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Abstract

Most specifications of garbage collectors concentrate on the
low-level algorithmic details of how to find and preserve ac-
cessible objects. Often, they focus on bit-level manipula-
tions such as “scanning stack frames,” “marking objects,”
“tagging data,” etc. While these details are important in
some contexts, they often obscure the more fundamental as-
pects of memory management: what objects are garbage and
why?

We develop a series of calculi that are just low-level
enough that we can express allocation and garbage collec-
tion, yet are sufficiently abstract that we may formally prove
the correctness of various memory management strategies.
By making the heap of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the heap and automatically dereference pointers
to such objects when needed. This formulation permits the
specification of garbage collection as a relation that removes
portions of the heap without affecting the outcome of the
evaluation.

Our high-level approach allows us to specify in a compact
manner a wide variety of memory management techniques,
including standard trace-based garbage collection (i.e., the
family of copying and mark/sweep collection algorithms),
generational collection, and type-based, tag-free collection.
Furthermore, since the definition of garbage is based on the
semantics of the underlying language instead of the conser-
vative approximation of inaccessibility, we are able to specify
and prove the idea that type inference can be used to collect
some objects that are accessible but never used.
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Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and ARPA grant No. F33615-93-1-1330. Views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing official policies
or endorsements, either expressed or implied, of Wright Laboratory
or the United States Government.

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallocation automatically. Automatic memory
managers, or garbage collectors, significantly facilitate the
programming process because programmers can rely on the
language implementation for the delicate tasks of finding
and freeing unneeded objects. Indeed, the presence of a
garbage collector ensures memory safety in the same way
that a type system guarantees type safety: no program writ-
ten in an advanced programming language will crash due
to dangling pointer problems while allocation, access, and
deallocation are transparent. However, in contrast to type
systems, memory management strategies and particularly
garbage collectors rarely come with a compact formulation
and a formal proof of soundness. Since garbage collectors
work on the machine representations of abstract values, the
very idea of providing a proof of memory safety sounds unre-
alistic given the lack of simple models of memory operations.

The recently developed syntactic approaches to the spec-
ification of language semantics by Felleisen and Hieb [11]
and Mason and Talcott [18, 19] are the first execution mod-
els that are intensional enough to permit the specification
of memory management actions and yet are sufficiently ab-
stract to permit compact proofs of important properties.
Starting from the A,-S calculus of Felleisen and Hieb, we
design compact specifications of a number of memory man-
agement ideas and prove several correctness theorems.

The basic idea underlying the development of our gar-
bage collection calculi is the representation of a program’s
run-time memory as a global series of syntactic declarations.
The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-
ically dereference pointers to such objects when needed. As
a result, garbage collection can be specified as any relation
that removes portions of the current heap without affecting
the result of a program’s execution.

In Section 2, we present a small functional programming
language, Agc, with a rewriting semantics that makes allo-
cation explicit. We define a semantic notion of garbage col-
lection for Agc and prove that there is no optimal collection
strategy that is computable. In Section 3, we specify the
“free-variable” garbage collection rule which models trace-
based collectors including mark/sweep and copying collec-
tors. We prove that the free-variable rule is correct and
provide two “implementations” at the syntactic level: the
first corresponds to a copying collector, the second to a gen-
erational one.

In Section 4, we formalize so-called “tag-free” collec-
tion algorithms for explicitly-typed, monomorphic languages
such as Pascal and Algol [7, 29, 8]. We show how to recover



necessary shape information about values from types during
garbage collection. We are able to prove the correctness of
the garbage collection algorithm by using a well known type
preservation argument.

In Section 5, we justify our semantic definition of garbage
by showing that Milner-style type inference can be used to
prove that an object is semantically garbage even though
the object is still reachable. While previous authors have
sketched this idea [3, 5, 14, 12], we are the first to present a
formal proof of this result. The proof is obtained by casting
the well known interpretation of types as logical relations
into our framework.

Section 6 discusses related work and Section 7 closes with
a summary.

Due to a lack of space, most of the proofs for lemmas
are omitted in this paper. However, full details may be
recovered from our companion technical report [20].

2 Modeling Allocation: Agc

Syntax: The syntax of Agc (see Figure 1) is that of a con-
ventional, higher-order, applicative programming language
based on the A-calculus. Following the tradition of func-
tional programming, a Agc program (P) consists of some
mutually recursive definitions (H) and an expression (e).
The global definitions are useful for defining mutually recur-
sive procedures, but their primary purpose here is to repre-
sent the run-time heap of a program. In general, there can
be cycles in a heap, so we use letrec instead of let as the
binding form. Expressions are either variables (x), integers
(4), pairs ({e1,e2)), projections (m;), abstractions (Az.e), or
applications (e1 e2).

Formally, the heap is a series of pairs, called bindings,
consisting of variables and heap values. Heap values are a
semantically significant subset of expressions. The order of
the bindings is irrelevant and each variable must be bound
to at most one heap value in a heap. Hence, we treat heaps
as sets and, when convenient, as finite functions. We write
Dom(H) to denote the bound variables of H, and Rng(H)
to denote the heap values bound in H. We sometimes refer
to variables bound in the heap as locations or pointers.

The language contains two binding constructs: Az.e
binds z in e and letrec H in e binds the variables in Dom(H)
to the expressions Rng(H) in both the values in Rng(H)
and in e. Following convention, we consider programs to
be equivalent up to a consistent a-conversion of bound vari-
ables.

Considering programs equivalent modulo «-conversion
and the treatment of heaps as sets instead of sequences hides
many of the complexities of memory management. In par-
ticular, programs are automatically considered equivalent if
the heap is re-arranged and locations are re-named as long
as the “graph” of the program is preserved. This abstraction
allows us to focus on the issues of determining what bind-
ings in the heap are garbage without specifying how such
bindings are represented in a real machine.

Mathematical Notation: We use X W X' to denote the
union of two disjoint sets, X and X'. We use H W H' to
denote the union of two heaps whose domains are disjoint.
We use {e1/z}es to denote capture-avoiding substitution of
the expression e; for the free variable = in the expression es.
We use X \ X’ to denote {r € X |z ¢ X'}

Semantics: The rewriting semantics for Agc is an adapta-
tion of the standard reduction function of the \,-S calcu-

lus [11]. Roughly speaking, this kind of semantics describes
an abstract machine whose states are programs and whose
instructions are relations between programs. The desired fi-
nal state of this abstract machine is an answer program (A)
whose body is a pointer to some value, such as an integer,
in the heap.

Each rewriting step of a program letrec H in e proceeds
according to a simple algorithm. If the body of the pro-
gram, e, is not a variable, it is partitioned into an evalua-
tion context E (an expression with a hole [ ] in the place
of a sub-expression), which represents the control state, and
an instruction expression I, which roughly corresponds to
a program counter: e = E[I]. The instruction expression
determines the next expression e’ and any changes to the
heap resulting in a new heap H'. Putting the pieces to-
gether yields the next program in the evaluation sequence:
letrec H' in E[e']. Each instruction determines one transi-
tion rule of the abstract machine. Formally, a rule denotes a
relation between programs. A set of rules denotes the union
of the respective relations.

We use the following conventions: Let G be a set of
program relations, and let P and P’ be programs. Then,

G . .
P +—— P’ means P rewrites to P’ according to one
. G . . ..
of the rules in G and — ~ is the reflexive, transitive
G
closure of —.

G + r is the union of G with the rule r.

A program P is irreducible with respect to G iff there
is no rule in G and no P’ such that P — P'.

P ¢ P’ means that P — *P' and P’ is irreducible
with respect to G.

P {t¢ means that there exists an infinite sequence of
programs P; such that P SN P SN P> SO

Figure 1 defines the set of evaluation contexts and in-
struction expressions for Agc. The definition of evaluation
contexts (E) reflects the left-to-right, call-by-value evalua-
tion order of the language. All terms to the left of the path
from the root to the hole are variables; the terms on the
right are arbitrary. Instruction expressions (I) consist of
heap values (h), applications of (pointers to heap-allocated)
procedures to (pointers to heap-allocated) values, and pro-
jections of (pointers to heap-allocated) tuples.

The evaluation rules for Agc reflect the intentions behind
our choice of instruction expressions. The transition rule al-
loc models the allocation of values in the heap by binding
the value to a new variable and using this variable in its place
in the program. Note that the “W” notation carries the im-
plicit requirement that the newly allocated variable x cannot
be in the domain of the heap H. The transition proj spec-
ifies how a projection instruction extracts the appropriate
component from a pointer to a heap-allocated pair. Sim-
ilarly, app is a transliteration of the conventional g-value
rule into our modified setting. It binds the formal parame-
ter of a heap-allocated procedure to the value of the pointer
given as the actual argument, and places the expression part
of the procedure into the evaluation context. Multiple appli-
cations of the same procedure require a-conversion to ensure
that the formal parameter does not conflict with bindings
already in the heap'. We use R to abbreviate the union of
the rules alloc, proj, and app.

LAn alternative rule for application substitutes the actual argu-
ment (y) for the formal (z) within e and performs no allocation. This
rule is essentially equivalent to app, but the definition above simpli-
fies the proofs of Section 5.



Programs:

(variables) x,y,z € Var

(integers) 1 € Int =
(expressions) e € FEmp ==
(heap values) h € Hval ==
(heaps) H € Heap ==
(programs) P € Prog =
(answers) A € Ans =

Evaluation Contexts and Instruction Expressions:

(contexts) E € Ctst
(instructions) I € Instr ==

Rewriting Rules

alloc

Sl =2 10|20
z|i|(er,e2) | me|me|Ave|er e
i | (x1,22) | Ax.e
{l‘lzhl,...,l‘n:hn}
letrec H in e
letrec H in z

[1|(E,e)|(z,E)|m E|Ee|zE
himz|zy

(alloc) letrec H in E[h] — letrec HW {z = h} in E[x]
(proj) letrec H in E[m; x] —> letrec H in E [x;] (H(z) = (z1,22) and i = 1, 2)
(app) letrec H in E[z y]l —> letrec H W {z = H(y)} in E[e] (H(z) = Az.e)

Figure 1: The Syntax and Operational Semantics of Agc

The irreducible programs of Agc are either answers or
stuck programs. The latter correspond to machine states
that result from the misapplication of primitive program
operations or unbound variables.

Definition 2.1 (Stuck Programs) A program is stuck if
it is of one of the following forms:

letrec H in Elm; ] (v & Dom(H) or H(z) # (x1,2))

letrec H in Elz yl (v & Dom(H) or H(z) # Az.e or
y & Dom(H))

All programs either diverge or evaluate to an answer or
a stuck program. Put differently, the evaluation process
defines a partial function from Agc programs to irreducible
programs [11, 30].

A Semantic Definition of Garbage Since the semantics of
Agc makes the allocation of values explicit, including the
implicit pointer dereferencing in the language, we can also
define what it means to garbage collect a value in the heap
and then analyze some basic properties. A binding ¢ = h
in the heap of a program is garbage if removing the binding
has no “observable” effect on running the program. In our
case, we consider only integer results and non-termination
to be observable.

Definition 2.2 (Kleene Equivalence)

(P1,G1) ~ (P»,G2) means Py |, letrec Hy in x where
Hy(z) =1 if and only if P> {a, letrec Hs iny and H2(y) =
i. If Gi = G2 = R, then we simply write P1 ~ P».

A binding is garbage if removing it results in a program that
is Kleene equivalent to the original program:

Definition 2.3 (Garbage) If P = letrec H W {z =
h} in e, then the binding x = h is garbage with respect to P
iff P ~ letrec H in e. A collection of a program is the same
program with some garbage bindings removed. An optimal
collection of a program 1is a program with as many garbage
bindings removed as possible.

Unfortunately, there can be no optimal garbage collector
because determining whether a binding is garbage or not is
undecidable.

Proposition 2.4 (Garbage Undecidable) Determining
if a binding is garbage in an arbitrary closed Agc program is
undecidable.

Proof (sketch): We can reduce the halting problem to an
optimal collector by taking an arbitrary program, adding
a binding to the heap and modifying the program so that
if it terminates, it accesses the extra binding. An optimal
collector will collect the binding if and only if the original
program does not terminate. O

3 Reachability-Based Garbage Collection

Since computing an optimal collection is undecidable, a gar-
bage collection algorithm must conservatively approximate
the set of garbage bindings. Most garbage collectors com-
pute the reachable set of bindings in a program given the
variables in use in the current instruction expression and
control state. All reachable bindings are preserved; the oth-
ers are eliminated.

Following Felleisen and Hieb [11], reachability in Agc is
formalized by considering free variables. The following “free-
variable” GC rule describes bindings as garbage if there are
no references to these bindings in the other bindings, nor in
the currently evaluating expression:

(fv) letrec Hy W H> in e s letrec H; in e
if Dom(H2) N FV(letrec Hy ine) =0

The fv rule is correct in that it only removes garbage, and
thus computes valid collections. The keys to the proof of
correctness of fv are a postponement lemma and a diamond
lemma.

Lemma 3.1 (Postponement) If P — Py —» Ps, then
there exists a Py such that Py LN P; s Py

Proof (sketch): By cases on the elements of R. |



Lemma 3.2 (Diamond) If P; s Py and P, Pj,
then there exists a P3 such that P» LN Ps and P LA Ps.

Proof (sketch): Assume P, = letrec H, W H» in E[I],
P, = letrec H, in E[I]1, and P, —» P,. We can easily
show by case analysis on the elements of R that if P, s P
where Py = letrec H, ¥ Ho W H3 in E[e], for some Hs and
e, then P} % P; and P> —> P; where P; = letrec H; W
H; in E[e]. |

With the Postponement and Diamond Lemmas in hand,
it is straightforward to show that fv is a correct GC rule.

Theorem 3.3 (Correctness of fv) If P —s P', then P’
is a collection of P.

Proof: Let P = letrec Hy W H> ine and let P’ =
letrec H; in e such that P+~ P’. We must show P evalu-
ates to an integer value iff P’ evaluates to the same integer.
Suppose P’ |lg letrec H in z and H(z) = i. By induc-
tion on the number of rewriting steps using the Postpone-
ment Lemma, we can show that P |z letrec H W H> in x
and clearly (H W Hy)(z) = H(zx) = i. Now suppose
P g letrec H in z and H(z) = i. By induction on the num-
ber of rewriting steps using the Diamond Lemma, we know
that there exists an H' such that P’ || letrec H' in z and

letrec H in « — letrec H' in z. Thus, z must be bound in
H' and since fv only drops bindings, H'(z) = i. O

This theorem shows that a single application of fv results
in a Kleene equivalent program. A real implementation in-
terleaves garbage collection with evaluation. The following
theorem shows that adding fv to R preserves evaluation.

Theorem 3.4 For all programs P, (P,R) ~ (P, R+ fv).

Proof: Clearly any evaluation under R can be simu-
lated by R + fv simply by not performing any fv steps.
Thus, if P {r A then P §, g A. Now suppose P |, ¢,

letrec Hy in z1 and Hi(z1) = i. Then there exists a finite
rewriting sequence using R + fv as follows:

R+fv R+fv R+fv
Pr— P +— P

Y letrec Hy in o
We can show by induction on the number of rewriting steps
in this sequence, using the Postponement Lemma, that all
fv steps can be performed at the end of the evaluation se-
quence. This provides us with an alternative evaluation se-
quence where all the R steps are performed at the beginning:
P Pl Py pr
Pn+1 Ii)Pn_i_z li) |i>|etrec H1 in T1

Since fv does not affect the expression part of a program
and only removes bindings from the heap, P, = letrec H; &
H; in z for some H». Thus, P |} letrec HiWH> in z. Since
Hl(l‘)zi, (HlL'de)(w):i. a

3.1 The Free-Variable Tracing Algorithm

The free-variable GC rule is a specification of a garbage col-
lection algorithm. It assumes some mechanism for partition-
ing the set of bindings into two disjoint pieces such that one
set of bindings is unreachable from the second set of bindings
and the body of the program. Real garbage collection algo-
rithms need a deterministic mechanism for generating this

partitioning. It is possible to formulate an abstract version
of such a mechanism, the free-variable tracing algorithm, by
lifting the ideas of mark-sweep and copying collectors to the
level of program syntax.

We adopt the terminology of copying collection in the
description of the free-variable tracing algorithm. We use
two heaps and a set: a “from-heap” (Hy), a “scan-set” (5),
and a “to-heap” (H:). The from-heap is the set of bindings
in the current program and the to-heap will become the
set of bindings preserved by the algorithm. The scan-set
records the set of variables reachable from the to-heap that
have not yet been moved from the from-heap to the to-heap.
The scan-set is often referred to as the “frontier.”

The body of the algorithm proceeds as follows: A vari-
able z is removed from S such that Hy has a binding for x.
If no such locations are in S, the algorithm terminates. Oth-
erwise, it scans the heap value h to which x is bound in the
from-set Hy, looking for free variables. For each y € FV(h),
it checks to see if y has already been forwarded to the to-set
H;. Only if y is not bound in H; does it add the variable to
the scan-set S. This ensures that a variable moves at most
once from the from-heap to the scan-set.

Formulating the free-variable tracing algorithm as a
rewriting system is easy. It requires only one rule that re-
lates triples of from-sets, scan-sets, and to-sets:

(HfW{z =h},Sw{z}, H) =
(Hy, SU(FV(h)\ (Dom(H¢)W{z})), H W {x = h})

Initially the free variables of the evaluation context and in-
struction expression, which correspond to the “roots” of a
computation, are placed in S. Computing the free variables
of the context represents the scanning of the “stack” of a
conventional implementation while computing the free vari-
ables of the instruction expression corresponds to scanning
the “registers.” The initial tuple is re-written until we reach
a state where no variable in the scan-set is bound in the
from-heap. At this point, we have forwarded enough bind-
ings to the to-heap. This leads to the following free-variable
tracing algorithm rule:

letrec H in e — letrec H' in e
(fva) if (H,FV(e),0) =" (H",S,H'")
and Dom(H")NS =10

Clearly, the algorithm always terminates since the size of the
from-heap strictly decreases with each step. Furthermore,
this new rewriting rule is a subrelation of the rule fv, which
implies the correctness of the algorithm.

fva

Theorem 3.5 If P — P', then P —5 P

Proof: Let P = letrec H in e be a Agc program. The first
step is to prove the basic invariants of the garbage collection
rewriting system: If (H,FV(e),0) =" (Hy,S, H:), then
HyW H; = H and FV(letrec H; ine) = S. Now let P’ =

letrec H, in e and suppose P 3 P’. Then,

(Hl L‘HH2,FV(€),®) =" <H2,S, H1>.

and Dom(H») N S = 0. By the invariants,
FV(letrec Hy ine) = S, so Dom(H2) N FV(P') = (. Conse-
quently, P —» P’ O

If we require that a collection algorithm produce a closed
program, then fva is “optimal” in the following weak sense:



fva

if P is a closed program and P — P’, then P’ has the
fewest bindings needed to keep the program closed with-
out affecting evaluation. Assuming each step in the free-
variable tracing algorithm takes time proportional to the
size (in symbols) of the heap object forwarded to the to-
heap, the time cost of the algorithm is proportional to the
amount of data preserved, not the total amount of data in
the original heap.

3.2 Generational Garbage Collection

The free-variable tracing algorithm examines all of the
reachable bindings in the heap to determine that a set of
bindings may be removed. By carefully partitioning the
heap into smaller heaps, a garbage collector can scan less
than the whole heap and still free significant amounts of
memory. A generational partition of a program’s heap is a
sequence of sub-heaps ordered in such a way that “older”
generations never have pointers to “younger” generations.

Definition 3.6 (Generational Partition)

A generational partition of a heap H is a sequence of heaps
H,,H>,..., H, such that H = HiWH>W---WH,, and for all i
such that 1 < i < n, FV(H;)NDom(H;+1WH;12W---WH,) =
(0. The H; are referred to as generations and H; is said to
be an older generation than Hj if i < j.

Given a generational partition of a program’s heap, a
free-variable based garbage collector can eliminate a set of
bindings in younger generations without looking at any older
generations.

Theorem 3.7 (Generational Collection)

Let Hi,...,H, be a generational partition of the heap
of P = letrec Hine. Suppose H; = (H} W H?), and
Dom(HZ)NFV(letrec H' WH;41W---WH, ine)=0. Then

P+ letrec (H \ H?) in e.

Proof: We must show that Dom(H?) N FV(letrec (H \
H?)ine) = 0. Since Hy,---, H, is a generational partition
of H, forall j,1 < j < i, FV(H;)NDom(H; W - -WH,) = 0.
Hence, FV(H, W ---w H;_1) N Dom(H?) = 0. Now,

FV(letrec H\ H? in ¢) N Dom(H?)
= (FV(H\ H?)UFV(e)) N Dom(H?)
= (FVH\W---WH; 1 )UFV(H} &---w H,)UFV(e))
NDom(H?)
= (FV(Hi¥---WH;_1)N Dom(H}))U
((FV(H} @ ---w H,) U FV(e)) N Dom(H?))
= QU((FV(H}!w-- & H,)UFV(e)) N Dom(H}))
FV(letrec H} w---w H, in ¢) N Dom(H?)
0

O

Generational collection is important for three practical
reasons: First, evaluation of closed, pure Agc programs
makes it easy to maintain generational partitions.

Theorem 3.8 Let P = letrec H in e be a closed program.

If Hy,...,H, is a generational partition of H and P —s
letrec H W H' ine, then Hi,...,H,,H' 1is a generational
partition of H& H'.

The second reason generational collection is important
is that, given a generational partition, we can directly use
the free-variable tracing algorithm to generate a collection
of a program. The following rule invokes the free-variable

algorithm on the program letrec H> in e where Hy, Hs is a
generational partition of the original program’s heap. The
resulting heap is glued onto H; to produce a collection of
the program.

letrec H in e &= letrec H, W H} in e

(gen) if letrec H» in e — letrec H} in e
and Hi, H> form a generational partition of H

The rule’s soundness follows directly from the Generational
Collection theorem, together with the soundness of the free-
variable tracing algorithm.

The third reason generational collection is important is
that empirical evidence shows that “objects tend to die
young” [28]. That is, recently allocated bindings are more
likely to become garbage in a small number of evaluation
steps. Thus, if we place recently allocated bindings in
younger generations, we can concentrate our collection ef-
forts on these generations, ignoring older generations, and
still eliminate most of the garbage.

4 Garbage Collection via Type Recovery

The delimiters and other tokens of the abstract syntax mark
or “tag” heap values with enough information that we can
distinguish pairs from functions, pointers from integers, etc.
This allows us to navigate through the memory unambigu-
ously, but placing tags on heap values and stripping them off
to perform a computation can impose a heavy overhead on
the running time and space requirements of programs [26].
An alternative to tagging is the use of types to determine the
shape of an object. If types are determined at compile time
and evaluation maintains enough information that the types
of reachable objects can always be recovered, then there is
no need to tag values.

A number of researchers have made attempts to explore
this alternative [7, 8, 3, 13, 27, 2], but none of them presented
concise characterizations of the underlying techniques with
correctness proofs. In this section, we present the basic idea
behind type-recovery based garbage collection. We then in-
troduce Agc-mono, an explicitly typed, monomorphic vari-
ant of Agc. We show how to adapt the free-variable trac-
ing algorithm to recover types of objects in the heap and
to use these types in the traversal of heap objects instead
of abstract syntax. The proof of correctness for this gar-
bage collection algorithm is given by extending the proof of
soundness of the type system for Agc-mono.

4.1 Agc-mono

Age-mono is an explicitly typed, monomorphic variant of
Agc. The set of types (7) of Agc-mono contains the conven-
tional basic types and constructed types for typing a func-
tional programming language like Agc. The expressions of
Agc-mono are the same as for Agc, except that each raw
expression (u) is paired with some type information (see
Figure 2). Heap values are not paired with their type, re-
flecting the fact that the memory is “almost tag free.” Of
course, some type information is recorded within heap values
that are functions. In a low-level model that uses closures
(an explicit value environment paired with code), this cor-
responds to maintaining a type environment, recording the
types of the values in the closure’s environment. The type
environment for a closure can be computed at compile time
and shared among multiple instances, just like the code.
The evaluation contexts (E) consist of a raw context (U)
and a type (7). Raw contexts are filled with instructions (I)



Types:

(types) 7 € Type == int|mxXn|mn o
Programs:
(expressions) e € TEzp == (u:7)
u € UEzp == w|i](e,e2) | me|rme]|er e
(heap values) h € Huval = 1| (z1,z2) | AriTE
(heaps) H € Heap == {z1=h1,...,zn="hn}
(programs) P € Prog == letrecH ine
(answers) A € Ans = letrec H in (z:7)
Evaluation Contexts and Instructions:
(contexts) E € TCtzt == (U:7)
U € UCtst == L[1|(E,e)|{(z:7),E)| m E|Ee]| (z:1) E
(instructions) I € Instr = 1| ((z1:11), (x2:m2)) | Azire | my (zi7) | (2i71) (y:i72)
Rewriting Rules:
(alloc-int) letrec H in E[i] ™5 letrec H W {x =i} in E[x]
(alloc-pair) letrec H in E[{x1:71,w2: Tg)] =5 letrec HW {x = (z1,x2)} in Elx]
alloc-fn etrec H in :7.e] =5 letrec HW {z = Ay:T.e} in T
lloc-fi | Hin E[\y:r.e]l =5 | Hu Ay E[z]
(proj) letrec H in Elm; (w:7)] — letrec H in E[x;] (H(z) ={x1,x2),1=1,2)
(app) letrec H in E[(z:71) (y:72)] /= letrec HW {z = H(y)} in Ele]l (H(z) = A\z:7".€)

Figure 2: The Syntax and O

perational Semantics of Agc-mono

which are a subset of the raw expressions (u). The evalu-
ation rules for Agc-mono, named RM, are variants of the
rules for Agc that largely ignore the type information on the
sub-expressions of the program’s body. Allocation of inte-
gers, tuples and functions strips the type tag off the heap
value before placing it in the heap. Allocation of tuples also
removes the tags from the components of the tuple. The
removal of type information corresponds to the passage of
a value from code to data and does not necessarily reflect a
runtime cost. Projection and application are essentially the
same as for Agc. Note that substitution of a result expres-
sion for an instruction occurs “in place,” and hence the type
of the instruction is ascribed to the expression.

The notion of a stuck state is adapted in accordance with
the type structure of the language.

Definition 4.1 (Agc-mono Stuck Programs) A
program is stuck if it is of one of the following forms:

letrec H in Elm; (2:7)] (z & Dom(H) or
H(z) # (1, 72))

letrec H in E[(z:71) (y:12)]1 (z ory € Dom(H) or
H(z) # Az:Te)

The static semantics of Agc-mono consists of four judge-
ments about program components. The first judgement,
I' > e, is a binary relation between a type assignment [,
mapping a finite set of variables to types, and a typed ex-
pression e. Figure 3 contains the fairly conventional infer-
ence rules for expressions that generate the static semantics.
Typing heaps and complete programs requires three addi-
tional judgements. The first is ' > h : 7 which asserts that
the heap value h has type 7 under the assumptions in I'.
The judgement is defined using inference rules (not shown
here) similar to the expression-level rules. The second is
['> H : ', which asserts that the variables given type 7 in
[ are bound to heap values in H of the appropriate type,
under the assumptions in I'. The judgement’s definition via

the heap rule requires “guessing” the types of the values in
the heap and verifying these guesses simultaneously. The
third judgement, > P, asserts the well-typing of a complete
program.

The calculus Agc-mono is type sound in that evaluation
of well formed programs cannot get stuck [30]. A key to the
proof of soundness is a type preservation lemma:

Lemma 4.2 (Type Preservation) If > P and P — P,
then > P'.

Theorem 4.3 (Type Soundness) If > P then either P

. . RM
s an answer or else there exists some P’ such that P — P’
and > P’.

4.2 Using Types in Garbage Collection

Specifying a valid garbage collection rule that exploits types
is straightforward. The key property that the rule must
preserve is type preservation. That is, if P = P’ and P is
well typed, then P’ must be well typed. One way to achieve
this goal is to make it into a side-condition of the GC rule:

mono

letrec H, W H» in e — letrec H; in e

(mono) if > letrec Hy ine

Theorem 4.4 For all well formed Agc-mono programs P,
(P,RM) ~ (P, RM + mono).

Proof: Since mono preserves types, the type sound-
ness proof trivially extends to the dynamic semantics with
mono. This implies that, since P is well formed, P can-
not get stuck under either system. Since bindings are only
dropped and not updated by mono, the results of evaluat-
ing under either system must be the same. O

Like the free-variable rule of Agc, mono needs to be re-
fined before it can serve as the basis for an implementation.
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> letrec H ine
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Figure 3: The Static Semantics of Agc-mono

The refinement is similar to the one from fv to fva but
uses the types embedded in programs to traverse heap val-
ues. The basis for the collection algorithm is a function that
determines a minimal, with respect to set-inclusion, type as-
signment I" for any expression e such that I' > e:

MTA(Z:ZT) = w1}
MTA(i:r) = 0
MTA({e1,e2) : 11 X T2) = MTA(e1) U MTA(es2)
MTA(m e: 1) = MTA(e)
MTAAz:m.e: 1 = 12) = MTA(e) \ {z:7m1}
MTA(61 e : 7‘) = MTA(el) U MTA(€2)

Lemma 4.5 If "> e, then MTA(e) > e and MTA(e) CT.

If P = letrec H in e and P is closed, then MTA(e) de-
termines the types of the locations in the heap H that are
immediately reachable from the expression e. A garbage
collector can use this type information together with the
following Tag function to traverse the reachable heap values
based on their types instead of their abstract syntax.

Tag[int](7)
Tag[r1 x T2]((z1,22))
Tag[m1 — m2](Ax:i11.€)

(z:int)
= ({((z1:11), (w2:12)) : 71 X T2)
= ((Az:71.€) : 71 — T2)

Tag is a curried function that takes a type and then takes a
heap value of that type, and annotates that heap value with
enough information to turn it back into an expression. It
is important to note that Tag pattern-matches and operates
according to the type argument given and not the abstract
syntax of the heap value given. MTA can be used on the
resulting expression to find the minimal type assignment for
the heap value. This provides us with the free locations
and their types for the heap value. The following lemma
summarizes the relationship between Tag and MTA:

Lemma 4.6 If 0 > H : ' W {x:7} then there exists an h
such that {x = h} C H, MTA(Tag[7](h)) > h : 7, and
MTA(Tag[r)(h)) CT W{z:T}

Equipped with MTA, we can now redefine the free-
variable tracing algorithm so that it uses Tag to traverse
heap values. The algorithm is specified in the same manner
as fva, i.e., as a rewriting system among tuples of the form
(Hy,Ts, H,T'y) where Hy is the from-heap, I's is a type as-
signment corresponding to the scan-set, H; is the to-heap,
and I'; is a type assignment for the to-heap:

mono

(HfW{zx =h},Ds W {z:7}, Hy, I'y) =
(Hf, T, He W {x = h},T)

(Ts U MTA( Tag[7](h)) \ T
Iy {z:7}

The algorithm is initialized by taking the program heap H
as the initial from-heap and the minimal type assignment of
the program expression as I's. At each step in the algorithm,
I's describes the types of all locations that are immediately
reachable from e or H;, but have not yet been forwarded to
H;. T'; describes the types of all locations that have been
forwarded to H;.2

When a variable z is found in I'y; with type 7 and x is
bound in Hy to the heap value h, the collector forwards
the binding * = h to H; and adds x:7 to I';. It then uses
Tag[T] to traverse h, placing the necessary type information
on the components so that MTA can determine the heap
value’s minimal type assignment. This step provides the
locations (and their types) that are immediately reachable
from h. Finally, the collector adds each of these locations to
['s unless they have already been forwarded to H.

Using this algorithm instead of an a priori partitioning
of the heaps, mono-a becomes a high-level specification of
a collector whose traversal of heap values uses types instead
of tag information:

where r, =
r, =

mono-a

letrec H in e V3" letrec H' ine
(mono-a) if

(H, MTA(e), 0, 0) =2 (H" 0, H',T)

The following definition gives the primary invariants of
the algorithm:

Definition 4.7 (mono-a Invariants) (Hy,Ts, He, T'y)
satisfies the mono-a invariants with respect to a program
letrec H in e and type assignment Lo iff:

1. H=H;WH;

2. Tswlipe

3. Dom(Ls) C Dom(Hy)
4. FS > Ht : Ft

5. Tswly CTy

Intuitively, the invariants guarantee (1) that each bind-
ing is accounted for, (2) every binding needed for e is in the
scan-set or to-heap, (3) the scan-set corresponds to bindings
in the from-heap, (4) the scan-set holds all free variables in
the to-heap, and (5) the scan-set and to-heap agree with I'¢.

Lemma 4.8 If ) > H : 'y, T has the mono-a invariant

properties with respect to P and Lo, and T = T', then T’

2The garbage collection rewriting system only maintains I'y to sim-
plify the presentation and proof; an implementation will not have to
construct I'¢.



has the mono-a invariant properties with respect to P and
Do.

The correctness of the algorithmic type-based garbage
collection rule can now easily be verified.
Theorem 4.9 If P is a well formed program and P ="

mono

P, then P Y= P'.

Proof: We must verify that the mono-a garbage collec-
tion rule preserves typability in order for mono to apply.
That is, we must show that if P is a well formed program,
and P 5% P, then > P'.

Let P = letrec H in e and suppose > P. Then, for some

Fo, wDH:FO andFol>e. If
(H) MTA(E),@,@) rn:m§*<H,,707H’)Ft>)

then by Lemma 4.8 taking I's = (), we know that § > H' : T';
and I'; > e . Thus, by the prog rule of the static semantics,
> letrec H' in e. a

Furthermore, the algorithm never gets stuck, so it always
applies:

Theorem 4.10 If P is a well formed program, then there

erists a program P’ such that P "V—" P'.

Proof: If the algorithm takes a step, the size of the
from-heap strictly decreases, so we know the collection ei-
ther terminates or gets stuck. Here we show that the col-
lection cannot get stuck, so it must terminate. Suppose
P = letrec H ine and (H,MTA(e),0,0) = *(H;,T's
{z:7}, H;,T'¢). By Lemma 4.8, we know that z € Dom(Hy),
since the domain of the scan type-assignment is a subset
of the from-heap. Consequently, there exists an h such
that Hy = H; & {x = h} and (Hy,Ds ¥ {x:7}, H;, ) =
“(H}, Iy, Hy W {xz = h},I';) with appropriate I'; and T';.

O

Extending the mono-a collection algorithm to work for
a language with explicit polymorphism, where types are
passed to polymorphic routines at run time as suggested by
various language implementors [21, 1, 27, 15], is straightfor-
ward because enough information is preserved by evaluation
to always reconstruct the type of a polymorphic object. In
our technical report [20], we show how this may be accom-
plished.

5 Collecting Reachable Garbage Using Type Inference

Thus far, we have only considered specifications and algo-
rithms for collecting unreachable bindings. In this section,
we show that by using type inference during the garbage col-
lection process, some bindings that are reachable can still be
safely collected. That is, type inference can be used to prove
that an object is garbage even though it is reachable.

For a simple example, consider the following Agc pro-
gram:

letrec {z1 =1,z = 2,23 = (T2, T2), 74 = (x1,T3)} In ™1 T4

Every binding in the heap is accessible from the program’s
expression (71 4), so the free-variable based collection rules
can collect nothing. But clearly the program will never
dereference x3 nor z». The inference-based collection scheme
described in this section will allow us to conclude that re-
placing the binding x3 = (x2, x2) with 3 = 0 (or any other

binding) will have no observable effect on evaluation. That
is, the inference collection scheme shows that

letrec {1 =1,22 = 2,23 = 0,24 = (x1,23)} In m1 T4

is Kleene equivalent to the original program. Now by apply-
ing the free-variable rule, we can conclude that the binding
x2 = 2 can be safely collected.

We start by considering the original Agc language as an
tmplicitly typed, monomorphic language, where the types of
the language are the same as for Agc-mono except for the
addition of type variables:

(types) 7 € Type == t|int|n x| o

By implicitly typed, we mean that the terms of the lan-
guage are not decorated with types as in Agc-mono. We add
type variables to the set of types so that each well-formed
expression has a principal or most general type (explained
below).

Type inference is the process of decorating Agc programs
with types so that the resulting program type checks un-
der the Agc-mono rules. (Refer to Figure 1 for the syntax
and dynamic semantics of Agc and Figure 3 for the typing
rules for Agc-mono.) Alternatively, we may directly spec-
ify a set of typing rules for Agc programs by taking the
typing rules for Agc-mono and erasing the type information
from the terms, resulting in the inference system of Figure 4.
These rules define judgements of the form I' e : 7, where I'
is a type assignment, e is a Agc expression, and 7 is a type.

A given Agc expression can have multiple typing deriva-
tions according to these rules and consequently multiple typ-
ings, but an expression’s typings may be ordered so that
there is a most general, or principal typing and every other
typing is an instance of this principal typing and is thus
derivable.

We will show that if we can find a typing for a program
that assigns a heap location a type variable, then the con-
tents of that location has no effect on the rest of evaluation.
Consequently, any pointers contained in the location’s bind-
ing do not need to be scanned and traced during garbage
collection. The intuition behind the theorem is that a loca-
tion’s type is unconstrained only if the location is not used in
some manner that would constrain the type. Consequently,
we can replace the binding in the heap with any binding
we choose. In particular, if the location is bound to a large
heap value, we can bind the location to an integer or dummy
piece of code without affecting evaluation. This replacement
allows us to collect any bindings that used to be reachable
through this binding without knowing anything about the
shape of the original heap value.

The proof of the theorem relies upon a semantic inter-
pretation of types as logical relations. In our case, the rela-
tions are a type-indexed family of binary relations relating
programs to programs, answers to answers, and heaps to
heaps. The relations are contrived so that, if two programs
are related, then they are Kleene equivalent, so one program
converges to an answer iff the other converges to a related
answer and related answers at base type (int) yield equal val-
ues. Roughly speaking, the relations are logically extended
to relate answers of functional type (—) if, whenever such
answers are applied to appropriately related answers, the
resulting computations yield related results. Our proof only
covers programs without cycles in their heaps, but it should
be possible to extend our arguments to all programs (see
below for more details).

The relations are defined in Figure 5 by induction on
types. The definitions are parameterized by an arbitrary
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Figure 4: Type Inference Rules for Agc

relational interpretation of type variables, ©. If ¢ is a type
variable, then ©(t) determines some fixed, but arbitrary re-
lation between answer programs. This is consistent with the
idea that well-typed programs have an implicit “V” quanti-
fier for the type variables in a program. The parameteriza-
tion of the interpretation of type variables makes it straight-
forward to extend the definition of the relations to account
for predicative polymorphism.

Two well-typed programs P; and P> are related at a type
T, written © = P1 ~ P, : 7 iff, whenever one of the pro-
grams terminates with an answer, then the other program
terminates with a related answer at type 7.

Two answers A; and A, are related at type 7, written
O = A = Ay : 7, as follows: If 7 is a type variable ¢, then
the answers are related iff they are in the relation ©(t). The
relation is extended to the other types in a natural fashion.
For example, if 7 is an arrow type 71 — 72, the answers
are related iff, whenever we apply the answer variables to
related arguments at type 71, we get related programs at
type 2. Even though the relations between programs and
answers are defined in terms of one another, the relations
are well-founded because the size of the type index always
decreases when one relation refers to another.

The definition of the relations ensures that related pro-
grams remain related even if more bindings are added to
the programs’ heaps. Since evaluation only adds new bind-
ings and leaves existing bindings intact, it is clear that eval-
uation preserves the relations. If the language permitted
assignment, then this property would not necessarily hold.

For the statement of the following lemma, we need to
extend the logical relation on answers to heaps. Two heaps,
H; and H», are related at a context I', written O = H; ~
H, : T if for all variables z in I', the answers letrec H; in x
and letrec H» in z are related at I'(z).

The following lemma is the key to establishing our result:
an expression is related to itself in the context of any two
related heaps.

Lemma 5.1 For all © : Tvar — P(Ans x Ans), if ' F
e:7and © = Hi = Hy : I, then © |= letrec Hy ine ~
letrec Ha ine: 7.

Proof (sketch): By induction on the derivation of I' F
e : 7. Here we give the interesting case (fn). Suppose I'
Az.e : 71 = 12 and © | Hy = H, : . By alloc,

alloc

letrec H; in Az.e — letrec Hy W {y1 = Az.e} in y1

alloc

letrec H» in Az.e 225 letrec Ho {y2 = Az.e} in yo

for some fresh y; and y>. We must show that the two re-
sulting answers are appropriately related.

Let H} and Hj be heaps such that H; W{y; = Az.e} C H;
for i =1,2, and

O k= letrec Hy in 21 = letrec Hy in 22 : 7y
for some z; and z2. We must show that
O = letrec Hy in y1 z1 ~ letrec Hj in y2 22 : 7.
Taking H; = H; ¥ {x = H;(2;)}, this follows if
O k= letrec HY ine~ letrec HY ine: 1.
By the induction hypothesis, it suffices to show that
OFH ~Hy :TW{x:m}

since e has a smaller typing derivation than Az.e. By the
lemma’s hypothesis, we know that © = H; ~ H, : ', and
since heaps remain related under extensions, © = Hi =
HY :T'. By assumption,

O k= letrec HY in 21 ~ letrec Hy in 25 : 71.
Since H;' = H; ¥ {x = H{(zi)}, it is easy to show that
O k= letrec HY in z = letrec HY inx: 1

Consequently, H}' and H} have related heap-values for each
variable in F'W{z : 71} and thus © = HY = Hy : TW{z: 1 }.
The other cases follow in a similar manner. O

Our goal is to show that if I" is a type assignment, e an
expression, and H a heap such that T’Fe: 7 and ) - H :
I, then letrec H' in e is Kleene equivalent to letrec H in e
where H' is defined as follows:

H ={z=H(z)|(z) € Tvar}w{z =0 | [(z) € Tvar}

This follows from Lemma 5.1 if we can show that, taking
Oo(t) to be the everywhere-defined relation on answer pro-
grams, O E H = H' : T. This in turn follows if we can
show that Og F H = H : I' (H is related to itself), since
©o(t) relates every program and H'(z) differs from H(z)
only when I'(z) = ¢.

Unfortunately, we cannot directly show that a well
formed heap is related to itself! The problem is that if we at-
tempt to argue by induction on the derivation of ) - H : T,
the uses of the heap rule require that we assume what we
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Figure 5: Relational Interpretation of Types

are trying to prove. The same problem is encountered when
using logical relations to reason about conventional calculi
with recursion or iteration operators.

If we forbid cycles in the heap, then we can transform
the derivation of the heap’s well formedness into a derivation
that only uses a let-style rule instead of the recursive letrec-
style heap rule:

'iwlokFh:7 I't+FH:I>
NL'FHWY{z=h}:To¥{z:7}

(let-heap)

Consequently, if a heap is cycle free, we may show by in-
duction on the derivation using the let-heap rule that the
heap is related to itself.

Lemma 5.2 If '+ H: T3, © = H, ~ Hy : 'y and H is
cycle free, then © E HHWH ~ Hy WH : ' Wy,

Finally, we can state and prove the following Inference
GC specification: Given a cycle-free program, if we can find
a typing that assigns a heap location a type variable, then
that location can be bound to “0” without effecting evalua-
tion.

Theorem 5.3 (Inference GC) Let
Fl = {$1:t1,...,$n:tn} and H1 = {xl = h1,...,xn = hn}
and Hy = {1 =0,...,z, = 0}. If

1. ThWyDleke:7 (1 ¢ Tvar), and
2. M FHy: T2, and
3. 350+ Hy : STy, and
4. Hs is cycle free,
then letrec Hy W H» in e ~ letrec H; W H» in e.

Proof:  Taking Oo(t) to be the everywhere defined rela-
tion, ©¢g | H1 ~ Hj : I'1 holds trivially. By Lemma 5.2,
since Hs is cycle free and I'y F Hy : ', we know that

®o |:H1L+JH2zH{L+JH2:F1L+JF2.
Since I'y ¥ T's Fe: 7, we know by Lemma 5.1 that

O = letrec Hy W Hy in e~ letrec H{W Hy ine: 7.

Thus, letrec H1 W H» in e || letrec H, in z iff letrec H] W
H in e |} letrec H, in y and

O |= letrec H, in z = letrec Hy iny: 7.

Suppose Ho(z) =i (or Hy(y) = i). Then 7 must be int since
7 ¢ Twar by the first hypothesis. By the definition of ~ at
int, Hy(y) =i (or Hq(x) =4). Thus,

letrec H, W Hs in e ~ letrec H] ¥ H» in e.
|

Using the Inference GC theorem, we can now show that
the binding z3 = (z2,z2) in the program:

letrec {xl = 1,$2 = 2,$3 = <$2,$2>,$4 = ($1,$3)} in T T4

can be replaced by z3 = 0. Taking I'y = {z2:t2,z3:t3},
[y = {z1:int,zazint X t3}, H1 = {2 = 2,23 = (x2,x2)},
Hy; = {x1 = 1,24 = (x1,23)} it is easy to show that the pre-
conditions of the theorem hold. Consquently, replacing H;
with H] = {z2 = 0,23 = 0} results in a Kleene equivalent
program:

letrec {z1 = 1,22 = 0,23 = 0,24 = (z1,23)} In m1 z4.
Now by invoking fv, we can collect the binding x> = 0:
letrec {$1 = 1,$3 = 0,$4 = ($1,$3)} in T T4

and we know that the resulting program is Kleene equivalent
to the original program.

6 Related Work

The literature on garbage collection in sequential program-
ming languages per se contains few papers that attempt to
provide a compact characterization of algorithms or correct-
ness proofs. Demers et al. [10] give a model of memory pa-
rameterized by an abstract notion of a “points-to” relation.
As a result, they can characterize reachability-based algo-
rithms including mark-sweep, copying, generational, “con-
servative,” and other sophisticated forms of garbage collec-
tion. However, their model is intentionally divorced from
the programming language and cannot take advantage of



any semantic properties of evaluation, such as type preser-
vation. Consequently, their framework cannot model the
type-based collectors of Sections 4 and 5. Nettles [22] pro-
vides a concrete specification of a copying garbage collection
algorithm using the Larch specification language. Our spec-
ification of the free-variable tracing algorithm is essentially
a high-level, one-line description of his specification.

Hudak gives a denotational model that tracks reference
counts for a first-order language [16]. He presents an ab-
straction of the model and gives an algorithm for comput-
ing approximations of reference counts statically. Chirimar,
Gunter, and Riecke give a framework for proving invari-
ants regarding memory management for a language with a
linear type system [9]. Their low-level semantics specifies
explicit memory management based on reference counting.
Both Hudak and Chirimar et al. assume a weak approxi-
mation of garbage (reference counts). Barendsen and Smet-
sers give a Curry-like type system for functional languages
extended with uniqueness information that guarantees an
object is only “locally acccessible” [6]. This provides a com-
piler enough information to determine when certain objects
may be garbage collected or over-written.

Tolmach [27] built a type-recovery collector for a vari-
ant of SML that passes type information to polymorphic
routines during execution, effectively implementing a poly-
morphic version of our language and collector described in
Section 4. Aditya and Caro gave a type-recovery algorithm
for an implementation of Id that uses a technique that ap-
pears to be equivalent to type passing [1] and Aditya, Flood,
and Hicks extended this work to garbage collection for Id [2].

Over the past few years, a number of papers on inference-
based collection in monomorphic [7, 29, 8] and polymor-
phic [3, 13, 14, 12] languages appeared in the literature.
Appel [3] argued informally that “tag-free” collection is pos-
sible for polymorphic languages such as SML by a combi-
nation of recording information statically and performing
what amounts to type inference during the collection pro-
cess, though the connections between inference and collec-
tion were not made clear. Baker [5] recognized that Milner-
style type inference can be used to prove that reachable
objects can be safely collected, but did not give a formal
account of this result. Goldberg and Gloger [14] recognized
that it is not possible to reconstruct the concrete types of
all reachable values in an implementation of an ML-style
language that does not pass types to polymorphic routines.
They gave an informal argument based on traversal of stack
frames to show that such values are semantically garbage.
Fradet [12] gave another argument based on Reynolds’s ab-
straction/parametricity theorem [24]. Fradet’s formulation
is closer to ours than Goldberg and Gloger’s, since he rep-
resented the evaluation “stack” as a source-language term.
However, none of these papers give a complete formulation
of the underlying dynamic and static semantics of the lan-
guage and thus the proofs of correctness are necessarily ad
hoc.

Finally, Purushothaman and Seaman [23, 25] and
Launchbury [17] have proposed “natural” semantics for call-
by-need (lazy) languages where the semantic objects include
an explicit heap. This allows sharing and memoization of
computations to be expressed in the semantics. More re-
cently, Ariola et al. [4] have presented a purely syntactic
theory of the call-by-need A-calculus that is largely compat-
ible with our work.

7 Summary and Future Work

Our paper provides a unifying framework for a variety of gar-
bage collection ideas including standard copying and mark-
sweep collection, generational collection, tag-free collection,
and inference-based collection. By making allocation and
the heap explicit, we are able to reason about memory man-
agement using traditional A-calculus techniques. In particu-
lar, we are able to make strong connections between garbage
collection and type theory. By abstracting away such low-
level details as evaluation stacks, registers, and addresses,
we are able to formulate complicated collection algorithms
in a compact manner and yet give a formal proof of correct-
ness.

The framework is flexible, as demonstrated by the
breadth of topics covered in this paper, and we expect that
the framework can be extended to deal with other work on
garbage collection. In the future, we hope to extend the
Inference GC theorem of Section 5 to cover programs with
cyclic heaps. One approach is to interpret types as CPOs
and prove that programs have a suitable compactness prop-
erty: every cyclic heap is appropriately approximated by
some finite “unwinding” of the heap. An alternative ap-
proach might be to provide a purely syntactic argument that
locations assigned a type variable never arise in an “active”
position during evaluation. We also hope to provide a proof
of correctness for an algorithm that simultaneously infers
types and performs garbage collection.
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