Thesis Proposal:

Practical Automated Theorem Proving with the
Polarized Inverse Method

Sean McLaughlin

May 1, 2009

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:

Jeremy Avigad CMU, Philosophy
Robert Harper CMU, SCS
Dale Miller Ecole Polytechnique
Frank Pfenning (Chair) CMU, SCS

André Platzer CMU, SCS

Abstract

Mechanically checked, formal reasoning as envisioned by Leibniz has in the past few decades
become a reality. Proof assistants are programs that can rigorously and mechanically check the
details of logical arguments. Such formal reasoning has applications to nearly all areas of com-
puter science, from formal proof in mathematics to specifying and verifying critical properties of
hardware, software systems, and security protocols.

Twelf is a proof assistant specialized for reasoning about deductive systems such as logics and
programming languages. In its domain, it is one of the most powerful tools available. Significant
Twelf developments cover many different application areas. For example, in the theory of pro-
gramming languages, the formalization and proof of type safety for Standard ML represents the
first machine verified proofs of important properties of a full-featured programming language.
Proof carrying authentication frameworks based on Twelf allow for computer security based on
formal proof. Proof carrying code and typed assembly languages also based on Twelf allow users
to check properties of programs such as memory safety before they are executed.

The combination of higher order abstract syntax for representing structures with variable
binding, the Elf logic programming interpretation, and the M meta-logic for reasoning about
encodings make Twelf uniquely suited to reasoning about such systems.

For all the strengths of Twelf however, one glaring weakness is its lack of automation. As
we will see in this proposal, the obligations of the Twelf user are much greater than they need
to be. We propose the design and implementation of a proof-producing meta-theorem prover for
Twelf. We conjecture that such a theorem prover will greatly facilitate the use of Twelf, making
the resulting developments shorter and easier.

We intend to use the polarized inverse method as the basis of our automated reasoning. The
polarized inverse method combines the well-known inverse method with more recent techniques
such as focusing and polarization. We have already had demonstrable success with the polarized
inverse method in a number of variants of first order intuitionistic logic. This proposal describes
our prior work as well as our plan for building a Twelf theorem prover based on the polarized
inverse method.

Contents

I The Polarized Inverse Method

II

Introduction

The Inverse Method

2.1
2.2
2.3
2.4
2.5

Intuitionistic Propositional Logic

Forward Sequent Calculus
The Inverse Method
Optimizations

Example

Imogen

3.1

3.2
3.3

TheBackEnd
3.1.1 The Variable-Rule Loop .
Other Features
The FrontEnd.

Propositional Logic

4.1
4.2
4.3
4.4

4.5
4.6
4.7

Polarization

Focusing

Synthetic Connectives and Derived Rules

The Polarized Inverse Method . .
4.4.1 Matching
442 Search...........
Example
Heuristics

Implementation

First-Order Logic

5.1
5.2
5.3

5.4
5.5

Lifting
First-Order Focusing

Contraction, Subsumption, and Matching

5.3.1 Contraction
5.3.2 Subsumption
5.3.3 Matching
Implementation

Improvements.

Applications

12
12
14
16
18
19

21
21
21
23
23

24
24
25
27
28
28
30
30
31
32

35
35
35
36
37
37
37
39
39

43

6 Constraints
6.1 Backward Constraints i it e e e e e e e e e e e e e e e e e e e
6.2 Subsumption e e e e e e e e e e
6.3 Forward CONSIIAINLS v v v v v e
6.4 Implementation e e e e e e e e e
6.5 Future Work L L e e e e e

7 First-Order Induction
7.1 The MJ LOOD « v v v v e e e e e e e e e e
7.2 Induction e e e e e e e e e e
7.3 Possibilities to Explore L e e e e e

8 LF: A Logical Framework
8.1 LF . . e e e e
8.2 Sequent Calculus e e e e e e

9 M;

10 Conclusion
10.1 Related Work o o e e e e e e
10.2 Future WOTK o o e e e e e e e e e

III Appendix

A Example: List Reverse is an Involution
A1 Paper Proof e e e e e e e e
A2 TwelfEncoding o o i e e e e e e e e
A.3 Inductive Theorem Prover o v v v i i ittt e e e e e e e e e e
A.3.1 Lemma: Reverse is Deterministic oo
A.3.2 Lemma: Reverse InvolutionLemma i it
A.3.3 Theorem: Reverseis an Involution,
A.4 Twelf Formalization with Theorem Prover

B Example: Extrinsic Typing
B.1 Informal Definitions i i i e e e e e e
B.2 Twelf Encoding i e e e e e e e e e e e
B.3 LFTheorem Prover o v v i i i i i e e e e e e e e e e e e e e e e e

B.3.1 Inference Rules @ i i e e e e 71

B.3.2 Example: Term Inference 0 i it ittt 71
C Example: Type Preservation 73
C.1 Paper Proof e e e e e e e e 73
C.2 Twelf Encoding o o it e e e e e e e e e e e e e 74
C.3 MJ TREOTEM PIOVET . o o v v v vttt ettt e e e e e e e e e e e e 74
C.4 Twelf Formalization with Theorem Prover 76
Bibliography 83
[section]
Part I

The Polarized Inverse Method

1 Introduction

We can judge immediately whether propositions presented to us are proved, and that which others
could hardly do with the greatest mental labor and good fortune, we can produce with the guidance
of symbols alone... As a result of this, we shall be able to show within a century what many thousands
of years would hardly have granted to mortals otherwise.

— Leibniz

Mechanically checked, formal reasoning as envisioned by Leibniz has in the past few decades become
a reality. Proof assistants are programs that can rigorously and mechanically check the details of logical
arguments. Such formal reasoning has applications to nearly all areas of computer science, from formal
proof in mathematics to specifying and verifying critical properties of hardware, software systems, and
security protocols.

Twelf [Pfenning and Schiirmann, 1999] is a proof assistant specialized for reasoning about deductive
systems such as logics and programming languages. In its domain, it is one of the most powerful tools
available. Significant Twelf developments cover many different application areas. For example, in the theory
of programming languages, the formalization and proof of type safety for Standard ML [Lee et al., 2007]
represents the first machine verified proofs of important properties of a full-featured programming lan-
guage. Proof carrying authentication frameworks based on Twelf [Appel and Felten, 1999] allow for com-
puter security based on formal proof. Proof carrying code and typed assembly languages also based on
Twelf [Necula, 1997, Appel, 2001] allow users to check properties of programs such as memory safety be-
fore they are executed.

Twelf is based on the LF [Harper et al., 1993] dependent type theory, and a logic programming inter-
pretation called Elf [Pfenning, 1989]. Twelf augments EIf with the meta-logic M; [Schiirmann, 2000] for
reasoning about LF representations. In M it is possible to prove theorems about the encodings of deduc-
tive systems. These theorems are called meta-theorems because they are theorems about an encoded logic,
rather than theorems of the logic itself. The M meta-theorems, combined with proofs of adequacy of the
encodings, imply theorems about the encoded systems themselves.

Example For an illustration of the use of Twelf, we will compare an informal proof of type preserva-
tion for the simply typed lambda calculus with the corresponding Twelf proof. We will present this ex-
ample only briefly to illustrate our main points. An expository explanation of the theory behind Twelf is
[Harper and Licata, 2007]. We begin by defining terms and types. A term is either a constant such as (), a
variable, an application, or a lambda abstractions. The judgements for term and type construction follow
Martin-Lof’s principle of judgments-as-types.

zel I'N'zktme I'ttme; T'Ftmes

I'ktm () F'Ftmzx L'k tm (Az. €) I'Ftm (e -e2)

A type is either a base type such as unit or a function type.

Ftpmy Ftpm

F tpunit Ftp (11 = m2)

These definitions are encoded in Twelf in Figure 1, lines 4-15. Note that lambda abstractions have a higher-
order LF type, and are encoded in Twelf using higher-order abstract syntax [Pfenning and Elliott, 1988].
There is thus no need for a variable case. Extrinsic typing is defined using a context for variables. The Twelf
encoding is on lines 19-28.

v ® N U A W N =

[
-~ o

12

%%k Terms 31 eval : tm -> tm -> type.

tm : type. 33 eval/unit : eval <> <>.
34 eval/lam : eval (lam T) (lam T).
@ : tm -> tm -> tm. %infix left 10 @. 35 eval/app : eval (T1 @ T2) T4
lam : (tm -> tm) -> tm. 36 <- eval T1 (lam T3)
<> @ tm. 37 <- eval (T3 T2) T4.
38
%h% Types 30 %h% Type preservation
40
tp : type. 41 pres : of TA ->eval TT’ -> of T’ A -> type.
42 mode pres +01 +E -02.
unit : tp. 43
=>: tp -> tp -> tp. %infix right 10 =>. 44 - : pres of/unit eval/unit of/unit.
45 - : pres (of/lam D) eval/lam (of/lam D).
%%% Extrinsic Typing 46 - : pres
47 (of/app
of : tm -> tp —-> type. 48 (02 : of T2 A)
49 (01 : of T1 (A => B)))
of/unit : of <> umit. 50 (eval/app
51 (E2 : eval (T3 T2) T4)
of/lam : of (lam T) (A => B) 52 (E1 : eval T1 (lam T3)))
<= ({x} of x A -> of (T x) B). 53 (03 : of T4 B)
54 <- pres 01 E1
of/app : of (T1 @ T2) B 55 (of/lam (01’ : {x} (of x A -> of (T3 x) B)))
<- of T1 (A => B) 56 <- pres (01’ T2 02) E2 03.
<- of T2 A. 57
s8 %block b : some {A : tp} block {x : tm} {px : of x A}.
%#h% Evaluation so Yworlds (b) (pres _ _ _).

60 %total E (pres _ E).

Figure 1: Twelf Encoding of Type Preservation

I,of x t; F of ety Fhofe; (ta=t) Thofeyty
— of-unit of-lam of-app
'k of () unit T'Fof (Az.e) (t; = t2) Tk of (e1-e2) ty

Evaluation is defined in a similar fashion. The Twelf equivalent is on lines 32-38.

——— eval-lam eval-lam
Feval () () Feval (Az. e) (Az. €)

Fevale; (Ax.e3) Feval ([ea/x]es)e

eval-app
Feval (e;-e3)e

Now we can state the type preservation theorem.

Theorem. IfT'FHof eTandt eval ee’ thenT'of €' 7.

Proof. Let D be the derivation of |- eval e ¢’ and £ the derivation of I" of e 7. The proof is by induction on
D.

Case:
D= —uw
Feval () ()

eval-unit

Then e = ¢’ = (), so £ is a derivation of I" - of ¢’ 7.

Case:

D= eval-lam
Feval (Az. eg) (Az. ep)

Then e = ¢’ = Az. eg, so £ is a derivation of I" - of ¢’ 7.

Case:
D Dy
Fevale; (Ax.e3) F eval ([ea/z]e3) €
D= eval-app
Feval (e1-e3) €
51 52
FTFofel(e=7) FTFofesms
&= of-app

FTFof (eg-e2) T
l.e=e1-e9 Assumption
2.TF of (Az. e3) (12 = 7) Induction with Dy, &;
3.Forany z,if T Fof x o then'Fof esz 7 Inversion on 2.
4. T+ of (63 62) T (3) with &
5.T'Fofet Induction with (4) and Dy

The corresponding Twelf proof is found on lines 42-56.

Analysis Twelf developments consist of three kinds of code. The first is the specification of a logical system.
This is the process of defining the LF constants that encode the given logic, and the relationships between
the constants. In our example, the specification of types, terms, typing, and evaluation is found in lines
1-37 of Figure 1. Second, there are the statements of the theorems (and associated lemmas) that the user
wishes to prove about the encoded system. Theorems are encoded as LF type families. In the example, the
type family eval on line 41 along with its mode declaration on line 42 corresponds to the statement that
evaluation preserves typing. Finally, there are the relations that constitute the proofs of the meta-theorems.
These relations are realized as Elf logic programs. The relations witnessing the proof of type preservation is
found on lines 44-56. (The declarations on lines 58-60 asks that Twelf check that the proof is correct.) The
proofs of meta-theorems often receives the lion’s share of both the development time and sheer code bulk.
One of the authors of the Standard ML development estimated a ratio of proof to specification of 4 to 1 in
the simplest parts, to 20 to 1 in the more difficult sections. While Twelf can check a proof automatically, the
Twelf user must write proofs by hand in full detail (cf. lines 44-56).

Thesis Proposal This thesis deals with automating the creation of Twelf proofs. A capable Twelf theorem
prover would be able to completely eliminate large portions of these proofs, allowing the user more time for
the creative tasks of encoding systems and determining the necessary lemmas. At the same time it would
reduce or even eliminate the time to modify proofs if the specification changes. In our simple example, our
proposed theorem prover would obviate the need for writing the proof of type preservation on lines 44-56,
eliminating %20 of the code. In larger developments where the amount of proof to specification is much
greater, we could hope to eliminate a much higher percentage.

In our proposed thesis, we intend to build a practical and useful proof-producing meta-theorem prover
for Twelf!. To be practical, it should be able to prove many of the routine lemmas in a proof development.
To be useful it should be seamlessly integrated into Twelf and allow the user to easily check, inspect, and
record the evidence for the theorem prover’s judgments.

To build a practical and useful meta-theorem prover for Twelf, we intend to use the polarized inverse
method. The polarized inverse method is a refinement of the focused inverse method used by Chaud-
huri [Chaudhuri, 2006] to build a theorem prover for linear logic. It is comprised of three primary tools. The
inverse method [Maslov, 1964, Degtyarev and Voronkov, 2001b] uses forward saturation, generalizing resolu-
tion to non-classical logics satisfying the subformula property and cut elimination. Focusing [Andreoli, 1992,
Liang and Miller, 2007] reduces the search space in a sequent calculus by restricting the application of in-
ference rules based on the polarities [Lamarche, 1995] of the connectives and atomic formulas. Assigning
explicit polarities to subformulas using polarized logic in turn allows for additional flexibility in guiding proof
search, often with dramatic effect [McLaughlin and Pfenning, 2008, McLaughlin and Pfenning, 2009]. The
bulk of this thesis will be devoted to defining, proving properties of, and implementing the polarized inverse
method.

Thesis Statement. The polarized inverse method is a fruitful basis for automated reasoning in
non-classical logics. In particular, it forms the basis for a practical and useful proof-producing
meta-theorem prover for the Twelf proof assistant.

ITwelf originally included a theorem prover, but due to various shortcomings it is no longer used in practice. We will discuss the
existing theorem prover in more detail in Section 9.

Intuitionistic
Propositional Logic

Intuitionistic

First-Order Logic

Intuitionistic
Logic with Constraints
—_—

Intuitionistic
Logic with Induction

Figure 2: Logical systems discussed in this proposal.

Because developing a useful proof-producing meta-theorem prover is a complicated task, we will decom-
pose the problem by building six different theorem provers for logics of increasing complexity. Each logic
will address some aspect of the requirements of a Twelf meta-theorem prover, and will build on the previous
parts. These logical systems are shown in Figure 2. Logics whose implementations are complete, or nearly
so, are shown in blue. Implementations that are not started, or barely begun are shown in green. While the
goal of the thesis is a Twelf theorem prover, results related to the component systems are of independent
interest. The rest of the proposal is organized as follows.

The Inverse Method. In Section 2 we will review the main tool of our developments: the inverse method.
Using intuitionistic propositional logic as an example, we give a thorough description of the method of
theorem proving that will be used in the remainder of the proposal.

Imogen. In Section 3 we introduce our inverse method framework, called Imogen, and describe the princi-
pal algorithms involved in inference and redundancy elimination.

Intuitionistic Propositional Logic. In Section 4 we continue the discussion of propositional logic. We in-
troduce focusing and polarities, give a polarized backward calculus, and finally a polarized forward calculus
in which we search for proofs using the inverse method. IPL is a good introduction to our methods because
most of the properties exhibited by the other calculi are present there in their simplest form. Finally, we
detail Imogen’s performance on established benchmark problems for IPL from the ILTP [Raths et al., 2007]
library of intuitionistic propositional problems. Imogen is competitive with the best theorem provers for IPL.

10

Intuitionistic First-Order Logic. In Section 5 we move to intuitionistic first order logic. There we enrich
focusing and the inverse method with first order quantification. The important operations of subsumption,
rule matching, and contraction become significantly more difficult. We extend the results for propositional
logic to this richer setting, and describe the results of our implementation on the ILTP library of first-order
intuitionistic problems. In short, Imogen has the best performance of any existing intuitionistic theorem
prover.

Intuitionistic Logic with Constraints. LF adds to predicate logic a number of additional complications,
the most significant of which is the undecidability of its unification problem [Goldfarb, 1981]. Therefore
constraints must be added to the inverse method calculus for LF to handle unification equations that fall
outside of the decidable pattern fragment [Miller, 1992]. We anticipate this development in Section 6 by
developing an inverse method for a first order intuitionistic sequent calculus with constraints. We define the
intended semantics of constraints, and show how to use constraints in the forward direction with the inverse
method. We also describe an implementation that handles explicit unification equations and disequations.

Intuitionistic Logic with Induction. The primary component of the proof of type preservation is induction
on LF types. Induction in LF is complicated by many factors. One must handle an undecidable unification
problem, explicit substitutions, and the regular world hypothesis [Schiirmann, 2000]. Many of the chal-
lenges of an inductive theorem prover for LF are already present in the simpler setting of first order logic.
Thus, we will study the polarized inverse method with induction in this simpler setting. In Section 7 we
propose the implementation of a prototype for an inductive theorem prover for first order logic by extending
first order logic with fixpoint operators and induction schemas.

LF. In Section 8 we continue to our first primary objective, a focused sequent calculus, inverse method, and
theorem prover for LF. This provides an alternative method for searching for objects of a given LF type, and
forms an important component of the meta-theorem prover.

M, . In Section 9 we introduce our ultimate goal of a practical and useful inductive meta-theorem prover
for the M logic of Twelf. We describe the general structure such a prover will take and argue why we think
the task is feasible in the near future.

11

2 The Inverse Method

We begin by describing the inverse method [Maslov, 1964, Mints, 1993] which is the principal reason-
ing tool of the proposal. This section closely follows [Degtyarev and Voronkov, 2001b]. There are two
broad categories of proof search methods. Backward chaining (also called backward search and top-down
search) results from decomposing a goal into subgoals, reading an inference rule from its conclusion to
its premises.? Subgoals are solved recursively. Prolog’s SLD resolution and tableaux [Hihnle, 2001] are
examples of backward chaining. The other method is called forward chaining (also forward search and
bottom-up search). In forward chaining one maintains a database of known facts, usually clauses or se-
quents. The database begins the search process containing only axioms. Search proceeds by repeatedly
matching the premises of an inference rule with facts from the database to generate new facts, a pro-
cess known as rule application or rule matching. This process is repeated until the goal is found. Reso-
lution [Robinson, 1965, Bachmair and Ganzinger, 2001] and the inverse method are examples of forward
chaining search algorithms. The inverse method differs from resolution because while resolution operates
on clauses of literals in a normal form, the inverse method works directly with formulas. This makes it suit-
able for logics with no convenient normal form such as intuitionistic and linear logic. The inverse method
was first devised by Gentzen [Gentzen, 1934] and used to prove the decidability of intuitionistic proposi-
tional logic. The name “inverse method” was coined in [Maslov, 1964]. For a more detailed history with
copious references, see [Degtyarev and Voronkov, 2001b] Section 9.1. As we will see, some sequent calculi
are designed for forward search, others for backward search. We call them forward (sequent) calculi and
backward calculi respectively.

In this section we briefly outline the steps involved in constructing a forward sequent calculus for a logic,
and describe the basic principles of the inverse method. We will use intuitionistic propositional logic (IPL) as
a running example. In Section 2.1 we briefly remind the reader of the backward (tableaux) rules for IPL. In
Section 2.2 we motivate and define the forward (inverse method) calculus. Section 2.3 discusses the main
elements of inverse method. Section 2.4 presents some standard optimizations that will recur throughout
the proposal. Section 2.5 gives a complete example.

2.1 Intuitionistic Propositional Logic

Formulas of IPL have the following form:

Formulas A:=P|ANA|AVA|ADA|T|L

The meta-variable P ranges over atomic propositions. We consider A and A; < A, as abbreviations for
A D 1 and (41 D A2) A (A2 D Ay) respectively. We assume the reader is familiar with the proof theory
of IPL, in particular that the backward sequent calculus is sound and complete for the usual semantics
of natural deduction. We refer the reader to [Troelstra and Schwichtenberg, 1996] for such background.
Backward sequents are written I' => A where I' is a multiset of formulas and A is a formula.® T is called the
antecedents and A is called the succedent. Multisets will be used exclusively for antecedents in this proposal.
Multisets, which allow multiple occurrances of the same formula that can be distinguished, are crucial for
a computational interpretation of sequents (e.g. in the translation of sequent proofs into natural deduction
proof terms). The backward sequent calculus for IPL is given in Figure 3. This is essentially the propositional
fragment of Gentzen’s system LJ. We will sometimes abuse notation and write I' = A as if it were the
judgment “I' = A is derivable”. This will be a common abuse of notation in this proposal, and we will not

2Thus, rather confusingly, in top-down search the inference rules are read from the lower line to the upper line.

3Throughout the proposal we will use double arrows (I' = A) for backward sequents and single arrows (I' — A) for forward
sequents.

12

IAINAy = C

F:>A1 P:>A2
——— Init A-R
I''P=P I'= A NAs
A, —C A, = A
A-La D -R

I'= A, D A,

F,A1:>O
NAINAy = C

A-Ly

I'— A F,A2:>C

F,A13A2:>C

D-L

' = A I'= A, F,A1:>C F,A2:>C
—F V-R —— V-Ry V-L
I'= A,V A, I'= A,V A, Ay vA, = C

— T-R
=T No rule for T-L
— 1-L
l=~C No rule for L-R
Figure 3: IPL: The Backward Calculus
AT < (AL AN A" AL < (AL ANAY)" AL < (A D Ay
A"lq < (Al \/AQ)T Ag < (A]_ \/AQ)T A; < (Al D) AQ)T
All < (Al /\Ag)l AZQ < (Al /\AQ)Z Aq < (A1 D) Ag)l
AL < (AL VAL AL < (A v Ay AL < (A D Ay

Figure 4: IPL: Signed Subformulas

mention it further. Another notational convention we will adopt is in the left rules of backward calculi. We
will not copy the principle formula to the premises, but assume it is present in the meta-variable standing
for the non-principle formulas (T" in Figure 3).

The Subformula Property One important property of the backward calculus is the signed subformula prop-
erty. Simply stated, any formula occurring in a backward derivation of a formula A is a signed subformula
of A.

Definition 2.1 (Signed subformulas). A sign is either left (written “/”) or right (written “r”).* The signed
subformulas of a formula are given by the reflexive transitive closure of the rules in Figure 4. The signed
subformulas of a sequent I' => A are the signed subformulas of the elements of the sequent {I'!, A"}.

4This notation is nonstandard. The reason we choose left and right instead of the traditional positive and negative is that one of the
principal concepts in this proposal deals with the polarities of formulas. Polarities are also called positive and negative. The polarity of
a formula has nothing to do with its sign. Moreover, the two concepts are sometimes used side by side. To avoid confusion, we chose
the nonstandard left/right notation.

13

Theorem 2.1 (The Signed Subformula Property). Any formula occurring in a sequent in a derivation of
I’ = A is a signed subformula of ' = A.

Proof. Routine inspection of the inference rules. O

The signed subformula property will be critical in reducing the search space of the forward calculus.

2.2 Forward Sequent Calculus

We will now design a forward calculus based on the backward rules that is suitable for forward reasoning.
In order for the forward chaining strategy to be complete, a set of inference rules £ needs to satisfy the finite
rule property.

Definition 2.2 (Finite rule property). A set of inference rules £ satisfies the finite rule property if the fol-
lowing two conditions hold:

1. £ has a finite number of axioms.

2. Given a finite number of sequents, there is only a finite number of inferences (one-step derivations) of
L that are applicable to these sequents.

A calculus satisfying the finite rule property can then naively enumerate all consequences of the axioms.
Examining the backward rules, there are a number of ways the finite rule property fails. To have a finite
number of axioms, we must maintain only a finite number of axioms (initial sequents). Initial sequents arise
from the rules Init, T-R, and 1-L. We define forward sequents such that we can restrict the calculus to a
finite number of instances of these rules.

Definition 2.3 (Forward sequents). Forward sequents have the form I' — ~ where T" is a multiset of
formulas and ~ is a set which is either empty or a singleton. T is still called the antecedents and v the
succedent. We write - for the empty set.

The intention is that if I' — - is derivable, then I = A is derivable for any formula A, and any IV D T".
The second condition means that weakening will not be an admissible rule in the forward calculus. We can
now finitely simulate the initial rules:

Backward Forward
— 1-L 1-L
NitT==«<c 1l —-

——— TR T-R

=T T
— Init — Init
I'P—P P—P

Note that while the rule Init still appears to have an infinite number of instances, in the proof of any particular
formula A it can only be instantiated with atomic formulas occurring as a subformula of A. Thus the
subformula property assures us that there are a finite number of axioms, thus satisfying the first part of the
finite rule property.

Now we turn to the problematic rules that introduce an arbitrary new formula in the conclusion that does
not appear in a premise. For example, A, in A-L;. Again, this apparent infinitude of rules is made finite by

14

INA,A—~
Init — Contract
P—P I''A—~
' — A I'y — Ay A — I'Ay —
A-R A-Lq A-Lo
F1UF2—>A1/\A2 F,Al/\AQ—>’}/ F,Al/\A2—>’y
F,A1—>A2 F—>A2 F,A1—>-
—F D -Ry —— DR —— D -Rs
I' — A; D A, I' — A; D A, I' — A1 D Ay
I — A I'yAy — v M, Ay — v Iy Ay — 7
D -L V-L
IYuly, Ay DAy — v INuly, A1 VA — y1 U
F—>A1 F—>A2
—F V-R4 ——F— V-Ry
F—>A1\/A2 F—>A1\/A2
TR
T No rule for T-L
1L
1l —. No rule for 1-R

Figure 5: IPL: Forward Sequent Calculus

the subformula property: only formulas A; A A, that are subformulas of the initial formula can be generated
by the rule.

The final issue regards the antecedents I' in multi-premise rules. Define a formula of an inference rule
as principal if it is introduced by the rule. For instance, in the rule A-R, the formula A; A As is principal.
Call a formula non-principal if it is not principal, and not a subformula of a principal formula. Forcing the
antecedents I" to be the same in both branches is problematic. We would essentially have to guess how to
correctly weaken the antecedents of the two known sequents so that the rule would be applicable. This is
solved by combining the non-principal antecedents, rather than assuming they are identical. For example
The rule A-R becomes:

FﬁAl FﬁAQ F1—>A1 F2—>A2

A-R

A-R
F:>A1/\A2 F1UF2—>A1/\A2

The full forward sequent calculus P, is shown in Figure 5. Figure 6 shows a backward derivation. Figure 7
its corresponding forward derivation. We have the following theorems:

15

— Init —— Init
B,C=C A B=—B
- VR ——— DR
B,C= AvC B=ADRB
1L DL
1, (ADB)DC= AVC B,(A>DB)>DC= AVC

V-L
1lVB,(ADB)DC= AVC

>R
1lvB=((ADB)DC)DAVC

>R
= 1VBD>(ADB)DC)DAVC

Figure 6: Backward Derivation

— Init — Init
C —C B — B

_ VR, —mM8M—
C— AVC B-——A>B
1-L
L. B,(ADB)>C — AVC

1VB,(ADB)DC— AVC

1vB—((ADB)DC)DAVC

-— 1VBD((ADB)DC)DAVC

Figure 7: Forward Derivation

Theorem 2.2 (Soundness). If ' — A is derivable then so is ' = A. IfT' — - is derivable then for any A,
I' = A is derivable.

Proof. By induction on the derivation. O

Theorem 2.3 (Completeness). If ' = A is derivable then there is a I C I" and v C {A} such that T — v
is derivable.

Proof. Standard. E.g. [Degtyarev and Voronkov, 2001b]. O

2.3 The Inverse Method

The forward rules (Figure 5), together with the subformula property (Theorem 2.1) yield a complete method
for proof search. Suppose we are given a formula £ for which we want to find a proof. By the subformula
property, we only need to consider inference rules that generate signed subformulas of £&. We can thus
specialize the forward inference rules to subformulas of &, yielding a finite set of axioms and rules, called
PS,. Then PS, satisfies the finite rule property, and we can carry out a simple search procedure. We maintain

16

a database of sequents we have derived so far. This database initially contains only the axioms. At each step,
we search for instances of the inference rules whose premises are instances of sequents in the database. This
process produces derivations of new sequents. To avoid generating the same sequent over and over, adding
redundant sequents to the database, we introduce the subsumption relation.

Definition 2.4 (Subsumption). A sequent I'y — ~; subsumes a sequent I'y — 5 if I'; C T's and 1 C ».
A set (database) of sequents subsumes a sequent if one of its elements does. For sequents @1, Q2, write
Q1 = Q2 if Q1 subsumes Q5.

If a sequent is derived that is subsumed by the database, that sequent is discarded since it can not
lead to any new sequents. We continue matching rules to sequents until either the goal is subsumed or
no more progress can be made. In the later case, the set of facts is said to be saturated. A saturated
database is evidently a proof that the formula is not derivable. Indeed, since no new sequents can be
derived, and the procedure is complete, the formula is not derivable. Pseudocode for the algorithm is
roughly in Algorithm 2.1, and a graphical depiction in Figure 8. The line numbers of the image correspond
to the lines of Algorithm 2.1. The function matchRule(R, KeptSequents, ActiveSequents) tries to match a
sequent of KeptSequents to a premise of R. If the match succeeds, it tries to find matches for the remaining
premises in KeptSequents U ActiveSequents.

Algorithm 2.1 The Imogen Fixed-Rule Loop

1: Input a formula ¢
2: NewSequents « ()
3: KeptSequents < the axioms of Pifv
4: Rules « the rules of PS,
5: while KeptSequents # () do
6: for R € Rules do
7: NewSequents — matchRule(R, KeptSequents, ActiveSequents) U NewSequents
8: end for
9: if 3s € NewSequents. s < - — ¢ then
10: print “Proof found. ¢ is true.”
11: return
12: end if
13: ActiveSequents « KeptSequents U ActiveSequents

14: KeptSequents «— NewSequents

15: NewSequents « ()

16: end while

17: print “The database is saturated. ¢ is false.”
18: return

Theorem 2.4 (Soundness). If the algorithm of Figure 2.1 prints “¢ is true”, then - — &. If the algorithm prints
“¢ is false”, then there is no derivation - — &.

Proof. By the soundness of the forward calculus. Each sequent that enters the database is the result of
matching an inference rule to a sequent. By induction, the new sequent has a sound derivation. O

Theorem 2.5 (Completeness). If - — &, then the algorithm will eventually print “€ is true”.

Proof. The algorithm enumerates all proofs whose sequents contain subformulas of the goal. By the subfor-
mula property, any proof of ¢ is of this form. O

17

line 7

matchRule

line 14

Kept Sequents

Figure 8: Imogen’s Fixed-Rule Loop

In IPL, this procedure gives us even more. Since there are only a finite number of subformulas, there
are only a finite number of (fully contracted) sequents. Because of subsumption, we can only ever add a
finite number of sequents to the database. Therefore, the process just described terminates, and is a decision
procedure for IPL.

2.4 Optimizations

There are obviously many improvements that can be made to the naive algorithm. Much of the work of
this proposal will be pruning the search space by considering a subset of possible forward derivations and
showing that any formula with a derivation in the forward calculus has a derivation in the subset. Focusing is
an example of such an optimization which we will describe in Section 4. In addition to logical restrictions of
the space of possible derivations, there are numerous non-logical optimizations that play an important part
in the implementation of a practical and efficient theorem prover. The most significant of these are discussed
briefly in this section.

Labeling. The rule matching process compares formulas for equality (and later, unifiability). Working
directly with formulas is computationally expensive. A method to avoid frequently traversing entire for-
mulas is to label subformulas by abstracting the formula over its free variables and assigning it a predicate
label. This allows equality checks to be done quickly. It is possible to formalize this idea using a name
calculus [Degtyarev and Voronkov, 2001b]. Labeling leads to a deeper optimizations, such as a path calcu-
lus [Degtyarev and Voronkov, 2001b]. Instead of only storing labels, a path calculus also remembers the
location of a subformula in the goal formula. Saving this information allows for additional optimizations.
For instance, if (A; V A,)! is a subformula of ¢, it is easy to show that no sequent that has both A; and A4, in
its antecedents is necessary to build a derivation of £. Such sequents can be discarded from the database.

Redundancy Elimination. An essential optimization in forward-chaining style theorem proving is redun-
dancy elimination. Due to the latency of memory access, the limiting factor in forward proof search is the size
of the database of facts [Ramakrishnan et al., 2001]. Removing any redundant sequents from the database

18

is essential to reasonable performance. A newly derived sequent that is subsumed by an existing sequent of
the database is said to be forward subsumed. A newly derived sequent can also subsume existing database
sequents. Those existing sequents are said to be backward subsumed. A sequent is called redundant if is
either forward or backward subsumed. Much research into theorem proving implementations is directed at
quickly checking redundancy of a sequent with respect to a database.

Term Indexing. Since redundancy elimination, and therefore subsumption checking in the database, is
such an important operation, it is essential to use data structures for which finding possible subsumption
candidates are efficient. Term indexing is the study of the efficient storage and retrieval of terms satisfying
certain properties. For instance, we may wish to retrieve all the terms that are instances, or generalizations
of another term. Many term indexing data structures have been studied for both forward and backward sub-
sumption. Good general references are [Graf, 1996, Ramakrishnan et al., 2001]. We will see some statistics
for subsumption in Sections 4 and 5

2.5 Example

Here we give a concrete example of the Algorithm 2.1 proving the formula
E=(LVvB)D((ADB)DC)D(AV(O)

Labeling. First we label the signed subformulas of .

Lf=AtvcCT Lf =A- > B* Ly =L >C~
Li=L; O LT Ly = 1" VB~ LE=1L; DL}

Rule Specialization. Now we specialize the rules of P, to the calculus PS5, by generating rules for the
labels L1, ..., Lg. As an implementation trick, we combine the three different rules for >-R from Figure 5
into one rule by following the convention that a given formula doesn’t need to be present for a match to
succeed. For instance, the sequents A — B, B — B, and A — - can all match the rule

I'A— B
F—>L2

For brevity we can omit the non-principal antecedents I from the rule; it is implicit. We also omit the con-
clusion formula when it is not a principal formula of the rule. We call such I and non-principal conclusions
side formulas. Written in this abbreviated style, the inference rules for ¢ are

— A - —C A— B =Ly C—-
—— Rua — Ru — R R
.4)L1 '*)Ll '*)LQ L34).

Ly — Iy l—- B—- Ly — Ly

—— Ry R5 —— Rs

Ly Ly — - - — Lg

The initial axioms are

19

Goal Stage 3

- — Lg B, L3y — Ly (R1p, Q9) T Q1o
(Q13) L5, Ly — Ly (R, [Q&Qm])

Stage 0 (Qu4) Ls, L3 — Ly (R3, [Qs, Qs))
(Q15) Ls, Lz — C (Rs, [Qs,Q2)])

(QnA—A (Qi6)B,Ls — Ly (R3, [@5,Q12]) T Qur

@Q)B—1B (@Qi7) B— Ly (R4, Q14)

@) C —C Ls, L3 — C (Rs, [Q3,Q9]) C Q15

(@3) L — - Ls, L3y — Ly (Rs, [Q3,Q10]) C Q14
(Q8) A — Ls (Rs, Q11)

Stage 1 (Q19) C — Lg (R, Q12)

QD A— Ly (R1a, Qo) Stage 4

(Qs) B — La (R2, Q1)

(Qe) C — Ly (R1p, Q2) Ls, Ly — Ly (Rip, Q15) 3 Q14

(Q7) Ls — B (Rs, [Q3,Q1]) (Q20) Ls, L3 — Lg (R3,[Qs,Q19]) C Q22
(Q21) Ls — Ly (R3, Q14)

Stage2 Ls — Ly (Rs,Q17) O Q2
(Q22) L3 — Lg (Rs, Q13))

(Qg) Ly — Lo (R2, Q7) (Q23) B — Lg (Rs, Q17))

(Q9) B, L3 — C (R3, [Qs,Q2])

(@) B, L3 — L (Rs, [Qs5,Qs)) Stage 5

(@) A— Ly (R4, Q4)

(Q12) C — Ly (R4, Qs) (Q24) Ls — Lg (5, Q23))

Ls — Ly (Rs,[Qs3,Qs5]) 2 Qs (Q25) - — L (Rs, Q21))

Figure 9: Inverse Method Example

We show a run of the algorithm in Figure 9. Each sequent in the database is numbered. The non-axioms
have the rule and sequents from which they are derived in the right column. The grayed-out sequents are
either forward or backward subsumed. Forward subsumed sequents are marked by = and backward by .
(It is also easy to tell whether a sequent is forward or backward subsumed because a forward subsumed
sequent is not give a number since it never enters the database.) A “stage” corresponds to an iteration of the
while loop on line 5.

In this section we’ve introduced the theory of the inverse method. In the next section we describe the
generic infrastructure we’ve used for implementing inverse method theorem provers. This infrastructure is
called Imogen.

20

3 Imogen

Imogen is the name given to our family of inverse method implementations. Though the logics we will
discuss in this proposal differ, proof search is roughly the same in all cases. Because search is the same, but
the data structures and operations are different, we designed Imogen in two distinct components that we
call the front end and the back end. Each different logic has a corresponding front end. The front end handles
things like rule and sequent representation and the operations on those representations. The search itself
is common to all logics, and is the responsibility of the back end. There is only one back end for all logics.
The next section, Section 3.1, describes the basic workings of the generic back end search procedure. In
Section 3.3 we describe the front end interface.

3.1 The Back End

The Imogen back end treats sequents and rules as abstract types. The front end supplies the concrete im-
plementations and operations on them. These include rule matching, subsumption, and contraction among
others. Since rule generation is different for each logic as well, the front end must also specify how to gen-
erate initial rules and axioms from a given formula. Once the axioms and rules are known, the back end can
saturate the search space in a manner similar to that shown in Figure 9.

3.1.1 The Variable-Rule Loop

Imogen can use two different search strategies for proof search. The fixed-rule method is Algorithm 2.1.
This algorithm has the benefit that the number of inference rules is fixed. However, the same sequent may
be matched to the same premise of a multi-premise inference rule many times. Another way to search is to
memoize multi-premise rule application by building partially applied rules. That is, Imogen fixes an order
on the premises of a rule, and then matches them in order. When a match is made, a new inference rule is
generated. Information from the first match is propagated to the remaining premises and conclusion. For
example, consider the D-L rule

-— A B—-

ADB—-

If the sequent A — A was selected for matching to this rule, it could only match the first premise and the
result would be the rule

B —-
AADB— -
If the order of premises was reversed
B — . — A
ADB—-
then a match with B — B would yield rule
A
A>DB—B

21

The method of memoized inference rules is called the Variable-Rule Loop. Pseudocode for the variable-
rule loop is in Algorithm 3.1. We maintain 4 databases: ActiveRules, KeptRules, ActiveSequents, KeptSe-
quents. Elements of the active sets have already been considered for rule application, while those in the
kept sets have not. In lines 1-4 we initialize the databases. If both of the kept databases are empty, we can
not derive any additional sequents. By the soundness of the inverse method, the formula is not provable.
Otherwise, on lines 6, 8, and 18 we nondeterministically select a kept rule or a kept sequent. Now we match
the active sets to the kept element, generating new rules and sequents that are added to the kept databases.
The process is then repeated.

Algorithm 3.1 Imogen’s Variable-Rule Loop

1: ActiveSequents « ()
2: ActiveRules «+ ()
3: KeptSequents < InitialSequents
4: KeptRules «+ InitialRules
5: while KeptSequents # () \V KeptRules # () do
6: a < choose({ChooseRule, ChooseSequent})
7: if x = ChooseSequent A KeptSequents # () then
8: S « choose(KeptSequents)
9: ActiveSequents «— {S} U ActiveSequents
10: (NewSequents, NewRules) < matchSeq(.S, ActiveRules)
11: if any element of NewSequents subsumes the goal then
12: print “Proof found. The formula is true.”
13: return
14: end if
15: KeptRules < KeptRules U NewRules
16: KeptSequents «— KeptSequents U NewSequents
17: else if x = ChooseRule A KeptRules # () then
18: R <+ choose(KeptRules)
19: ActiveRules <« {R} U ActiveRules
20: (NewSequents, NewRules) < matchRule(R, ActiveSequents)
21: KeptRules «— KeptRules U NewRules
22: KeptSequents « KeptSequents U NewSequents
23: else
24: continue
25: end if

26: end while
27: print “The database is saturated. The formula is false.”
28: return

Fair Selection. The variable rule loop is slightly more complicated than the fixed rule loop. The selection of
rules and sequents must be fair: if a sequent is in the kept database, then it will eventually be considered for
rule application. In opposition to this requirement is the need to give a priority to sequents in the database;
some are more valuable to a proof than others. The measure of value is given by some heuristic, and having
a good heuristic is very important to a successful theorem prover. Imogen satisfies both requirements by
maintaining both a FIFO queue and a priority queue for each kept database. Usually Imogen selects the
sequent (rule) with highest priority. Every so often however, it selects the sequent from the FIFO queue so
as to ensure completeness. This is the “choose” operation in the algorithm.

22

3.2 Other Features

Redundancy Criteria. The performance of the inverse method can be improved by recognizing that some
sequents it generates are redundant. Colloquially, a sequent is redundant if has no more information than an
existing sequent. Concretely, this usually means that the sequent is subsumed by a sequent that is already in
the database. Imogen implements both forward and backward subsumption. Backward subsumption comes
in two forms. In one case, called simply backward subsumption, the backward-subsumed sequent is removed
from the active sequent database. In recursive backward subsumption, if Q < @', then not only @’ but all
the descendants of @)’ that are not ancestors of () are removed. This is justified because all the sequents
and rules that had been derived before will be derived again, this time with a stronger sequent to begin the
process. In the variable-rule loop, it is also possible to do forward and (recursive) backward subsumption on
rules, called rule subsumption. If a sequent in the database subsumes the conclusion of a newly generated
rule, than that rule could never result in a sequent that is not subsumed as well. We can thus safely throw
out the rule, in both the forward and backward cases.

Proof Terms. Each front end may provide a mechanism for constructing proof terms when proof search
is successful. The back end provides the proof term with the graph of rule matches, and it is then a simple
matter for the front end to reconstruct a proof term from the graph.

3.3 The Front End

Each logic must provide a front end interface to the search procedures just described. We call a front end
implementation an instance of Imogen. We will describe the front end for a logic in the section where the
logic is defined. In this section we simply point out the common features of all front ends.

Concrete Types. The front end must choose a concrete type for the abstract sequents and rules of the back
end. In the case of IPL we use a set of integers that represent subformula labels for the antecedents, and a
label for the succedent. In addition to concrete types, the front end must provide the principal operations of
forward reasoning: subsumption, contraction, and rule matching.

Term Indexing. Since the back end is agnostic with respect to the actual form of sequents and rules, term
indexing must be provided by the front end. The provided indexing data structures are used to store and
retrieve rules and sequents for fast subsumption checking.

Combination. The separation of Imogen into front and back ends is helpful when different instances of
Imogen are combined. A simple example is in the first order instance. If the first order front end notices
that an input formula is propositional, it can use the propositional instance that is much faster due to
simpler operations like matching and contraction. Likewise, if a constraint formula doesn’t use the constraint
domain, it can be solved by the more efficient first order prover. Looking ahead, the M instance will
frequently use the LF instance during proof search. Thus the same back end will be used in two radically
different ways during a single search.

In this section we’ve briefly introduced the methods by which we implement the inverse method. In
the next section we describe the important optimization techniques of polarization and focusing, while
describing our implementation of a theorem prover for intuitionistic propositional logic.

23

4 Propositional Logic

In this section we complete the exposition of the main tools of this proposal. In Section 2 we described
the primary search strategy, the inverse method. In this section we discuss focusing and explicit polarization
using polarized formulas. These are two strategies that greatly reduce the search space of the backward and
forward sequent calculi. This reduction in the search space has a dramatic effect on the efficiency of proof
search. We continue to use IPL as a running example.

For numerous reasons, intuitionistic formulas turn out to be too rough for our analyses. We can gain a
finer control over the search space by enriching the language of formulas. In the next section we introduce
polarized formulas, and show translations between standard and polarized formulas. We continue by de-
scribing a polarized backward sequent calculus, and giving soundness and completeness results with respect
to the unpolarized sequent calculus. The polarized backward calculus has far better search behavior than
the unpolarized calculus. In the remainder we proceed as in Section 2 to give a forward calculus suitable
for the inverse method. Results for the propositional instance of Imogen are given in Section 4.7. In short,
Imogen is competitive with all existing provers for IPL.

4.1 Polarization

The backward calculus defined above has an unacceptable degree of nondeterminism in its search space. Call
a rule invertible if its premises are derivable if and only if its conclusion is derivable. One simple observation
is that invertible rules can be applied in any order, without the need to consider other options. For instance,
in deriving I' = A A B A C we must find derivations for ' = A,I’ = B,I' = C, regardless of any left
rules that may be applied. A more surprising result of Andreoli [Andreoli, 1992] is that a similar result holds
for non-invertible rules. To take full advantage of these observations, we will refine propositional formulas
to polarized formulas.

Polarized Formulas. Each logical connective can be assigned a polarity, either positive or negative.> A con-
nective is positive if its left rule in the sequent calculus is invertible and negative if its right rule is invertible.
As shown below, the polarized inverse method fundamentally depends on the polarity of connectives. In
intuitionistic logic, the status of conjunction and truth is ambiguous in the sense that they are both positive
and negative, while their status in linear logic is uniquely determined. We syntactically distinguish positive
and negative formulas with so-called shift operators [Lamarche, 1995] explicitly coercing between them.
Since it is so convenient for our purposes, we use the notation of linear logic, even though the behavior of
the connectives is not linear. Note also that both in formulas and sequents, the signs are not actual syntax
but mnemonic guides to the reader.

Positive formulas A" := PT | AT @ AT |1 | AT@ AT |0 |A™
Negative formulas A~ := P~ | A= & A~ | T | AT — A7 | 14T
The translation A~ of an (unpolarized) formula F' in intuitionistic logic is nondeterministic, subject only to
the constraints that the erasure defined below coincides with the original formula: |A~| = F, and all atomic

formulas are assigned a consistent polarity. For example, the formula ((pV7)A (¢ D)) D (p D ¢) D r can
be interpreted as any of the following polarized formulas (among others):

>See the footnote on nomenclature on page 13

24

AT ® AT = |AT|V|A]] o =1 i =T
A @ Af| = |AT| A A LA™ = A7 |PF| =P
[AT&AY | = AT A AL] T =T \P=| =P
A — Ay =AT]D |4y] [TA*T] = |A"|

Figure 10: IPL: Erasure of polarized formulas

(p @)@l —r7)) = (Up” —qg) —r")
MWl @lr)®llg —r7)) = (ITllp” —q) —r7)
et ert) & (@ — ") — (LT — 1¢%) — 177

Shift operators have highest binding precedence in our presentation of the examples. As we will see
from the inference rules given below, the choice of translation determines the search behavior on the
resulting polarized formula. Different choices can lead to search spaces with radically different struc-
ture [Chaudhuri et al., 2008, McLaughlin and Pfenning, 2008].

4.2 Focusing

The backward calculus is a refinement of Gentzen’s LJ that eliminates don’t-care nondeterministic choices,
and manages don’t-know nondeterminism by chaining such inferences in sequence. Andreoli was the first to
define this focusing strategy and prove it complete [Andreoli, 1992], and similar proofs for other logics soon
followed [Howe, 1998, Liang and Miller, 2007, Zeilberger, 2008, Baelde, 2008]. Polarization can be applied
to optimize search in a wide variety of logics.

The polarized calculus is defined via four mutually recursive judgments. In the judgments, we separate
the antecedents into positive and negative zones. We write I for an unordered collection of negative formulas
or positive atoms. Dually, C' stands for a positive formula or a negative atom. The first two judgments concern
formulas with invertible rules on the right and left. Together, the two judgments form the inversion phase of
focusing. The context AT is consists entirely of positive formulas and is ordered so that inference rules can
only be applied to the rightmost formula, eliminating don’t-care nondeterminism. The next two judgments
are concerned with non-invertible rules. These two judgments make up the focusing phase.

Backward search for a proof of A~ would start with inversion from -;- {+ A~ and then alternate between
focusing and inversion phases. Call a focusing phase followed by an inversion phase a block (also called
a dipole in the literature). The boundary between blocks is of particular importance. The sequents at the
boundary have the form I';- f} C, which we call stable sequents. There are two rules that control the phase
changes and make the choices at block boundaries. The full calculus is shown in Figure 11. Note that the
positive formulas A of the inversion phases are ordered, thus making those phases deterministic.

Soundness is straightforward for the polarized backward calculus, as we can erase the formulas and
contract shift steps. This will directly yield a backward proof. (Recall that C' stands either for a negative
formula or a positive atom.) Completeness is non-trivial, and the reader is referred to the literature.

Theorem 4.1 (Soundness). If I'; A ¢ C then [T, A| = |C]|.

25

Right Inversion |I; AT ¢ A~

;AT P~ T;AT A7 T;AT ¢ A
——— R(RA-Atom) R(RA-&)
;AT 4 P~ [AT AT &AL
DAY AF A ;AT AT
B(RA-—0) —— R(RA-T) ——— B(RA-D
;AT AF — A7 OAT T ;AT AT
Left Inversion
F7P+7A+ﬂc F7A+7AT7A;ﬂC F,A+ﬂC
———— R(LA-Atom) R(LA-®) —————— R(LA-1)
;AT P C AT AT @ A 1 C At 1¢C
;AT AT C T;AT AT g C AT, AT C
R(LA-®) ————— R(LA-0) —— R(LA-
;AT AT @ AT C ;AT 09 C AT, JA™ (v C
Right Focusing |T' |} [A"]
Ty [Af] T4 [47]
——— R(RS-Atom) B(RS-®) B(RS-1)
L, Pty [PF] Iy [A7 ® Af] Ty [1]
Ty [A]] Ty A~
— BRS-®) — B(RS-])
I | [A] & Af] No rule for 0 Ly [lA7]
Left Focusing |I';[A7] | C
L [AT] 4 C LAy] 4 C
B(LS-Atom) B(LS-&1) —— R(LS-&2)
;[P 4 P Iy [AT&AS] L C I [AT &AL C
Ly [Af] T;[47]4C ;AT C
B(LS-—0) —_— RS-
I [Af - A7) 4 C No rule for T I;[TAT] 4 C
Stable Rules
I [AT] LA [AT] 4 C
— [(FocusR) 3(FocusL)
;- AT LA ;- C

Figure 11: The Backward Focused Calculus

26

Proof. By induction on the derivation. O

Theorem 4.2 (Completeness). If - = |C| then ;- {} C.

Proof. The proof is a special case of [Liang and Miller, 2007]. O

4.3 Synthetic Connectives and Derived Rules

We have already observed that backward proofs have the property that the proof is broken into blocks, with
stable sequents at the boundary. The only rules applicable to stable sequents are the rules that select a
formula on which to focus. It is the formulas occurring in stable sequents that form the primary objects of
our further inquiry.

It helps to think of such formulas, abstracted over their free variables, as synthetic connectives [Andreoli, 2001].
Define the synthetic connectives of a formula A as all subformulas of A that could appear in stable sequents
in a focused backward proof. In a change of perspective, we can consider each block of a proof as the ap-
plication of a left or right rule for a synthetic connective. The rules operating on synthetic connectives are
derived from the rules for its constituent formulas. We can thus consider a backward proof as a proof using
only these synthetic (derived) rules. Each derived rule then corresponds to a block of the original proof.

Since we need only consider stable sequents and synthetic connectives, we can simplify notation, and
ignore the (empty) positive left and negative right zones in the derived rules. Write I';- = ;C as ' = C.
As a further simplification, we can give formulas a predicate label and abstract over its free variables. This
labeling technique is described in detail in [Degtyarev and Voronkov, 2001b]. For the remainder, we assume
this labeling has been carried out. Define an atomic formula as either a label or a predicate applied to a
(possibly empty) list of terms. After labeling, our sequents consist entirely of atomic formulas.

Example 4.1. In Figure 12, frame boxes surround the three blocks of the proof. The synthetic connectives
are a, a D band (a D b) D c. There is a single derived rule for each synthetic connective (though this is not
the case in general). The atoms are assigned negative polarity. We implicitly carry the principal formula of a
left rule to all of its premises.

F:>Cl F,a=>b
— Syn 7% syn, Syns
Ia=—a INa>b=5 IL(adb)De=c¢

These rules correspond to the blocks shown in Figure 12. Corresponding labeled rules for L; = A D B and
Ly =(AD>B)D>C are

'=a lNa=5b

— Sym ——% syn . Syng
I'N'a=a L, =10 I'N'L, =c¢

Then the blocks of the proof from Figure 12 can be compressed to the succinct

—— Sym
Ll,Lz,a:>a
——— Symy
Ll,LQ,CL:>b
——— Syng
Ll,LQ — C

27

RLS-Atom
lla—b) —c la—baslal | a

RFocusL

l(la —b) —¢ la—ba; fa

RRS-|
lla—b) —c la—bal[la)

L(la —b) — ¢, la—ba;[la— bl Ib

RLS-—o

RFocusL

l(la —b) — ¢, la — bja=—=b

RLS-—o
la—b) —c,la—bi[l(la—b) — d b
RFocusL
l(la —ob) —c,la—ob=c¢
s L(L(la—b) =)t [(la—b) —c
RA-—o

it ll(la —b) —¢) — |(la —b) —c

Figure 12: Backward proof, with blocks

4.4 The Polarized Inverse Method

We now wish to turn the above observations into an efficient proof search procedure using the inverse
method. The combination of the inverse method combined with the optimizations of polarization and fo-
cusing we call the polarized inverse method. In the remainder of this section we show how to implement
the polarized inverse method for IPL. The implementation will consist of providing a front end for Imogen.
Since we've already discussed the sequent representation and subsumption, and contraction is trivial, we
need only show how to match rules and sequents.

4.4.1 Matching

In the backward direction in IPL, matching is a simple matter, consisting of decomposing the principal
connective and copying the context. The presence of possibly empty succedents and the union of contexts
complicates the operation in the forward direction. Additionally, focusing can make rules of arbitrary size,
making the rules relatively complicated objects. Since formally defining matching obscures this rather simple
process, we first give an example of matching a rule with an empty succedent to motivate the definition.
Consider the rule obtained by focusing on 7(A @ B) on the left.

A— .- B—.

1(A®B) — -

We can match this rule one premise at a time. If we match the leftmost premise with the initial sequent
A — A, then the resulting rule will be

B— A
1M(A®B) — A

28

Notice that the concrete succedent A instantiated the - in the rule. Now the succedent of a sequent that
matches the second must match A as a succedent. However, if the matching sequent were A,~A — -, then
the resulting rule would be

B —-

T(A@B)a_'A_)

and the succedents of the rule would not be instantiated. Note that the unmatched antecedent —A was
added to the antecedents of the conclusion of the rule. As mentioned in Section 2.5, we can avoid using
three different rules for D-R. We require neither the antecedents nor the succedent to match exactly. Rule
matching is then defined by cases. In the simplest case, there are no empty succedents.

Definition 4.1 (Rule Matching 1). Sequents A; — 44, ..., A, — J,, match rule

1—‘1—>141 Fn—>An,
I — A
if for all 1 <1 < n, either §; = A; or ¢; = -. In that case, the resulting sequent is

TuA\THU...UA,\T,) — A

If there is a premise with an empty succedents in the rule, then the conclusion also has an empty succedent.
This can be seen by a routine investigation of the focusing rules. In this case, we can rearrange the premises
so that the first k& premises have an empty antecedent. Then we can use the following definition of matching.

Definition 4.2 (Rule Matching 2). Sequents A; — 44, ..., A, — J,, match rule

Ty — - o Th— Thp— Agyr 0 Dy — A,

r —-
if one of the following conditions holds.
1. e Foralll1<i<k, d;=-.

e Forallk+1<i<m,d =-ord = A;.

In this case the resulting sequent is

2. e Thereexists1 <i¢ <k, 6; = A.
e Forall1<i<k, §;=-ord; =A.
e Forallk+1<i<n,d; =-ord, = A,.

In this case the resulting sequent is

TruA\THU...UuA,\T,,) — A

29

4.4.2 Search

Using the inverse method we can now search for polarized proofs in the forward direction. We suppose the
input formula £ has negative polarity. (If £ is positive, simply prepend an up arrow.) First we stabilize £. This
means we decompose £ using the asynchronous rules yielding a set of stable sequents. This step corresponds
to the lower part of Figure 12 that is not in a block. We search for proofs of each stable sequent separately.
Given a stable sequent ¢, we generate the corresponding derived inference rules and initial sequents by
focusing on the synthetic connectives of ¢q. This process creates all possible blocks that could arise in a
backward focused proof. Then we start a saturating search using one of the Imogen loops. If we eventually
generate a sequent that subsumes the goal sequent ¢, then we have found a proof. If the database saturates,
we stop searching, as no proof exists.

Theorem 4.3 (Soundness). The above algorithm is sound. That is, if it reports a proof has been found for every
g, then - — &. If for any q the algorithm reports that no proof exists, then then there is no derivation - — &.

Proof. If a proof is found, then we can construct the derivation using the derived inference rules, which can
in turn be expanded into rules of the original forward calculus for IPL. If the database saturates for one of
the ¢, by the completeness of the focused system no proof can exist. O

Theorem 4.4 (Completeness). If - — &, then the algorithm will eventually report that a proof exists.

Proof. By the correctness of the Imogen loops and the completeness of the focused calculus. O

4.5 Example
As an example, we consider the example formula from Section 2.

E=(LVvB)D((ADB)DC)D(AVC)

First we choose a polarization &, for ¢ such that |£,| = £. We arbitrarily decide that A, B, C' will be positive,
and we will use a minimal number of shifts. This yields

& =08 B) — [([(A—1B) = 1C) < (A& C)
The initial inversion phase yields the single sequent
B,[(A—1B) - 1C= AdC
First we label subformulas:
Now we generate the initial rules and sequents. Focusing on L; on the right yields the two axioms
A— L1 C — Ll
Focusing on L3 on the left yields the derived rule

C—~v A— Ly

Ry
Ly —

30

Stage 0

(Qo) A— Ly

(Q1) C— Ly

(@Q)B—B

Stage 1

(Q3) B— Ly (R2, Q2)

Stage 2

(Q4) B7L2 — L1 (Rly [Q17Q3])

Figure 13: Polarized Inverse Method Example

Focusing in turn on the occurrence of Lo in R; yields the rule

.4)B
— Ry
o — Lo

Finally we focus on B, occurring on the right in R, giving the axiom B — B. The goal is B, L3y — L.
The trace of the polarized inverse method is shown in Figure 13. Compare to Figure 9.

4.6 Heuristics

We will see in later sections that the ability to assign polarities to atomic formulas will greatly influence
the search behavior. In this section we show that the ability to add shifts also can drastically improve
performance. Since we don’t have a general theory about the optimal choice of atom polarities or the
insertion of shifts, we use heuristics.

Notice that in some cases focusing will lead to undesirable behavior. For instance, formulas of the form

(A1 ® B1) ® (A2 ® Bs)...® (A, ® By)
will generate an exponential number of inference rules and

(Al@Bl)—O(AQ@BQ)—O(An@Bn)—OO

will produce a single rule with an exponential number of premises. To counteract such deleterious effects,
one can insert double shifting operators to break up the focusing and inversion phases, leading to a smaller
number of rules at the cost of a larger search space. For instance,

MA@ B) @ [1(A2@ By)...® [1(A, & By)

31

300

Refuted

Proved
250
200
150
100
50

ft-Prolog ft-C LJT PITP PITPINV IPTP STRIP Imogen

Figure 14: ILTP Propositional Benchmark

generates a linear number of rules. By making such observations on a target set of formulas, we designed
heuristics to prevent this kind of formula from ruining the chances that the proving process will never even
begin because the front end spends an exponential amount of time creating the inference rules.

4.7 Implementation

The propositional instance of Imogen gives promising results. We evaluated our prover on the proposi-
tional fragment of the Intuitionistic Logic Theorem Proving (ILTP) [Raths et al., 2007, version 1.1.2] library
of problems for intuitionistic theorem provers. The 274 problems are divided into 12 families of diffi-
cult problems such as the pigeonhole principle, labeled SYJ201 to SYJ212. For each family, there are
20 instances of increasing size. There are also 34 miscellaneous problems. The provers that are cur-
rently evaluated are ft-C [Sahlin et al., 1992, version 1.23], ft-Prolog [Sahlin et al., 1992, version 1.23],
LJT [Dyckhoff, 1992], PITP [Avellone et al., 2004, version 3.0], PITPINV [Avellone et al., 2004, version 3.0],
and STRIP [Larchey-Wendling et al., 2001, version 1.1]. These provers represent a number of different meth-
ods of theorem proving in IPL, yet forward reasoning is conspicuously absent. Imogen solved 261 of the
problems. PITPINV [Avellone et al., 2004] was the only prover to solve more, at 262. A summary results are
shown in Figure 14, and a table with some representative times is shown in Table 1.

The table uses the notation of [Raths and Otten,]. All times are in seconds. The entry “memory” indicates
that the prover process ran out of memory. A “time” entry indicates that the prover was unable to solve the
problem within the ten minute time limit. A negative number indicates the time to ascertain that a formula
is not valid. All statistics except for those of Imogen were executed on a 3.4 GHz Xeon processor running
Linux [Raths and Otten,]. The Imogen statistics are a 2.4 GHz Intel Core 2 Duo on Mac OS X. Thus the
Imogen statistics are conservative.

Analysis. There are a few things to be learned from Imogen’s performance on this database. First, the
polarized inverse method can be competitive with tableaux and connection style theorem provers. Second,
by manipulating the polarities of conjunction and the atomic formulas with heuristics, we can dramatically

32

Prover ft-Prolog ft-C LJT PITP PITPINV IPTP STRIP Imogen
Solved (out of 274) 188 199 175 238 262 209 205 261
SYN007+1.014 -0.01 -0.01 stack large large large alloc -0.1
SYJ201+1.018 0.28 0.04 0.4 0.01 0.01 2.31 0.23 25.5
SYJ201+1.019 0.36 0.04 0.47 0.01 0.01 2.82 0.32 28.0
SYJ201+1.020 0.37 0.05 0.55 0.01 0.01 3.47 0.34 28.35
SYJ202+1.007 516.55 76.3 memory 0.34 0.31 13.38 268.59 64.6
SYJ202+1.008 time time memory 3.85 3.47 97.33 time time
SYJ202+1.009 time time memory 50.25 42.68 time time time
SYJ202+1.010 time time memory time time time time time
SYJ205+1.018 time time 0.01 0.01 7.49 0.09 time 0.01
SYJ205+1.019 time time 0.01 0.01 15.89 0.09 time 0.01
SYJ205+1.020 time time 0.01 0.01 33.45 0.1 time 0.01
SYJ206+1.018 time time memory 1.01 0.96 9.01 8.18 56.2
SYJ206+1.019 time time memory 1.95 1.93 18.22 14.58 394.14
SYJ206+1.020 time time memory 3.92 3.89 36.35 33.24 42.7
SYJ207+1.018 time time time time -68.71 time time -42.6
SYJ207+1.019 time time time time -145.85 time time -63.6
SYJ207+1.020 time time time time -305.21 time time -97.25
SYJ208+1.018 time time memory -0.99 -0.95 time time -184.14
SYJ208+1.019 time time memory -1.36 -1.35 memory mem -314.31
SYJ208+1.020 time time memory -1.76 -1.80 memory mem -506.02
SYJ209+1.018 time time time time -13.44 time time -0.01
SYJ209+1.019 time time time time -28.68 time time -0.01
SYJ209+1.020 time time time time -60.54 time time -0.02
SYJ211+1.018 time time time -43.65 -31.51 time time -0.02
SYJ211+1.019 time time time -91.75 -66.58 time time -0.02
SYJ211+1.020 time time time -191.57 -139.67 time time -0.02
SYJ212+1.018 -0.01 -0.01 | memory -1.31 -1.37 time -8.5 -0.02
SYJ212+1.019 -0.01 -0.01 | memory -2.7 -2.75 time -17.41 -0.03
SYJ212+1.020 -0.01 -0.01 memory -5.51 -5.51 time -38.94 -0.04

Table 1: Imogen Propositional Statistics

33

affect Imogen’s performance. Third, Imogen is good at disproving formulas quickly. This is evident in prob-
lems SYJ209-212. In contrast to the backward systems, Imogen can immediately see that the problem is
unsolvable. WE will see that this will be a very important property for a Twelf meta-theorem prover.

34

5 First-Order Logic

Now that we’ve demonstrated the general mechanism of focusing with polarities and the polarized inverse
method, extending the prover to first-order logic is straightforward. First-order logic is similar to propo-
sitional logic except that we need to reconsider the primary operations in the presence of variables and
first-order unification. For instance, with first-order terms, contraction becomes non-trivial. In this section
we define those operations and extend the focusing judgments from the last section to first order quan-
tification. We assume the reader is familiar with the usual language of substitutions and first-order unifi-
cation. A thorough introduction to the area, which also contains implementation details, is Nipkow and
Baader [Baader and Nipkow, 1998].

5.1 Lifting

First order formulas extend propositional formulas with terms and quantifiers.

Terms T = a | f(Ty,...,Ty)
Formulas A ::= P(Ty,...,Ty) | ... |Vz. A| 3z. A

Following [Degtyarev and Voronkov, 2001b], to build a forward calculus suitable for proof search one would
first give backward rules for the quantifiers, assuming all terms are ground, i.e. containing no variables. Then
to make the calculus suitable for proof search, one would add free variables and unification to the calculus,
leveraging the free signed subformula property to satisfy the finite rule property. This is all standard, and the
notation is baroque due to ubiquitous substitutions. We therefore elide the details of this process, and refer
the interested reader to the Handbook articles on the inverse method and resolution, where the technique
sketched above, called lifting, is widely employed. In this section, we extend the focused calculus to include
the quantifiers, and discuss the extensions of the important operations of the inverse method.

5.2 First-Order Focusing

Extending polarization to first order formulas is straightforward. The polarities are

Positive formulas A" = PT(Ty,...,T,,) | ... | Jz. AT
Negative formulas A~ := P~ (T1,...,Ty) | ... | Va. A™
with erasure
Vz. A=| =Vz. |[A™| [Fz. AT| = Fz. |AT]
and subformulas
Ala)" < (Vz.A(z))" A@t)! < (Vo A(z))!
At)"” < (Fz.A(z))" A(a)" < (3. A(x))!

where « is a meta-variable ranging over parameters (discussed below) and ¢ ranges over arbitrary terms.
The focused backward rules are the same as for the propositional fragment. Quantifier rules are shown in
Figure 15.

35

Right Inversion

AT ¢ A(a)™

B(RA-V)*
;AT V. A(z)™

Left Inversion
;AT At C

B(LA-F)*
AT, 32 A(n)T ¢ C

Right Focusing
T4 [A()]

————— B(RS-I)
T [3z. A*]

Left Focusing

I [A(t)_] yc
— R(LS-Y)
T [Vx. A_} yC

Figure 15: The Backward Focused Calculus (Quantifiers)

Parameters. Note that there are two common ways to handle the meta-variable a in the rules V-R and 3-1.
In the most common presentation, a is a new variable, called an eigenvariable, that does not occur free in
T'UAU{A, C}. In other presentations, one can distinguish a syntactically different class of variables, called
parameters. Then only parameters are introduced through these two rules. Parameters affects unification
because a parameter may be instantiated with another parameter, but not an arbitrary term. Conversely,
variables can be instantiated with any term, including parameters. In the remainder, we use the later con-
vention. A formal treatment of parameters is found in Chaudhuri [Chaudhuri, 2006]. If a derived rule
introduces parameters during the inversion phase, we indicate this by maintaining the set of introduced
parameters along with the rule. For instance, focusing on L = Vz. Vy. P(x,y) on the right will result in the
derived rule

— P(a,b)
- R{a,b}

— L

The matching algorithm will make sure the eigenvariable restrictions hold.

5.3 Contraction, Subsumption, and Matching

With the generic backward inference rules in hand, we can easily generate the specialized initial rules and
sequents for the polarized inverse method as we did in the propositional case. Saturation then proceeds
by matching known sequents to synthetic inference rules, and contraction. Before we begin defining the
operations we give a convention

Definition 5.1 (Renaming convention). When comparing different sequents, for example in subsumption,
and matching rules premises to known sequents, we implicitly rename the sequents apart. Because vari-
ables of sequents and rules are interpreted as being implicitly quantified outside the sequent, this causes
no trouble, and the convention obviates the pesky renaming substitutions that would otherwise need to be

36

applied at every turn. This convention is analogous to Barendregt’s convention for a-equivalent renam-
ings [Barendregt, 1984].

5.3.1 Contraction
An essential rule in forward chaining is the contraction rule:

INA,JA—~
— Contract
T'NA—~

In propositional logic we didn’t need to implement this rule because we represented antecedents as a set. In
first-order logic, we must unify members of the antecedents with the same predicate label.

F,Al,AQ — A19 = Age
T, A0 —s ~0

Contract

In practice, this poses a problem for an implementation. The sequent number of contraction instance
of A(z1),...,A(x,) — C is exponential in n. The Imogen back end generates all contraction instances
eagerly, and unfortunately this exponential behavior can be observed in practice.

5.3.2 Subsumption

Subsumption must also take unification into account. Since a sequent stands for all of its substitution in-
stances, a sequent () can subsume another ' only if the instances of () are a superset of the instances of Q’.
This is captured by the following definition.

Definition 5.2. I' — C subsumes I — (" if there exists a substitution ¢ such that I'c C I and Co C C".

5.3.3 Matching

Rule matching is again complicated by unification and parameters.® First note that we must collect the
parameters introduced by the rule to ensure the eigenvariable condition. Consider the rule

— p(x,a)

Ria}
— Ja. Vy. p(z,y)

We must ensure when matching rule R to sequent A — ¢ that parameter a does not occur in A. Moreover,
2 must not be unified with any term containing a. We will again define matching by cases, c.f. Section 4.4.1,
taking these complications into account. Let vars(¢) denote the free variables of term ¢.

Definition 5.3 (Rule Matching 1). Sequents A; — 44, ..., A, — J,, match rule

rh—a - r, — An

RH
r — A

with substitution 6 if the following conditions hold for all 1 < i < n.
1. Either §,0 = A0 or §; = -.

6Recall [Chaudhuri, 2006] throughout that if a parameter a is in the domain of a substitution 6, then a# is also a parameter.

37

2. The parameters 116 do not occur in A;0 \ T';6.
3. The parameters 116 do not occur in vars(I';, A;)0

4. For any two parameters a,b € II, af # b0

In that case, the resulting sequent is

TOU (A0\T10)U...U(A,0\T,0) — Ab

As in the propositional case, if there is a premise with an empty succedents in the rule, then the conclusion
also has an empty succedent. This can be seen by a routine investigation of the focusing rules. In this case,
we can rearrange the premises so that the first £ premises have an empty antecedent. Then we can use the
following definition of matching.

Definition 5.4 (Rule Matching 2). Sequents A; — 44, ..., A, — J,, match rule

rh— - I'y—- 1_‘k:—&-l—>14k'+1 e Iy — A,

RH

I'—-

if there exists a substitution @ such that

1. The parameters I16 do not occur in A;6 \ T';6.
2. The parameters 116 do not occur in vars(I';, A;)0

3. For any two parameters a,b € I, af # b6
and one of the following conditions holds:

1. e Forall1<i<k, d;=-.
e Forallk+1<i<mn,d =-orjfd=A0.

In this case the resulting sequent is
rou (A0\T10)U...U(A0\T,0) — -
2. o There exists 1 <1 < k, 6,60 = A6.
e Forall1 <i <k, §; =-ord0=A0.
e Forallk+1<i<n,d =-ordfh=A0.

In this case the resulting sequent is
rou (A0\T10)U...U(A0\T,0) — Ab

Example 5.1. If the synthetic connective is L; = |[(((3y. [p(y)) — V. (p(z) & g(x))) on the right (atoms
are negative), then the backward and forward synthetic rules are

I, p(a) = p(b) T,p(a) = q(b)

Riab}
I'= 1,

p(a) — p(b) pla) — q(b)

Riab}

*)Ll

38

5.4 Implementation

The first-order instance of Imogen was implemented using the focusing strategy and operations defined
above. We ran Imogen on the ILTP library of first order problems [Raths and Otten,]. The results are
promising. Imogen solved far more problems than any other intuitionistic first order prover. Again, it also
was comparatively successful at disproving theorems (i.e. the database saturated).

800

Refuted
Proved mmm

JProver ft-Prolog ileanSeP ileanTAP ileanCoP Imogen

Figure 16: ILTP Results

Polarization. To measure the effects of focusing and polarization, we pursued a number of experiments.
With the method of explicit polarities, it is easy to simulate partially or unfocused calculi by inserting double-
shifts between connectives that break the current phase and generate a block boundary. Figure 17 shows
the results of these simulations. Single Step simulates the unfocused inverse method. Weak Focusing makes
all focusing phases complete, but breaks the inversion phases into single steps. Weak Inversion makes the
inversion phase complete, but breaks the focusing phase into single steps. Fair Weak Focusing is like weak
focusing but allows the initial stabilization phase to run unchecked. In all of these experiments, we assigned
negative polarity to all atoms. Positive Atoms makes all atoms positive, but otherwise does no unnecessary
shifting.

Subsumption. Another experiment involved the benefits of backward subsumption. Figure 17 shows the
performance of Imogen with different backward subsumption settings. The definitions of recursive and rule
subsumption are given in Section 3.2.

5.5 Improvements

There are many improvements we would like to make to the first-order instance of Imogen. In this section
we briefly outline some of the most important.

Polarity Assignments. It is known [Chaudhuri et al., 2008] that assigning positive polarity to atoms can
simulate backward chaining in the inverse method. This is good when a specification has a natural backward
interpretation, e.g. as Horn clauses. When we are outside of a well understood fragment like Horn clauses

39

760

800

Refuted
Proved I 745

600

730
400

200 715

Single Step Weak Foc. Weak Inv. Fair Weak Foc. Pos. Atoms None Single Recursive No Rule Subs.

Figure 17: Polarization and Subsumption Experiments

however, it becomes difficult to know how to assign atom and conjunction polarity. It is important to discover
good heuristics, because the impact of the assignment is often dramatic.

Subordination. The process of labeling leaves us with sequents made up of collections of atomic predicates.
It may be that some collections could never arise in an actual proof. This observation was made earlier in
the the discussion of path calculi (Section 2.4). We can carry this observation further. Define a subordination
relation on the atomic predicates by the transitive closure of the rules shown in Figure 18. We never need to
generate a sequent of the form I', A — B where A £ B.

Subterm Property. The subformula property is a powerful tool at pruning the search space in the cut-free
sequent calculus. Unfortunately this is no help whatever in controlling the terms that appear in sequents.
The subformula property is mute with respect to terms. Given a rule such as

— A(z)
— A(s(z))

can lead to the inverse method building sequents with larger and larger terms. Often these spurious deriva-
tions are totally useless. We can sometimes recover a form of subterm property by a local, i.e. rule-by-rule,
examination of the inference rules. Call a rule expansive in A if the occurrences of the arguments of A in the
premise are subterms of the arguments in the conclusion. The rule shown above is expansive. Call a rule
contractive if the opposite is the case. A simple observation is that, if all of the rules of a calculus are either
expansive in A, or all the rules are contractive in A, then we need only consider sequents where A is applied
to subterms of the arguments of A in the goal. With more work, it seems possible to deduce analogous global,
i.e. considering all the rules together, subterm properties of a calculus. Since the subterm property will be
essential in the LF theorem prover (see Example B), we intend to implement this optimization immediately
and explore its ramifications.

Logic Programming. Though Imogen is empirically successful on many first-order problems, it performs
poorly on other very natural problems. For example, in logic programs expressed as Horn clauses, while
we can simulate the reasoning with positive atoms, many useless sequents can also generated. Consider the
Horn clauses

40

Initial Rules®

P<P
Right Rules
A<B A<LC
A< BAC A<BAC
A<B A<LC
A<BvVC A<BvVC
A<C <B
A<BDC A<Vz.B
Left Rules
A< B <
ANB<C ANB<LC
ALC <C ADB<LC
AV B< <
A<B A<B
Ve. A< B drx. A< B
Transitivity

Norulefor A<T

No rule for A < |

Norulefor T < (C

No rule for A < |

A<B B>C<D

A<D

9The init rule is only applicable if the atom occurs with both left and right sign.

Figure 18: Subordination Rules

41

V. plus(0, z,)
Vz y z. plus(z,y, z) D plus(s(x),y, s(z))

Assigning positive polarity to plus gives the inference rules

plus(0,z,z) — - plus(s(z),y,s(z)) — -

T plus(x,y,z) -

These rules can clearly simulate SLD resolution. However, they are also less well-behaved. For instance, if
the database contains the initial sequent plus(x1,y1,21) — plus(z1,y1, 21) then it is possible to apply the
second rule by unifying z; with s(z), etc. The newly generated sequent can then be used to match the rule
again, yielding an infinite regression. In general, forward chaining can generate a lot of sequents that are
never used in any proof. This phenomenon has been investigated in the logic programming community. One
solution has been dubbed magic sets [Bancilhon et al., 1986, Beeri and Ramakrishnan, 1991]. It is not clear
how to extend this technique to non-Horn programs, but it would be interesting to explore.

Implementation. Imogen implements subsumption checks using path indexing and substitution tree in-
dexing. The former is generally faster, even though it is not a perfect filter. It would be interesting to
experiment with other term indexing techniques such as code trees [Voronkov, 1995]. As the implementa-
tion becomes more mature, it might also be advantageous to explore more efficient term representations like
flatterms, and implement a efficient unification algorithm, though we do not expect to implement this for
the thesis.

In this section we extended the polarized inverse method to first order logic. While a good general rea-
soning tool, first order logic can often not capture efficient domain-specific reasoning, for example reasoning
in particular theories like linear arithmetic. In the next section we extend the sequent calculus to allow such
domain specific reasoning using constraints.

42

Part 11
Applications

43

6 Constraints

In the first order case, the generation of new facts by matching was accomplished via unification. The an-
tecedents and succedent are unified with various parts of the premise of an inference rule, and the resulting
unifier is applied to the conclusion of the rule. In LF, unification is undecidable. Therefore we will eagerly
do unification when the unified terms fall in the decidable pattern fragment, but in general we will not be
able to solve the unification equations immediately. Therefore it is necessary to postpone solving some unifi-
cation equations, and keep them as constraints of the sequent. To prepare for this eventuality, in this section
we describe the implementation of an inverse method theorem prover for first-order intuitionistic logic with
generic constraints. We chose to extend the language of first-order logic to include unification equalities,
so as to be analogous to the LF case. Note that the equality denotes free term equality, not the traditional
Leibniz equality. For example, a = b D | where a, b are distinct constants is a valid formula in this theory.

Formulas A ::=1t) =to | t1 #ta]| ...

The prover is parameterized over a given set of function symbols with arity. For example, if the allowed
constants are (z,0), (s, 1), then some valid formulas of this logic are

VXY f(X)=f(Y)DX =Y
VX, s(X)=z2D L
VX. X #2D3Y. X =s(Y)

We recently implemented an Imogen instance enriched with this new interpreted predicate. Since equali-
ties can occur in a negative position, we decide the domain with disunification over finite trees [Comon and Lescanne, 1989].
In this section we describe the constraint sequent calculi underlying our implementation that will be the ba-
sis of unification constraints for LF. While we chose the particular theory of first-order disunification for a
concrete implementation, most of the discussion that follows holds for many useful domains. One appli-
cation that we are currently investigating is linear arithmetic constraints, in the context of verifications in
constructive authorization logic by Garg [Garg and Pfenning, 2006]. Another rich source of examples for
future work is a generic encoding of focused proofs in substructural logics into focused intuitionistic logic
with a preorder. Examples include constructive and classical linear logic, ordered logic, and the logic of
bunched implications, as seen in Pfenning and Reed [Pfenning and Reed, 2009].

We start from a cut-free backward sequent calculus for an intuitionistic logic augmented with constraints.
Proofs appeal to a notion of constraint entailment which must satisfy some basic properties but is otherwise
left unspecified. From this we systematically derive a forward sequent calculus with constraints which serves
as an appropriate foundation for the inverse method. The main complications arise from quantifier alterna-
tions and the interactions between quantification in the constraint domain and quantification in the under-
lying logic. We are currently working on proofs of the following properties: (1) the forward system is sound
and complete with respect to the backward system, and (2) the constraint sequent calculus is conservative
over the pure logic on one hand and the constraint domain on the other.

6.1 Backward Constraints

We make the presentation slightly general. We assume we are given a theory 7 with an entailment relation
U = ¥’ and a finite first-order axiomatization Ax. The intention is that reasoning with formulas from the
theory will take place outside the sequent calculus. We write a backward constraint sequentas ¥ | I' = A
where U is from the language of 7. In this proposal, the theory 7 is that of equalities and disequalities of

44

VEE UYAE|TE=C VEP=PF Vel
——— ER EL ——— init S
U|l=E UI|T,E=C V[T, P= P Ul =C

\I/1|F:>C
v EX
V| II=C UV II'=C
V| I'= A(x) UAz=t|I Ve A(z), Az) = C
VR*® VL*
U | I' = Vz. A(z) U |IWVz. A(z) = C

Figure 19: Backward Constraint Calculus

finite trees. The backward rules that affect the constraints are shown in Figure 19. The middle rules |V, |3*
should be necessary only if the theory is not convex (though see 6.5).

6.2 Subsumption

To even express the completeness theorem we wish to hold between the backward and forward calculus, we
need to define subsumption. Subsumption is complicated by the presence of constraints. The definition we
use is

Definition 6.1. ¥, | 'y — ~; subsumes ¥y | 'y — ~5 if there is a renaming substitution o such that
U, |: Vi0,'0 CTy and Y10 C va.

6.3 Forward Constraints

We can now design forward rules that are sound and complete with respect to the backward rules. The rules
are shown in Figure 20. Given some basic properties of the = judgment, we have proof sketches of the
soundness and completeness of the forward calculus with respect to the backward calculus.

Theorem 6.1 (Soundness). If ¥ |I' — Athen U |I'= A. If U |I' — - then ¥ | I' = A for any A.

Theorem 6.2 (Completeness). If U | T' = A then there are V', T",~' such that V' |T" — v and V' |V — +/
subsumes ¥ | ' — A.

Though the backward and forward calculi are strongly related by the above theorems, the theorems
linking the constraint calculus to a concrete semantics are still lacking. This is work to consider in the near
future.

6.4 Implementation

We implemented an Imogen front end for constraints. Since the theory is less well understood, we consider
it a prototype at this time. The only novelty apart from handling constraints as described above is that all
unification occurs in the constraints, using the disunification algorithm. This was done to give us some idea

45

Ul —y
—— ER EL init S
E|-—EFE EDV|T,E—~ P=pP|P—PF L]-—-
Uy Iy —m V2|l — 7 U(x)|I' —C
v |3
W1VW2‘F1UF2—>’}/1U’}/2 3.12‘1/(33)|F—>C
U(z) | I — A(z) U T A(t) — C U|T,A A —
VR® VL contract
Vz. U(z) | T — Vz. A(z) v |T\WVz. A(z) — C VAA=A"|T,A—~

Figure 20: Forward Constraint Calculus

of the coming complications of undecidable unification. While the implementation is less efficient than the
first order prover described above, it is still competitive on purely first-order theorems with any of the other
provers from the ILTP database.

6.5 Future Work

Applications. After working out the theory to our satisfaction, our next steps in this direction will be to
complete constraint solvers for Garg’s authentication logic, and Pfenning and Reed’s preorder for intuition-
istic linear logic.

Richer Notions of Subsumption. Our definition of subsumption makes intuitive sense. The constraints of
the subsuming sequent must be weaker (contravariant) than those of the subsumed sequent. However, this
can fail to account for situations that might be necessary for completeness. ’

Example 6.1. Suppose we are given two sequents in a constraint calculus where the domain is a dense
linear order.

Ql =X<Z | q(U),T(X,Y),T’(KZ) HP(U)
Q2 =X <Y [q(U),r(X,Y) — p(U)

Then for any grounding substitution satisfying), there is a related substitution satisfying @), indepen-
dent of the meaning of p, q and r. This is because if for some values X,Y, Z of the variables, if X < Z then
either X < Y or Y < Z. That means if u, z,y, z are values satisfying = < z | ¢(u), r(z,v),7(y, 2) — p(u)
then either U = u, X = z,Y = y satisfies Q2 or U = u, X = y,Y = z satisfies Q2. In this sense, Q; is
subsumed by ()5, even though it is not subsumed in our definition of subsumption.

Example 6.2. With constraints, two or more sequents may combine to be “stronger than” another sequent.
For example:

7Thanks to Michael Maher for these examples.

46

Qo =T |qU),r(U) — p(U)
Qi=X>Y |qU) — pU)
Q=X <Y |qU) — p(U)

Then Q; and Q. together subsume Q. This can be accounted for using our notion of subsumption and
the disjunction rule of the calculus. However, we would hope to not need such a rule in a convex domain
like dense linear orders.

Despite these examples, it is still possible to define forward sequents for a general calculus. Concerns
such as those raised by the above examples will be specific to proof that the calculus is complete with respect
to a given domain. The definition of subsumption may thereby need to be strengthened accordingly.

Leibniz Equality. Also of great interest to us is the case of Leibniz equality. It is known [Degtyarev and Voronkov, 2001a]
that a proof procedure for handling Leibniz equality in intuitionistic logic is equivalent to simultaneous rigid
E-unification, which is undecidable. Thus, the entailment relation for a constraint domain of equality would

be difficult to implement efficiently. Since equality is ubiquitous in first-order theorem proving, handling this

case efficiently is highly desirable. In the case of LF, there is a sizable subset, the pattern fragment, that is

decidable. Unification problems that fall inside this fragment can be decided, and the resulting substitution

applied accordingly. Only equations outside the pattern fragment need to be kept as constraints. Perhaps

there is an analogous situation for first-order Leibniz equality.

In this section we have outlined a theory of constraints for the inverse method. We have recently im-
plemented the theory described here, though the results are not as thorough as the previous chapters. The
remainder of this proposal is even more speculative in nature. We have not yet attempted implementa-
tions of the next sections, nor have we worked out the theory in minute detail. Thus, the sections will be
correspondingly shorter and will be example oriented, and give more motivations than results.

47

7 First-Order Induction

Recall that the eventual goal of this thesis is an inductive theorem prover for M, the meta-language of
Twelf. In this section, we will describe how we intend to the simpler problem of induction in first-order logic
using the polarized inverse method. To this end, we will extend intuitionistic logic with inductive definitions.

7.1 The M, Loop

Following Schiirmann [Schiirmann, 2000], we can build an inductive theorem prover for first-order logic
using a generic strategy we call the M loop. We can combine the Mj loop together with our first-order
intuitionistic prover to yield a first-order theorem prover for first-order induction. The loop is comprised of
three operations: filling, splitting, and recursion, and is shown graphically in Figure 21.

Filling. The proof stack is a collection of sequents. If each of these are proved, then the overall goal is true.
The proof stack begins containing only the goal sequent. If the proof stack is empty, the theorem is proved.
Given a sequent to prove from the proof stack, the loop first attempts to find a direct proof. This is called
filling because it uses an underlying object-level theorem prover to attempt to fill any existentially quantified
variables. In Twelf, the underlying prover is the backward prover for LF. In this work it will be the first-order
inverse method prover described in Section 5. If the prover can find a witness for each such variable, the
case is closed, and the process returns to select a new element of the proof stack.

Splitting. If filling fails, the loop chooses a variable on which to do case analysis, or splitting. The variable
is chosen by a heuristic. Splitting generally leads to a number of new subgoals. Since splitting could be done
indefinitely, we include a bound on the depth to which a variable can be split. If there are no variables in the
sequent below that depth, the proof procedure fails.

Recursion. Finally, for each new subgoal from the splitting phase, the loop finds all the possible ways to
use the induction hypothesis on the fresh variables. This process is finite and deterministic, and thus never
fails. The sequents derived from splitting, augmented with new induction hypotheses, are returned to the
proof stack, and the process repeats.

7.2 Induction

To implement the recursion phase, we need to know what counts as an induction hypothesis. There are a
number of ways to add induction to a logic. One, as pursued in [Baelde, 2008], is to extend the language of
formulas with syntactic equality and fixpoint operators. This solution would extend the syntax to

Formulas A =t =t, | uBt | vBt| -

where ¢ and o are the types of individuals and formulas respectively (following Church), u,v : (i’ — 0) —
(f — o) and B is a second order predicate B : ¢ — o, denoting a least and greatest fixpoint operator
respectively. Then typical inductive definitions can be defined, for example

natn < p(Anat An. n =0V 3In/. n = Sn’ Anatn') n
plusnm k= p(Aplus An. (n =0Am =k)V3In' k'.n =80 ANk =Sk Aplusn’ m k') n

48

> Proof Stack Q.E.D.

A

yes : yes
1

Filling

no

—
Splitting R Unprovable
-

yes

—
Recursion

Figure 21: The M Loop

Then left and right rules are introduced for the new connectives. S is called the invariant for the induction.

IN'St=P BSzx= Sz I'= B(uB)t
u-L — X wR
I',uBt — P I' = uBt
I',B(vB)t = P '— St St=—BS«z
v-L v-R
I''vBt = P I'=vBt

While this system is elegant and general, it seems difficult to implement in the forward (or even backward)
direction in its full generality because of the unknown invariant S. Instead of reaching for a fully general
inductive theorem prover, we can syntactically restrict the kinds of formulas for which we will search. Our
goal is a Twelf meta-theorem prover, which is restricted to I19 sentences, (those having the form V. 37. ¢
where ¢ is quantifier free). It seems natural therefore to restrict ourselves to the same fragment for the first-
order case. To have a chance of success, we will further restrict the second-order variable S. A natural choice
for S is the goal formula itself. This means we restrict our efforts to formulas that can be proven directly
by induction. No attempt will be made at generalizing the induction hypothesis. With these simplifications,
we have a rather straightforward way of implementing induction using the M loop. These restrictions are
roughly the same as those on the current Twelf theorem prover, and thus if we can build an empirically
successful inductive theorem prover for first-order logic using the inverse method, it will be evidence that
the method can scale to LF with induction.

Example. An extend example of our proposed method of first-order inductive theorem proving is given in
Appendix A, where we use the method outlined above to prove that list reversal is an involution.

7.3 Possibilities to Explore

Of course, a lot can be done to improve on this design to make a useful and practical tool.

49

Focusing. We've avoided the discussion of focusing above, primarily because we have not yet explored
how it will interact with the generated induction rules. Focusing is described in detail in [Baelde, 2008],
and completeness results are proved for the inductive first-order system pL.J. However, our treatment of
induction as a meta-logical makes Baelde’s results not directly applicable.

Types. In untyped first-order logic, types must be defined explicitly as predicates. For instance, in the list
reverse example of Appendix A, we needed to define lists via the 1ist predicate. This leads to additional
proof obligations. In LF this is not necessary because list is an inductively defined type rather than a first-
order predicate. It would be interesting to add types to the untyped system given above, as in LF. This will
make the theorem proving process closer to what we will expect to happen in the M prover, and will then
tell us more about the expected behavior of our proposed system.

Coinduction. While Twelf doesn’t support coinductive definitions directly, it seems interesting, and of lit-
tle additional labor, to include them in this prover. This would allow attempts at proving results about
coinductive types such as streams and finite state machines.

50

8 LF: A Logical Framework

We have finally reached the heart of our proposed contribution, a new theorem prover for the logical frame-
work LF based on the polarize inverse method. There are three existing implementations of theorem provers
for LF or some fragment thereof. Two of them are part of Twelf. These are the Elf logic programming
engine as originally described in [Pfenning, 1989]. The other is Pientka’s tabled logic programming en-
gine [Pientka, 2003]. Both of these logic programming interpreters are extended to theorem provers using
iterative deepening in Twelf. The third existing implementation, also by Pientka, implements the first-order
Horn clause subset of LF via the focused inverse method [Pientka et al., 2007]. This third theorem prover
is the one closest to our intended design. As such, we will review the definitions from Pientka’s paper, and
then discuss the issue of unification constraints that fall outside the decidable pattern fragment. We finish
by arguing that the inverse method will provide a basis for a theorem prover with a substantially different
performance profile than the existing provers.

8.1 LF

LF [Harper et al., 1993, Pfenning, 2001] a framework for representing deductive systems. The language,
sometimes called A, is a dependent type theory. Using the Martin-Lof style of judgments-as-types, one can
use A to represent deductive systems. The language is divided as usual into terms and types, with the
difference that terms can appear in types. Kinds classify types, providing for the declaration of type families.
Type families will be the primary object of study in the meta-theorem prover. Here we give the syntax of LF
canonical forms.

Kinds K :=type |llz: A. K

Types A:::aM1...Mn|A1HA2\H9::A1.A2
Normal Objects M :=Xz. M | R

Neutral Objects R:u=x|c|R M

Here we are concerned with the theorem proving problem; given a type A, find a term T such that T :
A. We do not show the full typing rules here, as they run at least three pages and are given precisely
in Harper [Harper and Licata, 2007]. Here we will concern ourselves with the sequent calculi. We mostly
follow Pientka [Pientka et al., 2007], though we augment the system with positive atoms and shift operators.

Polarized LF. We refine LF with positive and negative atoms. Objects remain the same.

Kinds K :=type |Illz: AT. K
Positive Types AT =:=a™ My ... M, | |A™
Negative Types A~ :=a~ M; ... M, | AT — Ay |z : Af. Ay | 1A

Note that the arrow A — B may be abbreviated as Ilz : A. B where = does not occur in B. However, for
our purposes we wish to separate them. Hypotheses introduced with an arrow will be used (e.g. unified,
case analyzed) during proof search, while those introduced with a II become parameters. One of the most
difficult tasks of this proposed thesis will be building a polarized inverse method theorem prover for LF.

8.2 Sequent Calculus

A backward calculus for LF is simpler than that for intuitionistic logic because there are so few connectives.
The backward calculus is shown in Figure 22. Focusing is straightforward, as all the connectives are negative.

51

We need only consider positive atoms in focus on the right. To lift the ground calculus to free variables and
proof search, we will follow [Pientka et al., 2007, Nanevski et al., 2008] and introduce contextual modal
type variables in order to account for dependencies between variables. The polarities add no additional
complications, and the results carry over directly.

Proof Terms. Proof terms will be an important aspect of the theorem prover, as the witnesses will be re-
quired by the meta-theorem prover. Proof terms for LF are well studied, and can be found in [Schiirmann, 2000,
Pientka, 2003].

Example. An example of using the polarized inverse method for LF with higher-order terms is given in
Appendix B.

Related Work. There is a piece of related work that we feel deserved particular attention due to its rele-
vance to our study. Pientka et al. [Pientka et al., 2007] describe a focused inverse method theorem prover
for the Horn fragment of LF. This paper is interesting because it shows the inverse method performing poorly
vis-a-vis the existing backward tabled search methods of Twelf, especially when the selection of which pred-
icates to table is hand-tuned by the user. While this is the closest related work, it differs from ours in
substantial ways. For example, [Pientka et al., 2007] doesn’t assign explicit polarities to formulas, including
atoms. Atoms are automatically considered negative. This leaves room for our implementation to consider
alternative search spaces [Chaudhuri et al., 2008]. Also, our implementation seem to differ markedly with
respect to performance. For instance, computing the 18th Fibonacci number using their implementation was
significantly slower than the tabled logic programming engine of Twelf while our implementation was sig-
nificantly faster. Moreover, the examples from that paper aren’t particularly good examples of the intended
use of such a theorem prover. While the inverse method will certainly not be able to compete with backward
chaining on many algorithm-like specifications because of the space overhead and the problems described in
Section 5, its primary use will be as a subroutine of an inductive theorem prover for M. The requirements
for the LF prover in this respect are very different than the requirements of a logic programming engine
designed to execute Prolog-like specifications written as Horn clauses.

In this section we briefly described LF and a polarized sequent calculus that will form the basis for an
inverse method prover. While this is only a sketch, we have confidence that the method will be applicable.
An extended example is found in Appendix B. In the next section we describe the final logic of our proposal,
M.

52

Right Inversion |T; AT { A~

;AT ra™ My ... My ;AT AT
(RA-Atom) —— (RA-D)
;AT fra” My ... My ;AT 1AT
DAY,z AT Ay LAY AT Ay
(RA-IT?) (RA-—)
AT Mz : AT AS AT AT — A

Left Inversion

I,a™ My ...My; AT C AT AT C
(LA-Atom) — (A-D)
;AT a™ My ... Myt C ;AT A C

Right Focusing m

I;-rA™
(RS-Atom) ———— (RS-])
T,at My ... My [at My ... My] Iy [lA7]

Left Focusing |I';[A7] || C

T'-M:A" T,[M/2]A;;[C]

(LS-Atom) (LS-1II)
Difla™ My ... M) $a” My ... My I; [z : AT AU C
Iy [Af] T3 [45]4C T A* ¢ C
(LS-—) — (@S-
I [ATHAg]lLC I [TA"'}UC
Stable Rules

rJ [Aﬂ I, A—; [A‘] yC
(FocusR) —— (FocusL)

r;-f AT A ;- ¢ C

Figure 22: Backward Polarized Calculus for LF

53

9 M;

The overall goal of this thesis is a new theorem prover for M based on the polarized inverse method. In
this section we will briefly sketch the existing M theorem prover. Then we argue that the proposed prover
will potentially be a significant improvement.

M3 is the meta-logic of Twelf. It is a functional programming language whose types are LF type families.
Total functions in M;r realize Twelf meta-theorems. M2+ was devised by Schiirmann [Schiirmann, 2000] to
formalize the meta-theory of Elf. M itself is not exposed to the Twelf user as a language. Instead, Twelf
constructs M programs from EIf programs and schema checking. In the following section we will describe
roughly how the current Twelf theorem prover constructs proofs. The M3 logic is quite complicated. Describ-
ing it in detail is beyond the scope of this proposal. The interested reader can refer to [Schiirmann, 2000]
and M ’s successor Delphin [Poswolsky, 2008]. This section will be accordingly abstract, with few details.

9.1 Current Twelf Theorem Prover

As we discussed in Section 7, the current Twelf meta-theorem prover uses the M3 loop that consists of three
principal operations during proof search: filling, splitting, and recursion. Currently only the backward LF
prover can be used with this strategy. The original design uses the backward chaining logic programming
engine of Twelf. Since backward chaining may easily loop, Schiirmann added a depth bound, and maintains
completeness up to that bound with iterative deepening.

Example. An example of the proposed functioning of a meta-theorem prover based on the inverse method
LF theorem prover is given in Appendix C.

9.2 Analysis

Note that the design above is agnostic with respect to the procedure used for filling. Currently only
Schiirmann backward can be used, though Pientka’s could be used with minor changes to Twelf. We propose
to add a third in the form of the inverse method prover proposed in Section 8. We can think of two primary
reasons why the inverse method stands to be an improvement over the current implementations.

Failing Quickly. In inductive theorem proving, failing quickly is perhaps more important than succeeding.
The splitting phase, i.e., selecting variables for case analysis and induction, will in general create many
possibilities that will not lead to a solution. This occurs, for instance, when the heuristic selects a variable
that will not make progress toward a solution. The longer it takes to realize that such a branch is fruitless, the
worse the performance of the theorem prover. Indeed, the vast majority of the time the current prover spends
is on exhausting the depth bound of fruitless branches. This makes the prover very delicate, depending
critically on a seemingly arbitrary depth bound for the iterative deepening search.

Monotonic Search. In the current prover, the information learned on any branch is discarded when a
new branch is explored, both during iterative deepening, and when the depth bound is exceeded. This is
inherent in backward chaining algorithms, where meta-variables are shared between branches. In contrast,
the inverse method generates only valid sequents. Anything that is learned in one branch is valid in another.
Forward chaining thus gives the same benefits as Pientka’s tabling, but also saves information throughout
different subgoals, and even across filling and recursion phases. This can prevent the same sequents from
being generated multiple times, and we conjecture that it will be more efficient in many cases.

54

9.3 Goals

Now that we have motivated our proposed meta-theorem prover based on the LF inverse method prover, we
will highlight some of the required steps we will take once the LF prover is complete.

New Search Procedures. The simple strategy of filling, splitting and recursion is only one of many possible
designs. After exploring the performance of the new prover using the existing strategy, we can explore other
top-level ideas. One example is to use inversion of formulas on the left of a sequent, which is not allowed in
the current design.

Properties of the Object Logic. As we've seen in the first part of this proposal, the subformula property
is absolutely essential to having a decent proof search strategy for a logic. One might argue that Twelf’s
raison d’étre is to encode and reason about exactly such logics. Might it be possible to discover that encoded
object logics have the subformula property and use this fact in LF’s proof search strategy? By restricting
the LF terms to object logic subformulas of the goal, the performance of the LF prover and meta-theorem
prover would be much more effective. This is equally true of slightly more sophisticated relations like
subordination and subterm properties that were discussed in earlier sections. If we can syntactically deduce
structural properties of the object logic, we will be much more successful.

9.3.1 Proof Terms

The current Twelf meta-theorem provers provide no proof terms of any kind.® The user must simply trust the
output conclusion of the system. Given the Twelf implementation’s complexity, this is not ideal. We propose
to construct two different kinds of proof terms for the output of the meta-theorem prover, both realizing the
proofs as programs.

Elf programs. A simple form of proof term will be to construct an Elf logic program as the output of the
theorem prover. In the best case, this would be similar to the program that the user would have written if
the theorem prover was not available. The user can then record the proof term and check it with Twelf’s
mode, world, and totality checkers as is the usual practice. This method has been attempted before, though
there are some difficulties.

Delphin programs. A more interesting idea is to generate programs in the Delphin language [Poswolsky, 2008].
Delphin is a functional dependently-typed language similar to M3, and it seems straightforward to generate
Delphin terms during the splitting, filling, and recursion phases such that the final Delphin program will
check against the type of the original goal. This would be a more satisfying method of proof term generation
because Delphin has a totally independent code base from Twelf. Beluga [Pientka, 2008] is an alternative
target language.

8Qriginally the meta-theorem prover produced Elf programs as proof witnesses. For technical reasons, the current implementation
does not support that capability.

55

10 Conclusion

In conclusion, we have proposed as a thesis topic the design and implementation of a number of different
logics for which we intend to implement theorem provers based on the polarized inverse method. The
propositional and first-order logic cases are mature, though we intend to experiment with numerous method
to reduce the search space and improve efficiency. The prover for first-order constraints is at an advanced
stage of development. Considerable theoretical details still need to be worked out however, and this will be
some of the first work we undertake. The bulk of the remaining effort will be the design and implementation
of theorem provers for first-order logic with induction, LF, and Mj. We intend the Mj meta-theorem
prover to be a useful and practical tool for Twelf developers. In this section we describe some related work,
and work that we don’t intend to undertake in this thesis, but which is a natural extension of the research
presented thus far.

10.1 Related Work

Inverse Method. This proposal builds mainly on work of Chaudhuri [Chaudhuri, 2006]. In his thesis,
Chaudhuri describes a focused inverse method theorem prover for intuitionistic linear logic and discusses
some details of his implementation Linprover. Much of the basis of the theory and implementation of our
systems comes directly or indirectly from his work. Besides our different target logics, the most fundamental
change in our proposal is to use explicit polarities to guide the search behavior. We also consider more
aggressive techniques of redundancy elimination, subordination, and subterm analyses as being essential to
the success of a practical inverse method theorem prover.

Tammet [Tammet, 1996] describes a forward theorem prover for intuitionistic first-order logic. While
some ideas, in particular inversion and labeling, are shared between our prover and his, ours differs in that
it implements full focusing. Note that Tammet’s notion of polarity corresponds to our notion of sign rather
than our notion of polarity.

Voronkov [Voronkov, 1992] describes strategies for the inverse method. A strategy is basically a method
for decreasing the search space. He also describes [Voronkov, 2001b, Voronkov, 1999, Voronkov, 2000,
Degtyarev and Voronkov, 2001b] numerous implementation techniques, and methods for redundancy elim-
ination. He also describes some implementations, for instance an inverse method theorem prover for the
modal logic K [Voronkov, 1999]. It would be very interesting to emulate some of the strategies he recom-
mends.

Chaudhuri et al. [Chaudhuri et al., 2008] describes how the inverse method can simulate forward and
backward chaining using different atom polarities. Finding heuristics to select atom polarity will be impor-
tant for the success of our theorem provers.

An alternative to the inverse method and tableaux methods for modal logics are connection methods such
as Andrews’ method of matings. Wallen [Wallen, 1990] describes theorem proving in non-classical logics
using connection methods in great detail.

Constraints. Constraint logic programming [Jaffar and Lassez, 1987] extends logic programming languages
to handle constraint domains. This is implemented as Prolog-style backward search in a sequent calculus, and
thus differs from our approach using forward reasoning in the inverse method. Moreover, our system han-
dles arbitrary first order quantification. A backward sequent calculus with constraints for first-order linear
logic has been presented by Jia [Jia, 2008] and also by Saranli and Pfenning [Saranli and Pfenning, 2007].

Degtyarev and Voronkov [Degtyarev and Voronkov, 2001a] show how to use constraints to implement a
semi-decision procedure for first order intuitionistic logic with equality using an intuitionistic calculus with
constraints. Similar to our work, they separate constraint reasoning from logical reasoning. Unlike our work,

56

details of the equality domain are built into the logical rules. Proof search proceeds by searching for proof
skeletons that represent the logical content of the proof, and then separately solving a constraint associated
with each skeleton.

Lassez and McAloon [Lassez and McAloon, 1990] give a classical sequent calculus for solving constraints.
Their work is orthogonal to ours, in the sense that we ignore the details of the proof system of the constraint
domain, instead focusing on the interaction between logical reasoning and constraint reasoning. Rummer
gives a classical sequent calculus with constraints [Riimmer, 2008].

LF/MJ. The current implementations of LF theorem provers are described in Section 8. There are cur-
rently two implementations of backward theorem provers for LF, both part of the Twelf distribution. The
most commonly used is by Schiirmann [Schiirmann, 2000], implementing a Prolog-style search procedure.
Pientka [Pientka, 2003] implemented a tabled backward search procedure that is more effective in many
domains. The current version of the M prover, using both Schiirmann and Pientka’s LF, is described in Sec-
tion 9. The Bedwyr system [Baelde et al., 2007] is a logic programming language similar to Elf. It extends
traditional logic programming with a logically grounded notion of finite failure and the V generic quantifier.
It seems possible to extend our inverse method techniques to this setting, though this will be regarded as
future work.

Inductive Theorem Proving. There is a large literature in inductive theorem proving of which we have
only scratched the surface. Much of the work is aimed at proving theorems of mathematics, as described
in [Bundy et al., 1993, Bundy et al., 1990, Bundy, 2001]. Kreitz and Pientka [Kreitz and Pientka, 2001] de-
scribe induction theorem proving, including Bundy’s rippling technique, in connection-based methods. They
combine rippling with matrix-based constructive theorem proving. Tac [Baelde, 2008] is an inductive theo-
rem prover for the logic p-LJ, first-order intuitionistic logic extended by fixed and co-fixed points. Reasoning
by induction is not a meta-operation, as in most such systems, but is an integral part of the logic. Tac
has an interactive component so the user can declare invariants, but will also search for inductive proofs
automatically. Inka [Hutter and Sengler, 1996, Autexier et al., 1999] is a classical first order automated in-
ductive theorem prover. It has been developed since the early 1980s and has been used to verify industrial
applications. Inka also uses the rippling technique. ACL2 [Kaufmann and Moore, 1997] is another inductive
proof assistant targeted at industrial proofs that has been widely used and successful in practice. The logic
is basically an unquantified first order logic with induction.

Implementation. Implementation techniques for theorem proving abound. Apart from logical optimiza-
tions like focusing that limit the search space, implementation details make an enormous difference in a
practical, useful theorem prover. While we have sketched a few implementation techniques in this proposal
such as term indexing, much work remains to make the systems we’ve described, and those we intend to
implement reasonably efficient.

One rich source of papers regarding empirically successful techniques is the Vampire first-order theo-
rem prover [Riazanov and Voronkov, 1999], a successful classical first order prover. A selection of the rele-
vant papers for Imogen are [Riazanov and Voronkov, 2003, Riazanov and Voronkov, 2004, Voronkov, 2001a,
Nieuwenhuis et al., 2001]. Techniques and statistics for redundancy elimination are given in [Gottlob and Leitsch, 1985,
Tammet, 1998]. Term indexing and related optimizations are described in [Graf, 1996, Ramakrishnan et al., 2001].

Tableaux Work Bench [Abate and Goré, 2003] is a system somewhat similar to Imogen for backward
tableaux calculi. It allows users to define backward calculi and experiment with proof search.

Proofs of Redundancy Criteria. It would be interesting to have a generic method of proving the com-
pleteness of redundancy elimination for the Imogen framework. Generic mechanisms for doing so are given

57

in [Voronkov, 2001b, Degtyarev and Voronkov, 2001b].

10.2 Future Work

There are a number of ideas that we will not have time to investigate in this thesis. However, we think them
interesting enough to record as future work. Some such ideas not presented in the earlier text are given
below.

Modal Logic. There are a number of calculi and implementations of theorem provers for full modal logic.
[Beckert and Goré, 1997, Voronkov, 1999, Hustadt and Schmidt, 2000] are just a few of these. Since there
has been so much activity in this area, there is a wide range of calculi and implementation techniques used.
Therefore this would be a good domain to compare the polarized inverse method.

Other Proof Assistants. While our work in this thesis is directed at LF and Twelf, it seems possible to
apply roughly the same techniques to other proof assistants based on a higher-order intuitionistic meta
language with induction such as Delphin [Poswolsky, 2008], Agda [Coquand, 1998], Beluga [Pientka, 2008]
and Abella [Gacek, 2008].

Formalization. Many of the results we’ve seen so far would would be well served by formalization. As far
as we know, there are no formal proofs of the completeness of the inverse method or any of the redundancy
elimination strategies we discuss. It would be comforting to have proofs of the soundness and completeness
of Imogen’s inner loop and the redundancy elimination strategies. While the completeness of focusing has
been proved in other settings, for instance [Zeilberger, 2008], proofs for our systems would be welcome.

Acknowledgments

Our work on constraints is based on prior unpublished work with Kaustuv Chaudhuri and Ulu¢ Saranli.
We’d like to thank David Baelde for helpful discussions about inductive theorem proving during his visit to
CMU. Thanks also to Michael Maher for pointing out the difficulties of subsumption in forward constraint
reasoning, and Daniel Lee for informing us about the Twelf Standard ML formalization.

58

Part III
Appendix

59

A Example: List Reverse is an Involution

This example demonstrates first-order induction using the M loop with Imogen’s intuitionistic first-order
prover. We wish to prove that list reverse is an involution.
A.1 Paper Proof

Following Martin-L6f’s judgments as types principle, we we define lists with the following inference rules.
As usual, all judgments are schematic in their variables.

[:1list

nil:list cons x [:1list

List reversal is defined inductively as well.

rev ! (cons x 1) ls
—— rev-nil rev-cons
revnil [l rev (cons x 1) Iy Iy

We wish to prove the the following theorem by first-order induction.

Theorem A.1. For any Iy, s, if
rev [y nil Iy

then
rev iy nil [y

To prove this theorem, we’ll need a series of lemmas. The first lemma we prove by induction is that rev is
deterministic.

LemmaA.l. If D:revliylalsand € : rev iy Iy I5 then I3 = I},

Proof. Proof by induction on the derivation D.

Case:
D=———— revnil
revnil Iy Iy
Then
£ =————— revnil
revnil Iy Iy
lo =13 Assumption
lo =14 Assumption
I3 =14 Equality reasoning
Case: o
rev | (cons x l2) I3
D= rev-cons

rev (cons x lf) l2 I3

60

g/
rev] (cons x l2) I
£ = rev-cons
rev (cons x 11) la I}

revl] (cons z ly) I3
rev) (cons z lz) l§
ls =14

Now we give a suitable generalization of the induction hypothesis.

Lemma A.2. For any ly,ls, if

Di:reviylyls
Dy :rev iz nil I}

Dg rev l2 ll lg

then there is a D such that

D:ly=14
Proof. Induction on D;.
Case:
Dy = ——— revil
revnil l3 I3
ll =nil
lo =13

reviznil l}
rev iz nil [f
! l//
3 =13

Case: ,
Dy
rev !} (cons z l3) I3
D, = rev-cons
rev (cons x 1}) Iz I3

D3
revly (cons x 1) I§
Di = rev-cons
rev (cons x lg) I} 1§

[y = cons z,1}
U 1

37— '3

61

Inversion on D
Inversion on £

By Induction on D', &’

Assumption
Assumption

D,

D5 and equality
By Lemma A.1

Assumption

By Induction with D}, Ds, Dj

Finally we can prove Theorem A.1.

Proof. We note in passing that rev is effective. This means that for any /;,[,, there exists I3 such that
rev I I I3. The proof is immediate.

revl; nil [y Assumption (D1)
rev iy nill) rev is effective (Ds)
revnilli [y Rule rev-nil (D3)
ll = l/2 Lemma A.2 with Dl, DQ, Dd
revip nil Iy Equality reasoning

O

A.2 Twelf Encoding

We can easily encode the above reasoning in Twelf.” In the next section, we will see how the theorem prover
approaches the lemmas and theorem. First, we define lists and reversal.

List Definitions.

%{ List elements %}
elem: type.

%{ Lists %}

list : type.

nil : list.
cons : elem -> list -> list.

%{ Reverse %}

rev : list -> list -> list -> type.
rev/nil : rev nil L L.

rev/cons : rev (cons E L1) L2 L3

<- rev L1 (cons E L2) L3.

Since equality is not defined in Twelf, we have to define it ourselves, and prove that rev respects equality.
This is part of the “equality reasoning” of the paper proof.

9This is a slightly modified example due to Carsten Varming from the Twelf Wiki.

62

Equality.
%{ Equality }%
eq : list -> list -> type.
eq/ref : eq L L.
%{ Reverse respects equality %}
rev-eq : eq L1 L1’ -> eq L2 L2’ -> eq L3 L3’
->rev L1 L2 L3 -> rev L1’ L2’ L3’ -> type.
/mode rev-eq +E1 +E2 +E3 +R1 -R2.

- : rev-eq eq/ref eq/ref eq/ref R R.

fworlds () (rev-eq _ _ _ _ _).
htotal {} (rev-eq

Lemmas. Now we can show that rev is deterministic, Lemma A.1.
%{ Reverse is deterministic 1}
rev-determ : rev L1 L2 L3 -> rev L1 L2 L4
-> eq L4 L3 -> type.
Ymode rev-determ +R1 +R2 -E.
- : rev-determ rev/nil _ eq/ref.
- : rev-determ (rev/cons R1) (rev/cons R2) E

<- rev-determ R1 R2 E.

Yworlds () (rev-determ _ _ _).
%total R1 (rev-determ R1 _ _).

Finally, there is the effectiveness proof, along with Lemma A.2 and Theorem A.1.
%{ Reverse is effective 1},

can-rev : {L1} {L2} rev L1 L2 L3 -> type.
%mode can-rev +L1 +L2 -D.

- : can-rev nil rev/nil.

- : can-rev (cons X L1) L2 (rev/cons D)
<- can-rev L1 (cons X L2) D.

Y%worlds () (can-rev _ _ _).
Y%total D (can-rev D _ _).

%{ Reverse is an involution 1}V

63

revrev-lem : rev L1 L2 L3 -> rev L3 nil L4
-> rev L2 L1 L5 -> eq L4 L5 -> type.
Jmode revrev-lem +R1 +R2 +R3 -E.

- : revrev-lem rev/nil R1 R2 E
<- rev-determ R2 R1 E.
- : revrev-lem (rev/cons R1) R2 R3 E
<- revrev-lem R1 R2 (rev/cons R3) E.

Y%worlds () (revrev-lem _ _ _ _).
Y%total R1 (revrev-lem R1 _ _ _).

revrev : rev L1 nil L2 -> rev L2 nil L1 -> type.
%mode revrev +R1 -R2.

- : revrev R1 R2
<- can-rev nil R3

<- revrev-lem R1 R3 rev/nil E
<- rev-eq eq/ref eq/ref E R3 R2.

Y%worlds () (revrev _ _).
%total {} (revrev _ _).

A.3 Inductive Theorem prover

The goal of the meta-theorem prover is to avoid having to write the proofs above. We will detail the workings
of the M loop on the proofs that require induction, Lemma A.1 and Lemma A.2. First we give names to the
formulas defining 1ist and eq.

rev-nil := VI. revnil [|
rev-cons := Va Iy Iz l3. (rev ly (cons x l3) I3 D rev (cons x I1) Iz I3)
eq-refl :=Vi. eql

defs := rev-nil A rev-cons A eq-refl

Recall that there are two distinct forms of reasoning. One is the action of the M loop, choosing variables
to split, and deriving appeals to induction hypotheses. The second is the action of the first-order theorem
prover, which is started by the filling phase of the M loop. We will write

Hypotheses
Goal

for inductive reasoning with the Mj loop. When reasoning with the first-order theorem prover, we will
generate inference rules, which will be written, as usual,

64

Hypotheses

Conclusion

A.3.1 Lemma: Reverse is Deterministic

We begin with a proof of Lemma A.1.
We begin by asking the inductive prover for a proof of

defs DViy I I3 15. (xreviy lols Dreviy il Deqllls)

After applying the rules V-R and D-R, we have the following goal, where ¢y, ¢3, c3, ¢4 are new constants.

defs, rev ¢y ¢y c3, Tev ey ca

eq ch c3
We begin in the filling phase by trying a direct proof. The first-order theorem prover is handed the goal
formula
defs D revey cacg Dreve oy Deqdhcs

Before we generate the rules for rev and eq, we need to know the polarities of the atoms. The rules for the
choices are

Positive
] rev (cons x ly) lp I3 —
revnilll — —eall
*)—,y revl (cons z ly) I3 — vy T’Y
Negative
—revl (conszly)l3
— srevnilll — rev (cons x l1) la I3 —eqll

It is clear that we should choose to make rev positive for the inverse method. Otherwise we have no control
over the search space. Because rev is expansive in its second argument, we can ignore sequents we generate
with a rev subformula such that the second argument is not a subterm of an occurrence of rev in the goal.
We choose to make eq negative. Given these choices, the inference rules are

rev (cons x 1) lals —
R R> —— Rj3

revnilll —
— ! revl; (cons x ly) ls — —eqll

After the stabilization phase, we have the goal

defs, rev ¢y o 3, Tev ey ¢y ¢y — eq ¢y c3

The initial sequents are obtained by renaming and then unifying all left and right atomic formulas.

65

Left Atomic Subformulas Right Atomic Subformulas

revnilll eqlyls
rev (cons x l1) Iz I3 revl (cons z l3) I3
eqll

rev cy Ca Cs
Tev ¢y Cy Ch

Unification gives the initial sequents'®

eqll—eqll
revnil (cons x ls) (cons x ly) — revnil (cons x l3) (cons x ly)
rev (cons x1 l1) (cons xa lg) I3 — rev (cons x1 ly) (cons x5 o) I3

Now forward saturating search begins. The database begins containing the initial sequents, and the
conclusions of the inference rules with no premises. The database is quickly saturated. The only rule that
might be applied repeatedly is R,. But since we can delete sequents with a subformula rev Iy I5 I3 where [y
is not a subterm of the goal, we saturate after 2 steps. Note that backward search would fail immediately,
since the only rule that unifies with eq c3 ¢4 is EqRefl, and unification fails.

Now the inductive prover chooses to split a variable, in this case the derivation of rev ¢; ¢y c3. This yields
two subgoals. The first has ¢; = nil and ¢ = c¢3. The prover, noticing that the last hypothesis could have
been generated in only one way, finds that co = ¢ and returns the goal

defs
€q C3 C3
This is solved by the first-order prover immediately. The second goal has ¢; = cons x ¢}, with the last rule

being rev-cons. Again, the prover inverts the last hypothesis, yielding the goal

defs, rev ¢; (cons z ¢3) ¢3, Tev i cons x ¢

eq ch c3

Now the recursion phase tries to find applications of the induction hypothesis. It finds one using the two
hypotheses and adds it to the goal

defs, rev ¢; (cons x ¢3) c3, rev ¢q cons T ¢a c§, eq c3 g

eq ch c3

Again, the first order prover solves this instantly. While this is an almost pathologically simple example, it
shows the importance of the ability of the first-order prover to fail quickly. Since the second two goals were
trivial, the entire proof in this case takes about as long as it takes for the first direct attempt to fail. As we
noticed, the correct choice of atom polarity is essential.

A.3.2 Lemma: Reverse Involution Lemma

This proof is similar to the last. We keep the same polarities of the atoms. We add the previous lemma to the
set of hypotheses.

10Recall that all variables in forward sequents are implicitly quantified outside the sequent. Thus, the variable [in one sequent is
distinct from the variable [in another sequent.

66

lem:=Viy lal3ly.reviylals Dreviyla 1 Deqlyls
The initial goal is

defs, lem, rev ¢; ¢2 3, rev ez nil cf, rev ey ¢ ¢f

eq cs ¢y

The initial filling phase fails, for the same reason as the last proof. The prover then splits on the hypothesis
rev ¢; ¢y c3 yielding subgoals

defs, lem, rev ¢y nil ¢, rev cp nil ¢f

eq ¢ cf

defs, lem, rev ¢; (cons x ¢3) 3, rev ¢z nil ¢}, rev (cons x ¢g) ¢1 ¢4

eq ch

The first is solved in the filling phase by using the lemma. The second requires the induction phase to
generate a new appeal to the induction hypothesis

defs, lem, rev ¢y (cons = ¢g) c3, rev ¢z nil ¢}, rev (cons x ¢3) ¢ ¢4, eq cs ¢l

eq s ¢4

and the filling is trivial.

A.3.3 Theorem: Reverse is an Involution

The theorem now should follow from the above lemmas. In this case, the first-order theorem prover is able
to find a solution during the initial filling phase.'!

A.4 Twelf Formalization with Theorem Prover

Though we have not yet implemented it, here is a possible concrete syntax for Twelf code using the inductive
theorem prover. The is roughly the concrete syntax for the existing meta-theorem prover.

%{ Reverse is effective 1},

Jtheorem can-rev
forall {L1 : 1list} {L2 : list}
exists {L3 : 1list} {D: rev L1 L2 L3}
true.

f%prove L1 (can-rev L1 _ _ _).

%{ Reverse respects equality 1}/

11The existing backward prover does not find the solution, evidence that an inverse method prover may be able to prove more
meta-theorems.

67

%theorem rev-eq
: forallx {L1 : list}{L2 : list}{L3 : 1list}{L4 : list}{L5 : 1list}{L6 : list}
forall {D1 : eq L1 L2} {D2 : eq L3 L4} {D3 : eq L5 L6} {D4 : rev L1 L3 L5}
exists {D5: rev L2 L4 L6}
true.
f%prove E1 (rev-eq E1 _ _ _ _).

%{ Reverse is deterministic 1}

Jitheorem rev-determ
: forall*x {L1 : 1list}{L2 : list}{L3 : 1list}{L4 : list}
forall {D1 : rev L1 L2 L3} {D2 : rev L1 L2 L4}
exists {D3: eq L4 L3}
true.
%prove D1 (rev-determ D1 _ _).

%{ Reverse is an involution 1}V

J%theorem revrev-lem
: forall* {L1 : list}{L2 : 1list}{L3 : list}{lL4 : 1list}{L5 : list}
forall {D1 : rev L1 L2 L3} {D2 : rev L3 nil L4} {D3 : rev L2 L1 L5}
exists {D4: eq L5 L4}
true.
f%prove D1 (revrev-lem D1 _ _ _).

Jitheorem revrev
: forall* {L1 : list}{L2 : list}
forall {D1 : rev L1 nil L2}
exists {D2 : rev L2 nil L1}
true.
%prove D1 (revrev D1 _).

Alternatively, we could deduce the theorem form a type family, mode, and worlds'? declaration.
%{ Reverse is effective }%

can-rev : {L1} {L2} rev L1 L2 L3 -> type.
Ymode can-rev +L1 +L2 -D.

Yworlds () (can-rev _ _ _).

%prove L1 (can-rev L1 _ _ _).

%{ Reverse respects equality }%
rev-eq : eq L1 L1’ -> eq L2 L2’ -> eq L3 L3’
-> rev L1 L2 L3 -> rev L1’ L2’ L3’ -> type.
fmode rev-eq +E1 +E2 +E3 +R1 -R2.
%worlds () (rev-eq _ _ _ _ _).
%prove E1 (rev-eq E1 _ _ _).

12Regular worlds don’t come up in this example, but see the next examples.

68

%{ Reverse is deterministic }%

rev-determ : rev L1 L2 L3 -> rev L1 L2 L4
-> eq L4 L3 -> type.

Ymode rev-determ +R1 +R2 -E.

Y%worlds () (rev-determ _ _ _).

fprove D1 (rev-determ D1 _ _).

%{ Reverse is an involution 1}V

revrev-lem : rev L1 L2 L3 -> rev L3 nil L4

-> rev L2 L1 L5 -> eq L4 L5 -> type.
Jmode revrev-lem +R1 +R2 +R3 -E.
%worlds () (revrev-lem _ _ _ _).

revrev : rev L1 nil L2 -> rev L2 nil L1 -> type.
%mode revrev +R1 -R2.

%worlds () (revrev _ _).

%prove D1 (revrev D1 _).

69

B Example: Extrinsic Typing

This example demonstrates proof search in LF with higher-order terms. We will encode simple extrinsic
typing for the untyped lambda calculus, and search for two typing derivations. These definitions will be
used in the next section to demonstrate the workings of the theorem prover on an inductive proof of type
preservation.

B.1 Informal Definitions

We begin by defining types and terms using LF as the specification language. Because the objects of LF
include lambda expressions, we use the LF expression lam (A\x. e x) to refer to the encoding of an object-
level lambda term. Object level application is written e; - es to distinguish it from LF application which is
denoted by juxtaposition.

r€A Ftpti Ftpis

Ftpx Ftp (t1 = t2)
rel 'zt tm(ex) I'Ftme; T'Ftmes
F'Ftma 'k tn (lam (A\z. e x)) T'Ftm(eg - e2)

Extrinsic typing is defined using a context for variables.

D,Thofxt; FTFof (ex)ts PETFofe; (to=1t) THTFofexty
of-lam of-app
IFTF of (lam (A\x. e z)) (t1 = t2) F'FTFof (e1-e2) th

B.2 Twelf Encoding

The Twelf encoding is straightforward, using higher order abstract syntax to represent typing of higher-order
expressions.

tp : type.
=> : tp -> tp —> tp. %infix right 10 =>.
tm : type.

@ : tm -> tm -> tm. %infix left 10 @.
lam : (tm -> tm) -> tm.

of : tm -> tp -> type.

of/lam : of (lam T) (A => B)
<— ({x} of x A -> of (T x) B).

of/app : of (T1 @ T2) B

<- of T1 (A => B)
<- of T2 A.

70

B.3 LF Theorem Prover

The LF theorem prover discussed in Section 8 is able to search for derivations that witness LF types. Because
the operational semantics is not obvious, it is not expected that the inverse method prover will replace the
backward-chaining Prolog-style prover for Twelf query declarations. The LF theorem prover is designed to
be used in tandem with the inductive M prover. Even so, it is interesting to examine the inverse method
search procedure for higher-order terms.

B.3.1 Inference Rules

As in the first-order example of Appendix A, we must choose the polarities of the given atoms. The rules for
the choices are shown below:

Positive
It of (lam (A\z.ex)) (t; = t2) — v Thofaty — T Fof (ex)ty ['of (e1-e2) t1 —
— F'Fofe (to=1t1),l'Fofeyts — v
Negative
Ftofxt; — T Hof (ex)ty —Thofe (ta=t) —TFofests
—> T'k of (lam (Az. e x)) (t1 = t2) — Tk of (e1-e2) ty

Again, typing would be hopeless if assigned negative polarity. The inverse method would generate all typings
of all terms, and all evaluations of all terms respectively. Notice however that typing is contractive in its first
argument which will restrict the search space to subterms of the goal.

B.3.2 Example: Term Inference

We can use the LF theorem prover to either find the type of a term or to build a term of a given type. As a
representative example, we build a term of type a = b = a by solving the query
IMay ag : tp. T of E (a1 = as = a1)
To keep the example succinct, we only use the rules
I'Fof (lam (A\x.ex)) (t1 = t3) — v T'Fofaxt; — 'k of (ex) iy — hof E(c1 = 2 = 1)

R, Ry

— — goal

The second rule is used to simulate an existential quantifier that does not exist in LF. The actual prover would
generate new sequents corresponding to the rule for application. We will use the Imogen variable-rule loop
so we can see the unifications that occur at each stage. We begin with a sole initial sequent that subsumes
all others.'?

Qi :TFofelt! — T Hofelt!

13Recall that we rename variables when necessary so we don’t erroneously equate variables from different rules and sequents.

71

Stage 1. We match R; with ;. This yields unification equations e! = lam (\z. e) and t! = t; = t5 to
generate the new derived rule

Ftofxt; — T Fof (ex)ty

R3
— Tk of (lam (Az. e x)) (t; = t2)

Stage 2. We can match @; with R3 in two different ways, one that consumes the antecedent, and the other
that doesn’t. In the first case we have equations

yielding new sequent

Q2 : — Tk of (1am (\z. z)) (t* = t?)

In the second case we have only the last two or the above equations, yielding
Q3: TFof (2 23 t3 — T'F of (lam (\z. €% z)) (£ = t3)
Stage 3. Matching Q5 to R3 gives equations

r=edad t1 =13 ex=1lam (\z.e3x) ty =13 =13

and new sequent

Q4 : — T Fof (lam (\y. lam (Az. y)) (t3 = t] = t3)

An easy application of rule R, subsumes the goal.

72

C Example: Type Preservation

This example illustrates the combination of an inverse method LF theorem prover with the induction strategy
of M. We will assume the existence of an LF theorem prover. We show the steps meta-theorem prover
would take in constructing a proof of type preservation with a call-by-name evaluation relation.

C.1 Paper Proof
First define the evaluation relation as
Feval e; (lam (Az. e3 x)) F eval (ezeq)e

eval-lam eval-app
Feval (lam (Az. e x)) (lam (Az. e x)) Feval (e;-e3) e

Theorem C.1. For any e,e¢’ and t, if T' - of et and - eval e ¢’ then T |- of €’ 1.

Proof. Let D be the derivation of - eval e ¢’ and £ the derivation of I' - of e ¢. The proof is by induction on
D.

Case:

D= eval-lam
F eval (lam (Az. g)) (lam (Az. eg x))

Then e = ¢/ = 1lam (A\z. eg), so £ is a derivation of I" - of ¢’ ¢.

Case:
Dl DQ
Feval e; (lam (Az. e3 2)) + eval (e3eq) e
D= eval-app
Feval (e1-e3) €
(‘:1 52
FFFOf@l(t2:>t) FIT'F of egto
&= of-app
FTFof (eg-e2)t
l.e=e1-e9 Assumption
2. T F of (lam (Az. e3 x)) (t2 = t) Induction with Dy, &;
3. Forany z, if '+ of x to then '+ of e3 x ¢ Inversion on 2.
4. T+ of (63 62) t (3) with &
5.T'Fofet Induction with (4) and D,

73

C.2 Twelf Encoding
Evaluation.
eval : tm -> tm —-> type.

eval/lam : eval (lam T) (lam T).
eval/app : eval (T1 @ T2) T4
<- eval T1 (lam T3)
<- eval (T3 T2) T4.

Type Preservation. Type preservation requires a block declaration. The world can be extended by a vari-
able x of type tm along with a hypothetical derivation px : I' I of x A for some type A.

pres : of TA -> eval TT’ -> of T> A -> type.
%mode pres +01 +E -02.

- : pres (of/lam D) eval/lam (of/lam D).
- : pres
(of/app
(02 : of T2 A)
(01 : of T1 (A => B)))
(eval/app
(E2 : eval (T3 T2) T4)
(E1 : eval T1 (lam T3)))
(03 : of T4 B)
<- pres 01 E1 (of/lam (01’ : {x} (of x A -> of (T3 x) B)))
<- pres (01’ T2 02) E2 03.

%block b : some {A : tp} block {x : tm} {px : of x A}.
%worlds (b) (pres _ _).
%total E (pres E).

C.3 Mj Theorem prover

As in the list involution example, the goal of the meta-theorem prover is to discover a proof of type preser-
vation automatically. The LF derived rules for the two polarities are

Positive
Feval (lam (Az. e z)) (lam (Az. e x)) — v Feval (e1-€2) e — 7
— Feval e; (lam (Ax. e3)),F eval (e3 e3) e —
Negative

—tF eval ey (lam (Az. e3 z)) —tF eval (ezez) e

—t eval (lam (Az. e z)) (lam (M. e x)) —t eval (e;-es) e

74

Once again, evaluation should be positive. Note that unlike typing which is expansive in its first argument,
neither argument of eval is well behaved. We thus begin any filling phase with the following inference rules:

I'Fof (lam (M\z.ex)) (t; = t2) — v DI'Fofxt; — 'k of (ex)ty ['Fof (e1-ez) th — 7
— Ftofey (to=1t1),lFofeyty —
Feval (lam (Az. e x)) (lam (Az. e x)) — Feval (e1-ez) e —y
— Feval e; (lam (Az. e3)),F eval (e3e2) e — 7y

We begin by asking the M prover for a proof of

Vee :tm. Vi:tp.VD:T'hofet.VE:Fevalee . D :THofe' t. T

After applying the rules II-R and —-R, we have the following goal, where e, e’ and t are new constants.

e:tm, € :tm, t:tp, D:T'FHofet, £:Fevalee

dD' :TFofe't. T

Phase 1: Filling. We first attempt a direct proof using the LF theorem prover. After inspecting the rules
and goal, we find the following initial sequents, where parameters are written in bold face.

Feval (lam (Az. e z)) (lam (Az. e x)) —F eval (lam (Az. e z)) (lam (Az. e x))
Feval (e1-e3) e —tF eval (e -e3) e
Fevalee —F evalee
I'F of (lam (A\z. e z)) (t1 = t3) — ['F of (lam (\z. e z)) (t1 = t2)
IF'Hof(e;-ex)t— T Hof (e1-ea)t
I'Fofet —THFofet

As we have noted, of is expansive in its first argument, so we only need keep those sequents where the first
argument to of is a subterm either of e or €'. Since none of the initial sequents involving of satisfies this
requirement, none are inserted in the initial database. A cursory glance at the rules shows that the goal
can never be obtained without at least one of those axioms, so the filling phase fails before attempting any
inference.

Phase 1: Splitting. We then choose a variable on which to split. We assume we make the fortuitous choice
of splitting on £. As in the paper proof, this choice leaves us with two subgoals. The first after equational
reasoning is

ep:tm=tm t:tp, D:TF of (lam (A\z. e; x)) t

D" : T+ of (lam (Az. e x)) t. T

This is trivially solved by the following filling phase. The second is

75

e;:tm, e :tm, € :tm, e3:tm= tm,
&k eval e (lam (Az. e3 x)), & :Feval (e3ez) €, D: T F of (lam (Az. e) t

ID' :TFofe't. T

Noticing that D can only be constructed in one way, it inverts the derivation, yielding goal

e1:tm, e :tm, € :tm e;3:tm= tm,
&1+ eval e; (lam (\z. e3 x)), Ey:Feval (eg3ez) e, Dy : ' of ey (ta=t1), Do:T'F of ey to

dD':T'kofe't. T
Phase 1: Recursion. Now the theorem prover tries to find all possible applications of the induction hy-
potheses. There is one immediate application with & and D, extending the proof context with

D3 : Tk of (1am (Az. e3 z)) (t2 = t)

and by inversion with

Dy:Ur:tmTof xty > TFof (e3x)t

We also can apply the induction hypothesis to &;, giving

E :V(p:Thofesext). Ig:THofe't) T.

Using Schiirmann’s technique of Skolemization [Schiirmann, 2000], we can Skolemize &} to

T'Fofesest - T'Fofe't

and the next filling stage will find the solution. Since we haven’t yet implemented this process, we have
been purposely vague about how the recursion stage operates. It seems a saturation based strategy like the
inverse method can be used for this phase, as well as for the LF theorem prover. Perhaps the recursion phase
can be implemented using the LF theorem prover using additional rules corresponding to applications of the
induction hypotheses.

C.4 Twelf Formalization with Theorem Prover

As in Appendix A, we give a possible syntax for the theorem declaration as it would be given in a Twelf file.

%theorem pres : forallG (some {A : tp} pi {x : tm} {px : of x A})
forall* {A : tp} {T : tm} {T’ : tm}
forall {0 : of T A} {E : eval T T’}
exists {0’ : of T’ A}
true.
f%prove E (pres _ E _).

Inferring the theorem from the type family seems to be possible as well, and would interact better with the
current Twelf methodology:

76

pres : of TA -> eval T T’ -> of T’ A -> type.
/mode pres +01 +E -02.

%block b : some {A : tp} block {x : tm} {px : of x A}.
%worlds (b) (pres _ _ _).

fprove E (pres _ E _).

77

References

[Abate and Goré, 2003] Abate, P. and Goré, R. (2003). The tableaux work bench. In Automated Reasoning
with Analytic Tableaux and Related Methods, pages 230-236. Springer-Verlag. 57

[Andreoli, 1992] Andreoli, J.-M. (1992). Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297-347. 9, 24, 25

[Andreoli, 2001] Andreoli, J.-M. (2001). Focussing and proof construction. Annals of Pure and Applied Logic,
107(1-3):131-163. 27

[Appel and Felten, 1999] Appel and Felten (1999). Proof-carrying authentication. In SIGSAC: 6th ACM
Conference on Computer and Communications Security. ACM SIGSAC. 6

[Appel, 2001] Appel, A. (2001). Foundational Proof-Carrying Code. In Logic in Computer Science, pages
247-258. IEEE Computer Society. 6

[Autexier et al., 1999] Autexier, S., Hutter, D., Mantel, H., and Schairer, A. (1999). System description:
inka 5.0 : A logic voyager. In Ganzinger, H., editor, Conference on Automated Deduction, pages 207-211.
Springer. 57

[Avellone et al., 2004] Avellone, A., Fiorino, G., and Moscato, U. (2004). A new O(n log n)-space decision
procedure for propositional intuitionistic logic. In Kurt Goedel Society Collegium Logicum, volume VIII,
pages 17-33. 32

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998). Term Rewriting and All That. Cambridge
University Press. 35

[Bachmair and Ganzinger, 2001] Bachmair, L. and Ganzinger, H. (2001). Resolution theorem proving. In
Robinson, A. and Voronkov, A., editors, Handbook of Automated Reasoning, volume I, chapter 2, pages
19-99. Elsevier Science. 12

[Baelde, 2008] Baelde, D. (2008). A Linear Approach to the Proof Theory of Least and Greatest Fixed Points.
PhD thesis, E¢ole Polytechnique. 25, 48, 50, 57

[Baelde et al., 2007] Baelde, D., Gacek, A., Miller, D., Nadathur, G., and Tiu, A. (2007). The Bedwyr system
for model checking over syntactic expressions. In Pfenning, F., editor, Conference on Automated Deduction,
pages 391-397. Springer. 57

[Bancilhon et al., 1986] Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. (1986). Magic sets and other
strange ways to implement logic programs. In ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems. 42

[Barendregt, 1984] Barendregt, H. (1984). The Lambda Calculus, its Syntax and Semantics. North-Holland.
Second Revised Edition. 37

[Beckert and Goré, 1997] Beckert, B. and Goré, R. (1997). Free variable Tableaux for propositional modal
logics. In Galmiche, D., editor, Automated Reasoning with Analytic Tableaux and Related Methods, pages
91-106. Springer. 58

[Beeri and Ramakrishnan, 1991] Beeri, C. and Ramakrishnan, R. (1991). On the power of magic. The
Journal of Logic Programming, 10:255-300. 42

[Bundy, 2001] Bundy, A. (2001). The automation of proof by mathematical induction. In Robinson, A. and
Voronkov, A., editors, Handbook of Automated Reasoning, volume I, chapter 13, pages 845-911. Elsevier
Science. 57

78

[Bundy et al., 1993] Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., and Smaill, A. (1993). Rippling:
A heuristic for guiding inductive proofs. Artificial Intelligence, 62(2):185-253. 57

[Bundy et al., 1990] Bundy, A., van Harmelen, F., Smaill, A., and Ireland, A. (1990). Extensions to the
rippling-out tactic for guiding inductive proofs. In Stickel, M. E., editor, Conference on Automated Deduc-
tion, pages 132-146. Springer. 57

[Chaudhuri, 2006] Chaudhuri, K. (2006). The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie
Mellon University. Technical report CMU-CS-06-162. 9, 36, 37, 56

[Chaudhuri et al., 2008] Chaudhuri, K., Pfenning, F., and Price, G. (2008). A logical characterization of
forward and backward chaining in the inverse method. Journal of Automated Reasoning, 40(2-3):133-
177. 25, 39, 52, 56

[Comon and Lescanne, 1989] Comon, H. and Lescanne, P. (1989). Equational problems and disunification.
Journal of Symbolic Computation, 3-4(7):371-426. 44

[Coquand, 1998] Coquand, C. (1998). The AGDA proof system homepage. http://www.cs.chalmers.se/
~catarina/agda/. 58

[Degtyarev and Voronkov, 2001a] Degtyarev, A. and Voronkov, A. (2001a). Equality reasoning in sequent-
based calculi. In Robinson, J. A. and Voronkov, A., editors, Handbook of Automated Reasoning, pages
611-706. Elsevier and MIT Press. 47, 56

[Degtyarev and Voronkov, 2001b] Degtyarev, A. and Voronkov, A. (2001b). The inverse method. In Robin-
son, A. and Voronkov, A., editors, Handbook of Automated Reasoning, volume I, chapter 4, pages 179-272.
Elsevier Science. 9, 12, 16, 18, 27, 35, 56, 58

[Dyckhoff, 1992] Dyckhoff, R. (1992). Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic, 57(3):795-807. 32

[Gacek, 2008] Gacek, A. (2008). The Abella interactive theorem prover (system description). In Armando,
A., Baumgartner, P., and Dowek, G., editors, International Joint Conference on Automated Reasoning, pages
154-161. Springer. 58

[Garg and Pfenning, 2006] Garg, D. and Pfenning, F. (2006). Non-interference in constructive authorization
logic. In Guttman, J., editor, Computer Security Foundations Workshop, pages 283-293. IEEE Computer
Society Press. 44

[Gentzen, 1934] Gentzen, G. (1934). Untersuchungen iiber das logische SchlieRen. Mathema-
tische Zeitschrift, 39:176-210 and 405-431. Translated in The Collected Papers of Gerhard
Gentzen [Gentzen, 1969]. 12

[Gentzen, 1969] Gentzen, G. (1969). The Collected Papers of Gerhard Gentzen. North Holland. Edited by M.
E. Szabo. 79

[Giese, 2001] Giese, M. (2001). Incremental Closure of Free Variable Tableaux. In International Joint
Conference on Automated Reasoning, Lecture Notes in Computer Science, pages 545-560. Springer-Verlag.
57

[Goldfarb, 1981] Goldfarb, W. D. (1981). The undecidability of the second-order unification problem. The-
oretical Computer Science, 13:225-230. 11

[Gottlob and Leitsch, 1985] Gottlob, G. and Leitsch, A. (1985). On the efficiency of subsumbtion algorithms.
Journal of the ACM, 32(2). 57

79

http://www.cs.chalmers.se/~catarina/agda/
http://www.cs.chalmers.se/~catarina/agda/

[Graf, 1996] Graf, P. (1996). Term Indexing, volume 1053 of Lecture Notes in Computer Science. Springer.
19, 57

[Hahnle, 2001] Hahnle, R. (2001). Tableaux and related methods. In Robinson, A. and Voronkov, A.,
editors, Handbook of Automated Reasoning, volume I, chapter 3, pages 100-178. Elsevier Science. 12

[Harper et al., 1993] Harper, R., Honsell, F., and Plotkin, G. (1993). A framework for defining logics. Jour-
nal of the ACM, 40(1):143-184. 6, 51

[Harper and Licata, 2007] Harper, R. and Licata, D. R. (2007). Mechanizing metatheory in a logical frame-
work. Journal of Functional Programming, 17(4-5):613-673. 6, 51

[Howe, 1998] Howe, J. M. (1998). Proof Search Issues in Some Non-Classical Logics. PhD thesis, University
of St. Andrews, Scotland. 25

[Hustadt and Schmidt, 2000] Hustadt, U. and Schmidt, R. A. (2000). MSPASS: Modal reasoning by trans-
lation and first-order resolution. In Dyckhoff, R., editor, Automated Reasoning with Analytic Tableaux and
Related Methods, pages 67-71. Springer. 58

[Hutter and Sengler, 1996] Hutter, D. and Sengler, C. (1996). INKA: the next generation. In McRobbie,
M. A. and Slaney, J. K., editors, Conference on Automated Deduction, pages 288-292. Springer. 57

[Jaffar and Lassez, 1987] Jaffar, J. and Lassez, J.-L. (1987). Constraint logic programming. In Conference
Record of the 14th Annual ACM Symposium on Principles of Programming Languages, pages 111-119,
Munich, West Germany. 56

[Jia, 2008] Jia, L. (2008). Linear Logic and Imperative Programming. PhD thesis, Princeton University. 56

[Kaufmann and Moore, 1997] Kaufmann, M. and Moore, J. S. (1997). An industrial strength theorem
prover for a logic based on Common Lisp. I[EEE Transactions on Software Engineering, 23(4):203-213.
57

[Kreitz and Pientka, 2001] Kreitz, C. and Pientka, B. (2001). Connection-driven inductive theorem proving.
Studia Logica, 69(2):293-326. 57

[Lamarche, 1995] Lamarche, F. (1995). Games semantics for full propositional linear logic. In Logic in
Computer Science, pages 464-473. 9, 24

[Larchey-Wendling et al., 2001] Larchey-Wendling, D., Méry, D., and Galmiche, D. (2001). STRIP: Structural
sharing for efficient proof-search. In Goré, R., Leitsch, A., and Nipkow, T., editors, International Joint
Conference on Automated Reasoning, pages 696-700. Springer. 32

[Lassez and McAloon, 1990] Lassez, J.-L. and McAloon, K. (1990). A constraint sequent calculus. In
LICS’90: Proceedings 5th IEEE Symposium on Logic in Computer Science, pages 52-61. IEEE Computer
Society Press. 57

[Lee et al., 2007] Lee, D. K., Crary, K., and Harper, R. (2007). Towards a mechanized metatheory of standard
ML. In Hofmann, M. and Felleisen, M., editors, Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 173-184. ACM. 6

[Liang and Miller, 2007] Liang, C. and Miller, D. (2007). Focusing and polarization in intuitionistic logic. In
Duparc, J. and Henzinger, T. A., editors, Computer Science Logic, pages 451-465. Springer. 9, 25, 27

[Maslov, 1964] Maslov, S. Y. (1964). An inverse method for establishing deducibility in classical predicate
calculus. Doklady Akademii nauk SSSR, 159:17-20. 9, 12

80

[McLaughlin and Pfenning, 2008] McLaughlin, S. and Pfenning, F. (2008). Imogen: Focusing the polarized
inverse method for intuitionistic propositional logic. In Cervesato, I., Veith, H., and Voronkov, A., editors,
Logic for Programming, Artificial Intelligence, and Reasoning, LPAR, pages 174-181. Springer. 9, 25

[McLaughlin and Pfenning, 2009] McLaughlin, S. and Pfenning, F. (2009). Efficient intuitionistic theorem
proving with the polarized inverse method. In CADE (submitted). 9

[Miller, 1992] Miller, D. (1992). Unification under a mixed prefix. Journal of Symbolic Computation, 14:321-
358. 11

[Mints, 1993] Mints, G. (1993). Resolution calculus for the first order linear logic. Journal of Logic, Lan-
guage, and Information, 2(1):59-83. 12

[Nanevski et al., 2008] Nanevski, A., Pfenning, F., and Pientka, B. (2008). A contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1-56. 52

[Necula, 1997] Necula, G. C. (1997). Proof-carrying code. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 106-119. ACM Press. 6

[Nieuwenhuis et al., 2001] Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., and Voronkov, A. (2001). On the
evaluation of indexing techniques for theorem proving. In Goré, R., Leitsch, A., and Nipkow, T., editors,
International Joint Conference on Automated Reasoning, pages 257-271. Springer. 57

[Pfenning, 1989] Pfenning, F. (1989). Elf: A language for logic definition and verified meta-programming.
In Logic in Computer Science, pages 313-322. IEEE Computer Society Press. 6, 51

[Pfenning, 2001] Pfenning, F. (2001). Logical frameworks. In Robinson, A. and Voronkov, A., editors,
Handbook of Automated Reasoning, volume II, chapter 17, pages 1063-1147. Elsevier Science. 51

[Pfenning and Elliott, 1988] Pfenning, F. and Elliott, C. (1988). Higher-order abstract syntax. In Proceedings
of the ACM-SIGPLAN Conference on Programming Language Design and Implementation, pages 199-208.
ACM Press. 6

[Pfenning and Reed, 2009] Pfenning, F. and Reed, J. (2009). Embeddings of focused substructural logics.
In To appear. 44

[Pfenning and Schiirmann, 1999] Pfenning, F. and Schiirmann, C. (1999). System description: Twelf : A
meta-logical framework for deductive systems. In Ganzinger, H., editor, Conference on Automated Deduc-
tion, pages 202-206. Springer-Verlag. 6

[Pientka, 2003] Pientka, B. (2003). Tabled higher-order logic programming. PhD thesis, Carnegie Mellon
University. CMU-CS-03-185. 51, 52, 57

[Pientka, 2008] Pientka, B. (2008). A type-theoretic foundation for programming with higher-order abstract
syntax and first-class substitutions. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 371-382. ACM. 55, 58

[Pientka et al., 2007] Pientka, B., Li, D. X., and Pompigne, F. (2007). Focusing the inverse method for LF:
a preliminary report. In International Workshop on Logical Frameworks and Meta-languages: Theory and
Practice. 51, 52

[Poswolsky, 2008] Poswolsky, A. (2008). Functional Programming with Logical Frameworks: The Delphin
Project. PhD thesis, Yale University. 54, 55, 58

81

[Ramakrishnan et al., 2001] Ramakrishnan, I. V., Sekar, R., and Voronkov, A. (2001). Term indexing. In
Robinson, A. and Voronkov, A., editors, Handbook of Automated Reasoning, volume II, chapter 26, pages
1853-1964. Elsevier Science. 18, 19, 57

[Raths and Otten,] Raths, T. and Otten, J. The ILTP Library. http://www.iltp.de. 32, 39

[Raths et al., 2007] Raths, T., Otten, J., and Kreitz, C. (2007). The ILTP problem library for intuitionistic
logic. Journal of Automated Reasoning, 38(1-3):261-271. 10, 32

[Riazanov and Voronkov, 1999] Riazanov, A. and Voronkov, A. (1999). Vampire. In Ganzinger, H., editor,
Conference on Automated Deduction, pages 292-296. Springer. 57

[Riazanov and Voronkov, 2003] Riazanov, A. and Voronkov, A. (2003). Efficient instance retrieval with stan-
dard and relational path indexing. In Baader, F., editor, Conference on Automated Deduction, pages 380—
396. Springer. 57

[Riazanov and Voronkov, 2004] Riazanov, A. and Voronkov, A. (2004). Efficient checking of term ordering
constraints. In Basin, D. A. and Rusinowitch, M., editors, International Joint Conference on Automated
Reasoning, pages 60-74. Springer. 57

[Robinson, 1965] Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Jour-
nal of the Association for Computing Machinery, 12:23-41. 12

[Riimmer, 2008] Riimmer, P. (2008). A constraint sequent calculus for first-order logic with linear inte-
ger arithmetic. In Cervesato, 1., Veith, H., and Voronkov, A., editors, Logic for Programming, Artificial
Intelligence, and Reasoning, pages 274-289. Springer. 57

[Sahlin et al., 1992] Sahlin, D., Franzén, T., and Haridi, S. (1992). An intuitionistic predicate logic theorem
prover. Journal of Logic and Computation, 2(5):619-656. 32

[Saranli and Pfenning, 2007] Saranli, U. and Pfenning, F. (2007). Using constrained intuitionistic linear
logic for hybrid robotic planning problems. In Proceedings of the International Conference on Robotics and
Automation, pages 3705-3710. IEEE Computer Society Press. 56

[Schiirmann, 2000] Schiirmann, C. (2000). Automating the Meta Theory of Deductive Systems. PhD thesis,
Carnegie Mellon University. Technical report CMU-CS-00-146. 6, 11, 48, 52, 54, 57, 76

[Tammet, 1996] Tammet, T. (1996). A resolution theorem prover for intuitionistic logic. In McRobbie, M. A.
and Slaney, J. K., editors, Conference on Automated Deduction, pages 2—-16. Springer. 56

[Tammet, 1998] Tammet, T. (1998). Towards efficient subsumption. In Kirchner, C. and Kirchner, H.,
editors, Conference on Automated Deduction, pages 427-441. Springer. 57

[Troelstra and Schwichtenberg, 1996] Troelstra, A. S. and Schwichtenberg, H. (1996). Basic Proof Theory.
Cambridge University Press. 12

[Voronkov, 1992] Voronkov, A. (1992). Theorem proving in non-standard logics based on the inverse
method. In Kapur, D., editor, Conference on Automated Deduction, pages 648-662. Springer. 56

[Voronkov, 1995] Voronkov, A. (1995). The anatomy of vampire implementing bottom-up procedures with
code trees. Journal of Automated Reasoning, 15(2):237-265. 42

[Voronkov, 1999] Voronkov, A. (1999). KJ: A theorem prover for K. In Ganzinger, H., editor, Conference on
Automated Deduction, pages 383-387. Springer. 56, 58

82

http://www.iltp.de

[Voronkov, 2000] Voronkov, A. (2000). How to optimize proof-search in modal logics: A new way of proving
redundancy criteria for sequent calculi. In Logic in Computer Science, pages 401-412. IEEE. 56

[Voronkov, 2001a] Voronkov, A. (2001a). Algorithms, datastructures, and other issues in efficient automated
deduction. In Goré, R., Leitsch, A., and Nipkow, T., editors, International Joint Conference on Automated
Reasoning, pages 13-28. Springer. 57

[Voronkov, 2001b] Voronkov, A. (2001b). How to optimize proof-search in modal logics: new methods of
proving redundancy criteria for sequent calculi. ACM Transactions on Computational Logic, 2(2):182-215.
56, 58

[Wallen, 1990] Wallen, L. A. (1990). Automated Deduction in Non-Classical Logics. MIT Press. 56

[Zeilberger, 2008] Zeilberger, N. (2008). Focusing and higher-order abstract syntax. In Necula, G. C. and
Wadler, P., editors, Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 359-369. ACM. 25, 58

83

	I The Polarized Inverse Method
	Introduction
	The Inverse Method
	Intuitionistic Propositional Logic
	Forward Sequent Calculus
	The Inverse Method
	Optimizations
	Example

	Imogen
	The Back End
	The Variable-Rule Loop

	Other Features
	The Front End

	Propositional Logic
	Polarization
	Focusing
	Synthetic Connectives and Derived Rules
	The Polarized Inverse Method
	Matching
	Search

	Example
	Heuristics
	Implementation

	First-Order Logic
	Lifting
	First-Order Focusing
	Contraction, Subsumption, and Matching
	Contraction
	Subsumption
	Matching

	Implementation
	Improvements

	II Applications
	Constraints
	Backward Constraints
	Subsumption
	Forward Constraints
	Implementation
	Future Work

	First-Order Induction
	The M2 Loop
	Induction
	Possibilities to Explore

	LF: A Logical Framework
	LF
	Sequent Calculus

	M2
	Current Twelf Theorem Prover
	Analysis
	Goals
	Proof Terms

	Conclusion
	Related Work
	Future Work

	III Appendix
	Example: List Reverse is an Involution
	Paper Proof
	Twelf Encoding
	Inductive Theorem prover
	Lemma: Reverse is Deterministic
	Lemma: Reverse Involution Lemma
	Theorem: Reverse is an Involution

	Twelf Formalization with Theorem Prover

	Example: Extrinsic Typing
	Informal Definitions
	Twelf Encoding
	LF Theorem Prover
	Inference Rules
	Example: Term Inference

	Example: Type Preservation
	Paper Proof
	Twelf Encoding
	M2 Theorem prover
	Twelf Formalization with Theorem Prover

	Bibliography

