A-Calculus: The Other Turing Machine

Guy Blelloch and Robert Harper

July 25, 2015

The early 1930s were bad years for the worldwide economy, but great years for what would even-
tually be called Computer Science. In 1932, Alonzo Church at Princeton described his A-calculus
as a formal system for mathematical logic,and in 1935 argued that any function on the natural
numbers that can be effectively computed, can be computed with his calculus [4]. Independently
in 1935, as a master’s student at Cambridge, Alan Turing was developing his machine model of
computation. In 1936 he too argued that his model could compute all computable functions on
the natural numbers, and showed that his machine and the A-calculus are equivalent [6]. The fact
that two such different models of computation calculate the same functions was solid evidence that
they both represented an inherent class of computable functions. From this arose the so-called
Church-Turing thesis, which states, roughly, that any function on the natural numbers can be
effectively computed if and only if it can be computed with the A-calculus, or equivalently, the
Turing machine. Although the Church-Turing thesis by itself is one of the most important ideas in
Computer Science, the influence of Church and Turing’s models go far beyond the thesis itself.

The Turing machine has become the core of all complexity theory [5]. In the early 1960’s Juris
Hartmanis and Richard Stearns initiated the study of the complexity of computation. In 1967
Manuel Blum developed his axiomatic theory of complexity, which although independent of any
particular machine, was considered in the context of a spectrum of Turing machines (e.g., one
tape, two tape, or two stack). This was followed in 1971 by Stephen Cooke and Leonid Levin who
showed a complete problem for NP (satisfiability) and introducing the question of whether P =
NP. Since then a huge number of complexity classes have been isolated and related, including PCP,
the class of Probabilistically Checkable Proofs. All this work has been defined in terms of minor
variants of the Turing machine. In the field of Algorithms, where analysis needs to be more precise,
other models have been developed, such at the Random Access Machine (RAM), that are closer to
physical computers while remaining relatively abstract and hence widely applicable. However even
these machines were heavily influenced by the Turing machine, and most of the complexity classes
defined for the Turing machine carry over to the RAM.

Whereas the machine models became the foundation of complexity and algorithmic theory, it
was Church’s A-calculus that became the foundation for the theory of programming languages [3].
This came about largely under the influence of Dana Scott and Christopher Strachey who, at the
suggestion of Roger Penrose, developed denotational semantics, a topologically influenced account
of higher-order computations acting on infinite data objects such as functions and streams, that
are inherent in Church’s formalism. Scott and Strachey’s work meshed with Church’s work on clas-
sical type theory as a foundation for mathematics, with L.E.J. Brouwer’s program of constructive
foundations that led to Per Martin-Lof’s development of Intuitionistic Type Theory, and with N.G.
de Bruijn’s AUTOMATH language for expressing machine-checked proof, all of which were simi-
larly founded on the A-calculus. The result is an integrated theory of computation and deduction,
known as the Propositions as Types principle, that consolidates programs with proofs, and types
with propositions.

This principle lies at the heart of most programming language theory and many program veri-
fication and proof checking systems. Robin Milner’s work on the LCF prover in the 1970’s led to
the emergence of functional programming, based directly on the A-calculus, and interactive proof
development, based on Scott’s logic of computable functions arising from his program of denota-

mergeSort(A) =
if (|JA| <1) then A
else let (L,R) = split(A)
in merge(mergeSort(L), mergeSort(R)) end

Figure 1: Mergesort in a “sugared” A-calculus. The algorithm is parallel since the recursive merge-
Sorts can run in parallel, and the merge itself can be parallelized. With built-in integers, and a
parallel merge, it has O(nlogn) work and O(log®n) span (n = |A|) [1].

tional semantics. The theory of polymorphism and data abstraction was developed by Jean-Yves
Girard and John C. Reynolds based on Church’s logical formalism. It is the single most important
result supporting the modular design and development of large programs. Milner’s and Reynolds’s
work not only influenced the design of the mathematically grounded functional languages such as
ML or Haskell, but even the more prosaic languages such as C++ and Java, which have added
A-abstraction some eighty years after its invention. Building on Milner’s LCF system most modern
interactive provers, including NuPRL, Coq, Isabelle, and HOL, are based on the A-calculus, the
first two on constructive type theory, the latter two on classical type theory.

Despite the pervasive influence of Church’s A-calculus on programming, program verification,
and mechanized mathematics, there has been surprisingly little overlap with the machine-based
work on algorithms and complexity. Indeed, beyond Turing’s initial paper, it is hard to find a
research paper that even mentions both models. As a consequence, the subfields of the theory of
programming languages and the theory of algorithms and complexity seem to be further apart than
just about any other two subfields of computer science.

One natural question that arises is whether the A-calculus can even be used for complexity
theory and algorithm analysis. Here we point out that it can, and indeed using the A-calculus offers
some potential advantages. Whereas all other models of computation are based on the “program
acting on data” paradigm, the A-calculus is distinctive in that it consolidates the two; there is no
distinction between program and data at all. What, then, does it mean to run a program, and,
more to the point, what is the cost of doing so?

To answer this, we first briefly review the A-calculus. Its syntax consists of the simple recursive
grammar:

e=x | (A\x.e) | e(e)

where x ranges over a set of variable names. It has one computational rule, called S-reduction,
which takes an expression of the form (Az.ej)(e2) and substitutes ey for all the occurrences of
the variable x in e;, much as in high school algebra. A computation finishes when there are no
reductions left to do. A time-based cost for the A-calculus can be defined as the number of reduction
steps it takes to convert an expression into its final form. This number, however, can depend on
the order in which reductions are made. The A-calculus admits several useful reduction strategies,
some of which provide a deterministic model of computation with a well-defined cost measure based
on reduction steps. Here we consider call-by-value (CBV) reduction, which starts by evaluating
the top-level expression. If it is of the form Az.e then the evaluation is complete, otherwise the
expression is of the form ej(e2) and e; and eg are recursively evaluated, S-reduction is applied to
the results, and the resulting expression is then evaluated. CBV corresponds to evaluating the
argument, substituting it into the function body, and evaluating the body.

How does this cost measure based on the CBV reduction order for the A-calculus compare to
costs on the RAM model? It turns out that the two models are equivalent within a logarithmic
factor [1]. In particular an expression evaluating with ¢ reductions in the CBV A-calculus can be
simulated to run in O(tlogt) time on the RAM, and a computation of input size n and taking ¢ time

on the RAM can be simulated with O(tlog(t + n)) reductions in the CBV A-calculus.! This might
seem surprising given that the A-calculus does not have any control structures, does not support
random access, and does not have any data types, not even Booleans or integers. The simulation
works, however, since Booleans and various control structures can easily be supported with constant
overhead, and random access and integers can be simulated with logarithmic overhead. If the
A-calculus is extended with built-in integers, then many algorithms have the same cost in the A-
calculus as in the RAM—for example merge sort (Figure 1) takes O(nlogn) reductions. What
the results say is that steps on the RAM and reductions in the CBV A-calculus are surprisingly
close, indeed much closer than steps on a RAM to steps on a Turing machine (which differ by a
polynomial factor). The relationship means, for example, that the A-calculus can easily be used to
define complexity classes such as P, NP, EXP, or NEXP.

More importantly than the relationship of the CBV A-calculus to the RAM is the fact that
it is inherently parallel. This is because reductions can proceed in parallel. In particular, when
evaluating an expression ej(eg), the subexpressions e; and ey can be evaluated in parallel. In
merge sort, for example, the recursive calls may be made in parallel. But, how do we assign costs
to parallel evaluation? It turns out that using two cost measures—the total number of reductions
(work) and depth of dependences of the reductions (span), are adequate. Both these costs can be
computed compositionally—the work of evaluating e; and es in parallel is the sum of the work of
each, and the span is the maximum of the span of each. One can show bounds that relate these
costs with time on parallel machine models. More recently the authors have investigated how the
A-calculus can also account for locality in functional programming [2]. Since there is no way in the
A-calculus to lay out memory, it is not immediately obvious that this is possible.

The A-calculus therefore has some potential advantage over the Turing machine or RAM as
a cost model—it does not separate functions from values, it is closer to programming languages
(needing minimal “sugar” or extensions), and it is parallel. Given these advantages, here at Carnegie
Mellon we use the A-calculus (a sugared version) for analyzing costs in the new freshman-level
functional programming class (15-150) and the new sophomore-level introduction to data structures
and algorithms course (15-210). Both teach parallelism from the start.

We believe our work has just touched on potential interactions between the Church-ites and
the Turing-ites, and believe there would be large benefit for Computer Science as a whole for the
communities to interact more.

References
[1] Guy E. Blelloch and John Greiner. Parallelism in sequential functional languages. In ACM Conf. on
Functional Prog. Languages and Computer Architecture (FPCA), pages 226-237, 1995.

[2] Guy E. Blelloch and Robert Harper. Cache efficient functional algorithms. Commun. ACM, 58(7):101-
108, June 2015.

[3] F. Cardone and J. R. Hindley. A-calculus and combinators in the 20th century. In D. M. Gabbay and
J. Woods, editors, Logic from Russell to Church, Handbook of the History of Logic. North-Holland, 2009.

[4] Alonzo Church. An unsolveable problem of elementary number theory. American Journal of Mathematics,
58(2):345-363, April 1936. (Presented April 19, 1935).

[5] L. Fortnow and S. Homer. A short history of computational complexity. Bulletin of the European
Association for Theoretical Computer Science, 80, June 2003.

[6] Alan M. Turing. On computable numbers with an application to the Entscheidungsproblem. Proc. of the
London Mathematical Society, $2-42(1):230-265, 1937. (Presented Nov. 12, 1936).

'This makes the standard assumption that the word size of a RAM is at most O(logn) bits.

