
Typed Compilation of Recursive Datatypes

Joseph C. Vanderwaart Derek R. Dreyer Leaf Petersen
Karl Crary Robert Harper

December 2001

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Standard ML employs an opaque (or generative) semantics of datatype definitions, in which every
datatype definition produces a new type that is different from any other type, including other iden-
tically defined datatypes. A natural way of accounting for this is to consider the types defined in
datatype definitions to be abstract types. When this interpretation is applied to type-preserving
compilation, however, it has the unfortunate consequence that datatype constructors cannot be
inlined, substantially increasing the run-time cost of constructor invocation compared to a tradi-
tional compiler. In this paper we examine two approaches to eliminating function call overhead
from datatype constructors. First, we consider a transparent interpretation of datatypes that does
away with generativity; and second, we alter the opaque interpretation by replacing datatype con-
structors with coercions that have no run-time effect or cost.

This research was sponsored by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for Systems Software”, ARPA Order No. C533, issued by ESC/ENS under Contract
No. F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

Keywords: typed compilation, datatypes, type theory, coercions

1 Introduction

The programming language Standard ML (SML) [6] provides a distinctive mechanism for defining
recursive types, known as a datatype declaration. For example, the following declaration defines
the type of lists of integers:

datatype intlist = Nil | Cons of int * intlist

This datatype declaration introduces the type intlist and two constructors: Nil represents the
empty list, and Cons combines an integer and a list to produce a new list. For instance, the
expression Cons (1, Cons (2, Cons (3,Nil))) has type intlist and corresponds to the list
[1, 2, 3]. Values of this datatype are deconstructed by a case analysis that examines a list and
determines whether it was constructed with Nil or with Cons, and in the latter case, extracting
the original integer and list.

An important aspect of SML datatypes is that they are generative. That is, every datatype
declaration defines a type that is distinct from any other type, including those produced by other,
possibly identical, datatype declarations. The formal Definition of SML [6] makes this precise
by stating that a datatype declaration produces a new type name, but does not associate that
name with a definition; in this sense, datatypes are similar to abstract types. Harper and Stone
[5] have given a type-theoretic interpretation of SML by exhibiting a translation from SML into
a simpler typed internal language. This translation is faithful to the Definition of SML in the
sense that, with a few well-known exceptions, it translates an SML program into a well-typed IL
program if and only if the SML program is well-formed according to the Definition; consequently
it is legitimate to consider the Harper-Stone interpretation as an alternative formulation of the
Definition. Harper and Stone capture datatype generativity by translating a datatype declaration
as a module containing an abstract type and functions to construct and desconstruct values of that
type; thus in the setting of the Harper-Stone interpretation, datatypes are abstract types.

The generativity of datatypes poses some challenges for type-directed compilation of SML.
In particular, although the Harper-Stone interpretation is easy to understand and faithful to the
Definition of SML, it is inefficient when implemented näıvely. The problem is that construction and
deconstruction of datatype values require calls to functions exported by the module defining the
datatype; this is unacceptable given the ubiquity of datatypes in SML code. Conventional compilers,
which disregard type information after an initial type-checking phase, may dispense with this cost
by inlining those functions; that is, they may replace the function calls with the actual code of the
corresponding functions to eliminate the call overhead. A type-directed compiler, however, does
not have this option since all optimizations, including inlining, must be type-preserving. Moving
the implementation of a datatype constructor across the module boundary violates type abstraction
and thus results in ill-typed intermediate code. This will be made more precise in Section 2.

In this paper, we will discuss two potential ways of handling this performance problem, both
in the context of the TILT/ML compiler developed at CMU [8, 11]. The first is to do away with
datatype generativity altogether, replacing the abstract types in the Harper-Stone interpretation
with concrete ones. We call this approach the transparent interpretation of datatypes. Clearly,
a compiler that does this is not an implementation of Standard ML, and we will show that, al-
though the modified language does admit inlining of datatype constructors, it has some unexpected
properties. The second approach, which we have adopted in the most recent version of the TILT
compiler, takes advantage of the way values of recursive type are represented at run time in pro-
grams compiled by TILT. In particular, since a value of recursive type is represented the same as
its unrolling, we can observe that the mediating functions produced by the Harper-Stone interpre-
tation all behave like the identity function at run time. We replace these functions with special

1

values called coercions and argue that this allows a compilation strategy that generates code with
a run-time efficiency comparable to what would be attained if datatype constructors were inlined.
We call this the coercion interpretation of datatypes.

The paper is structured as follows. Section 2 gives the details of the Harper-Stone interpretation
of datatypes (which we also refer to as the opaque interpretation of datatypes) and points out
the problems with inlining. Section 3 discusses the transparent interpretation; section 4 gives the
coercion interpretation and discusses its properties. Section 5 discusses related work and concludes.

2 The Opaque Interpretation

In this section, we will review the parts of Harper and Stone’s interpretation of SML that are
relevant to our discussion of datatypes. In particular, after defining the notation we use for our
internal language, we will give an example of the Harper-Stone elaboration of datatypes. We will
refer to this example throughout the paper. We will also review the way Harper and Stone define
the matching of structures against signatures, and discuss the implications this has for datatypes.
This will be important in Section 3, where we show some differences between signature matching
in SML and signature matching under our transparent interpretation of datatypes.

2.1 Notation

Harper and Stone give their interpretation of SML as a translation, called elaboration, from SML
into a typed internal language (IL). We will not give a complete formal description of the internal
language we use in this paper; instead, we will use ML-like syntax for examples and employ the
standard notation for function, sum and product types. For a complete discussion of elaboration,
including a thorough treatment of the internal language, we refer the reader to Harper and Stone [5].
Since we are focusing our attention on datatypes, recursive types will be of particular importance.
We will therefore give a precise description of the semantics of the form of recursive types we use.

The syntax for recursive types is given in Figure 1. Recursive types are separated into their

Types σ, τ ::= · · · | α | δ
Recursive Types δ ::= µi(α1, . . . , αn).(τ1, . . . , τn)
Terms e ::= · · · | x | rollδ(e) | unrollδ(e)
Typing Contexts Γ ::= ε | Γ, x : τ | Γ, α

Figure 1: Syntax of Iso-recursive Types

own syntactic subcategory, ranged over by δ. This is mostly a matter of notational convenience,
as there are many times when we wish to make it clear that a particular type is a recursive one.
A recursive type has the form µi(α1, . . . , αn).(τ1, . . . , τn), where 1 ≤ i ≤ n and each αj is a type
variable that may appear free in any or all of τ1, . . . , τn. Intuitively, this type is the ith in a system
of n mutually recursive types. As such, it is isomorphic to τi with each αj replaced by the jth
component of the recursive bundle. Formally, it is isomorphic to the following somewhat unwieldy
type:

τi[µ1(α1, . . . , αn).(τ1, . . . , τn), . . . , µn(α1, . . . , αn).(τ1, . . . , τn)/τ1, . . . , τn]

(where, as usual, we denote by τ [σ1, . . . , σn/α1, . . . , αn] the simultaneous capture-avoiding substi-
tution of σ1, . . . , σn for α1, . . . , αn in τ). Since we will be writing such types often, we use some

2

notational conventions to make things clearer; these are shown in Figure 2. Using these shorthands,
the above type may be written as expand(µi(α1, . . . , αn).(τ1, . . . , τn)).

~X
def= X1, . . . , Xn for some n ≥ 1,

where X is a metavariable, like α or τ

length(~X) def= n, where ~X = X1, . . . , Xn

µα. τ
def= µ1(α).(τ)

~µ(~α).(~τ) def= µ1(~α).(~τ), . . . , µn(~α).(~τ),
where length(~α) = length(~τ) = n

expand(δ) def= τi[~µ(~α).(~τ)/~α], where δ = µi(~α).(~τ)

Figure 2: Shorthand Definitions

The judgment forms of the static semantics of our internal language are given in Figure 3, and
the rules relevant to recursive types are given in Figure 4. Note that the only rule that can be
used to judge two recursive types equal requires that the two types in question are the same (ith)
projection from bundles of the same length whose respective components are all equal. In particular,
there is no “unrolling” rule stating that δ ≡ expand(δ); type theories in which this equality holds
are said to have equi-recursive types and are significantly more complex. The recursive types in
our theory are iso-recursive types that are isomorphic, but not equal, to their expansions. The
isomorphism is embodied by the roll and unroll operations at the term level; the former turns a
value of type expand(δ) into one of type δ, and the latter is its inverse.

Γ ` ok Well-formed context.
Γ ` τ type Well-formed type.
Γ ` σ ≡ τ Equivalence of types.
Γ ` e : τ Well-formed term.

Figure 3: Relevant Typing Judgements

i ∈ 1..n ∀j ∈ 1..n. Γ, α1, . . . , αn ` τj type
Γ ` µi(α1, . . . , αn).(τ1, . . . , τn) type

i ∈ 1..n ∀j ∈ 1..n. Γ, α1, . . . , αn ` σj ≡ τj

Γ ` µi(α1, . . . , αn).(σ1, . . . , σn) ≡ µi(α1, . . . , αn).(τ1, . . . , τn)

Γ ` e : expand(δ)
Γ ` rollδ(e) : δ

Γ ` e : δ
Γ ` unrollδ(e) : expand(δ)

Figure 4: Typing Rules for Iso-recursive Types

3

2.2 Elaborating Datatype Definitions

The Harper-Stone interpretation of SML includes a full account of datatypes, including generativity.
The main idea is to encode datatypes as recursive sum types but hide this implementation behind
an opaque signature. A datatype definition therefore elaborates as a structure that exports a
number of abstract types and functions that construct and deconstruct values of those types. For
example, consider the following pair of mutually recursive datatypes, representing expressions and
declarations in the abstract syntax of a toy language:

datatype exp = VarExp of var | LetExp of dec * exp
and dec = ValDec of var * exp | SeqDec of dec * dec

The Harper-Stone elaboration of this definition is given in Figure 5, using ML-like syntax for
readability. To construct a value of one of these datatypes, a program must use the corresponding

structure ExpDec :> sig
type exp
type dec
val exp in : var + (dec * exp) -> exp
val exp out : exp -> var + (dec * exp)
val dec in : (var * exp) + (dec * dec) -> dec
val dec out : dec -> (var * exp) + (dec * dec)

end = struct
type exp = µ1(α, β).(var + β * α, var * α + β * β)
type dec = µ2(α, β).(var + β * α, var * α + β * β)
fun exp in x = rollexp(x)
fun exp out x = unrollexp(x)
fun dec in x = rolldec(x)
fun dec out x = unrolldec(x)

end

Figure 5: Harper-Stone elaboration of exp-dec example.

in function; these functions each take an element of the sum type that is the “unrolling” of the
datatype and produce a value of the datatype. More concretely, we implement the constructors for
exp and dec as follows:

VarExp(x)
def= ExpDec.exp in(inj1(x))

LetExp(d,e)
def= ExpDec.dec in(inj2(d,e))

ValDec(x,e)
def= ExpDec.dec in(inj1(x,e))

SeqDec(d1,d2)
def= ExpDec.dec in(inj2(d1,d2))

Notice that the types exp and dec are held abstract by the opaque signature ascription. This
captures the generativity of datatypes, since the abstraction prevents ExpDec.exp and ExpDec.dec
from being judged equal to any other types. However, as we mentioned in Section 1, this abstraction
also prevents inlining of the in and out functions: for example, if we attempt to inline exp in in
the definition of VarExp above, we get

VarExp(x)
def= rollExpDec.exp(inj1(x))

4

but this is ill-typed outside of the ExpDec module because the fact that exp is a recursive type
is not visible. Thus performing inlining on well-typed code can lead to ill-typed code, so we say
that inlining across abstraction boundaries is not type-preserving and therefore not an acceptable
strategy for a typed compiler. The problem is that since we cannot inline in and out functions,
our compiler must pay the run-time cost of a function call every time a value of a datatype is
constructed or case-analyzed. Since these operations occur very frequently in SML code, this
performance penalty is significant.

2.3 Datatypes and Signature Matching

Standard ML makes an important distinction between datatype definitions, which appear at the top
level or in structures, and datatype specifications, which appear in signatures. As we have seen, the
Harper-Stone interpretation elaborates datatype definitions as opaquely sealed structures; datatype
specifications are translated into specifications of structures. For example, the signature

signature S = sig
datatype intlist = Nil | Cons of int * intlist

end

contains a datatype specification, and elaborates as follows:

signature S = sig
struct Intlist : sig

type intlist
val intlist in : unit + int * intlist -> intlist
val intlist out : intlist -> unit + int * intlist

end
end

A structure M will match S if M contains a structure Intlist of the appropriate signature.1 In
particular, it is clear that the structure definition produced by the Harper-Stone interpretation for
the datatype intlist defined in Section 1 has this signature, so that datatype definition matches
the specification above.

What is necessary in general for a datatype declaration to match a specification under this
interpretation? Since datatype declarations are translated as structures, and datatype specifications
are translated as structure declarations with signatures, matching a datatype declaration against
a spec boils down to matching an opaquely sealed structure against a signature. Specifically, a
specification of the form

datatype t1 = τ1 and . . . and tn = τn

(where the τi are sum types) elaborates to a specification of a structure with the following signature:

1Standard ML allows only datatypes to match datatype specifications, so the actual Harper-Stone elaboration
must use a name for the datatype that cannot be guessed by a programmer. We will not discuss this issue further.

5

sig
type t1
...
type tn

val t1 in : τ1 -> t1

val t1 out : t1 -> τ1
...
val tn in : τn -> tn

val tn out : tn -> τn

end

In order to match this signature, the structure corresponding to a datatype definition must define
types named t1, . . . , tn and must contain in and out functions of the appropriate type for each.
(Note that in any structure produced by elaborating a datatype definition under this interpretation,
the ti’s will be abstract types.) Thus, for example, if m ≥ n then the datatype definition

datatype t1 = σ1 and . . . and tm = σm

matches the above specification if and only if σi ≡ τi for 1 ≤ i ≤ n, since this is necessary
and sufficient for the types of the in and out functions to match for the types mentioned in the
specification.

3 A Transparent Interpretation of Datatypes

A natural approach to enabling the inlining of datatypes in a type-preserving compiler is to do away
with the generative semantics of datatypes. In the context of the Harper-Stone interpretation, this
corresponds to replacing the abstract type specification in the signature of a datatype module with
a transparent type definition, so we call this modified interpretation the transparent interpretation
of datatypes (TID).

3.1 Making Datatypes Transparent

The idea of the transparent interpretation is to expose the implementation of datatypes as recursive
sum types during elaboration, rather than hiding it. In our expdec example, this corresponds to
changing the declaration shown in Figure 5 to the following (we continue to use ML-like syntax for
readability):

structure ExpDec :> sig
type exp = µ1(α, β).(var + β * α, var * α + β * β)
type dec = µ2(α, β).(var + β * α, var * α + β * β)
(* ... specifications for in and out functions same as before ... *)

end =
(* ... same structure as before ... *)

Importantly, this change extends to datatype specifications as well as datatype definitions. Thus, a
structure that exports a datatype must export its implementation transparently, using a signature
similar to the one above—otherwise a datatype inside a structure would appear to be generative
outside that structure, and there would be little point to the new interpretation.

6

As we have mentioned before, altering the interpretation of datatypes to expose their imple-
mentation as recursive types really creates a new language, which is neither a subset nor a superset
of Standard ML. An example of the most obvious difference can be seen in Figure 6. In the fig-
ure, two datatypes are defined by seemingly identical definitions. In SML, because datatypes are
generative, the two types List1.t and List2.t are distinct; since the variable l has type List1.t
but is passed to List2.Cons, which expects List2.t, the function switch is ill-typed. Under the
transparent interpretation, however, the implementations of both datatypes are exported transpar-
ently as µα.unit+int * α. Thus under this interpretation, List1.t and List2.t are equal and so
switch is a well-typed function. It is clear that many programs like this one fail to type-check in
SML but succeed under the transparent interpretation; what is less obvious is that there are some
programs for which the opposite is true. We will discuss two main reasons for this.

structure List1 = struct
datatype t = Nil | Cons of int * t

end
structure List2 = struct

datatype t = Nil | Cons of int * t
end
fun switch List1.Nil = List2.Nil
| switch (List1.Cons (n,l)) = List2.Cons (n,l)

Figure 6: Non-generativity of Transparent Datatypes

3.2 Problematic Datatype Matchings

Recall that according to the Harper-Stone interpretation, a datatype matches a datatype specifica-
tion if the types of the datatype’s in and out functions match the types of the in and out functions
in the specification, after the actual type has been substituted for the abstract type in the spec.
(Note: the types of the out functions match if and only if the types of the in functions match, so
we will hereafter refer only to the in functions.) Under the transparent interpretation, however,
it is also necessary that the recursive type implementing the datatype match the one given in the
specification. This is not a trivial requirement; we will now give two examples of matchings that
succeed in SML but fail under the transparent interpretation.

3.2.1 A Simple Example

A very simple example of a problematic matching is the following. Under the opaque interpretation,
matching the structure

struct
datatype u = A of u * u | B of int
type v = u * u

end

against the signature

7

sig
type v
datatype u = A of v | B of int

end

amounts to checking that the type of the in function for u defined in the structure matches that
expected by the signature once u * u has been substituted for v in the signature. (No definition
is substituted for u, since it is abstract.) After substitution, the type required by the signature
for the in function is u * u + int -> u, which is exactly the type of the function given by the
structure, so the matching succeeds.

Under the transparent interpretation, however, the structure defines u to be uimp
def= µα. α * α + int

but the signature specifies u as µα. v + int. In order for matching to succeed, these two types must
be equivalent after we have substituted uimp * uimp for v in the specification. That is, it is required
that

uimp ≡ µα. uimp * uimp + int

Observe that the type on the right is none other than µα. expand(uimp). (Notice also the bound
variable α does not appear free in the body of this µ-type. Hereafter we will write such types with
a wildcard in place of the type variable to indicate that it is not used in the body of the µ.) This
equivalence does not hold for iso-recursive types, so the matching fails.

3.2.2 A More Complex Example

Another example of a datatype matching that is legal in SML but fails under the transparent
interpretation can be found by reconsidering our running example of exp and dec. Under the
opaque interpretation, a structure containing this pair of datatypes matches the following signature,
which hides the fact that exp is a datatype:

sig
type exp
datatype dec = ValDec of var * exp | SeqDec of dec * dec

end

When this datatype specification is elaborated under the transparent interpretation, however, the
resulting HIL signature exposes the implementation of dec as

decspec
def= µα. var * exp + α * α

Elaboration of the definitions of exp and dec, on the other hand, produces an implementation of
dec that is mutually recursive with exp:

decimp
def= µ2(α, β).(var + β * α, var * α + β * β)

Matching the structure containing the datatypes against the signature can only succeed if decspec ≡
decimp (under the substitution of the implementation of exp for exp in decspec). As we have
already remarked, this equivalence does not hold because the two µ-types have different numbers
of components.

8

3.3 Problematic Signature Constraints

The module system of SML provides two ways to express sharing of type information between
structures. The first, where type, modifies a signature by “patching in” a definition for a type
the signature originally held abstract. The second, sharing type, asserts that two or more type
names (possibly in different structures) refer to the same type. Both of these forms of constraints
are restricted so that multiple inconsistent definitions are not given to a single type name; in the
case of sharing type, for example, it is required that all the names be flexible, that is, they
must either be abstract or defined as equal to another type that is abstract. Under the opaque
interpretation, datatypes are abstract and therefore flexible, meaning they can be shared; under
the transparent interpretation, datatypes are concretely defined and hence can never be shared.
For example, the following signature is legal in SML:

signature S = sig
structure M : sig datatype t = A | B end
structure N : sig datatype t = A | B end
sharing type M.t = N.t

end

We can write a similar signature using where type, which is also valid SML:

signature S = sig
structure M : sig datatype t = A | B end
structure N : sig datatype t = A | B end where type t = M.t

end

Neither of these signatures elaborates successfully under the transparent interpretation of datatypes,
since under that interpretation the datatypes are transparent and therefore ineligible for either
sharing or where type.

Another example is the following signature:

signature AB = sig
structure A : sig

type s
val C : s

end
structure B : sig

datatype t = C | D of A.s * t
end
sharing type A.s = B.t

end

(Again, we can construct an analogous example with where type.) Since the name B.t is flexible
under the opaque interpretation but not the transparent, this code is legal SML but must be
rejected under the transparent interpretation.

3.4 Relaxing Recursive Type Equivalence

We will now consider some modifications to the theory of type equivalence in our intermediate
language that allow the problematic datatype matchings we have discussed to typecheck under the

9

transparent interpretation. Specifically, we will show how to weaken type equivalence (i.e., make
it equate more pairs of types) so that the problematic matchings described earlier in this section
succeed. The ideas in this section are based upon the equivalence algorithm adopted by Shao [9]
for the FLINT/ML compiler.

To begin, consider the simple u-v example of Section 3.2.1. Recall that in that example,
matching the datatype definition against the spec required proving the equivalence

uimp ≡ µα. uimp * uimp + int

where the type on the right-hand side is just µ . expand(uimp). By simple variations on this
example, it is easy to show that in general, for the transparent interpretation to be as permissive
as the opaque, the following recursive type equivalence must hold:

δ ≡ µ . expand(δ)

We refer to this as the boxed-unroll rule. It says that a µ-projection is equal to its unrolling “boxed”
by a µ. Intuitively, this rule is needed because datatype matching succeeds under the opaque
interpretation whenever the unrolled form of the datatype implementation equals the unrolled form
of the datatype spec (because these are both supposed to describe the domain of the in function).
An alternative formulation of the boxed-unroll rule (equivalent to the first one by transitivity)
makes two µ-projections equal if their unrollings are equal, i.e.:

expand(δ1) ≡ expand(δ2)
δ1 ≡ δ2

Although the boxed-unroll equivalence is necessary for the transparent interpretation of datatypes
to admit all matchings admitted by the opaque one, it is not sufficient; to see this, consider the
problematic exp-dec matching from Section 3.2.2. The problematic constraint in that example is

µα. var * exp + α * α ≡ µ2(α, β).(var + β * α, var * α + β * β)

The boxed-unroll rule is insufficient to prove this equivalence. In order to apply boxed-unroll to
prove these two types equivalent, we must be able to prove that their unrollings are equivalent, in
other words that

var * exp + decspec * decspec ≡ var * exp + decimp * decimp

But we cannot prove this without first proving decspec ≡ decimp , which is exactly what we set out
to prove in the first place. The boxed-unroll rule is therefore unhelpful in this case.

The trouble is that proving the premise of the boxed-unroll rule (the equivalence of expand(δ1)
and expand(δ2)) may require proving the conclusion (the equivalence of δ1 and δ2). Similar problems
have been addressed in the context of general equi-recursive types. In that setting, deciding type
equivalence involves assuming the conclusions of equivalence rules when proving their premises [1, 2].
Applying this idea provides a natural solution to the problem discussed in the previous section.
We can maintain a “trail” of type-equivalence assumptions; when deciding the equivalence of two
µ-projections, we add that equivalence to the trail before comparing their unrollings.

Formally, the equivalence judgement itself becomes Γ;A ` σ ≡ τ , where A is a set of assump-
tions, each of the form τ1 ≡ τ2. All the equivalence rules in the static semantics must be modified

10

to account for the trail. In all the rules except those for µ-projections, the trail is simply passed
unchanged from the conclusions to the premises. There are two new rules for µ-projections:

τ1 ≡ τ2 ∈ A
Γ;A ` τ1 ≡ τ2

Γ;A ∪ {δ1 ≡ δ2} ` expand(δ1) ≡ expand(δ2)
Γ; A ` δ1 ≡ δ2

The first rule allows an assumption from the trail to be used; the second rule is an enhanced form
of the boxed-unroll rule that adds the conclusion to the assumptions of the premise. It is clear that
the trail is just what is necessary in order to resolve the exp-dec anomaly described above; before
comparing the unrollings of decspec and decimp , we add the assumption decspec ≡ decimp to the
trail; we then use this assumption to avoid the cyclic dependency we encountered before.

In fact, the trailing version of the boxed-unroll rule is sufficient to ensure that the transparent
interpretation accepts all datatype matchings accepted by SML. To see why, consider a datatype
specification

datatype t1 = τ1 and ... and tn = τn

(where the τi are sum types in which the ti may occur). Suppose that some implementation
matches this spec under the opaque interpretation; the implementation of each type ti must be a
µ-projection δi. Furthermore, the type of the ti in function given in the spec is τi → ti, and the
type of its implementation is expand(δi) → δi. Because the matching succeeds under the opaque
interpretation, we know that these types are equal after δi has been substituted for ti; thus we
know that expand(δi) ≡ τi[~δ/~t] for each i.

When the specification is elaborated under the transparent interpretation, however, the resulting
signature declares that the implementation of each ti is the appropriate projection from a recursive
bundle determined by the spec itself. That is, each ti is transparently specified as µi(~t).(~τ). In
order for the implementation to match this transparent specification, it is sufficient that for each
i, Γ; ∅ ` δi ≡ µi(~t).(~τ). We will now show that this equivalence can be derived using the trail
algorithm. For any set S ⊆ {1, . . . , n}, define AS = {δi ≡ µi(~t).(~τ) | i ∈ S}. We can prove the
following lemma (we omit the context Γ from the judgments, since it never changes):

Lemma 1 If expand(δi) ≡ τi[~δ/~t] for 1 ≤ i ≤ n, then for any S ⊆ {1, . . . , n} and any j ∈
{1, . . . , n}, AS ` δj ≡ µj(~t).(~τ).

Proof Sketch: The proof is by induction on n − |S|. If n − |S| = 0, then for any j the required
equivalence is an assumption in AS and can therefore be concluded using the assumption rule. If
n− |S| > 0, then there are two cases:

Case: j ∈ S. Then the required equivalence is an assumption in AS .

Case: j /∈ S. Then let S′ = S ∪ {j}. Note that |S′| > |S| and so n− |S′| < n− |S|. By the
induction hypothesis, AS′ ` δk ≡ µk(~t).(~τ) for every k ∈ {1, . . . , n}. Because substituting
equal types into equal types gives equal results, AS′ ` τj [~δ/~t] ≡ τj [~µ(~t).(~τ)/~t]. By assump-
tion, expand(δj) ≡ τj [~δ/~t], so by transitivity AS′ ` expand(δj) ≡ τj [~µ(~t).(~τ)/~t]. The type
on the right side of this equivalence is just expand(µj(~t).(~τ)), so by the trailing boxed-unroll
rule we can conclude AS ` δj ≡ µj(~t).(~τ), as required. 2

In the case where S = ∅, this lemma says that for each j ∈ {1, . . . , n} we can derive Γ; ∅ ` δj ≡
µj(~t).(~τ), which is just what we needed in order to show the matching that succeeded under the
opaque interpretation would succeed under the transparent one.

11

4 A Coercion Interpretation of Datatypes

In this section, we will discuss a treatment of datatypes based on a variant of Crary’s Coercion
Calculus [3]. This solution will closely resemble the Harper-Stone interpretation, and thus will not
require the boxed-unroll rule or a trail algorithm, but will not incur the run-time cost of a function
call at constructor application sites.

4.1 Representation of Datatype Values

The calculus we have discussed in this paper can be given the usual structured operational seman-
tics, in which an expression of the form rollδ(v) is itself a value if v is a value. (From here on we
will implicitly assume that the metavariable v ranges only over values.) In fact, it can be shown
without difficulty that any closed value of a datatype δ must have the form rollδ(v) where v is
a closed value of type expand(δ). Thus the roll operator plays a similar role to that of the inj1

operator for sum types, as far as the high-level language semantics is concerned.
Although we specify the behavior of programs in our language with a formal operational se-

mantics, it is our intent that programs be compiled into machine code for execution, which forces
us to take a slightly different view of data. Rather than working directly with high-level language
values, compiled programs manipulate representations of those values. A compiler is free to choose
the representation scheme it uses, provided that the basic operations of the language can be faith-
fully performed on representations. For example, most compilers construct the value inj1(v) by
attaching a tag to the value v and storing this new object somewhere. This tagging is necessary
in order to implement the case construct. In particular, the representation of any value of type
τ1 + τ2 must carry enough information to determine whether it was created with inj1 or inj2 and
recover a representation of the injected value.

What are the requirements for representations of values of recursive type? It turns out that
they are somewhat weaker than for sums. The elimination form for recursive types is unroll, which
(unlike case) does not need to extract any information from its argument other than the original
rolled value. In fact, the only requirement is that a representation of v can be extracted from any
representation of rollδ(v). Thus one reasonable representation strategy is to represent rollδ(v)
exactly the same as v. Appendix A gives a more precise argument as to why this is reasonable,
making use of two key insights. First, it is an invariant of TILT that the representation of any
value fits in a single machine register; anything larger than 32 bits is always stored in the heap and
referred to by a pointer. This means that all possible complications having to do with the sizes of
recursive values are avoided. Second, we define representations for values, not types; that is, we
define the set of machine words that can represent the value v by structural induction on v, rather
than defining the set of words that can represent values of type τ by induction on τ as might be
expected.

The TILT compiler adopts this strategy of identifying the representations of roll v and v, which
has the pleasant consequence that the roll and unroll operations are “no-ops”. For instance, the
untyped machine code generated by the compiler for the expression rollδ(e) need not differ from
the code for e alone, since if the latter evaluates to v then the former evaluates to rollδ(v), and
the representations of these two values are the same. The reverse happens for unroll.

This, in turn, has an important consequence for datatypes. Since the in and out functions pro-
duced by the Harper-Stone elaboration of datatypes do nothing but roll or unroll their arguments,
the code generated for any in or out function will be the same as that of the identity function.
Hence, the only run-time cost incurred by using an in function to construct a datatype value is
the overhead of the function call itself. In the remainder of this section we will explain how to

12

eliminate this cost by allowing the types of the in and out functions to reflect the fact that their
implementations are trivial.

4.2 The Coercion Interpretation

To mark in and out functions as run-time no-ops, we will use a simplified form of Crary’s calculus
of coercions [3]. Coercions are similar to functions, except that they are known to be no-ops and
therefore no code needs to be generated for coercion applications. Crary’s calculus has a separate
syntactic class of coercion terms, but this level of sophistication is unnecessary for our purposes.
Instead, we incorporate coercions into the term level of our language and introduce special coercion
types to which they belong. Figure 7 gives the changes to the syntax of our calculus. Note that while
we have so far confined our discussion to monomorphic datatypes, the general case of polymorphic
datatypes will require polymorphic coercions. The syntax we give here is essentially that used in
the TILT compiler; it does not handle non-uniform datatypes.

Types σ, τ ::= · · · | (~α; τ1) ⇒ τ2

Terms e ::= · · · | Λ~α.foldδ | Λ~α.unfoldδ | v@(~τ ; e)

Figure 7: Syntax of Coercions

We extend the type level of the language with a type for (possibly polymorphic) coercions,
(~α; τ1) ⇒ τ2; a value of this type is a coercion that takes length(~α) type arguments and then can
change a value of type τ1 into one of type τ2 (where, of course, variables from ~α can appear in
either of these types). Similarly, we extend the term level with the (possibly polymorphic) coercion
values Λ~α.foldδ and Λ~α.unfoldδ; these take the place of roll and unroll expressions. Coercions
are applied to (type and value) arguments in an expression of the form v@(~τ ; e); here v is the
coercion, ~τ are the type arguments, and e is the value to be coerced. Note that the coercion is
syntactically restricted to be a value; this makes the calculus more amenable to a simple code
generation strategy, as we will discuss in Section 4.3. The typing rules for coercions are essentially
the same as if they were ordinary polymorphic functions, and are shown in Figure 8.

Γ, ~α ` τ1 type Γ, ~α ` τ2 type
Γ ` (~α; τ1) ⇒ τ2 type

Γ ` Λ~α.foldδ : (~α; expand(δ)) ⇒ δ Γ ` Λ~α.unfoldδ : (~α; δ) ⇒ expand(δ)

Γ ` v : (~α; τ1) ⇒ τ2 Γ ` e : τ1[~σ/~α] ∀i ∈ 1..n. Γ ` σi type
Γ ` v@(~σ; e) : τ2[~σ/~α]

Figure 8: Typing Rules for Coercions

With these modifications to the language in place, we can elaborate the datatypes exp and
dec using coercions instead of functions to implement the in and out operations. The result of
elaborating this pair of datatypes is shown in Figure 9. Note that the interface is exactly the same
as the Harper-Stone interface shown in Section 2 except that the function arrows (->) have been
replaced by coercion arrows (⇒). This interface is implemented by defining exp and dec in the
same way as in the Harper-Stone interpretation, and implementing the in and out coercions as the

13

appropriate fold and unfold values. The elaboration of a constructor application is superficially
similar to the opaque interpretation, but a coercion application is generated instead of a function
call. For instance, LetExp(d,e) elaborates as exp in@(inj2(d, e)).

structure ExpDec :> sig
type exp
type dec
val exp in : var + (dec * exp) ⇒ exp
val exp out : exp ⇒ var + (dec * exp)
val dec in : (var * exp) + (dec * dec) ⇒ dec
val dec out : dec ⇒ (var * exp) + (dec * dec)

end = struct
type exp = µ1(α, β).(var + β * α, var * α + β * β)
type dec = µ2(α, β).(var + β * α, var * α + β * β)
val exp in = foldexp
val exp out = unfoldexp
val dec in = folddec
val dec out = unfolddec

end

Figure 9: Elaboration of exp and dec Under the Coercion Interpretation

4.3 Coercion Erasure

We are now ready to formally justify our claim that coercions may be implemented by erasure, that
is, that it is sound for a compiler to consider coercions only as “retyping operators” and ignore them
when generating code. First, we will describe the operational semantics of the coercion constructs
we have added to our internal language. Next, we will give a translation from our calculus into an
untyped one in which coercion applications disappear. Finally, we will state a theorem guaranteeing
that the translation is safe.

The operational semantics of our coercion constructs are shown in Figure 10. We extend the
class of values with the fold and unfold coercions, as well as the application of a fold coercion to
a value. These are the canonical forms of coercion types and recursive types respectively. The two
inference rules shown in Figure 10 define the manner in which coercion applications are evaluated.
The evaluation of a coercion application is similar to the evaluation of a normal function application
where the applicand is already a value. The rule on the left specifies that the argument is reduced
until it is a value. If the applicand is a fold, then the application itself is a value. If the applicand
is an unfold, then the argument must have a recursive type and therefore (by canonical forms)
consist of a fold applied to a value v. The rule on the right defines unfold to be the left inverse
of fold, and hence this evaluates to v.

As we have already discussed, the data representation strategy of TILT is such that no code
needs to be generated to compute fold v from v, nor to compute the result of cancelling a fold with
an unfold. Thus it seems intuitive that to generate code for a coercion application v@(~τ ; e), the
compiler can simply generate code for e, with the result that datatype constructors and destructors
under the coercion interpretation have the same run-time costs as Harper and Stone’s functions
would if they were inlined. To make this more precise, we now define an erasure mapping to trans-
late terms of our typed internal language into an untyped language with no coercion application.

14

v ::= · · · | Λ~α.foldτ | Λ~α.unfoldτ |
(Λ~α.foldτ)@(~σ; v)

e 7→ e′
v@(~τ ; e) 7→ v@(~τ ; e′) (Λ~α.unfoldτ1)@(~σ; ((Λ~β.foldτ2)@(~σ′; v))) 7→ v

Figure 10: Operational Semantics for Coercions.

The untyped nature of the target language (and of machine language) is important: treating v as
fold v would destroy the subject reduction property of a typed language.

M ::= · · · | λx.M | fold | unfold

x−= x

(λx:τ.e)−= λx.e−

(Λ~α.foldδ)
−= fold

(Λ~α.unfoldδ)
−= unfold

(v@(~τ ; e))−= e−
...

Figure 11: Target Language Syntax; Type and Coercion Erasure

Figure 11 gives the syntax of our untyped target language and the coercion-erasing translation.
The target language is intended to be essentially the same as our typed internal language, except
that all types and coercion applications have been removed. It contains untyped coercion values
fold and unfold, but no coercion application form. The erasure translation turns expressions with
type annotations into expressions without them (λ-abstraction and coercion values are shown in the
figure), and removes coercion applications so that the erasure of v@(~τ ; e) is just the erasure of e. In
particular, for any value v, v and fold v are identified by the translation, which is consistent with
our intuition about the compiler. The operational semantics of the target language is analogous to
that of the source.

The language with coercions has the important type-safety property that if a term is well-typed,
its evaluation does not get stuck. An important theorem is that the coercion-erasing translation
preserves the safety of well-typed programs.

Theorem 1 (Erasure Preserves Safety) If Γ ` e : τ , then e− is safe. That is, if e− 7→∗ f ,
then f is not stuck.

Proof: See Appendix B. 2

Note that the value restriction on coercions is crucial to the soundness of this “coercion erasure”
interpretation. Since a divergent expression can be given an arbitrary type, any semantics in which
a coercion expression is not evaluated before it is applied fails to be type-safe. Thus if arbitrary
expressions of coercion type could appear in application positions, the compiler would have to
generate code for them. Since values cannot diverge or have effects, we are free to ignore coercion
applications when we generate code.

15

5 Conclusion

5.1 Related Work

Our trail algorithm for weakened recursive type equivalence is based on the one we understand to
have been implemented by Shao for the Standard ML of New Jersey compiler [10, 9]. SML/NJ
handles datatypes using a strategy similar to our transparent interpretation, using the relaxed
equivalence algorithm to recover the expressiveness of SML. We have discovered, however, that
SML/NJ is not quite successful in avoiding the type sharing pitfalls of the transparent interpreta-
tion: the final example of Section 3.3, which is valid SML, is rejected by the SML/NJ compiler.

Crary [3] and Curien and Ghelli [4] have defined languages that use coercions to replace sub-
sumption rules in languages with subtyping. Crary’s calculus of coercions includes roll and unroll
for recursive types, but since the focus of his paper is on subtyping he does not explore the poten-
tial uses of these coercions in detail. Nevertheless, our notion of coercion erasure, and the proof
of our safety preservation theorem, are based on Crary’s. The implementation of Typed Assembly
Language for the x86 architecture (TALx86) [7] allows operands to be annotated with coercions
that change their types but not their representations; these coercions include roll and unroll as
well as introduction of sums and elimination of universal quantifiers.

Our intermediate language differs from these in that we include coercions in the term level of
the language rather than treating them specially in the syntax. This simplifies the presentation of
the coercion interpretation of datatypes, and it simplified our implementation because it required
a smaller incremental change from earlier pre-release versions of the TILT compiler. However,
including coercions in the term level is a bit unnatural, and our planned extension of TILT with a
type-preserving back-end will likely involve a full-blown coercion calculus.

5.2 Conclusion

The generative nature of SML datatypes poses a significant challenge for efficient type-preserving
compilation. Generativity can be correctly understood by interpreting datatypes as structures
that hold their type components abstract, exporting functions that construct and deconstruct
datatype values. Under this interpretation, the inlining of datatype construction and deconstruction
operations is not type-preserving and hence cannot be performed by a typed compiler such as TILT.

In this paper, we have discussed two approaches to eliminating the function call overhead in a
type-preserving way. The first, doing away with generativity by making the type components of
datatype structures transparent, results in a new language that is different from, but neither more
nor less permissive than, Standard ML. Some of the lost expressiveness can be regained by relaxing
the rules of type equivalence in the intermediate language, at the expense of complicating the type
theory. The fact that the transparent interpretation forbids datatypes to appear in sharing type
or where type signature constraints is unfortunate; it is possible that a revision of the semantics
of these constructs could remove the restriction.

The second approach, replacing the construction and deconstruction functions of datatypes with
coercions that may be erased during code generation, eliminates the function call overhead without
changing the static semantics of the external language. However, the erasure of coercions only
makes sense in a setting where a recursive-type value and its unrolling are represented the same at
run time. The coercion interpretation of datatypes has been implemented in the TILT compiler,
and a detailed performance analysis of the two approaches will appear in a future revision of this
paper.

16

References

[1] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):575–631, 1993.

[2] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping. Fundamenta Informaticae, 33:309–338, 1998. Invited submission to special
issue featuring a selection of contributions to the 3d Int’l Conf. on Typed Lambda Calculi and
Applications (TLCA), 1997.

[3] Karl Crary. Typed compilation of inclusive subtyping. In 2000 ACM International Conference
on Functional Programming, Montreal, September 2000.

[4] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum typing and
type-checking in F≤. Mathematical Structures in Computer Science, 2(1):55–91, 1992.

[5] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. In Gordon
Plotkin, Colin Stirling, and Mads Tofte, editors, Robin Milner Festschrifft. MIT Press, 1998.

[6] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). MIT Press, Cambridge, Massachusetts, 1997.

[7] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick Smith,
David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A realistic typed assembly
language. In Second Workshop on Compiler Support for System Software, pages 25–35, Atlanta,
Georgia, May 1999.

[8] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT internal
language. Technical Report CMU-CS-00-180, School of Computer Science, Carnegie Mellon
University, December 2000.

[9] Zhong Shao. Personal communication.

[10] Zhong Shao. An overview of the FLINT/ML compiler. In 1997 Workshop on Types in Com-
pilation, Amsterdam, June 1997. ACM SIGPLAN. Published as Boston College Computer
Science Department Technical Report BCCS-97-03.

[11] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee. TIL:
A type-directed optimizing compiler for ML. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 181–192, Philadelphia, PA, May 1996.

A Data Representation

In this appendix we will give a formal description of a data representation strategy similar to the
one used by the TILT compiler. This is intended to clarify the sense in which the roll and unroll
operations on recursive types are “no-ops” at run time.

A key invariant of the TILT system is that every value (except floating-point numbers) manipu-
lated by a program at run-time is 32 bits wide. All values of record and sum types that require more
than 32 bits of storage are boxed—i.e., stored in the heap and referred to by a 32-bit pointer value.
Our formalization of data representation will therefore attempt to characterize when, in the context
of a particular heap, a particular integer represents a particular source-language value. Once we

17

have done this, we will argue that the representation strategy we have defined is reasonable—that
is, that all the operations a program must perform on values may be faithfully performed on their
representations under this strategy.

To begin, we make the simplifying assumption that any integer may be a valid memory address,
and that a memory location can hold any integer. This can easily be restricted so that only integers
between 0 and, say, 232 are used, but allowing arbitrary integers makes the presentation easier.
Under these assumptions about the world, it makes sense to define heaps as follows:

Definition 1 A heap is a finite partial function H : N → N.

Next, we define the general notion of a representation strategy.

Definition 2 A representation strategy is a four-place relation S on heaps, natural numbers, closed
values and closed types such that if (H, n, v, τ) ∈ S and H ⊆ H ′, then (H ′, n, v, τ) ∈ S.

If S is a representation strategy, we will use the notation H `S n ¢ v : τ to mean that
(H, n, v, τ) ∈ S, omitting the subscript S if it is clear from context. That statement may be read
as “in the heap H, the number n represents the value v at type τ .”

We will now proceed to define a particular representation strategy, similar to the one used by
the TILT compiler. Figure 12 gives the syntax of the types and terms we will be representing. The
types include the type of integers, k-ary tuple types 〈τ1, . . . , τk〉, k-ary sum types [τ1, . . . , τk] and
(single) recursive types µα.τ . (We are not considering arrow types or function values here, because
they complicate the presentation in ways not relevant to recursive types.)

Types σ, τ ::= nat | 〈τ1, . . . , τk〉 | [τ1, . . . , τk] | µα.τ
Values v ::= n | (v0, . . . , vm−1) | inji v | rollµα.τ (v)

Figure 12: Syntax of types and values in the first-order fragment of a specialized intermediate
language.

Figure 13 gives the definition of one possible representation strategy for these values. Note

H ` n ¢ n : nat
H ` n ¢ (v0, . . . , vm−1) : 〈τ0, . . . , τm−1〉 if H ` H(n + i) ¢ vi : τi for each i, 0 ≤ i < m
H ` n ¢ inji v : [τ1, . . . , τk] if 1 ≤ i < k and H(n) = i and

H ` H(n + 1) ¢ v : τi

H ` n ¢ rollµα.τ v : µα.τ if H ` n ¢ v : τ [µα.τ/α].

Figure 13: Representation strategy for our intermediate language fragment.

that this strategy is well-defined, because all the values on the right-hand side of each clause are
syntactically smaller than the one on the left. An integer value n is represented by the integer n.
A tuple of k values is represented by a pointer (n) giving the location of the first of k consecutive
heap cells containing representations of the tuple’s components. An injection into a sum type is
represented by a pointer to what is essentially a two-element tuple: the first element is a tag that
identifies a branch of the sum type, and the second is a representation of the injected value. Finally,
a value of recursive type is represented by a representation of the rolled value.

This data representation strategy is similar to, but considerably simpler than, the one used by
the TILT/ML compiler. The main difference is in the handling of sum types; TILT uses a more

18

complex version of sum type representations that saves space and improves run-time efficiency.
Fortunately, the treatment of sums and the treatment of recursive types are orthogonal, so the
differences between the representation strategy in Figure 13 and that of TILT is unimportant.

We can now argue that this data representation strategy is reasonable. The following property
may be proved using the definition.

Construction Property: Let H be a heap. If ∅ ` v : τ , then there is a heap H ′ ⊇ H and an
integer n such that H ′ ` n ¢ v : τ .

The construction property states that any well-typed closed value can be represented in some
extension of any initial heap. This roughly means that all the introduction forms of the language
can be faithfully implemented under our representation strategy. It remains to argue that the
elimination forms may be implemented as well.

The elimination forms for integers are arithmetic operations and comparisons. Since the rep-
resentations of integer values are the integers themselves, these operations can be implemented.
The elimination form for tuples is projection; we need to show that if 1 ≤ i ≤ k and H ` n ¢ v :
〈τ0, . . . , τk−1〉 then we can find some n′ that represents the value of πi v. By canonical forms, the
value v must be (v0, . . . , vk−1), and so πi v evaluates to vi. But by the definition of our representation
strategy, H ` H(n + i) ¢ vi : τi, so projection can be implemented.

The elimination form for sums, the case construct, is a little different in that it may take many
more than one step to produce a value, if it produces one at all. Only the first of these steps,
however—the one in which the case chooses one of its subexpressions to continue executing and
passes the appropriate value to that branch—is relevant to the reasonableness of our representation
for sums. In particular, if ∅ ` v : (τ1, . . . , τk) then the expression

case v of inj1 x ⇒ e1 | . . . | injk x ⇒ ek

will certainly take a step to ej [v′/x] for some j and some value v′ of the appropriate type. In
order to show case is implementable, it suffices to show that given H ` n ¢ v : [τ1, . . . , τk] we
can compute the appropriate i and a representation of the appropriate value v′. But note that by
canonical forms v must have the form inji vi, in which case the branch to select is the ith one, and
the value to pass is vi (i.e., j = i and v′ = vi). According to our representation strategy, H(n) = i
and H ` H(n + 1) ¢ vi : τi, so we can implement case.

Finally, consider the elimination form for recursive types, unrollµα.τ . In order to implement
this operation, it must be the case that if ∅ ` v : µα.τ and H ` n ¢ v : µα.τ then we can construct
some n′ such that n′ represents the value of unrollµα.τ v. By canonical forms, v = rollµα.τ v′ and
unrollµα.τ v evaluates to v′. But under our representation strategy, H ` n ¢ v′ : τ [µα.τ/α] and so
we can implement unroll.

Notice also that a representation of a value v of recursive type also represents the value produced
by unroll v, just as was the case for roll. This justifies our notion that roll and unroll may be
implemented as no-ops in a compiler that uses this data representation strategy.

B Proof of Coercion Erasure

In this appendix we will prove the coercion erasure safety theorem stated in Section 4 for a simple
fragment of our intermediate language. The theorem states that if an expression is well-typed, then
evaluation of its erasure does get stuck; that is, it never reaches an expression that is not a value
but for which no transition rule applies. To prove this, we will establish a correspondence between

19

the transition relation of the typed calculus and that of the untyped one; we will then be able to
show that the type-preservation and progress lemmas for the typed calculus guarantee safety of
their erasures.

The first two lemmas we will use are easy to prove using the definition of erasure given in
Section 4.

Lemma 2 (Erasure of Values) If v is a value, then v− is a value.

Proof: By structural induction on v. 2

Lemma 3 (Substitution and Erasure Commute)
For any expression e and value v, (e[v/x])− = e−[v−/x].

Proof: By structural induction on e. 2

(λx:τ . e1) v2 7→e e1[v2/x] (Λ~α.unfoldτ1)@(~σ; ((Λ~β.foldτ2)@(~σ′; v))) 7→c v

e1 7→ϕ e′1
e1 e2 7→ϕ e′1 e2

e2 7→ϕ e′2
v1 e2 7→ϕ v1 e′2

e 7→ϕ e′

v@(~τ ; e) 7→ϕ v@(~τ ; e′)

Figure 14: Annotated Operational Semantics for Typed Language

In order to properly characterize the relationship between the typed and untyped transition
relations we must distinguish, for the typed calculus, between evaluation steps like β-reduction
that correspond to steps in the untyped semantics and those like coercion application that do
not. To this end, we annotate transitions of the typed calculus as shown in Figure 14. The flag
ϕ adorning each transition may be either e, indicating an “evaluation” step that is preserved by
erasure, or c, indicating (to use Crary’s [CITE] terminology) a “canonicalization” step that is
removed by erasure. We will continue to use the unannotated 7→ to stand for the union of 7→e

and 7→c, and as usual we will use 7→∗, 7→∗
e and 7→∗

c to denote the reflexive, transitive closures of
these relations. With these definitions in place, we can prove the following lemma, which states
that evaluation steps are preserved by erasure, but terms that differ by a canonicalization step are
identified by erasure. It follows that any sequence of steps in the typed language erases to some
sequence of steps in the untyped language.

Lemma 4 (Simulation)

1. If e1 7→e e2, then e−1 7→ e−2 .

2. If e1 7→c e2, then e−1 = e−2 .

Proof: By induction on derivations, using the definition of erasure and Lemmas 2 and 3. 2

Lemma 5

1. If e1 7→∗
c e2, then e−1 = e−2 .

2. If e1 7→∗
e e2, then e−1 7→∗ e−2 .

20

3. If e1 7→∗ e2, then e−1 7→∗ e−2 .

Proof: Each part is proved separately by induction on the length of the transition sequence. 2

We are now ready to prove the equivalent of a Progress lemma for the untyped language. It
states that a term whose erasure is a value canonicalizes to a value in some number of steps, and
a term whose erasure is not a value will eventually take an evaluation step.

Lemma 6 (Progress under Erasure) If ∅ ` e : τ then either

1. e− is a value and e 7→∗
c v for some value v, OR

2. e− is not a value and e 7→∗
c e′ 7→e e′′ for some e′ and e′′.

Proof: By induction on the typing derivation for e. Note that if e is a value, then so is e− (by
Lemma 2) and e 7→∗

c e by definition. Thus we need only consider the typing rules in which the
expression being typed may be a non-value.

Case:
∅ ` e1 : τ ′ → τ ∅ ` e2 : τ ′

∅ ` e1 e2 : τ

Note that (e1 e2)− = e−1 e−2 , which is not a value. Thus we must show that e1 e2 7→∗
c e′ 7→e e′′.

There are three sub-cases:

Sub-case: e−1 is not a value. By the induction hypothesis, e1 7→∗
c e′1 7→e e′′1. Thus,

e1 e2 7→∗
c e′1 e2 7→e e′′1 e2.

Sub-case: e−1 is a value, e−2 is not. By the induction hypothesis, e1 7→∗
c v1 and e2 7→∗

c e′2 7→e

e′′2. Thus, e1 e2 7→∗
c v1 e2 7→∗

c v1 e′2 7→e v1 e′′2.

Sub-case: e−1 and e−2 are both values. By the induction hypothesis, e1 7→∗
c v1 and e2 7→∗

c v2.
By type preservation, ∅ ` v1 : τ ′ → τ . By canonical forms, v1 = λx:τ ′.e3. Thus, e1 e2 7→∗

c

(λx:τ ′.e3) e2 7→∗
c (λx:τ ′.e3) v2 7→e e3[v2/x].

Case:
Γ ` vc : (~α; τ1) ⇒ τ2 Γ ` e1 : τ1[~σ/~α] ∀i ∈ 1..n. Γ ` σi type

Γ ` vc@(~σ; e1) : τ2[~σ/~α]

Note that (vc@(~σ; e1))
− = e1

−. If e1
− is not a value, then by the induction hypothesis we get

e1 7→∗
c e′1 7→e e′′1, and hence vc@(~σ; e1) 7→∗

c vc@(~σ; e′1) 7→e vc@(~σ; e′′1) as required.
If e1

− is a value, then we must show that vc@(~σ; e1) 7→∗
c v for some value v. By the induction

hypothesis we have e1 7→∗
c v1. There are two sub-cases.

Sub-case: The coercion vc is Λ~α.foldδ. Then vc@(~σ; v1) is a value and vc@(~σ; e1) 7→∗
c

vc@(~σ; v1) as required.

Sub-case: The coercion vc is Λ~α.unfoldδ. By inversion, τ1 ≡ δ. By type preservation,
∅ ` v1 : δ[~σ/~α]. By canonical forms, v1 = (Λ~β.foldδ′)@(~σ′; v′1). Thus, vc@(~σ; e1) 7→∗

c

vc@(~σ; v1) = (Λ~α.unfoldδ)@(~σ; (Λ~β.foldδ′)@(~σ′; v′1)) 7→c v′1. 2

21

Next, we would like to prove an analogue of type preservation for our target calculus. Clearly
it is meaningless to prove type preservation for an untyped calculus, so we must prove instead that
if the erasure of a well-typed term takes a step, the result is itself the erasure of a well-typed term.
Because type preservation does hold for the typed calculus, the following lemma is sufficient to
show this.

Lemma 7 (Preservation under Erasure) If ∅ ` e : τ and e− 7→ f , then there is some e′ such
that e 7→∗ e′ and (e′)− = f .

Proof: By induction on the typing derivation for e. Note that since e− 7→ f , e− cannot be a value
and hence neither can e. Thus, as for the progress lemma, we only need to consider typing rules in
which the expression being typed may be a non-value.

Case: ∅ ` vc : (~α; τ1) ⇒ τ2 ∅ ` e1 : τ1[~σ/~α] ∀i ∈ 1..n. ∅ ` σi type
∅ ` vc@(~σ; e1) : τ2[~σ/~α]

Note that (vc@(~σ; e1))
− = e1

−, so in fact e1
− 7→ f . By the induction hypothesis, e1 7→∗ e′1

where (e′1)
− = f . Thus vc@(~σ; e1) 7→∗ vc@(~σ; e′1), and (vc@(~σ; e′1))

− = (e′1)
− = f .

Case:
∅ ` e1 : τ ′ → τ ∅ ` e2 : τ ′

∅ ` e1 e2 : τ

Note that (e1 e2)
− = e1

− e2
−, and so e1

− e2
− 7→ f . There are three possibilities for the last rule

used in the derivation of this transition.

Sub-case:
e1
− 7→ f1

e1
− e2

− 7→ f1 e2
− (where f = f2 e2

−.)

By the induction hypothesis, e1 7→∗ e′1 such that e′1
− = f1. Thus e1 e2 7→ e′1 e2 and (e′1 e2)

− =
(e′1)

− e2
− = f1 e2

− = f .

Sub-case:

e2
− 7→ f2

w1 e2
− 7→ w1 f2 (where e1

− = w1 is a value, and f = w1 f2)

By Lemma 6, e1 7→∗ v1. By Lemma 5, v1
− = w1. By the induction hypothesis, e1 7→∗ e′2 such

that (e′2)
− = f2. Thus, e1 e2 7→∗ v1 e2 7→∗ v1 e′2, and (v1 e′2)

− = v1
− (e′2)

− = w1 f2 = f .

Sub-case:

(λx.f3) w2 7→ f2[w2/x] (where e1
− = λx.f3, e2

− = w2 is a value, and f = f3[w2/x].)

By Lemma 6, e1 7→∗ v1 and e2 7→∗ v2. By Lemma 5, v1
− = λx.f3 and v2

− = w2. By type
preservation, ∅ ` v1 : τ ′ → τ , and so by canonical forms v1 = λx : τ ′.e3. But this means that
v1
− = λx.e3

−, so it must be the case that e3
− = f3. Thus we have

e1 e2 7→∗ (λx:τ ′ . e3) e2 7→∗ (λx:τ ′ . e3) v2 7→∗ e3[v2/x]

and by Lemma 3, (e3[v2/x])− = e3
−[v2

−/x] = f3[w2/x] = f . 2

22

We can now extend this lemma to transition sequences of any length, and prove the safety
theorem. This last theorem effectively states that the erasure of a well-typed expression can never
get stuck.

Lemma 8 If ∅ ` e : τ and e− 7→∗ f , then there is some e′ such that e 7→∗ e′ and (e′)− = f .

Proof: By induction on the length of the transition sequence. 2

Theorem 2 (Erasure Preserves Safety) If ∅ ` e : τ and e− 7→∗ f , then either f is a value or
there exists an f ′ such that f 7→ f ′.

Proof: By Lemma 8, there is an e′ such that e 7→∗ e′ and (e′)− = f . By type preservation, ∅ ` e′ : τ .
Suppose f is not a value; then by Lemma 6 there are e′′ and e′′′ such that e′ 7→∗

c e′′ 7→e e′′′. By
Lemma 5, (e′)− = (e′′)− and (e′′)− 7→ (e′′′)−. Therefore, f 7→ (e′′′)−. 2

23

