A metalanguage for multi-phase modularity

JONATHAN STERLING and ROBERT HARPER, Carnegie Mellon University, USA

Type abstraction, the phase distinction, and computational effects all play an important role in the design
and implementation of ML-style module systems. We propose a simple type theoretic metalanguage ¢ML for
multi-phase modularity in which these concepts are treated individually, supporting the definition of high-level
modular constructs such as generative and applicative functors, as well as all extant forms of structure sharing.

In most accounts of ML modules, the phase distinction between static code and dynamic code is
enforced pervasively throughout the language [12, 18]; for instance, in a functor signature of the
form (x : A) — B(x), the signature B(x) is only allowed to depend on the “static part” of x : A.
The purpose of this restriction is to ensure that the judgmental equality of types and other static
constructs can be decided independently of the existence of any notion of equality for programs.

Recently several authors have advanced a monadic presentation of ML modules in which both
generativity and other effects are treated using a lax modality O on signatures [5, 10, 24]. When
effects are treated monadically, there is however no obstacle to formulating a (conservative and
tractable) notion of judgmental equality for programs, hence it is appropriate to revisit the global
restriction that types shall never depend on runtime code.

1 THE NEED FOR VALUE-DEPENDENCY

In order to preserve abstraction, it is often necessary for types to depend on runtime identity;
generativity of ML functors is one way to achieve this in the context of effects, but the need for
this kind of dependency also occurs even for applicative functors such as MkSet, as pointed out
by Rossberg et al. [22]. This shows that one needs to depend on runtime value identity to achieve
abstraction regardless of whether computational effects are in play; generative functors capture
specifically the case where modules (potentially) exhibit dynamic initialization effects.

Static dependency on runtime identity can be approximated using phantom types as in the
elaboration of Rossberg et al. [22, § 8.1], a logical version of the stamps of SML ’90 [16]. While
phantom types have a definite role to play, providing the most conservative possible static approxi-
mation of value identity, experience implementing and compiling full-spectrum dependently typed
programming languages (e.g. Idris 2 and Lean 4 [4, 6]) suggests that there is no longer any reason
to make this the only way that types can depend on values.

2 LET A HUNDRED PHASE DISTINCTIONS BLOOM!

The venerable static-dynamic phase distinction is not the only phase distinction that can be
considered. For instance, logical relations arguments can be reformulated a la Sterling and Harper
[24] in terms of a syntactic-semantic phase distinction; type refinements in the sense of Melliés and
Zeilberger [15] evince a phase distinction between computation (extraction) and logic (specification);
security typing and information flow can be seen to exhibit a lattice of phase distinctions.
Because these are surely not the only phase distinctions that will play a role in future program-
ming languages, we propose an adequate type theoretic metalanguage @ML that can accommodate
any number of phase distinctions simultaneously. ML starts with ordinary Martin-Lof type
theory [19] and adds to it enough constructs to express modularity relative to a lattice of phase

distinctions, denoted .

Authors’ address: Jonathan Sterling, jmsterli@cs.cmu.edu; Robert Harper, rwh@cs.cmu.edu, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA.


HTTPS://ORCID.ORG/0000-0002-0585-5564
HTTPS://ORCID.ORG/0000-0002-9400-2941
https://orcid.org/0000-0002-0585-5564
https://orcid.org/0000-0002-9400-2941

2 Jonathan Sterling and Robert Harper

Each phase ¢ : 0 induces a context extension (I, ¢); types and terms in such a context are
restricted to their ¢-visible components. For instance if ¢ := g is the static phase, the dynamic
parts of a type I', &5t F A type are collapsed. In this sense, the weakening substitution along
T, st — I’ implements the static projection operation Fst(—) from prior type theoretic accounts of
modules [7], and judgmental equality I, ¢s - A = B type in the extended context reconstructs the
static equivalence judgment of Dreyer et al. [8].

2.1 Modal type structure of ¢ML

2.1.1 The phase modality. The context extension I', ¢ is internalized as the phase modality
(¢ = —); semantically, (¢ = —) behaves like a function space whose domain is the (subsingleton)
collection of witnesses that we are “in” the ¢ phase.

2.1.2 The sealing modality. A type A is called sealed at ¢ : O, written ‘ I' - Asealed @ ¢ | when

it is equivalent to the unit type in phase ¢. We include a sealing modality [¢ \ A] that seals a
type A at phase ¢; the laws for this modality are similar to those of the protection modality in
the dependency core calculus of Abadi et al. [1], but they actually come from those of the local
operator induced by a closed subspace in the topological semantics of intuitionistic logic. Indeed,
the relationship between the phase and sealing modalities is essentially that of open subspace (e.g.
static fragment) and closed complement (e.g. dynamic fragment).

2.1.3 Structure sharing. Given a type A and an element ¢ + M : A, we may form the structure
sharing type {A | ¢ =— M} C A that classifies all the elements of A equal to M at phase ¢. In
case ¢ = (g, the structure sharing type {A | ¢st = M} < A classifies the elements of A that
are statically equivalent to M in the sense of Dreyer et al. [8] and therefore captures the weak
structure sharing of SML °97 [17]. On the other hand, if ¢ := T is the “top” phase distinction,
then {A | T < M} is the true singleton type that is approximated by SML *90’s strong structure
sharing [16] via stamps, and by the F-ing Modules calculi via phantom types [22].

2.2 Applications of ML

We briefly survey a few applications of @ ML’s perspective on multi-phase modularity.

2.2.1 Reconstructing ML’s static-dynamic phase distinction. The classic static-dynamic phase
distinction of SML and OCaml is recovered by adding a single phase distinction ¢ : O together with

alax modality OA for effects that is always statically sealed, in the sense that’ T'+ OAsealed @ ¢4
holds. Given another modality T that is not sealed, one could define the effect modality by OA :=
[bst \ T(A)] in terms of the sealing modality. ML-style generative and applicative functors may
then be defined like so:

I, TP : (A : Sig) (B : (bgr = A) — Sig) — Sig

I1¥"(A, B) = (x : A) = OB({$st)x)

II*P(A, B) = (x : A) = B({Pst)x)

We add a law to make the universe of kinds purely static in the sense that (pss = Kind) = Kind.

2.2.2 Compile-time inlining without breaking abstraction. Under a separate compilation discipline,
e.g. that of Swasey et al. [28], a module is compiled as a function of its dependencies; unless special
arrangements are made, this can obstruct the inlining of functions whose identities are not exposed
by the dependencies’ interfaces. To address the inlining problem, Stone [25, § 1.5.3] and Leroy [13,
§ 5.3] have suggested extending the module language to support sharing of non-static phrases
in module signatures; then this interface can be used by the compiler to support inlining of the
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exposed definitions. This is too naive: users of module systems employ non-sharing in order to
maintain abstraction and enforce their intention that a dependent module’s implementation is
independent of some part of its dependency.

We propose to address the inlining problem by introducing a phase distinction ¢cmpl : O between
compile-time and runtime.! Value identities are exposed for inlining by means of the the structure
sharing type {A | Gcmpl < M}; programmers will not be able to rely on the identities so-exposed,
but the compiler will be executed in the ¢pcmpl phase and can therefore exploit exposed identities
for inlining. This application provides essential theoretical support for the efficient implementation
of Harper’s proposal to treat datatypes as abstract types with default implementations [9].

2.2.3 Reconciling debugging with abstraction. Debugging is a common source of frustration when
developing code in the presence of abstract types; many engineers today still primarily rely on
so-called “printf-debugging” to diagnose broken code, but this becomes a problem in the presence
of abstract types whose representations are unknown. We propose to add a new “debug” phase
$dbg : O and, by default, expose the identities of all modules within the debug phase by means of
the structure sharing type {A | dgbg < M}; then we may add a primitive operation to the standard
basis library that allows a {gne-phase string to be printed, debug : ($papg = string) — Qunit.
Then in the presence of an element a : M.t whose (hidden) representation type is int, we may freely
debug by executing the side effect debug({{qpg)Int.toString(a)).

2.2.4 Representation independence. Following the Logical Relations As Types principle of Ster-
ling and Harper [24], we may capture binary parametricity [20] by adding two phases ¢\, R :0

syn> ‘¥syn
with d)'s'yn M d)fyn = 1 and defining ¢syn = 'S'yn U ¢§yn. Then representation independence results
can be proved: a simulation between queue implementations M, N : QUEUE is given by a third

implementation O : {QUEUE | ¢gyn — [d)sLyn < M, $R < N]}. This method is used by op. cit.

syn
to prove a generalized Reynolds Abstraction Theorem for a module calculus, and by Sterling and
Angiuli [23] to prove normalization and decidability of judgmental equality for cubical type theory.
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A SELECTED RULES
A.1 Judgments of ML
We specify @ML parametrically in a meet semilattice @ of phases, writing to mean that ¢ is
an element of @. We begin by recapitulating the ordinary judgments of type theory:
(1) means that I is a context.

(2) |T + A type|presupposes I ctx and means that A is a type in context I'.

(3) |T + A = B type|presupposes I ctxand I' + A, B type, and means that A and B are equal
types in context I'.

To the above, ML adds the following forms of judgment that pertain to the structure of phases:
(1) |T + ¢ |presupposes I ctx and ¢ : O, and means that I' entails that the ¢ phase is activated.

(2) [T+ Asealed @ ¢ ‘presupposes I ctx, T + A type, and ¢ : O, and means that I" entails that

A is sealed at phase ¢. Intuitively this means that the type A can expose no information to
clients at phase ¢, i.e. is a singleton type at phase ¢.

Contexts in ML are totally structural; all the judgments of @ML specified above are stable
under weakening, contraction, and exchange.

A.2 Contexts and phases

To activate a given phase, ML has a context extension I', ¢ governed by the following rules:

CX/EMP CX/VAR CX/PH PH/VAR
T ctx p:0 I ctx I'+ A type peTl
- ctx I ctx I,x:Actx | )

We impose rules to make the judgment preserve meets:

TOP/INTRO MEET/INTRO MEET/ELIM
I'ro I'ry F'roAY
F'rT TroAY | |/
Observation A.1. The following monotonicity law is derivable:
PH/MONO
0<oVy | )
vy
Proor. If ¢ <o ¢, then ¢ A ¢ = @; to derive I'  / we therefore may apply MEET/ELIM. O

A.3 The phase modality

We include a modality ¢ = A that governs programs that can be written at phase ¢; semantically,
this phase modality is just a dependent function space over the (subsingleton) collection of witnesses
that the phase ¢ is active.

PHMOD/FORMATION PHMOD/INTRO PHMOD/ELIM
p:0 I+ Atype LorM:A FTr'rM:p=> A Tro
I'to = Atype FT'r(p)M:p=A r-M@¢:A
PHMOD/BETA PHMOD/ETA
Fe+r-M:A I'kte I'rM:p=> A

I'r{pyM)@ep=M:A Fr{(p)(M@¢p)=M:p=A
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A.4 Structure sharing

To model structure sharing from ML languages, @ ML includes a connective {A | ¢ < M} that
classifies the elements of type A that are equal to M in phase ¢.

SH/FORMATION SH/INTRO
p:0 I' + A type LorM:A r-M:A lLorM=N:A
T'r{A]| @ — M} type 't M]:{A]| ¢ — N}
SH/ELIM SH/ELIM/BDRY SH/BETA
'rM:{A|p— N} I'rM:{A|p— N} | F'rM:A lLgrM=N:A
I'r[M]:A F'r[M]=N:A TH[IM]T=M:A
SH/ETA

THM:{A|p <= N}
Tr | [M]]=M:{A]| ¢ — N}

Example A.2. Using the top element of the phase lattice, the structure sharing connective can
express singleton types [2, 3, 25-27]. In particular, givenI' + A typeand I' + M : A, we define

SaM) ={A| T — M}
A.5 Judgmental sealing

A type is sealed at phase ¢ when it has exactly one element at that phase and hence can leak no
information. This is expressed by the following rules:

SL/POINT SL/GLUE
I' - Asealed @ ¢ I'teo I' Asealed @ ¢ I'reo 'erM:A

F'Fxy: A TFM=%,:A

Function types are sealed when their codomains are sealed; product types (including unit, the
nullary product) are sealed when all their conjuncts are sealed; structure sharing types are sealed
at the phase of their constraint:

FUN/SEALED UNIT/SEALED PROD/SEALED
I'+Atype I'+ Bsealed @ ¢ I' - A Bsealed @ ¢
I'-A — Bsealed @ ¢ I' - unit sealed @ ¢ ' AX Bsealed @ ¢
SH/SEALED/1

Y0 I'+ A type LLyrM:A Lory
IF'r{A|¢ < M} sealed @ ¢

SH/SEALED/2

y:0 I'+ A type LLyrM:A I'+ Asealed @ ¢
T'r{A|¢ < M} sealed @ ¢

Observation A.3. The following rules are already derivable:

PRODUCT POINT FUNCTION POINT

'+ A Bsealed @ ¢ | I'+ A type I'+ Bsealed @ ¢ | )

I+ *axp = (%4, %) : AXB I'*4 ,g=Ax:Axg:A— B
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A.6 The sealing modality

Not every type is sealed; for instance, the sum type A + B is not sealed even if A and B are both
sealed, because a single bit of information can be exposed by case analysis. To seal a non-sealed
type, ML provides an idempotent modality [¢ \ A] governed by the following rules:

SL/FORMATION SL/SEALED/1
p:0 I+ A type y:0 I+ A type Lyre
T'r[p\A] type T'F [\ A] sealed @ ¢
SL/SEALED/2 SL/INTRO
y:0 I'+ Atype I'+ Asealed @ ¢ 'rM:A
I+ [¢\ A] sealed @ ¢ '+ seal, (M) : [¢ \ A]
SL/ELIM

F'-M:[p\A] I'+ Bsealed @ ¢ Ix:ArN(x):B
'+ x « unseal,(M); N(x) : B

SL/BETA

Frr-M:A I'+ Bsealed @ ¢ Ix:ArN(x):B
'+ x « unseal,(seal,(M)); N(x) = N(M) : B

SL/ETA

TrM:[p\A] T+ Bsealed @ ¢ I,x:[¢p\A]+N(x):B
I'+ N(M) = x < unseal,(M); N(seal,(x)) : B
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