list. Since a single insertion/deletion does not alter the
relative order of existing keys, the calls to HalfList satisfy monotonicity properties. Note that calls to
HalfList that occur in two different rounds are independent. The calling-order and the caller-callee rela-
tionship between calls to Combine are determined by the round numbers and therefore satisfy monotonicity
properties. �

For our analysis, we consider insertions only. Since the application is monotone, the bound for insertions
and deletions are the same. To analyze the stability of Combine, we consider executing Combine with an
input I with n keys and I ′ that is obtained from I by inserting a new key α∗, and count the number of calls
to Combine and HalfList that do not have a cognate.

Throughout the analysis, we denote the executions with I and I ′ as X and X ′ respectively. We denote
the number of rounds in X and X ′ as R and R′ respectively. Given some round r, we denote the input list
to that round in X and X ′ as Ir and I ′r respectively. We first show a property of the lists in each round.

Lemma 37 (Lists differ by at most α∗)
The execution X and X ′ satisfy the following properties.

1. R ≤ R′,

2. for any round r ≤ R, I ′r consists of the same keys as Ir plus perhaps α∗, and

3. for any round R < r ≤ R′, the input I ′r consists of the sentinel and perhaps α∗.

Proof: Whether a key is kept at one round is determined entirely by the key and by the random hash
function being used. Since the executions X and X ′ are performed with the same initial randomness, any
key α will see the same random bits in both executions. Therefore, the lists Ir and I ′r will only differ by the
newly inserted key α∗, for any r ≤ R. Therefore R ≤ R′. Since all keys from I will be deleted at the end
of round R, the lists I ′r will consists of the sentinel key and perhaps α∗, if α∗ has not yet been deleted. �
For example in Figure 9.2, the lists in each round contain the same keys except for the key f .

We show that the distance between the traces of X and X ′ can be determined by counting the number
of affected keys.

Definition 38 (Affected Keys)
We say that a key α is affected at round r, if α is in at least one of Ir or I ′r in that round, and any one of the
following hold

1. α is affected at some previous round,

2. α = α∗ or α comes immediately before α∗ in I ′r,

9.1. COMBINING WITH AN ARBITRARY ASSOCIATIVE OPERATOR 81

3. the key β that comes immediately after α in Ir and I ′r is affected, and β is deleted in round r.

4. α is the sentinel key and r > R.

Note that the third possibility is well defined because if β 6= α∗, then β is the same in both Ir and I ′r and
since the decision to delete β is made solely on the round number, it will either be deleted (or not deleted) in
both executions. In the example shown in Figure 9.2, the cells containing the affected keys are highlighted.

We show that if a key has two different values in two executions, then it is affected.

Lemma 39 (Affected Keys and Values)
If α is a key that is in both Ir and I ′r, and the values of α in the two lists are different, then α is affected at
round r.

Proof: The proof is by induction on the number of rounds. The lemma holds trivially in the first round, be-
cause all keys that are present in both input lists have the same values. Suppose now the lemma holds at some
round r−1 > 1 and consider round r. Let α be some key that is present in both lists Ir and I ′r with different
values. If this is not the first round in which the values of α differ, then by the induction hypothesis, α is
affected at some previous, and therefore, at this round. Suppose that this is the first round in which the values
of α differ. Consider the set of key β1 . . . βm in Ir that come after α and that are deleted in X , and β′1 . . . β′n
in I ′r that come after α and deleted in X ′. Note that, by Lemma 37, {β′1, . . . , β′n} \ {β1, . . . , βm} ⊆ {α∗}.
Since the values assigned to α are determined by the sum of these values, the two sums must differ. There-
fore, β′n = α, the value associated with βi for some i is different in Ir and I ′r. In both cases α is affected at
round r by Definition 38. �

Lemma 40 (Affected Keys and Trace Distance)
Consider the traces of Combine, T and T ′, with the input lists I and I ′, where I ′ is obtained from I by

inserting some key α∗. The monotone distance between T and T ′, δmin(T, T ′), is bounded by the total
number of affected vertices summed over all rounds.

Proof: Since the traces are monotone, δmin(T, T ′) is equal to the number of calls from T and T ′ that do
not have a cognate in the other trace. To bound this quantity, we will consider the executions X and X ′ of
Combine with I and I ′ respectively, and show that each call without a cognate is uniquely associated with
an affected key. We will consider the calls to Combine and HalfList separately. For the proof, let R
and R′ denote the number of rounds in X and X ′ respectively.

Consider the calls to Combine. Recall that the calls to Combine are tagged with the round number, the
value of the first key, the second key (if any), and the value and the list returned from the call to HalfList.
Consider a call to Combine that does not have a cognate, and let r be the round of this call. We will show
that the sentinel (first) key is affected in this round. If r > R then, this holds trivially by Definition 38.
Suppose that r ≤ R and assume that the sentinel is not affected. By Lemma 39, the values of the sentinels
are the same in both Ir and I ′r, and, by Definition 38, the keys β and β′ that come after the sentinel in Ir

and I ′r respectively are the same. Furthermore, β is either not deleted, or it is not affected at round r. If
β is not deleted, then the call will be returned the identity value and the same lists in both X and X ′. The
calls to Combine will therefore be cognates. If β is deleted, then β is not affected. We therefore know that
all deleted keys that contribute to the value returned by β are not affected. In this case too, the call will be

82 CHAPTER 9. LIST ALGORITHMS

returned the same value and the same list in X and X ′ and the call are cognates. In both cases, we reach a
contradiction. Therefore we conclude that the sentinel is affected in round r.

Consider the calls to HalfList. Recall that the calls are tagged with the round number, first cell in
the input, and the value and the list returned from the recursive call. Consider a call to HalfList that
does not have a cognate and let r be the round of this call and α be the first key. We will show that α is
affected in round r. Assume, for the purposes of contradiction, that α is not affected. Since α is not affected,
α 6= α∗, and the values of α in Ir and I ′r are the same, and the keys next to α in both lists are the same key
β. Furthermore, β is either not deleted in both X and X ′, or it is not affected. If β is not deleted, then α
will be returned the same value and the same result cell, and thus the call to HalfList in two executions
will be cognates. Suppose that β is deleted. Since we know that β is not affected, we know that all deleted
keys that contribute to the value returned to β are the not affected. Since unaffected keys have the same
values, α will be returned the same value. Since a key that immediately precedes α∗ is affected, α will also
be returned the same cell. We conclude that the calls to HalfList with key α are cognates. In both cases,
we reach a contradiction. We therefore conclude that α is affected. �

Based on the definition of affected keys, it can be shown that the number of affected keys after a single
insertion is bounded by O(log n). In fact, we set up the algorithms so that there is an isomorphism between
the lists from each round and the skip-lists data structure [82]. In particular, if the key α∗ is inserted into list
l, then the set of affected keys is the same as the keys that are compared to α∗ when performing an insertion
into the skip lists data structure that contains the keys in l. Since, in skip lists, insertion time is bounded by
expected O(log n), we have the following theorem.

Theorem 41 (Stability of Combine)
The Combine code is O(log n) stable with respect to insertions or deletions in the input list.

To obtain a complexity bound on change-propagation all that remains is to bound the priority-queue
overhead. This is straightforward, because the algorithm is read-write regular—each location is read at
most once and if a location is written before another, then all its reads are performed before the other.
By Theorem 35, it follows that the function Combine self-adjusts to any insertion/deletion in expected
O(log n) time.

Theorem 42 (Self-Adjusting List Combine)
The Combine code self-adjust to insertions/deletions in expected O(log n) time.

9.2 Merge sort

We consider a randomized version of the merge sort algorithm, and analyze its stability. The deterministic
merge sort algorithm splits its input list evenly in the middle into two sublists, recursively sorts the sublists,
and merges them. This is not stable, however, because inserting/deleting a key from the input can change
the input to both recursive calls due to deterministic splitting. We therefore consider a randomized version
that splits the input by randomly deciding which list each key should be placed.

The code for merge sort with randomized splitting is shown in Figure 9.3. The function Split splits
a list into two lists by randomly deciding the lists that each key should be placed. For randomization, the

9.2. MERGE SORT 83

function Split(c) =
case c of

nil => return (nil, nil)
| cons(h, t) =>

(left, right)← Split(∗t)
new ← alloc{c}(2)
if binaryHash(h) then
∗new ← left
return (cons(h, new), right)

else
∗new ← right
return (left, cons(h, new))

function Merge(ca, cb) =
case (ca, cb) of

(nil,) => return cb
| (, nil) => return ca
| (cons(ha, ta), cons(hb, tb)) =>

t← alloc{ha, hb}(2)
if ha < hb then
∗t← Merge(∗ta, cons(hb, tb))
return cons(ha, t)

else
∗t← Merge(cons(ha, ta), ∗tb)
return (cons(hb, t))

function MSort(c) =
if length(c) < 2 then

return c
else

(ca, cb) = Split(c)
return (Merge(MSort(ca), MSort(cb)))

Figure 9.3: Merge Sort

function relies on a family H of pairwise independent binary hash functions. We select one member of
the family for each round (recursion depth of MSort). Since there are families H with |H| polynomial in
n [97], we need O(log2 n) random bits in expectation. The merge function takes two lists and merges them
in the standard manner.

9.2.1 Analysis

Consider the class of single insertions or deletions, denoted ∆, to be the pair of inputs that differ by a
single insertion or deletion. We will show that the merge sort algorithm is expected O(log n)-stable for ∆
where the expectation is over all initial random bits used to select the random hash functions for randomized
splitting.

84 CHAPTER 9. LIST ALGORITHMS

The trace for merge sort consists of calls to MSort, Merge and Split. Each call to MSort is tagged
with the first cell of the input and the two cells returned by the subcall to Split. Each call to Merge is
tagged with the first cells of the two inputs, and first cell of the sorted list returned by the recursive call. Note
that the reads of the tails do not contribute to the tag, because the read values are only passed to a subcall.
The calls to Split are tagged with the first cell of the input and the two cells returned by the recursive call.
Note that reading the tail does not contribute to the tag because the read value is only passed to the recursive
call.

Since none of the functions are called on the same list cell(s) more than once, the algorithm is concise.
It is also straightforward to show that merge sort is monotone for ∆ based on the following properties
1) the execution order of calls to Split are determined by the order of keys in the input list,
2) the execution order of calls to Merge are determined by the sorted order of keys in the input list, and
3) the execution order of calls to MSort is determined by the recursion level and the order of keys in the
input.

Since both Merge and Split are singly-recursive function calls, the caller-callee relationships are
determined by their execution order. Since one insertion/deletion into/from the input does not swap the
locations of two keys in the input, the calls to Merge and Split satisfy the monotonicity requirements.
Inserting/deleting one key may introduce one new call to MSort at each level without swapping the order
of calls along any recursive calls path. Since one insertion/deletion does not change the relative execution
order of other keys, the calls to MSort satisfy the monotonicity requirements. The merge sort application
is therefore monotone for one insertion/deletion.

Since merge sort is monotone, stability bounds with respect to insertions and deletions are symmetric.
We will therefore consider insertions only. For the rest of this section, consider two lists I and I ′, where I ′

is obtained from I by inserting α∗. Let X and X ′ denote the executions, and T and T ′ denote the traces of
merge sort with I and I ′ respectively.

For the analysis, we will divide the execution into rounds based on the recursion level of the MSort calls.
The first round corresponds to the top call to MSort and contains the top-level call to Split and Merge.
The second level corresponds to the two recursive calls of the top-level MSort and the corresponding calls
to Split and Merge. For each round, we show that the number of function calls without cognates is
constant in expectation.

Consider calls to Split in X and X ′. The key α∗ is the first cell of one call to Split in each round.
Furthermore α∗ is returned to an expected two calls in each round. All the other call have the same tags.
Therefore calls to Split contribute an expected three to the trace distance in each round. Consider calls
to MSort. Since MSort is called at once with a list that contains α∗ in each round, call to MSort add at
most one per round to the distance between T and T ′. Since the expected number of rounds in both X and
X ′ is O(log n) where n is the number of keys in I , the calls to Split and MSort contribute O(log n) to
the trace distance.

We show that the contributions of calls to Merge at each round is also expected constant. Consider
some call to Merge that does not have a cognate. There are several possibilities to consider. One is that
the arguments to Merge are different. In this case, the cells are either created by a Merge function that
performs a comparison that takes place only in one execution, or the cells themselves contain keys that
have never been compared. In this case, we charge this cognate to the comparison. In the second case,
the call is returned a list that is different than before. This means that either the recursive call performs a

9.3. QUICK SORT 85

comparison that take place only in the one execution or it callee does. In this case too, we charge the cognate
to the comparison. Since each Merge performs one comparison and allocates one cell, each comparison is
charged a constant number of times. To analyze the stability of Merge, it suffices to count the number of
comparisons that differ in X and X ′. We first show the key sampling lemma behind the analysis.

Lemma 43
Consider merging two sorted lists that are sampled randomly from a list by flipping a coin for each key
and putting together the keys with the same outcome. The expected number of comparisons that a key is
involved in is 2.

Proof: Since input lists to merge are selected randomly, each key is equally likely to be placed in either of
the inputs to merge. Fix some input list to merge and let k be in the list and let k′ be its predecessor. The
expected number of keys in the sorted output list between k and k′ is 1 (since all keys in between must be
selected to the other list). Therefore, the expected number of times that k is compared is 2. �

Since the inputs I and I ′ differ by a single key, and since each key is input to exactly one Merge call
in each round, the number of comparisons that differ between the two executions is expected constant per
round. Since the expected number of rounds is O(log n) in the size of the input, the comparisons differ
by expected O(log n) between X and X ′. Therefore, the calls to Merge contribute O(log n) to the trace
distance.

Theorem 44 (Merge Sort Stability)
Merge sort with randomized splitting of lists is expected O(log n) stable for the class of single inser-
tion/deletion to/from the input list.

Based on the facts that (1) a single insertion/deletion changes the output of Split and the output of
Merge at a single location by inserting/deleting a key, and (2) each location is read at most two times, we
can show that merge sort has constant-width for one insertion/deletion. By Theorem 35, the stability bound
yields an equivalent time bound.

Theorem 45 (Self-Adjusting Merge sort)
Merge sort with randomized splitting self-adjusts to insertions/deletions anywhere in the input in expected
O(log n) time.

9.3 Quick Sort

We consider one of the many variants of quick sort on a list. It uses the first key of the input as pivot and
avoids appends by passing a sorted tail in an accumulator. We note that many other variants would work,
including using the last pivot, or a maximal priority element as the pivot. Using the middle element as a
pivot would not work since this is not stable—randomly inserting an element has a constant probability
of changing it. Figure 9.4 shows the code for the version that we consider. The argument rest is the
accumulator for the sorted tail, and the location dest is where the result will be stored (the destination).

86 CHAPTER 9. LIST ALGORITHMS

function Split(c, p, rest, dest)
case c of

nil => (nil, nil)
| cons(h, t) =>

(ca, cb)← Split(∗t, p, rest, dest)
l← allocate{v, p}(2)
if h < p then
∗l← ca
return (cons(h, l), cb)

else
∗l← cb
return (ca, cons(h, l))

function QSort(c, rest, dest)
case c of

nil => ∗dest← rest
| cons(h, t) =>

(ca, cb)← Split(c, p, rest, dest)
mid← allocate{h}(2)
QSort(cb, mid, rest)
QSort(ca, cons(h, mid), dest)

Figure 9.4: The code for quick sort

c

b

m

f

i

l

g

h

a n v

t

u

o s

rp

q

c

b

m

v

tn

i

l

hg

fa

u

o

s

r

p

Figure 9.5: Pivot trees for quick sort before and after the deletion of q.

9.3.1 Analysis

Consider the class of single insertions or deletions, denoted ∆, to be the pair of inputs that differ by a single
insertion or deletion. We will show that quick sort is expected O(log n)-stable for ∆ where the expectation
is over all permutations of the input.

The analysis relies on an isomorphism between quick sort and random search trees, such as Treaps [90].
Consider the call-tree formed by executed QSort calls and label each vertex (call) with the pivot of that
call, we call this the pivot tree of the execution. It is a property of quick sort that the pivot tree is isomorphic
to the binary search tree obtained by starting with an empty tree and inserting the keys in the order specified

9.3. QUICK SORT 87

by the input list. The pivot tree therefore is isomorphic to the treap obtained by assigning each key a priority
that is equal to its position in the input. Figure 9.5 shows the pivot trees for the executions of quick sort with
inputs [m,q, s, c, v, u, f, o, n, b, r, a, p, g, h, t, l, u] and [m, s, c, v, u, f, o, n, b, r, a, p, g, h, t, l, u].

For the rest of this section, consider the executions X and X ′ of QSort with inputs I and I ′, where I ′

is obtained from I by deleting the some key α∗. Let P and P ′ denote the pivot trees for quick sort.
We start by showing that the pivot trees P and P ′ are related by a zip operation. For a pivot tree P and

a node α in P , we define the left spine of α as the rightmost path of the subtree rooted at the left child of α.
We define the right spine of the α as the leftmost path of the subtree rooted at the right child of α. In the
example shown in Figure 9.5, the left spine of q contains the vertices o, p and the right spine of q contains
the vertices s, r. To zip a tree at the vertex α, we replace the subtree rooted at α, with the tree obtained by
merging the subtrees Pl and Pr rooted at the left and the right children of α. We merge Pl and Pr by creating
a path consisting of the vertices of the left and the right spines of α in their input order and connecting the
remaining subtrees to this path. For example, zipping the tree on the left shown in Figure 9.5 at q yields the
tree on the right, assuming that the keys are inserted in the following relative order: [s, o, r, q].

Given the pivot tree P , we say that a key α is a secondary key if α is on the left or the right spine of α∗.
We say that a key α is affected, if α is a primary or a secondary key. We say that a key is unaffected if it is
not affected. For example, in Figure 9.5, the affected keys are m, q, o, p, s, r, the primary keys consists of
m and q, and the secondary keys consist of o, p, s, r.

Given an execution of QSort and the pivot tree P for the execution, we associate an interval with each
key. Let α be a key in P and let Π be the path from α to the root of P . Let α1 be the least key in p whose
right child is on Π or −∞ if no such α1 exists, and let α2 be the least key in p whose left child is on Π or
+∞, if no such α2 exists. We define the execution interval of α to be the pair (α1, α2). As an example,
consider the tree on the left in Figure 9.5, the execution interval of p is (o, q), the execution interval of i is
(c,m), and the execution interval of a, is (−∞, b).

The trace of quick sort consists of calls to QSort and Split. The arguments to QSort contribute to
the tag the first cell of the input list, the first cell of the sorted accumulator list (rest), and the destination
location. The returns contribute to the tag the first cells of the splits lists. For the calls to Split, the
arguments contribute the first cell of the input, the pivot, the first cell of the accumulator, and the destination.
Returns contribute the two cells returned by the recursive call. Since the value read is only passed to a
recursive call, it is redundant, and therefore does not contribute to the tag.

We show a lemma that establishes a connection between affected vertices and function calls.

Lemma 46 (Affected Keys and Function Calls)
Let v be a QSort call in T and let α be the pivot of that call. Let v′ be a QSort call in T ′ with pivot α.
Let w1 . . . wm and w′

1, . . . , wr be the recursive calls to Split starting at v and v′ respectively. If α is not
affected, then v ≡ v′ and m = r and wi = w′

i for all 1 ≤ i ≤ m.
If α is a primary key and α 6= α∗, then r = m + 1 and all but a expected five of the calls wi, 1 ≤ i ≤ m

and w′
i, 1 ≤ i ≤ r have cognates. Furthermore if α 6= α∗ and α is not the parent of α∗, then v = v′.

Proof:
Let P and P ′ be the pivot trees for X and X ′. Recall that P ′ is obtained from P by applying the zip

operation. The zip operation ensures that 1) all subtrees of P and P ′ except for those rooted at affected
vertices are identical, and 2) the parents of an unaffected key are the same in both P and P ′.

88 CHAPTER 9. LIST ALGORITHMS

We will consider the two cases separately.

α is not affected: By the property 1, we know that the input lists to v and v′ consists of the same keys. By
property 2, we know that the lists are in fact identical because the tags of input cells are determined
by the parent and the keys in the input. We conclude that the input lists to v and v′ are identical,
i.e., consists of equal cells; and therefore the cells returned to them by subcalls to Split are also
identical.

To show that the destinations and first cells of the accumulators of v and v′ are equal, we will show
that α has the same execution interval in P and P ′. It is a property of the algorithm that the execution
intervals determine these two arguments. We will consider two cases. Consider the case where α is
not descendant of α∗ in P . In this case, the paths from α to the root of P , and from α to the root of
P ′ are identical. Therefore, the execution intervals of α are the same in both P and P ′. Suppose now
that α is a descendant of α∗ in P and let β be the least affected key that is an ancestor of α. We will
consider two symmetric cases. Consider the first case, where β is on the left spine. Let (α1, α2) be
the execution interval of α in P . We know that α2 is a descendant of β, and α1 is either a descendant
of α, or an ancestor of α∗, or −∞. For example, in Figure 9.5, if α = n, then α1 = m and α2 = o.
Consider P ′ and let (α′1, α

′
2) be the execution interval of α in P ′. Recall that P ′ is obtained from P

by zipping P at α∗, and the zip operation merges the left and the right spines, and leaves the subtrees
hanging of the spines intact. Since all the keys in the right spine are bigger than the keys in the left
spine, when the two spines are merged, their only child on the merged path would be a left child.
Therefore α1 = α′1 and α′2 = α2. The case for when β is on the right spine is symmetric.

Since all arguments to v and v′ are the same, and since the input lists are identical, the recursive calls
to Split are equal.

α is a primary key and α 6= α∗: Since α is a proper ancestor of α∗, α has the same execution interval
with respect to both P and P ′. We therefore conclude that the destination and the first cell of the
accumulator are the same for both v and v′. Furthermore, we know that v and v′ have the same pivot.
If α is not the parent of α∗, then α∗ is not the first or the second key in the input list, and therefore,
the first cell of the inputs to v and v′ are the same and thus v ≡ v′. Furthermore, the cells returned by
Split are also the same.

Since the input to v and v′ differ only by α∗, and since α∗ is the first key in one call to Split, and is
expected to be the first key in two calls to Split, all but five (2+2+1) of the recursive calls to Split
have cognates.

�

A key property of the algorithm is that the calls to QSort and Split in T whose pivots include a
secondary key or the key α∗, do not have a similar call in T ′. This is because the calls in T have α∗ in their
execution interval and therefore either their destination or the accumulator is determined by α∗. Since α∗

is not present in T ′, none of these calls have a similar function call in T ′. By inspecting the pivot trees P
and P ′ it is easy to see that for all other calls, the execution order and the caller-callee relationships remain
the same in both T and T ′. Since the quick sort algorithm is concise, we conclude that it is monotone for a
single insertion/deletion.

9.3. QUICK SORT 89

To analyze the stability of QSort, we will compare the set of function calls performed before and after
an insertion/deletion. We perform the analysis in two steps. First, we show that quick sort is expected
O(n) stable for the deletion of the first key in the input. For this bound, expectations are taken over all
permutations of the input. Second, we show that quick sort is expected O(log n) stable for a deletion at a
position that is uniformly randomly selected. For this bound the expectation is over all permutations of the
input list as well as over all possible deletion positions. Note these bounds only depend on the position of
the deleted key but not on the key itself.

Lemma 47
Quick sort is O(n)-stable for an insertion/deletion to/from the head of the input list with n keys.

Proof:
Since quick sort is monotone, insertions and deletions are symmetric. Therefore we shall consider only

deletions. Let I be an input list and let α∗ be the fist key of I , i.e. I = α∗ :: I ′. Let I ′ be the list obtained
by deleting α∗. Let P and P ′ denote the pivot trees with I and I ′ respectively and let T and T ′ be the traces
with I and I ′ respectively. Note that P ′ is obtained from P by zipping P at α∗.

By Lemma 46, we know that all calls to QSort and Split whose pivots are not affected equal. Since
quick sort is monotone, all these calls also have cognates and therefore they do not contribute to the trace
distance. We therefore need to consider the calls whose pivots are affected.

Since the deleted key α∗ is at the root of the tree, there are no primary keys. Consider now the calls
associated with secondary keys—the keys that are on the left and the right spine of α∗ (in P). The total
number of calls to QSort along the left and right spine of α∗ are expected to be logarithmic in the size of
the input because the depth of the Quick sort pivot tree is expected logarithmic (over all permutations of the
input). The total number of calls to Split associated with a key is the size of the subtree rooted at that key.
To bound the number of calls associated with the secondary keys, we show that the total size of the subtrees
along the any path in the tree starting at the root is linear in the size of the input.

Consider the sizes of subtrees for the vertices on a path and define the random variables X1 . . . Xk such
that Xi is the least number of vertices down the spine for which the subtree size becomes

(
3
4

)i
n or less after

it first becomes
(

3
4

)(i−1)
n or less. We have k ≤ dlog4/3 ne and the sum of the sizes of the subtree along the

path is

C(n) ≤
dlog4/3 ne∑

i=1

Xi

(
3
4

)i−1

n.

Since the probability that a key on the path has rank between 1/4m and 3/4m where m is the size of the
subtree at that key is 1

2 , E[Xi] ≤ 2 for i ≥ 1. We therefore have

E[C(n)] ≤
dlog4/3 ne∑

i=1

E[Xi]
(

3
4

)i−1

n

≤
dlog4/3 ne∑

i=1

2
(

3
4

)i−1

n.

90 CHAPTER 9. LIST ALGORITHMS

Thus, E[C(n)] = O(n). This argument applies to the left and the right spine of the α∗, and also the path
obtained by merging them. Since each call to Split and QSort takes constant time excluding the time
spent in other calls, each call has constant weight. We conclude that quick sort is O(n) stable for inser-
tions/deletions into/from the head of the input list. �

Lemma 48
Quick sort is expected

1. O(log n) stable for any deletion from the input list, where expectations is taken over all permutations
of the input, and

2. O(log n) stable for an insertion at a uniformly randomly chosen position in the input list, where
expectations is taken over all permutations of the input as well and the insertion positions, and

Proof:
Since Quick sort is monotone, insertions and deletions are symmetric. We will therefore consider dele-

tions only. Let I be a list and let α∗ be some key in I . Let I ′ be the list obtained after deleting α∗ from I .
Let P be the pivot tree for I . Let m be the size of the subtree of P rooted at α∗. Let P ′ be the pivot tree
obtained by zipping P at α∗. We know that the tree P ′ corresponds to an execution of quick sort with the
list I ′.

To show the lemma, we will consider the function calls whose pivots are in the subtree of α∗, and the
calls whose pivots are not in the subtree separately.

For keys in the subtree of α∗, we will take expectations over all permutations of I for which the subtree
of α∗ has size m. We will invoke Lemma 47 and show that the distance between the traces of quick sort
before and after the deletion of α∗ is bounded by O(m). To invoke the lemma, we must take care that the
expectations are taken appropriately. Let A be the set of affected keys and consider all permutations of I , for
which the subtree of α∗ consists only of the keys in A. By Lemma 47, the trace difference for the calls with
affected pivots is O(m). Consider now all permutation of I for which the subtree of α∗ has exactly m keys,
by applying Lemma 47 to each affected set, we know that the trace distance due to affected calls is O(m).
Over all permutations of I , the size of the subtree rooted at α∗ is O(log n) [90]. We therefore conclude that
the trace distance due to affected calls is O(log n).

Consider now the calls whose pivots are not in the subtree rooted at α∗. By Lemma 46, we know that
all calls whose pivots are the same unaffected key in T and T ′ are equal. Since quick sort is monotone
these calls have cognates and do not contribute to the trace distance. Consider now the calls whose pivots
are primary keys. By Lemma 46, these calls add an expected O(log n) to the trace distance. We therefore
conclude that the trace distance is bounded by O(log n). �

By combining Lemma 47 and Lemma 48 we have the following stability for quick sort.

Theorem 49 (Stability of Quick Sort)
Quick sort is

1. expected O(n) stable for insertions/deletions at the beginning of the input,

9.4. GRAHAM’S SCAN 91

2. expected O(log n) stable insertions/deletions at a uniformly random position in the input.

To give a tight bound for change propagation with quick sort, we will make a small change to the
code to bound the dependence width by a constant. Instead of having Split allocate locations based on
comparisons, we will have Split allocate locations based on the locations along with the prev and next
arguments. This will ensure that locations allocated by the secondary vertices before and during change
propagation are disjoint. Based on this fact that and the fact that a single insertion/deletion changes the
output of Split at a single location by inserting/deleting a key, it is straightforward to show that the quick
sort algorithm has constant-width for insertions/deletions. This modification does not change the stability
bound. We therefore have the following complexity bound for self-adjusting quick sort.

Theorem 50 (Self-Adjusting Quick Sort)
Quick sort self-adjusts to an

1. insertion/deletion the beginning of the input in expected O(n) time,

2. insertion/deletion at a uniformly random position in expected O(log n) time.

All expectations are taken over all permutation of the input as well as internal randomization (but not only
the values inserted).

9.4 Graham’s Scan

As an example of an incremental algorithm that builds its output by inserting each input one by one, we
consider the Graham’s Scan algorithm [42] for computing the convex hulls in the plane. For the sake of
simplicity, we only consider finding the upper hull. Since the lower hull can be computed using the same
algorithm with after negating the outcome of line-side tests, this assumption causes no loss of generality.
Figure 9.6 shows the code for the algorithm. The algorithm first sorts the input points from left to right
(in order of their x coordinates, with ties broken in by comparing the y coordinates). The algorithm then
constructs the hull by incrementally inserting each point to the current hull h, which start out empty. The
hull is represented as a list of points from ordered right to left.

We assume that points are in general position (no three points are collinear). Since any two points can
be connected by a line, the general-position assumption implies that the points are unique. To simplify the
terminology and the different cases that arise during the analysis, we will assume that the first point of the
input is a special point pmin. We define pmin to be the leftmost point; and any point is to the right of a
line that contains pmin. This assumption causes no loss of generality, because comparison functions can be
extended to check for the special point with constant time overhead. The true convex hull can be obtained
by removing pmin from the output in constant time.

9.4.1 Analysis

Since we analyze sorting algorithms separately in the previous two sections, we shall assume, for the anal-
ysis, that the input is sorted, and all changes obey the sorted ordering. Consider the class of single inser-
tions/deletions, denoted ∆, to be the pair of inputs sorted from left to right that differ by a single insertion

92 CHAPTER 9. LIST ALGORITHMS

function Insert(p, c) =
case c of

nil =>
return c

| cons(a, ta) =>
case (∗ta) of

nil =>
t← allocate{p}(2)
∗t← c
return cons(p, t)

| cons(b, tb) =>
if leftTurn(p, a, b) then

return Insert (p, cons(b, tb))
else

t← allocate{p}(2)
∗t← c
return cons(p, t)

function Scan(cl, ch)
case cl of

nil => return ch
| cons(p, t) =>

Scan(∗t,Insert(p, ch))

function GrahamScan(l) =
ls← Sort(l)
return Scan(ls, nil)

Figure 9.6: Code for Graham’s Scan.

or deletion. We will show an input sensitive bound on the stability of the algorithm for ∆. Based on this
bound, we will show an O(1) expected stability bound, where expectations are taken over all positions of
the insertion or deletion.

Given two points a and b, we denote the (infinite) line passing through a and b as
→
ab, and the line segment

from a to b as ab. For a line l, we define the upper half plane Ul as the set of points that are above (or to the
left of) the line l. We say that a point p sees some line segment ab, if p is to the left of the line segment ab,
i.e., p ∈ U→

ab
. If p sees ab, then we say that ab is visible from p.

We start by stating a known property of convex hulls. The lemma is stated only for insertions but it holds
for deletions by symmetry.

Lemma 51
Consider a list of points I and let H be the convex hull of I . Let I ′ be a list obtained from I inserting the
single point p∗. The convex hull H ′ of I ′ can be obtained from H be inserting p∗ into H in the correct
left-to-right order and deleting all line segments of H that are visible from p∗. Any point in H ′ except for
p∗ is in the hull H .

9.4. GRAHAM’S SCAN 93

p*

c

b
hgf

ed
a

i

j

Figure 9.7: Inserting p∗ into the hull.

As an example, consider Figure 9.7. The initial hull H is [c, a, d, e, f, g, h, b, i, j] and the hull after inserting
p∗ is [c, a, p∗, b, i, j]. Inserting p∗ removes the points d, e, f, g, h and inserts p∗.

All comparisons performed by GrahamScan involve a point and a line segment. More specifically,
the algorithm compares the point p currently being inserted to all segments on the convex hull from right
to left until it finds a segment that is not visible from p. We distinguish between two types of comparisons
performed by GrahamScan. The first type involves a line segment on the hull and a point that sees that
segment. The second type of comparison involves a point p and a line segment ab that is not visible from p.
This type of comparison arises when ab is the rightmost line segment in the hull when p is being inserted,
but p does not see ab; or when p see the line segment bc to the right of ab but does not see ab. We say that a
point p probes the line segment ab if it is compared to ab but does not see it. For example in Figure 9.7, the
hull consists of the points [c, a, d, e] when p∗ is being inserted, and p∗ sees the segments ad, de and probes
ca.

Consider executions X and X ′ of Graham’s Scan algorithm with some input I and with I ′ where I ′ is
obtained from I by inserting the point p∗. Let C and C ′ denote the set of comparisons (line-side tests) per-
formed in X and X ′. We bound the symmetric set difference between C and C ′ based on an input-sensitive
cost metric. Given an input and any point p in the input, we define the cost of p, denoted degree(p) as the
total number of comparisons (line-side tests) that involves p in a from-scratch execution of GrahamScan
with I . The value degree(p) is bounded by the total number calls to Insertwith p plus the number of calls
to Insert at which p appears as the first point of the hull. We show that GrahamScan is O(degree(p∗))
stable for insertion/deletion of p∗.

Lemma 52
The following properties hold between probing comparisons.

1. If p probes the line segment de in X ′ where d 6= p∗ and e 6= p∗, and p 6= p∗, then p probes de in X .

2. If p probes the line segment de in X but not in X ′, then there is some point a to the left of e or a = e,
such that p probes ap∗ or p∗a.

Proof: Let Hp and H ′
p be the convex hulls consisting of the points to the left of p in I and I ′ respectively.

We consider the two properties separately.

94 CHAPTER 9. LIST ALGORITHMS

p b*
U

U
ef

a
b

p*

c

d e
gf

h

i

j

U
de

U
ap*

Figure 9.8: The half planes defined by
→
de,

→
ap∗,

→
ef , and

→
p∗b.

Consider the first property. If p is to the left of p∗, Hp and H ′
p are identical and the property holds

trivially. Suppose that p is to the right of p∗. We consider the cases where p may probe de separately. In the
first case de is the rightmost segment of the H ′

p. By Lemma 51, de is also the rightmost segment of Hp, and
therefore p probes de. In the second case, there is some segment ef that is visible to p. We have two cases.
In the first case, f 6= p∗, and therefore, both de and ef are in Hp and thus p probes de. In the second case,
f = p∗. Let dk be a line segment in Hp. If dk exists, then we know, by Lemma 51 that p∗ sees dk. Since p
sees dp∗, we know that p sees dk and therefore p probes cd in X . In all cases, p probes de in X .

Consider the second property. If p is to the left of p∗ and p probes de in X ′, then p will probe de in X
because the hulls Hp and H ′

p are identical. Suppose now that p is to the right of p∗. If de is the rightmost
segment in Hp, then p∗ is the rightmost point in H ′

p. In this case, p will probe the rightmost segment ap∗,
and the property holds. Suppose now that de is not the rightmost segment and let ef be a segment in Hp.
In this case, we know, by Lemma 51, that de or ef (or both) are buried by p∗. If ef is not buried, we know
that de is buried. In this case, p will probe either dp∗ or p∗e, (pick a = d or a = e). Suppose now that ef is
buried. Let ap∗ and p∗b denote the line segments in H ′

p with end points p∗. Since pmin is the always in the
H ′

p, a exists. Note that, if p sees ap∗, then p will see de, because the part of the half plane U →
ap∗

to the right
of b is contained in the part of the halfplane U→

de
to the right of b (see Figure 9.8). Since p does not see de, p

does not see ap∗. We have two cases depending on whether b exists or not.

p∗b exists. We know that p sees p∗b, because, as shown in Figure 9.8, the subset of U→
ef

consisting of the

points to the right of b is a subset of U →
p∗b

. Therefore p sees p∗b and will be compared to ap∗. Since p

does not see ap∗, p probes ap∗ and therefore the property holds.

p∗b does not exist. In this case, only ap∗ exists and p∗ is the rightmost point to the left of p. Therefore p
will be compared to ap∗. Since p does not see ap∗, p probes ap∗ and therefore the property holds.

�

9.4. GRAHAM’S SCAN 95

Lemma 53
Consider executions X and X ′ of Graham’s Scan algorithm with some input I and with I ′ where I ′ is
obtained from I by inserting the point p∗. Let C and C ′ denote the set of comparisons (line-side tests)
performed in X and X ′. The number of comparisons in the symmetric difference between C and C ′,
|(C \ C ′) ∪ (C ′ \ C)| is bounded by 2degree(p∗).

Proof: We consider the sets C \C ′ and C ′ \C separately and show that the size of each set is bounded by
degree(p∗). Let p be a point and let de be a line segment that is involved in a comparison from C −C ′. Let
Hp denote the hull immediately before the insertion of p in X and let H ′

p be the hull immediately before the
inserting of p in X ′. We have two cases depending on whether p sees or probes de.

1. p sees de. By Lemma 51, de is in H ′
p unless it is buried by p∗. Since p does not see de in X ′, de

is buried by p∗. Therefore, de is compared to p∗. We charge the comparison between p and de to
the comparison between de and p∗. Since de is deleted from the hull by p, there is no other point p′

that sees de in X . Therefore the comparison between p∗ and de is charged once by all non-probing
comparisons.

2. p probes de. By Lemma 52, we know that there is some point a such that p probes ap∗. In this case,
we charge the comparison between p and de to the comparisons between p and ap∗. Since p performs
exactly one probing comparison in both X and X ′, the comparison between p and ap∗ is charged to
at most once.

In the first case, we are able to charge one non-probing comparison from C\C ′ to a non-probing comparison
involving p∗ such that each non-probing comparison involving p∗ is charged at most once. In the second
case, we are able to charge one probing comparison from C \C ′ to a probing comparison involving p∗ such
that each probing comparison involving p∗ is charged at most once. We therefore conclude that |C \ C ′| ≤
degree(p∗).

Let p be a point and let de be a line segment on the hull that is involved in a comparison from C ′ \ C.
We have two cases depending on whether p sees or probes de. If p sees de in X ′, then either e or e is
p∗—because otherwise de is also in the hull by Lemma 51 and therefore p will see de in X . In the second
cases, p probes de. By Lemma 52, we know that either e or e is equal to p∗. Therefore the total number of
comparisons in C ′ \ C is bounded by degree(p∗), i.e. |C \ C ′| ≤ degree(p∗).

We conclude that |(C \ C ′) ∪ (C ′ \ C)| ≤ 2degree(p∗)|.
�

The trace of the Graham Scan algorithm consists of a call to GrahamScan at the root and a chain of
calls to Scan, one for each point in the input. Each call to Scan starts a chain of calls to Insert, one
for each point removed from the hull. Each call to Scan is tagged with the vertex being inserted into the
hull, and each call to Insert is tagged with the point being inserted and the rightmost point of the hull.
Therefore both the execution order and the caller-callee relationships between function calls is determined
by the ordering of the points in the sorted input, and the hull. Since inserting/deleting one point into/from
the input does not exchange the order of points in the sorted input or in the hull (which is always a sublist
of the input points), we have the following theorem.

96 CHAPTER 9. LIST ALGORITHMS

Theorem 54
The Graham’s Scan algorithm is monotone with respect to single insertions/deletions into/from the input.

Since the algorithms is monotone, insertions and deletions are symmetric, and the trace distance can be
measured by comparing the sets of function calls.

Theorem 55
The Graham’s Scan algorithm for finding planar convex hulls is O(degree(p∗)) stable for insertion/deletion
of a point p∗.

Proof: Since insertions and deletions are symmetric for monotone programs, we will only consider inser-
tions. Consider inserting the point p∗ to the input I to obtain the input I ′. Let C and C ′ denote the set of
line-side test performed by an execution of GrahamScan with I and I ′.

Since GrahamScan is called exactly once in each execution, it contributes zero to the trace distance.
Since Scan is called exactly once for each input point it contributes a constant to the distance. For calls
to Insert, note that each insert will be tagged with the points that are involved in the line-side test being
performed. Since all memory allocated based on the points, the quantity |(C \ C ′) ∪ (C ′ \ C)| bounds the
number of calls to Insert with no cognates. Since |(C \ C ′) ∪ (C ′ \ C)| ≤ 2degree(p∗), we conclude
that the algorithm is O(degree(P ∗) stable for insertions/deletions. �

This together with Theorem 34 gives us the following bound on the change-propagation time for Graham
Scan.

Theorem 56
Graham Scan algorithm updates its output in O(degree(p∗) log degree(p∗)) time after the insertion/deletion
of the point p∗.

Since each call to Insert either inserts a point to the current hull or deletes a point from the current
hull, the total number of call to Insert is 2n. Since line-side tests are performed only by Insert, the
total number of line-side tests is bounded by 2n. Since each line-side test involves three points, the sum of
the degree(·)’s for all points is no more than 6n. The graham-scan algorithm is therefore expected constant
stable for the deletion of a uniformly chosen point from the input. Same bound applies to an insertion when
taking expectations over all points in the input. Since the degree of a point is bounded by n, we have the
following theorem.

Theorem 57 (Self-Adjusting Graham’s Scan)
The Graham’s Scan algorithm is expected O(1)-stable for a uniformly random deletion/insertion into a list
with n points, and handles an insertion/deletion in expected O(log n) time.

Recall that self-adjusting sorting requires expected O(log n) time. Since a single insertion/deletions
changes the output of the sort by one key, the two algorithms when combined yield an expected O(log n)-
time self-adjusting convex-hull algorithm.

Chapter 10

Tree Contraction and Dynamic Trees

This chapter shows that the randomized tree contraction algorithm of Miller and Reif is expected O(log n)
stable [62]. The self-adjusting tree-contraction solves a generalization of the Sleator and Tarjan’s dynamic-
trees problem in expected O(log n) time [91, 92]. Section 10.1 describes tree contraction and how it can
be implemented. Section 10.3 proves the expected O(log n) stability bound for tree contraction for edge
insertions/deletions.

10.1 Tree Contraction

The tree-contraction algorithm of Miller and Reif takes a t-ary forest, F , and contracts each tree in the
forest to a single vertex in a number of rounds. In each round, each tree is contracted by applying the rake
and compress operations. The rake operations delete all leaves of the tree (if the tree is a single edge, then
only one leaf is deleted). The compress operations delete an independent set of degree-two vertices. By an
independent set, we mean a set of vertices none of which are adjacent to each other. All rake and compress
operations within a round are local and are applied “in parallel”—all decisions are based on the state when
the round starts. The algorithm terminates when no edges remain.

Various versions of tree contraction have been proposed depending on how they select the independent
set of degree-two vertices to compress. There are two basic approaches, one deterministic and the other
randomized. We use a randomized version. In randomized tree contraction, each vertex flips a coin in each
round and a degree-two vertex is compressed if it flips a head, its two neighbors both flip tails, and neither
neighbor is a leaf. This compress rule is a slight generalization of the original rule by Miller and Reif [62],
which only applies to rooted trees.

Using tree contraction the programmer can perform various computations on trees by associating data
with edges and vertices and defining how data is accumulated during rake and compress [62, 64]. In Chap-
ter 17, we consider a broad range of applications that are considered in the context of the dynamic-trees
problem [91, 38, 96, 46, 11, 5, 95], and show how they can be computed by using rake and compress opera-
tions. Since the rake and compress operations are entirely determined by the structure of the tree and not the
data we assume, for this section, that trees come with no associated data. Due to the orthogonality between
rake/compress operations and the data operations, all results hold in the presence of data.

97

98 CHAPTER 10. TREE CONTRACTION

Tree Contract MR (Vs, Es)
while Es 6= ∅ do

(Vt, Et)← CreateForest(Vs, Es)
for each v ∈ Vs do

Contract(v, (Vs, Es), (Vt, Et))
Vs ← Vt

Es ← Et

Contract(v, (Vs, Es), (Vt, Et))
if degree(v) = 1 then

// rake
(u, v) ∈ Es

if degree(u) > 1 or u > v then
DeleteNode(v, (Vs, Es), (Vt, Et))

else
CopyNode(v, (Vs, Es), (Vt, Et))

else if degree(v) = 2 then
// compress
(u, v) ∈ E ∧ (w, v) ∈ E
if degree(u) > 1 and degree(w) > 1 and flips(u, v, w) = (T, H, T) then

DeleteNode(v, (Vs, Es), (Vt, Et))
ut = next(u)
wt = next(w)
Et ← Et ∪ {(ut, wt)}

else
CopyNode(v, (Vs, Es), (Vt, Et))

else
CopyNode(v, (Vs, Es), (Vt, Et))

CreateForest((Vs, Es))
(Vt, Et)← (∅, ∅)
for ∀v ∈ Vs do

u← new node
Vt ← Vt ∪ {u}
next(v)← u

CopyNode(v, (Vs, Es), (Vt, Et))
vt ← next(v)
for ∀(u, v) ∈ Es do

ut ← next(u)
Et ← Et ∪ {(ut, vt)}

DeleteNode(v, (Vs, Es), (Vt, Et))
vt ← next(v)
Vt ← Vt \ {vt}
for ∀(ut, vt) ∈ Et do

Et ← Et \ {(ut, vt)}

Figure 10.1: Randomized tree-contraction algorithm of Miller and Reif.

10.2. SELF-ADJUSTING TREE CONTRACTION 99

Figure 10.1 shows the pseudo-code for a sequential version of the randomized tree contraction algorithm
of Miller Reif. The algorithm takes a source forest (Vs, Es) and contracts the forest into a forest consisting
of disconnected vertices in a number of round. In each round, the algorithm creates an empty target forest
(Vt, Et) by copying each vertex in the source forest. The next function maps each vertex to its copy in
the next round. Initially the target forest contains no edges. The algorithm then contracts each vertex by
calling Contract. The Contract function processes the vertex v based on its degree. If v has degree
one, then it may be raked, if it has degree two, then it may be compressed. When a vertex is not raked or
compressed, it is copied to the target forest by calling CopyNode function. This function inserts the edges
between the vertex and all its neighbors in the target forest. During a rake or compress, a vertex is deleted
by DeleteNode function. This function deletes all the edges incident on the vertex from the target forest.

degree(v) = 1: The algorithm checks if the neighbor u of v has degree one. If not, then v is raked from
the target forest. If the u has degree one, then v is raked if it is greater than u (we assume an arbitrary
total order on the vertices). If v is not raked, then it is copied to the next round.

degree(v) = 2: The algorithm checks the degrees of the neighbors, u and w, of v. If u and w both have
degree two or more, and the they both flips tails and v flips heads, then the algorithm compresses v by
deleting it from the target forest and inserting an edge between u and w. If v is not compressed, then
it is copied to the next round.

degree(v) > 2: In this case, v is copied to the next round.

Miller and Reif originally studied tree contraction in the context of parallel computation for directed
trees. The code presented here is a sequential version of their algorithm extended to support undirected
trees. To make sure that every location is written at most once, the pseudo-code considered here makes
a copy of the forest at each round. All decisions on the rake and compress operations at some round are
performed “in parallel” based on the forest at the beginning of that round.

Miller and Reif showed that their algorithm for rooted trees requires an expected logarithmic number of
rounds and linear work. The key theorem behind these bounds shows that a constant fraction of all vertices
is deleted in each round with high probability [63, 62]. These theorems are easily extended to the slight
generalization of the compress rule presented here by only modifying the constant factors.

10.2 Self-Adjusting Tree Contraction

This section describes an implementation of the tree-contraction algorithm in the closure model, by specify-
ing data structures for the pseudo code presented in Figure 10.1. The main data structure is an adjacency-list
representation for forests, where a forest is represented as a list of vertices. Each vertex maintains its neigh-
bors, an array of pointers to the adjacent vertices, its degree, a pointer next to its copy in the next round, a
deleted flag, a unique identity (an integer), and a round number. Each element of the neighbor array of v
consists of a pointer to a neighbor u and an integer, called backIndex equal to the index (position) of the of
the neighbor pointer from u to v.

Figure 10.2 shows the tree-contraction algorithm on the closure model. The algorithm specializes the
algorithm given in Figure 10.1 with the adjacency-list representation. The algorithm repeatedly applies the

100 CHAPTER 10. TREE CONTRACTION

function Tree Contract (cs)
if HasEdges(cs, false) then

ct ← CreateForest(ct)
ContractAll(cs)
Tree Contract(ct)

else return cs

function ContractAll (c)
case a of

nil => return
| cons(v, t) => Contract(v); ContractAll(∗t)

function Contract(v)
if degree(v) = 1 then // rake

[(u,)]← GetNeighbors(v)
if degree(u) > 1 or id(u) > id(v) then deleted(next(v))← true
else CopyVertex(v, next(v), 0)

else if degree(v) = 2 then // compress
[(u, i uv), (w, i wv)]← GetNeighbors(v)
if degree(u) > 1 and degree(w) > 1 and flips(u, v, w) = (T, H, T) then

deleted(next(v))← true
neighbors(u)[i uv]← (w, i wv), neighbors(w)[i wv]← (u, i uv)

else CopyVertex(v, next(v), 0)

else CopyVertex(v, next(v), 0)

function HasEdges(c, flag) =
case c of

nil => return flag
| cons(v, t) => if degree(v) > 0 then HasEdges(∗t, true)

else HasEdges(∗t, f lag)

function CreateForest(c) =
case c of

nil => return nil
| cons(v, t) =>

cc← CreateForest(∗t)
if deleted(v) then return cc
else l← alloc[id(v), round(v)](1), ∗l← cc

u← EmptyVertex(id(v))
round(u)← round(v) + 1
next(v)← u
return cons(u, l)

function CopyVertex(v, vt, i) =
if (i < max degree) then

CopyVertex (v, vt, i + 1)
if neighbor(v)[i] 6= null then

(pu, i uv)← neighbor(v)[i]
ut ← next(∗pu)
neighbor(ut)[i uv]← (vt, i)

Figure 10.2: Randomized tree-contraction in the closure model.

10.3. TRACE STABILITY 101

hasEdges

createForest

contractAll

contract

getNeighbors copyVertex

treeContract

Figure 10.3: An example trace of tree-contraction at some round.

function Contract to each vertex in rounds until the forest reduces to a disconnected set of vertices. The
function HasEdges determines if there are any edges in the forest.

Each round creates an empty target forest of disconnected vertices and applies Contract to each vertex
in the source. The Contract function first checks the degree of the vertex. If the vertex can be raked or
compressed, then the deleted flag of its copy is set to true. If the vertex is to be compressed, then an edge
is inserted between the neighbors of the compressed vertex. If the vertex is not raked or compressed, then
it is copied to the target forest by calling the CopyVertex function. The CopyVertex function copies a
vertex v by walking over the neighbors of v and making the copies of each neighbor point to the copy of v.
For the purposes of brevity, the code does not show how the degree is computed. The degree is computed by
the CopyVertex function while copying the neighbors. For each neighbor, the function checks if it will
be raked in the next round—this is determined by checking the degree of the vertex and its id—and subtract
one from the current degree for each raked neighbor.

To ensure that each location is written at most once, the code relies on a liveness flag. When a vertex
is raked or compressed, its copy in the target forest is marked deleted by setting its deleted flag to true,
instead of removing the vertex from the target. Removing the vertex from the target would have required
writing tail element of the preceding vertex for a second time. Deleted vertices are removed from the forest
by not copying them when creating the target forest.

To generate random coin flips, we use a family H of 3-wise independent hash functions mapping
{1 . . . n} to {0,1}. We randomly select one member of H per round. Since there are families H with
|H| polynomial in n [97], we need O(log2 n) random bits in expectation. As discussed in Section 8.1 we
analyze trace stability assuming fixed selection of random bits and take expectations over all selections of
bits. For fixed random bits, vertex i will generate the same coin flip on round j for any input. This ensures
that the trace remains stable in different executions.

10.3 Trace Stability

This section shows that the tree-contraction algorithm is expected O(log n) stable for single edge inser-
tions/deletions.

We partition the trace into rounds. Each round consists of a sequence of calls to hasEdges function
followed by a possibly empty sequence of calls to createForest and contractAll functions. Each

102 CHAPTER 10. TREE CONTRACTION

call to contractAll performs a single call to contract. Each call to contract performs at most one
call to getNeighbors and at most one call to copyVertex. Figure 10.3 shows an hypothetical traces of
tree contraction at some round where the forest contains ten vertices. In the figure, the vertices representing
the calls to copyVertex represent a constant number of recursive calls to this function—the number of
calls is determined by the maximum degree that each vertex may have.

The tree-contraction algorithm allocates all memory locations using unique labels based on the identity
of the vertex being considered and its round number. Since each function call takes as argument the vertex
or a list cell that contains a vertex, and since each function call is called on a vertex in each round at most
once, the algorithm is concise. To see that the algorithm is monotone, note that the list of vertices input to
some round is a sublist of the vertices in the previous round. Furthermore, a single insertion or deletion of
an edge does not exchange the order of vertices in the original inputs lists. It is straightforward to show that
the algorithm is monotone for single insertions and deletions based on these two facts.

Theorem 58
The tree-contraction algorithm is monotone for the class of single edge insertions/deletions.

Consider a forest F = (V,E) with n vertices and execute tree-contraction on F . We identify vertices
by their identities—two vertices are considered the same if they have the same identity. We denote the
contracted forest at round i as F i = (V i, Ei). Throughout this section, the term “at round i” means, “at
the beginning of round i” We say that a vertex v is live at round i, if v ∈ V i. A vertex is live at round i, if it
has not been deleted (compressed or raked) in some previous round. We define the configuration of a vertex
v at round i ≥ 1

κ i
F (v) =

{
{(u, σ(u)) | (v, u) ∈ Ei} v ∈ V i

deleted v 6∈ V i

Here σ(u) is the singleton status of vertex u. The singleton status of a vertex at some round is true if the
vertex has degree one at that round and false otherwise.

The motivation behind defining the configuration of a vertex is to measure the distance between two
trace by comparing the configurations of vertices. The configuration of a vertex v is defined to be a superset
of the tags of all function calls where v is passed as an argument or is stored in the first cell of the adjacency
list. Since the tree-contraction is monotone and every function call in the trace has constant weight (takes
constant time to execute), to measure the trace distance, it suffices to count the number of traces whose
configurations differ in two contractions.

Consider some forest G = (V,E \ {(u, v)}) obtained from F by deleting the edge (u, v) and let XF

and XG be the contraction with F and G respectively. By a contraction, we mean an execution of the tree-
contraction algorithm on some forest. Let TF and TG be traces for the contractions XF and XG. Define the
set of vertices V of F and G as V = {v1, . . . , vn}. The distance between TF and TG is within a constant
factor of the difference betweenXF andXG, that is δ(TF , TG) = O

(∑k log n
i=1

∑n
j=1 neq(κ i

F (vj), κ i
G(vj))

)
,

where neq(·, ·) is one if the configurations are not equal and zero otherwise. To bound the trace distance it,
therefore, suffices to count the places where two configurations do not match in XF and XG.

We say that a vertex v becomes affected in round i, if i is the earliest round for which κ i+1
F (v) 6=

κ i+1
G (v). Once a vertex becomes affected, it remains affected in any subsequent round. Only input changes

will make a vertex affected at round one. We say that a vertex v is a frontier at round i, if v is affected

10.3. TRACE STABILITY 103

and is adjacent to a unaffected vertex at round i. We denote the set of affected vertices at round i as Ai—
note that Ai includes all affected vertices live or deleted. For any A ⊆ Ai, we denote the forests induced
by A on F i and Gi as F i

A and Gi
A respectively. Since all deleted vertices have the same configuration

δ(TF , TG) = O
(∑k log n

i=1 |F i
Ai |+ |Gi

Ai |
)

.

An affected component at round i, ACi is defined as a maximal set satisfying (1) ACi ⊆ Ai, and (2)
F i
ACi and Gi

ACi are trees.

To prove that tree contraction is expected O(log n) stable we will show that the expected size of F i
Ai

and Gi
Ai is constant at any round i. The first lemma establishes two useful properties that we use throughout

the analysis.

Lemma 59
(1) A frontier is live and is adjacent to the same set of unaffected vertices at any round i in both XF and XG.
(2) If a vertex becomes affected in any round i, then it is either adjacent to a frontier or it has neighbor that
is adjacent to a frontier at that round.

Proof: The first property follows from the facts that (A) a frontier is adjacent to a unaffected vertex at that
round, and (B) unaffected vertices have the same configuration in both XF and XG. For the second property,
consider some vertex v that is unaffected at round i. If v’s neighbors are all unaffected, then v’s neighbors
at round i + 1 will be the same in both XF and XG. Thus, if v becomes affected in some round, then either
it is adjacent to an affected vertex u, or v has neighbor u whose singleton status differs in XF and XG in
round (i + 1), which can happen only if u is adjacent to an affected vertex. �

We now partition Ai into two affected components ACi
u and ACi

v, Ai = ACi
u ∪ ACi

v, such that Gi
Ai =

Gi
ACi

u
∪Gi

ACi
v

and F i
Ai = F i

ACi
u∪ACi

v
. Affected components correspond to the end-points of the deleted edge

(u, v). Note Gi
ACi

u
and Gi

ACi
v

are disconnected.

Lemma 60
At round one, each of AC1

u and AC1
v contain at most two vertices and at most one frontier.

Proof: Deletion of (u, v) makes u and v affected. If u does not become a leaf, then its neighbors remain
unaffected. If u becomes a leaf, then its neighbor u′ (if it exists) becomes affected. Since u and v are not
connected in G, the set {u} or if u′ is also affected {u, u′} is an affected component, this set will be AC1

u.
Either u or if u′ exists, then u′ may be a frontier. The set AC1

v is built by a similar argument. �

Lemma 61
Assume that ACi

u and ACi
v are the only affected components in round i. There are exactly two affected

components in round i + 1, ACi+1
u and ACi+1

v .

Proof: By Lemma 59, we consider vertices that become affected due to each frontier. Let U and V
be the set of vertices that become affected due to a frontier in ACi

u and ACi
v respectively and define

ACi+1
u = ACi

u ∪U and ACi+1
v = ACi

v ∪ V . This accounts for all affected vertices Ai+1 = Ai ∪U ∪ V . By
Lemma 59 the vertices of U and V are connected to some frontier by a path. Since tree-contraction preserves

104 CHAPTER 10. TREE CONTRACTION

connectivity, F i+1
ACi+1

u
, F i+1

ACi+1
v

and Gi+1
ACi+1

u
, Gi+1

ACi+1
v

are trees, and Gi+1
ACi+1

u
, Gi+1

ACi+1
v

remain disconnected. �

By induction on i, using Lemmas 60 and 61, the number of affected components is exactly two. We now
show that each affected component has at most two frontiers. The argument applies to both components,
thus we consider some affected component AC.

Lemma 62
Suppose there is exactly one frontier in ACi. At most two vertices become affected in round i due to
contraction of vertices in ACi and there are at most two frontiers in ACi+1.

Proof: Let x be the sole frontier at round i. Since x is adjacent to a unaffected vertex, it has degree at
least one. Furthermore x cannot have degree one, because otherwise its leaf status would be different in two
contraction making its neighbor affected. Thus x has degree two or greater.

Suppose that x is compressed in round i in XF or XG. Then x has at most two unaffected neighbors
y and z, which may become affected. Since x is compressed, y will have degree at least one after the
compress, and thus no (unaffected) neighbor of y will become affected. Same argument holds for z. Now
suppose that x is not deleted in either XF or XG. If x does not become a leaf, then no vertices become
affected. If x becomes a leaf, then it has at most one unaffected neighbor, which may become affected.
Thus, at most two vertices become affected or frontier. �

Lemma 63
Suppose there are exactly two frontiers in ACi. At most two vertices become affected in round i due to the
contraction of vertices in ACi and there are at most two frontiers in ACi+1.

Proof: Let x and y be two frontiers. Since x and y are in the same affected component, they are connected
by a path of affected vertices and each is also adjacent to a unaffected vertex. Thus each has degree at least
two in both contractions at round i. Assume that x is compressed in either contraction. Then x has at most
one unaffected neighbor w, which may become affected. Since w has degree at least one after the compress,
no (unaffected) neighbor of w will become affected. If x is not deleted in either contraction, then no vertices
will become affected, because x cannot become a leaf—a path to y remains, because y cannot be raked.
Therefore, at most one vertex will become affected and will possibly become a frontier. The same argument
applies to y. �

Lemma 64
The total number of affected vertices in F i and Gi is O(1) in the expected case.

Proof: Consider applying tree contraction on F i and note that F i
Ai will contract by a constant factor

when we disregard the frontier vertices, by an argument similar to that of Miller and Reif [62]—based on
independence of randomness between different rounds. The number of affected components is exactly two
and each component has at most two frontiers and cause two vertices become affected (by Lemmas 60, 62,
and 63). Thus, there are at most four frontiers and four new vertices may become affected in round i. Thus,
we have E[|F i+1

Ai+1 |] ≤ (1− c)|F i
Ai |+ 8 and E[|F i+1

Ai+1 |] ≤ (1− c)E[|F i
Ai |] + 8.

10.3. TRACE STABILITY 105

Since the number of affected vertices in the first round is at most 4, E[|F i
A|] = O(1), for any i. A similar

argument holds for Gi. �

For our main result, we rely on the following theorem. This theorem is a simple extension of Theorem
3.5 from Miller and Reif’s original work [63].

Theorem 65
There exists come constants a, b and n0, such that for all n ≥ n0, randomized tree contraction reduces a
forest with n vertices into a single vertex in a log n + b rounds with probability of failure at most 1/n.

Theorem 66
Tree contraction is expected O(log n) stable for a single edge insertion or deletion.

Proof: By Theorem 65, we know that tree contraction takes a log n+ b rounds for sufficiently large n with
probability of failure no more than 1/n. Let D be the random variable denoting the number of affected
vertices in a contraction and let R be the random variable denoting the number of rounds. We will bound
the expectation of D by conditioning it on the number of rounds. In particular, we know that

E[D] =
∞∑

r=0

E[D|R = r]× Pr[R = r]

Note now that that E[D|R = r] = r, because, by Lemma 64, the expected number of live affected vertices
per round is constant independent of the number of rounds. We therefore have

E[D] =
∞∑

r=0

r × Pr[R = r].

Let L = a log n + b; we have

E[D] =
∞∑
i=0

Li+1∑
r=Li

r × Pr[R = r] ≤
∞∑
i=0

Li+1
Li+1∑
r=Li

Pr[R = r] ≤
∞∑
i=0

Li+1(
1
n

)i ≤ L×
∞∑
i=0

(
L

n
)i.

Since
∑∞

i=0 (L
n)i = O(1), E[D] = O(L). We therefore conclude that the expected number of affected

vertices is O(log n). �

It is a property of the tree-contraction algorithm that the order in which the vertices of the forest are
contracted within each round does not affect the result. Therefore a FIFO queue can be used during change
propagation instead of a general-purpose priority queue. We therefore have the following theorem for dy-
namic trees problem of Sleator and Tarjan [91].

Theorem 67 (Dynamic Trees)
Self=adjusting tree contraction algorithm adjusts to a single edge insertion/deletion in expected O(log n)
time. Self-adjusting tree contraction thus solves the dynamic trees problem in expected O(log n) time.

106 CHAPTER 10. TREE CONTRACTION

Part IV

Language Techniques

107

Introduction

This part of the thesis presents language facilities for writing self-adjusting programs. We consider three dif-
ferent purely functional languages, called the Adaptive Functional Language (AFL), the Memoizing Func-
tional Language (MFL), the Self-Adjusting functional Language (SLf, read “self”), and an imperative lan-
guage where memory locations can be written multiple times. The AFL (Chapter 11) and MFL (Chapter 12)
languages are based on dynamic dependence graphs, and memoization. The SLf language combines and ex-
tends AFL and MFL to provide support for non-strict dependences. We also present an imperative language,
called SLi, that extends SLf language with support for multiple writes (side-effects).

Chapter 11 introduces the AFL (Adaptive Functional Language) language. The AFL language enables
the programmer to transform an ordinary, non-self-adjusting program into a self-adjusting program by mak-
ing simple, methodical changes to the code. As an AFL program runs, a run-time system builds the dynamic
dependence graph of the execution. The DDG is then used to adjust the computation to external changes. A
key property of the AFL language is that it supports selective dependence tracking. The programmer decides
what parts of the input will be “changeable”, and the language ensures that all dependences pertaining to the
changeable data is tracked. The dependences pertaining to the “stable” parts of the input, i.e., the parts that
cannot change, are not tracked.

We present a static and dynamic semantics for the AFL language and prove that the language is type
safe. We also formalize the change-propagation algorithm for dynamic dependence graphs and prove that it
is correct. The correctness theorem shows that change propagation is identical to a from-scratch execution—
except, of course, it is faster. We also describe an implementation of the language as an ML library and give
the code for this library. The implementation is based on the data structures described in Chapter 6.

Chapter 12 describes a language for selective memoization. Selective memoization enables the program-
mer to apply memoization efficiently by providing control over 1) the cost of equality test, 2) the input-output
dependences, 3) space consumption. The most important aspect of selective memoization is the mechanisms
for supporting memoization with precise input-output dependences. We study selective memoization in the
context of a purely functional language, called MFL, and present a static and dynamic semantics for the
language. Based on the semantics, we prove the correctness of the selective memoization techniques. We
also describe an efficient implementation of the MFL language as an SML library and presents the code for
the implementation.

Chapter 13 describes a language, called SLf, based on memoized dynamic dependence graphs and the
memoized change-propagation algorithm. The SLf language combines the AFL and the MFL languages
and extends them with constructs to distinguish between strict and non-strict dependences. The language
enables the programmer to transform an ordinary, non-self adjusting program into a self-adjusting program

109

110

by making small methodical changes to the code. The key properties of the SLf language are that 1) it yields
efficient self-adjusting programs, and 2) it enables determining the time complexity of change-propagation
by using trace-stability techniques. In Part V we present an experimental evaluation of the SLf language by
considering a number of applications.

Chapter 14 presents an imperative language for self-adjusting computation where memory locations can
be written multiple times. The key idea is to make computations persistent by keeping track of all writes
to memory by versioning [31]. This chapter shows that our techniques are also applicable in the imperative
setting.

Chapter 11

Adaptive Functional Programming

This chapter describes language techniques for writing self-adjusting programs by applying dynamic de-
pendence graphs selectively. Since the techniques described in this chapter rely only on ordinary (non-
memoized) dynamic dependence graphs, we use the term adaptive when referring to programs based on
these techniques. We reserve the word self-adjusting to refer to programs based on memoized dependence
graphs.

We describe a language, called AFL (Adaptive Functional Language), where every program is adaptive.
We give the static semantics (type system), and the dynamic semantics of the AFL language and prove
that the language is safe. Based on the static and dynamic semantics of AFL, we formalize the change-
propagation algorithm for dynamic dependence graphs and prove that it is correct. We also presents the
complete code for an implementation of the language as an ML library.

Using the ML library, Section 11.2 illustrates the main ideas of adaptive functional programming. We
describe first how to transform an ordinary quick sort written in the ML language into an adaptive quick sort
by applying a methodical transformation. We then describe the particular version of the dynamic dependence
graphs and the change-propagation algorithm used by the library. We finish by presenting the code for our
library.

Section 11.3 defines an adaptive functional programming language, called AFL, as an extension of a
simple call-by-value functional language with adaptivity primitives. The static semantics of AFL show
that AFL is consistent with purely functional programming. Since the language involves a particular form
of references, yet it is purely functional, the type safety proof for the language is intricate. The dynamic
semantics of AFL is given by an evaluation relation that maintains a record of the adaptive aspects of the
computation, called a trace. The trace is used by the change propagation algorithm to adapt the computation
to external changes.

Section 11.5 gives a semantics to the change propagation algorithm based on the dynamic semantics
of AFL. The change propagation algorithm interprets a trace to determine the expressions that need to be
re-evaluated and to determine the order in which the re-evaluation takes place. We prove that the change-
propagation algorithm is correct by showing that it yields essentially the same result as a complete re-
execution on the changed inputs.

111

112 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

11.1 Introduction

The proposed mechanism extends call-by-value functional languages with a small set of primitives to sup-
port adaptive functional programming. Apart from requiring that the host language be purely functional, we
make no other restriction on its expressive power. In particular our mechanism is compatible with the full
range of effect-free constructs found in ML. The proposed mechanism has these strengths:

• Generality: It applies to any purely functional program. The programmer can build adaptivity into
an application in a natural and modular way.

• Flexibility: It enables the programmer to control the amount of adaptivity. For example, a program-
mer can choose to make only one portion or aspect of a system adaptive, leaving the others to be
implemented conventionally.

• Simplicity: It requires small changes to existing code. For example, the adaptive version of Quicksort
presented in the next section requires only minor changes to the standard implementation.

• Efficiency: The mechanism admits a simple implementation with constant-time overhead. The com-
putational complexity of an adaptive program can be determined using standard analytical techniques

The adaptivity mechanism is based on the idea of a modifiable reference (or modifiable, for short) and
three operations for creating (mod), reading (read), and writing (write) modifiables. A modifiable allows
the system to record the dependence of one computation on the value of another. A modifiable reference
is essentially a write-once reference cell that records the value of an expression whose value may change
as a (direct or indirect) result of changes to the inputs. Any expression whose value can change must store
its value in a modifiable reference; such an expression is said to be changeable. Expressions that are not
changeable are said to be stable; stable expressions are not associated with modifiables.

Any expression that depends on the value of a changeable expression must express this dependence
by explicitly reading the contents of the modifiable storing the value of that changeable expression. This
establishes a data dependence between the expression reading that modifiable, called the reader, and the
expression that determines the value of that modifiable, the writer. Since the value of the modifiable may
change as a result of changes to the input, the reader must itself be deemed a changeable expression. This
means that a reader cannot be considered stable, but may only appear as part of a changeable expression
whose value is stored in some other modifiable.

By choosing the extent to which modifiables are used in a program, the programmer can control the
extent to which it is able to adapt to change. For example, a programmer may wish to make a list manipula-
tion program adaptive to insertions into and deletions from the list, but not under changes to the individual
elements of the list. This can be represented in our framework by making only the “tail” elements of a list
adaptive, leaving the “head” elements stable. However, once certain aspects are made changeable, all parts
of the program that depend on those aspects are, by implication, also changeable.

The key to adapting the output to change of input is to record the dependencies between readers and
writers that arise during the initial evaluation. These dependencies are maintained by using a version of the
dynamic-dependence-graph (DDG) data structure presented in Chapter 4. The key difference between this
version and the standard DDGs is that, this version only tracks modifiable references and reads, instead of

11.2. A FRAMEWORK FOR ADAPTIVE COMPUTING 113

signature ADAPTIVE =
sig

type ’a mod
type ’a dest
type changeable

val mod: (’a * ’a -> bool) -> (’a dest -> changeable) -> ’a mod
val read: ’a mod * (’a -> changeable) -> changeable
val write: ’a dest * ’a -> changeable

val init: unit -> unit
val change: ’a mod * ’a -> unit
val propagate: unit -> unit

end

Figure 11.1: Signature of the adaptive library.

all memory locations and all function calls. This is how AFL enables applying dynamic-dependence-graph-
based dependence tracking selectively.

11.2 A Framework for Adaptive Computing

We give an overview of our techniques based on our ML library and an adaptive version of Quicksort.

11.2.1 The ML library

The signature of our adaptive library for ML is given in Figure 11.1. The library provides functions to create
(mod), to read from (read), and to write to (write) modifiables, as well as meta-functions to initialize
the library (init), change input values (change) and propagate changes to the output (propagate).
The meta-functions are described later in this section. The library distinguishes between two “handles”
to each modifiable: a source of type ’a mod for reading from, and a destination of type ’a dest for
writing to. When a modifiable is created, correct usage of the library requires that it only be accessed as a
destination until it is written, and then only be accessed as a source.1 All changeable expressions have type
changeable, and are used in a “destination passing” style—they do not return a value, but rather take a
destination to which they write a value. Correct usage requires that a changeable expression ends with a
write—we define “ends with” more precisely when we discuss time stamps. The destination written will
be referred to as the target destination. The type changeable has no interpretable value.

The mod takes two parameters, a conservative comparison function and an initializer. A conservative
comparison function returns false when the values are different but may return true or false when
the values are the same. This function is used by the change-propagation algorithm to avoid unnecessary

1The library does not enforce this restriction statically, but can enforce it with run-time checks. In the following discussion we
will use the term “correct usage” to describe similar restrictions in which run-time checks are needed to check correctness. The
language described in Section 11.3 enforces all these restrictions statically using a modal type system.

114 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

propagation. The mod function creates a modifiable and applies the initializer to the new modifiable’s
destination. The initializer is responsible for writing the modifiable. Its body is therefore a changeable
expression, and correct usage requires that the body’s target match the initializer’s argument. When the
initializer completes, mod returns the source handle of the modifiable it created.

The read takes the source of a modifiable and a reader, a function whose body is changeable. The
read accesses the contents of the modifiable and applies the reader to it. Any application of read is itself
a changeable expression since the value being read could change. If a call Ra to read is within the dynamic
scope of another call Rb to read, we say that Ra is contained within Rb. This relation defines a hierarchy
on the reads, which we will refer to as the containment hierarchy (of reads).

11.2.2 Making an Application Adaptive

The transformation of a non-adaptive program into an adaptive program involves two steps. First, the input
data structures are made “modifiable” by placing desired elements in modifiables. Second, the original
program is updated by making the reads of modifiables explicit and placing the results of each expression
that depends on a modifiable into another modifiable. This means that all values that directly or indirectly
depend on modifiable inputs are placed in modifiables. The changes to the program are therefore determined
by what parts of the input data structure are made modifiable.

As an example, consider the code for a standard Quicksort, qsort, and an adaptive Quicksort, qsort’,
as shown in Figure 11.2. To avoid linear-time concatenations, qsort uses an accumulator to store the sorted
tail of the input list. The transformation is done in two steps. First, we make the lists “modifiable” by placing
the tail of each list element into a modifiable as shown in lines 1,2,3 in Figure 11.2. (If desired, each element
of the list could have been made modifiable as well; this would allow changing an element without changing
the list structurally). The resulting structure, a modifiable list, allows the user to insert and delete items to
and from the list. Second, we change the program so that the values placed in modifiables are accessed
explicitly via a read. The adaptive Quicksort uses a read (line 21) to determine whether the input list l
is empty and writes the result to a destination d (line 23). This destination belongs to the modifiable that
is created by a call to mod (through modl) in line 28 or 33. These modifiables form the output list, which
now is a modifiable list. The function filter is similarly transformed into an adaptive one, filter’
(lines 6-18). The modl function takes an initializer and passes it to the mod function with a constant-time,
conservative comparison function for lists. The comparison function returns true, if and only if both
lists are NIL and returns false otherwise. This comparison function is sufficiently powerful to prove the
O(log n) bound for adaptive Quicksort.

11.2.3 Adaptivity

An adaptive programs allows the programmer to change the input to the program and update the result by
running change propagation. This process can be repeated as desired. The library provides the meta-function
change to change the value of a modifiable and the meta-function propagate to propagate these changes
to the output. Figure 11.3 illustrates an example. The function fromList converts a list to a modifiable list,
returning both the modifiable list and its last element. The test function first performs an initial evaluation
of the adaptive Quicksort by converting the input list lst to a modifiable list l and sorting it into r. It then
changes the input by adding a new key v to the end of l. To update the output r, test calls propagate.

11.2. A FRAMEWORK FOR ADAPTIVE COMPUTING 115

1 datatype ’a list =
2 nil
3 | cons of (’a * ’a list)

4
5
6

7 fun fil test l =
8 let
9 fun f(l) =
10 case l of
11 nil => nil
12 | cons(h,t) =>
13 if test(h) then
14 cons(h,f t)
15 else
16 f(t)
17 in
18 f(l)
19 end

20 fun qsort(l) =
21 let
22 fun qs(l,r) =
23 case l of
24 nil => r
25 | cons(h,t) =>
26 let
27 val l = fil (fn x => x<h) t
28 val g = fil (fn x => x>=h) t
29 val gs = qs(g,r)
30 in
31 qs(l,cons(h,gs))
32 end
33 in
34 qs(l,nil)
35 end

1 datatype ’a list’ =
2 NIL
3 | CONS of (’a * ’a list’ mod)

4 fun modl f =
5 mod (fn (NIL,NIL) => true
6 | => false) f

7 fun fil’ test l =
8 let
9 fun f(l,d) = read(l, fn l’ =>
10 case l’ of
11 NIL => write(d, NIL)
12 | CONS(h,t) =>
13 if test(h) then write(d,
14 CONS(h,modl(fn d => f(t,d))))
15 else
16 f(t,d))
17 in
18 modl(fn d => f(l, d))
19 end

20 fun qsort’(l) =
21 let
22 fun qs(l,r,d) = read(l, fn l’ =>
23 case l’ of
24 NIL => write(d, r)
25 | CONS(h,t) =>
26 let
27 val l = fil (fn x => x<h) t
28 val g = fil (fn x => x>=h) t
29 val gs = modl(fn d => qs(g,r,d))
30 in
31 qs(l,CONS(h,gs),d)
32 end)
33 in
34 modl(fn d => qs(l,NIL,d))
35 end

Figure 11.2: The complete code for non-adaptive (left) and adaptive (right) Quicksort.

The update will result in a list identical to what would have been returned if v was added to the end of l
before the call to qsort. In general, any number of inputs could be changed before running propagate.

116 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

1 fun new(v) = modl(fn d => write(d,v))

2 fun fromList(l) =
3 case l of
4 nil => let val m = new(NIL) in (m,m) end
5 | h::t => let val (l,last) = fromList(t) in
6 (new(CONS(h,l)),last)
7 end

8 fun test(lst,v) =
9 let val = init()
10 val (l,last) = fromList(lst)
11 val r = qsort’(l)
12 in
13 (change(last,CONS(v,new(NIL)));
14 propagate();
15 r)
16 end

Figure 11.3: Example of changing input and change propagation for Quicksort.

11.2.4 Dynamic Dependence Graphs

The crucial issue is to support change propagation efficiently. To do this, an adaptive program, as it evaluates,
creates a record of the adaptive activity in the form of a dynamic dependence graph. Dynamic dependence
graphs are defined and formalized in Chapter 4. In this chapter, we use a version of DDGs that is similar to
the data structure described in Chapter 4. The key difference between this version and the standard DDGs
is that, this version only tracks modifiable references and reads, instead of all memory locations and all
function calls. The correspondence between modifiable reference and memory locations, and between reads
and function calls is not ad hoc. This correspondence show how AFL enables applying dependence tracking
selectively. For the rest of this chapter, the terms “dynamic dependence graph” and DDG will refer to this
particular version unless otherwise stated.

In a dynamic dependence graph, each node represents a modifiable and each edge represents a read. An
evaluation of mod adds a node, and an evaluation of read adds an edge to the graph. In a read, the node
being read becomes the source, and the target of the read (the modifiable that the reader finished by writing
to) becomes the target. We also tag the edges with the reader function, which is a closure (i.e., a function
and an environment consisting of values for its free variables). We say that a node (and corresponding
modifiable) is an input if it has no incoming edges.

When the input to an adaptive program changes, a change propagation algorithm updates the output
and the dynamic dependence graph by propagating changes through the graph and re-executing the reads
affected by the change. When re-evaluated on the changed source, a read can, due-to conditionals, create
completely new reads than it previously did. It is therefore critical that the reads created by the previous
execution of a read are deleted from the graph. This is done by maintaining a containment hierarchy between
reads. A read e is contained within another read e′ if e was created during the execution of e′. During change
propagation, the reads contained in a re-evaluated read are removed from the graph.

11.2. A FRAMEWORK FOR ADAPTIVE COMPUTING 117

= modifiable

= value

 = time stamp
= read

= CONS cell

Legend
NIL

NIL

2 3

3

li

〈. . .〉
li

l0

〈0.1〉 〈0.2〉

l1 l2

l4

〈0.3〉

〈∗〉 〈∗〉 〈∗〉

〈0.5〉 〈0.4〉

l3

Figure 11.4: The DDG for an application of filter’ to the modifiable list 2::3::nil.

Containment hierarchy is represented using time-stamps generated by a virtual clock (or order-maintenance)
data structure (Section 6.1.1). Each edge and node in the dynamic dependence graph is tagged with a time-
stamp corresponding to its execution “time” in the sequential execution order. Time stamps are generated
by the mod and read expressions. The time stamp of an edge is generated by the corresponding read,
before the reader is evaluated, and the time stamp of a node is generated by the mod after the initializer is
evaluated (the time corresponds to the time that the node is initialized). Correct usage of the library requires
that the order of time stamps is independent of whether the write or mod generate the time stamp for the
corresponding node. This is what we mean by saying that a changeable expression must end with a write
to its target.

The time stamp of an edge is called its start time and the time stamp of the target of the edge is called the
edge’s stop time. The start and the stop time of the edge define the time interval of the edge. Time intervals
are then used to identify the containment relationship of reads: a read Ra is contained in a read Rb if and
only if the time interval of the edge associated with Ra is within the time interval of the edge associated
with Rb. For now, we will represent time stamps with real numbers.

As an example for dynamic dependence graphs, consider the adaptive filter function filter’ shown
in Figure 11.2. The function takes another function f and a modifiable list l as parameters and outputs
a modifiable list that contains the items of l satisfying f. Figure 11.4 shows the dependence graph for an
evaluation of filter’with the function (fn x => x > 2) and a modifiable input list of 2::3::nil.
The output is the modifiable list 3::nil. Although not shown in the figure, each edge is also tagged with
a reader. In this example, all edges have an instance of reader (fn l’ => case l’ of ...) (lines
8-15 of qsort’ in Figure 11.2). The time stamps for input nodes are not relevant, and are marked with
stars in Figure 11.4. We note that readers are closures, i.e., code with captured environments. In particular,
each of the readers in our example have their source and their target in their environment.

11.2.5 Change Propagation

Given a dynamic dependence graph and a set of changed input modifiables, the change-propagation al-
gorithm updates the DDG and the output by propagating changes in the DDG. The change-propagation
algorithm for DDGs is described in Section 4.4. In this section, we describe a version of that algorithm to
the particular version of DDGs that we use here.

The idea behind the change-propagation algorithm is to re-evaluate the reads that are affected by the

118 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

Propagate Changes
I is the set of changed inputs

(V, E) = G is an DDG

1 Q :=
S

v∈I outEdges(v)

2 while Q is not empty

3 e := deleteMin(Q)

4 (Ts, Te) := timeInterval(e)

5 V := V − {v ∈ V |Ts < T (v) < Te}
6 E′ := {e′ ∈ E|Ts < T (e′) < Te}
7 E := E − E′

8 Q := Q− E′

9 v′ := apply(reader(e), val(src(e))) in time (Ts, Te)

10 if v′ 6= val(target(e)) then

11 val(target(e)) = v′

12 Q := Q + outEdges(target(e))

Figure 11.5: The change-propagation algorithm.

input change in the sequential execution order. Re-executing the reads in the sequential execution order
ensures that the source of an edge (read) is updated before the re-execution of that read. We say that an edge
or read, is affected if the source of the edge changes value. For correctness, it is critical that the edges that
are created by an edge e, i.e., the edges contained in e, are deleted from the graph when e is re-evaluated.
We say that an edge is obsolete if it is contained within an affected edge.

Figure 11.5 shows the change-propagation algorithm. The algorithm maintains a priority queue of af-
fected edges. The queue is prioritized on the time stamp of each edge, and is initialized with the out-edges
of the changed input values. Each iteration of the while loop processes one affected edge—each iteration
is called an edge update. An edge update re-evaluates the reader associated with the edge. Re-evaluation
makes any code that was within the reader’s dynamic scope obsolete. A key aspect of the algorithm is that
when an edge is updated, all nodes and edges that are contained within that edge are deleted from both the
graph and queue. This prevents the reader of an obsolete edge from being re-evaluated. After the reader is
re-evaluated the algorithm checks if the value of the target has changed (line 10) by using the conservative
comparison function passed to mod. If the target has changed, the out-edges of the target are added to the
queue to propagate that change.

As an example, consider an initial evaluation of filter whose dependence graph is shown in Fig-
ure 11.4. Now, suppose we change the modifiable input list from 2::3::nil to 2::4::7::nil by
creating the modifiable list 4::7::nil and changing the value of modifiable l1 to this list. The top left
frame in Figure 11.6 shows the input change. Now, we run the change-propagation algorithm to update the
output. First, we insert the sole outgoing edge of l1, namely (l1,l3), into the queue. Since this is the only
(hence, the earliest) edge in the queue, we remove it from the queue and establish the current time-interval
as 〈0.2〉-〈0.5〉. Next, we delete all the nodes and edges contained in this edge from the DDG and from
the queue (which is empty) as shown by the top right frame in Figure 11.6. Then we redo the read by re-

11.2. A FRAMEWORK FOR ADAPTIVE COMPUTING 119

NIL

NIL

NIL

7

32

4

3

l0

〈0.1〉 〈0.2〉

l4

〈0.3〉

〈∗〉

〈0.5〉 〈0.4〉

〈∗〉 〈∗〉

l1

〈∗〉 〈∗〉

l3

l2

l5 l6

NIL

NIL

NIL

7

32

4

3

x
x

l0

l4

〈∗〉

〈0.5〉 〈0.4〉

〈∗〉 〈∗〉

l1

〈∗〉 〈∗〉

l5 l6

〈0.1〉 〈0.2〉 〈0.3〉

l2

l3

NIL

742

NIL

4 7

〈∗〉 〈∗〉
l5 l6l0

〈0.1〉

〈∗〉

〈0.5〉

l1

〈∗〉

l7

〈0.4〉

l8l3

〈0.2〉 〈0.3〉

〈0.45〉〈0.475〉

Figure 11.6: Snapshots of the DDG during change propagation.

1 fun factorial (n:int mod, p:bool mod) =
2 let
3 fun fact (n:int mod) =
4 if (n = 0) then 1
5 else n * fact(n-1)
6 in
7 modl (fn d =>
8 read (p, fn p’ =>
9 if (not p’) then write (d,1)
10 else read (n, fn n’ => write (d, fact n’))))
11 end

Figure 11.7: The adaptive code for factorial.

evaluating the reader (fn l’ => case l’ of ...) (8-15 in Figure 11.2) in the current time interval
〈0.2〉-〈0.5〉. The reader walks through the modifiable list 4::7::nil as it filters the items and writes the
head of the result list to l3, as shown in the bottom frame in Figure 11.6. This creates two new edges, which
are given the time stamps, 〈0.3〉, and 〈0.4〉. The targets of these edges, l7 and l8, are assigned the time
stamps, 〈0.475〉, and 〈0.45〉, matching the order that they were initialized (these time stamps are otherwise
chosen arbitrarily to fit in the range 〈0.4〉-〈0.5〉). Note that after change propagation, the modifiables l2 and
l4 become unreachable and can be garbage collected.

The reason for deleting obsolete reads and never re-evaluating them is that they may be inconsistent with
a from-scratch evaluation of the adaptive program on the changed input. Re-evaluating an obsolete read
can therefore change the semantics and the performance of the program. For example, it can cause non-
termination, or raise an exception (assuming the language supports exceptions as ML does). As an example,
consider the factorial function shown in Figure 11.7. The program takes an integer modifiable n and
a boolean modifiable p whose value is true if the value of n is positive and false otherwise. Consider
evaluating the function with a positive n with p set to true. Now change n to negative two and p to
false. This change will make the read on line 8 affected and therefore the read on line 10 will be obsolete.
With our change propagation algorithm, the read on line 8 will be re-evaluated and one will be written to
the result modifiable—the obsolete on line 10 will not be re-evaluated. Note that re-evaluating the obsolete

120 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

read on line 10 will call the function fact on negative two and will therefore cause non-termination.

11.2.6 The ML Implementation

We present an implementation of our adaptive mechanism in ML. The implementation is based on a library
for virtual clocks and a standard priority queue. In the virtual-clock interface (shown in Figure 11.8),
delete deletes all time stamps between two given time stamps and isDeleted returns true if the
time stamp has been deleted and false otherwise.

signature VIRTUAL CLOCK = sig
type t

val init : unit -> t (* Initialize *)
val compare: t*t -> order (* Compare two nodes *)
val insert : t ref -> t (* Insert a new node *)
val delete: t*t -> unit (* Delete an interval *)
val isDeleted: t -> bool (* Is the node deleted? *)

end

Figure 11.8: The signature for virtual clocks.

Figure 11.9 shows the code for the ML implementation. The implementation differs somewhat from the
earlier description. The edge and node types correspond to edges and nodes in the DDG. The reader and
time-interval are represented explicitly in the edge type, but the source and destination are implicit in the
reader. In particular the reader starts by reading the source, and ends by writing to the destination. The node
consists of the corresponding modifiable’s value (value), its out-edges (out), and a write function (wrt)
that implements writes or changes to the modifiable. A time stamp is not needed since edges keep both start
and stop times. The timeNow is used to help generate the sequential time stamps, which are generated for
the edge on line 27 and for the node on line 22 by the write operation.

Some of the tasks assigned to the change-propagate loop in Figure 11.5 are performed by the write
operation in the ML code. This includes the functionality of lines 10 and 12 in Figure 11.5, which are
executed by lines 17 and 20 in the ML code. Another important difference is that the deletion of contained
edges is done lazily. Instead of deleting edges from the queue and from the graph immediately, the time
stamp of the edge is marked as affected (by being removed from the ordered-list data structure), and is
deleted when it is next encountered. This can be seen in line 38.

We note that the implementation given does not include sufficient run-time checks to verify “correct
usage”. For example, the code does not verify that an initializer writes its intended destination. The code,
however, does check for a read before write.

Recall that there is strong correspondence between the version of DDGs used here and the standard DDG
data structure. The version of DDGs that we use here track modifiables instead of all memory locations,
and reads instead of all function calls. Based on this correspondence, we can show that the presented
implementation has constant-time overhead and supports change-propagation within the same time bounds
as shown in Chapter 6.

11.2. A FRAMEWORK FOR ADAPTIVE COMPUTING 121

1 structure Adaptive :> ADAPTIVE = struct
2 type changeable = unit
3 exception unsetMod

4 type edge = {reader:(unit -> unit), timeInterval:(Time.t * Time.t)}
5 type ’a node = {value:(unit -> ’a) ref, wrt:(’a->unit) ref, out:edge list ref}
6 type ’a mod = ’a node
7 type ’a dest = ’a node

8 val timeNow = ref(Time.init())
9 val PQ = ref(Q.empty) (* The priority queue *)

10 fun init() = (timeNow := Time.init(); PQ := Q.empty)

11 fun mod cmp f =
12 let val value = ref(fn() => raise unsetMod)
13 val wrt = ref(fn(v) => raise unsetMod)
14 val out = ref(nil)
15 val m = {value=value, wrt=wrt, out=out}
16 fun change t v =
17 (if cmp(v,(!value)()) then ()
18 else (value := (fn() => v);
19 List.app (fn x => PQ := Q.insert(x,!PQ)) (!out);
20 out := nil);
21 timeNow := t)
22 fun write(v) = (value := (fn() => v);wrt := change(Time.insert(timeNow))
23 val = wrt := write
24 in f(m); m end

25 fun write({wrt, ...} : ’a dest, v) = (!wrt)(v)

26 fun read({value, out, ...} : ’a mod, f) =
27 let val start = Time.insert(timeNow)
28 fun run() =
29 (f((!value)());

out := {reader=run,timeInterval=(start,(!timeNow))}::(!out))
30 in run() end

31 fun change(l: ’a mod, v) = write(l, v)

32 fun propagate’() =
33 if (Q.isEmpty(!PQ)) then ()
34 else let val (edge, pq) = Q.deleteMin(!PQ)
35 val = PQ := pq
36 val {reader=f,timeInterval=(start,stop)} = edge
37 in
38 if (Time.isDeleted start) then
39 propagate’() (* Obsolete read, discard.*)
40 else
41 (Time.delete(start,stop); (* Delete interval *)
42 timeNow := start;
43 f(); (* Rerun the read *)
44 propagate’())
45 end

46 fun propagate() = let val ctime = !timeNow in
47 (propagate’(); timeNow := ctime)
48 end
49 end

Figure 11.9: The implementation of the adaptive library.

122 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

11.3 An Adaptive Functional Language

The first half of this chapter described the adaptivity mechanism in an informal, algorithmic setting. The
purpose was to introduce the basic concepts of adaptivity and show that the mechanism can be implemented
efficiently. We now turn to the question of whether the proposed mechanism is sound. To this end, we
present a small, purely functional language, called AFL, with primitives for adaptive computation. AFL
ensures correct usage of the adaptivity mechanism statically by using a modal type system and employing
implicit “destination passing.”

The adaptivity mechanisms of AFL are similar to those of the adaptive library presented in Section 11.2.
The chief difference is that the target of a changeable expression is implicit in AFL. Implicit passing of
destinations is critical for ensuring various safety properties of the language.

AFL does not include analogues of the meta-operations for making and propagating changes as in the
ML library. Instead, we give a direct presentation of the change-propagation algorithm in Section 11.5,
which is defined in terms of the dynamic semantics of AFL given here. As with the ML implementation, the
dynamic semantics must keep a record of the adaptive aspects of the computation. Rather than use DDG’s,
however, the semantics maintains this information in the form of a trace, which guides the change prop-
agation algorithm. The trace representation simplifies the proof of correctness of the change propagation
algorithm given in Section 11.5.

11.3.1 Abstract Syntax

The abstract syntax of AFL is given in Figure 11.10. We use the meta-variables x, y, and z (and variants)
to range over an unspecified set of variables, and the meta-variable l (and variants) to range over a separate,
unspecified set of locations—the locations are modifiable references. The syntax of AFL is restricted to
“2/3-cps”, or “named form”, to streamline the presentation of the dynamic semantics.

The types of AFL include the base types int and bool; the stable function type, τ1
s→ τ2; the change-

able function type, τ1
c→ τ2; and the type τ mod of modifiable references of type τ . Extending AFL with

product, sum, recursive, or polymorphic types presents no fundamental difficulties, but they are omitted here
for the sake of brevity.

Expressions are classified into two categories, the stable and the changeable. The value of a stable
expression is not sensitive to modifications to the inputs, whereas the value of a changeable expression
may, directly or indirectly, be affected by them. The familiar mechanisms of functional programming are
embedded in AFL as stable expressions. These include basic types such as integers and booleans, and a
sequential let construct for ordering evaluation. Ordinary functions arise in AFL as stable functions. The
body of a stable function must be a stable expression; the application of a stable function is correspondingly
stable. The stable expression modτ ec allocates a new modifiable reference whose value is determined by
the changeable expression ec. Note that the modifiable itself is stable, even though its contents is subject to
change.

Changeable expressions are written in destination-passing style, with an implicit target. The change-
able expression writeτ(v) writes the value v of type τ into the target. The changeable expression
read v as x in ec end binds the contents of the modifiable v to the variable x, then continues evalu-
ation of ec. A read is considered changeable because the contents of the modifiable on which it depends

11.3. AN ADAPTIVE FUNCTIONAL LANGUAGE 123

Types τ : : = int | bool | τ mod | τ1
s→ τ2 | τ1

c→ τ2

Values v : : = c | x | l | funs f(x : τ1) : τ2 is es end |
func f(x : τ1) : τ2 is ec end

Operators o : : = not | + | - | = | < | . . .

Constants c : : = n | true | false

Expressions e : : = es | ec

Stable Expressions es : : = v | o(v1, . . . , vn) | applys(v1, v2) |
let x be es in e′s end | modτ ec |
if v then es else e′s

Changeable Expressions ec : : = writeτ(v) | applyc(v1, v2) |
let x be es in ec end |
read v as x in ec end |
if v then ec else e′c

Figure 11.10: The abstract syntax of AFL.

fun sum (l:int modlist):int =
let fun sum’ (l:int modlist, s:int, dest:int mod) =

read (l, fn l’ =>
case l’ of

NIL => write (dest,s)
| CONS(h,t) => sum’ (t, s+h, dest))

in mod (fn d => sum’ (l,0,d)) end

funs sum (l:int modlist):int mod is
let sum’’ be func sum’ (l:int modlist, s:int):int is

read l as l’ in
case l’ of

NIL => writeint(s)
| CONS(h,t) => applyc (sum’,(t,s+h))

end
in modint applyc (sum’’,(l,0)) end

Figure 11.11: Function sum written with the ML library (top), and in AFL (bottom).

is subject to change. A changeable function itself is stable, but its body is changeable; correspondingly, the
application of a changeable function is a changeable expression. The sequential let construct allows for the
inclusion of stable sub-computations in changeable mode. Finally, conditionals with changeable branches
are themselves changeable.

As an example, consider a function that sums up the keys in a modifiable list. Such a function could be

124 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

written by traversing the list and accumulating a sum, which is written to the destination at the end. The
code for this function using our ML library (Section 11.2) is shown in Figure 11.11 on the left. Note that
all recursive calls to the function sum’ share the same destination. The code for the sum function in AFL
is shown in Figure 11.11 on the right assuming constructs for supporting lists and pattern matching. The
critical difference between the two implementations is that in AFL, destinations are passed implicitly and
that sum’ function is a changeable function. Since sum’ is changeable all recursive calls to it share the
same destination that is created in the body of sum.

The advantage to sharing of destinations is performance. Consider for example calling sum on some
list and changing the list by an insertion or deletion at the end. Propagating this change will take constant
time and the result will be updated in constant time. If instead, each recursive call to sum’ created its own
destination and copied the result from the recursive call to its destination, then this change will propagate up
the recursive-call tree and will take linear time. This is the motivation for including changeable functions in
the AFL language.

11.3.2 Static Semantics

The AFL type system is inspired by the type theory of modal logic given by Pfenning and Davies [79]. We
distinguish two modes, the stable and the changeable, corresponding to the distinction between terms and
expressions, respectively, in Pfenning and Davies’ work. However, they have no analogue of our changeable
function type, and do not give an operational interpretation of their type system.

The judgement Λ; Γ `s e : τ states that e is a well-formed stable expression of type τ , relative to Λ and
Γ. The judgement Λ; Γ `c e : τ states that e is a well-formed changeable expression of type τ , relative to
Λ and Γ. Here Λ is a location typing and Γ is a variable typing; these are finite functions assigning types
to locations and variables, respectively. (In Section 11.4 we will impose additional structure on location
typings that will not affect the definition of the static semantics.)

The typing judgements for stable and changeable expressions are shown in Figures 11.12 and 11.13
respectively. For primitive functions, we assume a typing relation o. For stable expression, the interesting
rules are the mod and the changeable functions. The bodies of these expressions are changeable expressions
and therefore they are typed in the changeable mode. For changeable expressions, the interesting rule is
the let rule. The body of let is a changeable expression and thus typed in the changeable mode; the
expression bound, however, is a stable expression and thus typed in the stable mode. The mod and let
rules therefore provide inclusion between two modes.

11.3.3 Dynamic Semantics

The evaluation judgements of AFL have one of two forms. The judgement σ, e ⇓s v, σ′,Ts states that
evaluation of the stable expression e, relative to the input store σ, yields the value v, the trace Ts, and the
updated store σ′. The judgement σ, l ← e ⇓c σ′,Tc states that evaluation of the changeable expression e,
relative to the input store σ, writes its value to the target l, and yields the trace Tc and the updated store σ′.

In the dynamic semantics, a store, σ, is a finite function mapping each location in its domain, dom(σ),
to either a value v or a “hole” �. The defined domain, def(σ), of σ consists of those locations in dom(σ)
not mapped to � by σ. When a location is created, it is assigned the value � to reserve that location while

11.3. AN ADAPTIVE FUNCTIONAL LANGUAGE 125

Λ; Γ `s n : int
(number)

Λ; Γ `s true : bool
(true)

Λ; Γ `s false : bool
(false)

(Λ(l) = τ)
Λ; Γ `s l : τ mod

(location)
(Γ(x) = τ)

Λ; Γ `s x : τ
(variable)

Λ; Γ, f : τ1
s→ τ2, x : τ1 `s e : τ2

Λ; Γ `s funs f(x : τ1) : τ2 is e end : (τ1
s→ τ2)

(fun/stable)

Λ; Γ, f : τ1
c→ τ2, x : τ1 `c e : τ2

Λ; Γ `s func f(x : τ1) : τ2 is e end : (τ1
c→ τ2)

(fun/changeable)

Λ; Γ `s vi : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

Λ; Γ `s o(v1, . . . , vn) : τ
(primitive)

Λ; Γ `s x : bool Λ; Γ `s e : τ Λ; Γ `s e′ : τ

Λ; Γ `s ifxthen eelse e′ : τ
(if)

Λ; Γ `s v1 : (τ1
s→ τ2) Λ; Γ `s v2 : τ1

Λ; Γ `s applys(v1, v2) : τ2
(apply)

Λ; Γ `s e : τ Λ; Γ, x : τ `s e′ : τ ′

Λ; Γ `s let x be e in e′ end : τ ′
(let)

Λ; Γ `c e : τ

Λ; Γ `s modτ e : τ mod
(modifiable)

Figure 11.12: Typing of stable expressions.

its value is being determined. With a store σ, we associate a location typing Λ and write σ : Λ, if the store
satisfies the typing Λ. This is defined formally in Section 11.4.

A trace is a finite data structure recording the adaptive aspects of evaluation. The abstract syntax of
traces is given by the following grammar:

Trace T : : = Ts | Tc

Stable Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts

Changeable Tc : : = Wτ | Rx.e
l (Tc) | Ts ; Tc

When writing traces, we adopt the convention that “;” is right-associative.
A stable trace records the sequence of allocations of modifiables that arise during the evaluation of a

stable expression. The trace 〈Tc〉l:τ records the allocation of the modifiable, l, its type, τ , and the trace of

126 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

Λ; Γ `s v : τ

Λ; Γ `c writeτ(v) : τ
(write)

Λ; Γ `s x : bool Λ; Γ `c e : τ Λ; Γ `c e′ : τ

Λ; Γ `c ifxthen eelse e′ : τ
(if)

Λ; Γ `s v1 : (τ1
c→ τ2) Λ; Γ `s v2 : τ1

Λ; Γ `c applyc(v1, v2) : τ2
(apply)

Λ; Γ `s e : τ Λ; Γ, x : τ `c e′ : τ ′

Λ; Γ `c let x be e in e′ end : τ ′
(let)

Λ; Γ `s v : τ mod Λ; Γ, x : τ `c e : τ ′

Λ; Γ `c read v as x in e end : τ ′
(read)

Figure 11.13: Typing of changeable expressions.

the initialization code for l. The trace Ts ; T′s results from evaluation of a let expression in stable mode,
the first trace resulting from the bound expression, the second from its body.

A changeable trace has one of three forms. A write, Wτ , records the storage of a value of type τ in
the target. A sequence Ts ; Tc records the evaluation of a let expression in changeable mode, with Ts

corresponding to the bound stable expression, and Tc corresponding to its body. A read Rx.e
l (Tc) trace

specifies the location read, l, the context of use of its value, x.e, and the trace, Tc, of the remainder of
evaluation with the scope of that read. This records the dependency of the target on the value of the location
read.

We define the domain dom(T) of a trace T as the set of locations read or written in the trace T. The
defined domain def(T) of a trace T is the set of locations written in the trace T. Formally the domain and the
defined domain of traces are defined as

def(ε) = ∅
def(〈Tc〉l:τ) = def(Tc) ∪ {l}
def(Ts ; T′s) = def(Ts) ∪ def(T′s)
def(Wτ) = ∅
def(Rx.e

l (Tc)) = def(Tc)
def(Ts ; Tc) = def(Ts) ∪ def(Tc)

dom(ε) = ∅
dom(〈Tc〉l:τ) = dom(Tc) ∪ {l}
dom(Ts ; T′s) = dom(Ts) ∪ dom(T′s)
dom(Wτ) = ∅
dom(Rx.e

l (Tc)) = dom(Tc) ∪ {l}
dom(Ts ; Tc) = dom(Ts) ∪ dom(Tc).

The dynamic dependency graphs described in Section 11.2 may be seen as an efficient representation
of traces. Time stamps may be assigned to each read and write operation in the trace in left-to-right order.
These correspond to the time stamps in the DDG representation. The containment hierarchy is directly
represented by the structure of the trace. Specifically, the trace Tc (and any read in Tc) is contained within

11.3. AN ADAPTIVE FUNCTIONAL LANGUAGE 127

σ, v ⇓s v, σ, ε
(value)

(v′ = app(o, (v1, . . . , vn)))
σ, o(v1, . . . , vn) ⇓s v′, σ, ε

(primitives)

σ, e ⇓s v, σ′,Ts

σ,iftruethen eelse e′ ⇓s v, σ′,Ts

(if/true)

σ, e′ ⇓s v, σ′,Ts

σ,iffalsethen eelse e′ ⇓s v, σ′,Ts

(if/false)

(v1 = funs f(x : τ1) : τ2 is e end)
σ, [v1/f, v2/x] e ⇓s v, σ′,Ts

σ,applys(v1, v2) ⇓s v, σ′,Ts

(apply)

σ, e ⇓s v, σ′,Ts

σ′, [v/x]e′ ⇓s v′, σ′′,T′s

σ,let x be e in e′ end ⇓s v′, σ′′, (Ts ; T′s)
(let)

σ[l→ �], l← e ⇓c σ′,Tc (l 6∈ dom(σ))
σ,modτ e ⇓s l, σ′, 〈Tc〉l:τ

(mod)

Figure 11.14: Evaluation of stable expressions.

the read trace Rx.e
l (Tc).

Stable Evaluation. The evaluation rules for stable expressions are given in Figure 11.14. Most of the
rules are standard for a store-passing semantics. For example, the let rule sequences evaluation of its two
expressions, and performs binding by substitution. Less conventionally, it yields a trace consisting of the
sequential composition of the traces of its sub-expressions.

The most interesting rule is the evaluation of modτ e. Given a store σ, a fresh location l is allocated and
initialized to � prior to evaluation of e. The sub-expression e is evaluated in changeable mode, with l as the
target. Pre-allocating l ensures that the target of e is not accidentally re-used during evaluation; the static
semantics ensures that l cannot be read before its contents is set to some value v.

Each location allocated during the evaluation a stable expression is recorded in the trace and is written
to: If σ, e ⇓s v, σ′,Ts, then dom(σ′) = dom(σ) ∪ def(Ts), and def(σ′) = def(σ) ∪ def(Ts). Furthermore,
all locations read during evaluation are defined in the store, dom(Ts) ⊆ def(σ′).

Changeable Evaluation. The evaluation rules for changeable expressions are given in Figure 11.15.
The let rule is similar to the corresponding rule in stable mode, except that the bound expression, e, is
evaluated in stable mode, whereas the body, e′, is evaluated in changeable mode. The read expression sub-

128 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

σ, l← writeτ(v) ⇓c σ[l← v],Wτ

(write)

σ, l← e ⇓c σ′,Tc

σ, l← iftruethen eelse e′ ⇓c σ′,Tc

(if/true)

σ, l← e′ ⇓c σ′,Tc

σ, l← iffalsethen eelse e′ ⇓c σ′,Tc

(if/false)

(v1 = func f(x : τ1) : τ2 is e end)
σ, l← [v1/f, v2/x] e ⇓c σ′,Tc

σ, l← applyc(v1, v2) ⇓c σ′,Tc

(apply)

σ, e ⇓s v, σ′,Ts

σ′, l← [v/x]e′ ⇓c σ′′,Tc

σ, l← let x be e in e′ end ⇓c σ′′, (Ts ; Tc)
(let)

σ, l′ ← [σ(l)/x] e ⇓c σ′,Tc

σ, l′ ← read l as x in e end ⇓c σ′, Rx.e
l (Tc)

(read)

Figure 11.15: Evaluation of changeable expressions.

stitutes the binding of location l in the store σ for the variable x in e, and continues evaluation in changeable
mode. The read is recorded in the trace, along with the expression that employs the value read. The write
rule simply assigns its argument to the target. Finally, application of a changeable function passes the target
of the caller to the callee, avoiding the need to allocate a fresh target for the callee and a corresponding read
to return its value to the caller.

Each location allocated during the evaluation a changeable expression is recorded in the trace and is
written; the destination is also written: If σ, l ← e ⇓c σ′,Tc, then dom(σ′) = dom(σ) ∪ def(Tc), and
def(σ′) = def(σ)∪ def(Tc)∪{l}. Furthermore, all locations read during evaluation are defined in the store,
dom(Tc) ⊆ def(σ′).

11.4 Type Safety of AFL

The static semantics of AFL ensures these five properties of its dynamic semantics: (1) each modifiable is
written exactly once; (2) no modifiable is read before it is written; (3) dependencies are not lost, i.e., if a
value depends on a modifiable, then its value is also placed in a modifiable; (4) the store is acyclic and (5)
the data dependences (dynamic dependence graph) is acyclic. These properties are critical for correctness
of the adaptivity mechanisms. The last two properties show that AFL is consistent with pure functional
programming by ensuring that no cycles arise during evaluation.

11.4. TYPE SAFETY OF AFL 129

The write-once property (1) and no-lost-dependencies property (3) are relatively easy to observe. A
write can only take place in the changeable mode and can write to the current destination. Since being
the changeable mode requires the creation of a new destination by the mod construct, and only the current
destination can be written, each modifiable is written exactly once. For property 3, note that dependencies
are created by read operations, which take place in the changeable mode, are recorded in the trace, and end
with a write. Thus, dependences are recorded and the result of a read is always written to a destination. The
proof that the store is acyclic is more involved. We order locations (modifiables) of the store with respect
to the times that they are written and require that the value of each expression typecheck with respect to the
locations written before that expression. The total order directly implies that the store is acyclic (property
4), i.e., no two locations refer to each other. The restriction that an expression typechecks with respect to
the previously written locations ensures that no location is read before it is written (property 2). This fact
along with the total ordering on locations implies that there are no cyclic dependences, i.e., the dynamic
dependence graph is acyclic (property 5).

The proof of type safety for AFL hinges on a type preservation theorem for the dynamic semantics. Since
the dynamic semantics of AFL is given by an evaluation relation, rather than a transition system, the proof of
type safety is indirect. First, we prove the type preservation theorem stating that the outcome of evaluation
is type consistent, provided that the inputs are. Second, we prove a canonical forms lemma characterizing
the “shapes” of closed values of each type. Third, we augment the dynamic semantics with rules stating that
evaluation “goes wrong” in the case that the principal argument of an elimination form is non-canonical.
Finally, we argue that, by the first two results, these rules can never apply to a well-typed program. Since
the last two steps are routine, given the first two, we concentrate on preservation and canonical forms.

11.4.1 Location Typings

For the safety proof we will enrich location typings with a total ordering on locations that respects the order
that they are written to. A location typing, Λ, consists of three parts:

1. A finite set, dom(Λ), of locations, called the domain of the store typing.

2. A finite function, also written Λ, assigning types to the locations in dom(Λ).

3. A linear ordering ≤Λ of dom(Λ).

The relation l <Λ l′ holds if and only if l ≤Λ l′ and l 6= l′. The restriction, ≤Λ � L, of ≤Λ to a subset
L ⊆ dom(Λ) is the intersection ≤Λ ∩ (L× L).

As can be expected, stores are extended with respect to the total order: the ordered extension, Λ[l′:τ ′<l],
of a location typing Λ assigns the type τ ′ to the location l′ /∈ dom(Λ) and places l′ immediately before
l ∈ dom(Λ) such that

1. dom(Λ′) = dom(Λ) ∪ { l′ };

2. Λ′(l′′) =
{

τ ′ if l′′ = l′

Λ(l′′) otherwise;

3. (a) l′ ≤Λ′ l;

130 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

(b) if l′′ ≤Λ l, then l′′ ≤Λ′ l′;

(c) if l′′ ≤Λ l′′′, then l′′ ≤Λ′ l′′′.

Location typings are partially ordered with respect to a containment relation by defining Λ v Λ′ if and
only if

1. dom(Λ) ⊆ dom(Λ′);

2. if l ∈ dom(Λ), then Λ′(l) = Λ(l);

3. ≤Λ′ � dom(Λ) =≤Λ.

Ordered extensions yield bigger stores: if l ∈ dom(Λ) and l′ /∈ dom(Λ), then Λ v Λ[l′:τ ′<l].

Forcing an ordering on the locations of a store suffices to show that the store is acyclic. It does not
however help ensure that locations are not read before they are written. We therefore restrict an expression
to depend only on those locations that have been written. How can we know what locations are written?
At any point in evaluation, we call the last allocated but not yet written location the cursor and require
that an expression depend only on locations prior to the cursor. The cursor will be maintained such that all
locations that precede the cursor have been written and those that come after have not. We therefore define
the restriction Λ � l, of a location typing Λ to a location l ∈ dom(Λ) is defined as the location typing Λ′

such that

1. dom(Λ′) = { l′ ∈ dom(Λ) | l′ <Λ l };

2. if l′ <Λ l, then Λ′(l′) = Λ(l′);

3. ≤Λ′= ≤Λ � dom(Λ′).

Note that if Λ v Λ′ and l ∈ dom(Λ), then Λ � l v Λ′ � l.

Definition 68 (Store Typing)
A store σ may be assigned a location typing Λ, written σ : Λ, if and only if the following two conditions are
satisfied.

1. dom(σ) = dom(Λ).

2. for each l ∈ def(σ), Λ � l `s σ(l) : Λ(l).

The location typing, Λ, imposes a linear ordering on the locations in the store, σ, such that the values in
σ store have the types assigned to them by Λ, relative to the types of its preceding locations in the ordering.

11.4.2 Trace Typing

The formulation of the type safety theorem requires a notion of typing for traces. The judgement Λ, l0 `s
Ts ; Λ′ states that the stable trace Ts is well-formed relative to the input location typing Λ and the cursor
l0 ∈ dom(Λ′). The output location typing Λ′ is an extension of Λ with typings for the locations allocated by

11.4. TYPE SAFETY OF AFL 131

Λ, l0 `s ε ; Λ
Λ, l0 `s Ts ; Λ′ Λ′, l0 `s T′s ; Λ′′

Λ, l0 `s Ts ; T′s ; Λ′′

Λ[l:τ<l0], l `c Tc : τ ; Λ′ (l /∈ dom(Λ))
Λ, l0 `s 〈Tc〉l:τ ; Λ′

Λ, l0 `c Wτ : τ ; Λ
Λ, l0 `s Ts ; Λ′ Λ′, l0 `s Tc : τ ; Λ′′

Λ, l0 `c Ts ; Tc : τ ; Λ′′

Λ � l0;x:τ `c e : τ ′ Λ, l0 `c Tc : τ ′ ; Λ′ (l <Λ l0, Λ(l) = τ)
Λ, l0 `c Rx.e

l (Tc) : τ ′ ; Λ′

Figure 11.16: Typing of Traces.

the trace; these will all be ordered prior to the cursor. When Λ′ is not important, we simply write Λ `s Ts ok
to mean that Λ `s Ts ; Λ′ for some Λ′.

Similarly, the judgement Λ, l0 `c Tc : τ ; Λ′ states that the changeable trace Tc is well-formed relative
to Λ and l0 ∈ dom(Λ). As with stable traces, Λ′ is an extension of Λ with the newly-allocated locations of
the trace. When Λ′ is not important, we write Λ `c Tc : τ for Λ `c Tc : τ ; Λ′ for some Λ′.

The rules for deriving these judgements are given in Figure 11.16. The input location typing specifies
the active locations, of which only those prior to the cursor are eligible as subjects of a read; this ensure a
location is not read before it is written. The cursor changes when processing an allocation trace to make the
allocated location active, but unreadable, thereby ensuring that no location is read before it is allocated. The
output location typing determines the ordering of locations allocated by the trace relative to the ordering of
the input locations. Specifically, the ordering of the newly allocated locations is determined by the trace,
and is such that they are all ordered to occur immediately prior to the cursor. The ordering so determined is
essentially the same as that used in the implementation described in Section 11.2.

The following invariants hold for traces and trace typings.

1. ∀l. l ∈ def(T), l is written exactly once: l appears once in a write position in T of the form 〈Tc〉l:τ for
some Tc.

2. If Λ, l0 `c Tc : τ ; Λ′, then dom(Λ′) = dom(Λ) ∪ def(Tc) and dom(Tc) ⊆ dom(Λ′).

3. If Λ, l0 `s Ts ; Λ′, then dom(Λ′) = dom(Λ) ∪ def(Ts) and dom(Ts) ⊆ dom(Λ′).

11.4.3 Type Preservation

For the proof of type safety we shall make use of a few technical lemmas. First, typing is preserved by
addition of typings of “irrelevant” locations and variables.

Lemma 69 (Weakening)
If Λ v Λ′ and Γ ⊆ Γ′, then

1. if Λ; Γ `s e : τ , then Λ′; Γ′ `s e : τ ;

132 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

2. if Λ; Γ `c e : τ , then Λ′; Γ′ `c e : τ ;

3. if Λ `s Ts ok, then Λ′ `s Ts ok;

4. if Λ `c Tc : τ , then Λ′ `c Tc : τ .

Second, typing is preserved by substitution of a value for a free variable of the same type as the value.

Lemma 70 (Value Substitution)
Suppose that Λ; Γ `s v : τ .

1. If Λ; Γ, x:τ `s e′ : τ ′, then Λ; Γ `s [v/x]e′ : τ ′.

2. If Λ; Γ, x:τ `c e′ : τ ′, then Λ; Γ `c [v/x]e′ : τ ′.

The type preservation theorem for AFL states that the result of evaluation of a well-typed expression
is itself well-typed. The location l0, called the cursor, is the current allocation point. All locations prior
to the cursor are written to, and location following the cursor are allocated but not yet written. All new
locations are allocated prior to l0 in the ordering and the newly allocated location becomes the cursor. The
theorem requires that the input expression be well-typed relative to those locations preceding the cursor so
as to preclude forward references to locations that have been allocated, but not yet initialized. In exchange
the result is assured to be sensible relative to those locations prior to the cursor, all of which are allocated
and initialized. This ensures that no location is read before it has been allocated and initialized.

Theorem 71 (Type Preservation)
1. If

(a) σ, e ⇓s v, σ′,Ts,

(b) σ : Λ,

(c) l0 ∈ dom(Λ),

(d) l <Λ l0 implies l ∈ def(σ),

(e) Λ � l0 `s e : τ ,

then there exists Λ′ w Λ such that

(f) Λ′ � l0 `s v : τ ,

(g) σ′ : Λ′, and

(h) Λ, l0 `s Ts ; Λ′.

2. If

(a) σ, l0 ← e ⇓c σ′,Tc,

(b) σ : Λ,

(c) Λ(l0) = τ0,

(d) l <Λ l0 implies l ∈ def(σ),

11.4. TYPE SAFETY OF AFL 133

(e) Λ � l0 `c e : τ0,

then

(f) l0 ∈ def(σ′),

and there exists Λ′ w Λ such that

(g) σ′ : Λ′, and

(h) Λ, l0 `c Tc : τ0 ; Λ′.

Proof: Simultaneously, by induction on evaluation. We will consider several illustrative cases.

• Suppose that

(1a) σ,modτ e ⇓s l, σ′′, 〈Tc〉l:τ ;

(1b) σ : Λ;

(1c) l0 ∈ dom(Λ);

(1d) l′ <Λ l0 implies l′ ∈ def(σ);

(1e) Λ � l0 `s modτ e : τ mod.

Since the typing and evaluation rules are syntax-directed, it follows that

(1a(i)) σ[l→ �], l← e ⇓c σ′′,Tc, where l /∈ dom(σ), and

(1e(i)) Λ � l0 `c e : τ .

Note that l /∈ dom(Λ), by (1b). Let σ′ = σ[l→ �] and let Λ′ = Λ[l:τ<l0]. Note that Λ v Λ′ and that
Λ′(l) = τ .

Then we have

(2a′) σ′, l← e ⇓c σ′′,Tc, by (1a(i));

(2b′) σ′ : Λ′. Since σ : Λ by (1b), we have Λ � l′ `s σ(l′) : Λ(l′) for every l′ ∈ def(σ). Now
def(σ′) = def(σ), so for every l′ ∈ def(σ′), σ′(l′) = σ(l′) and Λ′(l′) = Λ(l′). Therefore, by
Lemma 69, we have Λ′ � l′ `s σ′(l′) : Λ′(l′), as required.

(2c′) Λ′(l) = τ , by definition;

(2d′) l′ <Λ′ l implies l′ ∈ def(σ′), since l′ <Λ′ l implies l′ <Λ l0 and (1d);

(2e′) Λ′ � l `c e : τ since Λ′ � l = Λ � l0 and (1e(i)).

Therefore, by induction,

(2f′) l ∈ def(σ′′);

and there exists Λ′′ w Λ′ such that

(2g′) σ′′ : Λ′′;

134 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

(2h′) Λ′, l `c Tc : τ ; Λ′′.

Hence we have

(1f) Λ′′ � l0 `s l : τ , since (Λ′′ � l0)(l) = Λ′(l) = τ ;

(1g) σ′′ : Λ′′ by (2g′);

(1h) Λ, l0 `s 〈Tc〉l:τ : τ ; Λ′′, by (2h′).

• Suppose that

(2a) σ, l0 ← writeτ(v) ⇓c σ[l0 ← v],Wτ ;

(2b) σ : Λ;

(2c) Λ(l0) = τ ;

(2d) l <Λ l0 implies l ∈ def(σ);

(2e) Λ � l0 `c writeτ(v) : τ .

By the syntax-directed nature of the typing rules it follows that

(2e(i)) Λ � l0 `s v : τ .

Let Λ′ = Λ and σ′ = σ[l0 ← v]. Then we have:

(2f) l0 ∈ def(σ′), by definition of σ′;

(2g) σ′ : Λ′, since σ : Λ by (2b), Λ � l0 `s v : τ by (2e(i)), and Λ(l0) = τ by (2c).

(2h) Λ′, l0 `c Wτ : τ ; Λ′ by definition.

• Suppose that

(2a) σ, l0 ← read l as x in e end ⇓c σ′, Rx.e
l (Tc);

(2b) σ : Λ;

(2c) Λ(l0) = τ0;

(2d) l′ <Λ l0 implies l′ ∈ def(σ);

(2e) Λ � l0 `c read l as x in e end : τ0.

By the syntax-directed nature of the evaluation and typing rules, it follows that

(2a(i)) σ, l0 ← [σ(l)/x] e ⇓c σ′,Tc;

(2e(i)) Λ � l0 `s l : τ mod, hence (Λ � l0)(l) = Λ(l) = τ , and so l <Λ l0 and Λ(l) = τ ;

(2e(ii)) Λ � l0;x:τ `c e : τ0.

Since l <Λ l0, it follows that Λ � l v Λ � l0.

Therefore,

(2a′) σ, l0 ← [σ(l)/x] e ⇓c σ′,Tc by (2a(i));

11.4. TYPE SAFETY OF AFL 135

(2b′) σ : Λ by (2b);

(2c′) Λ(l0) = τ0 by (2c);

(2d′) l′ <Λ l0 implies l′ ∈ def(σ) by (2d).

Furthermore, by (2b′), we have Λ � l `s σ(l) : Λ(l), hence Λ � l0 `s σ(l) : Λ(l) and so by
Lemma 70 and 2e(ii),

(2e′) Λ � l0 `c [σ(l)/x]e : τ0.

It follows by induction that

(2f′) l0 ∈ def(σ′)

and there exists Λ′ w Λ such that

(2g′) σ′ : Λ′;

(2h′) Λ, l0 `c Tc : τ ; Λ′.

Therefore we have

(2f) l0 ∈ def(σ′) by (2f′);

(2g) σ′ : Λ′ by (2g′);

(2h) Λ, l0 `c Rx.e
l (Tc) : τ0 ; Λ′, since

(a) Λ � l0, x:Λ(l) `c e : τ0 by (2e(ii));
(b) Λ, l0 `c Tc : τ0 ; Λ′ by (2h′);
(c) l ≤Λ l0 by (2e(i)).

�

11.4.4 Type Safety for AFL

Type safety follows from the canonical forms lemma, which characterizes the shapes of closed values of
each type.

Lemma 72 (Canonical Forms)
Suppose that Λ `s v : τ . Then

• If τ = int, then v is a numeric constant.

• If τ = bool, then v is either true or false.

• If τ = τ1
c→ τ2, then v = func f(x : τ1) : τ2 is e end with Λ; f :τ1

c→ τ2, x:τ1 `c e : τ2.

• If τ = τ1
s→ τ2, then v = funs f(x : τ1) : τ2 is e end with Λ; f :τ1

s→ τ2, x:τ1 `s e : τ2.

136 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

• If τ = τ ′ mod, then v = l for some l ∈ dom(Λ) such that Λ(l) = τ ′.

Theorem 73 (Type Safety)
Well-typed programs do not “go wrong”.

Proof (sketch): Instrument the dynamic semantics with rules that “go wrong” in the case of a non-canonical
principal argument to an elimination form. Then show that no such rule applies to a well-typed program, by
appeal to type preservation and the canonical forms lemma. �

11.5 Change Propagation

We formalize the change-propagation algorithm and the notion of an input change and prove the type safety
and correctness of the change propagation algorithm.

We represent an input change via difference stores. A difference store is a finite map assigning values to
locations. Unlike a store, a difference store may contain “dangling” locations that are not defined within the
difference store. The process of modifying a store with a difference store is defined as

Definition 74 (Store Modification)
Let σ : Λ be a well-typed store for some Λ and let δ be a difference store. The modification of σ by δ,
written σ ⊕ δ, is a well-typed store σ′ : Λ′ for some Λ′ w Λ and is defined as

σ′ = σ ⊕ δ = δ ∪ { (l, σ(l)) | l 6∈ dom(δ) and l ∈ dom(σ) }.

Note that the definition requires the result store be well typed and the types of modified locations be pre-
served.

Modifying a store σ with a difference store δ changes the locations in the set dom(σ) ∩ dom(δ). This
set is called the changed set and denoted by χ. A location in the changed set is said to be changed.

Figure 11.17 shows the a formal version of the change-propagation algorithm that was stated in algorith-
mic terms in Section 11.2. In the rest of this section, the term “change-propagation algorithm” refers to the
formal version. The change-propagation algorithm takes a modified store, a trace obtained by evaluating an
AFL program with respect to the original store, and a changed set with respect to some difference store. The
algorithm scans the trace as it seeks for reads of changed locations. When such a read is found, the body of
the read is re-evaluated with the new value to update the trace and the store. Since re-evaluation can change
the target of the re-evaluated read, the target is added to the changed set. Note that the change-propagation
algorithm scans the trace once in the order that it was originally generated.

Formally, the change propagation algorithm is given by these two judgements:

1. Stable propagation: σ,Ts, χ
sy→ σ′,T′s, χ

′;

2. Changeable propagation: σ, l← Tc, χ
cy→ σ′,T′c, χ

′;

11.5. CHANGE PROPAGATION 137

σ, ε, χ
sy→ σ, ε, χ

σ, l← Tc, χ
cy→ σ′,T′c, χ

′

σ, 〈Tc〉l:τ , χ
sy→ σ′, 〈T′c〉l:τ , χ′

(mod)

σ,Ts, χ
sy→ σ′,T′′s , χ′

σ′,T′s, χ
′

sy→ σ′′,T′′′s , χ′′

σ, (Ts ; T′s), χ
sy→ σ′′, (T′′s ; T′′′s), χ′′

(let)

σ, l← Wτ , χ
sy→ σ,Wτ , χ

(write)

(l 6∈ χ)

σ, l′ ← Tc, χ
cy→ σ′,T′c, χ

′

σ, l′ ← Rx.e
l (Tc), χ

cy→ σ′, Rx.e
l (T′c), χ

′

(read/no change)

(l ∈ χ)
σ, l′ ← [σ(l)/x]e ⇓c σ′,T′c

σ, l′ ← Rx.e
l (Tc), χ

cy→ σ′, Rx.e
l (T′c), χ ∪ {l′}

(read/change)

σ,Ts, χ
sy→ σ′,T′s, χ

′

σ′, l′ ← Tc, χ
′

cy→ σ′′,T′c, χ
′′

σ, l′ ← (Ts ; Tc), χ
cy→ σ′′, (T′s ; T′c), χ

′′

(let)

Figure 11.17: Change propagation rules (stable and changeable).

The judgements define the change-propagation for a stable trace, Ts (respectively, changeable trace, Tc),
with respect to a store, σ, and a changed set, χ ⊆ dom(σ). For changeable propagation a target location, l,
is maintained as in the changeable evaluation mode of AFL.

138 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

The rules defining the change-propagation judgements are given in Figure 11.17. Given a trace, change
propagation mimics the evaluation rule of AFL that originally generated that trace. To stress this correspon-
dence, each change-propagation rule is marked with the name of the evaluation rule to which it corresponds.
For example, the propagation rule for the trace Ts ; T′s mimics the let rule of the stable mode that gives
rise to this trace.

The most interesting rule is the read rule. This rule mimics a read operation, which evaluates an
expression after binding its specified variable to the value of the location read. The read rule takes two
different actions depending on whether the location being read is in the changed set or not. If the location
is in the changed set, then the expression is re-evaluated with the new value of there location. Re-evaluation
yields a revised store and a new trace. The new trace “repairs” the original trace by replacing the trace of the
re-evaluated read. Since re-evaluating the read may change the value written at the target, the target location
is added to the changed set. If the location being read is not in the changed set, then there is no need to
re-evaluate this read and change-propagation continues to scan the rest of the trace.

The purely functional change-propagation algorithm presented here scans the whole trace. A direct
implementation of this algorithm will therefore run in time linear in the size of the trace. The change-
propagation algorithm, however, revises the trace by only replacing the changeable trace of re-evaluated
reads. Thus, if one is content with updating the trace with side effects, then traces of re-evaluated reads can
be replaced in place, while skipping all the rest of the trace. This is precisely what dynamic dependence
graphs support (Section 11.2.4). The ML implementation performs change propagation using dynamic
dependence graphs (Section 11.2.6).

11.5.1 Type Safety

The change-propagation algorithm also enjoys a type preservation property stating that if the initial state is
well-formed, so is the result state. This ensures that the results of change propagation can subsequently be
used as further inputs. For the preservation theorem to apply, the store modification must respect the typing
of the store being modified.

Theorem 75 (Type Preservation)
Suppose that def(σ) = dom(σ).

1. If

(a) σ,Ts, χ
sy→ σ′,T′s, χ

′,

(b) σ : Λ,

(c) l0 ∈ dom(Λ),

(d) Λ, l0 `s Ts ok, and

(e) χ ⊆ dom(Λ),

then for some Λ′ w Λ,

(f) σ′ : Λ′,

(g) Λ, l0 `s T′s ; Λ′,

11.5. CHANGE PROPAGATION 139

(h) χ′ ⊆ dom(Λ).

2. If

(a) σ, l0 ← Tc, χ
cy→ σ′,T′c, χ

′,

(b) σ : Λ,

(c) Λ(l0) = τ0,

(d) Λ, l0 `c Tc : τ0, and

(e) χ ⊆ dom(Λ),

then there exists Λ′ w Λ such that

(f) σ′ : Λ′,

(g) Λ, l0 `c T′c : τ0 ; Λ′, and

(h) χ′ ⊆ dom(Λ).

Proof: By induction on the definition of the change propagation relations, making use of Theorem 71. We
consider the case of a re-evaluation of a read. Suppose that l ∈ χ and

(2a) σ, l0 ← Rx.e
l (Tc), χ

cy→ σ′, Rx.e
l (T′c), χ ∪ {l0};

(2b) σ : Λ;

(2c) Λ(l0) = τ0;

(2d) Λ, l0 `c Rx.e
l (Tc) : τ0;

(2e) χ ⊆ dom(Λ).

By the syntax-directed nature of the change propagation and trace typing rules, it follows that

(2a(i)) σ, l0 ← [σ(l)/x]e ⇓c σ′,T′c;

(2b(i) Λ � l0 `s σ(l) : Λ(l), by (2b);

(2d(i)) l <Λ l0 and Λ(l) = τ for some type τ ;

(2d(ii)) Λ � l0;x:τ `c e : τ0;

(2d(iii)) Λ, l0 `c Tc : τ0.

Therefore

(2a′) σ, l0 ← [σ(l)/x]e ⇓c σ′,T′c by (2a(i));

(2b′) σ : Λ by (2b);

140 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

σi

σs

σ′s

σ′i

σm

σ′m

σi, e ⇓s vi, σ
′
i,T

i
s

⊆

σs = σi ⊕ δ

subsequent eval: propagate:

σm,Ti
s, dom(σ′i) ∩ dom(δ)

sy→ σ′m,Tm
s ,

σm = σ′i ⊕ δ

initial eval:

σs, e ⇓s vs, σ
′
s,T

s
s

Figure 11.18: Change propagation simulates a complete re-evaluation.

(2c′) Λ(l0) = τ0 by (2c);

(2d′) l′ <Λ l0 implies l′ ∈ def(σ) by assumption that def(σ) = dom(σ);

(2e′) Λ � l0 `c [σ(l)/x]e : τ0 by (2d(ii)), (2b(i)), and Lemma 70.

Hence, by Theorem 71,

(2f′) l ∈ def(σ′);

and there exists Λ′ w Λ such that

(2g′) σ′ : Λ′;

(2h′) Λ, l0 `c T′c : τ0 ; Λ′.

Consequently,

(2f) σ′ : Λ′ by (2g′);

(2g) Λ, l0 `c Rx.e
l (T′c) : τ0 by (2d(i) and (ii)), (2h′), and Lemma 69;

(2h) C ∪ { l0 } ⊆ dom(Λ′) since l0 ∈ dom(Λ) and Λ′ w Λ.

�

11.5.2 Correctness

Change propagation simulates a complete re-evaluation by re-evaluating only the affected sub-expressions
of an AFL program. This sections shows that change propagation is correct by proving that it yields the
same output and the trace as a complete re-evaluation.

11.5. CHANGE PROPAGATION 141

Consider evaluating an adaptive program (a stable expression) e with respect to an initial store σi; call
this the initial evaluation. As shown in Figure 11.18, the initial evaluation yields a value vi, an extended
store σ′i, and a trace T i

s . Now modify the initial store with a difference store δ as σs = σi ⊕ δ and re-evaluate
the program with this store in a subsequent evaluation. To simulate the subsequent evaluation via a change
propagation apply the modifications δ to σ′i and let σm denote the modified store, i.e., σm = σ′i ⊕ δ. Now
perform change propagation with respect to σm, the trace of the initial evaluation Ti

s, and the set of changed
locations dom(σ′i) ∩ dom(δ). Change propagation yields a revised store σ′m and trace Tm

s . For the change-
propagation to work properly, δ must change only input locations, i.e., dom(σ′i) ∩ dom(δ) ⊆ dom(σi).

To prove correctness, we compare the store and the trace obtained by the subsequent evaluation, σ′s and
T s

s , to those obtained by the change propagation, σ′m and Tm
s , (see Figure 11.18). Since locations (names)

are chosen arbitrarily during evaluation, subsequent evaluation and change propagation can choose different
locations (names). We therefore show that the traces are identical modulo the choice of locations and the
the store σ′s is contained in the store σ′m modulo the choice of locations.

To study relations between traces and stores modulo the choice of locations we use an equivalence
relation for stores and traces that matches different locations via a partial bijection. A partial bijection is a
one-to-one mapping from a set of locations D to a set of locations R that may not map all the locations in
D.

Definition 76 (Partial Bijection)
B is a partial bijection from set D to set R if it satisfies the following:

1. B ⊆ { (a, b) | a ∈ D, b ∈ R },

2. if (a, b) ∈ B and (a, b′) ∈ B then b = b′,

3. if (a, b) ∈ B and (a′, b) ∈ B then a = a′.

The value of a location l under the partial bijection B is denoted by B(l).
A partial bijection, B, can be applied to an expression e, to a store σ, or to a trace T, denoted B[e], B[σ],

and B[T], by replacing, whenever defined, each location l with B(l):

Definition 77 (Applications of Partial Bijections)
Expression: The application of a partial bijection B to an expression e yields another expression obtained

by substituting each location l in e with B(l) (when defined) as shown in Figure 11.19.

Hole: The application of a partial bijection to a hole yields a hole, B[�] = �.

Store: The application of a partial bijection B to a store σ yields another store B[σ], defined as B[σ] =
{ (B[l], B[σ(l)]) | l ∈ dom(σ) }.

Trace: The application of a partial bijection to a trace is defined as

B[ε] = ε
B[〈Tc〉l:τ] = 〈B[Tc]〉B[l]:τ

B[Ts ; Ts] = B[Ts] ; B[Ts]
B[Wτ] = Wτ

B[Rx.e
l (Tc)] = R

B[x].B[e]
B[l] (B[Tc])

B[Ts ; Tc] = B[Ts] ; B[Tc].

142 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

B[c] = c, B[x] = x

B[l] =
{

l′ if (l, l′) ∈ B
l otherwise

B[funs f(x : τ) : τ ′ is e end] = funs f(x : τ) : τ ′ is B[es] end
B[func f(x : τ) : τ ′ is e end] = func f(x : τ) : τ ′ is B[ec] end

B[o(v1, . . . , vn)] = o(B[v1], . . . , B[vn])
B[applys(v1, v2)] = applys(B[v1], B[v2])

B[let x be es in e′s end] = let x be B[es] in B[e′s] end
B[if v then es else e′s] = ifB[v]thenB[es]elseB[e′s]

B[modτ ec] = modτ B[ec]

B[applyc(v1, v2)] = applyc(B[v1], B[v2])
B[let x be es in ec end] = let x be B[es] in B[ec] end

B[if v then ec else e′c] = ifB[v]thenB[ec]elseB[e′c]
B[read v as x in ec end] = read B[v] as x in B[ec] end

B[writeτ(v)] = writeτ(B[v])

Figure 11.19: Application of a partial bijection B to values, and stable and changeable expression.

Destination: Application of a partial bijection to an expression with a destination is defined as B[l← e] =
B[l]← B[e].

In the correctness theorem, we will show that the traces obtained by change propagation and the subse-
quent evaluation are identical under some partial bijection B; referring back to Figure 11.18, we will show
that B[Tm

s] = T s
s . The relationship between the store σ′s of the subsequent evaluation and σ′m of change

propagation are more subtle. Since the change propagation is performed on the store that the initial evalua-
tion yields σ′i, and no allocated location is ever deleted, the store after the change propagation will contain
leftover but now unused (garbage) locations from the initial evaluation. We will therefore show that B[σ′m]
contains σ′s.

Definition 78 (Store Containment)
We say that a store, σ, is contained in another σ′, written σ v σ′, if

1. dom(σ) ⊆ dom(σ′), and

2. ∀l, l ∈ def(σ), σ(l) = σ′(l).

We now state and prove the correctness theorem. The theorem hinges on a lemma (Lemma 81) for
expressions that are equal up to a partial bijection—such expressions arise due to substitution of a variable
by two different locations. The correctness theorem, however, is only concerned with equal programs or
stable expressions, i.e., expressions that are syntactically identical. We note that the equivalence relation
between expressions does not “deference” locations: two expressions are equal even though the stores can
contain different values for the same location.

11.5. CHANGE PROPAGATION 143

Theorem 79 (Correctness)
Let e be a well-typed program with respect to a store typing Λ, σi : Λ be an initial store such that def(σi) =
dom(σi), δ be a difference store, σs = σi ⊕ δ, and σm = σ′i ⊕ δ as shown in Figure 11.18. If

(A1) σi, e ⇓s vi, σ
′
i,T

i
s , (initial evaluation)

(A2) σs, e ⇓s vs, σ
′
s,T

s
s , (subsequent evaluation)

(A3) dom(σ′i) ∩ dom(δ) ⊆ dom(σi)

then the following holds:

1. σm,T i
s, (dom(σ′i) ∩ dom(δ))

sy→ σ′m,Tm
s , ,

2. there is a partial bijection B such that

(a) B[vi] = vs,

(b) B[Tm
s] = T s

s ,

(c) B[σ′m] w σ′s.

Proof: The proof is by an application of Lemma 81. To apply the lemma, define the partial bijection B (of
Lemma 81) to be the identity function with domain dom(σi). The following hold:

1. dom(σm) ⊇ dom(σ′i) (follows by the definition of the store modification).

2. ∀l, l ∈ (def(σ′i)− def(σi)), σm(l) = σ′i(l) (follows by assumption three (A3) and the definition of the
store modification).

3. B[σm] w σs (since B is the identity, this reduces to σm w σs, which holds because σs = σi ⊕ δ, and
σm = σ′i ⊕ δ and σ′i w σi).

Applying Lemma 81 with changed locations dom(σ′i) ∩ dom(δ) = {l | l ∈ dom(σi) ∧ σi[l] 6= σs[l]}
yields a partial bijection B′ such that

1. B′[vi] = vs,

2. B′[Tm
s] = T s

s ,

3. B′[σ′m] w σ′s.

Thus taking B = B′ proves the theorem.
�

We turn our attention to the main lemma. Lemma 81 considers initial and subsequent evaluations of
expressions that are equivalent under some partial bijection and shows that the subsequent evaluation is
identical to change propagation under an extended partial bijection. The need to consider expressions that are
equivalent under some partial bijection arises because arbitrarily chosen locations (names) can be substituted
for the same variable in two different evaluations. We start by defining the notion of a changed set, the set
of changed locations of a store, with respect to some modified store and a partial bijection.

144 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

Definition 80 (Changed Set)
Given two stores σ and σ′, and a partial bijection B from dom(σ) to the dom(σ′) the set of changed locations
of σ is

χ(B, σ, σ′) = { l | l ∈ dom(σ), B[σ(l)] 6= σ′(B[l]) }.

The main lemma consists of two symmetric parts for stable and changeable expressions. For each
kind of expression, it shows that the trace and the store of a subsequent evaluation of an expression under
some partial bijection is identical to those that would have obtained by change propagation under some
extended partial bijection. The lemma constructs a partial bijection by mapping locations created by change
propagation to those created by the subsequent evaluation. We will assume, without loss of generality that
the expression are well-typed with respect to the stores that they are evaluated with. Indeed, the correctness
theorem (Theorem 79) requires that the expressions and store modifications be well typed.

The proof assumes that a changeable expression evaluates to a different value when re-evaluated, i.e.,
the value of the destination location changes. This assumption causes no loss of generality, and can be
eliminated by additional machinery to enable comparison of the old and the new values of the destination
location.

Lemma 81 (Change Propagation)
Consider the stores σi and σs and B be a partial bijection from dom(σi) to dom(σs). The following hold:

• If
σi, l← e ⇓c σ′i,T

i
c ; and

σs, B[l← e] ⇓c σ′s,T
s
c

then for any store σm satisfying

1. dom(σm) ⊇ dom(σ′i),
2. ∀l, l ∈ (def(σ′i)− def(σi)), σm(l) = σ′i(l), and
3. B[σm] w σs,

there exists a partial bijection B′ such that

σm, l← T i
c , χ(B, σi, σs)

cy→ σ′m,Tm
c , χ; where

1. B′ ⊇ B

2. dom(B′) = dom(B) ∪ def(Tm
c),

3. B′[σ′m] w σ′s,
4. B′[Tm

c] = T s
c , and

5. χ = χ(B′, σ′i, σ
′
s).

• If
σi, e ⇓s vi, σ

′
i,T

i
s; and

σs, B[e] ⇓s v′i, σ
′
s,T

s
s ,

then for any store σm satisfying

11.5. CHANGE PROPAGATION 145

1. dom(σm) ⊇ dom(σ′i),

2. ∀l, l ∈ (def(σ′i)− def(σi)), σm(l) = σ′i(l), and

3. B[σm] w σs,

there exists a partial bijection B′ such that

σm,T i
s, χ(B, σi, σs)

sy→ σ′m,Tm
s , χ; where

1. B′ ⊇ B,

2. dom(B′) = dom(B) ∪ def(Tm
s),

3. B′[vi] = v′i,

4. B′[σ′m] w σ′s,

5. B′[Tm
s] = T s

s , and

6. χ = χ(B′, σ′i, σ
′
s).

Proof: The proof is by simultaneous induction on the evaluation. Among the changeable expressions, the
most interesting are write, let, and read. Among the stable expression, the most interesting are the
let and mod.

We refer to the following properties of modified store σm as the modified-store properties:

1. dom(σm) ⊇ dom(σ′i),

2. ∀l, l ∈ (def(σ′i)− def(σi)), σm(l) = σ′i(l), and

3. B[σm] w σs,

• Write: Suppose
σi, l← writeτ(v) ⇓c σi[l→ v],Wτ ; and

σs, B[l← writeτ(v)] ⇓c σs[B[l]→ B[v]],Wτ

then for store σm satisfying the modified-store properties we have

σm, l← Wτ , χ(B, σi, σs)
cy→ σm,Wτ , χ(B, σi, σs).

The partial bijection B satisfies the following properties:

1. B ⊇ B

2. dom(B) = dom(B) ∪ def(Wτ)

3. B[σm] w σs[B[l] → B[v]]: We know that B[σm] w σs and thus we must show that B[l]
is mapped to B(v) in B[σ′m]. Observe that σm(l) = (σi[l → v])(l) = v by Modified-Store
Property 2, thus B[σm](B[l]) = B[v].

4. B[Wτ] = Wτ

146 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

5. χ(B, σi, σs) = χ(B, σi[l→ v], σs[B[l]→ B[v]]), by definition.

Thus, pick B′ = B for this case.

• Apply (Changeable): Suppose that

(I.1) σi, l← [v/x,func f(x : τ1) : τ2 is e end/f] e ⇓c σ′i,T
i
c

(I.2) σi, l← applyc(func f(x : τ1) : τ2 is e end, v) ⇓c σ′i,T
i
c

(S.1) σs, B[l]← [B[v]/x,B[func f(x : τ1) : τ2 is e end]/f] e] ⇓c σ′s,T
s
c

(S.2) σs, B[l← applyc(func f(x : τ1) : τ2 is e end, v)] ⇓c σ′s,T
s
c

Consider evaluations (I.1) and (S.1) and a store σm that satisfies the modified-store properties. By
induction we have a partial bijection B0 and

σm, l← T i
c , χ(B, σi, σs)

cy→ σm,Tm
c , χ,

where

1. B0 ⊇ B,

2. dom(B0) = dom(B) ∪ def(Tm
c),

3. B0[Tm
c] = T s

c , and

4. B0[σm] w σ′s.

5. χ = χ(B0, σ
′
i, σ

′
s),

Since (I.2) and (S.2) return the trace and store returned by (I.1) and (S.1), we pick B′ = B0 for this
case.

• Let:

(I.1) σi, e ⇓s vi, σ
′
i,T

i
s

(I.2) σ′i, l← [vi/x]e′ ⇓c σ′′i ,T i
c

(I.3) σi, l← let x be e in e′ end ⇓c σ′′i , (T i
s ; T i

c)

(S.1) σs, B[e] ⇓s vs, σ
′
s,T

s
s

(S.2) σ′s, B[l]← [vs/x]B[e′] ⇓c σ′′s ,T s
c

(S.3) σs, B[l← let x be e in e′ end] ⇓c σ′′s , (T s
s ; T s

c)

Consider any store σm that satisfies the modified-store properties. The following judgement shows a
change propagation applied with the store σm on the output trace T i

s ; T i
c .

11.5. CHANGE PROPAGATION 147

(P.1) σm,T i
s, χ(B, σi, σs)

sy→ σ′m,Tm
s , χ

(P.2) σ′m, l← T i
c , χ

cy→ σ′′m,Tm
c , χ′

(P.3) σm, l← (T i
s ; T i

c), χ(B, σi, σs)
cy→ σ′′m, (Tm

s ; Tm
c), χ′

We apply the induction hypothesis on (I.1) (S.1) and (P.1) to obtain a partial bijection B0 such that

1. B0 ⊇ B,

2. dom(B0) = dom(B) ∪ def(Tm
s),

3. vs = B0[vi],

4. B0[σ′m] w σ′s,

5. B0[Tm
s] = T s

s , and

6. χ = χ(B0, σ
′
i, σ

′
s).

Using these properties, we now show that we can apply the induction hypothesis on (I.2) and (S.2)
with the partial bijection B0.

– B0[l← [vi/x]e′] = B[l]← [vs/x]B[e′]:
By Properties 1 and 2 it follows that B[l] = B0[l].
By Property 3, B0[vi] = vs.
To show that B[e′] = B0[e′], note that locs(e) ⊆ dom(σi) ⊆ dom(σm) (since e is well typed
with respect to σi). It follows that dom(Tm

s) ∩ locs(e) = ∅. Since dom(B0) = dom(B) ∪
def(Tm

s), B[e′] = B0[e′].

– χ = χ(B0, σ
′
i, σ

′′
i). This is true by Property 6.

– σ′m satisfies the modified-store properties:

1. dom(σ′m) ⊇ dom(σ′i)
This is true because dom(σ′m) ⊇ dom(σm) ⊇ dom(σ′′i) ⊇ dom(σ′i).

2. ∀l, l ∈ (def(σ′′i)− def(σ′i)), σ
′
m(l) = σ′′i (l)

To show that ∀l, l ∈ (def(σ′′i)− def(σ′i)), σ
′
m(l) = σ′′i (l), observe that

(a) ∀l, l ∈ (def(σ′′i)− def(σi)), σm(l) = σ′′i (l),
(b) def(σ′′i)− def(σ′i) = def(T i

c) ∪ {l},
(c) def(T i

s) ∩ (def(σ′′i)− def(σ′i)) = ∅,
and that the evaluation (P.1) changes values of locations only in def(T i

s).
3. B0[σ′m] w σ′s, this follows by Property 4.

Now, we can apply the induction hypothesis on (I.2) (S.2) to obtain a partial bijection B1 such that

1′. B1 ⊇ B0,

148 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

2′. dom(B1) = dom(B0) ∪ def(Tm
c),

3′. B1[σ′′m] w σ′′s ,

4′. B1[Tm
c] = Tc, and

5′. χ′ = χ(B1, σ
′′
i , σ′′s).

Based on these, we have

1′′. B1 ⊇ B.
This holds because B1 ⊇ B0 ⊇ B.

2′′. dom(B1) = dom(B) ∪ def(Tm
s ; Tm

c).
We know that dom(B1) = dom(B0) ∪ def(Tm

c) and dom(B0) = dom(B) ∪ def(Tm
s). Thus we

have dom(B1) = dom(B) ∪ def(Tm
s) ∪ def(Tm

c) = dom(B) ∪ def(Tm
s ; Tm

c).

3′′. B1[σ′′m] w σ′′s .
This follows by Property 3′.

4′′. B1[Tm
s ; Tm

c] = T s
s ; T s

c .
This holds if and only if B1[Tm

s] = T s
s and B1[Tm

c] = T s
c .

We know that B0[Tm
s] = T s

s and since dom(B1) = dom(B0) ∪ def(Tm
c) and def(Tm

s) ∩
def(Tm

c) = ∅, we have B1[Tm
s] = T s

s . We also know that B1[Tm
c] = T s

c by Property 4′.

5′′. χ′ = χ(B1, σ
′′
i , σ′′s),

This follows by Property 5′.

Thus we pick B′ = B1.

• Read: Assume that we have:

(I.1) σi, l
′ ← [σi(l)/x]e ⇓c σ′i,T

i
c

(I.2) σi, l
′ ← read l as x in e end ⇓c σ′i, R

x.e
l (T i

c)

(S.1) σs, B[l′]← [σs(B[l])/x]B[e] ⇓c σ′s,T
s
c

(S.2) σs, B[l′ ← read l as x in e end] ⇓c σ′s, R
x.B[e]
B[l] (T s

c)

Consider a store σm that satisfies the modified-store properties. Then we have two cases for the
corresponding change-propagation evaluation. In the first case l 6∈ χ and we have:

(P.1) σm, l′ ← T i
c , χ(B, σi, σs)

cy→ σ′m,Tm
c , χ

(P.2) σm, l′ ← Rx.e
l (T i

c), χ(B, σi, σs)
cy→ σ′m, Rx.e

l (Tm
c), χ

(l 6∈ χ)

In this case, we apply the induction hypothesis on (I.1), (S.1), and (P.1) with the partial bijection B to
obtain a partial bijection B0 such that

11.5. CHANGE PROPAGATION 149

1. B0 ⊇ B,

2. dom(B0) = dom(B) ∪ def(Tm
c),

3. B0[σ′m] w σ′s,

4. B0[Tm
c] = T s

c , and

5. χ = χ(B0, σ
′
i, σ

′
s).

Furthermore, the following hold for B0,

1. dom(B0) = dom(B) ∪ def(Rx.e
l (Tm

c)).
This follows by Property 2 and because def(Rx.e

l (Tm
c)) = dom(B) ∪ def(Tm

c),

2. B0[Rx.e
l (Tm

c)] = R
x.B[e]
B[l] (T s

c).

We have B0[Rx.e
l (Tm

c)] = R
x.B0[e]
B0[l] (B0[Tm

c]) = R
x.B0[e]
B0[l] (T s

c), because of (c). Thus we need to
show that B0[l] = B[l] and B0[e] = B[e]. This is true because,

(a) l 6∈ def(Tm
c) and thus B[l] = B0[l], and

(b) ∀l, l ∈ locs(e) we have l ∈ dom(σm) and thus l 6∈ def(Tm
c), which implies that B[l] =

B0[l], and B[e] = B0[e].

Thus we pick B′ = B0.

In the second case, we have l ∈ χ and the read Rx.e
l is re-evaluated.

(P.4) σm, l′ ← [σm(l)/x]e ⇓c σ′m,Tm
c

(P.5) σm, l′ ← Rx.e
l (Tc), χ(B, σi, σs)

cy→ σ′m, Rx.e
l (Tm

c), χ(B, σi, σs) ∪ {l′}

(l ∈ χ)

Since B[σm] w σs, the evaluation in (P.4) is identical to the evaluation in (S.1) and thus, there is a
bijection B1 ⊇ B such that B1[Tm

c] = T s
c and dom(B1) = dom(B) ∪ def(Tm

c). Thus we have

1. B1 ⊇ B,

2. dom(B1) = dom(B) ∪ def(Tm
c),

3. B1[Tm
c] = T s

c ,

4. χ(B, σi, σs) ∪ {l} = χ(B1, σ
′
i, σ

′
s)

To show this, observe that

(a) dom(σ′i) ∩ def(Tm
c) = ∅, because dom(σm) ⊇ dom(σ′i).

(b) χ(B1, σ
′
i, σ

′
s) = χ(B, σ′i, σ

′
s), because dom(B1) = dom(B) ∪ def(Tm

c).
(c) χ(B, σ′i, σ

′
s) = χ(B, σi, σs) ∪ {l′}, because dom(B) ⊆ dom(σi). (Assuming, without

loss of generality, that the value of l′ changes because of the re-evaluation).

5. B1[σ′m] w σ′s
We know that B1[σm] w σs. Furthermore B1[σ′m − σm] = σ′s − σs and thus, B1[σ′m] w σ′s.

Thus pick B′ = B1.

150 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

• Value: Suppose that
σi, v ⇓s v, σi, ε

σs, B[v] ⇓s B[v], σs, ε.

Let σm be any store that satisfies the modified-store properties. We have

σm, ε, χ(B, σi, σs)
sy→ σm, ε, χ(B, σi, σs)

where

1. B ⊇ B.

2. dom(B) = dom(B) ∪ def(ε).
3. B[σm] w σs, by Modified-Store Property 3.

4. B[ε] = ε.

5. χ(B, σi, σs) = χ(B, σi, σs).

Thus pick B′ = B.

• Apply (Stable): This is similar to the apply in the changeable mode.

• Mod: Suppose that

(I.1) σi[li → �], li ← e ⇓c σ′i,T
i
c

(I.2) σi,modτ e ⇓s li, σ
′
i, 〈T i

c〉li:τ
li 6∈ dom(σi)

(S.1) σs[ls → �], ls ← B[e] ⇓c σ′s,T
s
c

(S.2) σs, B[modτ e] ⇓s ls, σ
′
s, 〈T s

c 〉ls:τ
ls 6∈ dom(σs).

Let σm be a store that satisfies the modified-store properties. Then we have

(P.1) σm, li ← T i
c , χ(B, σi, σs)

cy→ σ′m,Tm
c , χ

(P.2) σm, 〈T i
c〉li:τ , χ(B, σi, σs)

sy→ σ′m, 〈Tm
c 〉li:τ , χ

Consider the partial bijection B0 = B[li 7→ ls]. It satisfies the following:

– B0[li ← e] = ls ← B[e].
Because B0(li) = ls and li 6∈ locs(e).

– B0[σm] w σs[ls 7→ �].
We know that B[σm] w σs by Modified-Store Property 3. Since ls 6∈ dom(σs), we have
B0[σm] w σs.
Furthermore ls = B0(li) and li ∈ dom(σm) because dom(σm) ⊇ dom(σ′i).
Thus B0[σm] w σs[ls 7→ �]].

11.5. CHANGE PROPAGATION 151

– ∀l, l ∈ (def(σ′i)− def(σi[li → �])), σm(l) = σ′i(l).
Because ∀l, l ∈ (def(σ′i)− def(σi)), σm(l) = σ′i(l) by Modified-Store Property 2.

Thus, we can apply the induction hypothesis on (I.1), (S.1) with the partial bijection B0 = B[li 7→ ls]
to obtain a partial bijection B1 such that the following hold.

1. B1 ⊇ B0,

2. dom(B1) = dom(B0) ∪ def(T i
c),

3. B1[σ′m] w σ′s,

4. B1[Tm
c] = T s

c , and

5. χ = χ(B1, σ
′
s, σ

′
i).

Furthermore, B1 satisfies

1. dom(B1) = dom(B) ∪ def(〈T i
c〉li:τ).

By Property 2 and because def(T i
c) = def(〈T i

c〉li:τ).

2. B1[〈Tm
c 〉li:τ] = 〈T s

c 〉ls:τ .
Because B1[Tm

c] = T s
c by Property 4 and B1(li) = ls.

Thus we can pick B′ = B1.

• Let (Stable): This is similar to the let rule in changeable mode.

�

152 CHAPTER 11. ADAPTIVE FUNCTIONAL PROGRAMMING

Chapter 12

Selective Memoization

This chapter presents a framework for applying memoization selectively. The framework provides program-
mer control over equality, space usage, and identification of precise dependences so that memoization can be
applied according to the needs of an application. Two key properties of the framework are that it is efficient
and yields programs whose performance can be analyzed using standard techniques.

We describe the framework in the context of a functional language and an implementation as an SML
library. The language is based on a modal type system and allows the programmer to express programs that
reveal their true data dependences when executed. The SML implementation cannot support this modal type
system statically, but instead employs run-time checks to ensure correct usage of primitives.

12.1 Introduction

Memoization is a fundamental and powerful technique for result re-use. It dates back a half century [15, 60,
61] and has been used extensively in many areas such as dynamic programming [8, 22, 24, 58], incremental
computation [29, 83, 35, 94, 51, 1, 100, 57, 47, 3], and many others [18, 65, 52, 72, 57]. In fact, lazy
evaluation provides a limited form of memoization [53].

Although memoization can dramatically improve performance and can require only small changes to
the code, no language or library support for memoization has gained broad acceptance. Instead, many
successful uses of memoization rely on application-specific support code. The underlying reason for this is
one of control: since memoization is all about performance, the user must be able to control the performance
of memoization. Many subtleties of memoization, including the cost of equality checking and the cache
replacement policy for memo tables, can make the difference between exponential and linear running time.

To be general and widely applicable a memoization framework must provide control over these three
areas: (1) the kind and cost of equality tests; (2) the identification of precise dependences between the input
and the output of memoized code; and (3) space management. Control over equality tests is critical, because
this is how re-usable results are identified. Control over identification of precise dependences is important to
maximize result reuse. Being able to control when memo tables or individual entries are purged is critical,
because otherwise the user will not know whether or when results are re-used.

In this chapter, we propose a framework for memoization that provides control over equality and identi-

153

154 CHAPTER 12. SELECTIVE MEMOIZATION

fication of dependences, and some control over space management. We study the framework in the context
of a small language called MFL and provide an implementation for it in the Standard ML language. We
also prove the type safety and correctness of MFL—i.e., that the semantics are preserved with respect to a
non-memoized version. As an example, we show how to analyze the performance of a memoized version of
Quicksort within our framework.

In the next section we describe background and related work. In Section 12.3 we introduce our frame-
work via some examples. In Section 12.4 we formalize the MFL language and discuss its safety, correctness,
and performance properties. In Section 12.5 we present a simple implementation of the framework as a Stan-
dard ML library. In Section 12.6 we discuss how the framework might be extended to allow for better control
of space usage, and discuss the relationship of this work to our previous work on adaptive computation [3].

12.2 Background and Related Work

A typical memoization scheme maintains a memo table mapping argument values to previously computed
results. This table is consulted before each function call to determine if the particular argument is in the
table. If so, the call is skipped and the result is returned; otherwise the call is performed and its result is
added to the table. The semantics and implementation of the memo lookup are critical to performance. Here
we review some key issues in implementing memoization efficiently.

Equality. Any memoization scheme needs to search a memo table for a match to the current arguments.
Such a search will, at minimum, require a test for equality. Typically it will also require some form of
hashing. In standard language implementations testing for equality on structures, for example, can require
traversing the whole structure. The cost of such an equality test can negate the advantage of memoizing
and may even change the asymptotic behavior of the function. A few approaches have been proposed to
alleviate this problem. The first is based on the fact that for memoization equality need not be exact—it
can return unequal when two arguments are actually equal. The implementation could therefore decide to
skip the test if the equality is too expensive, or could use a conservative equality test, such as “location”
equality. The problem with such approaches is that whether a match is found could depend on particulars of
the implementation and will surely not be evident to the programmer.

Another approach for reducing the cost of equality tests is to ensure that there is only one copy of every
value, via a technique known as “hash consing” [41, 9, 93]. If there is only one copy, then equality can be
implemented by comparing locations. In fact, the location can also be used as a key to a hash table. In theory,
the overhead of hash-consing is constant in the expected case (expectation is over internal randomization of
hash functions). The reality, however, is rather different because of large memory demands of hash-consing
and its interaction with garbage collection. In fact, several researchers have argued that hash-consing is too
expensive for practical purposes [81, 81, 12, 71]. As an alternative to hash consing, Pugh proposed lazy
structure sharing [81]. In lazy structure sharing whenever two equal values are compared, they are made to
point to the same copy to speed up subsequent comparisons. As Pugh points out, the disadvantage of this
approach is that the performance depends on the order comparisons and thus it is difficult to analyze.

We note that even with hash-consing, or any other method, it remains critical to define equality on
all types including reals and functions. Claiming that functions are never equivalent, for example, is not
satisfactory because the result of a call involving some function as a parameter will never be re-used.

12.3. A FRAMEWORK FOR SELECTIVE MEMOIZATION 155

Precise Dependences. To maximize result re-use, the result of a function call must be stored with respect
to its true dependences. This issue arises when the function examines only parts or an approximation of its
parameter. To enable “partial” equality checks, the unexamined parts of the parameter should be disregarded.
To increase the likelihood of result re-use, one should be able to match on the approximation, rather than
the parameter itself. As an example, consider the code

fun f(x,y,z) = if (x > 0) then fy(y) else fz(z)

The result of f depends on either (x,y) or (x,z). Also, it depends on an approximation of x–whether or
not it is positive–rather than its exact value. Thus, the memo entry (7,11,20) should match (7,11,30)
or (4,11,50) since, when x is positive, the result depends only on y.

Several researchers have remarked that partial matching can be very important in some applications [77,
76, 1, 47]. Abadi, Lampson, Lévy [1], and Heydon, Levin, Yu [47] have suggested program analysis methods
for tracking dependences for this purpose. Although their technique is likely effective in catching potential
matches, it does not provide a programmer controlled mechanism for specifying what dependences should
be tracked. Also, their program analysis technique can change the asymptotic performance of a program,
making it difficult to asses the effects of memoization.

Space management. Another problem with memoization is its space requirement. As a program ex-
ecutes, its memo tables can become large limiting the utility of memoization. To alleviate this problem,
memo tables or individual entries should be disposed of under programmer control.

In some application, such as in dynamic programming, most result re-use occurs among the recursive
calls of some function. Thus, the memo table of such a function can be disposed of whenever it terminates.
In other applications, where result re-use is less structured, individual memo table entries should be purged
according to a replacement policy [48, 81]. The problem is to determine what exact replacement policy
should be used and to analyze the performance effects of the chosen policy. One widely used approach is to
replace the least recently used entry. Other, more sophisticated, policies have also been suggested [81]. In
general the replacement policy must be application-specific, because, for any fixed policy, there are programs
whose performance is made worse by that choice [81].

12.3 A Framework for Selective Memoization

We present an overview of our framework via some examples. The framework extends a purely functional
language with several constructs to support selective memoization. In this section, we use an extension to an
ML-like language for the discussion. We formalize the core of this language and study its safety, soundness,
and performance properties in Section 12.4.

The framework enables the programmer to determine precisely the dependences between the input and
the result of a function. The main idea is to deem the parameters of a function as resources and provide
primitives to explore incrementally any value, including the underlying value of a resource. This incremental
exploration process reveals the dependences between the parameter of the function and its result.

The incremental exploration process is guided by types. If a value has the modal type ! τ , then the
underlying value of type τ can be bound to an ordinary, unrestricted variable by the let! construct; this
will create a dependence between the underlying value and the result. If a value has a product type, then its

156 CHAPTER 12. SELECTIVE MEMOIZATION

Non-memoized Memoized

fib:int -> int
fun fib (n)=

if (n < 2) then n
else fib(n-1) + fib(n-2)

mfib:!int -> int
mfun mfib (n’)=

let !n = n’ in return (
if (n < 2) then n
else mfib(!(n-1)) + mfib(!(n-2))) end

f: int * int * int -> int
fun f (x, y, z)=

if (x > 0) then
fy y

else
fz z

mf:int * !int * !int -> int
mfun mf (x’, y’, z’)=

mif (x’ > 0) then
let !y = y’ in return (fy y) end

else
let !z = z’ in return (fz z) end

Figure 12.1: Fibonacci and expressing partial dependences.

two parts can be bound to two resources using the let* construct; this creates no dependences. If the value
is a sum type, then it can be case analyzed using the mcase construct, which branches according to the
outermost form of the value and assigns the inner value to a resource; mcase creates a dependence on the
outer form of the value of the resource. The key aspect of the let* and mcase is that they bind resources
rather than ordinary variables.

Exploring the input to a function via let!, mcase, and let* builds a branch recording the depen-
dences between the input and the result of the function. The let! adds to the branch the full value, the
mcase adds the kind of the sum, and let* adds nothing. Consequently, a branch contains both data de-
pendences (from let!’s) and control dependences (from mcase’s). When a return is encountered, the
branch recording the revealed dependences is used to key the memo table. If the result is found in the memo
table, then the stored value is returned, otherwise the body of the return is evaluated and the memo table
is updated to map the branch to the result. The type system ensures that all dependences are made explicit
by precluding the use of resources within return’s body.

As an example consider the Fibonacci function fib and its memoized counterpart mfib shown in Fig-
ure 12.1. The memoized version, mfib, exposes the underlying value of its parameter, a resource, before
performing the two recursive calls as usual. Since the result depends on the full value of the parameter, it
has a bang type. The memoized Fibonacci function runs in linear time as opposed to exponential time when
not memoized.

Partial dependences between the input and the result of a function can be captured by using the incre-
mental exploration technique. As an example consider the function f shown in Figure 12.1. The function
checks whether x is positive or not and returns fy(y) or fz(z). Thus the result of the function depends
on an approximation of x (its sign) and on either y or z. The memoized version mf captures this by first
checking if x’ is positive or not and then exposing the underlying value of y’ or z’ accordingly. Conse-
quently, the result will depend on the sign of x’ and on either y’ or z’. Thus if mf is called with parameters
(1, 5, 7) first and then (2, 5, 3), the result will be found in the memo the second time, because when x’ is

12.3. A FRAMEWORK FOR SELECTIVE MEMOIZATION 157

positive the result depends only on y’. Note that mif construct used in this example is just a special case
of the more general mcase construct.

A critical issue for efficient memoization is the implementation of memo tables along with lookup and
update operations on them. In our framework we support expected constant time memo table lookup and
update operations by representing memo tables using hashing. To do this, we require that the underlying
type τ of a modal type !τ be an indexable type. An indexable type is associated with an injective function,
called an index function, that maps each value of that type to a unique integer; this integer is called the index
of the value. The uniqueness property of the indices for a given type ensures that two values are equal if and
only if their indices are equal. In our framework, equality is only defined for indexable types. This enables
us to implement memo tables as hash tables keyed by branches consisting of indices.

We assume that each primitive type comes with an index function. For examples, for integers, the
identity function can be chosen as the index function. Composite types such as lists or functions must be
boxed to obtain an indexable type. A boxed value of type τ has type τ box. When a box is created, it is
assigned a unique locations (or tag), and this location is used as the unique index of that boxed value. For
example, we can define boxed lists as follows.
datatype α blist’ = NIL | CONS of α * ((α blist’) box)
type α blist = (α blist’) box

Based on boxes we implement hash-consing as a form of memoization. For example, hash-consing for
boxed lists can be implemented as follows.

hCons: !α * !(α blist) -> α blist
mfun hCons (h’, t’) =

let !h = h’ and !t = t’ in
return (box (CONS(h,t))) end

end

The function takes an item and a boxed list and returns the boxed list formed by consing them. Since the
function is memoized, if it is ever called with two values that are already hash-consed, then the same result
will be returned. The advantage of being able to define hash-consing as a memoized function is that it can
be applied selectively.

To control space usage of memo tables, our framework gives the programmer a way to dispose of memo
tables by conventional scoping. In our framework, each memoized function is allocated its own memo table.
Thus, when the function goes out of scope, its memo table can be garbage collected. For example, in many
dynamic-programming algorithms result re-use occurs between recursive calls of the same function. In this
case, the programmer can scope the memoized function inside an auxiliary function so that its memo table
is discarded as soon as the auxiliary function returns. As an example, consider the standard algorithm for
the Knapsack Problem ks and its memoized version mks Figure 12.2. Since result sharing mostly occurs
among the recursive calls of mks, it can be scoped in some other function that calls mks; once mks returns
its memo table will go out of scope and can be discarded.

We note that this technique gives only partial control over space usage. In particular it does not give
control over when individual memo table entries are purged. In Section 12.6, we discuss how the framework
might be extended so that each memo table is managed according to a programmer specified caching scheme.
The basic idea is to require the programmer to supply a caching scheme as a parameter to the mfun and
maintain the memo table according to the chosen caching scheme.

158 CHAPTER 12. SELECTIVE MEMOIZATION

Non-memoized Memoized

ks:int*((int*real) list)->int
fun ks (c,l) =

case l of
nil => 0

|(w,v)::t =>
if (c < w) then

ks(c,t)
else

let v1 = ks(c,t)
v2 = v + ks(c-w,t)

in
if (v1>v2) then v1
else v2

end

mks:!int*!((int*real) list)->int
mfun mks (c’,l’)

let !c = c’ and !l = l’ in return (
case (unbox l) of

NIL => 0
| CONS((w,v),t) =>

if (c < w) then
mks(!c,!t)

else
let v1 = mks(!c,!t)

v2 = v + mks(!(c-w),!t)
in

if (v1 > v2) then v1
else v2

end) end

Figure 12.2: Memo tables for memoized Knapsack can be discarded at completion.

Memoized Quicksort. As a more sophisticated example, we consider Quicksort. Figure 12.3 shows
an implementation of the Quicksort algorithm and its memoized counterpart. The algorithm first divides
its input into two lists containing the keys less than the pivot, and greater than the pivot by using the filter
function fil. It then sorts the two sublists, and returns the concatenation of the results. The memoized filter
function mfil uses hash-consing to ensure that there is only one copy of each result list. The memoized
Quicksort algorithm mqs exposes the underlying value of its parameter and is otherwise similar to qs. Note
that mqs does not build its result via hash-consing—it can output two copies of the same result. Since in
this example the output of mqs is not consumed by any other function, there is no need to do so. Even if the
result were consumed by some other function, one can choose not to use hash-consing because operations
such as insertions to and deletions from the input list will surely change the result of Quicksort.

When the memoized Quicksort algorithm is called on “similar” inputs, one would expect that some of
the results would be re-used. Indeed, we show that the memoized Quicksort algorithm computes its result in
expected linear time when its input is obtained from a previous input by inserting a new key at the beginning.
Here the expectation is over all permutations of the input list and also the internal randomization of the hash
functions used to implement the memo tables. For the analysis, we assume, without loss of generality, that
all keys in the list are unique.

Theorem 82
Let L be a list and let L′ = [a, L]. Consider running memoized Quicksort on L and then on L′. The running
time of Quicksort on the modified list L′ is expected O(n) where n is the length of L′.

Proof: Consider the recursion tree of Quicksort with input L, denoted Q(L), and label each node with the
pivot of the corresponding recursive call (see Figure 12.4 for an example). Consider any pivot (key) p from
L and let Lp denote the keys that precede p in L. It is easy to see that a key k is in the subtree rooted at p if
and only if the following two properties are satisfied for any key k′ ∈ Lp.

12.3. A FRAMEWORK FOR SELECTIVE MEMOIZATION 159

Non-memoized Memoized

fil:int->bool*int list->int list
fun fil (g:int->bool, l:int list) =

case l of
nil => nil

| h::t =>
let tt = fil(g,t) in

if (g h) then h::tt
else tt

end

empty = box NIL

mfil:int->bool*int blist->int blist
fun mfil (g,l) =

case (unbox l) of
NIL => empty

| CONS(h,t) =>
let tt = mfil(g,t) in

if (g h) then hCons(h,tt)
else tt

end

qs:int list->int list
fun qs (l) =

case l of
nil => nil

| cons(h,t) =>
let s = fil(fn x=>x<h,t)

g = fil(fn x=>x>=h,t)
in

(qs s)@(h::(qs g))
end

mqs: !(int blist)->int blist
mfun mqs (l’:!int blist) =

let !l = l’ in return (
case (unbox l) of

NIL => NIL
| CONS(h,t) =>

let s = mfil(fn x=>x<h,t)
g = mfil(fn x=>x>=h,t)

in
(mqs !s)@(h::(mqs !g))

end) end

Figure 12.3: The Quicksort algorithm.

1. If k′ < p then k > k′, and

2. if k′ > p then k < k′.

Of the keys that are in the subtree of p, those that are less than p are in its left subtree and those greater than
p are in its right subtree.

Now consider the recursion tree Q(L′) for L′ = [a, L] and let p be any pivot in Q(L′). Suppose p < a
and let k be any key in the left subtree of p in Q(L). Since k < p, by the two properties k is in the left
subtree of p in Q(L′). Similarly if p > a then any k in the right subtree of p in Q(L) is also in the right
subtree of p in Q(L′). Since filtering preserves the respective order of keys in the input list, for any p, p < a,
the input to the recursive call corresponding to its left child will be the same. Similarly, for p > a, the input
to the recursive call corresponding to its right child will be the same. Thus, when sorting L′ these recursive
calls will find their results in the memo. Therefore only recursive calls corresponding to the root, to the
children of the nodes in the rightmost spine of the left subtree of the root, and the children of the nodes in
the leftmost spine of the right subtree of the root may be executed (the two spines are shown with thick lines
in Figure 12.4). Furthermore, the results for the calls adjacent to the spines will be found in the memo.

Consider the calls whose results are not found in the memo. In the worst case, these will be all the calls
along the two spines. Consider the sizes of inputs for the nodes on a spine and define the random variables
X1 . . . Xk such that Xi is the least number of recursive calls (nodes) performed for the input size to become

160 CHAPTER 12. SELECTIVE MEMOIZATION

15

1

3

9

4 11

26

2716

23

19

35

46

42

30 15

16

19

1

3

9

114

35

46

42

27

26

23

20

30

Figure 12.4: Quicksort’s recursion tree with inputs L = [15, 30, 26, 1, 3, 16, 27, 9, 35, 4, 46, 23, 11, 42, 19] (left) and
L′ = [20, L] (right).

(
3
4

)i
n or less after it first becomes

(
3
4

)(i−1)
n or less. Since k ≤ dlog4/3 ne, the total and the expected

number of operations along a spine are

C(n) ≤
dlog4/3 ne∑

i=1

Xi

(
3
4

)i−1

n, and

E[C(n)] ≤
dlog4/3 ne∑

i=1

E[Xi]
(

3
4

)i−1

n.

Since the probability that the pivot lies in the middle half of the list is 1
2 , E[Xi] ≤ 2 for i ≥ 1, and we

have

E[C(n)] ≤
dlog4/3 ne∑

i=1

2
(

3
4

)i−1

n.

Thus, E[C(n)] = O(n) This bound holds for both spines; therefore the number of operations due to calls
whose results are not found in the memo is O(n). Since each operation, including hash-consing, takes ex-
pected constant time, the total time of the calls whose results are not in the memo is O(n). Now, consider
the calls whose results are found in the memo, each such call will be on a spine or adjacent to it, thus there
are an expected O(log n) such calls. Since, the memo table lookup overhead is expected constant time the
total cost for these is O(log n). We conclude that Quicksort will take expected O(n) time for sorting the
modified list L′. �

It is easy to extend the theorem to show that the O(n) bound holds for an insertion anywhere in the
list. Although, this bound is better than a complete rerun, which would take O(n log n), we would like
to achieve O(log n). In Chapter 13 we describe a combination of memoization and adaptivity reduces the
expected cost of a random insertion to O(log n).

12.4. THE MFL LANGUAGE 161

Indexable Types η : : = 1 | int | . . .

Types τ : : = η | ! η | τ1 × τ2 | τ1 + τ2 | µu.τ | τ1 → τ2

Operators o : : = + | - | . . .

Expressions e : : = return(t) | let!x:η be tin eend |
let a1:τ1×a2:τ2 be tin eend |
mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end

Terms t : : = v | o(t1, . . . , tn) | 〈t1, t2〉 | mfun f (a:τ1):τ2 is eend |
t1 t2 | ! t | inlτ1+τ2t | inrτ1+τ2t | roll(t) | unroll(t)

Values v : : = x | a | ? | n | ! v | 〈v1, v2〉 | mfun l f(a:τ1):τ2 is eend

Figure 12.5: The abstract syntax of MFL.

12.4 The MFL Language

In this section we study a small functional language, called MFL, that supports selective memoization.
MFL distinguishes memoized from non-memoized code, and is equipped with a modality for tracking de-
pendences on data structures within memoized code. This modality is central to our approach to selective
memoization, and is the focus of our attention here. The main result is a soundness theorem stating that
memoization does not affect the outcome of a computation compared to a standard, non-memoizing seman-
tics. We also show that the memoization mechanism of MFL causes a constant factor slowdown compared
to a standard, non-memoizing semantics.

12.4.1 Abstract Syntax

The abstract syntax of MFL is given in Figure 12.5. The meta-variables x and y range over a countable
set of variables. The meta-variables a and b range overf a countable set of resources. (The distinction
will be made clear below.) The meta-variable l ranges over a countable set of locations. We assume that
variables, resources, and locations are mutually disjoint. The binding and scope conventions for variables
and resources are as would be expected from the syntactic forms. As usual we identify pieces of syntax that
differ only in their choice of bound variable or resource names. A term or expression is resource-free if and
only if it contains no free resources, and is variable-free if and only if it contains no free variables. A closed
term or expression is both resource-free and variable-free; otherwise it is open.

The types of MFL include 1 (unit), int, products and sums, recursive data types µu.τ , memoized
function types, and bang types ! η. MFL distinguishes indexable types, denoted η, as those that accept an
injective function, called an index function, whose co-domain is integers. The underlying type of a bang
type ! η is restricted to be an indexable type. For int type, identity serves as an index function; for 1 (unit)
any constant function can be chosen as the index function. For non-primitive types an index can be supplied
by boxing values of these types. Boxed values would be allocated in a store and the unique location of a box

162 CHAPTER 12. SELECTIVE MEMOIZATION

would serve as an index for the underlying value. With this extension the indexable types would be defined
as η : : = 1 | int | τ box. Although supporting boxed types is critical for practical purposes, we do not
formalize this here to focus on the main ideas.

The syntax is structured into terms and expressions, in the terminology of Pfenning and Davies [79].
Roughly speaking, terms evaluate independently of their context, as in ordinary functional programming,
whereas expressions are evaluated relative to a memo table. Thus, the body of a memoized function is an
expression, whereas the function itself is a term. Note, however, that the application of a function is a term,
not an expression; this corresponds to the encapsulation of memoization with the function, so that updating
the memo table is benign. In a more complete language we would include case analysis and projection
forms among the terms, but for the sake of simplicity we include these only as expressions. We would also
include a plain function for which the body is a term. Note that every term is trivially an expression; the
return expression is the inclusion.

12.4.2 Static Semantics

The type structure of MFL extends the framework of Pfenning and Davies [79] with a “necessitation”
modality, ! η, which is used to track data dependences for selective memoization. This modality does not
correspond to a monadic interpretation of memoization effects (© τ in the notation of Pfenning and Davies),
though one could imagine adding such a modality to the language. The introductory and eliminatory forms
for necessity are standard, namely ! t for introduction, and let!x:η be tin eend for elimination.

Our modality demands that we distinguish variables from resources. Variables in MFL correspond to the
“validity”, or “unrestricted”, context in modal logic, whereas resources in MFL correspond to the “truth”, or
“restricted” context. An analogy may also be made to the judgmental presentation of linear logic [78, 80]:
variables correspond to the intuitionistic context, resources to the linear context.1

The inclusion, return(t), of terms into expressions has no analogue in pure modal logic, but is
specific to our interpretation of memoization as a computational effect. The typing rule for return(t)
requires that t be resource-free to ensure that any dependence on the argument to a memoized function is
made explicit in the code before computing the return value of the function. In the first instance, resources
arise as parameters to memoized functions, with further resources introduced by their incremental decom-
position using let× and mcase. These additional resources track the usage of as-yet-unexplored parts of
a data structure. Ultimately, the complete value of a resource may be accessed using the let! construct,
which binds its value to a variable, which may be used without restriction. In practice this means that those
parts of an argument to a memoized function on whose value the function depends will be given modal type.
However, it is not essential that all resources have modal type, nor that the computation depend upon every
resource that does have modal type.

The static semantics of MFL consists of a set of rules for deriving typing judgments of the form Γ;∆ `
t : τ , for terms, and Γ;∆ ` e : τ , for expressions. In these judgments Γ is a variable type assignment, a
finite function assigning types to variables, and ∆ is a resource type assignment, a finite function assigning
types to resources. The rules for deriving these judgments are given in Figures 12.6 and 12.7.

1Note, however, that we impose no linearity constraints in our type system!

12.4. THE MFL LANGUAGE 163

(Γ(x) = τ)
Γ;∆ ` x:τ

(variable)
(∆(a) = τ)
Γ;∆ ` a:τ

(resource)

Γ;∆ ` n : int
(number)

Γ;∆ ` ? : 1
(unit)

Γ;∆ ` ti : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

Γ;∆ ` o(t1, . . . , tn) : τ
(primitive)

Γ;∆ ` t1 : τ1 Γ;∆ ` t2 : τ2

Γ;∆ ` 〈t1, t2〉 : τ1 × τ2
(pair)

Γ, f :τ1 → τ2;∆, a:τ1 ` e : τ2

Γ;∆ ` mfun f (a:τ1):τ2 is eend : τ1 → τ2
(fun)

Γ, f :τ1 → τ2;∆, a:τ1 ` e : τ2

Γ;∆ ` mfun l f(a:τ1):τ2 is eend : τ1 → τ2
(fun value)

Γ;∆ ` t1 : τ1 → τ2 Γ;∆ ` t2 : τ1

Γ;∆ ` t1 t2 : τ2
(apply)

Γ; ∅ ` t : η

Γ;∆ ` ! t : ! η
(bang)

Γ;∆ ` t : τ1

Γ;∆ ` inlτ1+τ2t : τ1 + τ2
(sum/inl)

Γ;∆ ` t : τ2

Γ;∆ ` inrτ1+τ2t : τ1 + τ2
(sum/inr)

Γ;∆ ` t : [µu.τ/u]τ
Γ;∆ ` roll(t) : µu.τ

(roll)
Γ;∆ ` t : µu.τ

∆ ` unroll(t) : [µu.τ/u]τ
(unroll)

Figure 12.6: Typing judgments for terms.

12.4.3 Dynamic Semantics

The dynamic semantics of MFL formalizes selective memoization. Evaluation is parameterized by a store
containing memo tables that track the behavior of functions in the program. Evaluation of a function ex-
pression causes an empty memo table to be allocated and associated with that function. Application of a
memoized function is affected by, and may affect, its associated memo table. Should the function value
become inaccessible, so also is its associated memo table, and hence the storage required for both can be
reclaimed.

Unlike conventional memoization, however, the memo table is keyed by control flow information rather
than by the values of arguments to memoized functions. This is the key to supporting selective memoization.
Expression evaluation is essentially an exploration of the available resources culminating in a resource-free
term that determines its value. Since the exploration is data-sensitive, only certain aspects of the resources
may be relevant to a particular outcome. For example, a memoized function may take a pair of integers as

164 CHAPTER 12. SELECTIVE MEMOIZATION

Γ; ∅ ` t : τ

Γ;∆ ` return(t) : τ
(return)

Γ;∆ ` t : ! η Γ, x:η;∆ ` e : τ

Γ;∆ ` let!x:η be tin eend : τ
(let!)

Γ;∆ ` t : τ1 × τ2 Γ;∆, a1:τ1, a2:τ2 ` e : τ

Γ;∆ ` let a1:τ1×a2:τ2 be tin eend : τ
(let×)

Γ;∆ ` t : τ1 + τ2

Γ;∆, a1:τ1 ` e1 : τ
Γ;∆, a2:τ2 ` e2 : τ

Γ;∆ ` mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end : τ
(case)

Figure 12.7: Typing judgments for expressions.

argument, with the outcome determined independently of the second component in the case that the first
is positive. By recording control-flow information during evaluation, we may use it to provide selective
memoization.

For example, in the situation just described, all pairs of the form 〈0, v〉 should map to the same result
value, irrespective of the value v. In conventional memoization the memo table would be keyed by the
pair, with the result that redundant computation is performed in the case that the function has not previously
been called with v, even though the value of v is irrelevant to the result! In our framework we instead
key the memo table by a “branch” that records sufficient control flow information to capture the general
case. Whenever we encounter a return statement, we query the memo table with the current branch
to determine whether this result has been computed before. If so, we return the stored value; if not, we
evaluate the return statement, and associate that value with that branch in the memo table for future use.
It is crucial that the returned term not contain any resources so that we are assured that its value does not
change across calls to the function.

The dynamic semantics of MFL is given by a set of rules for deriving judgments of the form σ, t ⇓t

v, σ′ (for terms) and σ, l:β, e ⇓e v, σ′ (for expressions). The rules for deriving these judgments are given
in Figure 12.8expr-dynamic. These rules make use of branches, memo tables, and stores, whose precise
definitions are as follows.

A simple branch is a list of simple events corresponding to “choice points” in the evaluation of an
expression.

Simple Event ε : : = !v | inl | inr
Simple Branch β : : = • | ε · β

We write β̂ε to stand for the extension of β with the event ε at the end.
A memo table, θ, is a finite function mapping simple branches to values. We write θ[β 7→ v], where

β /∈ dom(θ), to stand for the extension of θ with the given binding for β. We write θ(β) ↑ to mean that
β /∈ dom(θ).

A store, σ, is a finite function mapping locations, l, to memo tables. We write σ[l 7→ θ], where l /∈

12.4. THE MFL LANGUAGE 165

dom(σ), to stand for the extension of σ with the given binding for l. When l ∈ dom(σ), we write σ[l ← θ]
for the store σ that maps l to θ and l′ 6= l to σ(l′).

Term evaluation is largely standard, except for the evaluation of (memoizing) functions and applications
of these to arguments. Evaluation of a memoizing function term allocates a fresh memo table, which is then
associated with the function’s value. Expression evaluation is initiated by an application of a memoizing
function to an argument. The function value determines the memo table to be used for that call. Evaluation
of the body is performed relative to that table, initiating with the null branch.

Expression evaluation is performed relative to a “current” memo table and branch. When a return
statement is encountered, the current memo table is consulted to determine whether or not that branch has
previously been taken. If so, the stored value is returned; otherwise, the argument term is evaluated, stored in
the current memo table at that branch, and the value is returned. The let! and mcase expressions extend
the current branch to reflect control flow. Since let! signals dependence on a complete value, that value
is added to the branch. Case analysis, however, merely extends the branch with an indication of which case
was taken. The let× construct does not extend the branch, because no additional information is gleaned
by splitting a pair.

12.4.4 Soundness of MFL

We will prove the soundness of MFL relative to a non-memoizing semantics for the language. It is straight-
forward to give a purely functional semantics to MFL by an inductive definition of the relations t ⇓t

p v and
e ⇓e

p v, where v is a pure value with no location subscripts (see, for example, [79]). We will show that
(Theorem 86) memoization does not affect the outcome of evaluation as compared to the non-memoized
semantics. To make this precise, we must introduce some additional machinery.

The underlying term, t−, of a term, t, is obtained by erasing all location subscripts on function values
occurring within t. The underlying expression, e−, of an expression, e, is defined in the same way. As a
special case, the underlying value, v−, of a value, v, is the underlying term of v regarded as a term. It is easy
to check that every pure value arises as the underlying value of some impure value. Note that passage to
the underlying term or expression obviously commutes with substitution. The underlying branch, β−, of a
simple branch, β, is obtained by replacing each event of the form ! v in β by the corresponding underlying
event, ! (v−).

The partial access functions, t @ β and e @ β, where β is a simple branch, and t and e are variable-free
(but not necessarily resource-free), are defined as follows. The definition may be justified by lexicographic
induction on the structure of the branch followed by the size of the expression.

t @ β = e @ β
(where t = mfun f (a:τ1):τ2 is eend)

return(t)@ • = return(t)
let!x:τ be tin eend@ β̂!v = [v/x]e @ β

let a1:τ1×a2:τ2 be tin eend@ β = e @ β
mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end@ β̂inl = e1 @ β
mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end@ β̂inr = e2 @ β

166 CHAPTER 12. SELECTIVE MEMOIZATION

σ, ? ⇓t ?, σ
(unit)

σ, n ⇓t n, σ
(number)

σ, t1 ⇓t v1, σ1 . . . σn−1, tn ⇓t vn, σn

σ, o(t1, . . . , tn) ⇓t app(o,(v1, . . . , vn), σn
(primitive)

σ, t1 ⇓t v1, σ
′

σ′, t2 ⇓t v2, σ
′′

σ, 〈t1, t2〉 ⇓t 〈v1, v2〉, σ′′
(pair)

(l 6∈ dom(σ))

σ,mfun f (a:τ1):τ2 is eend ⇓t mfun l f(a:τ1):τ2 is eend, σ[l 7→ ∅]
(fun)

(l ∈ dom(σ))
σ,mfun l f(a:τ1):τ2 is eend ⇓t mfun l f(a:τ1):τ2 is eend, σ

(fun val)

σ, t1 ⇓t v1, σ1

σ1, t2 ⇓t v2, σ2

σ2, l:•, [v1, v2/f, a] e ⇓e v, σ′

(v1 = mfun l f(a:τ1):τ2 is eend)

σ, t1 t2 ⇓t v, σ′
(apply)

σ, t ⇓t v, σ′

σ,! t ⇓t ! v, σ′
(bang)

σ, t ⇓t v, σ′

σ,inlτ1+τ2t ⇓t inlτ1+τ2v, σ′
(case/inl)

σ, t ⇓t v, σ′

σ,inrτ1+τ2t ⇓t inrτ1+τ2v, σ′
(case/inr)

σ, t ⇓t v, σ′

σ,roll(t) ⇓t roll(v), σ′
(roll)

σ, t ⇓t roll(v), σ′

σ,unroll(t) ⇓t v, σ′
(unroll)

Figure 12.8: Evaluation of terms.

This function will only be of interest in the case that e @ β is a return expression, which, if well-typed,
cannot contain free resources. Note that (e @ β)− = e− @ β−, and similarly for values, v.

We are now in a position to justify a subtlety in the second return rule of the dynamic semantics,
which governs the case that the returned value has not already been stored in the memo table. This rule
extends, rather than updates, the memo table with a binding for the branch that determines this return
statement within the current memoized function. But why, after evaluation of t, is this branch undefined in
the revised store, σ′? If the term t were to introduce a binding for β in the memo table σ(l), it could only do
so by evaluating the very same return statement, which implies that there is an infinite loop, contradicting
the assumption that the return statement has a value, v.

12.4. THE MFL LANGUAGE 167

σ(l)(β) = v

σ, l:β,return(t) ⇓e v, σ
(return, found)

σ(l) = θ θ(β) ↑
σ, t ⇓t v, σ′

σ′(l) = θ′

σ, l:β,return(t) ⇓e v, σ′[l← θ′[β 7→ v]]
(return, not found)

σ, t ⇓t ! v, σ′

σ′, l:!v · β, [v/x]e ⇓t v′, σ′′

σ, l:β,let!x : η be tin eend ⇓e v′, σ′′
(let!)

σ, t ⇓t v1 × v2, σ
′

σ′, l:β, [v1/a1, v2/a2]e ⇓e v, σ′′

σ, l:β,let a1×a2 be tin eend ⇓t v, σ′′
(let×)

σ, t ⇓t inlτ1+τ2v, σ′

σ′, l:inl · β, [v/a1]e1 ⇓e v1, σ
′′

σ, l:β,mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end ⇓t v1, σ
′′ (case/inl)

σ, t ⇓t inrτ1+τ2v, σ′

σ′, l:inr · β, [v/a2]e2 ⇓e v2, σ
′′

σ, l:β,mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end ⇓t v2, σ
′′ (case/inr)

Figure 12.9: Evaluation of expressions.

Lemma 83
If σ, t ⇓t v, σ′, σ(l) @ β = return(t), and σ(l)(β) is undefined, then σ′(l)(β) is also undefined.

An augmented branch, γ, is an extension of the notion of branch in which we record the bindings of
resource variables. Specifically, the argument used to call a memoized function is recorded, as are the bind-
ings of resources created by pair splitting and case analysis. Augmented branches are inductively defined
by the following grammar:

Augmented Event ε : : = (v) | !v | 〈v1, v2〉 | inl(v) | inr(v)
Augmented Branch γ : : = • | ε · γ

We write γ̂ε for the extension of γ with ε at the end. There is an obvious simplification function, γ◦, that
yields the simple branch corresponding to an augmented branch by dropping “call” events, (v), and “pair”
events, 〈v1, v2〉, and by omitting the arguments to “injection” events, inl(v), inr(v). The underlying
augmented branch, γ−, corresponding to an augmented branch, γ, is defined by replacing each augmented
event, ε, by its corresponding underlying augmented event, ε−, which is defined in the obvious manner.
Note that (γ◦)− = (γ−)◦.

The partial access functions e @ γ and t @ γ are defined for closed expressions e and closed terms t by

168 CHAPTER 12. SELECTIVE MEMOIZATION

the following equations:

t @ γ̂(v) = [t, v/f, a]e @ γ
(where t = mfun f (a:τ1):τ2 is eend)

e @ • = e
let!x:τ be tin eend@ γ̂!v = [v/x]e @ γ

let a1:τ1×a2:τ2 be tin eend@ β̂〈v1, v2〉 = [v1, v2/a1, a2]e @ β
mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end@ β̂inl(v) = [v/a1]e1 @ β
mcase tofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end@ β̂inr(v) = [v/a2]e2 @ β

Note that (e @ γ)− = e− @ γ−, and similarly for values, v.
Augmented branches, and the associated access function, are needed for the proof of soundness. The

proof maintains an augmented branch that enriches the current simple branch of the dynamic semantics. The
additional information provided by augmented branches is required for the induction, but it does not affect
any return statement it may determine.

Lemma 84
If e @ γ = return(t), then e @ γ◦ = return(t).

A function assignment, Σ, is a finite mapping from locations to well-formed, closed, pure function
values. A function assignment is consistent with a term, t, or expression, e, if and only if whenever
mfun l f(a:τ1):τ2 is eend occurs in either t or e, then Σ(l) = mfun f (a:τ1):τ2 is e− end. Note
that if a term or expression is consistent with a function assignment, then no two function values with dis-
tinct underlying values may have the same label. A function assignment is consistent with a store, σ, if and
only if whenever σ(l)(β) = v, then Σ is consistent with v.

A store, σ, tracks a function assignment, Σ, if and only if Σ is consistent with σ, dom(σ) = dom(Σ),
and for every l ∈ dom(σ), if σ(l)(β) = v, then

1. Σ(l) @ β− = return(t−),

2. t− ⇓t
p v−,

Thus if a branch is assigned a value by the memo table associated with a function, it can only do so if that
branch determines a return statement whose value is the assigned value of that branch, relative to the
non-memoizing semantics.

We are now in a position to prove the soundness of MFL.

Theorem 85
1. If σ, t ⇓t v, σ′, Σ is consistent with t, σ tracks Σ, ∅; ∅ ` t : τ , then t− ⇓t

p v− and there exists Σ′ ⊇ Σ
such that Σ′ is consistent with v and σ′ tracks Σ′.

2. If σ, l:β, e ⇓e v, σ′, Σ is consistent with e, σ tracks Σ, γ◦ = β, Σ(l) @ γ− = e−, and ∅; ∅ ` e : τ ,
then there exists Σ′ ⊇ Σ such that e− ⇓e

p v−, Σ′ is consistent with v, and σ′ tracks Σ′.

12.4. THE MFL LANGUAGE 169

Proof: The proof proceeds by simultaneous induction on the memoized evaluation relation. We consider
here the five most important cases of the proof: function values, function terms, function application terms,
and return expressions.

For function values t = mfun l f(a:τ1):τ2 is eend, simply take Σ′ = Σ and note that v = t and
σ′ = σ.

For function terms t = mfun f (a:τ1):τ2 is eend, note that v = mfun l f(a:τ1):τ2 is eend and
σ′ = σ[l 7→ ∅], where l /∈ dom(σ). Let Σ′ = Σ[l 7→ v−], and note that since σ tracks Σ, and σ(l) = ∅, it
follows that σ′ tracks Σ′. Since Σ is consistent with t, it follows by construction that Σ′ is consistent with v.
Finally, since v− = t−, we have t− ⇓t

p v−, as required.
For application terms t = t1 t2, we have by induction that t1− ⇓t

p v1
− and there exists Σ1 ⊇ Σ consistent

with v1 such that σ1 tracks Σ1. Since v1 = mfun l f(a:τ1):τ2 is eend, it follows from consistency that
Σ1(l) = v1

−. Applying induction again, we obtain that t2
− ⇓t

p v2
−, and there exists Σ2 ⊇ Σ1 consistent

with v2 such that σ2 tracks Σ2. It follows that Σ2 is consistent with [v1, v2/f, a]e. Let γ = (v2) · •. Note
that γ◦ = • = β and we have

Σ2(l) @ γ− = v1
− @ γ−

= (v1 @ γ)−

= ([v1, v2/f, a]e)−

= [v1
−, v2

−/f, a]e−.

Therefore, by induction, [v1
−, v2

−/f, a]e− ⇓e
p v′−, and there exists Σ′ ⊇ Σ2 consistent with v′ such that σ′

tracks Σ′. It follows that (t1 t2)
− = t1

− t2
− ⇓t

p v′−, as required.
For return statements, we have two cases to consider, according to whether the current branch is in

the domain of the current memo table. Suppose that σ, l:β,return(t) ⇓e v, σ′ with Σ consistent with
return(t), σ tracking Σ, γ◦ = β, Σ(l)@γ− = (return(t))− = return(t−), and ∅; ∅ ` return(t) :
τ . Note that by Lemma 84, (Σ(l) @ β)− = Σ(l) @ β− = return(t−).

For the first case, suppose that σ(l)(β) = v. Since σ tracks Σ and l ∈ dom(σ), we have Σ(l) =
mfun f (a:τ1):τ2 is e− end with e− @ β− = return(t−), and t− ⇓t

p v−. Note that σ′ = σ, so taking
Σ′ = Σ completes the proof.

For the second case, suppose that σ(l)(β) is undefined. By induction t− ⇓t
p v− and there exists Σ′ ⊇ Σ

consistent with v such that σ′ tracks Σ′. Let θ′ = σ′(l), and note θ′(β) ↑, by Lemma 83. Let θ′′ = θ′[β 7→ v],
and σ′′ = σ′[l ← θ′′]. Let Σ′′ = Σ′; we are to show that Σ′′ is consistent with v, and σ′′ tracks Σ′′. By the
choice of Σ′′ it is enough to show that Σ′(l) @ β− = return(t−), which we noted above.

�

The soundness theorem (Theorem 86) for MFL states that evaluation of a program (a closed term)
with memoization yields the same outcome as evaluation without memoization. The theorem follows from
Theorem 85.

Theorem 86 (Soundness)
If ∅, t ⇓t v, σ, where ∅; ∅ ` t : τ , then t− ⇓t

p v−.

Type safety follows from the soundness theorem, since type safety holds for the non-memoized seman-
tics. In particular, if a term or expression had a non-canonical value in the memoized semantics, then the

170 CHAPTER 12. SELECTIVE MEMOIZATION

same term or expression would have a non-canonical value in the non-memoized semantics, contradicting
safety for the non-memoized semantics.

12.4.5 Performance

We show that memoization slows down an MFL program by a constant factor (expected) with respect to a
standard, non-memoizing semantics even when no results are re-used. The result relies on representing a
branch as a sequence of integers and using this sequence to key memo tables, which are implemented as
hash tables. To represent branches as integer sequences we use the property of MFL that the underlying type
η of a bang type, ! η, is an indexable type. Since any value of an indexable type has an integer index, we can
represent a branch of dependencies as sequence of integers corresponding to the indices of let!’ed values,
and zero or one for inl and inr.

Consider a non-memoizing semantics, where the return rule always evaluates its body and neither
looks up nor updates memo tables (stores). Consider an MFL program and let T denote the time it takes
(the number of evaluation steps) to evaluate the program with respect to this non-memoizing semantics. Let
T ′ denote the time it takes to evaluate the same program with respect to the memoizing semantics. In the
worst case, no results are re-used, thus the difference between T and T ′ is due to memo-table lookups and
updates done by the memoizing semantics. To bound the time for these, consider a memo table lookup or
update with a branch β and let |β| be the length of the branch. Since a branch is a sequence of integers,
a lookup or update can be performed in expected O(|β|) time using nested hash tables to represent memo
tables. Now note that the non-memoizing semantics takes |β| time to build the branch thus, the cost of a
lookup or update can be charged to the evaluations that build the branch β, i.e., evaluations of let! and
mcase. Furthermore, each evaluation of let! and mcase can be charged by exactly one return. Thus,
we conclude that T ′ = O(T) in the expected case.

12.5 Implementation

We describe an implementation of our framework as a Standard ML library. The aspects of the MFL lan-
guage that relies on the syntactic distinction between resources and variables cannot be enforced statically
in Standard ML. Therefore, we use a separate type for resources and employ run-time checks to detect
violations of correct usage.

The interface for the library (shown in Figure 12.10) provides types for expressions, resources, bangs,
products, sums, memoized functions along with their introduction and elimination forms. All expressions
have type ’a expr, which is a monad with return as the inclusion and various forms of “bind” induced
by the elimination forms letBang, letx, and mcase. A resource has type ’a res and expose is
its elimination form. Resources are only created by the library, thus no introduction form for resources
is available to the user. The introduction and elimination form for bang types are bang and letBang.
The introduction and elimination form for product types are pair, and letx and split respectively.
The letx is a form of “bind” for the monad expr; split is the elimination form for the term context.
The treatment of sums is similar to product types. The introduction forms are inl and inr, and the
elimination forms are mcase and choose; mcase is a form of bind for the expr monad and choose is
the elimination for the term context.

12.5. IMPLEMENTATION 171

signature MEMO =
sig

(* Expressions *)
type ’a expr
val return:(unit -> ’a) -> ’a expr

(* Resources *)
type ’a res
val expose:’a res -> ’a

(* Bangs *)
type ’a bang
val bang :(’a -> int) -> ’a -> ’a bang
val letBang:(’a bang) -> (’a -> ’b expr) -> ’b expr

(* Products *)
type (’a,’b) prod
val pair:’a -> ’b -> (’a,’b) prod
val letx:(’a,’b) prod -> ((’a res * ’b res) -> ’c expr) -> ’c expr
val split:(’a,’b) prod -> ((’a * ’b) -> ’c) -> ’c

(* Sums *)
type (’a,’b) sum
val inl:’a -> (’a,’b) sum
val inr:’b -> (’a,’b) sum
val mcase:(’a,’b) sum -> (’a res -> ’c expr) -> (’b res -> ’c expr)-> ’c expr
val choose:(’a,’b) sum -> (’a -> ’c) -> (’b -> ’c) -> ’c

(* Memoized arrow *)
type (’a,’b) marrow
val mfun:(’a res -> ’b expr) -> (’a,’b) marrow
val mfun rec:((’a, ’b) marrow -> ’a res -> ’b expr) -> (’a,’b) marrow
val mapply:(’a,’b) marrow -> ’a -> ’b

end

signature BOX = sig
type ’a box
val init:unit->unit
val box:’a->’a box
val unbox:’a box->’a
val getKey:’a box->int

end

Figure 12.10: The signatures for the memo library and boxes.

Memoized functions are introduced by mfun and mfun rec; mfun takes a function of type
’a res -> ’b expr and returns the memoized function of type (’a,’b) marrow; mfun rec is
similar to mfun but it also takes as a parameter its memoized version. Note that the result type does not
contain the “effect” expr—we encapsulate memoization effects, which are benign, within the function.
The elimination form for the marrow is the memoized apply function mapply.

Figure 12.11 shows an implementation of the library without the run-time checks for correct usage. To
incorporate the run-time checks, one needs a more sophisticated definition of resources in order to detect

172 CHAPTER 12. SELECTIVE MEMOIZATION

functor BuildMemo (structure Box:BOX structure Memopad:MEMOPAD):MEMO =
struct

type ’a expr = int list * (unit -> ’a)
fun return f = (nil,f)

type ’a res = ’a
fun res v = v
fun expose r = r

type ’a bang = ’a * (’a -> int)
fun bang h t = (t,h)
fun letBang b f =

let val (v,h) = b
val (branch,susp) = f v

in ((h v)::branch, susp) end

type (’a,’b) prod = ’a * ’b
fun pair x y = (x,y)
fun split p f = f p
fun letx (p as (x1,x2)) f = f (res x1, res x2)

datatype (’a,’b) sum = INL of ’a | INR of ’b
fun inl v = INL(v)
fun inr v = INR(v)
fun mcase s f g =

let val (lr,(branch,susp)) = case s of
INL v => (0,f (res v))

| INR v => (1,g (res v))
in (lr::branch,susp) end

fun choose s f g = case s of INL v => f v | INR v => g v

type (’a,’b) marrow = ’a -> ’b
fun mfun rec f =

let val mpad = Memopad.empty ()
fun mf rf x =

let val (branch,susp) = f rf (res x)
val result = case Memopad.extend mpad branch of

(NONE,SOME mpad’) => (* Not found *)
let val v = susp ()

val = Memopad.add v mpad’
in v end

| (SOME v,NONE) => v (* Found *)
in result end

fun mf’ x = mf mf’ x
in mf’ end

fun mfun f = ... (* Similar to mfun rec *)

fun mapply f v = f v
end

Figure 12.11: The implementation of the memoization library.

12.5. IMPLEMENTATION 173

when a resource is exposed out of its context (i.e., function instance). In addition, the interface must be
updated so that the first parameter of letBang, letx, and mcase, occurs in suspended form. This allows
us to update the state consisting of certain flags before forcing a term.

The implementation extends the operational semantics of the MFL language (Section 12.4.3) with boxes.
The bang primitive takes a value and an injective function, called the index function, that maps the value
to an integer, called the index. The index of a value is used to key memo tables. The restriction that the
indices be unique, enables us to implement memo tables as a nested hash tables, which support update and
lookup operations in expected constant time. The primitive letBang takes a value b of bang type and a
body. It applies the body to the underlying value of b, and extends the branch with the index of b. The
function letx takes a pair p and a body. It binds the parts of the pair to two resources and and applies the
body to the resources; as with the operational semantics, letx does not extend the branch. The function
mcase takes value s of sum type and a body. It branches on the outer form of s and binds its inner value
to a resource. It then applies the body to the resource and extends the branch with 0 or 1 depending on the
outer form of s. The elimination forms of sums and products for the term context, split and choose are
standard.

The return primitive finalizes the branch and returns its body as a suspension. The branch is used by
mfun rec or mfun, to key the memo table; if the result is found in the memo table, then the suspension
is disregarded and the result is re-used; otherwise the suspension is forces and the result is stored in the
memo table keyed by the branch. The mfun rec primitive takes a recursive function f as a parameter and
“memoizes” f by associating it with a memo pad. A subtle issue is that f must calls its memoized version
recursively. Therefore f must take its memoized version as a parameter. Note also that the memoized
function internally converts its parameter to a resource before applying f to it.

The interface of the library provides no introduction form for resources. Indeed, all resources are created
by the library inside the letx, mcase, mfun rec, and mfun. The function expose is the elimination
form for resources. If, for example, one would like to apply letBang to a resource, then he must first
expose the resource, which “exposes” the underlying value.

Figure 12.12 show the examples from Section 12.3 written in the SML library. Note that the memoized
Fibonacci function mfib creates a memo table every time it is called. When mfib finishes, this table can
be garbage collected (the same applies to mks). For Quicksort, we provide a function mqs that returns an
instance of memoized Quicksort when applied. Each such instance has its own memo table. Note also that
mqs creates a local instance of the hash-cons function so that each instance of memoized Quicksort has its
own memo table for hash-consing.

In the examples, we do not use the sum types provided by the library to represent boxed lists, because
we do not need to. In general, one will use the provided sum types instead of their ML counterparts (for
example if an mcase is needed). The examples in Figure 12.12 can be implemented using the following
definition of boxed lists.
datatype ’a boxlist’ =

ROLL of (unit, ((’a, ’a boxlist’ box) prod)) sum
type ’a boxlist = (’a boxlist’) box

Changing the code in Figure 12.12 to work with this definition of boxed lists requires several straightforward
modifications.

174 CHAPTER 12. SELECTIVE MEMOIZATION

12.6 Discussion

Space and Cache Management. Our framework associates a separate memo table with each memoized
function. This allows the programmer to control the life-span of memo tables by conventional scoping.
In some applications, finer level of control over memo table entries may be desirable. In particular, an
application can benefit from specifying a caching scheme for each memo table that determines the size of
the memo table and the replacement policy. We discuss how the framework can be extended to support this
type of control over memo tables.

The caching scheme should be specified in the form of a parameter to the mfun construct. When evalu-
ated, this construct will bind the caching scheme to the memo table and the memo table will be maintained
accordingly. Changes to the operational semantics to accommodate this extension is small. The store σ
will now map a label to a pair consisting of a memo table and its caching scheme. The handling of the
return will be changed so that the stores do not merely expand but are updated according to the caching
scheme before adding a new entry. The following shows the updated return rule. Here S denotes a caching
scheme and θ denotes a memo table. The update function denotes a function that updates the memo table
to accommodate a new entry by possibly purging an existing entry. The programmer must ensure that the
caching scheme does not violate the integrity of the memo table by tampering with stored values.

σ(l) = (θ,S) θ(β) = v

σ, l:β,return(t) ⇓e v, σ
(Found)

σ(l) = (θ,S) θ(β) ↑
σ, t ⇓t v, σ′

σ′(l) = (θ′,S) θ′′ = update(θ′,S, (β, v))

σ, l:β,return(t) ⇓e v, σ′[l← θ′′]
(Not Found)

For example, we can specify that the memo table for the Fibonacci function, shown in Figure 12.1,
can contain at most two entries and be managed using the least-recently-used replacement policy. This is
sufficient to ensure that the memoized Fibonacci runs in linear time. This extension can also be incorporated
into the type system described in Section 12.4. This would require that we associate types with memo stores
and also require that we develop a type system for “safe” update functions.

Local vs. Non-local Dependences. Our techniques only track “local” dependences between the input
and the result of a function. Local dependences of a function f are those that are created inside the static
scope of f. A non-local dependence of f is created when f passes its input to some other function g,
which examines f’s input indirectly. In previous work, Abadi et. al. [1] and Heydon et. al. [47] showed a
program analysis technique for tracking non-local dependences by propagating dependences of a function
to its caller. They do not, however, make clear the performance implications of their technique.

Our framework can be extended to track non-local dependences by introducing a memoized application
construct for expressions. This extension would, for example, allow for dependences of non-constant length.
We chose not to support non-local dependences because it is not clear if its utility exceeds its overhead.

12.6. DISCUSSION 175

structure Examples =
struct

type ’a box = ’a Box.box

fun iB v = bang (fn i => i) v
fun bB b = bang (fn b => Box.key b) b

(** Boxed lists **)
datatype ’a blist’ = NIL | CONS of (’a * ((’a blist’) box))

type ’a blist = (’a blist’) box
(** Hash-cons **)
fun hCons’ (x’) =

letx (expose x’) (fn (h’,t’) =>
letBang (expose h’) (fn h => letBang (expose t’) (fn t =>
return (fn()=> box (CONS(h,t))))))

val hCons = mfun hCons’

(** Fibonacci **)
fun mfib’ f (n’) =

letBang (expose n’) (fn n =>
return (fn()=>if n < 2 then n else (mapply f (iB(n-1))) + (mapply f (iB(n-2)))

fun mfib n = mapply (mfun rec mfib’) n

(** Knapsack **)
fun mks’ mks (arg) =

letx (expose arg) (fn (c’,l’) =>
letBang (expose c’) (fn c =>
letBang (expose l’) (fn l => return (fn () =>

case (unbox l) of
NIL => 0

| CONS((w,v),t) => if (c < w) then mapply mks (pair (iB c) (bB t))
else let val v1 = mapply mks (pair (iB c) (bB t))

val v2 = v + mapply mks (pair (iB (c-w)) (bB t))
in if (v1 > v2) then v1 else v2 end))))

val mks x = mfun rec mks’

(** Quicksort **)
fun mqs () =

let val empty = box NIL
val hCons = mfun hCons’
fun fil f l =

case (unbox l) of
NIL => empty

| CONS(h,t) => if (f h) then (mapply hCons (pair (iB h) (bB (fil f t))))
else (fil f t)

fun qs’ qs (l’) = letBang (expose l’) (fn l => return (fn () =>
case (unbox l) of

NIL => nil
| CONS(h,t) => let val ll = fil (fn x=>x<h) t

val gg = fil (fn x=>x>=h) t
val sll = mapply qs (bB ll)
val sgg = mapply qs (bB gg)

in sll@(h::sgg) end))
in mfun rec qs’ end

end

Figure 12.12: Examples from Section 12.3 in the SML library.

176 CHAPTER 12. SELECTIVE MEMOIZATION

Chapter 13

Self-Adjusting Functional Programming

This chapter presents a purely functional language, called Self-adjusting functional Language (SLf, read
“self”), for writing self-adjusting programs. The language enables the programmer to transform an ordinary
(non-self-adjusting) program into a self-adjusting program by making small changes to the program in a
methodical fashion. Self-adjusting programs written in SLf have the following properties:

• their performance under an input change can be determined using analytical techniques,

• they yield programs that self-adjust efficiently, even when compared to special-purpose algorithms.

The SLf language combines the AFL and MFL languages and extends them with non-strict dependences.
The key mechanisms under the SLf language are the memoized dynamic dependence graphs (MDDGs), and
the memoized change-propagation algorithm. As a SLf language executes an MDDG is constructed. The
MDDG is then used to adjust the computation to external changes via memoized change propagation. The
SLf language allows computations to be tagged with two kinds of dependences: strict and non-strict. To re-
use a memoized computation, it is only required that the strict dependences match. Re-used computations are
adjusted to non-strict dependences by running the memoized change-propagation algorithm on the MDDG
of the re-used computation. Supporting non-strict dependences requires relatively simple extensions to the
memoized DDGs and the memoized change-propagation algorithm.

We present a static semantics and a dynamic semantics for the SLf language. The static semantics is
a slight extension of the combination of the static semantics of the MFL and the AFL languages. It is
therefore straightforward to prove the type safety of the SLf language based on the type safety of AFL and
MFL languages. The dynamic semantics formalizes the construction of memoized DDGs. Based on the
dynamic semantics, we present a semantics for memoized change propagation.

The semantics for memoized change propagation combines the semantics of non-memoized change
propagation with the semantics of selective memoization. Although we prove both non-memoized change
propagation (Section 11.5.2) and selective memoization (Section 12.4.4), we omit the proof for memoized
change propagation. Because of the large number of cases to be considered and the technical challenges that
arise when combining memoization (a purely functional technique) with change-propagation (which relies
on side effects), the proof is quite involved. The proof, however, seems tractable (we are quite close), and
therefore we a conjecture that the memoized change-propagation algorithm is correct.

177

178 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

In the SLf language, the programmer has full control over what dependences should be strict and what
dependences should be non-strict. The programmer can therefore deem any dependence non-strict. It makes
economical sense, however, to deem only certain kinds of dependences non-strict. In particular, when mem-
oizing an expression e, it suffices to deem non-strict the dependences to values that are only passed to other
functions—dependences to all other values should be strict. This strictness principle yields a methodologi-
cal way to transform an ordinary (non-self-adjusting) program into a self-adjusting program.

A key property of the SLf language is that it enables writing efficient self-adjusting programs. We
show in Chapter 15 that the language yields efficient programs from ordinary programs by considering a
number of applications. For these applications, we validate that the self-adjusting programs written in the
SLf language match the complexity bounds that we have obtained in Part III by performing an experimental
evaluation. Note that the bounds obtained in Part III rely on an imperative computation model (the closure
machine model).

The key to the efficiency of the SLf language is memoized change propagation and non-strict depen-
dences. Although memoized change propagation suffices to obtain good complexity bounds in the imper-
ative setting, this does now work in the purely functional setting. This is because the complexity bounds
presented in the imperative setting crucially rely on the explicit management of memory allocation. Since
purely functional programs do not allow explicit management of memory, memoized change propagation
alone does not yield efficient self-adjusting programs. We address this problem by enabling memoization of
computations independent of memory locations, which can be deemed as non-strict dependences.

An important property of the SLf language is that the complexity of change propagation for programs
written in the language can be determined analytically. The two approaches for such analysis are (1) to trans-
form the program into the imperative setting presented in the first part of this thesis and use trace-stability
analysis techniques, (2) to give a cost model for change propagation based on traces. The first approach is
relatively straightforward, because the imperative model is more expressive than the purely functional model
supported by the SLf language. The second approach has the advantage that the programmer need to remain
only in the purely functional setting. The traces used for change propagation, however, are too detailed and
somewhat inflexible for the more informal and algorithmic approach that is traditionally preferred for the
purposes of complexity analysis.

13.1 The Language

Figure 13.1 shows the abstract syntax for the Self-Adjusting functional Language SLf. Meta-variables x, y, z
and their variants range over an unspecified set of variables, meta-variables a, b, c and variants range over
an unspecified set of resources. Meta variable l and variants range over a unspecified set of locations.
Meta variable m ranges over a unspecified set of memo-function identifiers. Variables, resources, locations,
memo-function identifiers are mutually disjoint. The syntax of SLf is restricted to “2/3-cps” or “named
form” to streamline the presentation of the dynamic semantics.

The types of SLf consists of the types of the AFL and the MFL languages. In particular, the types include
the base type int, bang types ! τ , modifiables modτ , products τ1 × τ2 and sums τ1 + τ2, stable functions
τ1

ms→ τ2, and changeable function τ1
mc→ τ2. Extending SLf with recursive or polymorphic types presents no

fundamental difficulties but omitted here for the sake of brevity.
As with the MFL language, the underlying type of a bang type ! τ is required to be an indexable type.

13.1. THE LANGUAGE 179

Types τ : : = int | ! τ | τ mod | τ1 × τ2 | τ1 + τ2 | τ1
s→ τ2 | τ1

c→ τ2

Values v : : = n | x | a | l | m | ! v | (v1,v2) | inlτ1+τ2v | inrτ1+τ2v |
ms funm f(a:τ1):τ2 is es end | mc funm f(a:τ1):τ2 is ec end

Operators o : : = + | - | = | < | . . .

Stable Expr es : : = return(ts) | memo (x = v)∗ in ts end | let a:τ be ts in es end |
let!x:τ be v in es end | let a1:τ1×a2:τ2 be v in es end |
mcase v ofinl(a1:τ1) ⇒ es |inr(a2:τ2) ⇒ es end

Changeable Expr ec : : = return(tc) | memo (x = v)∗ in tc end | let a:τ be ts in es end |
let!x:τ be v in ec end | let a1:τ1×a2:τ2 be v in ec end |
mcase v ofinl(a1:τ1) ⇒ ec |inr(a2:τ2) ⇒ e′c end

Stable Terms ts : : = v | o(v1, . . . , vn) | ms app(v1, v2) |
ms fun f (a:τ1):τ2 is es end | mc fun f (a:τ1):τ2 is ec end |
let x be ts in t′s end | modτ tc |
case v ofinl(x1:τ1) ⇒ ts |inr(x2:τ2) ⇒ t′s end

Changeable Terms tc : : = write(v) | mc app(v1, v2) |
let x be ts in tc end | read v as x in tc end |
case v ofinl(x1:τ1) ⇒ tc |inr(x2:τ2) ⇒ t′c end

Figure 13.1: The abstract syntax of SLf.

An indexable type accepts an injective index function into integers. The index function is used to determine
equality. Any type can be made indexable by supplying an index function based on boxing or tagging. Since
this is completely standard and well understood, we do not have a separate category for indexable types.

The terms and expressions of SLf are obtained by combining the term/expression syntax for MFL and
AFL and extending the expressions with the memo construct. The stable terms and changeable terms corre-
sponds to the changeable and stable expressions of the AFL language respectively. The expressions corre-
sponds to the expressions of the MFL language and are partitioned into stable expressions and changeable
expressions depending on whether they include a changeable or stable term.

Stable and changeable expressions are written as es and ec respectively; and stable and changeable
terms are written as ts and tc respectively. Terms evaluate independent of their contexts, as in ordinary
functional programming, whereas expression are evaluated with respect to a memo table. The value of a
stable expression or term is not sensitive to the modifications to the input, whereas the value of a changeable
expression may be affected by them.

Stable and Changeable Terms. The stable and changeable terms of SLf are very similar to the stable
and changeable expressions of the AFL language. The only difference between the two is that in SLf,
all functions are memoized. It is straightforward to extend the language with non-memoized functions by
enriching the stable and changeable terms with ordinary (non-memoized) stable and changeable functions.

180 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

The stable terms consists of ordinary mechanisms of functional programming, stable and changeable
functions, stable function application, the modτ tc term for creating and initializing modifiables, the let
construct for sequencing, and the case construct for branching on sum types.

Changeable terms are written in destination-passing style with an implicit target. The changeable
term write(v) writes the value v into the target. The term read v as x in tc end binds the contents
of the modifiable v to the variable x, then continues evaluation of tc. A read is considered changeable
because the contents of the modifiable on which it depends is subject to change. A changeable function
itself is a stable term, but its body is a changeable expressions. The application of a changeable function
is a changeable term. The sequential let construct allows for the inclusion of stable sub-computations in
changeable mode. Case expressions with changeable branches are changeable.

Stable and Changeable Expressions. The expressions of the SLf language are similar to the expres-
sions of the MFL language. The differences between the two are 1) the expression of SLf are divided into
two depending on whether they culminate in a stable or changeable term, and 2) the expressions contain the
memo construct.

Expression are evaluated in the context of a memo table and are divided into stable and changeable.
Stable and changeable expressions are symmetric with the exception that stable terms are included in stable
expressions. The return and memo constructs provide two forms of inclusion.

The expression primitives consists of let!, let*, mcase, return, and memo constructs. The
let!, let*, mcase, express strict data dependences between the input and the output of the function.
In particular the expression let !x = v in e expresses that the value of this expression depends on
the value of x, and the expression
mcase v ofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e′2 end expresses that the value of this expression
depends on the branch taken (the tag of the sum type v). We therefore call these primitives strict.

The return construct provides an includes of a changeable or a stable term inside of an expression. The
memo expression, memo x = x1 = v1, . . . , xn = vn in t end consists of the bindings x1 = v1 . . . xn = vn

and the body t. It is a restriction of the language (enforced by the type system) that the values v1, . . . , vn

have modifiable type. The memo primitive expresses non-strict data dependences between the value of
the expression and the bindings x1 . . . xn. The body t of a memoized expression may depend on all the
values x1, . . . , xn bound by its bindings. But since these values are modifiables and since the values under
modifiables may change, we call these dependences non-strict. In particular, a computation, A, can be re-
used in place of another computation, B, as long as the strict dependences of A and B are the same—the
non-strict dependences are forced to match by change propagation.

Strictness Principle. When programming in the AFL language, the programmer has to choose the
strict and the non-strict dependences between the input and the output of a function. The programmer
expresses the strict dependences via let!,let* and mcase constructs and the non-strict dependences are
expressed using the memo construct. The principle to determine the strict and the non-strict dependences is
the following strictness principle: A function must be memoized non-strictly on the values that it passes to
other function calls and must be memoized strictly on all other values.

13.2. AN EXAMPLE: QUICKSORT 181

13.2 An Example: Quicksort

As an example, we consider the Quicksort algorithm and describe how to transform standard Quicksort into
self-adjusting Quicksort using SLf.

datatype α list =
nil

| cons of (α * α list)

f:α list -> α list
fun f(l) =
case l of

nil => nil
| cons(h,t) =>

if test(h) then
cons(h,f t)

else
f(t)

datatype α modlist =
NIL

| CONS of (α * α modlist mod)

f:α modlist -> α modlist
fun f(c) =
case c of

NIL => write NIL
| CONS(h,t) =>

if test(h) then
write (CONS(h,mod (read t as ct in f ct end))

else
read t as ct in f ct end

datatype α modlist =
NIL

| CONS of (α * α modlist mod)

f:!α modlist -> !α modlist
mfun f(c) =
mcase c of

NIL => return (write NIL)
| CONS(h,t) =>

let !xh = h in
memo xt = t in

if test(xh) then
write(CONS(xh,mod (read xt as ct in f ct end)))

else
read xt as ct in f ct end

end
end

Figure 13.2: The code for ordinary, adaptive, and self-adjusting filter functions f.

Figure 13.2 shows the ordinary, the adaptive, and the self-adjusting code for a filter function f. We use
this simpler function to describe the main ideas behind the SLf language before we describe the Quicksort.
All versions of f assume that there is a function test defined in scope. The differences between successive
(left to right, top to bottom) codes are underlined.

The ordinary version takes a list as an input and walks down the list while copying elements that test
positive to the output list. The adaptive version (top right) is obtained by making the input list a modifiable
list, where each tail is placed inside of a modifiable, and then changing the code so that modifiables are
read and written appropriately. The adaptive version is obtained from the ordinary version by inserting

182 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

the underlined pieces of code. The transformation of an ordinary programs into an adaptive program is
described in more detail in Section 11.2.2.

The self-adjusting version (bottom right) is obtained from the adaptive version by inserting memoization
primitives. This transformation involves determining what dependences should be strict and (what depen-
dences should be non-strict). Based on the memoization principle that a function must depend on the values
that are passed down to recursive call non-strictly, we decide that the result depends on t non-strictly, and on
the tag of the list and on the head of the list h strictly. The code using the SLf language expresses these de-
pendences using the mcase, let! and memo constructs respectively. Since the let! construct requires
that the head item be a bang type, the type of the function f is f:!α modlist -> !α modlist.

Figure 13.3 shows the complete code for the standard Quicksort algorithm and its self-adjusting version
written in SLf. To avoid linear-time concatenations, qsort uses an accumulator to store the sorted tail of
the input list. As usual the transformation consists of two steps. The first step transforms the code into the
AFL language by placing modifiables in the input and inserting mod,read and write primitives. The
second step memoizes functions by determining the strict and non-strict dependences and expressing them
appropriately. For transforming the qsort function, we realize that the work to be done in the case of the
list being empty is trivial and decide not to memoize this computation. When the list is non-empty, however,
non-trivial work takes place and therefore this branch is memoized. By inspecting the code, it is easy to see
that the only strict dependence is on the head item. The tail t and the sorted accumulator r are passed down
to the recursive calls and are therefore memoized non-strictly via the memo construct.

Note that the standard version and the self-adjusting version of the Quicksort algorithm are algorithmi-
cally equivalent.

13.3 Static Semantics

The section presents the complete static semantics for the SLf language.
Each typing judgment takes place under three contexes: ∆ for resources, Λ for locations, and Γ for

ordinary variables. We distinguish two modes, stable and changeable. Stable terms and expressions are
typed in the stable mode and changeable terms are typed in the changeable mode.

The judgment ∆; Λ; Γ t : τ states that t is a well formed stable term of type τ relative to ∆,Λ and
Γ. The judgment ∆; Λ; Γ e : τ states that e is a well formed stable expression of type τ relative to ∆,Λ
and Γ.

The judgment ∆; Λ; Γ � t : τ states that t is a well formed changeable term of type τ relative to ∆,Λ
and Γ. The judgment ∆; Λ; Γ � e : τ states that e is a well formed changeable expression of type τ relative
to ∆,Λ and Γ.

The stable and changeable expression are almost identical except for the return construct. Figure 13.4
shows the typing rules for values, Figure 13.5 shows the typing rules for terms, and Figure 13.6 shows the
typing rules for expressions. The abstract syntax is shown in Figure 13.1.

13.3. STATIC SEMANTICS 183

1 datatype α list =
2 nil
3 | cons of (α * α list)

4 fil:(α-> bool)->α list->α list
5 fun fil test l =
6 let
7 fun f(l) =
8 case l of
9 nil => nil
10 | cons(h,t) =>
11
12
13 if test(h) then
14 cons(h,f t)
15
16 else
17 f(t)
18 in
19 f(l)
20 end

21 qsort: α list -> α list
22 fun qsort(l) =
23 let
24 fun qs(l,r) =
25 case l of
26 nil =>
27 r
28 | cons(h,t) =>
29
30
31 let
32 l = fil (fn x => x<h) t
33 g = fil (fn x => x>=h) t
34 gs = qs(g,r)
35 in
36 qs(l,cons(h,gs))
37 end
38 in
39 qs(l,nil)
40 end

1 datatype α list’ =
2 NIL
3 | CONS of (α * α list’ mod)

4 fil:(!α -> bool) -> !α list -> !α list
5 fun fil’ test l =
6 let
7 fun f(c) =
8 mcase c of
9 NIL => return (write NIL)
10 | CONS(h,t) =>
11 let !x = h in
12 memo y = t in
13 if test(x) then
14 write(CONS(x,
15 mod(read y as c in f c end)))
16 else
17 read y as c in f c end
18 in
19 mod (read l as c in f c end)
20 end

21 qsort: !α list -> !α list
22 fun qsort(l) =
23 let
24 fun qs(c,r) =
25 mcase c of
26 NIL =>
27 return (read r as cr in write cr end)
28 | CONS(h,t) =>
29 let !x = h in
30 memo y = t and z = r in
31 let
32 l = fil (fn k => k<x) t
33 g = fil (fn k => k>=x) t
34 g’ = mod(read g as c in qs (c,z) end)
35 in
36 read l as c in qs(c,CONS(x,g’)) end
37 end end end
38 in
39 mod(read l as c in qs(c,mod(write NIL)) end)
40 end

Figure 13.3: The complete code for ordinary (left) and self-adjusting (right) Quicksort.

184 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

∆; Λ; Γ n : int
(number)

(∆(a) = τ)
∆; Λ; Γ a : τ

(resource)
(Λ(l) = τ)

∆; Λ; Γ l : τ mod
(location)

(Γ(x) = τ)
∆; Λ; Γ x : τ

(variable)

∆; Λ; Γ v1 : τ1 ∆; Λ; Γ v2 : τ2

∆; Λ; Γ (v1,v2) : τ1 × τ2
(product)

∅; Λ; Γ v : τ

∆; Λ; Γ ! v : ! τ
(bang)

∆; Λ; Γ v : τ1

∆; Λ; Γ inlτ1+τ2v : τ1 + τ2
(sum/inl)

∆; Λ; Γ v : τ2

∆; Λ; Γ inrτ1+τ2v : τ1 + τ2
(sum/inr)

∆, a:τ1; Λ; Γ, f :τ1
ms→ τ2; es : τ2

∆; Λ; Γ ms funm f(a:τ1):τ2 is es end : τ1
ms→ τ2

(stable fun)

∆, a:τ1; Λ; Γ, f :τ1
c→ τ2; ec : τ2

∆; Λ; Γ mc funm f(a:τ1):τ2 is ec end : τ1
c→ τ2

(changeable fun)

Figure 13.4: Typing of values.

13.3. STATIC SEMANTICS 185

∆; Λ; Γ vi : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

∆; Λ; Γ o(v1, . . . , vn) : τ
(primitives)

∆, a:τ1; Λ; Γ, f :τ1
s→ τ2 es : τ2

∆; Λ; Γ ms fun f (a:τ1):τ2 is es end : τ1
s→ τ2

(stable mfun)

∆, a:τ1; Λ; Γ, f :τ1
c→ τ2 � ec : τ2

∆; Λ; Γ mc fun f (a:τ1):τ2 is ec end : τ1
c→ τ2

(changeable mfun)

Λ; Γ v1 : (τ1
s→ τ2) Λ; Γ v2 : τ1

Λ; Γ s app(v1, v2) : τ2
(stable apply)

∆; Λ; Γ ts : τ1 Λ; Γ, x : τ1 t′s : τ2

∆; Λ; Γ let x be ts in t′s end : τ2
(let)

∆; Λ; Γ � tc : τ

∆; Λ; Γ modτ tc : τ mod
(mod)

∆; Λ; Γ v : τ1 + τ2

∆; Λ; Γ, x1:τ1 ts : τ
∆; Λ; Γ, x2:τ2 t′s : τ

∆; Λ; Γ case v ofinl(x1:τ1) ⇒ ts |inr(x2:τ2) ⇒ t′s end : τ
(case)

∆; Λ; Γ v : τ

∆; Λ; Γ � write(v) : τ
(write)

∆; Λ; Γ v1 : (τ1
c→ τ2) ∆; Λ; Γ v2 : τ1

∆; Λ; Γ � c app(v1, v2) : τ2
(apply)

∆; Λ; Γ ts : τ1 ∆; Λ; Γ, x : τ1 � tc : τ2

∆; Λ; Γ � let x be ts in tc end : τ2
(let)

∆; Λ; Γ v : τ1 mod ∆; Λ; Γ, x : τ1 � tc : τ2

∆; Λ; Γ � read v as x in tc end : τ2
(read)

∆; Λ; Γ v : τ1 + τ2

∆; Λ; Γ, x1:τ1 � tc : τ
∆; Λ; Γ, x2:τ2 � t′c : τ

∆; Λ; Γ case v ofinl(x1:τ1) ⇒ tc |inr(x2:τ2) ⇒ t′c end : τ
(case)

Figure 13.5: Typing of stable (top) and changeable (bottom) terms.

186 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

∅; Λ; Γ ts : τ

∆; Λ; Γ return(ts) : τ
(return)

∆; Λ; ∆ v1 : τ1 . . . ∆; Λ; ∆ vn : τn

∆; ∅;∆, x1 : τ1, . . . , xn : τn ts : τ

∆; Λ; Γ memo x1 = v1 . . . xn = vn in ts end : τ
(memo)

∆; Λ; Γ ts : τ1 ∆, a:τ1; Λ; Γ � ec : τ2

∆; Λ; Γ let a:τ1 be ts in ec end : τ2
(let)

∆; Λ; Γ v : ! τ1 ∆; Λ; Γ, x:τ1 es : τ2

∆; Λ; Γ let!x:τ1 be v in es end : τ2
(let!)

∆; Λ; Γ v : τ1 × τ2 ∆, a1:τ1, a2:τ2; Λ; Γ es : τ

∆; Λ; Γ let a1:τ1×a2:τ2 be v in es end : τ
(let×)

∆; Λ; Γ v : τ1 + τ2

∆, a1:τ1; Λ; Γ es : τ
∆, a2:τ2; Λ; Γ e′s : τ

∆; Λ; Γ mcase v ofinl(a1:τ1) ⇒ es |inr(a2:τ2) ⇒ e′s end : τ
(case)

∅; Λ; Γ � tc : τ

∆; Λ; Γ � return(tc) : τ
(return)

∆; Λ; ∆ v1 : τ1 . . . ∆; Λ; ∆ vn : τn

∆; ∅;∆, x1 : τ1, . . . , xn : τn � tc : τ

∆; Λ; Γ � memo x1 = v1 . . . xn = vn in tc end : τ
(memo)

∆; Λ; Γ ts : τ1 ∆, a:τ1; Λ; Γ � ec : τ2

∆; Λ; Γ � let a:τ1 be ts in ec end : τ2
(let)

∆; Λ; Γ v : ! τ ∆; Λ; Γ, x:τ � ec : τ

∆; Λ; Γ � let!x:τ be v in ec end : τ
(let!)

∆; Λ; Γ v : τ1 × τ2 ∆, a1:τ1, a2:τ2; Λ; Γ � ec : τ

∆; Λ; Γ � let a1:τ1×a2:τ2 be v in ec end : τ
(let×)

∆; Λ; Γ v : τ1 + τ2

∆, a1:τ1; Λ; Γ � ec : τ
∆, a2:τ2; Λ; Γ � e′c : τ

∆; Λ; Γ � mcase v ofinl(a1:τ1) ⇒ ec |inr(a2:τ2) ⇒ e′c end : τ
(case)

Figure 13.6: Typing of stable (top) and changeable (bottom) expressions.

13.4. DYNAMIC SEMANTICS 187

13.4 Dynamic Semantics

The dynamic semantics consists of four separate evaluation judgments corresponding to stable and change-
able terms and stable and changeable expressions. All evaluation judgments take place with respect to a state
σ = (α, µ, χ,T) consisting of a location store α, a memoized-function identifier store µ, a set of changed lo-
cations χ, and a re-use trace T. The location store is where modifiables are allocated, the memoized-function
identifier store dispenses unique identifiers for memoized functions that are used for memo lookups. The set
of changed location contains the locations that has been changed since the previous execution. The re-use
trace is the trace available for re-use by the memo functions. Re-use trace is provided by change propagation
and is empty in the initial evaluation.

Traces

Evaluation of a term or an expression records its activity in a trace. Like terms and expressions, traces are
divided into stable and changeable. The abstract syntax of traces is given by the following grammar, where
T stands for a trace, Ts stands for a stable trace and Tc stands for a changeable trace.

T : : = Ts | Tc

Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts | {Ts }m:β

(v,(l1,...,ln))

Tc : : = Wτ | Rx.t
l (Tc) | Ts ; Tc | {Tc }m:β

(l1,...,ln)

When writing traces, we adopt the convention that “;” is right-associative.
This definition of traces extends the trace notion of the AFL language with traces for memoized stable

and changeable terms.
A stable trace records the sequence of allocations of modifiables that arise during the evaluation of a

stable term or expression. The trace 〈Tc〉l:τ records the allocation of the modifiable, l, its type, τ , and
the trace of the initialization code for l. The trace Ts ; T′s results from evaluation of a let expression
in stable mode, the first trace resulting from the bound expression, the second from its body. The trace
{Ts }m:β

(v,(l1,...,ln)) arises from the evaluation of a stable memoized function application; m is the identifier,
β is the branch expressing the input-output dependences, the value v is the result of the evaluation, l1 . . . ln
are the local modifiables, and Ts is the trace of the body of the function.

A changeable trace has one of four forms. A write, Wτ , records the storage of a value of type τ in
the target. A sequence Ts ; Tc records the evaluation of a let expression in changeable mode, with Ts

corresponding to the bound stable expression, and Tc corresponding to its body. A read Rx.t
l (Tc) trace

specifies the location read, l, the context of use of its value, x.e, and the trace, Tc, of the remainder of
evaluation with the scope of that read. This records the dependency of the target on the value of the location
read. The memoized changeable trace {Tc }m:β

(l1,...,ln) arises from the evaluation of a changeable memoized
function; m is the identifier, β is the branch expressing the input-output dependences, l1 . . . ln are the free
modifiables, and Tc is the trace of the body of the function. Since changeable function write their result to
the store, the trace has no result value.

188 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

Branches

Expression evaluation takes place in the context of a memo branch. The incremental evaluation constructs
(let!, let*, mcase) create a branch, denoted β. A branch is a list of events corresponding to “choice
points” in the evaluation of an expression.

Event ε : : = !v | inl | inr
Branch β : : = • | ε · β

This notion of branches is identical to the branches of the MFL language. The branch and the identifier
m is used by the memo construct to lookup the re-use trace for a match. If a match is found, the result
is returned and the body of memo is skipped. Otherwise, the body is executed and the computation is
memoized in the form of a memo trace.

Term evaluation

The term evaluation judgments are similar to that of the AFL language. As with AFL, term evaluation
consists of changeable and stable evaluation forms. The judgment σ, ts ⇓t

s v, σ′,Ts states that evaluation
of the stable term ts with respect to the state σ yields value v, state σ′, and the trace Ts. The judgment
σ, l← tc ⇓t

c σ′,Tc states that evaluation of the changeable term tc with respect to the state σ writes to
destination l and yields the state σ′, and the trace Tc.

Figures 13.7 and 13.8 show the evaluation rules for stable and changeable terms. Memoized stable and
memoized changeable functions are evaluated into values by generating a new memoized function identifier
m. Changeable and stable applications evaluate some expression in the context of an identifier m and a
branch β. As in selective memoization, the branch collects the precise dependencies between the input and
the output. For stable applications the branch starts out empty. For changeable applications the branch is
initialized to the target—since a changeable expressions writes to its target, the target must be identical for
result re-use to take place.

Expression Evaluation

The expression evaluation judgments consists of changeable and stable evaluation forms. The evaluation of
changeable and stable expressions are very similar. The only difference is that the changeable evaluation
takes place with respect to a destination to which the result is written.

Figure 13.9 shows the rules for stable-expression evaluation and Figure 13.10 shows the rules for
changeable-expression evaluation. The evaluation σ,m:β, es ⇓e

s v, σ′,Ts states that the evaluation of
stable expression es in the context of the state σ with memo function identifier m and branch β yields the
value v, the state σ′, and the trace Ts. The evaluation σ,m:β, l← ec ⇓e

c σ′,Tc states that the evaluation
of changeable expression ec in the context of the state σ, with memo function identifier m and branch β
write to location l and yields the state σ′ and the trace Tc.

The evaluation rules for the let!, let* and mcase expressions are similar to those of the MFL
language. The let! expression binds the underlying value of the bang value to a variable, extends the
branch with that value, and evaluates its body. The let* construct binds each component of a pair to a

13.4. DYNAMIC SEMANTICS 189

σ, v ⇓t
s v, σ, ε

(value)

σ, o(v1, . . . , vn) ⇓t
s app(o, (v1, . . . , vn)), σ, ε

(primitive)

(α, µ, χ,T) = σ
σ′ = (α, µ ∪ {m}, χ,T), m 6∈ dom(µ)

σ,ms fun f (a:τ1):τ2 is es end ⇓t
s ms funm f(a:τ1):τ2 is es end, σ′, ε

(stable mfun)

(α, µ, χ,T) = σ
σ′ = (α, µ ∪ {m}, χ,T), m 6∈ dom(µ)

σ,mc fun f (a:τ1):τ2 is ec end ⇓t
s mc funm f(a:τ1):τ2 is ec end, σ, ε

(changeable mfun)

(v1 = ms fun f (a:τ1):τ2 is es end)
σ,m:ε, [v1/f, v2/a] es ⇓e

s v, σ′,Ts

σ,ms app(v1, v2) ⇓t
s v, σ′Ts

(stable apply)

σ, ts ⇓t
s v1, σ

′,Ts

σ′, [v1/x] t′s ⇓t
s v2, σ

′′,T′s

σ,let x be ts in t′s end ⇓t
s v2, σ

′′, (Ts ; T′s)
(let)

(α, µ, χ,T) = σ
α′ = α[l 7→ �], l 6∈ dom(α)

(α′, µ, χ,T), l← tc ⇓t
c σ′,Tc

σ,modτ tc ⇓t
s l, σ′, 〈Tc〉l:τ

(mod)

σ, [v/x1]ts ⇓t
c v′, σ′,Ts

σ,caseinlτ1+τ2v ofinl(x1:τ1) ⇒ ts |inr(x2:τ2) ⇒ t′s end ⇓t
c v′, σ′,Ts

(case/inl)

σ, [v/x2]t′s ⇓t
c v′, σ′,Ts

σ,caseinrτ1+τ2v ofinl(x1:τ1) ⇒ ts |inr(x2:τ2) ⇒ t′s end ⇓t
c v′, σ′,Ts

(case/inr)

Figure 13.7: Evaluation of stable terms.

resource and evaluates its body. The mcase performs pattern matching on sum types. It binds the underlying
value of the sum to a resource, extends the branch with the tag of the sum, and evaluates the appropriate
branch. The return expression evaluates its body and returns—no memo look ups are performed. The
let expression provides for sequencing by evaluating a stable term and binding its value to a resource. The
evaluation of these expressions are symmetric for changeable and stable expressions.

The key construct in the SLf language is the memo construct. Evaluating a memo expression in the
form memo x1 = l1 . . . xn = ln in t end, involves first checking the memo table for a memo look up with
the current branch. If a memo miss take place, then the locations l1, . . . , ln are copied into fresh locations

190 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

(α, µ, χ,T) = σ
σ′ = (α[l← v], µ, χ,T)

σ, l← write(v) ⇓t
c σ′,Wτ

(write)

(v1 = mc fun f (a:τ2):τ is ec end)
σ,m:! l, l← [v1/f, v2/a] ec ⇓e

c σ′,T

σ, l← mc app(v1, v2) ⇓t
c σ′,T

(memo apply)

σ, ts ⇓t
s v1, σ

′,Ts

σ′, l← [v1/x]tc ⇓t
c σ′′,Tc

σ, l← let x be ts in tc end ⇓t
c σ′′, (Ts ; Tc)

(let)

σ, l′ ← [σ(l)/x] tc ⇓t
c σ′,Tc

σ, l′ ← read l as x in tc end ⇓t
c σ′, Rx.tc

l (Tc)
(read)

σ, l← [v/x1]tc ⇓t
c σ′,Tc

σ, l← caseinlτ1+τ2v ofinl(x1:τ1) ⇒ tc |inr(x2:τ2) ⇒ t′c end ⇓t
c σ′,Tc

(case/inl)

σ, l← [v/x2]t′c ⇓t
c σ′,Tc

σ, l← caseinrτ1+τ2v ofinl(x1:τ1) ⇒ tc |inr(x2:τ2) ⇒ t′c end ⇓t
c σ′,Tc

(case/inr)

Figure 13.8: Evaluation of changeable terms.

l′1, . . . , l
′
n, called local modifiables, and the body of the memo t is evaluated after substituting the fresh

location in place of x1, . . . , xn. The trace obtained by the evaluation of t is then extended with the trace
representing the copy operations and the result is returned.

When a match is found in the memo, the values of free modifiables l1 . . . ln are copied to the local
modifiables l′1 . . . l′n of the re-used trace and a change propagation is performed to update the re-used trace.
The trace returned by change propagation forms the result trace together with the trace of the copies. Since
a result is found in the memo, the body of the memo is skipped.

The key property of the evaluation of memo construct is that memo look ups do not take into account the
values being bound by the memo construct. Consequently, the construct allows memoizing computations
that have free variables. The re-used trace may therefore belong to an evaluation of the body of memo with
a different set of values. The technique described here ensures correctness by copying the free variables
(which are known to be modifiables) to modifiables that are local to the memoized computation. When a
computation is re-used these local modifiables are updated with the new values of the free variables and a
change propagation is performed. The change propagation ensures that the re-used computation is adjusted
according to the values of the free variables.

The memo look ups are performed using the find relation; Figure 13.11 shows the definition of find.
The find relation seeks for a memoized result in the re-use trace whose identifier and branch matches m
(current memo table) and β (current branch). If a result is not found, then find returns an empty trace. If
a result is found, then find returns the trace found and the uninspected tail of the re-use trace.

13.5. TYPE SAFETY 191

Change Propagation

Based on the dynamic semantics of SLf, we present an operational semantics for the change-propagation
algorithm. The change-propagation algorithm extends the memoized change-propagation algorithm (Sec-
tion 5.4) by providing support for non-strict dependences.

Given a trace, a state ς , and a set of changed locations χ, the algorithm scans through the trace as it
seeks for reads of changed locations. When such a read is found, the body of the read is re-evaluated to
obtain a revised trace. Crucial point is that the re-evaluation of a read re-uses the trace of that read. Since
re-evaluation can change the value of the target of the re-evaluated read, the target is added to the set of
changed locations.

Figure 13.12 shows the rules for change propagation. The change propagation algorithm is given by
these two judgments:

1. Stable propagation: ς, χ,Ts

sy→ T′s, χ
′, ς ′

2. Changeable propagation: ς, χ, l← Tc

cy→ T′c, χ
′, ς ′

These judgments define the change-propagation for a stable trace, Ts (respectively, changeable trace, Tc),
with respect to a a set of changed locations χ, and state ς = (α, µ) consisting of a location store α, and
function identifier store µ. For changeable propagation a target location, l, is maintained as in the changeable
evaluation mode of SLf.

Given a trace, change propagation mimics the evaluation rule of SLf that originally generated that trace.
To stress this correspondence, each rule is marked with the name of the evaluation rule to which it corre-
sponds. For example, the propagation rule for the trace Ts ; T′s mimics the let rule of the stable mode that
gives rise to this trace.

13.5 Type Safety

The type system of the SLf language is a simple extension of the product of the AFL and MFL languages.
The type safety of SLf can therefore be easily proven based on the type safety of the AFL (Section 11.4) and
the MFL languages (Section 12.4.4).

13.6 Correctness

It is possible to give a correctness theorem for change propagation in the SLf language. The proof would
rely on the correctness of the AFL, and the MFL languages. Our attempts to proving this theorem, however,
shows that the proof is tractable but technically challenging. The challenges are due to the large number of
cases, and due to the interaction between memoization and side effects (writes).

192 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

13.7 Performance

One of the key properties of the SLf language is that the performance of change propagation for programs
written in SLf can be determined analytically. There are two approaches to this.

The first approach is to use the algorithmic techniques presented in the first part of this thesis. The idea
is to transform the SLf program into the imperative model discussed in Part I, and analyze its performance
using trace-stability techniques (Part II). The transformation of a program from the SLf language into the
imperative model is relatively straightforward, especially because the imperative model is more expressive
than the SLf language.

The second approach relies on the trace model described in this chapter. If the traces of a program
satisfies certain monotonicity properties, then performance under change propagation can be analyzed by
comparing the sets of evaluated memo expressions. Let P be a self-adjusting program written in the SLf
language. We say that two traces T and T ′ of P are monotone, if T and T ′ of P satisfy the following
properties. For the definition, we say that a trace M1 is contained in another trace M2 if M1 is part of M2.

1. All evaluations of a memo construct is uniquely identified by its branch: For any (stable or change-
able) memo trace { }m:β

() in T (T ′), there is no other trace { }m
′:β′

() such that m = m′ and β = β′.

2. Evaluation order and containment relation of two memo constructs are preserved:
Suppose that M1 = { }m1:β1

() and M2 = { }m2:β2

() are two memo traces in T . Suppose also that

there exists memo traces M ′
1 = { }m

′
1:β′1

() and M ′
2 = { }m

′
2:β′2

() in T ′ such that m1 = m′
1, m2 = m′

2,
and β1 = β′1, β2 = β′2. The following properties are satisfied

(a) If M1 comes before M2 in T , then M ′
1 comes before M ′

2 in T ′.

(b) If M1 is contained in M2, then M ′
1 is contained in M ′

2.

We state the following performance theorem that shows that the time for change propagation can be
measured by comparing the trace of the program with inputs before and after the change. For the theorem,
we defined the set of memo traces of a trace T as the set of all memo traces in T where each memo trace
is assigned a weight corresponds to the evaluation time (number of derivations) of the memo construct that
creates the memo trace.

Theorem 87
Let P be a self-adjusting program written in the SLf language and suppose that all functions are memoized
such that the terms within the return expressions take no more than constant time. Consider evaluating P
on some input I and changing I to I ′ and performing a change propagation. Let T and T ′ be the traces of P
with I and I ′ and suppose that T and T ′ are respectively monotone. Let M and M ′ be the set of memo traces
of T and T ′ and define the distance d between T and T ′ as d =

∑
m∈M\M ′ w(m) +

∑
m′∈M ′\M w(m′),

where w(m) is the weight of a memo trace. The time for change propagation is no more than O(d log d).

We do not present the full proof for this theorem here, because it is a restatement of the trace-stability
theorem proven in Chapter 8. As with the trace stability theorem, the key idea is behind the proof is to
show that when the traces are monotone, all memo traces that are common in T and T ′ will be re-used and
therefore will contribute no cost to change propagation.

13.7. PERFORMANCE 193

σ, ts ⇓t
s v, σ′,Ts

σ,m:β,return(ts) ⇓e
s v, σ′,Ts

(return)

(α, µ, χ,T) = σ

m : β,T
find
; ε,

α′ = α[l′1 ← α[l1]] . . . , [l′n ← α[ln]], l′i 6∈ dom(α), l′i 6= l′j

(α′, µ, χ,T), [l′1/x1, . . . , l
′
n/xn] ts ⇓t

s v, σ′,Ts

T′s = 〈Rx.write(x)
l1

Wτ1〉l′1:τ1
; . . . ; 〈Rx.write(x)

ln
Wτn
〉l′n:τn

σ,m:β,memo x1 = l1 . . . xn = ln in ts end ⇓e
s v, σ′,

(
T′s ; {Ts }m:β

(v,(l′1,...,l′n))

) (memo/not found)

(α, µ, χ,T) = σ

m : β,T
find
; {Ts }m:β

(v,(l′1,...l′n)),T′

α′ = α[l′1 ← α[l1]] . . . [l′n ← α[ln]]

(α′, µ), χ ∪ {l′1, . . . , l′n}, {Ts }m:β

(v,(l′1,...l′n))

sy→ T′s, χ
′, (α′′, µ′)

T′′s = 〈Rx.write(x)
l1

Wτ1〉l′1:τ1
; . . . ; 〈Rx.write(x)

ln
Wτn
〉l′n:τn

σ,m:β,memo x1 = l1 . . . xn = ln in ts end ⇓e
s v, (α′′, µ′, χ′,T′), (T′′s ;T′s)

(memo/found)

σ, ts ⇓t
s v, σ′,Ts

σ′,m:β, [v/a]es ⇓e
s v′, σ′′,T′s

σ,m:β,let a : τ be ts in es end ⇓e
s v′, σ′′,Ts ; T′s

(let)

σ,m:! v · β, [v/x]es ⇓e
s v′, σ′,Ts

σ,m:β,let!x : τ be! v in es end ⇓e
s v′, σ′,Ts

(let!)

σ,m:β, [v1/a1, v2/a2]es ⇓e
s v, σ′,Ts

σ,m:β,let a1×a2 be v1 × v2 in es end ⇓e
s v, σ′,Ts

(let×)

σ,m:inl · β, [v/a1]es ⇓e
s v′, σ′,Ts

σ,m:β,mcaseinlτ1+τ2v ofinl(a1:τ1) ⇒ es |inr(a2:τ2) ⇒ e′s end ⇓e
s v′, σ′,Ts

(case/inl)

σ,m:inr · β, [v/a2]es ⇓e
s v′, σ′,Ts

σ,m:β,mcaseinrτ1+τ2v ofinl(a1:τ1) ⇒ es |inr(a2:τ2) ⇒ e′s end ⇓e
s v′, σ′,Ts

(case/inr)

Figure 13.9: Evaluation of stable expressions.

194 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

σ, l← tc ⇓t
c σ′,Tc

σ,m:β, l← return(tc) ⇓e
c σ′,Tc

(return)

(α, µ, χ,T) = σ

m : β,T
find
; ε, ε

α′ = α[l′1 ← α[l1]] . . . [l′n ← α[ln]], l′i 6∈ dom(α), l′i 6= l′j

(α′, µ, χ,T), l← [l′1/x1, . . . l
′
n/xn] tc ⇓t

c σ′,Tc

Ts = 〈Rx.write(x)
l1

Wτ1〉l′1:τ1
; . . . ; 〈Rx.write(x)

ln
Wτn〉l′n:τn

σ,m:β, l← memo x1 = l1 . . . xn = ln in tc end ⇓e
c σ′,

(
Ts ; {Tc }m:β

((l′1,...,l′n))

) (memo/not found)

(α, µ, χ,T) = σ

m : β,T
find
; {Tc }m:β

((l′1,...l′n)),T′

α′ = α[l′1 ← α[l1]] . . . [l′n ← α[ln]]

(α′, µ), χ ∪ {l′1, . . . , l′n}, l← {Tc }m:β

((l′1,...l′n))

cy→ T′c, χ
′, (α′′, µ′)

Ts = 〈Rx.write(x)
l1

Wτ1〉l′1:τ1
; . . . ; 〈Rx.write(x)

ln
Wτn
〉l′n:τn

σ,m:β, l← memo x1 = l1 . . . xn = ln in tc end ⇓e
c (α′′, µ′, χ′,T′), (Ts ;T′c)

(memo/found)

σ, ts ⇓t
s v, σ′,Ts

σ′,m:β, l← [v/a]ec ⇓e
c σ′′,Tc

σ,m:β, l← let a : τ be ts in ec end ⇓e
c σ′′,Ts ; Tc

(let)

σ,m:! v · β, l← [v/x]ec ⇓e
c σ′,Tc

σ,m:β, l← let!x : τ be! v in ec end ⇓e
c σ′,Tc

(let!)

σ,m:β, l← [v1/a1, v2/a2]ec ⇓e
c σ′,Tc

σ,m:β, l← let a1×a2 be v1 × v2 in ec end ⇓e
c v, σ′,Tc

(let×)

σ,m:inl · β, l← [v/a1]ec ⇓e
c σ′,Tc

σ,m:β, l← mcaseinlτ1+τ2v ofinl(a1:τ1) ⇒ ec |inr(a2:τ2) ⇒ e′c end ⇓e
c σ′,Tc

(case/inl)

σ,m:inr · β, l← [v/a2]ec ⇓e
c σ′,Tc

σ,m:β, l← mcaseinrτ1+τ2v ofinl(a1:τ1) ⇒ ec |inr(a2:τ2) ⇒ e′c end ⇓t
s v′, σ′,Tc

(case/inr)

Figure 13.10: Evaluation of changeable expressions.

13.7. PERFORMANCE 195

m : β, ε
find
; ε, ε

m : β,Tc
find
; T1,T2

m : β, 〈Tc〉l:τ
find
; T1,T2

m : β,Ts
find
; T1,T2 T1 6= ε

m : β,Ts ; T′s
find
; T1,T2 ; T′s

m : β,Ts
find
; ε, ε

m : β,T′s
find
; T1,T2

m : β,Ts ; T′s
find
; T1,T2

m = m′ ∧ β = β′

m : β, {Ts }m
′:β′

(v,(l1,...,ln))
find
; {Ts }m

′:β′

(v,(l1,...,ln)), ε

m 6= m′ ∨ β 6= β′

m : β,Ts
find
; T1,T2

m : β, {Ts }m
′:β′

(v,(l1,...,ln))
find
; T1,T2

m : β,Wτ
find
; ε, ε

m : β,Tc
find
; T1,T2

m : β, Rx.t
l (Tc)

find
; T1,T2

m : β,Ts
find
; T1,T2 T1 6= ε

m : β,Ts ; Tc
find
; T1,T2 ; Tc

m : β,Ts
find
; ε, ε

m : β,Tc
find
; T1,T2

m : β,Ts ; Tc
find
; T1,T2

m = m′ ∧ β = β′

m : β, {Tc }m
′:β′

((l1,...,ln))
find
; {Tc }m

′:β′

((l1,...,ln)), ε

m 6= m′ ∨ β 6= β′

m : β,Tc
find
; T1,T2

m : β, {Tc }m
′:β′

((l1,...,ln))
find
; T1,T2

Figure 13.11: The rules for memo look up changeable (top) and stable (bottom) traces.

196 CHAPTER 13. SELF-ADJUSTING FUNCTIONAL PROGRAMMING

ς, χ, ε
sy→ ε, χ, ς

ς, χ, l← Tc

cy→ T′c, χ
′, ς ′

ς, χ, 〈Tc〉l:τ
sy→ 〈T′c〉l:τ , χ′, ς ′

(mod)

ς, χ,Ts

sy→ T′′s , χ′, ς ′

ς ′, χ′,T′s

sy→ T′′′s , χ′′, ς ′′

ς, χ, (Ts ; T′s)
sy→ (T′′s ; T′′′s), χ′′, ς ′′

(let)

ς, χ,Ts

sy→ T′s, χ
′, ς ′

ς, χ, {Ts }m:β

(v,(l1,...,ln))

sy→ {T′s }
m:β

(v,(l1,...ln)), χ′, ς ′

(memo)

ς, χ, l← Wτ

cy→ Wτ , χ, ς (write)

(l 6∈ χ)

ς, χ, l′ ← Tc

cy→ T′c, χ
′, ς ′

ς, χ, l′ ← Rx.tc

l (Tc)
cy→ Rx.tc

l (T′c), χ
′, ς ′

(read, no change)

(l ∈ χ)

(α, µ) = ς

(α, µ, χ,Tc), l′ ← [α(l)/x] tc ⇓t
c (α′, µ′, χ′,),T′c

ς ′ = (α′, µ′)

χ′′ = χ′ ∪ {l′}

ς, χ, l′ ← Rx.tc

l (Tc)
cy→ Rx.tc

l (T′c), χ
′′, ς ′

(read, change)

ς, χ,Ts

sy→ T′s, χ
′, ς ′

ς ′, χ′, l← Tc

cy→ T′c, χ
′′, ς ′′

ς, χ, l← (Ts ; Tc)
sy→ (T′s ; T′c), χ

′′, ς ′′

(let)

ς, χ, l← Tc

cy→ T′c, χ
′, ς ′

ς, χ, l← {Tc }m:β

((l1,...,ln))

cy→ {T′c }
m:β

((l1,...ln)), χ′, ς ′

(memo)

Figure 13.12: Change propagation for stable (top) and changeable (bottom) traces.

Chapter 14

Imperative Self-Adjusting Programming

This section presents an imperative language, called SLi, for self-adjusting computation. The language
extends the SLf language with modifiable references that can be written any number of times, instead of just
once. The key idea behind supporting multiple writes is to keep a version log of all writes to a modifiable.
The idea of keeping track of all versions of a reference is used by Driscoll, Sarnak, Sleator, and Tarjan to
make data structures persistent [31].

We present the static and dynamic semantics for the language. Based on the dynamic semantics, we
give an operational semantics of change propagation with multiple writes. We do not, however, present an
implementation of the language, or study the complexity properties of programs written in the language—
these are left for future work.

14.1 The Language

The abstract syntax of the SLi language is given in Figure 14.1. Meta-variables x, y, z and their variants
range over an unspecified set of variables, Meta-variables a, b, c and variants range over an unspecified
set of resources. Meta variable l and variants range over a unspecified set of locations. Meta variable m
ranges over a unspecified set of memo-function identifiers. Variables, resources, locations, memo-function
identifiers are mutually disjoint. The syntax is restricted to “2/3-cps” or “named form” to streamline the
presentation of the dynamic semantics.

The types include int, unit, sums τ1 + τ2, and products τ1 × τ2, bang ! τ types, the function types,
τ1 → τ2, and memoized function types τ1

m→ τ2.
As with the SLf language (Chapter 13) the underlying type of a bang type ! τ is required to be an

indexable type. An indexable type accepts an injective index function into integers. Any type can be made
indexable by supplying an index function based on boxing or tagging. Since boxing is completely standard
and well understood, we do not have a separate category for indexable types.

The abstract syntax is structured into terms and expression. Terms evaluate independent of their con-
texts, whereas expression evaluate with respect to a memo table. Since multiple writes to modifiables are
permitted, terms and expressions need not be further partitioned into stable and changeable terms.

Terms. Familiar mechanism of functional programming are embedded in the language in the form terms.

197

198 CHAPTER 14. IMPERATIVE SELF-ADJUSTING PROGRAMMING

Types τ : : = int | unit | τ mod | ! τ | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | τ1
m→ τ2

Values v : : = ? | n | x | a | l | m | ! v | (v1,v2) | inlτ1+τ2v | inrτ1+τ2v |
m funm f(x:τ1):τ2 is tc end

Operators o : : = + | - | = | < | . . .

Expressions e : : = return(t) | let!x:τ be v in eend | let a1:τ1×a2:τ2 be v in eend |
mcase v ofinl(a1:τ1) ⇒ e|inr(a2:τ2) ⇒ eend

Terms t : : = v | o(v1, . . . , vn) | mfun f(a : τ1) : τ2 is e end | v1@v2 |
letxbe t1 in t2 end | modτ t | read v as x in t end | write(v1, v2) |
case v ofinl(x1:τ1) ⇒ t1 |inr(x2:τ2) ⇒ t2 end

Figure 14.1: The abstract syntax of SLi.

In addition, terms include constructs for creating, reading, and writing modifiables, and memo functions.
The stable term modτ t allocates a new modifiable reference whose value is determined by the term t. The
term write(l, v) writes the value v into the modifiable l. The term read l as x in t end binds the
contents of the modifiable l to the variable x, then continues evaluation of t. Memo functions are functions
whose bodies are expressions.

Expressions. Expressions are evaluated in the context of a memo table. Terms are included in ex-
pressions via a return. As with the SLf language, the constructs let*, let!, let?, mcase express
dependences between the input and the result of a memoized function. The return computes the result
based on the the dependences expressed by these constructs. The ability to write modifiables multiple times
eliminates the need for differentiating between strict and non-strict dependences. Non-strict dependences
can be “simulated” by separating the allocation and the writing of modifiables. For this reason, the language
does not support non-strict dependences.

14.1.1 Static Semantics

The static semantics consists of typing judgments for terms and expressions. Each typing judgment takes
place under three contexts: ∆ for resources, Λ for locations, and Γ for ordinary variables. The judg-
ment ∆; Λ; Γ ` t : τ states that t is a well formed term of type τ relative to ∆,Λ and Γ. The judgment
∆; Λ; Γ ` e : τ states that e is a well formed expression of type τ relative to ∆,Λ and Γ.

Figure 14.2 shows the typing rules for values, Figure 14.3 shows the typing rules for terms and and
expressions. The term typing rules are very similar to those of the MFL language extended with ordinary
references. Like ordinary references, modifiables can be written many times. The key difference between
ordinary references and modifiable references is that the read of a modifiable reference provides a body that
uses the underlying value of that modifiable. Also, the return type of read is set to unit to prevent a mod-
ifiable value from being used without being read. By providing a body, the read enables re-computation
of all values that depend on a modifiable, by re-evaluating the code that depends on it. The typing rules for
expressions are very similar to those of the MFL language. The only difference is the addition of the context

14.1. THE LANGUAGE 199

Λ for modifiables. As in the MFL language, the body of return must use no resources. The letx, and
mcase constructs bind resources to their subject and the let! construct binds the underlying value of a
bang type to an ordinary variable.

∆; Λ; Γ ` n : int
(integer)

∆; Λ; Γ ` ? : unit
(unit)

(∆(a) = τ)
∆; Λ; Γ ` a : τ

(resource)
(Λ(l) = τ)

∆; Λ; Γ ` l : τ mod
(location)

(Γ(x) = τ)
∆; Λ; Γ ` x : τ

(variable)

∅; Λ; Γ ` t : τ

∆; Λ; Γ ` ! t : ! τ
(bang)

∆; Λ; Γ ` v1 : τ1 ∆; Λ; Γ ` v2 : τ2

∆; Λ; Γ ` (v1,v2) : τ1 × τ2
(product)

∆; Λ; Γ ` v : τ1

∆; Λ; Γ ` inlτ1+τ2v : τ1 + τ2
(sum/l)

∆; Λ; Γ ` v : τ2

∆; Λ; Γ ` inrτ1+τ2v : τ1 + τ2
(sum/r)

∆, a:τ1; Λ; Γ, f :τ1
m→ τ2;` e : τ2

∆; Λ; Γ ` m funm f(a:τ1):τ2 is eend : τ1
m→ τ2

(mfun)

Figure 14.2: Typing judgments for values.

14.1.2 Dynamic Semantics

The dynamic semantics relies on keeping track of read and write operations in the form of a trace and using
the trace to propagate changes. The key ingredient of the semantics is a mechanism for maintaining a version
log of all writes so that dependences between all values can be tracked. For a given modifiable l, we define
each value written into l as a version of l. The dynamic semantics maintains all versions of the modifiables
along with a total ordering on them according. The total order is created by tagging each version with a time
stamp that represents the time at which the write takes place. Writing to a modifiable adds a new version
for that modifiable to the store but does not destroy the previous version. The read of a modifiable accesses
the most recent version. By keeping track of versions of modifiables, we create a persistent data structure
that represent the executions. This idea is inspired by the work of Driscoll, Sarnak, Sleator, and Tarjan on
persistent data structures [31].

The dynamic semantics consists of evaluation judgments for terms and expressions. All evaluation takes
place with respect to a state σ = (α, µ, χ,T,Υr) consisting of a location store α, a memoized-function
identifier store µ, a set of changed locations χ, a re-use trace T, and a time store Υ and the current time
stamp r. The store α keeps the versions of modifiables and the memoized-function identifier store dispenses
unique identifiers for memoized functions. The set of changed location χ contains locations that has been
changed since the previous evaluation. The re-use trace T is the trace of available results to be re-used by
the memo functions. Re-use trace is provided by change propagation and is empty in the initial evaluation.
The time store is a set of time stamps.

Time Stamps. Time stamps are used to tag versions with the time at which they are created. Each time

200 CHAPTER 14. IMPERATIVE SELF-ADJUSTING PROGRAMMING

stamp is represented by a real number. All live time-stamps are kept in a time store, Υ. The semantics relies
on three operations, next, new, and delete on time stamps. The next operation takes a time store Υ
and a time stamp r, and returns the earliest time stamp in Υ that is greater than r. The new operation takes
a time store Υ and a time stamp r, and returns a new time store Υ′ and time stamps r′. The new time stamps
r′ comes in between r and the first time stamp after r and the new store Υ′ is the store Υ extended with r′.
The delete operations take a time store Υ and a two time interval and returns a new time store consisting
of the time intervals outside the interval. More precisely,

next(Υ, r) = r′ s.t. r′ ∈ Υ ∧ (∀r′′ ∈ Υ. r′′ < r ∨ r′′ > r′ ∨ r′′ = r ∨ r′′ = r′)
new(Υ, r) = (r′,Υ′) s.t. r′ = (r + r′′)/2 where r′′ = next(r, Υ) ∧Υ′ = Υ ∪ {r′}

delete(Υ, r1, r2) = {r | r ∈ Υ ∧ (r < r1 ∨ r > r2)}

Note that new creates the new time stamp by averaging. In practice, it will not be efficient to represent
time-stamps with real numbers. Instead the virtual clock data structure described in Section 6.1.1 or an
order-maintenance data structure [30] can be used to implement time stamps efficiently.

Traces. Evaluation of a term or expression records certain information in the form of a trace. The trace
is then used during change propagation to update the evaluation according to a change. A trace is formally
defined as follows.

T : : = ε | W r
τ (l) | ≺r1 R x.t

l T r2� | { r1 T r2 }m:β,v | T ; T′

When writing traces, we adopt the convention that “;” is right-associative.
The empty trace arises as a result of evaluation of terms whose values do no depend on modifiables. A

write, W r
τ (l), records the write of a value of type τ in the modifiable l, r is the time-stamp of the written

value. A read trace ≺r1 R x.t
l T r2� specifies the location read l, the context of use of its value x.e, the

trace T of the body of the read, and a time interval consisting of the time stamps r1 and r2 that denotes
current time stamp at the beginning and at the end of that read. The trace T ; T′ results from evaluation of
a let expression, the first trace resulting from the bound expression, the second from the body. The trace
{ r1 T r2 }m:β,v arises from the evaluation of a memoized expressions; m is the identifier, β is the branch
expressing the input-output dependences, v is the result of the evaluation, T is the trace of the memoized
expressions, and (r1, r2) is the time interval in which the expression evaluates.

Term evaluation. Figure 14.4 shows the the evaluation rules for terms. The rule σ, t,⇓t v, σ′,Ts states
that evaluation of the term t with respect to the state σ yields value v, state σ′, and the trace T. The evaluation
rules for values, primitives, case, and let are standard.

The evaluation of a memoized function allocates a fresh identifier for that function. The identifier is
used when performing memo look ups. Applying a memo function evaluates the body of the function in
the context of an identifier m and a branch β. As in selective memoization, the branch collects the precise
dependencies between the input and the output. The branch is initialized to empty (ε) and is extended during
the evaluation of the body.

The most interesting judgments belong to mod, read, and write constructs. The evaluation of mod v
allocates a fresh modifiable l in the store and a new time stamps r2 and extends the store with a new version
of l time stamped with r2. The evaluation of write (l,v) creates a new time stamp r2 and extends the

14.2. CHANGE PROPAGATION 201

store by adding a new version for modifiable l and time stamps the version with r2. The evaluation of read
l as x in t end substitutes for the current version of l for x in t and evaluates t. The read returns the
unit value. The trace of the read records the location being read, the body, and the variable bound. The trace
also remembers the time interval in which the read executes. This is critical in maintaining the total ordering
of time stamps during change propagation.

Expression Evaluation. Expression evaluation takes place in the context of memo function identifier
m, a branch, and a re-use trace. The incremental exploration constructs (let!, let*, mcase) create a
branch, denoted β. A branch is a list of events corresponding to “choice points” in the evaluation of an
expression.

Event ε : : = !v | inl | inr
Branch β : : = • | ε · β

The branch and the identifier m is used by the return construct to lookup the re-use trace for a match.
If a match is found, the result is returned and the body of return is skipped. The construction and the use
of branches is very similar to that of the MFL language. The re-use of results is similar to the SLf language,
except that there are no non-strict dependences.

Figure 14.5 shows the judgments for expression evaluation. The judgment σ,m:β, e ⇓e v, σ′,T states
that the evaluation of the expression e with respect to state σ, branch β, and memo identifier m yields the
value v, the state σ′, and the trace T. The evaluation of let! expression binds the underlying value of
the banged term to an ordinary variable, extend the branch with that value, and evaluates the body. The
evaluation of the mcase expressions extends the branch with the branch taken and evaluates the body of
that branch.

The evaluation of the return t first checks the memo trace T for a match using the memo lookup
relation find. The judgments for the find relation is shown in Figure 14.6. If the result is not found, then the
term t is evaluated and the result is returned. The trace of the expression consists of the trace of the body,
the branch, the result, and the time interval in which the body is executed, If a result is found, then the result
and the trace for that result will be re-used. To re-use the trace found, we first delete all the versions created
between the current time stamp and the start of the re-used trace and add all the locations written within the
deleted interval to the changed set χ. We then perform a change propagation on the re-used trace and return
the revised trace.

The memo lookup (Figure 14.6) seeks for a memoized result in the re-use trace whose identifier and
branch matches m and β′. If a result is not found, then the look up returns an empty trace (ε). If a result
is found, then it returns the trace found and the uninspected tail of the re-used trace. The rules for memo
looks ups are an adaptation of those for the SLf language to the particular notion of traces considered in this
chapter.

14.2 Change Propagation

Given a trace T , a state ς , and a set of changed locations χ, the algorithm scans through T as it seeks for
reads of changed locations. When such a read is found, the body of the read is re-evaluated to obtain a

202 CHAPTER 14. IMPERATIVE SELF-ADJUSTING PROGRAMMING

revised trace. When re-evaluating a read, the time is rolled back to the start of the read’s interval and the
trace of the read is passed to the evaluation for the purposes of memoization.

Figure 14.7 shows the rules for change propagation. The judgment ς, χ,T
sy→ T′, χ′, ς ′ states that

change propagation on trace T with respect to the changed set χ and the state ς yields the revised trace T′,
the changed set χ′ and the state ς . The state ς = (α, µ, Υ) consists of a location store α, and memo-function
identifier store µ, and a version store Υ.

Given a trace, change propagation mimics the evaluation rule that originally generated that trace. To
stress this correspondence, each rule is marked with the name of the evaluation rule to which it corresponds.
For example, the propagation rule for the trace Ts ; T′s mimics the let rule of the stable mode that gives
rise to this trace. The most interesting judgments are those for the read and write. If the source location
l being read is not in the changed set χ, then that read is skipped over and the trace inside the read is revised.
If the source location l is changed, then the body of the read is re-evaluated after substituting the version of
l at time r1 for x. To maintain the ordering of the version numbers, the re-evaluation is started at time r1.
The evaluation advances the time to r3. After the evaluation, all versions, and time stamps between r3and
r2are removed. The judgment for the write removes the location being written from the changed set. This
is because all following reads of the locations will access this version and therefore need to be re-evaluated.

14.2. CHANGE PROPAGATION 203

∆; Λ; Γ ` vi : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

∆; Λ; Γ ` o(v1, . . . , vn) : τ
(primitive)

∆, a:τ1; Λ; Γ, f :τ1
m→ τ2 ` e : τ2

∆; Λ; Γ ` mfun f(a : τ1) : τ2 is e end : τ1
m→ τ2

(memo fun)

∆; Λ; Γ ` v1 : τ1
m→ τ2 ∆; Λ; Γ ` v2 : τ1

∆; Λ; Γ ` v1@v2 : τ2
(memo apply)

∆; Λ; Γ ` t1 : τ1 Λ; Γ, x : τ1 ` t2 : τ2

∆; Λ; Γ ` letxbe t1 in t2 end : τ2
(let)

∆; Λ; Γ ` t : τ

∆; Λ; Γ ` modτ t : τ mod
(mod)

∆; Λ; Γ ` v : τ mod ∆; Λ; Γ, x : τ ` t : unit
∆; Λ; Γ ` read v as x in t end : unit

(read)

∆; Λ; Γ ` v1 : τ mod ∆; Λ; Γ ` v2 : τ

∆; Λ; Γ ` write(v1, v2) : unit
(write)

∆; Λ; Γ ` v : τ1 + τ2

∆; Λ; Γ, x1:τ1 ` t1 : τ
∆; Λ; Γ, x2:τ2 ` t2 : τ

∆; Λ; Γ ` case v ofinl(x1:τ1) ⇒ t1 |inr(x2:τ2) ⇒ t2 end : τ
(case)

∅; Λ; Γ ` t : τ

∆; Λ; Γ ` return(t) : τ
(return)

∆; Λ; Γ ` v : ! τ1 ∆; Λ; Γ, x:τ2 ` e : τ2

∆; Λ; Γ ` let!x:τ1 be v in eend : τ2
(let!)

∆; Λ; Γ ` v : τ1 × τ2 ∆, a1:τ1, a2:τ2; Λ; Γ ` e : τ

∆; Λ; Γ ` let a1:τ1×a2:τ2 be v in eend : τ
(let×)

∆; Λ; Γ ` v : τ1 + τ2

∆, a1:τ1; Λ; Γ ` e1 : τ
∆, a2:τ2; Λ; Γ ` e2 : τ

∆; Λ; Γ ` mcase v ofinl(a1:τ1) ⇒ e1 |inr(a2:τ2) ⇒ e2 end : τ
(mcase)

Figure 14.3: Typing of terms (top) and expressions (bottom).

204 CHAPTER 14. IMPERATIVE SELF-ADJUSTING PROGRAMMING

σ, v ⇓t v, σ, ε (value)

σ, o(v1, . . . , vn) ⇓t app(o, (v1, . . . , vn)), σ, ε (primitive)

(α, µ, χ,T,Υr) = σ
σ′ = (α, µ ∪ {m}, χ,T,Υr), m 6∈ dom(µ)

σ,mfun f(a : τ1) : τ2 is e end ⇓t ms funm f(a:τ1):τ2 is eend, σ′, ε
(memo fun)

(v1 = m funm f(a:τ1):τ2 is eend)
σ,m:ε, [v1/f, v2/a] e ⇓e v, σ′,T

σ, v1@v2 ⇓t v, σ′,T
(memo apply)

σ, t1 ⇓t v1, σ
′,T

σ′, [v1/x] t2 ⇓t v2, σ
′′,T′

σ,letxbe t1 in t2 end ⇓t v2, σ
′′, (T ; T′)

(let)

σ, t1 ⇓t v′, σ′,Ts

σ,caseinlτ1+τ2v ofinl(x1:τ1) ⇒ t1 |inr(x2:τ2) ⇒ t2 end ⇓t v′, σ′,Ts
(case)

σ, t2 ⇓t v′, σ′,T

σ,caseinrτ1+τ2v ofinl(x1:τ1) ⇒ t1 |inr(x2:τ2) ⇒ t2 end ⇓t v′, σ′,Ts
(case)

(α, µ, χ,T,Υ1
r1) = σ

(Υ2, r2) = new(Υ1, r1)
α′ = α[(l, r2) 7→ v], l 6∈ locs(α)

σ′ = (α′, µ, χ,T,Υ2
r2))

σ,modτ v ⇓t l, σ′, ε
(mod)

(α, µ, χ,T,Υ1
r1) = σ

(Υ2, r2) = new(Υ1, r1)
α′ = α[(l, r2) 7→ v]

σ′ = (α′, µ, χ,T,Υ2
r2)

σ,write(l, v) ⇓t v, σ′,Wτ
(write)

(, , , ,Υ1
r1)) = σ

σ, [σ(l, r1)/x] t ⇓t σ′,T

(, , , ,Υ2
r2) = σ′

r3 = next(Υ2, r1)

σ,read l as x in t end ⇓t ?, σ′,≺r3 R x.t
l T r2�

(read)

Figure 14.4: Evaluation of terms.

14.2. CHANGE PROPAGATION 205

(, , ,T,Υ1
r1) = σ

m : β,T
find
; ε, ε

σ, t ⇓t v, σ′,T′

(, , , ,Υ2
r2) = σ′

σ,m:β,return(t) ⇓e v, σ′, { r1 T′ r2 }m:β,v

(return, not found)

(α, , χ,T,Υ1
r1) = σ

m:β,T
find
; { r2 T1

r3 }m:β,v,T2

Υ2 = delete(Υ1,next(Υ1, r1), r2)

α′ = α \ {(l, r) | l, r) ∈ dom(α) ∧ r1 < r ≤ r2}

χ′ = χ ∪ {l | (l, r) ∈ dom(α) ∧ r1 < r ≤ r2}

(α′, µ,Υ1
r2), χ′,T1

y→ T′1, χ
′′, (α′′, µ′,Υ2

r4)

σ′ = (α′′, µ′, χ′′,T2,Υ2
r4)

σ,m:β,return(t) ⇓e v, σ′, { r2 T′1
r4 }m:β,v

(return, found)

σ,m:! v · β, [v/x]e ⇓e v′, σ′,T

σ,m:β,let!x : τ be! v in eend ⇓e v′, σ′,T
(let!)

σ,m:β, [v1/a1, v2/a2]e ⇓e v, σ′,T

σ,m:β,let a1×a2 be v1 × v2 in eend ⇓e v, σ′,T
(let×)

σ,m:inl · β, [v/a1]e ⇓e v′, σ′,T

σ,m:β,mcaseinlτ1+τ2v ofinl(a1:τ1) ⇒ e|inr(a2:τ2) ⇒ e′ end ⇓e v′, σ′,T
(case)

σ,m:inr · β[v/a2]e ⇓e v′, σ′,T

σ,m:β,mcaseinrτ1+τ2v ofinl(a1:τ1) ⇒ e|inr(a2:τ2) ⇒ e′ end ⇓e v′, σ′,T
(case)

Figure 14.5: Evaluation of expressions.

206 CHAPTER 14. IMPERATIVE SELF-ADJUSTING PROGRAMMING

m : β, ε
find
; ε, ε m : β,W r

τ (l)
find
; ε, ε

m : β,T
find
; T′,T′′

m : β,≺r1 R x.t
l T r2� find

; T′,T′′

m = m′ ∧ β = β′

m : β, { r1 T r2 }m′:β′,v

find
; { r1 T r2 }m′:β′,v, ε

m 6= m′ ∨ β 6= β′

m : β,T
find
; T′,T′′

m : β, { r1 T r2 }m′:β′,v

find
; T′,T′′

m : β,T1
find
; T′1,T

′′
1 T′1 6= ε

m : β,T1 ; T2
find
; T′1,T

′′
1 ; T2

m : β,T1
find
; ε, ε

m : β,T2
find
; T′2,T

′′
2

m : β,T1 ; T2
find
; T′2,T

′′
2

Figure 14.6: The rules for memo look up.

14.2. CHANGE PROPAGATION 207

ς, χ, ε
y→ ε, χ, ς

(empty)

χ′ = χ \ {l}

ς, χ,W r
τ (l) y→ W r

τ (l), χ′, ς
(write)

(l 6∈ χ)
ς, χ,T

y→ T′, χ′, ς ′

ς, χ,≺r1 R x.t
l T r2� y→ ≺r1 R x.t

l T′ r2�, χ′, ς ′
(read, no change)

(l ∈ χ)

(α, µ, Υ1) = ς

(α, µ, χ,T,Υ1
r1), [α(l, r1)/x] t ⇓t ?, (α′, µ′, χ′, ,Υ2

r3),T′

Υ3 = delete(Υ2,next(Υ2, r3), r2)

α′′ = α′ \ {(l, r) | l, r) ∈ dom(α) ∧ r3 < r ≤ r2}

χ′′ = χ′ ∪ {l | (l, r) ∈ dom(α) ∧ r3 < r ≤ r2}

ς, χ,≺r1 R x.t
l T r2� y→ ≺r1 R x.t

l T′ r3�, χ′′, (α′′, µ,Υ3
r3)

(read, change)

ς, χ,T1
y→ T′1, χ

′, ς ′

ς ′, χ′,T2
y→ T′2, χ

′′, ς ′′

ς, χ, (T1 ; T2)
y→ (T′1 ; T′2), χ

′′, ς ′′
(let)

ς, χ,T
y→ T′, χ′, ς ′

ς, χ, { r1 T r2 }m:β,v
y→ { r1 T′ r2 }m:β,v, χ′, ς ′

(memo)

Figure 14.7: Change propagation.

208 CHAPTER 14. IMPERATIVE SELF-ADJUSTING PROGRAMMING

Part V

Implementation and Experiments

209

Introduction

This part studies the practical effectiveness of self-adjusting computation in two contexts. First we present
a general-purpose ML library for writing self-adjusting programs. Using the library, we give self-adjusting
versions of our applications and present an experimental evaluation. Second, we describe and evaluate an
implementation of self-adjusting tree contraction in the C++ language.

In Chapter 15, we describe the general-purpose ML library and the implementation of our applications.
The library enables the programmer to make any purely functional program self-adjusting by making small,
methodological changes to ordinary (non-self-adjusting) code. The applications that we consider include
combining values in a list, quick sort, merge sort, and Graham’s Scan and quick hull algorithms for planar
convex hulls. These applications are chosen to include a number of computing paradigms such as random-
sampling, two forms of divide-and-conquer, and incremental result construction. Using our applications, we
present an experimental evaluation of the library. The experiments show that self-adjusting programs written
with our library has an overhead between four and ten compared to ordinary programs, and the overhead of
change propagation is less than six. Under small changes to the input the self-adjusting programs can be
arbitrarily faster than recomputing from scratch. For the input sizes we consider, our approach yields up to
three orders of magnitude faster update times than recomputing from scratch.

Chapter 16 describes a library for kinetic data structures based on our general-purpose library. As
applications, we consider kinetic convex hulls. The library makes it nearly trivial to obtain kinetic data
structures from self-adjusting programs. The resulting kinetic data structures are composable and adjust to
a broad range of external changes.

Chapter 17 describes a solution to the dynamic-trees problem that is obtained by applying self-adjusting
computation techniques to the tree-contraction algorithm. We implement self-adjusting tree contraction
using a version of our general-purpose library that is specialized for tree contraction. Both the library
and the self-adjusting tree contraction are implemented in the C++ language. We present an experimental
evaluation of library by considering a broad range of applications, including path queries, subtree queries,
non-local search queries etc. We also present a direct comparison to the fastest previously proposed data
structure for dynamic trees, known as Link-Cut Trees [91, 92]. The experimental results show that our
implementation not only compares well to existing data structures but also is faster for certain applications.
In addition, self-adjusting tree contraction directly supports batch, i.e., multiple simultaneous, changes to
the input. Our experiments show that processing batch changes can be asymptotically a logarithmic factor
faster than processing them one by one as would be required by existing data structures.

211

212

Chapter 15

A General-Purpose Library

This chapter present a general purpose library for self-adjusting computation. The library is written in
the ML language and enables transforming any ordinary purely functional program into a self-adjusting
program methodically by using a small number of annotations. We study the effectiveness of the library by
considering a number of applications and presenting an experimental evaluation.

15.1 The Library

We present an implementation of the SLf language as an ML library. The key difference between the library
and the SLf language is that the library does not support memoization based on branches. Rather, the
programmer is expected to supply the strict and the non-strict dependences explicitly. We decided not to
implement support for branches, because it is difficult to ensure safe use of memoization primitives in the
context of an ML library.

Figure 15.1 shows the interface to the library. The BOXED VALUE module provides operations for
boxing and un-boxing values, the COMBINATORS module provides combinators for modifiables and for
memoization. The META OPERATIONS library provides operations for performing external changes and
for running change propagation.

To support constant-time equality tests, we use tag equality based on boxes. The BOXED VALUEmodule
supplies functions for operating on boxed values. The new function creates a boxed value by associating
a unique integer index with a given value. The eq function compares two boxed values by comparing
their indices. The valueOf and indexOf functions return the value and the index of a boxed value,
respectively. The boxed value module may be extended with functions for creating boxed values for a type
(e.g., fromInt, fromOption). Such type-specific functions must be consistent with the equality of the
underlying types. For example, the function fromInt may assign the index i to integer i.

The COMBINATORS module defines modifiable references (modifiables for short) and changeable com-
putations. Every execution of a changeable computation of type α cc starts with the creation of a fresh
modifiable of type α modref. The modifiable is written at the end of the computation. For the duration
of the execution, the reference never becomes explicit. Instead, it is carried “behind the scenes” in a way
that is strongly reminiscent of a monadic computation. Any non-trivial changeable computation reads one

213

214 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

signature BOXED VALUE =
sig

type index=int
type ’a t

val init: unit -> unit
val new: ’a -> ’a t
val eq: ’a box* ’a t -> bool
val valueOf: ’a t -> ’a
val indexOf: ’a t -> index
val fromInt: int -> int t
val fromOption: ’a t option -> ’a t option t

end

signature COMBINATORS =
sig

type ’a modref
type ’a cc

val modref : ’a cc -> ’a modref
val new : ’a -> ’a modref
val write : ’a Box.t -> ’a Box.t cc
val write’ : (’a * ’a -> bool) -> ’a -> ’a cc
val read : ’b modref * (’b -> ’a cc) -> ’a cc

val mkLift : (’a *’a -> bool) ->
(int list * ’a) -> (’a modref -> ’b) -> ’b

val mkLiftCC : ((’a * ’a -> bool) * (’b * ’b -> bool)) ->
(int list * ’a) -> (’a modref -> ’b cc) -> ’b cc

end

signature META OPERATIONS =
sig

type ’a modref

val init: unit -> unit
val change: ’a Box.t modref -> ’a Box.t -> unit
val change’: (’a * ’a -> bool) -> ’a modref -> ’a -> unit
val deref : ’a modref -> ’a
val propagate : unit -> unit

end

Figure 15.1: Signatures for boxed values, combinators, and the meta operations.

or more other modifiables and performs calculations based on the values read.
Values of type α cc representing modifiable computations are constructed using write, read, and

mkLiftCC. The modref function executes a given computation on a freshly generated modifiable before
returning that modifiable as its result. The write function creates a trivial computation which merely writes

15.1. THE LIBRARY 215

the given value into the underlying modifiable. The read combinator, which we will often render as =⇒ in
infix notation, takes an existing modifiable reference together with a receiver for the value read. The result
of the read combinator is a computation that encompasses the process of reading from the modifiable,
a calculation that is based on the resulting value, and a continuation represented by another changeable
computation. Calculation and continuation are given by body and result of the receiver.

The key to efficient change propagation is the operation of skipping ahead (in constant time) to the
earliest read of a modifiable containing a value that differs from the previous run. Fast-forwarding to such
a read operation within computation c may skip the creation of the reference that c eventually writes to. As
a consequence, the final write operation can result in another change to the value of a modifiable. Just
like the earlier change that caused it, the new change gets recorded and propagated. To avoid unnecessary
propagation, old and new values are compared for equality at the time of write.1

Functions mkLift and mkLiftCC handle memoization in the presence of non-strict dependencies.
With ordinary memoization, a memo table lookup for a function call will fail whenever there is no pre-
cise match for the entire argument list. The idea behind non-strict dependencies is to distinguish between
strict and non-strict arguments and base memoization on strict arguments only. By storing computations
(as opposed to mere return values) in the memo table, a successful lookup can then be adjusted to any
changes in non-strict arguments using the change-propagation machinery. Since change propagation relies
on read operations on modifiables, the memoized function has to access its non-strict arguments via such
modifiables. The memo table, indexed by just the strict part of the original argument list, remembers the
modifiables set aside for non-strict arguments as well as the memoized computation.

Given the strict part of the argument list, a lift operation maps a function of type α modref → β to
a function of type α → β where α is the type of the non-strict argument.2 Our mkLift and mkLiftCC
combinators create lift operations for ordinary and changeable computations from appropriately chosen
equality predicates for the types involved. The strict part of the argument list is represented by an index
list, assuming a 1 − 1 mapping between values and indices, e.g., the one provided by the BOXED VALUE
interface. Not shown here, our library also contains mkLift2, mkLiftCC2, mkLift3, mkLiftCC3 and
so on to support more than one non-strict argument.

When its memo table lookup fails, a lifted function creates fresh modifiables containing its non-strict
arguments, executes its body, and stores both the computation and the modifiables into the memo table.
Computations are memoized by recording their return value and a representation of their dynamic depen-
dence graph (DDG) using time stamps [3]. A successful memo lookup finds modifiables and a computation.
The lifted function then writes its current non-strict arguments into their respective modifiables, and lets
change propagation adjust the computation to the resulting changes.

It is the responsibility of the programmer to ensure that all applications of lift functions specify the
strict and non-strict variables accurately. For correctness, it is required that all free variables of a memoized
expression are specified as a strict or a non-strict variable. The classification of a variable as strict or non-
strict does not affect correctness but just performance.

The META OPERATIONS module supplies functions for performing external changes and for change
propagation. The change and change’ functions are similar to write and write’ of the COMBINATOR

1Function write’ is like write but uses an explicit equality predicate instead of insisting on boxed values.
2In the actual library, arguments appear in a different order to make idiomatic usage of the interface by actual code more

convenient.

216 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

module. They change the underlying value of the modifiable to a new value—these are all implemented as
side effects. The change function is a specialization of change’ for boxed values. The propagate
function runs the change-propagation algorithm. Change propagation updates a computation based on the
changes issued since the last execution or the last change propagation. The meta operations can only be used
at the top level. Using these operations inside a self-adjusting program is not safe in general.

15.2 Applications

We consider algorithms for combining values in a list, sorting, and convex hulls, and show how to implement
them using our library. For sorting, we show how to implement quick sort and the merge sort algorithms.
For convex hulls, we show how to implement the Graham’s Scan and the quick hull algorithms.

An important property of our approach is that it requires little change to the ordinary (non-self-adjusting)
code. All the examples considered here can be obtained from their ordinary versions in a few hours. The
transformation of an ordinary program to a self-adjusting program follows a straightforward methodology
that is explained in Chapter 13.

Although any purely functional program can be transformed into a self-adjusting program, not all pro-
grams perform efficiently under changes to their inputs. In particular, if a program is highly input-sensitive
then it will not yield an efficient self-adjusting program. For example, a program that sums the elements in
list by running the list from head to tail while computing partial sums is highly input sensitive—changing
the first element in the list can change all the partial sums. Many of the applications that we consider in this
thesis rely on randomization to reduce their input sensitivity.

In our implementation we rely on random hash functions [97] to generate random numbers. All the
code that we show assumes that there is an ML structure, called Hash, with signature sig new: unit
-> int -> int end. The structure supplies random binary hash functions from integers to the range
{0, 1}. The motivation for using random hash function instead of pseudo random number generators is two
fold. First, random hash functions reduce the number of random bits required by a computation. Second
they enable matching the randomness between two independent computations. For all the applications that
we consider here, the random hash functions can be replaced by a call to a random number generator without
significantly affecting their performance.

15.2.1 Modifiable Lists

All the algorithms that we consider in this chapter operate on modifiable lists. A modifiable list is similar to
a list but each tail element is stored inside of a modifiable. Modifiable lists enable the user to change their
contents by changing the values stored in the tail elements using the change and change’ operations
provided by the library. Figure 15.2 shows the signature for modifiable lists, and an implementation as an
ML structure. The modifiable list library provides the functions filter and lengthLessThan.

The lengthLessThan function takes a list and a number and returns true if the length of the list
is less than the number, and returns false otherwise. The filter function takes a test function f and
a list l and returns a list consisting of the elements that satisfy the test function. The lengthLessThan
function is not memoized. The filter function is memoized strictly on the keys in the input list, and non-
strictly on the tails. Therefore, if filter is passed a list l whose contents (the keys) is identical to that of

15.2. APPLICATIONS 217

a previously seen list l’, the function will return the same output as before, even if the tail modifiables in l
and l’ are not be the same.

15.2.2 Combining Values in a Lists

A fundamental primitive for computing with lists is a combine primitive that takes a binary operation and
a list, and combines the values in the list by applying the binary operation. By choosing the binary operation
to be applied, combine can be used to perform various operations on lists. For example, combine can be
used to compute the minimum or maximum element or the longest increasing sequence in a list.

Figure 15.3 shows the code for a self-adjusting combine function. The underlying algorithm is very
similar to the algorithm described in Section 9.1 but is slightly more general, because it does not require an
identity element. The combine subroutine only assumes that the given binary operation is associative—
commutativity is not required.

A straightforward way to apply a binary operation on a list is to walk down the list while computing the
partial results for the prefix visited so far. Although this technique is simple, it is highly sensitive to changes.
In particular, changing the element at the head of the list can change all the partial results and therefore the
whole computation may have to be redone. The combine code presented here uses a randomized approach
instead. The computation is performed by halving the original list into smaller and smaller lists until the list
consists of a single element. To halve a list, the program chooses a randomly selected subset of the list and
deletes the chosen elements from the list. Deleting an element involves incorporating its value to the closest
surviving element to the left of the element. This technique ensures that insertions/deletions to the list can
be handled in logarithmic time in the size of the input list.

15.2.3 Sorting

This section consider the quick sort and the merge sort algorithms, and shows how to make them self-
adjusting. Figure 15.4 shows the code for the self-adjusting quick sort algorithm. The code is very similar to
the ordinary quick sort. To avoid linear time concatenations the algorithm uses an accumulator for storing the
sorted tail. The code relies on the filter function provided by the modifiable list library. The underlying
algorithm is identical to the algorithm presented in Section 9.3.

The only difference between this code and the ordinary quick sort is that this code passes two additional
arguments to the main function (qsort). These arguments consist of the prev and next keys that define
the interval that the function call will fill in the output list. The arguments ensure that the program is
monotone for insertions and deletions to the input. Monotonicity ensures that the resulting algorithm self-
adjusts in expected O(log n) time to an insertion/deletion (at a uniformly randomly selected position in the
list). Omitting the additional arguments yields an expected O(log2 n)-time algorithm.

Figure 15.5 shows the code for the self-adjusting merge sort algorithm. The code is obtained from an
ordinary version of randomized merge sort by applying the transformation methodology. The underlying
algorithm is identical to the algorithm presented in Section 9.2. The difference between the randomized
and non-randomized merge sort algorithms is the way the input list is split. The standard algorithm splits
the list by putting the elements at odd positions into one list and the elements at even positions in another.
This technique is highly sensitive to input changes, because an insertions or deletion from the list can shift
a large number of the old and even positions. To avoid this, the randomized merge-sort algorithm selects

218 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

a random bit (flips a coin) for each element and places the elements that draw the same bit (see the same
face) into the same sublist. Randomized splitting suffices to ensure expected O(log n) time updates under
insertions/deletions into/from the input.

15.2.4 Convex Hulls

The convex hull of a set of points is the closest polygon that encloses these points. A fundamental problem
of computational geometry is to find the convex hull of a set of points. The so-called dynamic convex
hull problem requires computing the convex hull of a set of points under insertions and deletion to the
input. Both of these problems have been studied extensively in the fields of computational geometry and
algorithms [42, 73, 75, 69, 28, 20].

This section describes the self-adjusting versions of the Graham Scan and the quick hull algorithms for
computing convex hulls. Both algorithms rely on an ML module that supplies some geometric primitives.
The signature for this module is show below. It is straightforward to provide an implementation for this
interface.

signature POINT =
sig

type t
val toLeft : t * t -> bool
val toRight : t * t -> bool
val leftTurn : t * t * t -> bool
val distToLine: t * t -> t -> real
val fromCoordinates : real*real -> t
val toCoordinates : t -> real*real

end

The Graham’s Scan algorithm is sorting based. It first sorts the set of points from right to left, and then
computes convex hull by incrementally adding each point to the current hull one-by-one in sorted order.
Figure 15.6 shows the self-adjusting version of this algorithm. The code is very similar to the ordinary
Graham Scan algorithm and is obtained by applying the standard transformation. Note that the program uses
the self-adjusting quick sort algorithm to sort the input points. The underlying algorithm for the graham-scan
code is identical to the algorithm presented in Section 9.4. The implementation handles insertions/deletions
into/from the input lists at uniformly random positions in expected O(log n) time.

Figure 15.7 shows the code for the self-adjusting quick-hull algorithm. The code is very similar to the
ordinary quick-hull algorithm and is obtained by applying the standard transformation. The ordinary quick
hull algorithm is known to work well in practice, but in the worst case it can take Θ(n2) time. Similarly,
the self-adjusting quick-hull algorithm can take Θ(n2) time for a single insertion/deletion. Our experiments
show, however, that it too can perform well in practice.

The quick-hull algorithm starts by finding the leftmost and the rightmost points in the input, and calls
split with the line defined by these points. The split function takes a line defined by two points p1
and p2, and filters out the points below the line (p1,p2). The function then finds the point, max, farthest
away from the line and performs two recursive calls with the lines (p1,max) and (max,p2) respectively.

15.2. APPLICATIONS 219

The algorithm relies on the ListCombine structure for finding the leftmost and the rightmost points, as
well as the point farthest away from a line.

220 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

signature MOD LIST =
sig

datatype ’a modcell = NIL | CONS of (’a * ’a modcell Comb.modref)
type ’a t = ’a modcell Comb.modref

val write: ’a Box.t modcell -> ’a Box.t modcell Comb.cc
val eq: ’a Box.t modcell * ’a Box.t modcell -> bool
val lengthLessThan : int -> (’a t) -> bool Comb.modref
val filter: (’a Box.t -> bool) -> ’a Box.t t -> (’a Box.t t)

end

structure ModList:MOD LIST =
struct

structure C = Comb
datatype ’a modcell = NIL | CONS of (’a * ’a modcell C.modref)
type ’a t = ’a modcell C.modref

infix ==> val op ==> = C.read

fun write c = C.write’ eq c
fun eq (a,b) =

case (a,b) of
(NIL,NIL) => true

| (CONS(ha,ta), CONS(hb,tb)) => Box.eq(ha,hb) andalso (ta=tb)
| => false

fun lengthLessThan n l =
let val write = C.write’ (fn (a,b) => (a=b))

fun f(n, l) =
if (n<1) then write false
else l ==> (fn c =>

case c of
NIL => write true

| CONS(h,t) => f(n-1,t))
in C.modref (f (n,l)) end

fun filter f l =
let val lift = C.mkLift eq

fun filterM c =
case c of

NIL => (write NIL)
| CONS(h,t) =>

t ==> (fn ct => lift ([Box.indexOf h],ct) (fn t =>
if (f h) then write (CONS(h,C.modref (t ==> filterM)))
else t ==> (fn ct => filterM ct)))

in C.modref (l ==> filterM) end
end

Figure 15.2: The signature for modifiable lists and an implementation.

15.2. APPLICATIONS 221

structure ListCombine =
struct

exception EmptyList
structure ML = ModList
structure C = Comb
infix ==> val op ==> = C.read

(*combine:(’a Box.t*’a Box.t->’a Box.t)->(’a Box.t ML.t->’a Box.t C.modref *)
fun combine binOp l =
let

fun halfList l =
let

val hash = Hash.new ()
fun pairEqual ((b1,c1),(b2,c2)) = Box.eq(b1,b2) andalso ML.eq(c1,c2)
val writePair = C.write’ pairEqual
val lift = C.mkLiftCC (ML.eq,ML.eq)

fun half c =
let fun sumRun(v,c) =

case c of
ML.NIL => writePair (v,c)

| ML.CONS(h,t) => t ==> (fn ct =>
if (hash(Box.indexOf h) = 0) then writePair (binOp(v,h),ct)
else sumRun(binOp(v,h),ct)

in case c of
ML.NIL => ML.write ML.NIL

| ML.CONS(h,t) => t ==> (fn ct =>
lift ([Box.indexOf h],ct) (fn t => t ==> (fn ct =>

let val p = C.modref (sumRun (h,ct))
in p ==> (fn (v,ct’) => ML.write (ML.CONS(v, C.modref (half ct’))))
end)))

end

in C.modref (l ==> (fn c => half c)) end

fun comb l =
ML.lengthLessThan 2 l ==> (fn b =>

if b then l ==> (fn c =>
case c of

ML.NIL => raise EmptyList
| ML.CONS(h,) => C.write h)

else
comb (halfList l))

in C.modref (comb l) end
end

Figure 15.3: Self-adjusting list combine.

222 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

structure QuickSort =
struct

structure ML = ModList
structure C = Comb
infix ==> val op ==> = C.read

fun qsort (compare:’a*’a->order) (l:’a Box.t ML.t):’a Box.t ML.t =
let

val lift = C.mkLiftCC2 (ML.eq,ML.eq,ML.eq)
fun qsortM (l,cr,(prev,next)) = l ==> (fn c =>

case c of
ML.NIL => ML.write cr

| ML.CONS(h,t) => t ==> (fn ct =>
lift ([Box.indexOf h,

Box.indexOf prev,
Box.indexOf next],ct,cr) (fn (t,rest) =>

let
fun fl k = (compare(Box.valueOf k,Box.valueOf h))=LESS
fun fg k = (compare(Box.valueOf k,Box.valueOf h))=GREATER
val les = ML.filter fl t
val grt = ML.filter fg t
val bh = Box.fromOption (SOME h)
val mid = C.modref (rest ==> (fn cr => qsortM (grt,cr,(bh, next))))

in
qSortM (les,ML.CONS(h,mid),(prev,bh))

end)))
in

qsortM (l, ML.NIL, (Box.fromOption NONE, Box.fromOption NONE))
end

end

Figure 15.4: Self-adjusting quick sort.

15.2. APPLICATIONS 223

structure MergeSort =
struct

structure ML = ModList
structure C = Comb
infix ==> val op ==> = C.read

fun split(l:’a Box.t ML.t):’a Box.t ML.t*’a Box.t ML.t =
let val hash = Hash.new ()

val even = ML.filter (fn h => hash(Box.indexOf h)=0) l
val odd = ML.filter (fn h => hash(Box.indexOf h)=1) l

in (even,odd) end

fun merge (compare:’a*’a -> bool) (a:’a Box.t ML.t, b:’a Box.t ML.t):’a ML.t =
let

val (lift1,lift2) = (C.mkLift2 (ML.eq,ML.eq), C.mkLift2 (ML.eq,ML.eq))
fun mergeM (ca,cb) =

case (ca,cb) of
(ML.NIL,) => ML.write cb

| (,ML.NIL) => ML.write ca
| (ML.CONS(ha,ta),ML.CONS(hb,tb)) =>

case compare(Box.valueOf ha,Box.valueOf hb) of
LESS => ta ==> (fn cta =>

lift1 ([Box.indexOf ha],cta,cb) (fn (ta,lb) =>
let val r = C.modref (ta ==> (fn cta =>

lb ==> (fn cb =>
mergeM (cta,cb))))

in ML.write (ML.CONS(ha,r)) end))
| => tb ==> (fn ctb =>

lift2 ([Box.indexOf hb],ctb,ca) (tb,la) =>
let val r = ML.modlist (tb ==> (fn ctb =>

la ==> (fn ca =>
mergeM (ca,ctb))))

in ML.write (ML.CONS(hb,r)) end))
in a ==> (fn ca => b ==> (fn cb => mergeM (ca,cb))) end

fun msort (compare:’a*’a->bool) (l:’a Box.t ML.modlist):’a Box.t ML.modlist =
let

fun msortM (l) =
C.modref ((ML.lengthLessThan 2 l) ==> (fn b =>

if b then l ==> ML.write
else

let val (even,odd) = split (l)
in (merge compare (msortM even, msortM odd))
end))

in (msortM l) end
end

Figure 15.5: Self-adjusting merge sort.

224 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

structure GrahamScan =
struct

structure C = Comb
structure ML = ModList
structure P = Point
infix ==> val op ==> = C.read

fun halfHull (test:P.t*P.t -> bool) (l:P.t Box.t ML.t):P.t Box.t ML.t =
let

fun trim (p,c) =
let

val (lift1,lift2) = (C.mkLift ML.eq,C.mkLift ML.eq)

fun trimM c =
case c of

ML.NIL => ML.write c
| ML.CONS(pa,lb) => lb ==> (fn cb =>

case cb of
ML.NIL => lift1 ([Box.indexOf pa],cb)

(fn lb => ML.write (ML.CONS(pa,lb)))
| ML.CONS(pb, tb) =>

lift2 ([Box.indexOf pa, Box.indexOf pb],cb) (fn lb =>
if test (Box.valueOf pb,Box.valueOf pa,Box.valueOf p) then

ML.write (ML.CONS(pa,lb))
else

lb ==> (fn cb => trimM cb)))
in trimM c end

fun scan (l:P.t Box.t ML.t):P.t Box.t ML.t =
let val lift = C.mkLiftCC2 (ML.eq,ML.eq,ML.eq)

fun scanM (c,ch) =
case c of

ML.NIL => (ML.write ch)
| ML.CONS(h,t) =>

t ==> (fn ct => lift ([Box.indexOf h],ct,ch) (fn (t,hull) =>
let val ch’ = ML.CONS(h, C.modref (hull==>(fn ch=>trim (h,ch))))
in t ==> (fn ct => scanM (ct,ch’)) end))

in C.modref (l ==> (fn c => scanM (c, ML.NIL))) end
in (scan l) end

fun grahamScan (l:P.t Box.t ML.t): P.t Box.t ML.t =
let fun toLeft (a,b) = if P.toLeft (a,b) then LESS else GREATER)

val ll = sort toLeft l
in halfHull P.leftTurn ll end

end

Figure 15.6: Self-adjusting Graham Scan.

15.2. APPLICATIONS 225

structure QuickHull =
struct

structure C = Comb
structure ML = ModList
structure LC = ListCombine
structure P = Point
infix ==> val op ==> = C.read

fun split (rp1, rp2, ps, hull) =
let

val lift = C.mkLiftCC2 (ML.eq,ML.eq,ML.eq)

fun splitM (p1, p2, ps, hull) =
let val (v1,v2) = (Box.valueOf p1, Box.valueOf p2)

fun select p = P.distToLine (v1,v2) (Box.valueOf p) > 0.0
val l = ML.filter select ps

in l ==> (fn cl =>
case cl of

ML.NIL => ML.write (ML.CONS(p1,hull))
| ML.CONS(h,t) => hull ==> (fn chull =>

lift ([Box.indexOf p1,Box.indexOf p2],cl,chull) (fn (l,hull) =>
let

fun select (a,b) =
if (P.distToLine (v1, v2) (Box.valueOf a) >

P.distToLine (v1, v2) (Box.valueOf b))
then a
else b

val rmax = LC.combine select l
val rest = C.modref (rmax ==> (fn max => splitM (max,p2,l,hull)))

in rmax ==> (fn max => splitM (p1,max,l,rest)) end)))
end

in rp1 ==> (fn p1 => rp2 ==> (fn p2 => splitM (p1,p2,ps,hull))) end

fun qhull l =
C.modref ((ML.lengthLessThan 2 l) ==> (fn b =>

if b then ML.write ML.NIL
else

let
fun select f (a,b) =

if f (Box.valueOf a, Box.valueOf b) then a
else b

val min = LC.combine (select P.toLeft) l
val max = LC.combine (select P.toRight) l
val h = C.modref (max ==> (fn m => ML.write (ML.CONS(m,C.new ML.NIL))))

in split (min, max, l, h) end))
end

Figure 15.7: Self-adjusting Quick Hull.

226 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

15.3 Implementation and Experiments

We describe an implementation of our library and present some experimental results. The experiments
confirm the complexity bounds proven in Chapter 9 and show that

• the overhead of self-adjusting programs is no more than about 10,

• the overhead for change propagation is less than 6, and

• the speed up (time for change propagation divided by the time for rerunning from scratch) for inser-
tions/deletions is as much as three orders of magnitude. Note that the speed up for all our applications
is asymptotically linear—the numbers we report here are determined by the input sizes considered.

We note that our implementation performs no optimizations specific to our library. Our experiments with
hand-coded optimizations show that there is a lot of room for improvement. For example, we are able to
reduce the overhead of quick sort (for integer sorting) from 10 to less than 4 using two optimizations based
on tail-call identification and inlining of library functions.

15.3.1 Implementation

The complete code for the library is given in Appendix A. The implementation relies on memoized DDGs
and the memoized change propagation algorithms and is based on the data structures described in Chapter 6.
One key difference is that the implementation deletes dependence edges (reads) lazily. Instead of discarding
deleted reads immediately, the implementation marks them. When a marked read is encountered, it is
discarded. The lazy deletion eliminates the need to keep back pointers from the time stamps to the reads.
One problem with this approach is that marked reads can accumulate over time. In the applications that we
consider, this problem does not arise. In general, however, deleted reads must be discarded immediately.

15.3.2 Experiments

For each application, we measure the following three quantities:

Time for initial run: This experiment measures the total time it takes to run a self-adjusting program on a
given input. To determine the overhead of our techniques, we divide this time by the time for running
the non-self-adjusting version of the same program.

Time for incremental insertions: This experiment measures the time it takes to construct the output
by performing incremental (a.k.a., online) insertions. Given an input list l, we construct an empty
modifiable list m and run our application on m. We then insert the next value from l at the end of m,
and perform a chance propagation. We continue this insert-and-propagate cycle until all the elements
in l are inserted into m.

Average time for a deletion/insertion: This experiment measures the average time it takes to perform an
insertion/deletion. We start by running a self-adjusting application on a given input list. We then delete
the first element in the input list and perform a change propagation. Next, we insert the element back

15.3. IMPLEMENTATION AND EXPERIMENTS 227

into the list and perform a change propagation. We perform this delete-propagate-insert-propagate
operation for each element. Note that after each delete-propagate-insert-propagate operation, the
input list is the same as the original input. We compute the average time for an insertion/deletion as
the ratio of the total time to the number of insertions and deletions (2n for an input of size n).

15.3.3 Generation of inputs

Given an input size n, we generate the input instances randomly. For integer sorting applications, we
generate a random permutation of a list containing the values from 1 to n. For convex hulls, we uniformly
chose points from a square of size 10n× 10n. As a random number generator, we use the Random.rand
function supplied by the SML library.

15.3.4 Experimental Results

We ran our our experiments on a desktop computer with a Pentium 4 processor clocked at 2.2 GHz and with
one gigabytes of memory; the machine runs the Red-Hat Linux operating system. All experiments were
performed using the SML/NJ version 110.0.7. This is an older SML/NJ compiler, but we have found its
garbage collector faster than the most recent version (version 110.53).

For each application, we ran our benchmarks for measuring the time for initial run, time for incremental
insertions, and average time for a deletion/insertion. To account for the time for garbage collection, we
measured the time for major and minor garbage collections, and the time spent solely by the application
separately. Figure 15.8 shows the timings for the quick sort algorithm; Figure 15.9 shows the timings for
the merge sort algorithm; Figure 15.10 shows the timings for the Graham’s Scan algorithm; Figure 15.11
shows the timings for the quick hull algorithms.

As can be seen from the figures, the time for garbage collection is excessively high. The total time
for major and minor collections often constitute 75% of the total time. When the total live data of an
application is reasonably high, the SML/NJ garbage collector is known to perform poorly [19, 86]. Other
research groups experimenting with the compiler have encountered similar problems in different application
domains. We have also experimented with the most recent version of the compiler, version 110.53, and
found that the applications spend even more time garbage collecting.

We are able to run the experiments for measuring the average time for insertion/deletion for sizes that
are half or less as much as we could for initial run (the only exception is the quick hull algorithm). For larger
sizes, the system runs out of memory. We expect that this is because of a known garbage-collection leak
in the SML/NJ version 110.0.7 compiler. In long-running applications, this slow leak eventually causes the
system to run out of physical memory.

These results show that the garbage collector for the SML/NJ language is not appropriate for our setting.
For the two reasons described above, we only consider the application time when evaluating our experi-
ments. From our experiments we deduce the following conclusions.

The overhead of the library: The overhead of the library is defined as the ratio of the time for an initial
run of a self-adjusting program to the time for an initial run of the ordinary, non-self-adjusting version
of the program. We have found that this overhead is between 5 and 10 for our applications.

228 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

We note that our implementation performs no optimizations specific to our library. To assess the po-
tential for improvement we implemented a hand-optimized version of the quick sort algorithm. The
optimizations reduce the overhead from 10 to about 4. We used two optimizations. The first opti-
mization allows tail calls to share their end time stamps. This reduces the total number of time stamps
created during an execution. The second optimization inlines the lift functions and eliminates the
modifiables created for lifted values. These optimization can be performed by a compiler or static
analyzer. We plan to study optimization techniques in more depth in the future.

The overhead of change propagation: We measure the overhead of change propagation as the ratio of the
time for the incremental run to the time for initial run. For an input with n keys, the incremental run
performs n change propagations to yield the same output as the initial run. For all our applications,
this ratio is between 4 and 6.

The asymptotic performance: The experiments confirm the theoretical bounds that we have obtained in
Chapter 9. For the quick-sort and merge-sort applications, the average time for an insertion/deletion
is bounded by O(log n) as the comparison to the 0.0003 log n shows. Since the Graham Scan ap-
plication uses merge sort as a substep, and since otherwise the algorithm is linear time, the time for
average insertions/deletions is marginally more than the same quantity for merge sort (this can be seen
comparing the timings to the 0.0003 log n curve). Note that, we have no asymptotic bounds for the
quick hull application. Quick hull can require Θ(n2)-time for a single insertion or deletion.

Speed up: For an insertion/deletion our techniques yield up to three orders of magnitude speed up over
rerunning from scratch. For example, with merge sort and Graham Scan algorithms, average time for
insertions/deletions is up to 250 times faster than rerunning from scratch. For the quick sort algorithm
the average speed up can be as much as a factor of 150. For the quick hull algorithms the average
speed up can be as much as a factor of 400. Note that these are average numbers. In general certain
updates are much faster than others. For example, in quick sort, insertions at the end are up to three
orders of magnitude faster than rerunning from scratch. Note also that the speed up is asymptotically
large (linear for all our applications). The values we report here are determined by the input size.

Consider the experiments with our integer sorting algorithms Figures 15.8 and 15.9. The time for the
initial run, and for incremental insertions with merge sort is nearly twice as large as those with the quick
sort algorithm. For insertion/deletions, however, the merge sort algorithm is about 50% faster than quick
sort. This is consistent with our trace-stability results. As shown in Chapter 9, the merge sort algorithm
requires expected O(log n) time for an arbitrary insertion/deletion, whereas the quick sort algorithm can
require Θ(n) time.

Of the two convex hull algorithms, the Graham Scan algorithm is the only theoretically efficient algo-
rithm. As shown in Section 9.4, the algorithm requires O(log n) average time for an insertion/deletion. The
quick hull algorithm can take Θ(n2) time. Our experiments (Figures 15.10 and 15.11) show that the quick
hull algorithm is significantly faster than Graham Scan for an insertion/deletion. Indeed, like the quick sort
algorithm, the quick hull algorithm is known to perform well in practice. The quick hull algorithm, however,
is highly input sensitive—the performance can vary significantly depending on the input.

15.3. IMPLEMENTATION AND EXPERIMENTS 229

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e

Input Size

Time for Initial Run

Application time
Application + minor GC time

Application + minor GC + major GC time
Non-self-adjusting-run time

.eps

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e

Input Size

Total Time for Incremental (Semi-Dynamic) Insertions

Application time
Application + minor GC time

Application + minor GC + major GC time
Initial-run time

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e

Input Size

Average Time for Insertion/Deletions

Application time
Application + minor GC time

Application + minor GC + major GC time
0.0003*log(x)

Figure 15.8: Timings for quick sort.

230 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e

Input Size

Time for Initial Run

Application time
Application + minor GC time

Application + minor GC + major GC time
Non-self-adjusting-run time

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e

Input Size

Total Time for Incremental (Semi-Dynamic) Insertions

Application time
Application + minor GC time

Application + minor GC + major GC time
Initial-run time

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e

Input Size

Average Time for Insertion/Deletions

Application time
Application + minor GC time

Application + minor GC + major GC time
0.0003*log(x)

Figure 15.9: Timings for merge sort.

15.3. IMPLEMENTATION AND EXPERIMENTS 231

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e

Input Size

Time for Initial Run

Application time
Application + minor GC time

Application + minor GC + major GC time
Non-self-adjusting-run time

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e

Input Size

Total Time for Incremental (Semi-Dynamic) Insertions

Application time
Application + minor GC time

Application + minor GC + major GC time
Initial-run time

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e

Input Size

Average Time for Insertion/Deletions

Application time
Application + minor GC time

Application + minor GC + major GC time
0.0003*log(x)

Figure 15.10: Timings for Graham’s Scan.

232 CHAPTER 15. A GENERAL-PURPOSE LIBRARY

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e

Input Size

Time for Initial Run

Application time
Application + minor GC time

Application + minor GC + major GC time
Non-self-adjusting-run time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e

Input Size

Total Time for Incremental (Semi-Dynamic) Insertions

Application time
Application + minor GC time

Application + minor GC + major GC time
Initial-run time

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e

Input Size

Average Time for Insertion/Deletions

Application time
Application + minor GC time

Application + minor GC + major GC time
0.0003*log(x)

Figure 15.11: Timings for quick hull.

Chapter 16

Kinetic Data Structures

Kinetic data structures [43, 13, 14, 7, 55, 25, 54] compute properties of continuously moving objects. In
this chapter, we describe a library for writing kinetic programs based on self-adjusting computation. The
library enables the programmer to transform an ordinary program into a kinetic program by applying a
methodical transformation. Our approach addresses two key limitations of previous work on kinetic data
structures. First our kinetic programs adjust to any change, including insertions/deletions and flight plan
updates. Second our kinetic programs are composable. These properies are critical to the development of
kinetic data structures. To address the limitations of previous on kinetic data structures, Guibas suggests
developing the interaction between dynamic and kinetic algorithms [43]. We know of no prior work that
addresses these limitation.

16.1 Background

To compute a property of moving objects, kinetic data structures take advantage of the continuity of motion.
The idea is to obtain a “proof of correctness” for the property by running an ordinary program P that
computes the property on the set of object assuming that they are stationary, and then “simulate” this proof
over time. The proof consists of comparisons between objects. Suppose that for each comparison we
compute the failure time, i.e., the earliest time at which the comparison fails. Consider the earliest failure
time t. Since none of the comparisons change value until time t, the property remains unchanged until that
time. We can thus advance the time to t without making any combinatorial changes to the property or the
proof. At time t, we compute a new proof from the old by changing the value of the failing comparison
and running an update algorithm. To simulate the proof we repeat this advance-and-update until the earliest
failure time is infinity. To determine the failure times of comparisons, we exploit the continuity of motion.
In particular, if we know that the motion parameters of the objects (velocity, direction, acceleration etc.),
then we can solve for the failure time of a comparison.

A kinetic data structure consists of an event handler that drives the simulation, and an update algorithm
that, given a failing comparison and the old proof, generates a new proof. The proof consists of certificates.
A certificate is a comparison associated with a failure time. The event handler maintains the certificates in
a priority queue and performs the advance-and-update steps. At each step, the event handler removes the
certificate with the earliest failure time from the queue, changes the outcome of the certificate, and updates

233

234 CHAPTER 16. KINETIC DATA STRUCTURES

the proof by running the update algorithm. Since the event handler only interacts with the certificates and
the update algorithm, it is generic for all kinetic data structures.

The key component of a kinetic data structure is the update algorithm. The update algorithm is a dynamic
algorithm that updates an existing proof according to a certificate change. In previous work, the update
algorithms and the representation of the proofs are devised on a per problem basis. This approach has two
key limitations.

One limitation of kinetic data structures is that they are often designed to support certificate failures but
not discrete changes such as insertions/deletions, or flight-plan changes that change the motion parameters
of the object. Another limitation of kinetic data structures is that they are not composable. Guibas points
out [43] that supporting discrete changes and composition is critical for the development of kinetic data
structures. For example, we can obtain a kinetic data structure for a number of extent problems by combining
a kinetic convex hull data structure and a kinetic tournament data structure [43]. To be composable, kinetic
data structure must support discrete changes, and must be able to detect discrete changes to their state. To
address these limitations, Guibas suggests that the interaction between kinetic and dynamic algorithms needs
to be better developed [43]. Note, however, that dynamic data structures themselves are not composable.
We know of no prior work that addresses these limitations.

16.2 Our Work

We propose to obtain kinetic programs from self-adjusting programs automatically. The idea is to use a self-
adjusting program to compute the property of interest and then use change propagation to update the property
when a certificate changes. More concretely, instead of calling an ad hoc update algorithm after changing
the outcome of a comparison, the event handler will call change propagation. Our approach addresses the
limitations of existing work on kinetic data structures. Kinetic self-adjusting programs are composable and
they support arbitrary changes to their state.

To determine the effectiveness of kinetic programs, we implemented a library for transforming self-
adjusting programs into kinetic programs and applied the library to kinetic convex hulls. The library supplies
an event handler, and a set of geometric tests, called kinetic tests. A kinetic test creates a certificate by
computing the failure time of the test.

The library enables transforming an ordinary (non-kinetic) program into a kinetic program in two steps.
First, the programmer makes the program self-adjusting by applying the standard ordinary-to-self-adjusting
transformation. Second, the programmer replaces ordinary geometric tests with the kinetic tests. Since the
second step is trivial—it can be done automatically or by simply linking the application with the library that
supplies kinetic tests, self-adjusting programs are automatically kinetic. For example, transforming the self-
adjusting quick-hull program in Figure 15.7 requires replacing the line structure P = Point with
structure P = KineticPoint and replacing the distance comparison with a kinetic geometric test.
The KineticPoint supplies kinetic tests for points.

Using our library, we have obtained kinetic versions of our convex hull algorithms. At the time of
writing, we do not have a careful experimental evaluation but have some videos that we used for testing.
Figure 16.1 shows some snapshot from a test that we ran with our program. The experiment starts out with
five object that move continuously within some bounding box. When an object hits the box, it bounces off
based on known rules of physics. These bounce events change the flight-plan of the object by changing
its direction. At every certificate failure, in addition to running change propagation, the event handler also

16.2. OUR WORK 235

Figure 16.1: Snapshots from a kinetic quickhull simulation.

inserts a number of new moving points and deletes a number of existing points into the input. The number of
points to be inserted and deleted are determined randomly. For this example, the number of inserted points
are expected to be four times as much as the number deleted points.

236 CHAPTER 16. KINETIC DATA STRUCTURES

Chapter 17

Dynamic Trees

In Chapter 10, we show that applying change propagation on static tree-contraction algorithm of Miller
and Reif [62] yields a solution to the dynamic trees-problem of Sleator and Tarjan [91]. In this chapter,
we present an implementation of this solution and present an experimental evaluation. The contributions
are twofold. First, by applying self-adjusting computation to a difficult problem, we present experimental
evidence that self-adjusting computation performs well even when compared to direct implementations of
problem-specific solutions. As a second contribution, we present a library for dynamic-trees that support a
general interface. The code for the library and the applications is publicly available at the Aladdin Center
web site at www.aladdin.cs.cmu.edu.

Dynamic-trees data structures are fundamental structures that arise as a substep in many important algo-
rithms such as dynamic graph algorithms [49, 32, 46, 38], max-flow algorithms [91, 92, 39], computational
geometry algorithms [40]. Several dynamic-tree data structures have been proposed including Link-Cut
Trees [91, 92], Euler-Tour Trees [46, 96], Topology Trees [38], and Top Trees [10, 11, 95]. We implement
change propagation on tree-contraction as a solution to the dynamic trees problem and present an exper-
imental evaluation of the approach. For the evaluation we consider a broad range of applications includ-
ing path queries, subtree queries, least-common-ancestor queries, maintenance of centers and medians of
trees, nearest-marked-vertex queries, semi-dynamic minimum spanning trees, and the max-flow algorithm
of Sleator and Tarjan [91].

The approach that we take in this chapter is different than the previous. In the previous chapter, we ap-
plied self-adjusting computation to a number of problems using a general-purpose, purely functional library
written in the ML language. In this chapter, we consider an imperative language, C++, and implement a
version of our general-purpose library that is specialized for tree-contraction. The main difference between
the specialized library and the general-purpose library is the handling of closures, time-stamps, and mem-
oization. Since C++ does not support closures, we create our own closures using standard data structural
techniques. Since tree-contraction is data-parallel, change-propagation does not require time-stamps, and
therefore no time-stamps are needed. Since tree-contraction uses loops and does not need general power of
recursion, a general memoization technique is not required.

237

238 CHAPTER 17. DYNAMIC TREES

17.1 Overview

Our approach is to map a forest of possibly unbalanced trees, called primitive trees, to a set of balanced trees,
called RC-Trees (Rake-and-Compress Trees) by applying tree-contraction technique of Miller and Reif [62]
on each primitive tree, and use change propagation to update the RC-Trees when edges are inserted/deleted
dynamically into/from the primitive trees. To process applications-specific queries we annotate RC-Trees
with application-specific data and use standard techniques to compute queries. To process application-
specific data changes, we recompute the annotations of the RC-Trees that are affected by the change. Beyond
the focus on change propagation for handling edge insertions/deletions, our approach have the following
distinguishing properties:

1. We separate structural operations (links and cuts) from application-specific queries and data changes.
The structure (i.e., shape) of the data structure depends only on the structure of the underlying tree
and is changed only by link and cut operations, applications-specific queries and data changes merely
traverse the RC-Trees and change the annotations (tags).

Previous data structures such as Link-Cut Trees [91, 92] and Top-Trees [11, 10] do allow the structure
to be modified by application queries via the evert and the expose operations. For example, in Link-
Cut trees, one node of the underlying tree is designated as root, and all path queries must be with
respect to this root. When performing a path query that does not involve the root, one end point of
the path query must be made root by using the evert operation. In top trees, the user operates on the
data structure using a set of operations provided by the interface and is expected to access only the
root node of the data structure. The user ensures that the root note contains the desired information by
using the expose operation. The expose operation often restructures the top tree. For example a path
query that is different than the previous path query requires an expose operation that restructures the
top tree.

2. The data structure directly supports batch changes.

3. We present an experimental evaluation by considering a large number of applications including

• path queries as supported by Link-Cut Trees [91, 92],

• subtree queries as supported by Euler Tour Trees [46, 96],

• non-local search: centers, medians, and least-common-ancestors as supported by Top Trees [11,
10],

• finding the distance to a set of marked vertices from any source,

• semi-dynamic (incremental) minimum spanning trees, and

• max-flow algorithm of Sleator and Tarjan [91].

Our experiments confirm the theoretical time bounds presented in Chapter 10 and show that the approach
can yield efficient dynamic algorithms even when compared to direct implementations. In particular, the
experiments show that, when compared to an implementation of Link-Cut Trees [91, 92], RC-Trees are up
to a factor of tree faster for path queries, and up to a factor of five slower for structural operations. This
trade-off can make one data structure preferable to the other depending on the application. For example, an

17.2. RAKE-AND-COMPRESS TREES 239

incremental minimum-spanning tree algorithm can perform many more queries than insertions and deletions,
whereas a max-flow algorithm is likely to perform more structural operations. Note that RC-Trees directly
support a broad range of queries, whereas Link-Cut Trees are specialized for path queries only.

A key property of self-adjusting computation is that it directly supports batch processing of changes
without requiring any change to the implementation. In the context of dynamic-trees, our experiments show
a large performance gap (asymptotically a logarithmic factor) between batch and one-by-one processing of
changes as would be required in previously proposed data structures. Batch changes arise in the following
two settings.

1. Multiple, simultaneous changes to the input: For example, the user of a dynamic minimum-
spanning tree algorithm may choose to delete many edges at once. In this case, it would be more
efficient to process all changes by a single pass on the data structure than to break them up into single
changes.

2. Propagation of a single change to multiple changes: For example, the dynamic connectivity and
the Minimum-Spanning Tree algorithms of Holm et. al. [49], maintain a hierarchy of dynamic trees.
When a single edge is deleted from the input graph, a number of edges in one level of the hierarchy
can be inserted into the next level. Since the dynamic-trees data structure for the next level is never
queried until all insertions are performed, the insertions can be processed as a batch. In general,
supporting batch changes is essential if dynamic data structures are to be composed, because a single
change can propagate to multiple changes.

17.2 Rake-and-Compress Trees

This section describes a solution to the dynamic-trees problem based on change propagation on a static
tree-contraction algorithm. The section summarizes the previous work [5] and gives more detail on the
processing of application-specific queries.

We use Miller and Reif’s tree-contraction algorithm [62] to map arbitrary, bounded-degree trees to
a balanced trees. We call the trees being mapped, the primitive trees, and the balanced trees that they
are mapped to, the RC-Trees (Rake-and-Compress Trees). RC-Trees represents a recursive clustering of
primitive trees. Every node of an RC-Tree represents a cluster (subtree) of the corresponding primitive tree.

To apply RC-Trees to a particular problem, we annotate RC-Trees with information specific to that
problem, and use tree traversals on the RC-Trees to compute properties of the primitive trees. Tree traversals
on RC-Trees alone suffice to answer dynamic queries on static primitive trees. To handle dynamic changes
to primitive trees, i.e., edge insertions and deletions, we use change propagation. Given a set of changes to
a primitive tree, the change-propagation algorithm updates the RC-Tree for that primitive tree by rebuilding
the parts of the RC-Tree affected by the change.

17.2.1 Tree Contraction and RC-Trees

Given some tree T , the tree-contraction algorithm of Miller and Reif [62] contracts T to a single vertex
by applying rake and compress operations over a number rounds. Rake operations delete all leaves in the
tree and compress operations delete an independent set of vertices that lie on chains, i.e., paths consisting of

240 CHAPTER 17. DYNAMIC TREES

5
4 2

6

12
8 10 1

3
11

9

7

13

a

b
c

d

f

e

h i

l

k

m

j
n

g

Figure 17.1: A weighted tree.

a

A b
c

D

e

f

G

g
h i

I

j N
n

l

m

K
k

d

B

b

A
c

D

e

f

E
H

hG
I

K

L

j

m

N

l

c

B C

f

H
M

j

m

C

f

J

H
j

M

C

f

J
F

Figure 17.2: An example tree-contraction.

degree two vertices. When the tree is contracted into a single vertex, a special finalize operation is performed
to finish tree contraction. When using the random-mate technique, tree contraction takes expected linear
time, and requires logarithmic number of rounds (in the size of the input) in expectation [62].

The original tree-contraction algorithm of Miller and Reif was described for directed trees. In this
paper, we work with undirected trees and use the generalization tree contraction for undirected trees [5]. For
applications, we assume that the edges and vertices of trees can be assigned weights (for edges) and labels
(for vertices) respectively. Weights and labels can be of any type.

As an example consider the weighted tree shown in Figure 17.1. Figure 17.2 shows the complete con-
traction of the tree (the rounds increase from top to bottom). Since tree contraction does not depend on the

17.2. RAKE-AND-COMPRESS TREES 241

B

F

a A

b

E

c

C

D

f

J

g
G

H

h i
I

L

l

k

K

Nm

n

j

e
M

115 4 2

6

12 8 10
1

3

13

7

9

d

Figure 17.3: A clustering.

F

f

ab a

A

B

b bc

c

C

E

ce D e ef

dde

H

G

fg g gh

h I

hi i ij

M

L

ml l K

lk k

m jm

N

mn n

j

J

Figure 17.4: An RC-Tree.

weights they are omitted from Figure 17.2. Each round of a contraction deletes a set of vertices by using the
rake and compress operations.

— A rake operation deletes a leaf and the edge adjacent to it, and stores the contribution of the deleted
vertex and the edge in its neighbor. The contribution of a raked vertex is computed by calling the
rake data operation that is specified by the application. The rake data operation computes the
contribution from 1) the label of the deleted vertex, 2) contributions stored at that vertex, and 3) the
weight of the deleted edge.

— A compress operation removes a degree two vertex, say v, and the edges adjacent to it, (u, v) and (v, w),
and inserts an edge (u, w), and stores the contribution of v, (u, v), and (v, w) on u and w. The
contribution of a compressed vertex is computed by calling the compress data operation that is
specified by the application. The compress data operation computes the contributions from 1) the
label of v, 2) the contributions stored at v, and 3) the weights of (u, v) and (v, w).

For example, in Figure 17.2, the first round rakes the vertices a, d, n, and k and compresses g, and i. At the
end of the contraction, when the tree is reduced to a single vertex, a special finalize operation is performed
to compute a value from the contributions stored at that vertex by calling the finalize data operation
that is specified by the application.

242 CHAPTER 17. DYNAMIC TREES

Tree contraction can be viewed as recursively clustering a tree into a single cluster. Initially the vertices
and the edges form the base clusters. The rake, compress, and finalize operations form larger clusters by
a number of smaller clusters and a base cluster consisting of a single vertex. In Figure 17.2, all clusters
(except for the base clusters) are shown with petals. Each cluster is labeled with the capitalized label of
the vertex joining into that cluster. For example, raking vertex a creates the cluster A consisting of a and
b, and the edge (a, b); compressing the vertex g creates the cluster G, consisting of the vertex g and the
edges (f, g) and (g, h). In the second round, raking the vertex b creates the cluster B that contains the
cluster A and the edge (b, c). In the last round, finalizing f creates the cluster F that contains the clusters
C and J . Figure 17.3 shows the clustering consisting of all the clusters created by the contraction shown in
Figure 17.2.

We define a cluster as a subtree of the primitive tree induced by a set of vertices. For a cluster C, we say
that vertex v of C is a boundary vertex if v is adjacent to a vertex that does not belong to C. The boundary
of a cluster consists of the set of boundary vertices of that cluster. The degree of a cluster is the number
vertices in its boundary. For example, in Figure 17.3, the cluster A has the boundary {b}, and therefore has
degree one; the boundary of the cluster G is {f, g} and therefore G has degree two. In tree contraction,
all clusters except for the final cluster has degree one or degree two. We will therefore distinguish between
unary, binary, and final clusters. It is a property of the tree contraction that

1. the rake operations yield unary clusters,

2. the compress operations yield binary clusters, and

3. the finalize operation yields the final cluster which has degree zero.

The contraction of a primitive tree can be represented by a tree, called RC-Tree, consisting of clusters.
Figure 17.4 shows the RC-Tree for the example contraction shown in Figures 17.2 and 17.3. When drawing
RC-Trees, we draw the unary clusters with circles, the binary clusters with squares, and the final cluster with
two concentric circles. Since tree contraction takes expected logarithmic number of rounds, the RC-Tree of
a primitive tree is probabilistically balanced. It is in this sense, that tree contraction maps unbalanced trees
to balanced trees.

Throughout this paper, we use the term “node” with RC-Trees and the term “vertex” with the underlying
primitive trees. We do not distinguish between a node and the corresponding cluster when the context makes
it clear.

17.2.2 Static Trees and Dynamic Queries

RC-Trees can be used to answer dynamic queries on static trees. The idea is to annotate the RC-Trees with
application-specific information and use tree traversals on the annotated trees to answer application-specific
queries. To enable annotations, we require that the applications provide rake data, compress data,
and finalize data functions that describe how data (edge weights and/or vertex labels) is combined dur-
ing rake, compress, and finalize operations respectively. Using these operations, the tree-contraction algo-
rithm tags each cluster with the value computed by the rake data, compress data, and finalize data
operation computed during the operation that forms that cluster.

Once an RC-tree is annotated, it can be used to compute various properties of the corresponding primitive
tree by using standard tree traversals. For all applications considered in this paper, a traversal involves a

17.3. APPLICATIONS 243

constant number of paths between the leaves and the root of an RC-Tree. Depending on the query, these
paths can be traversed top down, or bottom-up, or both ways. Since RC-Trees are balanced with high
probability, all such traversals require logarithmic time in expectation.

Section 17.3 describes some applications demonstrating how RC-Trees can be used to answer various
queries such path queries, subtree queries, non-local search queries in expected logarithmic time.

17.2.3 Dynamic Trees and Dynamic Queries

To support dynamic trees, i.e., edge insertion/deletions, we use change propagation. Change propagation
effectively rebuilds the tree-contraction by rebuilding the clusters affected by the change. For data changes,
we update the annotations in the tree by starting at the leaf of the RC-Tree specified by the change and
propagate this change up the RC-Trees. By Theorem 67 and by the fact that RC-Trees have logarithmic
height in expectation, we have the following theorem.

Theorem 88 (Dynamic Trees)
For a bounded-degree forest F of n vertices, an RC-Forest FRC of F can be constructed and annotated
in expected O(n) time using tree-contraction and updated in expected O(log n) time under edge inser-
tions/deletions, and application specific data changes. Each tree in the RC-Forest FRC has height expected
O(log n).

17.3 Applications

This section describes how to implement a number of applications using RC-Trees. Experimental results
with these application are given in Section 17.5. Implementing an application using RC-Trees involves

1. providing the rake data, compress data, and finalize data operations that specify how
data is combined during rake, compress, and finalize operations respectively, and

2. implementing the queries on top of RC-Trees using standard tree traversals.

This section considers the following applications: path queries, subtree queries, diameter queries, cen-
ter/median queries, least-common-ancestor queries, and nearest-marked-vertex queries. Of these queries,
path queries, subtree queries, diameter queries, and nearest-marked-vertex queries all require simple tree
traversal techniques that traverse a fixed number of bottom-up paths in the RC-Tree. Other queries, includ-
ing centers/medians and least-common ancestor queries, require traversing a fixed number of bottom-up and
top-down paths. Queries that require top-down traversal are sometimes called non-local search queries [11],
because they cannot be computed by only using local information pertaining to each cluster.

Throughout this paper, we work with undirected trees. Applications that rely on directed trees specify
an arbitrary root vertex with each query. For the discussion, we define the cluster path of a binary cluster as
the path between its two boundary vertices.

244 CHAPTER 17. DYNAMIC TREES

F

f

H

G

fg g gh

h I

hi i ij

M

L

ml l K

lk k

m jm

N

mn n

j

J

ab a

A

B

b bc

c

C

E

ce D e

dde

ef

13

10

10

108 1

7 11

3 95

4 12

12

3

6

2

Figure 17.5: An RC-Tree with tags.

17.3.1 Path Queries

A path query [91, 92] asks for the heaviest edge on a path. Consider, as an example, the tree shown in
Figure 17.1. The answer for the path query with vertices c and m is the edge (e, f) with weight 12. In
general path queries can be defined on arbitrary associative operations on weights. The techniques described
here apply in this general setting.

For this description, we assume that a path query asks for the weight of the heaviest edge on a given
path—the heaviest edge itself can be computed by keeping track of edges in addition to weights. To answer
path queries, we annotate each binary cluster with the weight of the heaviest edge on its cluster path. All
other clusters (unary and final) will have no tags. These annotations require that the application program-
mer specify the functions rake data, and finalize data as “no-ops”, and compress data as the
maximum operation on edge weights.

Figure 17.5 shows the RC-Tree for the contraction shown in Figure 17.3 where each binary cluster is
annotated with the weight of the heaviest edge on its cluster path. For example, the cluster e is tagged with
12, because this is the largest weight on its cluster path consisting of the edges (c, e) and (e, f). The tag of
each binary cluster is written in a hexagon. The RC-Tree is an annotated version of the tree in Figure 17.4.

By using the annotations, the maximum edge weight on the path between u and v can be found by
simultaneously walking up the tree from u and v until they meet. For each cluster from u, we compute the
maximum weight between u and the boundary vertices of that cluster. Similarly, for each cluster on the path
from v, we compute the maximum weight between v and the boundary vertices of that cluster. Consider the
cluster C that two paths meet and let Cu be the child of C on the path from u, and let Cv be the child of
C on the path from v. The answer to the query is the maximum of the values computed for the common
boundary vertex of Cu and Cv.

As an example, consider the primitive tree shown in Figure 17.1, its clustering Figure 17.3, the RC-Tree
shown in Figure 17.5. Consider the path query with c and m. Consider the path from c to the root. The
cluster C will be tagged with 12 because this is the heaviest weight between c and f (the boundary of C),
and the cluster F will be tagged with 12. Consider now the path from m. The cluster M will be tagged with
11 and the cluster J will be tagged with 11. Since f is the first common boundary between the two paths
explored, the result is 12, the maximum of the values associated with f , i.e., 11 and 12.

17.3. APPLICATIONS 245

17.3.2 Subtree Queries

A subtree query asks for the heaviest edge in a subtree. The subtree specified by a tree root r and a root v
of the subtree. Consider, as an example, the tree shown in Figure 17.1. The answer for the path query with
tree root c and subtree root m is the edge (l, k) with weight 13. In general subtree queries can be defined on
arbitrary associative operations on weights. The technique described here applies in this general setting.

To answer subtree queries, we annotate each cluster with the weight of the heaviest edge in that cluster.
These annotations require that the application programmer specifies the functions rake data, compress data,
and finalize data as the maximum operation.

By using the annotations, the maximum edge weight in a subtree specified by a tree root r and a subtree
root v can be found by simultaneously walking up the tree from r and v until the paths meet. For the clusters
on path from r, we compute no information. For each cluster on the path from v, we compute the heaviest
edge in the subtree rooted at v with respect to each boundary vertex as the tree root. Consider the RC-Tree
node C that two paths meet and let Cr be the child of C on the path from r, and let Cv be the child of C on
the path from v. The answer to the query is the maximum of the tag for Cr and the value computed for Cv

for the common boundary vertex of Cr and Cv.
This technique for finding the heaviest edge in a subtree can be used to compute other kinds of subtree

queries, such as queries that can be computed by Euler-Tour Trees [96, 46], by replacing the maximum
operator with the desired associative operator.

17.3.3 Diameter

The diameter of a tree is the length of the longest path in the tree. For example, the longest path in the tree
shown in Figure 17.1 is the path between a and k; therefore the diameter is 80. To compute the diameter of
a tree, we annotate

— each unary cluster with its diameter, and the length of the longest path originating at its boundary
vertex,

— each binary cluster with the length of its cluster path, its diameter, and length of the longest path
originating at each boundary vertex, and

— the final cluster with its diameter.

It is relatively straightforward to specify the rake data, compress data, and finalize data op-
erations to ensure that the clusters are annotated appropriately.

Since the root of the RC-Tree is tagged with the diameter of the tree, computing the diameter requires no
further traversal techniques. Note that, since change-propagation updates the annotations of the RC-Trees,
the diameter will be updated appropriately when edge insertions/deletions take place.

17.3.4 Distance to the Nearest Marked Vertex

This type of query asks for the distance from a given query vertex to a set of predetermined marked vertices
and has applications to metric optimization problems [11]. As an example, consider the tree shown in

246 CHAPTER 17. DYNAMIC TREES

Figure 17.1 and suppose that the vertices a and n are marked. The answer to the nearest marked vertex
query for vertex d is 17, because the length of the path between d and a is 17, whereas the length of the path
between d and a is 60.

For this application, we annotate 1) each binary cluster with the length of its cluster path, and 2) each
cluster with the distance between each boundary vertex and the nearest marked vertex in that cluster. The
annotations are easily computed by specifying rake data, compress data, and finalize data
operations based on the minimum and addition operations on weights.

Given an annotated RC-Tree, we compute the distance from a query vertex v to the nearest marked
vertex by walking up the RC-Tree from v as we compute the following values for each cluster on the path:
1) the minimum distance between v and the nearest marked vertex in that cluster, 2) the minimum distance
between v and each boundary vertex. The answer to the query will be computed when the traversal reaches
the root of the RC-Tree.

17.3.5 Centers and Medians

Centers and medians are non-local-search queries [11] and therefore require both a bottom-up and a top-
down traversal of RC-Trees. They are quite similar, and therefore, we describe center queries only here.

For a tree T with non-negative edge weights, a center is defined as a vertex v that minimizes the maxi-
mum distance to other vertices in the tree. More precisely, let dT (v) be the maximum distance from vertex
v to any other vertex in the tree T . A center of T is a vertex c such that dT (c) ≤ dT (v) for any vertex v.

To find the center of a tree, we annotate 1) each cluster C with dC(v) for each boundary vertex v of
C, and 2) each binary cluster with the length of its cluster path. The annotations are easily computed by
specifying rake data, compress data, and finalize data operations based on the maximum and
addition operations on weights.

Given an annotated RC-Tree, we locate a center by taking a path from the root down to the center based
on the following observation. Consider two clusters C1 and C2 with a common boundary vertex v. Assume
without loss of generality that dC1(v) ≥ dC2(v) and let u be a vertex of C1 farthest from v. Then a center
of C1 ∪ C2 is in C1, because any vertex in C1 is no closer to u than v.

We find the center of the tree by starting at the root of the support tree and taking down a path to the
center by visiting a cluster that contains a center next. To determine whether a cluster contains a center,
we use the annotations to compute the distance from each boundary vertex to the rest of the tree and to the
cluster and use the property of centers mentioned above.

17.3.6 Least Common Ancestors

Given a root r and vertices v and w, we find the least common ancestor of v and w with respect r by walking
up the tree from all three vertices simultaneously until they all meet and then walking down two of the paths
to find the least common ancestor.

Consider the cluster C that the paths from r, v, and w meet. If this is the first cluster that any two paths
meet, then the vertex c joining into C is the least common ancestor. Otherwise, one of the children of C
contains two clusters; move down to that cluster and follow the path down until the two paths split. If paths
split at a binary cluster, proceed to the cluster pointing in the direction of the vertex whose path has joined

17.4. IMPLEMENTATION AND THE EXPERIMENTAL SETUP 247

last and follow the path down to the first unary cluster U ; the vertex u joining into U is the least common
ancestor. If the paths split at a unary cluster U , and both paths continue to unary clusters, then the vertex
joining into U is the least common ancestor. Otherwise, continue to the binary cluster and follow the path
down to the first unary cluster U ; the vertex joining to U is the least common ancestor.

17.4 Implementation and the Experimental Setup

We implemented a library for dynamic trees based on RC-Trees and implemented a general purpose interface
for dynamic trees. The code for the library is publicly available at the home page of the Aladdin Center
http://www.aladdin.cs.cmu.edu.

We performed an experimental evaluation of this implementation by considering a semi-dynamic minimum-
spanning-tree algorithm, the max-flow algorithm of Sleator and Tarjan [91], and some synthetic benchmarks.
The synthetic benchmarks start with a single primitive tree and its RC-Tree and apply a sequence operations
consisting of links/cuts, data changes, and queries. Proper forests arise as a result of edge deletions.

Since we rely on tree-contraction to map unbalanced trees to balanced tree, the primitive trees (the
trees being mapped) must be bounded degree. Therefore, all our experiments involve bounded-degree trees.
Since any tree can be represented as a bounded-degree tree, this restriction causes no loss of generality. In
particular, RC-Trees can be applied to arbitrary trees by mapping an arbitrary tree T to a bounded-degree
tree T ′ by splitting high-degree nodes into bounded-degree nodes [37], and by building an RC-Tree based
on the bounded-degree tree T ′. To support dynamic-tree operations, the mapping between T and T ′ must
be maintained dynamically as the degree of the vertices in T change due to insertions/deletions by joining
and splitting the vertices of T ′. In certain applications, it is also possible to preprocess the input to ensure
that bounded-degree dynamic-tree data structures can be used directly (without having to split and merge
vertices dynamically). For example, the input network for a max-flow algorithm can be preprocessed by
replacing high-degree vertices with a network of bounded-degree vertices that are connected via infinite
capacity edges.

17.4.1 The Implementation

We implement a self-adjusting version of tree contraction algorithm of Miller and Reif [62]. The implemen-
tation represents each tree as a linked list of nodes ordered arbitrarily. Each node has an adjacency list of
pointers to its neighbors in the tree. Since the library requires that each location be written at most once, the
complete tree from each round is remembered. Data dependences are created by a special read operation
that reads the contents of a vertex, performs a rake or compress operation on the vertex, and copies the
contents to the next round if the vertex remains alive. Since the contracted tree from each round is stored in
the memory the implementation uses expected O(n) space.

For the implementation, we use a version of the general-purpose library that is specialized for tree
contraction. Instead of general-purpose time stamps, the specialized library uses round numbers for time-
stamping reads. The change-propagation algorithm remains correct without time-stamps because vertices
can be processed in any order in each round (the tree-contraction algorithm is data-parallel). The specialized
library also employs no general-purpose memoization scheme. This is because tree-contraction only relies
on loops and not general recursion. Since each iteration of the main tree-contraction loop processes on

248 CHAPTER 17. DYNAMIC TREES

vertex, the iterations can be created for each vertex affected by a change. The final difference between
the specialized library and the general-purpose library concerns the creation of closures. Since the C++
language does not support closures, we create our own closures using standard data structural techniques.

Change propagation maintains a first-in-first-out queue of vertices affected by the changes and reruns
the rake and compress operations of the original algorithm on the affected vertices until the queue becomes
empty. The edge insertion and deletions initialize the change propagation queue by inserting the vertices
involved in the insertion or deletion. During change propagation, additional vertices are inserted to the
queue when a vertex that they read is written.

17.4.2 Generation of Input Forests

Our experiments with synthetic benchmarks take a single tree as input. To determine the effect that different
trees might have on the running time, we generate trees based on the notion of chain factor. Given a chain
factor f , 0 ≤ f ≤ 1, we employ a tree-building algorithm that ensures that at least a fraction f of all vertices
in a tree have degree two as long as f ≤ 1 − 2/n, where n is the number of vertices in the tree. When the
chain factor is zero, the algorithm generates random trees. When the chain factor is one, the algorithm
generates a degenerate tree with only two leaves (all other vertices have degree two). In general, the trees
become more unbalanced as the chain factor increases.

The tree-building algorithm takes as input the number of vertices n, the chain factor f and the bound d
on the degree. The algorithm builds a tree in two phases. The first phase starts with an empty tree and grows
a random tree with r = max (n− dnfe, 2) vertices by incrementally adding vertices to the current tree. To
add a new vertex v to the current tree, the algorithm randomly chooses an existing vertex u with degree less
than d, and inserts the edge (u, v). In the second phase, the algorithm adds the remaining n − r vertices
to the tree T obtained by the first phase. For the second phase, call each edge of the tree T a super edge.
The second phase inserts the remaining vertices into T by creating n − r new vertices and assigning each
new vertex to a randomly chosen super edge. After all vertices are assigned, the algorithm splits each super
edge (u, v) with assigned vertices v1, . . . , vl into l + 1 edges (u, v1), (v1, v2), . . . (vl−1, vl), (vl, v). Since
all of the vertices added in the second phase of the construction have degree two, the algorithm ensures that
at least a fraction f of all vertices have degree two, as long as f ≤ 1− 2/n.

Our experiments show that the performance of RC-Trees is relatively stable for primitive trees with
varying chain factors, except for the degenerate tree with only two leaves. When measuring the effect of
input size, we therefore generate trees with the same chain factor (but with different number of vertices).
For these experiments, we fix the chain factor at 0.5. Since the data structure is stable for a wide range of
chain factors, any other chain factor would work just as well.

For all our experiments that involve synthetic benchmarks, we use degree-four trees. We use degree-
eight trees for the semi-dynamic minimum spanning trees, and the max-flow applications.

17.4.3 Generation of Operation Sequences

For the synthetic benchmarks, we generate a sequence of operations and report the time per operation aver-
aged over 1024K operations. All operation sequences contain one of the following three types of operations

1. application-specific queries,

17.5. EXPERIMENTAL RESULTS 249

2. application-specific-data changes, and

3. edge insertions/deletions (link and cuts).

We generate all application-specific queries and data changes randomly. For queries, we randomly pick the
vertices and edges involved in the query. For data changes, we pick random vertices and edges and change
the labels (for vertices) and weights (for edges) to a randomly generated label or weight respectively.

For generating edge insertions/deletions, we use two different schemes. The first scheme, called fixed-
chain-factor scheme ensures that the chain factor of the forest remains the same. Most experiments rely
on this scheme for generating the operations. The second scheme, called MST-scheme, relies on minimum
spanning trees, and is used for determining the performance for change propagation under batch changes.

— Fixed-chain-factor scheme: This scheme generates an alternating sequence of edge deletions and
insertions by randomly selecting an edge e, deleting e, and inserting e back again, and repeating this
process. Since the tree is restored after every pair of operations, this scheme ensures that the chain
factor remains the same.

— MST Scheme: The MST scheme starts with an empty graph and its MST, and repeatedly inserts edges
to the graph while maintaining its MST. To generate a sequence of operations, the scheme records
every insertion into or deletion from the MST that arise as a result of insertions to the graph.

In particular, consider a graph G, and its minimum-spanning forest F , and insert an edge (u, v) into
G to obtain G′. Let m be the heaviest edge m on the path from u to v. If the weight of m is less than
the weight of e, then F is a minimum-spanning forest of G′. In this case, the forest remain unchanged
and the scheme records nothing. If the weight of m is larger than that of e, then a minimum-spanning
forest F ′ of G′ is computed by deleting m from F and inserting e into F . In this case, the scheme
records the deletion of m and insertion of e.

Since our implementation of RC-Trees assumes bounded-degree trees, we use a version of this scheme
that is adapted to bounded-degree trees. If an inserted edge e causes an insertion that increases the
degree of the forest beyond the predetermined constant, then that insertion is not performed and not
recorded; the deletion, however, still takes place.

17.5 Experimental Results

We ran all our experiments on a machine with one Gigabytes of memory and an Intel Pentium-4, 2.4 GHz
processor. The machine runs the Red Hat Linux 7.1 operating system.

17.5.1 Change Propagation

We measure the time for performing a change propagation with respect to a range of chain factors and
a range of sizes. Figures 17.6 and 17.7 show the results for these experiments. To measure the cost of
change propagation independent of application-specific data, this experiment performs no annotations—-
rake data, compress data, and finalize data operations are specified as “no-ops”.

250 CHAPTER 17. DYNAMIC TREES

Figure 17.6 shows the timings for change propagation with trees of size 16K, 64K, 256K, 1024K with
varying chain factors. Each data point is the time for change propagation after one cut or one link operation
averaged over 1024K operations. The operations are generated by the fixed-chain-factor scheme. As the
timings show, the time for change propagation increases as the chain factor increases. This is expected
because the primitive tree becomes more unbalanced as the chain factor increases, which then results in a
larger RC-Tree. When the chain factor is one, the primitive (degenerate) tree has only two leaves. Trees with
only two leaves constitute the worst-case input for change propagation, because this is when the depth of
the corresponding RC-Trees are (probabilistically) large compared to a more balanced tree of the same size.
As additional data points for 0.91, 0.92, . . . , 0.99, show the steepest increase in the timings occurs when the
chain factor increases from 0.99 to 1.0. This experiment shows that change-propagation algorithm is stable
for a wide range chain factors for both small and larger trees.

Figure 17.7 shows the timings for varying sizes of trees with chain factors 0, 0.25, 0.50, 0.75, and 1.0.
Each data point is the time for change propagation after one link or cut operation averaged over 1024K
operations. The operations are generated by the fixed-chain-factor scheme. The experiments show that
the time for change propagation increases with the size of the input, and that the difference between trees
of differing chain factors are relatively small, except for the degenerate tree (chain factor of one). This
experiments suggests that the time for change-propagation is logarithmic in the size of the input and proven
by previous work [5].

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

T
im

e
fo

r
C

ha
ng

e
P

ro
pa

ga
tio

n
(m

ic
ro

se
co

nd
s)

Chain Factor

Change Propagation, 1024K
Change Propagation, 256K
Change Propagation, 64K
Change Propagation, 16K

Figure 17.6: Change Propagation & chain factor.

17.5.2 Batch Change Propagation

An interesting property of change propagation is that it supports batch operations directly without any
change to the implementation. Figure 17.8 shows the timings for change propagation with varying number
cut and link operations in batch and in standard cascaded (one-by-one) fashion. The sequence of operations
are generated by the MST scheme for a graph of 1024K vertices. The x axis (in logarithmic scale) is the

17.5. EXPERIMENTAL RESULTS 251

 4

 8

 16

 32

 64

 128

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1024K

T
im

e
fo

r
ch

an
ge

 p
ro

pa
ga

tio
n(

m
ic

ro
se

co
nd

s)

Forest size

Chain Factor = 1.0
Chain Factor = 0.75
Chain Factor = 0.5
Chain Factor = 0.25
Chain Factor = 0.0

Figure 17.7: Change propagation & input size.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1024K

T
im

e
fo

r
ch

an
ge

 p
ro

pa
ga

tio
n

 (
se

co
nd

s)

Size of the batch

Batch change propagation
Cascaded change propagation

Figure 17.8: Batch change propagation.

size of each batch increasing from 1K to 1024K. Each data point represents the total time for processing the
given number of cut and link operations in a batch or in a cascaded fashion.

The figure suggests a logarithmic factor asymptotic performance gap between processing changes in
batch and in cascaded modes. This is expected, because, as the size of the batch approaches n, the change-
propagation algorithm takes expected O(n) time in the size of the input forest. Processing a x link or cut
operations one-by-one, however, requires expected O(x log n) time.

252 CHAPTER 17. DYNAMIC TREES

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

T
im

e
fo

r
Q

ue
rie

s
(m

ic
ro

se
co

nd
s)

Chain Factor (Forest size=1024K)

Closest Queries
Path Queries
LCA Queries

Subtree Queries
Path Traversal

 0.5

 1

 2

 4

 8

 14

4K 8K 16K 32K 64K 128K 256K 512K 1024K

T
im

e
fo

r
Q

ue
rie

s(
m

ic
ro

se
co

nd
s)

Forest size

Closest Queries
Path Queries
LCA Queries

Subtree Queries
Path Traversal

Figure 17.9: Queries versus chain factor and input size.

17.5.3 Application-Specific Queries

Figure 17.9 shows the time for various application-specific queries for varying chain factors and input sizes.
The queries for diameters and medians are not included in the figure, because they are very fast—they simply
read the value at the root of the RC-Tree.

In these experiments, each data point is the time for one query averaged over 1024K randomly generated
queries. For comparison the data line “path traversal” shows the time for starting at a leaf of the support tree
and walking up to the root of that tree without doing any operations. The path-traversal time is measured by
randomly selecting leaves and averaging over 1024K leaves. Since most interesting queries will at least walk

17.5. EXPERIMENTAL RESULTS 253

up the RC-Tree (a standard constant-degree tree), the path traversal time can be viewed as the best possible
for a query. As the figure shows, the time for all queries are within a factor of five of the path-traversal time.

The time differences between different queries is a result of the specific computations performed by
each query. The least common ancestor (LCA) queries, for example, traverse three different paths bottom
up until they meet and one path down. Subtree queries traverse two paths bottom up, and also touch the
clusters neighboring the paths.

The timings suggest that all queries are logarithmic time. This is expected because all queries take time
proportional to the height of the underlying RC-Tree.

 1
 2

 4
 6

 8

 10
 12

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 fo

r
D

at
a

C
ha

ng
es

 (
m

ic
ro

se
co

nd
s)

Chain Factor (Forest Size = 1024K)

Diameter (Weight)
Closest (Weight)
Center (Weight)
Closest (Label)

Subtree (Weight)
Median (Weight)

Median (Label)
Path (Weight)

Path Traversal

 0.5

 1

 2

 4

 8

 16

 32

4K 8K 16K 32K 64K 128K 256K 512K 1024K

T
im

e
fo

r
da

ta
 c

ha
ng

es
 (

m
ic

ro
se

co
nd

s)

Forest size

Diameter (Weight)
Closest (Weight)
Center (Weight)
Closest (Label)

Subtree (Weight)
Median (Label)

Median (Weight)
Path (Weight)

Path Traversal

Figure 17.10: Weight changes vs chain factor & forest size.

254 CHAPTER 17. DYNAMIC TREES

17.5.4 Application-Specific Data Changes

We consider two types of application-specific data changes: label changes (for vertices), and weight changes
(for edges). Processing a data change involves changing the weight or the label in the primitive tree and
propagating the change up the RC-Tree.

Figure 17.10 shows the timing for edge weight and vertex label changes versus the chain factor and
the size of the primitive forests. All our applications, except but for the Least-Common Ancestors, involve
weighted trees. Weight changes are therefore relevant to all these applications. Vertex label changes how-
ever are only relevant to nearest-marked vertex, and the median applications. In the nearest-marked-vertex
application, a label change can change an unmarked vertex to a marked vertex or vice versa. The mark
indicates if that vertex is in the special set to which the distance of a given query node is measured. In the
median application, a label change can change the contribution of a vertex to the weighted median.

As Figure 17.10 shows the time for data changes are relatively stable across a range of chain factors. For
comparisons purposes, the figure also shows the time for path traversals. This measure is taken by randomly
selecting leaves in the RC-Tree and measuring the time for traversing the path to the root (averaged over
1024K leaves). Since each data update traverses a path from a leaf to the root of the tree, the path-traversal
time can be viewed as a lower bound for processing a data change. Figure 17.10 shows that the time for data
changes is within an order of magnitude of the time for path traversals for all but the diameter application.

The timings suggest that all data changes take logarithmic time to process. This is expected, because
RC-Trees have logarithmic height in expectation.

17.5.5 Comparison to Link-Cut Trees

We implemented the Link-Cut Tree interface of Sleator and Tarjan [91, 92] as an application. The interface
supports link and cut operations, path queries, and the addCost operation for adding weights to paths. We
compare our implementation to Renato Werneck’s [98] implementation of Link-Cut Trees using splay trees.

Figure 17.11 shows the timing for link and cut operations. As the figure shows, Link-Cut Trees (written
LC-Trees in figures) are up to a factor of five faster than the RC-Trees for links and cuts.

Figure 17.12 shows the timings for data changes. For operations that add a weight to a path, Link-Cut
Trees are up to 50% faster than RC-Trees. For operations that change the weight of one edge, RC-Trees are
up to 50% faster than Link-Cut Trees.

Figure 17.13 shows the timings for queries. For path queries that ask for the heaviest edge on a path,
RC-Trees are up to 60% faster that Link-Cut Trees. For comparisons purposes, Figure 17.13 also shows the
timing for path queries, for a version of our interface that does not support adding weights on paths. These
queries are up to a factor of three faster than Link-Cut Trees. Certain applications of path queries, such as
Minimum-Spanning Trees, do not require adding weights on paths.

These comparisons show an interesting trade-off. Whereas RC-Trees tend to perform better in application-
specific queries and data changes, LC-Trees perform better for structural changes (link and cut operations).
As the experiments with minimum-spanning trees, and max-flow algorithms show, this trade-off between
structural and data changes makes one data structure preferable to the other depending on the ratio of link-
cut operations to queries. Note also that LC-Trees support path queries only and must be extended internally
to support other type of queries such as subtree queries [23, 84] that RC-Trees support.

17.5. EXPERIMENTAL RESULTS 255

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Ti
m

e
fo

r L
in

k
&

 C
ut

 O
pe

ra
tio

n
 (m

ic
ro

se
co

nd
s)

Chain Factor (Forest Size = 1024K)

RC-Trees: cut/link and data update
LC-Trees: cut/link and data update

Figure 17.11: Link and cut operations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

Ti
m

e
fo

r D
at

a-
C

ha
ng

e
O

pe
ra

tio
ns

 (m
ic

ro
se

co
nd

s)

Chain Factor (Forest Size = 1024K)

RC-Trees: add weight to path
LC-Trees: add weight to path

LC-Trees: change edge weight
RC-Trees: change edge weight

Figure 17.12: Data Changes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

Ti
m

e
fo

r P
at

h
Q

ue
rie

s
(m

ic
ro

se
co

nd
s)

Chain Factor (Forest Size = 1024K)

RC-Trees: path queries
LC-Trees: path queries

RC-Trees[No path weights]: path queries

Figure 17.13: Path queries.

256 CHAPTER 17. DYNAMIC TREES

17.5.6 Semi-Dynamic Minimum Spanning Trees

We compare the performance of the implementations of a semi-dynamic minimum spanning tree algorithm
using RC-Trees and Link-Cut Trees. The semi-dynamic algorithm maintains the minimum-spanning tree of
a graph under edge insertions to the graph. When an edge e is inserted, the algorithm finds the maximum
edge m on the path between the two end-points of e via a path query. If the weight of e is larger than that
of m, the algorithm replaces m with e in the MST. If the weight of e is larger than that of m, then the
MST remains the same. To find the maximum edge on a path quickly, the algorithm uses a dynamic-tree
data structure to represent the MST; this enables performing path queries in logarithmic time. An edge
replacement requires one cut and one link operation on the dynamic-trees data structure.

0.25
0.5

1
2
4
8

16
32
64

128
256

32K 128K 512K 2048K 8192K

T
im

e
fo

r
in

se
rt

in
g

ed
ge

s
(s

ec
on

ds
)

Number of edges

MST with RC-Trees
MST with LC-Trees

Figure 17.14: Semi-dynamic MST.

For this experiments, we compare two implementations of the semi-dynamic MST algorithm that only
differ in their choice of the dynamic-trees data structure. We start with a graph of 32K vertices and no edges
and randomly insert edges to the graph while updating its MST. We generate the sequence of insertions
offline by randomly selecting a new edge to insert, and by randomly generating a weight for that edge. Since
our implementation of RC-Trees supports constant-degree trees only, we generate a sequence of insertions
that ensures that the underlying MST has constant degree. For this experiment, we used degree-eight RC-
trees.

Figure 17.14 shows the timings using RC-Trees and Link-Cut Trees. Since the edge weights are ran-
domly generated, insertions are less likely to cause replacements as the graph becomes denser. Therefore the
number of queries relative to the number of link and cut operations increase with the number inserted edges.
Since path queries with RC-Trees are faster than with Link-Cut Trees, the semi-dynamic MST algorithm
performs better with RC-Trees for dense graphs.

17.5. EXPERIMENTAL RESULTS 257

17.5.7 Max-Flow Algorithms

As another application, we implemented the max-flow algorithm of Sleator and Tarjan [91]. The algorithm
uses dynamic trees to find blocking flows. For the experiments, we used the DIMACS’s Washington Gen-
erator in fct 2 mode to generate random level graphs with 5 rows and n/5 columns, with capacity up to
1024K. The sum of the in-degree and the out-degree of any vertex in a random level graphs generated with
these parameter is bounded by 8. We therefore use degree-eight RC-Trees for this experiment.

A random level graphs with r rows and l levels consists of rl + 2 vertices. The vertices consists of
a source, a sink, and r rows. Each row consists of l vertices, one vertex for each level. A vertex at level
1 ≤ i < l is connected to three randomly chosen vertices at level i + 1 by an edge whose capacity is
determined randomly. In addition, the source u, is connected to each vertex at the first level by an edge, and
each vertex at level l is connected to the sink v by an edge. The capacities of the edges incident to the source
and sink are large enough to accommodate any flow.

0.03125
0.0625

0.125
0.25

0.5
1
2
4
8

16
32

400 1600 6400 25600 102400

T
im

e
fo

r
m

ax
-f

lo
w

 (
se

co
nd

s)

Graph size

Max-flow with RC-Trees
Max-flow with LC-Trees

Figure 17.15: Max-flow

As Figure 17.15 shows the timings for two implementation of the max-flow algorithm of Sleator and
Tarjan that differ only in their choice of the dynamic-tree data structure being used. As the timings show
the LC-Trees implementation is faster than the RC-Trees implementation. This is expected because the
algorithm performs more structural changes (link and cuts) than queries.

258 CHAPTER 17. DYNAMIC TREES

Chapter 18

Conclusion

This thesis presents techniques for devising, analyzing, and implementing programs that adjust to external
changes automatically. The key properties of the techniques are

• generality,

• simplicity,

• analyzability, and

• efficiency.

The techniques are general-purpose; using our techniques any program can be made self-adjusting. Self-
adjusting programs adjust to any change in their data, including multiple simultaneous (batch) changes,
and changes to the outcomes of comparisons. The key to achieving generality is our dependence tracking
techniques based on dynamic dependence graphs and memoization and a change-propagation algorithm for
adjusting computations to external changes.

A key property of dependence tracking techniques and change propagation is that they can be applied
automatically. In particular, as a program executes, a run-time system can track the dependences in the
computation, and adjust the computation to changes automatically.

Self-adjusting programs are analyzable, i.e., the asymptotic complexity of self-adjusting programs can
be determined via analytical techniques. We prove a general theorem for determining the performance of
change propagation. For a particular class of computations, we introduce an analysis technique, called trace
stability, that helps bound the time for change propagation in terms of the distance between the execution
traces of a program. Informally speaking, we show that if a program has similar or stable traces on similar
inputs, then it will adjust to small changes efficiently.

Our techniques are asymptotically efficient. We prove that the overhead of our dependence tracking
techniques is O(1). We show that change propagation is effective by considering a number of applications.
For these applications, we show that change propagation yields computations that adjust to changes within
an expected constant factor of the best known bounds. It is important to note that we compare our bounds
to bounds that are obtained by special-purpose (dynamic) algorithms.

259

260 CHAPTER 18. CONCLUSION

We show that our techniques are practical by developing language techniques that enable applying de-
pendence tracking selectively. The language techniques enable transforming an ordinary (non-self-adjusting)
program into a self-adjusting program by making small, methodical changes to the code. By giving a se-
mantics to change propagation, we prove that the self-adjusting programs adjusts to changes correctly. We
presents two implementations of our techniques, one as a general-purpose ML library, and another as a C++
library specialized for certain data-parallel applications. We implement a number of applications using our
libraries and present a thorough experimental evaluation. Our experiments show that the overhead of our
dependence techniques is small, and that self-adjusting programs can perform well even when compared to
special-purpose algorithms, both in theory and in practice.

18.1 Future Work

We discuss several directions for future research.

Multiple Writes

In this thesis, we focus on single-assignment and purely functional programs, where every memory location
is written at most once. The key reason for this restriction is that single-assignment and purely functional
programs are automatically persistent [31]. Persistence enables tracking the dependences in a computation
and adjusting the computation to changes.

We show, in Chapter 14, that our techniques can be generalized to arbitrary, multiple-write programs
by making computations persistent automatically. To achieve persistence, we rely on versioning techniques
proposed by Driscoll et. al. [31]. We present a language with multiple writes (side effects), and give depen-
dence tracking techniques and a change-propagation algorithm for this language. This shows that there are
no fundamental difficulties in extending our techniques to languages that allow multiple writes or side ef-
fects. We plan to extend our algorithmic techniques to support multiple writes and study their effectiveness.

Compilers

The language techniques presented in this thesis are implemented as libraries for the ML language. These
libraries help us gain insight into the practical effectiveness of our techniques. They are, however, unsatisfac-
tory because of their weak typing guarantees and because of their lack of support for optimizations. Support
for types is important, because our language techniques rely on sophisticated type systems to ensure both
efficiency (by selective dependence tracking) and correctness (by ensuring that all appropriate dependences
are tracked). Support for optimizations is important, because our experiments indicate that even very simple
optimization, such as tail call optimizations, can reduce the overhead of dependence tracking significantly
(by a factor of two or more). We plan to build language-extension, or a compiler, for writing self-adjusting
programs.

18.1. FUTURE WORK 261

Kinetic Data Structures

As described in Chapter 16, our techniques make obtaining kinetic versions of self-adjusting programs
trivial. Although we present some experimental evidence that shows that our techniques are effective, our
experience with kinetic data structures thus far is relatively limited. In the future, we plan to extend the trace-
stability technique to enable determining the complexity of change propagation for kinetic computations,
and show stability bounds for some applications. We have some early results and experiments that show
that, as with dynamic algorithms, our approach yields efficient kinetic computations both in theory and in
practice.

Garbage collection

Most garbage collection algorithms rely on the assumption that most objects have a short lifetime. This as-
sumption does not hold for self-adjusting computations, because self-adjusting computations are persistent—
much of the computation data has a long lifespan. An interesting avenue of research is to devise garbage
collection techniques for self-adjusting or more generally for persistent programs. Self-adjusting computa-
tion has a particular structure that lends itself well to garbage collection, because the semantics makes clear
what becomes garbage when.

Applications

Self-adjusting computation techniques can be used to build computing systems that adapt to and interact
with continuously changing environments. Darema’s proposal [26, 27] for creating “dynamic data driven
application systems” and the references thereof highlight the importance of and the need for such systems.
We plan to apply our techniques to specific application domains such as robotics, simulation systems, sci-
entific computing, real-time systems, etc.

262 CHAPTER 18. CONCLUSION

Appendix A

The Implementation

We briefly describe our implementation of the general-purpose library presented in Chapter 15 and give the
code for the library. The library consists of the following modules: boxes, combinators, memo tables, meta
operations, modifiables, order-maintenance data structure, and priority queues. We give the complete code
for all modules except for priority queues and memo tables, which are standard data structures.

263

264 APPENDIX A. THE IMPLEMENTATION

A.1 Boxes
The code for the box module is shown below.

signature BOXED_VALUE =
sig

type index
type ’a t

val init: unit -> unit
val new: ’a -> ’a t
val eq: ’a t * ’a t -> bool
val fromInt: int -> int t
val fromOption: ’a t option -> ’a t option t
val valueOf: ’a t -> ’a
val indexOf: ’a t -> index

end

structure Box : BOXED_VALUE =
struct

type index = int
type ’a box = int * ’a
type ’a t = ’a box

val next = ref 0

fun init () = next := ˜1
fun new v = (next := (!next) + 1; (!next,v))
fun fromInt i = (i,i)
fun fromOption ob =

case ob of
NONE => (˜1,ob)

| SOME (i,_) => (i,ob)
fun eq (a as (ka,_),b as (kb,_)) = (ka=kb)
fun valueOf (_,v) = v
fun indexOf (k,_) = k

end

A.2 Combinators
The code for the combinator module is shown below.

signature COMBINATORS =
sig

type ’a modref = ’a Modref.t
type ’a cc

val modref : ’a cc -> ’a modref
val new : ’a -> ’a modref
val write : ’a Box.t -> ’a Box.t cc
val write’ : (’a * ’a -> bool) -> ’a -> ’a cc
val read : ’b Modref.t * (’b -> ’a cc) -> ’a cc
val memoize: ’a MemoTable.t -> int list -> (unit -> ’a) -> ’a
val mkLift : (’b *’b -> bool) -> (int list * ’b) -> (’b Modref.t -> ’d) -> ’d
val mkLiftCC : ((’b * ’b -> bool) * (’d * ’d -> bool)) ->

int list * ’b -> (’b Modref.t -> ’d cc) -> ’d cc
end

A.2. COMBINATORS 265

structure Comb :> COMBINATORS =
struct

type ’a modref = ’a Modref.t
type ’a cc = ’a modref -> Modref.changeable
type (’b, ’g) liftpad = (’b -> ’g) MemoTable.t * ’g MemoTable.t
type (’b, ’g) liftpadCC = (’b -> ’g cc) MemoTable.t * ’g Modref.t MemoTable.t

fun write x d = Modref.write d x
fun write’ eq x d = Modref.write’ eq d x
fun read (r, recv) d = Modref.read r (fn x => recv x d)
val modref = Modref.modref
val new = Modref.new
fun memoize (pad:’a MemoTable.t) key (f: unit -> ’a) =

let
fun run_memoized (f,r) =

let val t1 = !(Modref.now)
val v = f()
val t2 = !(Modref.now)
val nt1o = TimeStamps.getNext t1
val _ =
case nt1o of
NONE => r:=SOME(v,NONE)

| SOME(nt1) =>
if (TimeStamps.compare (nt1,t2)=LESS) then
(r := SOME(v,SOME(nt1,t2)))

else
(r := SOME(v,NONE))

in v end
fun reuse_result (t1,t2) =

let
val _ = TimeStamps.spliceOut (!(Modref.now),t1)
val _ = Modref.propagateUntil t2

in ()end
fun memoize’ (r:’a MemoTable.entry) =

case !r of
NONE => run_memoized (f,r)

| SOME(v,to) =>
case to of
NONE => v

| SOME(t1,t2) => (reuse_result (t1,t2); v)
in

memoize’ (MemoTable.find(pad,key,!Modref.now))
end

fun lift (p1,p2) eqb (key,b) f =
let fun f’ () = let val r = Modref.empty ()

in fn b => let val _ = Meta.change’ eqb r b
in memoize p2 key (fn _ => f (r)) end

end
in memoize p1 key f’ b end

fun mkLift eqb = lift (MemoTable.new (), MemoTable.new ()) eqb
fun mkLiftCC (eqb,eqd) =

let fun lifted arg f =
let fun f’ (b) = let val r = modref (f b) in read (r, write’ eqd) end
in lift (MemoTable.new (), MemoTable.new ()) eqb arg f’ end

in
lifted

end
end

266 APPENDIX A. THE IMPLEMENTATION

A.3 Memo Tables

The interface for the memo tables is shown below. As described in Section 6.1, it is easy to give an im-
plementation for memo tables based on hash tables. We therefore omit the code for the implementation of
memo tables here.

signature MEMO_TABLE =
sig

type ’a memotable
type ’a t = ’a memotable
type ’a entry = (’a * ((TimeStamps.t * TimeStamps.t) option)) option ref

val new: unit -> ’a memotable
val find: ’a memotable * int list * TimeStamps.t -> ’a entry

end

structure MemoTable: MEMO_TABLE = struct ... end

A.4 Meta Operations

The code for the meta operations is shown below.

signature META_OPS =
sig

type ’a modref = ’a Modref.t

val init: unit -> unit
val change: ’a Box.t modref -> ’a Box.t -> unit
val change’: (’a * ’a -> bool) -> ’a modref -> ’a -> unit
val deref : ’a modref -> ’a
val propagate : unit -> unit

end

structure Meta :> META_OPS =
struct

type ’a modref = ’a Modref.t

val change = Modref.change
val change’ = Modref.change’
fun init () = (Box.init (); Modref.init ())
val deref = Modref.deref
val propagate = Modref.propagate

end

A.5. MODIFIABLES 267

A.5 Modifiables

The code for the modifaibles is shown below.

signature MODIFIABLE =
sig

type ’a modref
type ’a t = ’a modref
type changeable
type time = TimeStamps.t

val init : unit -> unit

val empty: unit -> ’a modref
val new: ’a -> ’a modref
val modref: (’a modref -> changeable) -> ’a modref
val read : ’a modref -> (’a -> changeable) -> changeable
val write : ’a Box.t modref -> ’a Box.t -> changeable
val write’ : (’a * ’a -> bool) -> ’a modref -> ’a -> changeable

val change: ’a Box.t modref -> ’a Box.t -> unit
val change’: (’a * ’a -> bool) -> ’a modref -> ’a -> unit
val deref : ’a modref -> ’a
val propagate : unit -> unit
val propagateUntil : time -> unit

val now : time ref
val finger: time ref
val isOutOfFrame: time*time -> bool

end

structure Modref : MODIFIABLE=
struct

type time = TimeStamps.t
type changeable = unit

exception UnsetMod

(**
** Time Stamps

**)
val now = ref (TimeStamps.add (TimeStamps.init ()))
val frameStart = ref (!now)
val finger = ref (!now)

fun insertTime () =
let val t = TimeStamps.add (!now)
in now := t; t
end

(**
** Priority Queue

**)
structure Closure =
struct

type t = ((unit -> unit) * time * time)
fun compare (a as (ca,sa,ea), b as (cb,sb,eb)) = TimeStamps.compare(sa,sb)
fun isValid (c,s,e) = not (TimeStamps.isSplicedOut s)

end
structure PQueue = PriorityQueue (structure Element=Closure)

268 APPENDIX A. THE IMPLEMENTATION

type pq = PQueue.t
val PQ = ref PQueue.empty
fun initQ() = PQ := PQueue.empty
fun insertQ e = PQ := PQueue.insert (e,!PQ)
fun findMinQ () =

let val (m,q) = PQueue.findMin (!PQ)
val _ = PQ := q

in m end
fun deleteMinQ () =

let val (m,q) = PQueue.deleteMin (!PQ)
val _ = PQ := q

in m end

(**
** Modifiables

**)
type ’a reader = (’a -> unit) * time * time
datatype ’a readers = NIL | FUN of (’a reader * ’a readers)
datatype ’a modval = EMPTY | WRITE of ’a * ’a readers
type ’a modref = ’a modval ref
type ’a t = ’a modref

fun empty () = ref EMPTY
fun new v = ref (WRITE (v,NIL))
fun modref f =

let val r = (ref EMPTY)
in (f (r); r) end

fun read modr f =
case !modr of

EMPTY => raise UnsetMod
| WRITE (v,_) =>

let
val t1 = insertTime()
val _ = f(v)
val t2 = insertTime ()
val WRITE (v,rs) = !modr
val rs’ = FUN((f,t1,t2),rs)

in
modr := WRITE(v,rs’)

end
fun readAtTime(modr,r as (f,_,_)) =

case !modr of
EMPTY => raise UnsetMod

| WRITE(v,rs) => (modr := WRITE(v,FUN (r,rs)); f v)
fun addReadersToQ (rs: ’a readers, modr : ’a modref) =

let
fun addReader (r as (f,t1,t2)) =

if TimeStamps.isSplicedOut(t1) then ()
else insertQ(fn () => readAtTime(modr,r),t1,t2)

fun addReaderList rlist =
case rlist of

NIL => ()
| FUN(r,rest) => (addReader (r); addReaderList rest)

in addReaderList rs
end

fun write’ comp modr v =
case !modr of

EMPTY => modr := WRITE (v,NIL)
| WRITE(v’,rs) =>

if comp (v,v’) then ()
else

let val _ = modr := WRITE(v,NIL)

A.5. MODIFIABLES 269

in addReadersToQ (rs,modr)
end

fun write modr v = write’ Box.eq modr v

fun deref modr =
case !modr of

EMPTY => raise UnsetMod
| WRITE (v,_) => v

(**
** Change propagation

**)
fun propagateUntil (endTime) =

let fun loop () =
case (findMinQ ()) of
NONE => ()

| SOME(f,start,stop) =>
if (TimeStamps.isSplicedOut start) then loop ()
else if (TimeStamps.compare(endTime,stop) = LESS) then ()
else let val _ = deleteMinQ ()

val finger’ = (!finger)
val _ = now := start
val _ = finger := stop
val _ = f()
val _ = finger := finger’
val _ = TimeStamps.spliceOut (!now,stop) handle e => raise e

in loop ()
end

in (loop (); now := endTime)
end

fun propagate () =
let fun loop () =

case (findMinQ ()) of
NONE => ()

| SOME(f,start,stop) =>
let val _ = deleteMinQ ()

val finger’ = (!finger)
val _ = now := start
val _ = finger := stop
val _ = f()
val _ = finger := finger’
val _ = TimeStamps.spliceOut (!now,stop) handle e => raise e

in loop ()
end

in loop ()
end

fun isOutOfFrame(start,stop) =
not (TimeStamps.compare(!now,start) = LESS andalso

TimeStamps.compare(stop,!finger) = LESS)

fun init () = (now := TimeStamps.init(); initQ())
fun change l v = write l v
fun change’ comp l v = write’ comp l v
fun change’’ (l: ’a modref) v = write’ (fn _ => false) l v

end

270 APPENDIX A. THE IMPLEMENTATION

A.6 Order Maintenance
The interface and the implementation for the order-maintenance data structure is shown below. This imple-
mentation follows the description of Bender et. al. [16].

signature ORDERED_LIST =
sig

eqtype t

val init : unit -> t
val new: unit -> t
val add : t -> t
val getNext : t -> t option
val spliceOut: t*t -> int
val isSplicedOut: t -> bool
val compare: t*t -> order

end

structure TimeStamps : ORDERED_LIST =
struct

open Word

exception outOfTimeStamps
exception AssertionFail
exception badNode
exception badTop

val w_zero = fromInt(0)
val w_one = fromInt(1)
val w_two = fromInt(2)

(**)
(** TOP LEVEL **)
(**)

datatype ’a TopLevelNode =
NULL

| TN of ((’a TopLevelNode ref) (* prev *) *
(word ref) (* id *) *
(’a ref) (* data *) *
(’a TopLevelNode ref) (* next *))

(* Constant for internal use.
Smaller makes it more expensive but gives more stamps *)
val T = 1.41421

fun wordToReal w = Real.fromLargeInt((toLargeInt w))
fun TNTopID NULL = raise badTop

| TNTopID (TN(_,ref id,_,_)) = id
fun TNTopIDRef NULL = raise badTop

| TNTopIDRef (TN(_,id,_,_)) = id
fun TNNextRef NULL = raise badTop

| TNNextRef (TN(_,_,_,nxref)) = nxref
fun TNPrevRef NULL = raise badTop

| TNPrevRef (TN(pvref,_,_,_)) = pvref
fun TNData NULL = raise badTop

| TNData (TN(_,_,ref data,_)) = data

local
val maxVal = fromInt(˜1)
fun findMargin(mask,tau:real,lo,hi,bt,n_sofar) =

A.6. ORDER MAINTENANCE 271

let
val lo_num = andb ((notb mask), bt)
val hi_num = orb (lo_num,mask)
fun extendLeft cur c =

let val TN(ref pv,ref myid,_,_) = cur
val prevID = TNTopID(pv)

in if ((prevID>=lo_num) andalso (prevID<=myid)) then
extendLeft pv (c+w_one)

else (cur,c)
end

fun extendRight cur c =
let val TN(_,ref myid,_,ref nx) = cur

val nxID = TNTopID(nx)
in if ((nxID<=hi_num) andalso (nxID>=myid)) then

extendRight nx (c+w_one)
else (cur,c)

end
val (lo’, temp_count) = extendLeft lo n_sofar
val (hi’,count_total) = extendRight hi temp_count
val gap_size’ = mask + w_one
val density = (wordToReal(count_total))/(wordToReal(gap_size’))

in
if (Real.<(density, tau)) then

(lo’,hi’,count_total,gap_size’,lo_num,hi_num)
else let val newmask = mask*w_two + w_one

in if (newmask = maxVal) then raise outOfTimeStamps
else findMargin(newmask, tau/T, lo’, hi’, bt, count_total)

end
end

fun scanUpdate (cur,last,num,incr) =
((TNTopIDRef(cur)):= num;

if (cur=last) then ()
else scanUpdate (!(TNNextRef(cur)), last, num+incr, incr))

fun issueTopLevelNumber p =
let val left = TNTopID(!(TNPrevRef(p)))

val t’ = TNTopID(!(TNNextRef(p)))
val right = if (t’<=left) then left+w_two else t’

in
if ((left+w_one) = right) then

let val (lo,hi,total,gap_size,start_tag,_) =
findMargin(w_one,1.0/T,p,p,TNTopID(p), w_one)

val incr = gap_size div total
in scanUpdate (lo,hi,start_tag,incr)
end

else ((TNTopIDRef(p)) := ((left+right) div w_two))
end

in
fun addTop(node, value) =

let val TN(prevRef,ref pID,_,nextRef as ref next) = node
val newNode = TN(ref(node), ref(pID), ref(value), ref(next))
val TN(nextPrevRef,_,_,_) = next
val _ = nextRef := newNode
val _ = nextPrevRef := newNode
val _ = issueTopLevelNumber newNode

in newNode
end

fun deleteTop node =
((TNPrevRef(!(TNNextRef node))) := !(TNPrevRef node);
(TNNextRef(!(TNPrevRef node))) := !(TNNextRef node))

end

272 APPENDIX A. THE IMPLEMENTATION

(**)
(** BOTTOM LEVEL **)
(**)

val maxVal = (fromInt(˜1) div 0w2)+0w1;
val lSize = fromInt(32)
val gapSize = maxVal div lSize
val endV = maxVal - gapSize
val slackRef = ref SLACK

datatype ChildNodeV =
SLACK

| CN of (ChildNodeV ref TopLevelNode * (* parent *)
word * (* ID *)
ChildNodeV ref) (* next *)

type ChildNode = ChildNodeV ref
type t = ChildNode

fun isSplicedOut node = ((!node) = SLACK)

local
fun balanceList (child, parent) =

let fun processBlock (node, num) =
case !node of
SLACK => node

| CN(_, _, next) =>
(if (num>=endV) then

(node := CN(parent, num, slackRef); next)
else
(node := CN(parent, num, next);
processBlock (next, num+gapSize)))

val nextBlock = processBlock(child,0w0)
in case !nextBlock of

SLACK => ()
| _ => balanceList(nextBlock, addTop(parent, nextBlock))

end
in

fun add node =
case !node of

SLACK => raise badNode
| CN(parent, ID, next) =>

let val nextID = case !next of
CN(_, nextID, _) => nextID

| SLACK => maxVal
val newID = Word.>>(ID + nextID, 0w1)
val newNode = ref(CN(parent, newID, next))

in
(node := CN(parent, ID, newNode);
(if (newID = ID) then

balanceList(TNData parent, parent)
else ());
newNode)

end
fun addNew (node,n) =

case !node of
SLACK => raise badNode

| CN(parent, ID, next) =>
let

val nextID = case !next of
CN(_, nextID, _) => nextID

| SLACK => maxVal
val newID = Word.>>(ID + nextID, 0w1)

A.6. ORDER MAINTENANCE 273

val _ = n := CN(parent, newID, next)
in

(node := CN(parent, ID, n);
(if (newID = ID) then

balanceList(TNData parent, parent)
else ());
n)

end
end
fun new () = ref SLACK
fun compare (node1, node2) =

case (!node1,!node2) of
(CN(parent1, ID1, _), CN(parent2, ID2,_)) =>
let val TN(_,ref parent1ID,_,_) = parent1

val TN(_,ref parent2ID,_,_) = parent2
val comp = Word.compare(parent1ID, parent2ID)

in case comp of
EQUAL => Word.compare(ID1, ID2)

| x => x
end

| _ => raise badNode
fun getNext node =

let val n = case !node of
SLACK => NONE

| CN(parent, myid, next) =>
case !next of

SLACK => SOME(TNData(!(TNNextRef parent)))
| _ => SOME(next)

in case n of
NONE => NONE

| SOME(next) =>
case compare (node,next) of
LESS => n

| _ => NONE
end

fun next node =
case !node of

SLACK => raise badNode
| CN(parent, myid, next) =>

case !next of
SLACK => TNData(!(TNNextRef parent))

| _ => next
fun spliceOut (start,stop) =

let
fun deleteRange’ (next,parent) : ChildNode =

if (next=stop) then stop
else

case !next of
CN(_, _, nextNext) =>

(next := SLACK;
deleteRange’(nextNext,parent))

| SLACK =>
let
val nextParent = !(TNNextRef parent)
val TN(_,_,nextChildRef,_) = nextParent
val newNext = deleteRange’(!nextChildRef,nextParent)

in
((case !newNext of

SLACK => deleteTop(nextParent)
| _ => nextChildRef := newNext);
slackRef)

end

274 APPENDIX A. THE IMPLEMENTATION

in
case !start of

SLACK => raise badNode
| CN(parent, ID, next) =>

case (compare(start,stop)) of
LESS => (start := CN(parent,ID,deleteRange’(next,parent)); 0)

| _ => 0
end

fun spliceOut’(start, stop) = spliceOut(start,next(stop))
fun getFirst node =

let fun fstP p =
let val TN(ref prev, ref ID, ref child,_) = p

val TN(_ , ref pID,_,_) = prev
in if pID >= ID then child

else fstP prev
end

in case !node of
SLACK => raise badNode

| CN(p,_,_) => fstP p
end

fun init () =
let val newNode = ref SLACK

val TNprevRef = ref(NULL)
val TNnextRef = ref(NULL)
val newParent = TN(TNprevRef, ref(w_zero), ref(newNode), TNnextRef)
val _ = TNprevRef := newParent;
val _ = TNnextRef := newParent;
val _ = newNode := CN(newParent, w_zero, slackRef)

in newNode
end

end

A.7 Priority Queues

The interface for the priority-queue data structure is show below. The library requires the priority-queue
data structure to support the deleteMin operation but not a general-purpose delete operation. The
findMin operation is required to return a valid, (not spliced out) read. Based on standard priority queues,
it is easy to give an implementation for this interface.

signature PRIORITY_QUEUE =
sig

type elt
type t
exception Empty

val empty : t
val isEmpty : t -> bool
val findMin : t -> elt option * t
val insert : elt * t -> t
val deleteMin : t -> elt * t

end
functor PriorityQueue (structure Element:

sig type t
val compare: t*t -> order
val isValid: t -> bool

end) : PRIORITY_QUEUE =
struct ... end

Bibliography

[1] M. Abadi, B. W. Lampson, and J.-J. Levy. Analysis and caching of dependencies. In International
Conference on Functional Programming, pages 83–91, 1996.

[2] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. To appear in ACM
Transaction on Programming Languages and Systems.

[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In Proceedings of the
29th Annual ACM Symposium on Principles of Programming Languages, pages 247–259, 2002.

[4] U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization. In Proceedings of the 30th Annual
ACM Symposium on Principles of Programming Languages, 2003.

[5] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and M. Woo. Dynamizing static algorithms
with applications to dynamic trees and history independence. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

[6] U. A. Acar, G. E. Blelloch, and J. L. Vittes. An experimental analysis of change propagation in
dynamic trees. In Workshop on Algorithm Engineering and Experimentation, 2005.

[7] P. K. Agarwal, D. Eppstein, L. J. Guibas, and M. R. Henzinger. Parametric and kinetic minimum
spanning trees. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science, pages 596–605, 1998.

[8] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[9] J. Allen. Anatomy of LISP. McGraw Hill, 1978.

[10] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of dynamic trees. In
Automata, Languages and Programming, pages 270–280, 1997.

[11] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Maintaining information in fully-dynamic
trees with top trees, 2003. The Computing Research Repository (CoRR)[cs.DS/0310065].

[12] A. W. Appel and M. J. R. Gonçalves. Hash-consing garbage collection. Technical Report CS-TR-
412-93, Princeton University, Computer Science Department, 1993.

275

276 BIBLIOGRAPHY

[13] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. Journal of Algorithms,
31(1):1–28, 1999.

[14] J. Basch, L. J. Guibas, C. D. Silverstein, and L. Zhang. A practical evaluation of kinetic data struc-
tures. In SCG ’97: Proceedings of the thirteenth annual symposium on Computational geometry,
pages 388–390, New York, NY, USA, 1997. ACM Press.

[15] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[16] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simplified algorithms for
maintaining order in a list. In Lecture Notes in Computer Science, pages 152–164, 2002.

[17] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transformation.
Journal of Algorithms, 1(4):301–358, 1980.

[18] R. S. Bird. Tabulation techniques for recursive programs. ACM Computing Surveys, 12(4):403–417,
Dec. 1980.

[19] M. Blume. Toyota Technological Institute at Chicago.

[20] G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science, pages 617–626, 2002.

[21] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proceedings of the
IEEE, 80(9):1412–1434, 1992.

[22] N. H. Cohen. Eliminating redundant recursive calls. ACM Transactions on Programming Languages
and Systems, 5(3):265–299, July 1983.

[23] R. F. Cohen and R. Tamassia. Dynamic expression trees and their applications. In Proceedings of the
2nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 52–61, 1991.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press/McGraw-
Hill, 1990.

[25] A. Czumaj and C. Sohler. Soft kinetic data structures. In SODA ’01: Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algorithms, pages 865–872, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics.

[26] F. Darema. Dynamic data driven applications systems: A new paradigm for application simulations
and measurements. In Proceedings of Thirteenth International Symposium on Algorithms and Com-
putation (ISAAC), volume 3038 of Lecture Notes in Computer Science, pages 662 – 669. Springer,
2004.

[27] F. Darema. Dynamic data driven applications systems: New capabilities for application simulations
and measurements. In Proceedings of Thirteenth International Symposium on Algorithms and Com-
putation (ISAAC), volume 3515 of Lecture Notes in Computer Science, pages 610 – 615. Springer,
2005.

BIBLIOGRAPHY 277

[28] M. de Berg, O. Schwarzkopf, M. van Kreveld, and M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, 2000.

[29] A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation of attribute grammars with applica-
tion to syntax directed editors. In Proceedings of the 8th Annual ACM Symposium on Principles of
Programming Languages, pages 105–116, 1981.

[30] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In Proceedings of the
19th ACM Symposium on Theory of Computing, pages 365–372, 1987.

[31] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38(1):86–124, Feb. 1989.

[32] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In M. J. Atallah, editor, Algo-
rithms and Theory of Computation Handbook, chapter 8. CRC Press, 1999.

[33] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification—a technique for speeding
up dynamic graph algorithms. Journal of the ACM, 44(5):669–696, 1997.

[34] J. Field. Incremental Reduction in the Lambda Calculus and Related Reduction Systems. PhD thesis,
Department of Computer Science, Cornell University, Nov. 1991.

[35] J. Field and T. Teitelbaum. Incremental reduction in the lambda calculus. In Proceedings of the ACM
’90 Conference on LISP and Functional Programming, pages 307–322, June 1990.

[36] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applica-
tions. SIAM Journal on Computing, 14:781–798, 1985.

[37] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. SIAM J. Computing, 26:484–538, 1997.

[38] G. N. Frederickson. A data structure for dynamically maintaining rooted trees. Journal of Algorithms,
24(1):37–65, 1997.

[39] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. JACM, 35(4):921–
940, 1988.

[40] M. T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. SIAM Journal of
Computing, 28(2):612–636, 1998.

[41] E. Goto and Y. Kanada. Hashing lemmas on time complexities with applications to formula manipu-
lation. In Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, pages
154–158, 1976.

[42] R. L. Graham. An efficient algorithm for determining the convex hull of a finete planar set. Informa-
tion Processing Letters, 1:132–133, 1972.

[43] L. J. Guibas. Kinetic data structures—a state of the art report. In Proceedings of the Third Workshop
on Algorithmic Foundations of Robotics, 1998.

278 BIBLIOGRAPHY

[44] J. Henry G. Baker. List processing in real time on a serial computer. Commun. ACM, 21(4):280–294,
1978.

[45] M. R. Henzinger and V. King. Maintaining minimum spanning trees in dynamic graphs. In ICALP
’97: Proceedings of the 24th International Colloquium on Automata, Languages and Programming,
pages 594–604, London, UK, 1997. Springer-Verlag.

[46] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic
time per operation. Journal of the ACM, 46(4):502–516, 1999.

[47] A. Heydon, R. Levin, and Y. Yu. Caching function calls using precise dependencies. In Proceedings
of the 2000 ACM SIGPLAN Conference on PLDI, pages 311–320, May 2000.

[48] J. Hilden. Elimination of recursive calls using a small table of randomly selected function values.
BIT, 16(1):60–73, 1976.

[49] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM, 48(4):723–
760, 2001.

[50] R. Hoover. Incremental Graph Evaluation. PhD thesis, Department of Computer Science, Cornell
University, May 1987.

[51] R. Hoover. Alphonse: Incremental computation as a programming abstraction. In Proceedings of the
1992 ACM SIGPLAN Conference on PLDI, pages 261–272, June 1992.

[52] R. J. M. Hughes. Lazy memo-functions. In Proceedings 1985 Conference on Functional Program-
ming Languages and Computer Architecture, 1985.

[53] S. P. Jones. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.

[54] H. Kaplan, R. E. Tarjan, and K. Tsioutsiouliklis. Faster kinetic heaps and their use in broadcast
scheduling. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 836–844, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathe-
matics.

[55] M. I. Karavelas and L. J. Guibas. Static and kinetic geometric spanners with applications. In Proceed-
ings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 168–176. Society for
Industrial and Applied Mathematics, 2001.

[56] Y. A. Liu. Incremental Computation: A Semantics-Based Systematic Transformational Approach.
PhD thesis, Department of Computer Science, Cornell University, Jan. 1996.

[57] Y. A. Liu, S. Stoller, and T. Teitelbaum. Static caching for incremental computation. ACM Transac-
tions on Programming Languages and Systems, 20(3):546–585, 1998.

[58] Y. A. Liu and S. D. Stoller. Dynamic programming via static incrementalization. In European
Symposium on Programming, pages 288–305, 1999.

BIBLIOGRAPHY 279

[59] Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental programs. Science of Computer
Programming, 24(1):1–39, 1995.

[60] J. McCarthy. A Basis for a Mathematical Theory of Computation. In P. Braffort and D. Hirschberg,
editors, Computer Programming and Formal Systems, pages 33–70. North-Holland, Amsterdam,
1963.

[61] D. Michie. ’memo’ functions and machine learning. Nature, 218:19–22, 1968.

[62] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In Proceedings of the 26th
Annual IEEE Symposium on Foundations of Computer Science, pages 487–489, 1985.

[63] G. L. Miller and J. H. Reif. Parallel tree contraction, part i: Fundamentals. Advances in Computing
Research, 5:47–72, 1989.

[64] G. L. Miller and J. H. Reif. Parallel tree contraction, part 2: Further applications. SIAM Journal on
Computing, 20(6):1128–1147, 1991.

[65] J. Mostov and D. Cohen. Automating program speedup by deciding what to cache. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, pages 165–172, Aug. 1985.

[66] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[67] K. Mulmuley. Randomized multidimensional search trees (extended abstract): dynamic sampling.
In Proceedings of the seventh annual symposium on Computational geometry, pages 121–131. ACM
Press, 1991.

[68] K. Mulmuley. Randomized multidimensional search trees: Further results in dynamic sampling (ex-
tended abstract). In Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science, pages 216–227, 1991.

[69] K. Mulmuley. Randomized multidimensional search trees: Lazy balancing and dynamic shuffling
(extended abstract). In Proceedings of the 32nd Annual IEEE Symposium on Foundations of Com-
puter Science, pages 180–196, 1991.

[70] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, 1994.

[71] T. Murphy, R. Harper, and K. Crary. The wizard of TILT: Efficient(?), convenient and abstract type
representations. Technical Report CMU-CS-02-120, School of Computer Science, Carnegie Mellon
University, Mar. 2002.

[72] P. Norvig. Techniques for automatic memoization with applications to context-free parsing. Compu-
tational Linguistics, pages 91–98, 1991.

[73] M. H. Overmans and J. van Leeuwen. Maintenance of configurations in the plane. Journal of Com-
puter and System Sciences, 23:166–204, 1981.

280 BIBLIOGRAPHY

[74] M. H. Overmars. Dynamization of order decomposable set problems. Journal of Algorithms, 2:245–
260, 1981.

[75] M. H. Overmars. The Design of Dynamic Data Structures. Springer, 1983.

[76] M. Pennings. Generating Incremental Attribute Evaluators. PhD thesis, University of Utrecht, Nov.
1994.

[77] M. Pennings, S. D. Swierstra, and H. Vogt. Using cached functions and constructors for incremental
attribute evaluation. In Seventh International Symposium on Programming Languages, Implementa-
tions, Logics and Programs, pages 130–144, 1992.

[78] F. Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings of the Tenth Annual Sympo-
sium on Logic in Computer Science, pages 156–166. Computer Society Press, 1995.

[79] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathematical Structures
in Computer Science, 11:511–540, 2001. Notes to an invited talk at the Workshop on Intuitionistic
Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[80] J. Polakow and F. Pfenning. Natural deduction for intuitionistic non-commutative linear logic. In
J.-Y. Girard, editor, Proceedings of the 4th International Conference on Typed Lambda Calculi and
Applications (TLCA’99), pages 130–144. Springer-Verlag LNCS 1581, 1999.

[81] W. Pugh. Incremental computation via function caching. PhD thesis, Department of Computer
Science, Cornell University, August 1988.

[82] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

[83] W. Pugh and T. Teitelbaum. Incremental computation via function caching. In Proceedings of the
16th Annual ACM Symposium on Principles of Programming Languages, pages 315–328, 1989.

[84] T. Radzik. Implementation of dynamic trees with in-subtree operations. ACM Journal of Experimen-
tal Algorithms, 3:9, 1998.

[85] G. Ramalingam and T. Reps. A categorized bibliography on incremental computation. In Conference
Record of the 20th Annual ACM Symposium on POPL, pages 502–510, Jan. 1993.

[86] J. Reppy. University of Chicago.

[87] T. Reps. Generating Language-Based Environments. PhD thesis, Department of Computer Science,
Cornell University, Aug. 1982.

[88] T. Reps. Optimal-time incremental semantic analysis for syntax-directed editors. In Proceedings of
the 9th Annual Symposium on POPL, pages 169–176, Jan. 1982.

[89] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proceedings of the
32nd Annual IEEE Symposium on Foundations of Computer Science, pages 197–206, 1991.

BIBLIOGRAPHY 281

[90] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4–5):464–497, 1996.

[91] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

[92] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the ACM, 32(3):652–
686, 1985.

[93] J. M. Spitzen and K. N. Levitt. An example of hierarchical design and proof. Communications of the
ACM, 21(12):1064–1075, 1978.

[94] R. S. Sundaresh and P. Hudak. Incremental compilation via partial evaluation. In Conference Record
of the 18th Annual ACM Symposium on POPL, pages 1–13, Jan. 1991.

[95] R. Tarjan and R. Werneck. Self-adjusting top trees. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2005.

[96] R. E. Tarjan. Dynamic trees as search trees via euler tours, applied to the network simplex algorithm.
Mathematical Programming, 78:167–177, 1997.

[97] M. N. Wegman and L. Carter. New classes and applications of hash functions. In Proceedings of the
20th Annual IEEE Symposium on Foundations of Computer Science, pages 175–182, 1979.

[98] R. Werneck. Princeton University.

[99] D. M. Yellin and R. E. Strom. INC: A language for incremental computations. ACM Transactions on
Programming Languages and Systems, 13(2):211–236, Apr. 1991.

[100] Y. Zhang and Y. A. Liu. Automating derivation of incremental programs. In Proceedings of the third
ACM SIGPLAN international conference on Functional programming, page 350. ACM Press, 1998.

