
A metalanguage for multi-phase modularity

JONATHAN STERLING and ROBERT HARPER, Carnegie Mellon University, USA

Type abstraction, the phase distinction, and computational effects all play an important role in the design

and implementation of ML-style module systems. We propose a simple type theoretic metalanguage φML for

multi-phase modularity in which these concepts are treated individually, supporting the definition of high-level

modular constructs such as generative and applicative functors, as well as all extant forms of structure sharing.

In most accounts of ML modules, the phase distinction between static code and dynamic code is

enforced pervasively throughout the language [12, 18]; for instance, in a functor signature of the

form (𝑥 : 𝐴) → 𝐵(𝑥), the signature 𝐵(𝑥) is only allowed to depend on the “static part” of 𝑥 : 𝐴.

The purpose of this restriction is to ensure that the judgmental equality of types and other static

constructs can be decided independently of the existence of any notion of equality for programs.

Recently several authors have advanced a monadic presentation of ML modules in which both

generativity and other effects are treated using a lax modality ⃝ on signatures [5, 10, 24]. When

effects are treated monadically, there is however no obstacle to formulating a (conservative and

tractable) notion of judgmental equality for programs, hence it is appropriate to revisit the global

restriction that types shall never depend on runtime code.

1 THE NEED FOR VALUE-DEPENDENCY
In order to preserve abstraction, it is often necessary for types to depend on runtime identity;

generativity of ML functors is one way to achieve this in the context of effects, but the need for

this kind of dependency also occurs even for applicative functors such asMkSet, as pointed out

by Rossberg et al. [22]. This shows that one needs to depend on runtime value identity to achieve

abstraction regardless of whether computational effects are in play; generative functors capture

specifically the case where modules (potentially) exhibit dynamic initialization effects.

Static dependency on runtime identity can be approximated using phantom types as in the

elaboration of Rossberg et al. [22, § 8.1], a logical version of the stamps of SML ’90 [16]. While

phantom types have a definite role to play, providing the most conservative possible static approxi-

mation of value identity, experience implementing and compiling full-spectrum dependently typed

programming languages (e.g. Idris 2 and Lean 4 [4, 6]) suggests that there is no longer any reason

to make this the only way that types can depend on values.

2 LET A HUNDRED PHASE DISTINCTIONS BLOOM!
The venerable static–dynamic phase distinction is not the only phase distinction that can be

considered. For instance, logical relations arguments can be reformulated à la Sterling and Harper

[24] in terms of a syntactic–semantic phase distinction; type refinements in the sense of Melliès and

Zeilberger [15] evince a phase distinction between computation (extraction) and logic (specification);

security typing and information flow can be seen to exhibit a lattice of phase distinctions.
Because these are surely not the only phase distinctions that will play a role in future program-

ming languages, we propose an adequate type theoretic metalanguage φML that can accommodate

any number of phase distinctions simultaneously. φML starts with ordinary Martin-Löf type

theory [19] and adds to it enough constructs to express modularity relative to a lattice of phase

distinctions, denoted 𝜑 : 𝒪 .

Authors’ address: Jonathan Sterling, jmsterli@cs.cmu.edu; Robert Harper, rwh@cs.cmu.edu, Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA.

HTTPS://ORCID.ORG/0000-0002-0585-5564
HTTPS://ORCID.ORG/0000-0002-9400-2941
https://orcid.org/0000-0002-0585-5564
https://orcid.org/0000-0002-9400-2941


2 Jonathan Sterling and Robert Harper

Each phase 𝜙 : 𝒪 induces a context extension (Γ, 𝜑); types and terms in such a context are

restricted to their 𝜑-visible components. For instance if 𝜑 B ϕst is the static phase, the dynamic

parts of a type Γ,ϕst ⊢ 𝐴 type are collapsed. In this sense, the weakening substitution along

Γ,ϕst Γ implements the static projection operation Fst(−) from prior type theoretic accounts of

modules [7], and judgmental equality Γ,ϕst ⊢ 𝐴 ≡ 𝐵 type in the extended context reconstructs the

static equivalence judgment of Dreyer et al. [8].

2.1 Modal type structure of φML
2.1.1 The phase modality. The context extension Γ, 𝜑 is internalized as the phase modality
(𝜑 ⇒ −); semantically, (𝜑 ⇒ −) behaves like a function space whose domain is the (subsingleton)

collection of witnesses that we are “in” the 𝜑 phase.

2.1.2 The sealing modality. A type 𝐴 is called sealed at 𝜑 : 𝒪, written Γ ⊢ 𝐴 sealed @ 𝜑 , when

it is equivalent to the unit type in phase 𝜑 . We include a sealing modality [𝜑 \𝐴] that seals a
type 𝐴 at phase 𝜑 ; the laws for this modality are similar to those of the protection modality in

the dependency core calculus of Abadi et al. [1], but they actually come from those of the local

operator induced by a closed subspace in the topological semantics of intuitionistic logic. Indeed,

the relationship between the phase and sealing modalities is essentially that of open subspace (e.g.
static fragment) and closed complement (e.g. dynamic fragment).

2.1.3 Structure sharing. Given a type 𝐴 and an element 𝜑 ⊢ 𝑀 : 𝐴, we may form the structure
sharing type {𝐴 | 𝜑 ↩→ 𝑀} ⊆ 𝐴 that classifies all the elements of 𝐴 equal to 𝑀 at phase 𝜑 . In

case 𝜑 B ϕst, the structure sharing type {𝐴 | ϕst ↩→ 𝑀} ≤ 𝐴 classifies the elements of 𝐴 that

are statically equivalent to 𝑀 in the sense of Dreyer et al. [8] and therefore captures the weak
structure sharing of SML ’97 [17]. On the other hand, if 𝜑 B ⊤ is the “top” phase distinction,

then {𝐴 | ⊤ ↩→ 𝑀} is the true singleton type that is approximated by SML ’90’s strong structure

sharing [16] via stamps, and by the F-ing Modules calculi via phantom types [22].

2.2 Applications of φML
We briefly survey a few applications of φML’s perspective on multi-phase modularity.

2.2.1 Reconstructing ML’s static–dynamic phase distinction. The classic static–dynamic phase

distinction of SML and OCaml is recovered by adding a single phase distinctionϕst : 𝒪 together with

a laxmodality⃝𝐴 for effects that is always statically sealed, in the sense that Γ ⊢ ⃝𝐴 sealed @ ϕst

holds. Given another modality 𝑇 that is not sealed, one could define the effect modality by ⃝𝐴 B
[ϕst \𝑇 (𝐴)] in terms of the sealing modality. ML-style generative and applicative functors may

then be defined like so:

Πgen,Πapp
: (𝐴 : Sig) (𝐵 : (ϕst ⇒ 𝐴) → Sig) → Sig

Πgen (𝐴, 𝐵) = (𝑥 : 𝐴) → ⃝𝐵(⟨ϕst⟩𝑥)
Πapp (𝐴, 𝐵) = (𝑥 : 𝐴) → 𝐵(⟨ϕst⟩𝑥)

We add a law to make the universe of kinds purely static in the sense that (ϕst ⇒ Kind) � Kind.

2.2.2 Compile-time inlining without breaking abstraction. Under a separate compilation discipline,

e.g. that of Swasey et al. [28], a module is compiled as a function of its dependencies; unless special

arrangements are made, this can obstruct the inlining of functions whose identities are not exposed

by the dependencies’ interfaces. To address the inlining problem, Stone [25, § 1.5.3] and Leroy [13,

§ 5.3] have suggested extending the module language to support sharing of non-static phrases

in module signatures; then this interface can be used by the compiler to support inlining of the



A metalanguage for multi-phase modularity 3

exposed definitions. This is too naïve: users of module systems employ non-sharing in order to

maintain abstraction and enforce their intention that a dependent module’s implementation is

independent of some part of its dependency.

We propose to address the inlining problem by introducing a phase distinctionϕcmpl : 𝒪 between

compile-time and runtime.1 Value identities are exposed for inlining by means of the the structure

sharing type {𝐴 | ϕcmpl ↩→ 𝑀}; programmers will not be able to rely on the identities so-exposed,

but the compiler will be executed in the ϕcmpl phase and can therefore exploit exposed identities

for inlining. This application provides essential theoretical support for the efficient implementation

of Harper’s proposal to treat datatypes as abstract types with default implementations [9].

2.2.3 Reconciling debugging with abstraction. Debugging is a common source of frustration when

developing code in the presence of abstract types; many engineers today still primarily rely on

so-called “printf-debugging” to diagnose broken code, but this becomes a problem in the presence

of abstract types whose representations are unknown. We propose to add a new “debug” phase

ϕdbg : 𝒪 and, by default, expose the identities of all modules within the debug phase by means of

the structure sharing type {𝐴 | ϕdbg ↩→ 𝑀}; then we may add a primitive operation to the standard

basis library that allows a ϕdbg-phase string to be printed, debug : (ϕdbg ⇒ string) → ⃝unit.
Then in the presence of an element 𝑎 : 𝑀.t whose (hidden) representation type is int, we may freely

debug by executing the side effect debug(⟨ϕdbg⟩Int.toString(𝑎)).

2.2.4 Representation independence. Following the Logical Relations As Types principle of Ster-
ling and Harper [24], we may capture binary parametricity [20] by adding two phasesϕL

syn,ϕ
R
syn : 𝒪

with ϕL
syn ⊓ ϕR

syn ≡ ⊥ and defining ϕsyn B ϕL
syn ⊔ ϕR

syn. Then representation independence results

can be proved: a simulation between queue implementations 𝑀, 𝑁 : QUEUE is given by a third

implementation 𝑂 : {QUEUE | ϕsyn ↩→ [ϕL
syn ↩→ 𝑀,ϕR

syn ↩→ 𝑁 ]}. This method is used by op. cit.
to prove a generalized Reynolds Abstraction Theorem for a module calculus, and by Sterling and

Angiuli [23] to prove normalization and decidability of judgmental equality for cubical type theory.

REFERENCES
[1] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A Core Calculus of Dependency. In Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). Association for

Computing Machinery, San Antonio, Texas, USA, 147–160. https://doi.org/10.1145/292540.292555

[2] Andreas Abel, Thierry Coquand, and Miguel Pagano. 2009. A Modular Type-Checking Algorithm for Type Theory

with Singleton Types and Proof Irrelevance. In Typed Lambda Calculi and Applications, Pierre-Louis Curien (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 5–19.

[3] David Aspinall. 1995. Subtyping with singleton types. In Computer Science Logic, Leszek Pacholski and Jerzy Tiuryn

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–15.

[4] Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice. (2021). arXiv:2104.00480 [cs.PL] To appear in the

proceedings of ECOOP 2021.

[5] Karl Crary. 2020. A focused solution to the avoidance problem. Journal of Functional Programming 30 (2020), e24.

https://doi.org/10.1017/S0956796820000222 Bob Harper Festschrift Collection.
[6] Leonardo De Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language (System

Description). (2021). To appear in the proceedings of the 28th International Conference on Automated Deduction.

[7] Derek Dreyer. 2005. Understanding and Evolving the ML Module System. Ph.D. Dissertation. Carnegie Mellon University,

USA.

[8] Derek Dreyer, Karl Crary, and Robert Harper. 2003. A Type System for Higher-Order Modules. In Proceedings of
the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03). Association for

Computing Machinery, New Orleans, Louisiana, USA, 236–249. https://doi.org/10.1145/604131.604151

[9] Robert Harper. 2013. The Future of Standard ML. (2013). https://www.cs.cmu.edu/~rwh/talks/mlw13.pdf Talk given

at the ML Workshop.

1
Here compile-time refers to a stage subsequent to typechecking/elaboration, and is therefore semantically different from a

static phase.

https://doi.org/10.1145/292540.292555
https://arxiv.org/abs/2104.00480
https://doi.org/10.1017/S0956796820000222
https://doi.org/10.1145/604131.604151
https://www.cs.cmu.edu/~rwh/talks/mlw13.pdf


4 Jonathan Sterling and Robert Harper

[10] Robert Harper. 2020. PFPL Supplement: Types for Program Modules. http://www.cs.cmu.edu/~rwh/pfpl/supplements/

modules.pdf

[11] Robert Harper and Mark Lillibridge. 1994. A Type-Theoretic Approach to Higher-Order Modules with Sharing. In

Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for

Computing Machinery, Portland, Oregon, USA, 123–137. https://doi.org/10.1145/174675.176927

[12] Robert Harper, John C. Mitchell, and Eugenio Moggi. 1990. Higher-Order Modules and the Phase Distinction. In

Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for

Computing Machinery, San Francisco, California, USA, 341–354. https://doi.org/10.1145/96709.96744

[13] Xavier Leroy. 2000. A Modular Module System. Journal of Functional Programming 10, 3 (May 2000), 269–303.

https://doi.org/10.1017/S0956796800003683

[14] David MacQueen, Robert Harper, and John Reppy. 2020. The History of Standard ML. Proceedings of the ACM on
Programming Languages 4, HOPL (June 2020). https://doi.org/10.1145/3386336

[15] Paul-André Melliès and Noam Zeilberger. 2015. Functors are Type Refinement Systems. In POPL ’15: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, Mumbai, India.

https://hal.inria.fr/hal-01096910

[16] Robin Milner, Mads Tofte, and Robert Harper. 1990. The Definition of Standard ML. MIT Press.

[17] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. 1997. The Definition of Standard ML (Revised). MIT

Press.

[18] Eugenio Moggi. 1989. A Category-Theoretic Account of Program Modules. In Category Theory and Computer Science.
Springer-Verlag, Berlin, Heidelberg, 101–117.

[19] Bengt Nordström, Kent Peterson, and Jan M. Smith. 1990. Programming in Martin-Löf’s Type Theory. International
Series of Monographs on Computer Science, Vol. 7. Oxford University Press, NY.

[20] John C. Reynolds. 1983. Types, Abstraction, and Parametric Polymorphism. In Information Processing.
[21] Egbert Rijke, Michael Shulman, and Bas Spitters. 2020. Modalities in homotopy type theory. Logical Methods in Computer

Science Volume 16, Issue 1 (Jan. 2020). https://doi.org/10.23638/LMCS-16(1:2)2020 arXiv:1706.07526 [math.CT]

[22] Andreas Rossberg, Claudio Russo, and Derek Dreyer. 2014. F-ing modules. Journal of Functional Programming 24, 5

(2014), 529–607. https://doi.org/10.1017/S0956796814000264

[23] Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical Type Theory. In Proceedings of the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science. ACM, New York, NY, USA. arXiv:2101.11479 [cs.LO] To appear.

[24] Jonathan Sterling and Robert Harper. 2021. Logical Relations As Types: Proof-Relevant Parametricity for Program

Modules. J. ACM (2021). arXiv:2010.08599 [cs.PL] To appear.

[25] Christopher Allen Stone. 2000. Singleton Kinds and Singleton Types. Ph.D. Dissertation. Carnegie Mellon University.

[26] Christopher A. Stone and Robert Harper. 2000. Deciding Type Equivalence in a Language with Singleton Kinds. In

Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for

Computing Machinery, Boston, MA, USA, 214–227. https://doi.org/10.1145/325694.325724

[27] Christopher A. Stone and Robert Harper. 2006. Extensional equivalence and singleton types. ACM Transactions on
Computational Logic 7, 4 (2006), 676–722. https://doi.org/10.1145/1183278.1183281

[28] David Swasey, Tom Murphy, Karl Crary, and Robert Harper. 2006. A Separate Compilation Extension to Standard ML.

In Proceedings of the 2006 Workshop on ML (ML ’06). Association for Computing Machinery, Portland, Oregon, USA,

32–42. https://doi.org/10.1145/1159876.1159883

http://www.cs.cmu.edu/~rwh/pfpl/supplements/modules.pdf
http://www.cs.cmu.edu/~rwh/pfpl/supplements/modules.pdf
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/96709.96744
https://doi.org/10.1017/S0956796800003683
https://doi.org/10.1145/3386336
https://hal.inria.fr/hal-01096910
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1706.07526
https://doi.org/10.1017/S0956796814000264
https://arxiv.org/abs/2101.11479
https://arxiv.org/abs/2010.08599
https://doi.org/10.1145/325694.325724
https://doi.org/10.1145/1183278.1183281
https://doi.org/10.1145/1159876.1159883


A metalanguage for multi-phase modularity 5

A SELECTED RULES
A.1 Judgments of φML

We specify φML parametrically in a meet semilattice 𝒪 of phases, writing 𝜑 : 𝒪 to mean that 𝜑 is

an element of 𝒪. We begin by recapitulating the ordinary judgments of type theory:

(1) Γ ctx means that Γ is a context.

(2) Γ ⊢ 𝐴 type presupposes Γ ctx and means that 𝐴 is a type in context Γ.

(3) Γ ⊢ 𝐴 ≡ 𝐵 type presupposes Γ ctx and Γ ⊢ 𝐴, 𝐵 type, and means that 𝐴 and 𝐵 are equal

types in context Γ.

To the above, φML adds the following forms of judgment that pertain to the structure of phases:

(1) Γ ⊢ 𝜑 presupposes Γ ctx and 𝜑 : 𝒪, and means that Γ entails that the 𝜑 phase is activated.

(2) Γ ⊢ 𝐴 sealed @ 𝜑 presupposes Γ ctx, Γ ⊢ 𝐴 type, and 𝜑 : 𝒪, and means that Γ entails that

𝐴 is sealed at phase 𝜑 . Intuitively this means that the type 𝐴 can expose no information to

clients at phase 𝜑 , i.e. is a singleton type at phase 𝜑 .

Contexts in φML are totally structural; all the judgments of φML specified above are stable

under weakening, contraction, and exchange.

A.2 Contexts and phases
To activate a given phase, φML has a context extension Γ, 𝜑 governed by the following rules:

cx/emp

· ctx

cx/var

Γ ctx 𝜑 : 𝒪

Γ, 𝜑 ctx

cx/ph

Γ ctx Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ctx

ph/var

𝜑 ∈ Γ
Γ ⊢ 𝜑

We impose rules to make the judgment Γ ⊢ 𝜑 preserve meets:

top/intro

Γ ⊢ ⊤

meet/intro

Γ ⊢ 𝜑 Γ ⊢ 𝜓
Γ ⊢ 𝜑 ∧𝜓

meet/elim

Γ ⊢ 𝜑 ∧𝜓
Γ ⊢ 𝜑 Γ ⊢ 𝜓

Observation A.1. The following monotonicity law is derivable:

ph/mono

𝜑 ≤𝒪 𝜓 Γ ⊢ 𝜑
Γ ⊢ 𝜓

Proof. If 𝜑 ≤𝒪 𝜓 , then 𝜑 ∧𝜓 = 𝜑 ; to derive Γ ⊢ 𝜓 we therefore may apply meet/elim. □

A.3 The phase modality
We include a modality 𝜑 ⇒ 𝐴 that governs programs that can be written at phase 𝜑 ; semantically,

this phase modality is just a dependent function space over the (subsingleton) collection of witnesses

that the phase 𝜑 is active.

phmod/formation

𝜑 : 𝒪 Γ, 𝜑 ⊢ 𝐴 type

Γ ⊢ 𝜑 ⇒ 𝐴 type

phmod/intro

Γ, 𝜑 ⊢ 𝑀 : 𝐴

Γ ⊢ ⟨𝜑⟩𝑀 : 𝜑 ⇒ 𝐴

phmod/elim

Γ ⊢ 𝑀 : 𝜑 ⇒ 𝐴 Γ ⊢ 𝜑
Γ ⊢ 𝑀 @ 𝜑 : 𝐴

phmod/beta

Γ, 𝜑 ⊢ 𝑀 : 𝐴 Γ ⊢ 𝜑
Γ ⊢ (⟨𝜑⟩𝑀) @ 𝜑 ≡ 𝑀 : 𝐴

phmod/eta

Γ ⊢ 𝑀 : 𝜑 ⇒ 𝐴

Γ ⊢ ⟨𝜑⟩(𝑀 @ 𝜑) ≡ 𝑀 : 𝜑 ⇒ 𝐴



6 Jonathan Sterling and Robert Harper

A.4 Structure sharing
To model structure sharing from ML languages, φML includes a connective {𝐴 | 𝜑 ↩→ 𝑀} that
classifies the elements of type 𝐴 that are equal to𝑀 in phase 𝜑 .

sh/formation

𝜑 : 𝒪 Γ ⊢ 𝐴 type Γ, 𝜑 ⊢ 𝑀 : 𝐴

Γ ⊢ {𝐴 | 𝜑 ↩→ 𝑀} type

sh/intro

Γ ⊢ 𝑀 : 𝐴 Γ, 𝜑 ⊢ 𝑀 ≡ 𝑁 : 𝐴

Γ ⊢ ⌊𝑀⌋ : {𝐴 | 𝜑 ↩→ 𝑁 }

sh/elim

Γ ⊢ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 }
Γ ⊢ ⌈𝑀⌉ : 𝐴

sh/elim/bdry

Γ ⊢ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 } Γ ⊢ 𝜑
Γ ⊢ ⌈𝑀⌉ ≡ 𝑁 : 𝐴

sh/beta

Γ ⊢ 𝑀 : 𝐴 Γ, 𝜑 ⊢ 𝑀 ≡ 𝑁 : 𝐴

Γ ⊢ ⌈⌊𝑀⌋⌉ ≡ 𝑀 : 𝐴

sh/eta

Γ ⊢ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 }
Γ ⊢ ⌊⌈𝑀⌉⌋ ≡ 𝑀 : {𝐴 | 𝜑 ↩→ 𝑁 }

Example A.2. Using the top element of the phase lattice, the structure sharing connective can

express singleton types [2, 3, 25–27]. In particular, given Γ ⊢ 𝐴 type and Γ ⊢ 𝑀 : 𝐴, we define

S𝐴 (𝑀) B {𝐴 | ⊤ ↩→ 𝑀}.

A.5 Judgmental sealing
A type is sealed at phase 𝜑 when it has exactly one element at that phase and hence can leak no

information. This is expressed by the following rules:

sl/point

Γ ⊢ 𝐴 sealed @ 𝜑 Γ ⊢ 𝜑
Γ ⊢ ★𝐴 : 𝐴

sl/glue

Γ ⊢ 𝐴 sealed @ 𝜑 Γ ⊢ 𝜑 Γ ⊢ 𝑀 : 𝐴

Γ ⊢ 𝑀 ≡ ★𝐴 : 𝐴

Function types are sealed when their codomains are sealed; product types (including unit, the
nullary product) are sealed when all their conjuncts are sealed; structure sharing types are sealed

at the phase of their constraint:

fun/sealed

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 sealed @ 𝜑

Γ ⊢ 𝐴→ 𝐵 sealed @ 𝜑

unit/sealed

Γ ⊢ unit sealed @ 𝜑

prod/sealed

Γ ⊢ 𝐴, 𝐵 sealed @ 𝜑

Γ ⊢ 𝐴 × 𝐵 sealed @ 𝜑

sh/sealed/1

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ,𝜓 ⊢ 𝑀 : 𝐴 Γ, 𝜑 ⊢ 𝜓
Γ ⊢ {𝐴 | 𝜓 ↩→ 𝑀} sealed @ 𝜑

sh/sealed/2

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ,𝜓 ⊢ 𝑀 : 𝐴 Γ ⊢ 𝐴 sealed @ 𝜑

Γ ⊢ {𝐴 | 𝜓 ↩→ 𝑀} sealed @ 𝜑

Observation A.3. The following rules are already derivable:

product point

Γ ⊢ 𝐴, 𝐵 sealed @ 𝜑 Γ ⊢ 𝜑
Γ ⊢ ★𝐴×𝐵 ≡ (★𝐴,★𝐵) : 𝐴 × 𝐵

function point

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 sealed @ 𝜑 Γ ⊢ 𝜑
Γ ⊢ ★𝐴→𝐵 ≡ 𝜆𝑥 : 𝐴.★𝐵 : 𝐴→ 𝐵



A metalanguage for multi-phase modularity 7

A.6 The sealing modality
Not every type is sealed; for instance, the sum type 𝐴 + 𝐵 is not sealed even if 𝐴 and 𝐵 are both

sealed, because a single bit of information can be exposed by case analysis. To seal a non-sealed

type, φML provides an idempotent modality [𝜑 \𝐴] governed by the following rules:

sl/formation

𝜑 : 𝒪 Γ ⊢ 𝐴 type

Γ ⊢ [𝜑 \𝐴] type

sl/sealed/1

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ,𝜓 ⊢ 𝜑
Γ ⊢ [𝜓 \𝐴] sealed @ 𝜑

sl/sealed/2

𝜓 : 𝒪 Γ ⊢ 𝐴 type Γ ⊢ 𝐴 sealed @ 𝜑

Γ ⊢ [𝜓 \𝐴] sealed @ 𝜑

sl/intro

Γ ⊢ 𝑀 : 𝐴

Γ ⊢ seal𝜑 (𝑀) : [𝜑 \𝐴]

sl/elim

Γ ⊢ 𝑀 : [𝜑 \𝐴] Γ ⊢ 𝐵 sealed @ 𝜑 Γ, 𝑥 : 𝐴 ⊢ 𝑁 (𝑥) : 𝐵
Γ ⊢ 𝑥 ← unseal𝜑 (𝑀);𝑁 (𝑥) : 𝐵

sl/beta

Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝐵 sealed @ 𝜑 Γ, 𝑥 : 𝐴 ⊢ 𝑁 (𝑥) : 𝐵
Γ ⊢ 𝑥 ← unseal𝜑 (seal𝜑 (𝑀));𝑁 (𝑥) ≡ 𝑁 (𝑀) : 𝐵

sl/eta

Γ ⊢ 𝑀 : [𝜑 \𝐴] Γ ⊢ 𝐵 sealed @ 𝜑 Γ, 𝑥 : [𝜑 \𝐴] ⊢ 𝑁 (𝑥) : 𝐵
Γ ⊢ 𝑁 (𝑀) ≡ 𝑥 ← unseal𝜑 (𝑀);𝑁 (seal𝜑 (𝑥)) : 𝐵


	Abstract
	1 The need for value-dependency
	2 Let a Hundred Phase Distinctions Bloom!
	2.1 Modal type structure of phML
	2.2 Applications of phML

	References
	A Selected rules
	A.1 Judgments of phML
	A.2 Contexts and phases
	A.3 The phase modality
	A.4 Structure sharing
	A.5 Judgmental sealing
	A.6 The sealing modality


