
Transparent and Opaque Interpretations of

Datatypes

Karl Crary Robert Harper Perry Cheng

Leaf Petersen Chris Stone

November 20, 1998

Standard ML employs an opaque (or generative) interpretation of datatype
speci�cations, in which every datatype speci�cation provides a new, abstract
type that is di�erent from any other type, including other identically speci�ed
datatypes. An alternative interpretation is the transparent one, in which a
datatype speci�cation exposes the underlying recursive type implementation of
the datatype.

It is commonly believed that the transparent interpretation is strictly more
permissive than the opaque interpretation; that all programs typable under
the opaque discipline are also typable under the transparent discipline. The
purpose of this note is to illustrate that this common belief is incorrect (in the
usual equational theory for types), and to discuss some of the implications of
that fact.

1 An Example

To see the issue involved, consider the signatures SIG1 and SIG2:

signature SIG1 =

sig

datatype u = C of u * u | D of int

type t = u * u

end

signature SIG2 =

sig

type t

datatype u = C of t | D of int

end

Is SIG1 a subsignature of SIG2? In an opaque interpretation (and in Stan-
dard ML [3]) the answer is yes. But in a transparent interpretation the answer
is no. To show why this is so, we give the opaque and transparent interpreta-
tions of SIG1 and SIG2 in a type theory without datatypes but with sums and

1



iso-recursive types (recursive types in which fold and unfold must be mediated
by an explicit isomorphism).

In an opaque interpretation, a datatype speci�cation provides an abstract
type along with introduction and elimination functions for that type [2]:

signature SIG1 opaque =

sig

type u

type t = u * u

val u in : (u * u + int) -> u

val u out : u -> (u * u + int)

end

signature SIG2 opaque =

sig

type t

type u

val u in : (t + int) -> u

val u out : u -> (t + int)

end

In this interpretation, SIG1 matches SIG2 because (u * u + int) ! u is
equal to (t + int) ! u under the assumption that t = u * u, and similarly
u! (u * u+ int) is equal to u! (t+ int).

However, in a transparent interpretation, a datatype speci�cation exposes
the underlying recursive type:

signature SIG1 transparent =

sig

type u = ��. � * � + int

type t = u * u

end

signature SIG2 transparent =

sig

type t

type u = ��. t + int

end

In this interpretation, SIG1 does not match SIG2 because u's abbreviation
in SIG1 is not equal to its abbreviation in SIG2. Invoking t = u * u, the latter
may be shown equal to

��: (��: � * �+ int) * (��: � * �+ int) * int

which, in the usual equational theory for types, is not the same as SIG1's ab-
breviation:

��: � * �+ int

2



What is happening here is, in order for SIG1 to match SIG2, the datatype
speci�cation for u in SIG2 must be able to \capture" a de�nition given to t,
even when t is de�ned in terms of u. This is possible in the opaque setting
because t and u are independent abstract types, and any interplay between
them is deferred to value �elds. In a transparent setting, the necessary capture
is impossible; u and � are di�erent variables and the recursive binding of �
cannot capture any occurrences of u.

2 Implications

This example illustrates that under the usual equality rules for iso-recursive
types, Standard ML is incompatible with a transparent interpretation. How-
ever, in an implementation it is unacceptable to incur the cost of a function call
for every datatype construction and pattern match, so the transparent inter-
pretation is required. In a type-preserving compiler, one may adopt internally
a new interpretation of the language, but only when that internal interpreta-
tion is at least as permissive as the external one, which we have shown is not
the case here. This poses no problem to those compilers that erase types be-
fore compiling, but how can Standard ML be implemented in a type-preserving
manner?

Shao, in the FLINT compiler [5], addresses this problem with what we call
\Shao's equation" (where we write E[E0=X] to mean the capture-avoiding sub-
stitution of E0 for X in E):

��:� = ��:(� [��:�=�])

Shao's equation addresses the problem with the example above by rendering
the two abbreviations equal. More generally, for any equational theory one may
prove that if the transparent interpretation accepts every program typable under
the opaque interpretation, then that theory must include all instances of Shao's
equation. Thus, we argue that Shao's equation is essential to e�cient, type-
preserving compilation of languages with opaque datatypes, such as Standard
ML.

Note that this equation falls short of the equation for equi-recursive types
(recursive types in which fold and unfold need not be performed explicitly):

�equi �:� = � [�equi �:�=�]

Since the right-hand side of Shao's equation is still a recursive type (in contrast
to the right-hand side of the equi-recursive type equation) it is possible that
the type equality problem with Shao's equation may be solved more e�ciently
than the problem for equi-recursive types [1]. Indeed, Shao claims to have an
e�cient algorithm for the problem [4].

Nevertheless, there is some question as to the validity of Shao's equation. In
many semantic contexts, though certainly not all, the equation may be justi�-
able. Note that terms having the left-hand side type,

��:�
def
= �left

3



and terms having the right-hand side type,

��:(� [��:�=�])
def
= �right

both unfold to members of the same type:

� [��:�=�]

Thus, terms may be coerced from one type to the other by unfolding them at
one type and refolding them at the other type. For instance, if e has type �left,
then unfold[�left]e has type � [��:�=�], and so fold[�right](unfold[�left]e) has
type �right.

Thus, Shao's equation is justi�able in a semantic framework in which such
an fold-unfold operation (at di�erent types) is the identity. (Fold-unfold at
the same type would be the identity in nearly any semantic framework.) A
particularly important case where this is true is when fold and unfold themselves
are no-ops, as is the case in most implementations.

3 Conclusions

Opaque datatypes are purported to carry software engineering bene�ts, but
datatypes must be transparent, at least internally, to achieve e�cient compi-
lation. Were the transparent discipline more permissive than the opaque one,
this would not pose a problem, but we show that this is not so.

The opaque and transparent disciplines can be reconciled only by adopting
Shao's equation. Therefore, we argue that Shao's equation is essential to e�-
cient, type-preserving compilation of any language with opaque datatypes. This
equation is not valid in every semantic context, and although it may be permissi-
ble in many important ones, at the very least it complicates typechecking. Thus,
there are good reasons why one could prefer to reject Shao's equation. However,
in a type-preserving compiler, if we wish not to embrace Shao's equation, we
are left with no choice but to abandon opaque datatypes as well.

References

[1] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans-
actions on Programming Languages and Systems, 15(4):575{631, 1993.

[2] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard
ML. In Proof, Language and Interaction: Essays in Honour of Robin Milner.
The MIT Press, 1998. To appear.

[3] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
De�nition of Standard ML (Revised). The MIT Press, Cambridge, Mas-
sachusetts, 1997.

[4] Zhong Shao. Personal communication.

4



[5] Zhong Shao. An overview of the FLINT/ML compiler. In 1997 Workshop on
Types in Compilation, Amsterdam, June 1997. ACM SIGPLAN. Published
as Boston College Computer Science Department Technical Report BCCS-
97-03.

A Proof

Suppose an equational theory is given and suppose that the transparent inter-
pretation accepts every program typable under the opaque interpretation. Let
� [�] be an arbitrary type with free variable � and let SIG1' and SIG2' be
de�ned as follows:

signature SIG1' =

sig

datatype u = C of � [u]
type t = � [u]

end

signature SIG2' =

sig

type t

datatype u = C of t

end

In the opaque interpretation SIG1' matches SIG2', so SIG1' must match
SIG2' under the transparent interpretation as well. In SIG1' the abbreviation
for u is

��:� [�]

and in SIG2' it is
��:t

which, invoking t = � [u], is equal to

��:� [��:� [�]]

Since these abbreviations must be equal, we conclude

��:� [�] = ��:� [��:� [�]]

�

5


