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Abstract

Although memoization is a powerful technique and can dramatically improve perfor-
mance, it is often difficult to apply effectively. This is because significant performance
improvements require the programmer to set up rather complex machinery specific to
the application. Such machinery requires programmer control over issues such as equal-
ity tests, identification of precise dependencies, and space management.

In this paper we present a general framework for memoization that gives the pro-
grammer control over the specifics of memoization for maximum performance. The key
property of the framework is that it is efficient: memoization preserves the asymptotic
performance of the program. In fact the only overhead incurred is that of maintaining
memo tables.

We describe the mechanism in the context of a functional language and an imple-
mentation as an SML library. The language is based on a modal type system that
allows the programmer to express programs that reveal their true dependencies when
executed. The SML implementation cannot support this modal type system statically,
but instead employs run-time checks to ensure proper usage of the primitives.

1 Introduction

Memoization is a fundamental and powerful technique for result re-use. It dates back a
half century [7, 26, 27] and has since been used extensively in many areas such as dynamic
programming [3, 9, 10, 23], incremental computations [11, 37, 13, 41, 20, 1, 42, 24, 17, 18, 2]
and many others [8, 28, 21, 16, 25, 30, 31, 24]. In fact, lazy evaluation provides a limited
form of memoization[22]. But it is not well suited for programs where equal arguments to
functions are computed by different paths; as we will see later, this is the case for many
examples such as Fibonacci or most dynamic programming algorithms.

Although memoization can dramatically improve performance and requires only small
changes to the code, no language or library support for memoization has gained broad ac-
ceptance. Instead, many successful uses of memoization rely on application-specific support
code. The underlying reason for this is one of control: since memoization is all about per-
formance, the user must be able to control the performance effects of memoization. Many
subtleties of memoization, including the cost of equality checking and the caching and re-
placement policy for memo tables, can make the difference between an exponential and a
linear running time.

∗This research was supported in part by NSF grants CCR-9706572, CCR-0085982, and CCR-0122581.
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To be general and widely applicable a memoization framework must provide control
over these three areas: (1) the kind and cost of equality tests; (2) the identification of
precise dependencies between the input and the output of memoized code; and (3) space
management via a caching and purging scheme for memo tables. Control over equality
tests is critical, because this is how re-usable results are identified. Identification of precise
dependencies is important to maximize result reuse by performing “partial equality” tests.
Being able to control the caching and purging scheme is critical, because otherwise the user
will not know whether or when results are re-used.

Our proposal takes the form of a small language, called MFL, that makes clear the perfor-
mance implications of memoization without compromising convenience or expressiveness.
MFL is a purely functional language enriched with support for user-controlled, selective
memoization. The operational semantics of MFL specifies the performance of programs
accurately enough to determine (expected) asymptotic time bounds.1 In particular the
operational semantics makes explicit these crucial features: (1) the equality conditions for
matching, and the conditions under which function calls will match in a memo table; (2)
provision for partial matching of arguments to memoized functions; and (3) scoping of memo
tables so that their space usage is placed under programmer control. We give several ex-
amples of the use of the language and we prove its correctness—i.e., that the semantics are
preserved with respect to a non-memoized version. We also briefly describe an ML library
that implements MFL, albeit with run-time checks in place of certain static constraints that
cannot be enforced by the ML type system. A key property of the implementation is that
it requires no program analysis.

This work was motivated by our previous work on adaptive computation [2]. We are
developing techniques for implementing dynamic, or incremental, algorithms that rely on
dynamic dependency information and on memoization. In future work we intend to combine
the adaptive programming mechanisms of AFL with the memoization mechanisms described
here.

In the next section we describe the three issues – equality, identification of dependen-
cies, and space management – in more detail and review the previous work. In Section 3
we introduce our framework via some examples and demonstrate how the three issues can
be addressed. In Section 4 we formalize the MFL language and discuss its safety, correct-
ness, and performance properties. In Section 5 we present a simple implementation of the
framework as a Standard ML library.

2 Background

A typical memoization framework maintains a cache of previously computed results. This
cache is consulted before each function call. If the result is found in the cache then it
is re-used; otherwise the call is performed and the result is added to the cache indexed
by the function and its parameters. Although simple, the typical memoization framework
requires that the programmer addresses three issues carefully: equality, caching with precise
dependencies, and space management.

Equality. Any memoization scheme relies on equality tests to determine whether a call
has previously been computed. The performance of a memoization scheme is therefore heav-

1Expected, rather than worst-case, performance is required because of our reliance on hashing, which has
constant-time expected access.

2



ily dependent on the cost of equality checking. The broadest distinction in definitions can
be made between structural equality and location/tag equality—roughly speaking EQUAL
vs.. EQ in Lisp [14]. Using structural equality two “copies” of the same value are regarded
as equal, whereas in location/tag equality they are not. On the other hand, structural
equality can take time linear in the size of the structures, as compared to the constant time
for location equality. Thus, if the function being memoized takes linear or sub-linear time,
then the cost of the equality test will negate the advantage of memoizing. Even worse, if
a function only examines part of its argument, structural equality testing could decrease
its asymptotic performance. On the other hand, tag equality can miss opportunities for a
match, which can lead to an exponential slowdown. For example, consider an implementa-
tion of Fibonacci in which the argument n is represented in multi-precision arithmetic, and
equality is based on a tag (location) given when the argument is created. In this case the
calls with ((n−1)−2) and ((n−2)−1) may generate different copies of (n−3), preventing
a match in the memo table.

One solution to this problem is to ensure that there is only one copy of each and every
value, via a technique known as “hash consing” [15, 4, 40]. Although hash-consing is a
powerful technique backed by solid theory, the reality is rather different. In fact, several
researchers have argued that hash-consing is too expensive for practical purposes [38, 39,
5, 29]. The main reason for this is that many programs construct and destruct objects at
immense rates, and hash-consing slows this process down by a significant constant factor.
The situation is worsened by large memory demands and the interaction of hash-consing
with garbage collection. In fact, even when built into a garbage collector and only used
when moving data from the new to old generation, which would be ineffective in general, it
has a significant cost [5]. As an alternative to hash consing, Pugh proposed lazy structure
sharing[38]. In lazy structure sharing whenever two equal values are compared, they are
made to point to the same copy via side effects to speed up subsequent comparisons. As
Pugh points out, the disadvantage of this approach is that the performance depends on the
order of comparisons and thus it is difficult to analyze.

We note that even with hash-consing, or any other method, it remains critical to define
equality on all types including reals and functions. Claiming that functions are never
equivalent, for example, is not satisfactory. For example, the same partial application of
the same curried function would not trigger a match.

Precise Dependencies. The second problem is to ensure that the results are cached
with respect to their true dependencies. The issue arises in two contexts: (1) when the
function examines only parts of its inputs, and (2) when it examines a user-determined
approximation of its input. In the first case the unexamined parts of the input should be
disregarded. In the second, it may be better to use approximations, rather than the inputs
themselves, so as to increase the likelihood of re-use. As an example, consider the code

fun f(x,y,z) = if (x > 0) then fy(y) else fz(z)

The result depends only on part of the input, i.e., either (x,y) or (x,z). Furthermore, the
result does not depend on the exact value of x but an approximation of x – whether or not
it is positive. Thus, the memo entry (7,11,20) should match (7,11,30) or (4,11,50)
since, when x is positive, the result depends only on y.

Several researchers have remarked that partial matching can be very important in some
applications [33, 32, 25, 1, 16, 18]. Abadi, Lampson, Lévy [1], and Heydon, Levin, Yu [18]
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have suggested program analysis methods for tracking dependences for this purpose. Al-
though their methods are likely effective in catching potential matches, their method have
three main disadvantages. First, their scheme can efficiently support only a predetermined
set of approximations [18]. Second, it does not give the user control over the granularity of
the program analysis. Third, it does not provide user with a strong performance guarantee.
For example, Abadi, et. al.’s method requires labeling all the elements of a data struc-
ture2 before evaluating the function and keeping track of what labels the output depend
on. They assume the labels are used at the finest-grain and point out that other coarser
grained labeling schemes might be used. The labeling policy, however, would have to be
described in a “meta-language”. The finest-grain labeling policy can change the asymptotic
behavior of a program by labeling parts of a data structure that is otherwise unexamined –
for example, a function that returns the head of a list will now take linear time. Similarly,
Heydon, et. al.’s system may require the same expression be evaluated multiple times due
to the their dependency propagation mechanism, making it difficult for the user to analyze
the running time.

Space management. Another problem with memoization is its space requirement. In
general memo tables can become very large very quickly, limiting their utility. Many re-
searchers have suggested that to alleviate space problems old entries should be flushed [19,
39]. But it is not clear what policy to use to flush old entries. One widely used approach
is to purge the least recently used entry. Other, more sophisticated, policies have also been
suggested [39]. In general the replacement policy must be application-specific [39]; for any
fixed policy, there are programs whose performance is made worse by that choice. Moreover,
it is difficult for the programmer to know when a given entry would be replaced in a given
situation, making it hard to assess performance.

3 Overview

We present an overview of our framework through some examples and demonstrate how the
framework addresses the issues described in Section 2. The main point is this: Previous
work tried to support memoization efficiently without help from the programmer. In the
case of equality tests, this requires one to build a global hash-consing mechanism, because
it is undecidable to determine what values should be hash-consed for optimal performance.
In the case of space management, this requires one to adapt a caching scheme that is
based on heuristics such as the least-recently-used policy, or profiling information, which are
difficult to analyze and do not work well for certain applications. In the case of dependency
identification, this requires costly program analysis techniques that can adversely effect
the asymptotic performance of the program. Our proposal simplifies the support system
significantly by enabling the programmer to control the specifics of memoization.

The language and its type system ensures that the programs are safe (do not incur
run-time type errors) and sound (do not change their behavior). The three principle ideas
behind the language are: (1) present the programmer with one simple notion of equality
and enable him to choose which objects are equal; (2) allow the programmer to choose on
what aspects of the argument the result of a function depends; (3) associate a memo table
with each memoized function definition so that the programmer may dispose of memo tables
by scoping. In the rest of this section we will show examples demonstrating these ideas.

2Since they use the pure lambda-calculus it is actually all the lambda’s in an expression.
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We will use an ML-like syntax with some simple extensions. The core of this language is
formalized in Section 4 — the presentation in this section is rather informal.

Non-memoized Memoized

fun fib (n:int)=

if (n < 2) then n
else fib(n-1) + fib(n-2)

mfun mfib (n:!int) =
let !n’ = n in return (

if (n’ < 2) then n’
else mfib(!(n’-1)) + mfib (!(n’-2)))

fun sum (n:int*int)=
let (n1,n2) = n in

case (n1 > 0) of
true => 0

| false =>
(n1+n2)

end

mfun msum (n:(!int*!int))=
letX (n1,n2) = n in

mcase (n1> 0) of
true => return (0)

| false => let !n1’ = n1 and !n2’ = n2 in
return (n1’+n2’)

end
end

Figure 1: The memoized Fibonacci, and expressing partial dependencies.

Precise Dependencies. The framework enables the programmer to choose the particu-
lar dependencies between the input of a function and its result, and ensures that all such
dependencies are correctly revealed. The main technique is to introduce a distinction be-
tween resources and variables. Resources are restricted variables that may not occur in the
result of a memoized function. Parameters to memoized functions are resources. Taken
together, this implies that the programmer must explicitly “touch” parameters before using
them to compute the result of the function.

There are several ways to touch a resource, depending on its type. If the code depends
on the full value of the resource, it should be assigned the modal type ! τ . The value of a
resource of this type is accessed using the let! construct, which binds it to an ordinary,
unrestricted variable. If, on the other hand, the code depends only on some aspect of the
value of a resource, its value may be explored incrementally. This is possible when the
resource is either of product or sum type. In the case of a (binary) product type we may
split the resource into two resources, one for each component of the pair, using the letX
primitive. In the case of a (binary) sum type we may case analyze the outermost form of
the value, branching according to its summand, using the mcase primitive.

The dependencies are recorded during the process of exploring the structure of a re-
source. The let! records the full value, the mcase records the branch taken (or the kind of
the sum), and letX records nothing. This dependency information is used to key the memo
table when a return primitive is encountered. If this sequence of dependencies have been
taken before, the stored value is returned, otherwise the body of the return is evaluated
and the result is stored with respect to the dependencies. The type system ensures that
all dependencies are made explicit by precluding the use of resources within the return’s
body.

As an example, consider the Fibonacci function mfib, whose code is given in Figure 1
(underlined symbols are resources). The function touches its parameter and computes the
nth Fibonacci number by two recursive calls. Since the full value of the parameter n is
used, it has the type ! int. As another example, the function msum shows how partial
dependencies can be expressed. We would like to return 0 when n1 is positive, and the sum
of n1 and n2 otherwise. Thus, the result will depend on the sign of n1 in one case, and on
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Non-memoized Memoized
datatype α blist = NIL

| CONS of (α * ((α blist) box))
type α boxedlist = (α blist) box
mfun hash-cons (h:!(α box), t:!(α boxedlist)) =

let !h’ = h in
let !t’ = t in

return (box (CONS(h’,t’)))
end end

datatype α tree = EMPTY
| NODE of α * (α tree * α tree)

fun compare(a:!int,b:int) = ...
fun search (t:int tree, k:int)

case t of
EMPTY => nil

| NODE(key,(left,right)) =>
case compare (k,key) of

EQUAL => [key]
| LESS => let r = search (left,k) in

key::r
end

| GREATER => let r = search (right,k) in
key::r

end

datatype α tree = EMPTY
| NODE of α * (α tree * α tree)

fun compare(a:!int,b:!int) =...
mfun msearch (t:(!int) tree, k: !int)
mcase t of

EMPTY => return (!(box NIL))
| NODE(key,(left,right)) => let !key’ = key in

case compare (k,key) of
EQUAL => return (!box [key’])

| LESS => let !r = msearch (left,k) in
return (!(box (key’::r)))

end
| GREATER => let !r = msearch (right,k) in

return (!(box (key’::r)))
end end

Figure 2: Hash-consing is a special form of memoization.

both n1 and n2 in the other. Indeed, the function msum touches n1 and n2 only when n1 is
positive. There are many other examples where support for partial dependencies is critical.
For example, in scientific computing, if the result of a particular operations not introduce a
big error term, then an approximation of a multi-precision floating point number can be used
instead of the number itself. In this case, it is preferable to depend on the approximation
than the number itself; since the approximation is coarser, this can increase result re-reuse.
This sort of examples are easily expressed in our framework.

Equality. To manage equality testing we extend the language with the type τ box whose
values are “boxed”, or “labeled”, values of type τ . A unique label is associated with
each box when it is created, and this label is used for testing equality. Equality is only
defined on boxes (i.e., their labels) and primitive types. These labels and primitive types
can be matched in a hash table in expected constant time. Other forms of equality such
as structural equality can easily be built by the programmer. For example, the function
hash-cons in Figure 2 shows how to implement hash consing in our framework. The code
takes a head item and a boxed list, where each tail of the list is boxed. It then touches both
the head and the tail and return the list of the new item and the list. Since the function is
memoized, if the function is ever called with two values that are already hash-cons’d, then
the same list will be returned.

As mentioned in Section 2, the main problem with hash consing is that, when not
controlled, it should be applied to the whole program to be effective. On the other hand,
such “global” hash consing in unnecessary in many situations. For example, a function is
more likely to return the same result then some other function. In this case, there is no
need to force that the result from these two functions go through the same hash-consing
scheme. Furthermore, even though two function may be likely to return the same result,
the results may be passed to different set of functions and thus there would not be any use
in forcing the return results to match. As an example, consider performing a search on a
binary search tree. The function search shows an implementation for this where the path
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Non-memoized Memoized

fun ks (c:int, l:(int*real) list) =

case c <= 0 of
true => 0

| false =>
case l of

nil => 0
|(w,v)::t =>
if (c <= w) then ks (c,t)
else let

v1 = ks (c,t)
v2 = v + ks (c-w,t)

in
if (v1 > v2) then v1
else v2

end

mfun mks (c:!int,l: !((int*real) boxedlist)) =
let !c’ = c in

case c’ <= 0 of
true => return (0)

| false => let !l’ = l in return (
case (unbox l’) of
nil => 0

| (w,v)::t =>
if (c’ <= w’) then mks (!c’,t)
else let

v1 = mks (!c’,t)
v2 = v + mks (!(c’-w),t)

in
if (v1 > v2) then v1
else v2

end) end

Figure 3: Memo-tables for memoized Knapsack can be discarded at completion.

taken during the search is returned in the form of a list. The function msearch shows a
memoized version of search. The function msearch performs hash-consing only for its own
result. In many application it is common that a search is repeated after a small modification
to the tree. If the modification did not change the path taken, it is advantageous to return
the same list. For example, if the result is passed to a function that finds the length of
the list then the result will be found in the memo the second time. Furthermore, using a
scoping technique described below the memo table for msearch could be discarded when
the search-modify cycle is over.

Space management. In our framework every memoized function is assigned its own
table. Thus, when the function goes out of scope its memo table becomes garbage and its
space can be reclaimed. This allows the programmer to manage space through conventional
scoping mechanisms. For example, many dynamic programming algorithms re-use results
between recursive calls of the same function. But it is unlikely that results are re-used across
independent calls of that function. In this case, the programmer can scope the memoized
dynamic programming algorithm inside of an auxiliary function so that the memo table
of the algorithm is discarded as soon as the auxiliary function returns. As an example,
consider the Knapsack Problem shown in Figure 3. The function mks shows the memoized
solution to the Knapsack Problem. A critical aspect of this algorithm is that the result
re-use occurs among recursive calls and re-use between two independent calls to mks are
unlikely to share results. Thus mks can be scoped in some other function that calls mks;
once mks returns its memo-table will go out of scope and can be discarded.

4 MFL

In this section we study a small functional language, called MFL, that supports selective
memoization. MFL distinguishes memoized from non-memoized code, and is equipped with
a modality for tracking dynamic dependencies on data structures within memoized code.
This modality is central to our approach to selective memoization, and is the focus of our
attention here. The main result is a soundness theorem stating that memoization does not
affect the outcome of a computation compared to a standard, non-memoizing semantics.
We also show that MFL programs are efficinent by demonstrating that memoization causes

7



a constant factor slowdown even in the worst case, where no results are re-used. For the
sake of brevity we do not formalize “boxing” for user-controlled, constant-time equality
checking. Although this is crucial for a practical language for selective memoization, the
techniques for adding such a mechanism are well-understood, and would only distract from
the main points studied here.

4.1 Abstract Syntax

Types τ : : = int | τ1 × τ2 | τ1 + τ2 | µu.τ | τ1 → τ2 | ! τ

Op’s o : : = not | + | - | = | < | . . .

Expr’s e : : = return(t) | let !x:τ be t in e end |
let a1:τ1 × a2:τ2 be t in e end |
mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end

Terms t : : = v | o(t1, . . . , tn) | 〈t1, t2〉 | mfun f (a:τ1):τ2 is e end |
t1 t2 | ! t | inlτ1+τ2t | inrτ1+τ2t | roll(t) | unroll(t)

Values v : : = x | a | n | ! v | 〈v1, v2〉 | mfunl f(a:τ1):τ2 is e end

Figure 4: The abstract syntax of MFL.

The abstract syntax of MFL is given in Figure 4. The meta-variables x and y range
over a countable set of variables. The meta-variables a and b range over a countable set of
resources. (The distinction will be made clear below.) The meta-variable l ranges over a
countable set of locations. We assume that variables, resources, and locations are mutually
disjoint. The binding and scope conventions for variables and resources are as would be
expected from the syntactic forms. As usual, we identify pieces of syntax that differ only
in their choice of bound variable or resource names. A term or expression is resource-free if
and only if it contains no free resources, and is variable-free if and only if it contains no free
variables. A closed term or expression is both resource-free and variable-free; otherwise it
is open.

The syntax is structured into terms and expressions, in the terminology of Pfenning
and Davies [35]. Roughly speaking, terms evaluate independently of their context, as in
ordinary functional programming, whereas expressions are evaluated relative to a memo
table. Thus, the body of a memoized function is an expression, whereas the function itself
is a term. In a more complete language we would include case analysis and projection forms
among the terms, but for the sake of simplicity we include these only as expressions. We
would also include a plain function for which the body is a term. Note that every term is
trivially an expression; the return expression is the inclusion.
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4.2 Static Semantics

The type structure of MFL extends the framework of Pfenning and Davies [35] with a
“necessitation” modality, ! τ , which is used to track data dependencies for selective mem-
oization. This modality does not correspond to a monadic interpretation of memoization
effects (© τ in the notation of Pfenning and Davies), though one could readily imagine
adding such a modality to the language. The introductory and eliminatory forms for neces-
sity are standard, namely ! t for introduction, and let !x:τ be t in e end for elimination.

Our modality demands that we distinguish variables from resources. Variables in MFL
correspond to the “validity”, or “unrestricted”, context in modal logic, whereas resources in
MFL correspond to the “truth”, or “restricted” context. An analogy may also be made to
the judgmental presentation of linear logic [34, 36]: variables correspond to the intuitionistic
context, resources to the linear context.3

The inclusion, return(t), of terms into expressions has no analogue in pure modal
logic, but is specific to our interpretation of memoization as a computational effect. The
typing rule for return(t) requires that t be resource-free to ensure that any dependency
on the argument to a memoized function is made explicit in the code before computing
the return value of the function. In the first instance, resources arise as parameters to
memoized functions, with further resources introduced by their incremental decomposition
using let× and case. These additional resources track the usage of as-yet-unexplored parts
of a data structure. Ultimately, the complete value of a resource may be accessed using the
let! construct, which binds its value to a variable, which may be used without restriction.
In practice this means that those parts of an argument to a memoized function on whose
value the function depends will be given modal type. However, it is not essential that all
resources have modal type, nor that the computation depend upon every resource that does
have modal type.

The static semantics of MFL consists of a set of rules for deriving typing judgments of
the form Γ; ∆ ` t : τ , for terms, and Γ; ∆ ` e : τ , for expressions. In these judgments Γ is a
variable type assignment, a finite function assigning types to variables, and ∆ is a resource
type assignment, a finite function assigning types to resources. The rules for deriving these
judgments are given in Figures 5 and 6.

4.3 Dynamic Semantics

The dynamic semantics of MFL formalizes selective memoization. Evaluation is parameter-
ized by a store containing memo tables that track the behavior of functions in the program.
Evaluation of a function expression causes an empty memo table to be allocated and as-
sociated with that function. Application of a memoized function is affected by, and may
affect, its associated memo table. Should the function value become inaccessible, so also is
its associated memo table, and hence the storage required for both can be reclaimed.

Unlike conventional memoization, however, the memo table is keyed by control flow
information, rather than by complete value(s). This is the key to supporting selective
memoization. Expression evaluation is essentially an exploration of the available resources
culminating in a resource-free term that determines its value. Since the exploration is data-
sensitive, only certain aspects of the resources may be relevant to a particular outcome. For
example, a memoized function may take a pair of integers as argument, with the outcome
determined independently of the second component in the case that the first is positive.

3Note, however, that we impose no linearity constraints in our type system!
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Var, Res
(Γ(x) = τ)
Γ;∆ ` x:τ

(∆(a) = τ)
Γ;∆ ` a:τ

Numbers Γ;∆ ` n : int

Prim Γ;∆ ` ti : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

Γ;∆ ` o(t1, . . . , tn) : τ

Pairs Γ;∆ ` t1 : τ1 Γ; ∆ ` t2 : τ2

Γ;∆ ` 〈t1, t2〉 : τ1 × τ2

Fun Γ, f :τ1 → τ2; ∆, a:τ1 ` e : τ2

Γ;∆ ` mfun f (a:τ1):τ2 is e end : τ1 → τ2

FunVal Γ, f :τ1 → τ2; ∆, a:τ1 ` e : τ2

Γ;∆ ` mfunl f(a:τ1):τ2 is e end : τ1 → τ2

Apply Γ;∆ ` t1 : τ1 → τ2 Γ;∆ ` t2 : τ1

Γ; ∆ ` t1 t2 : τ2

Bang Γ; • ` t : τ

Γ;∆ ` ! t : ! τ

Inl and Inr Γ;∆ ` t : τ1

Γ;∆ ` inlτ1+τ2t : τ1 + τ2

Γ;∆ ` t : τ2

Γ; ∆ ` inrτ1+τ2t : τ1 + τ2

Roll and Unroll Γ; ∆ ` t : [µu.τ/u]τ
Γ;∆ ` roll(t) : µu.τ

Γ;∆ ` t : µu.τ

Γ;∆ ` unroll(t) : [µu.τ/u]τ

Figure 5: Typing for terms

By recording control-flow information during evaluation, we may use it to provide selective
memoization.

For example, in the situation just described, all pairs of the form 〈0, v〉 should map
to the same result value, irrespective of the value v. In conventional memoization the
memo table would be keyed by the pair, with the result that redundant computation is
performed in the case that the function has not previously been called with v, even though
the value of v is irrelevant to the result! In our framework we instead key the memo table
by a “branch” that records sufficient control flow information to capture the general case.
Whenever we encounter a return statement, we query the memo table with the current
branch to determine whether this result has been computed before. If so, we return the
stored value; if not, we evaluate the return statement, and associate that value with that
branch in the memo table for future use. It is crucial that the returned term not contain any
resources so that we are assured that its value does not change across calls to the function.
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Return Γ; • ` t : τ

Γ;∆ ` return(t) : τ

Let! Γ;∆ ` t : ! τ Γ, x:τ ;∆ ` e : τ

Γ;∆ ` let !x be t in e end : τ

Let× Γ; ∆ ` t : τ1 × τ2 Γ;∆, a1:τ1, a2:τ2 ` e : τ

Γ; ∆ ` let a1:τ1 × a2:τ2 be t in e end : τ

Case

Γ;∆ ` t : τ1 + τ2

Γ;∆, a1:τ1 ` e1 : τ
Γ;∆, a2:τ2 ` e2 : τ

Γ;∆ ` mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end : τ

Figure 6: Typing judgments for expressions.

The dynamic semantics of MFL is given by a set of rules for deriving judgments of the
form σ, t ⇓t v, σ′ (for terms) and σ, l:β, e ⇓e v, σ′ (for expressions). The rules for deriving
these judgments are given in Figures 7 and 8. These rules make use of branches, memo
tables, and stores, whose precise definitions are as follows.

A simple branch is a list of simple events corresponding to “choice points” in the eval-
uation of an expression.

Simple Event ε : : = !v | inl | inr
Simple Branch β : : = • | ε · β

We write β̂ε to stand for the extension of β with the event ε at the end.
A memo table, θ, is a finite function mapping simple branches to values.4 We write

θ[β 7→ v], where β /∈ dom(θ), to stand for the extension of θ with the given binding for β.
We write θ(β) ↑ to mean that β /∈ dom(θ).

A store, σ, is a finite function mapping locations, l, to memo tables. We write σ[l 7→ θ],
where l /∈ dom(σ), to stand for the extension of σ with the given binding for l. When
l ∈ dom(σ), we write σ[l ← θ] for the store σ that maps l to θ and l′ 6= l to σ(l′).

Term evaluation is largely standard, except for the evaluation of (memoizing) functions
and applications of these to arguments. Evaluation of a memoizing function term allocates a
fresh memo table, which is then associated with the function’s value. Expression evaluation
is initiated by an application of a memoizing function to an argument. The function value
determines the memo table to be used for that call. Evaluation of the body is performed
relative to that table, initiating with the null branch.

Expression evaluation is performed relative to a “current” memo table and branch.
When a return statement is encountered, the current memo table is consulted to determine
whether or not that branch has previously been taken. If so, the stored value is returned;
otherwise, the argument term is evaluated, stored in the current memo table at that branch,
and the value is returned. The let! and case expressions extend the current branch to

4In the presence of “box” to support “pointer equality,” memo tables would be required to respect value
equivalence.
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Number σ, n ⇓t n, σ

PrimOp

σ, t1 ⇓t v1, σ1

σ1, t2 ⇓t v2, σ2

...
σn−1, tn ⇓t vn, σn

v = app(o,(v1, . . . , vn))

σ, o(t1, . . . , tn) ⇓t v, σn

Pair

σ, t1 ⇓t v1, σ
′

σ′, t2 ⇓t v2, σ
′′

σ, 〈t1, t2〉 ⇓t 〈v1, v2〉, σ′′

Fun (l 6∈ dom(σ), σ′ = σ[l 7→ ∅])
σ, mfun f (a:τ1):τ2 is e end ⇓t mfunl f(a:τ1):τ2 is e end, σ′

FunVal (l ∈ dom(σ))
σ, mfunl f(a:τ1):τ2 is e end ⇓t mfunl f(a:τ1):τ2 is e end, σ

Apply

σ, t1 ⇓t v1, σ1

σ1, t2 ⇓t v2, σ2

σ2, l:•, [v1, v2/f, a] e ⇓e v, σ′

(v1 = mfunl f(a:τ1):τ2 is e end)

σ, t1 t2 ⇓t v, σ′

Bang
σ, t ⇓t v, σ′

σ, ! t ⇓t ! v, σ′

Inject
σ, t ⇓t v, σ′

σ, inlτ1+τ2t ⇓t inlτ1+τ2v, σ′
σ, t ⇓t v, σ′

σ, inrτ1+τ2t ⇓t inrτ1+τ2v, σ′

Roll and Unroll
σ, t ⇓t v, σ′

σ, roll(t) ⇓t roll(v), σ′
σ, t ⇓t roll(v), σ′

σ, unroll(t) ⇓t v, σ′

Figure 7: Evaluation of terms

reflect control flow. Since let! signals dependence on a complete value, that value is
added to the branch. Case analysis, however, merely extends the branch with an indication
of which case was taken. The let× construct does not extend the branch, because no
additional information is gleaned by splitting a pair.
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Return

σ(l)(β) = v

σ, l:β, return(t) ⇓e v, σ
(Found)

σ(l) = θ θ(β) ↑
σ, t ⇓t v, σ′

σ′(l) = θ′

σ, l:β, return(t) ⇓e v, σ′[l ← θ′[β 7→ v]]
(Not found)

Let!

σ, t ⇓t ! v, σ′

σ′, l:!v · β, [v/x]e ⇓t v′, σ′′

σ, l:β, let !x be t in e end ⇓e v′, σ′′

Let×
σ, t ⇓t v1 × v2, σ

′

σ′, l:β, [v1/a1, v2/a2]e ⇓e v, σ′′

σ, l:β, let a1 × a2 be t in e end ⇓t v, σ′′

Case

σ, t ⇓t inlτ1+τ2v, σ′

σ′, l:inl · β, [v/a1]e1 ⇓e v1, σ
′′

σ, l:β, mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end ⇓t v1, σ
′′

σ, t ⇓t inrτ1+τ2v, σ′

σ′, l:inr · β, [v/a2]e2 ⇓e v2, σ
′′

σ, l:β, mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end ⇓t v2, σ
′′

Figure 8: Evaluation of expressions

4.4 Soundness of MFL

We will prove the soundness of MFL relative to a non-memoizing semantics for the language.
It is straightforward to give a purely functional semantics to the pure fragment of MFL by
an inductive definition of the relations t ⇓t

p v and e ⇓e
p v. Here t, e, and v are “pure” in the

sense that they may not involve subscripted function values. The underlying term, t−, of
an MFL term, t, is obtained by erasing all location subscripts on function values occurring
within t.

The soundness of MFL consists of showing that evaluation with memoization yields the
same outcome as evaluation without memoization.

Theorem 1 (Soundness)
If ∅, t ⇓t v, σ, where •; • ` t : τ , then t− ⇓t

p v−.

Proof: The full proof is given in Appendix A. The statement of the theorem must be
strengthened considerably to account for both terms and expressions, and to take account
of non-empty memoization contexts. The proof then proceeds by induction on evaluation.

¥

It is easy to show that the non-memoizing semantics of MFL is type safe, using com-
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signature MEMO =
sig
type ’a res
type ’a memoized

val init: unit -> unit (* Initialize the library *)
val expose: ’a res -> ’a (* Expose a resource *)

val memoize’: (’a res -> ’b memoized) -> (’a -> ’b) (* Memo a recursive function *)
val memoize: ((’a -> ’b) -> ’a res -> ’b memoized) -> (’a -> ’b) (* Memo a non-recursive function *)
val letBang: (’a -> int) -> (unit -> ’a) -> (’a -> ’b memoized) -> ’b memoized (* let! *)
val letX: (unit -> ’a*’b) -> ((’a res*’b res) -> ’c memoized) -> ’c memoized (* let* *)
val mcase: (’a -> bool) -> (unit -> ’a) ->

(’a res -> ’b memoized) -> (’a res -> ’b memoized) -> ’b memoized (* Memoized case *)
val return: (unit -> ’a) -> ’a memoized

end

Figure 9: The signature of the memoization library

pletely conventional techniques. It follows that the memoizing semantics is also type-safe,
for if not, there would be a closed value of a type τ that is not canonical for that type.
However, erasure preserves and reflects canonical forms, hence, by the Soundness Theorem,
MFL must also be type safe.

4.5 Performance

We show that memoization slows down an MFL program by no more than a constant factor
(expected) even when no results are re-used. The proof of this claim is relatively straight-
forward. We will bound the overhead of memoization with respect to a non-memoizing
version of MFL’s operational semantics. Imagine modifying the operational semantics so
that the return rule always evaluates its body and neither looks up nor updates memo
tables (stores).

Consider an MFL program and let T denote the time it takes (the number of evaluation
steps) to evaluate the program with respect to the non-memoizing semantics. Let T ′ denote
the time it takes to evaluate the same program with respect to the memoizing semantics.
In the worst case, no results are re-used, thus the difference between T and T ′ is due to
memo-table lookups and updates done by the memoizing semantics. To bound the time for
these, consider a lookup (or update) with a branch β and let |β| be the length of the branch.
Using nested hash tables, a lookup (or update) can be performed in expected O(|β|) time.
But note that the non-memoizing semantics takes |β| time to build the branch thus, the
cost of a lookup (or update) can be charged to the evaluations that build the branch β,
i.e., evaluations of let! and case. Furthermore, each evaluation of let! and case can be
charged by exactly one return. Thus, we conclude that T ′ = O(T ) in the expected case.

5 Implementation

A key property of the framework is that it accepts a simple implementation. In this section
we present a brief tour of an interface for the library in the Standard ML language. The
implementation itself along with code for the examples presented in Section 3 can be found in
Appendix B. In Standard ML, it is not possible to capture statically the syntactic distinction
between resources and variables, and also between terms and expression, therefore we use
run-time checks to ensure correct usage of primitives. We describe how to incorporate these
run-time checks to the library in Appendix B.
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Figure 9 shows the signature of the library. The interface is somewhat different than
the MFL language in several aspects. First, we introduce a resource type res for resources
to enforce correct usage. Resources are created only by the library. A parameter of a
memoized function is turned into a resource at a function call and more resources can be
created by touching other resources using letX and mCase. The value of a resource can
be accessed via the expose primitive. Second, we do not have an explicit bang (!) type.
Rather, the library allows any value to be touched. All memoized expression have return
type ’a memoized. All terms that are examined by expressions occur in the suspended form
unit -> ’a. This is used in checking for correct usage by setting certain flags at run-time
before forcing the value of the term.

The primitives memoize’ and memoize are used to memoize functions whose bodies
are memoized expressions. The typing requirement dictate that we distinguish between
recursive and non-recursive function. The primitive memoize’ takes a non-recursive function
and returns a memoized version of the function. The parameter to memoize’ must be a
function from a res type to a memoized type. The primitive memoize takes a recursive
function and returns a memoized version of the function. One subtle issue is that the
parameter to memoize must recursively call its memoized version and therefore it should
take this memoized version as a parameter.

The primitive letBang is used to touch a value. Its first parameter is a hash function
of type ’a -> int that maps the value touched to a hash index; this index is used for
memo-table lookup and extensions. The second parameter is a term. The third parameter
to letBang is the body, which is a memoized expression.

The primitive letX is used to touch tuples. The first parameter is term of a product
type, and the second parameter is a the body in the form of a function that operates on
the two parts of the tuple. Note that the two parts are resource types. The primitive
mCase is a primitive for touching sum types. Due to type system limitations, however, its
implementation is somewhat contrived. The first parameter is a function that indicates
which branch to take and its second parameter is a term that supplies a value. The third
and the fourth parameters are the body of the two branches. The primitive return takes a
body and returns the result of the body in memoized form.

6 Discussion and Future Work

In this paper we describe a framework for selective memoization under programmer control.
The key property of the framework is that it is general yet efficient. This efficiency guarantee
comes with some limitations particularly in determining the precise dependencies and space
management.

For the case of space management, our technique allows the programmer to control
the life-span of complete memo tables. It may be preferable to manage the life span of
individual memo-table entries as well; our proposal does not address this issue. As for
identifying precise dependencies, we do not capture “deep” dependencies that the work of
Abadi et. al. [1] and that of Heydon et. al. [18] does. In fact, we only keep track of “local”
(or “shallow”) dependencies – that is we do not propagate the dependencies of a callee to
the caller. For example, consider the functions fun swap (x,y) = (y,x) and fun second
(x,y) = let (x’,y’) = swap (x,y) in x’ end. These can be written in our framework
as
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mfun mswap a = letX (a1,a2) = a in let !x1 = a1 in let !x2 = a2 in
return (!x2,!x1) end end end

mfun msecond a = letX (a1,a2) = swap a in let !x1 = a1 in
return x1 end end

In the previous work, the function second will only depend on y. Thus as soon as second
is called the cache will be checked using y and a match may be found. In our framework,
the function mswap will be called before return (of msecond) performs a cache lookup.
This could seem like a disadvantage at first, but it enables us to capture dependencies on
approximations of input as discussed in Section 3. Furthermore, there are various problems
with propagation of deep dependencies. One issue is that the dependencies can grow large
and one may need to introduce cut points to control this [18]. Another issue is that the
program analysis can change running time of a program significantly. More importantly,
in earlier work, we showed that “deep” dependencies are best handled using modifiable
references [2].

In the context of adaptive or incremental computing, the memoization framework pre-
sented here complements the adaptive computing technique with dynamic dependency
graphs [2]. Memoization handles shallow changes well, whereas dynamic dependency graphs
handles deep changes well. Therefore, we expect that these two techniques can be com-
bined to obtain a general technique for obtaining dynamic or kinetic algorithms [12, 6]. In
fact, we implemented a preliminary version of a library that combines these two techniques.
The library enables one to write fairly sophisticated dynamic algorithms and also yields to
performance analysis. A particular advantage of memoization in the context of the adap-
tive computing framework is that it accepts a simple caching and purging scheme. In fact,
time stamps [2] can be used to determine if a result should be purged from the cache. On
the other hand, combining these two techniques is nontrivial because of the interaction be-
tween memoization and modifiables – in particular it is important to isolate the side effects
performed during change propagation. In future work, we are planning to investigate this
proposal.
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A Soundness

We will prove the soundness of MFL relative to a non-memoizing semantics for the language.
It is straightforward to give a purely functional semantics to MFL by an inductive definition
of the relations t ⇓t

p v and e ⇓e
p v, where v is a pure value with no location subscripts (see,

for example, [35]). We will show that, under suitable conditions, memoization does not
affect the outcome of evaluation as compared to the non-memoized semantics. To make
this precise, we must introduce some additional machinery.

The underlying term, t−, of a term, t, is obtained by erasing all location subscripts on
function values occurring within t. The underlying expression, e−, of an expression, e, is
defined in the same way. As a special case, the underlying value, v−, of a value, v, is the
underlying term of v regarded as a term. It is easy to check that every pure value arises
as the underlying value of some impure value. Note that passage to the underlying term or
expression obviously commutes with substitution. The underlying branch, β−, of a simple
branch, β, is obtained by replacing each event of the form ! v in β by the corresponding
underlying event, ! (v−).

The partial access functions, t @ β and e @ β, where β is a simple branch, and t and e
are variable-free (but not necessarily resource-free), are defined as follows. The definition
may be justified by lexicographic induction on the structure of the branch followed by the
size of the expression.

t @ β = e @ β
(where t = mfun f (a:τ1):τ2 is e end)

return(t) @ • = return(t)
let !x:τ be t in e end @ β̂!v = [v/x]e @ β

let a1:τ1 × a2:τ2 be t in e end @ β = e @ β
mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end @ β̂inl = e1 @ β
mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end @ β̂inr = e2 @ β

This function will only be of interest in the case that e @ β is a return expression, which,
if well-typed, cannot contain free resources. Note that (e @ β)− = e− @ β−, and similarly
for values, v.

We are now in a position to justify a subtlety in the second return rule of the dynamic
semantics, which governs the case that the returned value has not already been stored in
the memo table. This rule extends, rather than updates, the memo table with a binding for
the branch that determines this return statement within the current memoized function.
But why, after evaluation of t, is this branch undefined in the revised store, σ′? If the term
t were to introduce a binding for β in the memo table σ(l), it could only do so by evaluating
the very same return statement, which implies that there is an infinite loop, contradicting
the assumption that the return statement has a value, v.

Lemma 2
If σ, t ⇓t v, σ′, σ(l)@β = return(t), and σ(l)(β) is undefined, then σ′(l)(β) is also undefined.

An augmented branch, γ, is an extension of the notion of branch in which we record the
bindings of resource variables. Specifically, the argument used to call a memoized function
is recorded, as are the bindings of resources created by pair splitting and case analysis.
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Augmented branches are inductively defined by the following grammar:

Augmented Event ε : : = (v) | !v | 〈v1, v2〉 | inl(v) | inr(v)
Augmented Branch γ : : = • | ε · γ

We write γ̂ε for the extension of γ with ε at the end. There is an obvious simplifica-
tion function, γ◦, that yields the simple branch corresponding to an augmented branch by
dropping “call” events, (v), and “pair” events, 〈v1, v2〉, and by omitting the arguments to
“injection” events, inl(v), inr(v). The underlying augmented branch, γ−, corresponding
to an augmented branch, γ, is defined by replacing each augmented event, ε, by its corre-
sponding underlying augmented event, ε−, which is defined in the obvious manner. Note
that (γ◦)− = (γ−)◦.

The partial access functions e @ γ and t @ γ are defined for closed expressions e and
closed terms t by the following equations:

t @ γ̂(v) = [t, v/f, a]e @ γ
(where t = mfun f (a:τ1):τ2 is e end)

e @ • = e
let !x:τ be t in e end @ γ̂!v = [v/x]e @ γ

let a1:τ1 × a2:τ2 be t in e end @ β̂〈v1, v2〉 = [v1, v2/a1, a2]e @ β
mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end @ β̂inl(v) = [v/a1]e1 @ β
mcase t of inl (a1:τ1) ⇒ e1 | inr (a2:τ2) ⇒ e2 end @ β̂inr(v) = [v/a2]e2 @ β

Note that (e @ γ)− = e− @ γ−, and similarly for values, v.
Augmented branches, and the associated access function, are needed for the proof of

soundness. The proof maintains an augmented branch that enriches the current simple
branch of the dynamic semantics. The additional information provided by augmented
branches is required for the induction, but it does not affect any return statement it may
determine.

Lemma 3
If e @ γ = return(t), then e @ γ◦ = return(t).

A function assignment, Σ, is a finite mapping from locations to well-formed, closed,
pure function values. A function assignment is consistent with a term, t, or expression,
e, if and only if whenever mfunl f(a:τ1):τ2 is e end occurs in either t or e, then Σ(l) =
mfun f (a:τ1):τ2 is e− end. Note that if a term or expression is consistent with a function
assignment, then no two function values with distinct underlying values may have the
same label. A function assignment is consistent with a store, σ, if and only if whenever
σ(l)(β) = v, then Σ is consistent with v.

A store, σ, tracks a function assignment, Σ, if and only if Σ is consistent with σ,
dom(σ) = dom(Σ), and for every l ∈ dom(σ), if σ(l)(β) = v, then

1. Σ(l) @ β− = return(t−),

2. t− ⇓t
p v−,

Thus if a branch is assigned a value by the memo table associated with a function, it can
only do so if that branch determines a return statement whose value is the assigned value
of that branch, relative to the non-memoizing semantics.

We are now in a position to prove the soundness of MFL.
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Theorem 4
1. If σ, t ⇓t v, σ′, Σ is consistent with t, σ tracks Σ, •; • ` t : τ , then t− ⇓t

p v− and there
exists Σ′ ⊇ Σ such that Σ′ is consistent with v and σ′ tracks Σ′.

2. If σ, l:β, e ⇓e v, σ′, Σ is consistent with e, σ tracks Σ, γ◦ = β, Σ(l) @ γ− = e−, and
•; • ` e : τ , then there exists Σ′ ⊇ Σ such that e− ⇓e

p v−, Σ′ is consistent with v, and
σ′ tracks Σ′.

Proof: The proof proceeds by simultaneous induction on the memoized evaluation relation.
We consider here the five most important cases of the proof: function values, function terms,
function application terms, and return expressions.

For function values t = mfunl f(a:τ1):τ2 is e end, simply take Σ′ = Σ and note that
v = t and σ′ = σ.

For function terms t = mfun f (a:τ1):τ2 is e end, note that v = mfunl f(a:τ1):τ2 is e end
and σ′ = σ[l 7→ ∅], where l /∈ dom(σ). Let Σ′ = Σ[l 7→ v−], and note that since σ tracks
Σ, and σ(l) = ∅, it follows that σ′ tracks Σ′. Since Σ is consistent with t, it follows by
construction that Σ′ is consistent with v. Finally, since v− = t−, we have t− ⇓t

p v−, as
required.

For application terms t = t1 t2, we have by induction that t1
− ⇓t

p v1
− and there exists

Σ1 ⊇ Σ consistent with v1 such that σ1 tracks Σ1. Since v1 = mfunl f(a:τ1):τ2 is e end,
it follows from consistency that Σ1(l) = v1

−. Applying induction again, we obtain that
t2
− ⇓t

p v2
−, and there exists Σ2 ⊇ Σ1 consistent with v2 such that σ2 tracks Σ2. It follows

that Σ2 is consistent with [v1, v2/f, a]e. Let γ = (v2) · •. Note that γ◦ = • = β and we have

Σ2(l) @ γ− = v1
− @ γ−

= (v1 @ γ)−

= ([v1, v2/f, a]e)−

= [v1
−, v2

−/f, a]e−.

Therefore, by induction, [v1
−, v2

−/f, a]e− ⇓e
p v′−, and there exists Σ′ ⊇ Σ2 consistent with

v′ such that σ′ tracks Σ′. It follows that (t1 t2)
− = t1

− t2
− ⇓t

p v′−, as required.
For return statements, we have two cases to consider, according to whether the current

branch is in the domain of the current memo table. Suppose that σ, l:β, return(t) ⇓e v, σ′

with Σ consistent with return(t), σ tracking Σ, γ◦ = β, Σ(l) @ γ− = (return(t))− =
return(t−), and •; • ` return(t) : τ . Note that by Lemma 3, (Σ(l) @ β)− = Σ(l) @ β− =
return(t−).

For the first case, suppose that σ(l)(β) = v. Since σ tracks Σ and l ∈ dom(σ), we have
Σ(l) = mfun f (a:τ1):τ2 is e− end with e− @ β− = return(t−), and t− ⇓t

p v−. Note that
σ′ = σ, so taking Σ′ = Σ completes the proof.

For the second case, suppose that σ(l)(β) is undefined. By induction t− ⇓t
p v− and there

exists Σ′ ⊇ Σ consistent with v such that σ′ tracks Σ′. Let θ′ = σ′(l), and note θ′(β) ↑, by
Lemma 2. Let θ′′ = θ′[β 7→ v], and σ′′ = σ′[l ← θ′′]. Let Σ′′ = Σ′; we are to show that
Σ′′ is consistent with v, and σ′′ tracks Σ′′. By the choice of Σ′′ it is enough to show that
Σ′(l) @ β− = return(t−), which we noted above.

¥

Type safety follows from the soundness theorem, since type safety holds for the non-
memoized semantics. In particular, if a term or expression had a non-canonical value in the
memoized semantics, then the same term or expression would have a non-canonical value
in the non-memoized semantics, contradicting safety for the non-memoized semantics.
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signature MEMO =
sig
type ’a res
type ’a memoized

val init: unit -> unit (* Initialize the library *)
val expose: ’a res -> ’a (* Expose a resource *)

val memoize’: (’a res -> ’b memoized) -> (’a -> ’b) (* Memo a recursive function *)
val memoize: ((’a -> ’b) -> ’a res -> ’b memoized) -> (’a -> ’b) (* Memo a non-recursive function *)
val letBang: (’a -> int) -> (unit -> ’a) -> (’a -> ’b memoized) -> ’b memoized (* let! *)
val letX: (unit -> ’a*’b) -> ((’a res*’b res) -> ’c memoized) -> ’c memoized (* let* *)
val mcase: (’a -> bool) -> (unit -> ’a) ->

(’a res -> ’b memoized) -> (’a res -> ’b memoized) -> ’b memoized (* Memoized case *)
val return: (unit -> ’a) -> ’a memoized

end

Figure 10: The signature of the memoization library

signature BOX = sig
eqtype ’a box
val init: unit -> unit
val box: ’a -> ’a box
val unbox: ’a box -> ’a
val getKey: ’a box -> int

end

signature MEMOPAD = sig
type ’a memopad
type index
val empty: unit -> ’a memopad
val extend: ’a memopad -> index list -> (’a option * ’a memopad option)
val add: ’a -> ’a memopad -> unit

end

Figure 11: The signatures for boxes and memopads.

B Implementation

In this section, we present the code for an implementation of our framework in the Standard
ML language. The interface for the library is given in Figure 10. The implementation
relies on an interface for boxing/unboxing and memo tables; these are shown in Figure 11.
Figure 12 shows a simple implementation of the library without run-time checks. Figure 13
demonstrates the code for the examples described in Section 3.

The run time checks are relatively straightforward to incorporate by enhancing the defi-
nition of the resources (this approximately doubles the number of lines). The enhancement
ensures that resources are never exposed inside a return and never escape their scope. This
can be achieved by tagging each resource with the function instance that it belongs to and
then invalidating these tags at a return. Correct usage of a resource is ensured by checking
it tag is valid before an expose.

Correct usage of terms and expressions cannot statically be enforced in SML. For exam-
ple, there is no way to prevent the body of a memoized function to be a statement of the
form if (expose r) then return 0 else return 1. This is not correct usage because
if is not a proper expression (it does not record the branch taken). The way to get around
this is to make sure that each expose occurs at a term position and a term position will
only be gained through an expression. For example a statement of the form mcase (fn ()
=> expose r) ... will signal a term position before forcing fn () => expose r. This
is easy to implement by keeping a flag indicating a term position.
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functor BuildMemo (structure Box: BOX structure Memopad:MEMOPAD where type index = int):MEMO =
struct
type ’a memoized = int list * (unit -> ’a)
type ’a box = ’a Box.box

type ’a res = ’a (* More sophisticated definition is needed for checking correct usage *)
fun expose x = x
fun resource v = v

fun init () = (Box.init ())

fun memoize f = let
val mpad = Memopad.empty ()
fun mf rf x = let

val (branch,thunk) = f rf x
val result =
case Memopad.extend mpad branch of

(NONE,SOME mpad’) => let (* Not Found in the memo *)
val v = thunk ()
val = Memopad.add v mpad’

in
v

end
| (SOME v,NONE) => v (* Found in the memo *)

in
result

end
fun mf’ x = mf mf’ (resource x)

in
mf’

end

fun memoize’ f = ... (* Similar to memoize *)

fun letBang h t f = let
val (branch,thunk) = f (t ())

in
((h (t ()))::branch, thunk)

end

fun letX t f = let
val (x1,x2) = x ()

in
f (resource x1, resource x2)

end

fun mcase h t f1 f2 = let
val v = t ()
val lr = h v
val (branch,thunk) = if lr then f1 v else f2 v

in
if lr then (0::branch,thunk)
else (1::branch,thunk)

end

fun return f = (nil,f)

end

Figure 12: The implementation of the memoization library (correct usage not checked).
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(* Some utilities *)
fun letI r body = letBang (fn i => i) r body (* let! for ints *)
fun letB r body = letBang (fn b => Box.getKey b) r body (* let! for boxes *)

fun fib f (n:int res) =
letI (fn()=>expose n) (fn n’ => return (fn()=>

if n’ < 2 then n’
else f(n’-1) + f(n’-2)))

val mfib = memoize fib (* Memoized Fibonacci *)

fun sum x =
letX (fn()=>expose x) (fn (x1,x2) =>

mcase (fn v => v >= 0) (fn()=>expose x1)
(fn => return (fn()=>0))
(fn => letI (fn()=>expose x1)

(fn x1’ => letI (fn()=>expose x2) (fn x2’ =>
return (fn()=>x1’+x2’)))))

val msum = memoize’ sum

(* Boxed lists. *)
datatype ’a blist = NIL | CONS of (’a * ((’a blist) box))
type ’a boxedlist = (’a blist) box

fun hashCons (x: (’a box * ((’a box) boxedlist)) res) =
letX (fn()=>expose x) (fn (h,t) => letB (fn()=>expose h) (fn h’ => letB (fn()=>expose t) (fn t’ =>

return (fn()=>box (CONS(h’,t’))))))
val mhashCons = memoize’ hashCons

datatype ’a tree = EMPTY | NODE of ’a * (’a tree * ’a tree)
fun isEqual’ a = letX (fn()=>expose a) (fn (a1,a2) => letI (fn()=>expose a1) (fn a1’ =>

letI (fn()=>expose a2) (fn a2’ => return (fn()=>a1’=a2’))))
val isEqual = memoize’ isEqual’
fun isLess’ a = letX (fn()=>expose a) (fn (a1,a2) => letI (fn()=>expose a1) (fn a1’ =>

letI (fn()=>expose a2) (fn a2’ => return (fn()=>a1’<a2’))))
val isLess = memoize’ isLess’

fun search msearch arg = letX (fn()=>expose arg) (fn (tree,key) =>
mcase (fn v => if (v = EMPTY) then true else false) (fn()=>expose tree)

(fn => return (fn()=>box NIL))
(fn n => let val NODE(klr) = (fn()=>expose n) () in

letX (fn()=>klr) (fn (k,lr) =>
letX (fn()=>expose lr) ( fn (l,r) =>
letI (fn()=>expose k) (fn k’ =>

mcase (fn v => v) (fn()=>isEqual (k’, expose key))
(fn => return (fn()=>fromList[k’]))
(fn => mcase (fn v => v) (fn()=>isLess(expose key,k’))

(fn => letB (fn()=>msearch (expose l,expose key)) (fn r =>
return (fn()=>box (CONS(k’,r)))))

(fn => letB (fn()=>msearch (expose r,expose key)) (fn r =>
return (fn()=>box (CONS(k’,r)))))))))

end))

fun mks’ ks (args) = letX (fn()=>expose arg) (fn (c, l) =>
letI (fn()=>expose c) (fn c’ =>

if c’ <= 0 then return (fn()=>0)
else letB (fn()=>expose l) (fn l’ => return (fn () =>

case (unbox l’) of
NIL => 0
| CONS((w,v),t) =>

if (c’ < w) then mks(c’,t)
else let
val v1 = mks (c’,t)
val v2 = v + mks (c’-w,t)

in
if (v1 > v2) then v1
else v2

end))))
val mks = memoize mks’

Figure 13: Examples of Section 3 in the SML library
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