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Type abstraction, the phase distinction, and computational effects all play an important role in the design

and implementation of ML-style module systems. We propose a simple type theoretic metalanguage φML for

multi-phase modularity in which these concepts are treated individually, supporting the definition of high-level

modular constructs such as generative and applicative functors, as well as all extant forms of structure sharing.

In most accounts of ML modules, the phase distinction between static code and dynamic code is

enforced pervasively throughout the language [12, 18]; for instance, in a functor signature of the

form (𝑥 : 𝐴) → 𝐵(𝑥), the signature 𝐵(𝑥) is only allowed to depend on the “static part” of 𝑥 : 𝐴.

The purpose of this restriction is to ensure that the judgmental equality of types and other static

constructs can be decided independently of the existence of any notion of equality for programs.

Recently several authors have advanced a monadic presentation of ML modules in which both

generativity and other effects are treated using a lax modality ⃝ on signatures [5, 10, 24]. When

effects are treated monadically, there is however no obstacle to formulating a (conservative and

tractable) notion of judgmental equality for programs, hence it is appropriate to revisit the global

restriction that types shall never depend on runtime code.

1 THE NEED FOR VALUE-DEPENDENCY
In order to preserve abstraction, it is often necessary for types to depend on runtime identity;

generativity of ML functors is one way to achieve this in the context of effects, but the need for

this kind of dependency also occurs even for applicative functors such asMkSet, as pointed out

by Rossberg et al. [22]. This shows that one needs to depend on runtime value identity to achieve

abstraction regardless of whether computational effects are in play; generative functors capture

specifically the case where modules (potentially) exhibit dynamic initialization effects.

Static dependency on runtime identity can be approximated using phantom types as in the

elaboration of Rossberg et al. [22, § 8.1], a logical version of the stamps of SML ’90 [16]. While

phantom types have a definite role to play, providing the most conservative possible static approxi-

mation of value identity, experience implementing and compiling full-spectrum dependently typed

programming languages (e.g. Idris 2 and Lean 4 [4, 6]) suggests that there is no longer any reason

to make this the only way that types can depend on values.

2 LET A HUNDRED PHASE DISTINCTIONS BLOOM!
The venerable static–dynamic phase distinction is not the only phase distinction that can be

considered. For instance, logical relations arguments can be reformulated à la Sterling and Harper

[24] in terms of a syntactic–semantic phase distinction; type refinements in the sense of Melliès and

Zeilberger [15] evince a phase distinction between computation (extraction) and logic (specification);

security typing and information flow can be seen to exhibit a lattice of phase distinctions.
Because these are surely not the only phase distinctions that will play a role in future program-

ming languages, we propose an adequate type theoretic metalanguage φML that can accommodate

any number of phase distinctions simultaneously. φML starts with ordinary Martin-Löf type

theory [19] and adds to it enough constructs to express modularity relative to a lattice of phase

distinctions, denoted 𝜑 : 𝒪 .
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Each phase 𝜙 : 𝒪 induces a context extension (Γ, 𝜑); types and terms in such a context are

restricted to their 𝜑-visible components. For instance if 𝜑 B ϕst is the static phase, the dynamic

parts of a type Γ,ϕst ⊢ 𝐴 type are collapsed. In this sense, the weakening substitution along

Γ,ϕst Γ implements the static projection operation Fst(−) from prior type theoretic accounts of

modules [7], and judgmental equality Γ,ϕst ⊢ 𝐴 ≡ 𝐵 type in the extended context reconstructs the

static equivalence judgment of Dreyer et al. [8].

2.1 Modal type structure of φML
2.1.1 The phase modality. The context extension Γ, 𝜑 is internalized as the phase modality
(𝜑 ⇒ −); semantically, (𝜑 ⇒ −) behaves like a function space whose domain is the (subsingleton)

collection of witnesses that we are “in” the 𝜑 phase.

2.1.2 The sealing modality. A type 𝐴 is called sealed at 𝜑 : 𝒪, written Γ ⊢ 𝐴 sealed @ 𝜑 , when

it is equivalent to the unit type in phase 𝜑 . We include a sealing modality [𝜑 \𝐴] that seals a
type 𝐴 at phase 𝜑 ; the laws for this modality are similar to those of the protection modality in

the dependency core calculus of Abadi et al. [1], but they actually come from those of the local

operator induced by a closed subspace in the topological semantics of intuitionistic logic. Indeed,

the relationship between the phase and sealing modalities is essentially that of open subspace (e.g.
static fragment) and closed complement (e.g. dynamic fragment).

2.1.3 Structure sharing. Given a type 𝐴 and an element 𝜑 ⊢ 𝑀 : 𝐴, we may form the structure
sharing type {𝐴 | 𝜑 ↩→ 𝑀} ⊆ 𝐴 that classifies all the elements of 𝐴 equal to 𝑀 at phase 𝜑 . In

case 𝜑 B ϕst, the structure sharing type {𝐴 | ϕst ↩→ 𝑀} ≤ 𝐴 classifies the elements of 𝐴 that

are statically equivalent to 𝑀 in the sense of Dreyer et al. [8] and therefore captures the weak
structure sharing of SML ’97 [17]. On the other hand, if 𝜑 B ⊤ is the “top” phase distinction,

then {𝐴 | ⊤ ↩→ 𝑀} is the true singleton type that is approximated by SML ’90’s strong structure

sharing [16] via stamps, and by the F-ing Modules calculi via phantom types [22].

2.2 Applications of φML
We briefly survey a few applications of φML’s perspective on multi-phase modularity.

2.2.1 Reconstructing ML’s static–dynamic phase distinction. The classic static–dynamic phase

distinction of SML and OCaml is recovered by adding a single phase distinctionϕst : 𝒪 together with

a laxmodality⃝𝐴 for effects that is always statically sealed, in the sense that Γ ⊢ ⃝𝐴 sealed @ ϕst

holds. Given another modality 𝑇 that is not sealed, one could define the effect modality by ⃝𝐴 B
[ϕst \𝑇 (𝐴)] in terms of the sealing modality. ML-style generative and applicative functors may

then be defined like so:

Πgen,Πapp
: (𝐴 : Sig) (𝐵 : (ϕst ⇒ 𝐴) → Sig) → Sig

Πgen (𝐴, 𝐵) = (𝑥 : 𝐴) → ⃝𝐵(⟨ϕst⟩𝑥)
Πapp (𝐴, 𝐵) = (𝑥 : 𝐴) → 𝐵(⟨ϕst⟩𝑥)

We add a law to make the universe of kinds purely static in the sense that (ϕst ⇒ Kind) � Kind.

2.2.2 Compile-time inlining without breaking abstraction. Under a separate compilation discipline,

e.g. that of Swasey et al. [28], a module is compiled as a function of its dependencies; unless special

arrangements are made, this can obstruct the inlining of functions whose identities are not exposed

by the dependencies’ interfaces. To address the inlining problem, Stone [25, § 1.5.3] and Leroy [13,

§ 5.3] have suggested extending the module language to support sharing of non-static phrases

in module signatures; then this interface can be used by the compiler to support inlining of the
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exposed definitions. This is too naïve: users of module systems employ non-sharing in order to

maintain abstraction and enforce their intention that a dependent module’s implementation is

independent of some part of its dependency.

We propose to address the inlining problem by introducing a phase distinctionϕcmpl : 𝒪 between

compile-time and runtime.1 Value identities are exposed for inlining by means of the the structure

sharing type {𝐴 | ϕcmpl ↩→ 𝑀}; programmers will not be able to rely on the identities so-exposed,

but the compiler will be executed in the ϕcmpl phase and can therefore exploit exposed identities

for inlining. This application provides essential theoretical support for the efficient implementation

of Harper’s proposal to treat datatypes as abstract types with default implementations [9].

2.2.3 Reconciling debugging with abstraction. Debugging is a common source of frustration when

developing code in the presence of abstract types; many engineers today still primarily rely on

so-called “printf-debugging” to diagnose broken code, but this becomes a problem in the presence

of abstract types whose representations are unknown. We propose to add a new “debug” phase

ϕdbg : 𝒪 and, by default, expose the identities of all modules within the debug phase by means of

the structure sharing type {𝐴 | ϕdbg ↩→ 𝑀}; then we may add a primitive operation to the standard

basis library that allows a ϕdbg-phase string to be printed, debug : (ϕdbg ⇒ string) → ⃝unit.
Then in the presence of an element 𝑎 : 𝑀.t whose (hidden) representation type is int, we may freely

debug by executing the side effect debug(⟨ϕdbg⟩Int.toString(𝑎)).

2.2.4 Representation independence. Following the Logical Relations As Types principle of Ster-
ling and Harper [24], we may capture binary parametricity [20] by adding two phasesϕL

syn,ϕ
R
syn : 𝒪

with ϕL
syn ⊓ ϕR

syn ≡ ⊥ and defining ϕsyn B ϕL
syn ⊔ ϕR

syn. Then representation independence results

can be proved: a simulation between queue implementations 𝑀, 𝑁 : QUEUE is given by a third

implementation 𝑂 : {QUEUE | ϕsyn ↩→ [ϕL
syn ↩→ 𝑀,ϕR

syn ↩→ 𝑁 ]}. This method is used by op. cit.
to prove a generalized Reynolds Abstraction Theorem for a module calculus, and by Sterling and

Angiuli [23] to prove normalization and decidability of judgmental equality for cubical type theory.
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A SELECTED RULES
A.1 Judgments of φML

We specify φML parametrically in a meet semilattice 𝒪 of phases, writing 𝜑 : 𝒪 to mean that 𝜑 is

an element of 𝒪. We begin by recapitulating the ordinary judgments of type theory:

(1) Γ ctx means that Γ is a context.

(2) Γ ⊢ 𝐴 type presupposes Γ ctx and means that 𝐴 is a type in context Γ.

(3) Γ ⊢ 𝐴 ≡ 𝐵 type presupposes Γ ctx and Γ ⊢ 𝐴, 𝐵 type, and means that 𝐴 and 𝐵 are equal

types in context Γ.

To the above, φML adds the following forms of judgment that pertain to the structure of phases:

(1) Γ ⊢ 𝜑 presupposes Γ ctx and 𝜑 : 𝒪, and means that Γ entails that the 𝜑 phase is activated.

(2) Γ ⊢ 𝐴 sealed @ 𝜑 presupposes Γ ctx, Γ ⊢ 𝐴 type, and 𝜑 : 𝒪, and means that Γ entails that

𝐴 is sealed at phase 𝜑 . Intuitively this means that the type 𝐴 can expose no information to

clients at phase 𝜑 , i.e. is a singleton type at phase 𝜑 .

Contexts in φML are totally structural; all the judgments of φML specified above are stable

under weakening, contraction, and exchange.

A.2 Contexts and phases
To activate a given phase, φML has a context extension Γ, 𝜑 governed by the following rules:

cx/emp

· ctx

cx/var

Γ ctx 𝜑 : 𝒪

Γ, 𝜑 ctx

cx/ph

Γ ctx Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ctx

ph/var

𝜑 ∈ Γ
Γ ⊢ 𝜑

We impose rules to make the judgment Γ ⊢ 𝜑 preserve meets:

top/intro

Γ ⊢ ⊤

meet/intro

Γ ⊢ 𝜑 Γ ⊢ 𝜓
Γ ⊢ 𝜑 ∧𝜓

meet/elim

Γ ⊢ 𝜑 ∧𝜓
Γ ⊢ 𝜑 Γ ⊢ 𝜓

Observation A.1. The following monotonicity law is derivable:

ph/mono

𝜑 ≤𝒪 𝜓 Γ ⊢ 𝜑
Γ ⊢ 𝜓

Proof. If 𝜑 ≤𝒪 𝜓 , then 𝜑 ∧𝜓 = 𝜑 ; to derive Γ ⊢ 𝜓 we therefore may apply meet/elim. □

A.3 The phase modality
We include a modality 𝜑 ⇒ 𝐴 that governs programs that can be written at phase 𝜑 ; semantically,

this phase modality is just a dependent function space over the (subsingleton) collection of witnesses

that the phase 𝜑 is active.

phmod/formation

𝜑 : 𝒪 Γ, 𝜑 ⊢ 𝐴 type

Γ ⊢ 𝜑 ⇒ 𝐴 type

phmod/intro

Γ, 𝜑 ⊢ 𝑀 : 𝐴

Γ ⊢ ⟨𝜑⟩𝑀 : 𝜑 ⇒ 𝐴

phmod/elim

Γ ⊢ 𝑀 : 𝜑 ⇒ 𝐴 Γ ⊢ 𝜑
Γ ⊢ 𝑀 @ 𝜑 : 𝐴

phmod/beta

Γ, 𝜑 ⊢ 𝑀 : 𝐴 Γ ⊢ 𝜑
Γ ⊢ (⟨𝜑⟩𝑀) @ 𝜑 ≡ 𝑀 : 𝐴

phmod/eta

Γ ⊢ 𝑀 : 𝜑 ⇒ 𝐴

Γ ⊢ ⟨𝜑⟩(𝑀 @ 𝜑) ≡ 𝑀 : 𝜑 ⇒ 𝐴
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A.4 Structure sharing
To model structure sharing from ML languages, φML includes a connective {𝐴 | 𝜑 ↩→ 𝑀} that
classifies the elements of type 𝐴 that are equal to𝑀 in phase 𝜑 .

sh/formation

𝜑 : 𝒪 Γ ⊢ 𝐴 type Γ, 𝜑 ⊢ 𝑀 : 𝐴

Γ ⊢ {𝐴 | 𝜑 ↩→ 𝑀} type

sh/intro

Γ ⊢ 𝑀 : 𝐴 Γ, 𝜑 ⊢ 𝑀 ≡ 𝑁 : 𝐴

Γ ⊢ ⌊𝑀⌋ : {𝐴 | 𝜑 ↩→ 𝑁 }

sh/elim

Γ ⊢ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 }
Γ ⊢ ⌈𝑀⌉ : 𝐴

sh/elim/bdry

Γ ⊢ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 } Γ ⊢ 𝜑
Γ ⊢ ⌈𝑀⌉ ≡ 𝑁 : 𝐴

sh/beta

Γ ⊢ 𝑀 : 𝐴 Γ, 𝜑 ⊢ 𝑀 ≡ 𝑁 : 𝐴

Γ ⊢ ⌈⌊𝑀⌋⌉ ≡ 𝑀 : 𝐴

sh/eta

Γ ⊢ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 }
Γ ⊢ ⌊⌈𝑀⌉⌋ ≡ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 }

Example A.2. Using the top element of the phase lattice, the structure sharing connective can

express singleton types [2, 3, 25–27]. In particular, given Γ ⊢ 𝐴 type and Γ ⊢ 𝑀 : 𝐴, we define

S𝐴 (𝑀) B {𝐴 | ⊤ ↩→ 𝑀}.

A.5 Judgmental sealing
A type is sealed at phase 𝜑 when it has exactly one element at that phase and hence can leak no

information. This is expressed by the following rules:

sl/point

Γ ⊢ 𝐴 sealed @ 𝜑 Γ ⊢ 𝜑
Γ ⊢ ★𝐴 : 𝐴

sl/glue

Γ ⊢ 𝐴 sealed @ 𝜑 Γ ⊢ 𝜑 Γ ⊢ 𝑀 : 𝐴

Γ ⊢ 𝑀 ≡ ★𝐴 : 𝐴

Function types are sealed when their codomains are sealed; product types (including unit, the
nullary product) are sealed when all their conjuncts are sealed; structure sharing types are sealed

at the phase of their constraint:

fun/sealed

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 sealed @ 𝜑

Γ ⊢ 𝐴→ 𝐵 sealed @ 𝜑

unit/sealed

Γ ⊢ unit sealed @ 𝜑

prod/sealed

Γ ⊢ 𝐴, 𝐵 sealed @ 𝜑

Γ ⊢ 𝐴 × 𝐵 sealed @ 𝜑

sh/sealed/1

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ,𝜓 ⊢ 𝑀 : 𝐴 Γ, 𝜑 ⊢ 𝜓
Γ ⊢ {𝐴 | 𝜓 ↩→ 𝑀} sealed @ 𝜑

sh/sealed/2

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ,𝜓 ⊢ 𝑀 : 𝐴 Γ ⊢ 𝐴 sealed @ 𝜑

Γ ⊢ {𝐴 | 𝜓 ↩→ 𝑀} sealed @ 𝜑

Observation A.3. The following rules are already derivable:

product point

Γ ⊢ 𝐴, 𝐵 sealed @ 𝜑 Γ ⊢ 𝜑
Γ ⊢ ★𝐴×𝐵 ≡ (★𝐴,★𝐵) : 𝐴 × 𝐵

function point

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 sealed @ 𝜑 Γ ⊢ 𝜑
Γ ⊢ ★𝐴→𝐵 ≡ 𝜆𝑥 : 𝐴.★𝐵 : 𝐴→ 𝐵
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A.6 The sealing modality
Not every type is sealed; for instance, the sum type 𝐴 + 𝐵 is not sealed even if 𝐴 and 𝐵 are both

sealed, because a single bit of information can be exposed by case analysis. To seal a non-sealed

type, φML provides an idempotent modality [𝜑 \𝐴] governed by the following rules:

sl/formation

𝜑 : 𝒪 Γ ⊢ 𝐴 type

Γ ⊢ [𝜑 \𝐴] type

sl/sealed/1

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ,𝜓 ⊢ 𝜑
Γ ⊢ [𝜓 \𝐴] sealed @ 𝜑

sl/sealed/2

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ ⊢ 𝐴 sealed @ 𝜑

Γ ⊢ [𝜓 \𝐴] sealed @ 𝜑

sl/intro

Γ ⊢ 𝑀 : 𝐴

Γ ⊢ seal𝜑 (𝑀) : [𝜑 \𝐴]

sl/elim

Γ ⊢ 𝑀 : [𝜑 \𝐴] Γ ⊢ 𝐵 sealed @ 𝜑 Γ, 𝑥 : 𝐴 ⊢ 𝑁 (𝑥) : 𝐵
Γ ⊢ 𝑥 ← unseal𝜑 (𝑀);𝑁 (𝑥) : 𝐵

sl/beta

Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝐵 sealed @ 𝜑 Γ, 𝑥 : 𝐴 ⊢ 𝑁 (𝑥) : 𝐵
Γ ⊢ 𝑥 ← unseal𝜑 (seal𝜑 (𝑀));𝑁 (𝑥) ≡ 𝑁 (𝑀) : 𝐵

sl/eta

Γ ⊢ 𝑀 : [𝜑 \𝐴] Γ ⊢ 𝐵 sealed @ 𝜑 Γ, 𝑥 : [𝜑 \𝐴] ⊢ 𝑁 (𝑥) : 𝐵
Γ ⊢ 𝑁 (𝑀) ≡ 𝑥 ← unseal𝜑 (𝑀);𝑁 (seal𝜑 (𝑥)) : 𝐵
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